151
|
Zhao H, Vlasák J, Yuan Y. Outline, phylogenetic and divergence times analyses of the genus Haploporus (Polyporales, Basidiomycota): two new species are proposed. MycoKeys 2023; 98:233-252. [PMID: 37534305 PMCID: PMC10390986 DOI: 10.3897/mycokeys.98.105684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/06/2023] [Indexed: 08/04/2023] Open
Abstract
Haploporus species have a worldwide distribution and 27 species have been accepted. In this study, two new species, Haploporuscrystallinus and H.dextrinoideus, are proposed from South America, based on the molecular fragments (ITS, LSU and mtSSU) and morphological evidence. Molecular clock analysis was performed and the result suggests that the ancestor of Polyporales originated between the Late Jurassic and Early Cretaceous period, with a mean stem of 159.8 Mya [95% higher posterior density (HPD) of 142.4-184.1 Mya] and the genus Haploporus occurred at a mean stem of 108.3 Mya (95% HPD of 88.5-128.2 Mya). In addition, most species of the genus are diversified between 60.5 Mya and 1.8 Mya, during the Paleogene to Neogene. A key to the accepted species of the genus Haploporus is provided.
Collapse
Affiliation(s)
- Heng Zhao
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| | - Josef Vlasák
- Biology Centre of the Academy of Sciences of the Czech Republic, Branišovská 31, CZ-370 05 České Budějovice, Czech RepublicBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Yuan Yuan
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| |
Collapse
|
152
|
Rutkowski D, Weston M, Vannette RL. Bees just wanna have fungi: a review of bee associations with nonpathogenic fungi. FEMS Microbiol Ecol 2023; 99:fiad077. [PMID: 37422442 PMCID: PMC10370288 DOI: 10.1093/femsec/fiad077] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/15/2023] [Accepted: 07/06/2023] [Indexed: 07/10/2023] Open
Abstract
Bee-fungus associations are common, and while most studies focus on entomopathogens, emerging evidence suggests that bees associate with a variety of symbiotic fungi that can influence bee behavior and health. Here, we review nonpathogenic fungal taxa associated with different bee species and bee-related habitats. We synthesize results of studies examining fungal effects on bee behavior, development, survival, and fitness. We find that fungal communities differ across habitats, with some groups restricted mostly to flowers (Metschnikowia), while others are present almost exclusively in stored provisions (Zygosaccharomyces). Starmerella yeasts are found in multiple habitats in association with many bee species. Bee species differ widely in the abundance and identity of fungi hosted. Functional studies suggest that yeasts affect bee foraging, development, and pathogen interactions, though few bee and fungal taxa have been examined in this context. Rarely, fungi are obligately beneficial symbionts of bees, whereas most are facultative bee associates with unknown or ecologically contextual effects. Fungicides can reduce fungal abundance and alter fungal communities associated with bees, potentially disrupting bee-fungi associations. We recommend that future study focus on fungi associated with non-honeybee species and examine multiple bee life stages to document fungal composition, abundance, and mechanistic effects on bees.
Collapse
Affiliation(s)
- Danielle Rutkowski
- 367 Briggs Hall, Department of Entomology and Nematology, University of California Davis, Davis, CA 95616, United States
| | - Makena Weston
- 367 Briggs Hall, Department of Entomology and Nematology, University of California Davis, Davis, CA 95616, United States
| | - Rachel L Vannette
- 367 Briggs Hall, Department of Entomology and Nematology, University of California Davis, Davis, CA 95616, United States
| |
Collapse
|
153
|
Oliveira LG, Kettner MG, Lima MLS, Leão MPC, da S Santos AC, Costa AF. Trichoderma Species from Soil of Pernambuco State, Brazil. Curr Microbiol 2023; 80:289. [PMID: 37462778 DOI: 10.1007/s00284-023-03401-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/04/2023] [Indexed: 07/21/2023]
Abstract
Trichoderma is an important fungal genus, known mainly for its potential for the biological control of phytopathogens. Accurate identification of these fungi is essential for research and applications involving them, to be addressed correctly. The objectives of this study were to isolate, identify, and report the species richness of Trichoderma species that occur in the soil of different regions of Pernambuco, Brazil. DNA sequences of portions of the translation elongation factor 1-α (TEF1) gene region were generated for 56 isolates of Trichoderma, obtained from the Zona da Mata, Agreste, and Sertão regions of Pernambuco. According to the phylogenetic analysis based on these sequences, these fungi belong to two Sections-Trichoderma (35 isolates) and Pachybasidium (21 isolates). These fungi have been resolved in nine species, including Trichoderma afroharzianum, Trichoderma asperelloides, Trichoderma asperellum, Trichoderma koningiopsis, and five possible new species to be confirmed in further studies. This study shows that the soils of Pernambuco host a diversity of Trichoderma species and consequently of biological resources with potential for application in agriculture.
Collapse
Affiliation(s)
- Luciana G Oliveira
- Instituto Agronômico de Pernambuco, Av. General San Martin, 1371, Bongi, Recife, Pernambuco, 50761-000, Brazil.
| | - Mayara G Kettner
- Departamento de Micologia, Universidade Federal de Pernambuco, Av. Professor Moraes Rego 1235, Cidade Universitária, Recife, Pernambuco, 50670-901, Brazil
| | - Maria Luiza S Lima
- Instituto Agronômico de Pernambuco, Av. General San Martin, 1371, Bongi, Recife, Pernambuco, 50761-000, Brazil
| | - Mariele P Carneiro Leão
- Instituto Agronômico de Pernambuco, Av. General San Martin, 1371, Bongi, Recife, Pernambuco, 50761-000, Brazil
| | - Ana Carla da S Santos
- Departamento de Micologia, Universidade Federal de Pernambuco, Av. Professor Moraes Rego 1235, Cidade Universitária, Recife, Pernambuco, 50670-901, Brazil
| | - Antonio F Costa
- Instituto Agronômico de Pernambuco, Av. General San Martin, 1371, Bongi, Recife, Pernambuco, 50761-000, Brazil
| |
Collapse
|
154
|
Dasgupta P, Levin S. Economic factors underlying biodiversity loss. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220197. [PMID: 37246373 PMCID: PMC10225854 DOI: 10.1098/rstb.2022.0197] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/22/2023] [Indexed: 05/30/2023] Open
Abstract
Contemporary economic thinking does not acknowledge that the human economy is embedded in Nature; it instead treats humanity as a customer that draws on Nature. In this paper, we present a grammar for economic reasoning that is not built on that error. The grammar is based on a comparison between our demand for Nature's maintenance and regulating services and her ability to supply them on a sustainable basis. The comparison is then used to show that for measuring economic well-being, national statistical offices should estimate an inclusive measure of their economies' wealth and its distribution, not GDP and its distribution. The concept of 'inclusive wealth' is then used to identify policy instruments that ought to be used to manage such global public goods as the open seas and tropical rainforests. Trade liberalization without heed paid to the fate of local ecosystems from which primary products are drawn and exported by developing countries leads to a transfer of inclusive wealth from there to rich importing countries. Humanity's embeddedness in Nature has far-reaching implications for the way we should view human activities-in households, communities, nations and the world. This article is part of the theme issue 'Detecting and attributing the causes of biodiversity change: needs, gaps and solutions'.
Collapse
Affiliation(s)
- Partha Dasgupta
- Faculty of Economics, University of Cambridge, Sidgwick Avenue, Cambridge CB3 9DD, UK
| | - Simon Levin
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
155
|
Lu YZ, Liu JK, Chen J, Zeng XY, Kang JC. Editorial: Insights on fungal diversity of ascomycetes and basidiomycetes: taxonomy and interaction with their host. Front Microbiol 2023; 14:1245204. [PMID: 37520370 PMCID: PMC10380910 DOI: 10.3389/fmicb.2023.1245204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 08/01/2023] Open
Affiliation(s)
- Yong-Zhong Lu
- Engineering and Research Center for Southwest Bio-Pharmaceutical Resources of National Education Ministry of China, Guizhou University, Guiyang, Guizhou, China
- School of Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou, China
| | - Jian-Kui Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jie Chen
- Unidad Académica de Biotecnología y Agroindustrial, Universidad Politécnica de Huatusco, Huatusco, Mexico
| | - Xiang-Yu Zeng
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Ji-Chuan Kang
- Engineering and Research Center for Southwest Bio-Pharmaceutical Resources of National Education Ministry of China, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
156
|
Kerr M, Leavitt SD. A Custom Regional DNA Barcode Reference Library for Lichen-Forming Fungi of the Intermountain West, USA, Increases Successful Specimen Identification. J Fungi (Basel) 2023; 9:741. [PMID: 37504730 PMCID: PMC10381598 DOI: 10.3390/jof9070741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/27/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023] Open
Abstract
DNA barcoding approaches provide powerful tools for characterizing fungal diversity. However, DNA barcoding is limited by poor representation of species-level diversity in fungal sequence databases. Can the development of custom, regionally focused DNA reference libraries improve species-level identification rates for lichen-forming fungi? To explore this question, we created a regional ITS database for lichen-forming fungi (LFF) in the Intermountain West of the United States. The custom database comprised over 4800 sequences and represented over 600 formally described and provisional species. Lichen communities were sampled at 11 sites throughout the Intermountain West, and LFF diversity was characterized using high-throughput ITS2 amplicon sequencing. We compared the species-level identification success rates from our bulk community samples using our regional ITS database and the widely used UNITE database. The custom regional database resulted in significantly higher species-level assignments (72.3%) of candidate species than the UNITE database (28.3-34.2%). Within each site, identification of candidate species ranged from 72.3-82.1% using the custom database; and 31.5-55.4% using the UNITE database. These results highlight that developing regional databases may accelerate a wide range of LFF research by improving our ability to characterize species-level diversity using DNA barcoding.
Collapse
Affiliation(s)
- Michael Kerr
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Steven D Leavitt
- M.L. Bean Life Science Museum and Department of Biology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
157
|
Vandegrift R, Newman DS, Dentinger BTM, Batallas-Molina R, Dueñas N, Flores J, Goyes P, Jenkinson TS, McAlpine J, Navas D, Policha T, Thomas DC, Roy BA. Richer than Gold: the fungal biodiversity of Reserva Los Cedros, a threatened Andean cloud forest. BOTANICAL STUDIES 2023; 64:17. [PMID: 37410314 DOI: 10.1186/s40529-023-00390-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/08/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Globally, many undescribed fungal taxa reside in the hyperdiverse, yet undersampled, tropics. These species are under increasing threat from habitat destruction by expanding extractive industry, in addition to global climate change and other threats. Reserva Los Cedros is a primary cloud forest reserve of ~ 5256 ha, and is among the last unlogged watersheds on the western slope of the Ecuadorian Andes. No major fungal survey has been done there, presenting an opportunity to document fungi in primary forest in an underrepresented habitat and location. Above-ground surveys from 2008 to 2019 resulted in 1760 vouchered collections, cataloged and deposited at QCNE in Ecuador, mostly Agaricales sensu lato and Xylariales. We document diversity using a combination of ITS barcode sequencing and digital photography, and share the information via public repositories (GenBank & iNaturalist). RESULTS Preliminary identifications indicate the presence of at least 727 unique fungal species within the Reserve, representing 4 phyla, 17 classes, 40 orders, 101 families, and 229 genera. Two taxa at Los Cedros have recently been recommended to the IUCN Fungal Red List Initiative (Thamnomyces chocöensis Læssøe and "Lactocollybia" aurantiaca Singer), and we add occurrence data for two others already under consideration (Hygrocybe aphylla Læssøe & Boertm. and Lamelloporus americanus Ryvarden). CONCLUSIONS Plants and animals are known to exhibit exceptionally high diversity and endemism in the Chocó bioregion, as the fungi do as well. Our collections contribute to understanding this important driver of biodiversity in the Neotropics, as well as illustrating the importance and utility of such data to conservation efforts. RESUMEN Antecedentes: A nivel mundial muchos taxones fúngicos no descritos residen en los trópicos hiper diversos aunque continúan submuestreados. Estas especies están cada vez más amenazadas por la destrucción del hábitat debido a la expansión de la industria extractivista además del cambio climático global y otras amenazas. Los Cedros es una reserva de bosque nublado primario de ~ 5256 ha y se encuentra entre las últimas cuencas hidrográficas no explotadas en la vertiente occidental de los Andes ecuatorianos. Nunca antes se ha realizado un estudio de diversidad micológica en el sitio, lo que significa una oportunidad para documentar hongos en el bosque primario, en hábitat y ubicación subrepresentatadas. El presente estudio recopila información entre el 2008 y 2019 muestreando material sobre todos los sustratos, reportando 1760 colecciones catalogadas y depositadas en el Fungario del QCNE de Ecuador, en su mayoría Agaricales sensu lato y Xylariales; además se documenta la diversidad mediante secuenciación de códigos de barras ITS y fotografía digital, la información está disponible en repositorios públicos digitales (GenBank e iNaturalist). RESULTADOS La identificación preliminar indica la presencia de al menos 727 especies únicas de hongos dentro de la Reserva, que representan 4 filos, 17 clases, 40 órdenes, 101 familias y 229 géneros. Recientemente dos taxones en Los Cedros se recomendaron a la Iniciativa de Lista Roja de Hongos de la UICN (Thamnomyces chocöensis Læssøe y "Lactocollybia" aurantiaca Singer) y agregamos datos de presencia de otros dos que ya estaban bajo consideración (Hygrocybe aphylla Læssøe & Boertm. y Lamelloporus americanus Ryvarden). CONCLUSIONES Se sabe que plantas y animales exhiben una diversidad y endemismo excepcionalmente altos en la bioregión del Chocó y los hongos no son la excepción. Nuestras colecciones contribuyen a comprender este importante promotor de la biodiversidad en el Neotrópico además de ilustrar la importancia y utilidad de dichos datos para los esfuerzos de conservación.
Collapse
Affiliation(s)
- R Vandegrift
- Inst. of Ecology and Evolution, Department of Biology, University of Oregon, Eugene, OR, 97402, USA.
- Herbario Nacional del Ecuador (QCNE), sección botánica del Instituto Nacional de Biodiversidad (INABIO), Avenida Río Coca E6-115 e Isla Fernandina, Sector Jipijapa, Quito, Ecuador.
| | - D S Newman
- , Glorieta, NM, USA
- Herbario Nacional del Ecuador (QCNE), sección botánica del Instituto Nacional de Biodiversidad (INABIO), Avenida Río Coca E6-115 e Isla Fernandina, Sector Jipijapa, Quito, Ecuador
| | - B T M Dentinger
- Biology Department and Natural History Museum, University of Utah, Salt Lake City, Utah, USA
| | - R Batallas-Molina
- Herbario Nacional del Ecuador (QCNE), sección botánica del Instituto Nacional de Biodiversidad (INABIO), Avenida Río Coca E6-115 e Isla Fernandina, Sector Jipijapa, Quito, Ecuador
| | - N Dueñas
- Departamento de Investigación de Mycomaker, Quito, Ecuador
| | - J Flores
- Departamento de Investigación de Reino Fungi, Quito, Ecuador
| | - P Goyes
- Microbiology Institute-Universidad San Francisco de Quito, Quito, Ecuador
| | - T S Jenkinson
- Department of Biological Sciences, California State University, East Bay, Hayward, CA, USA
| | - J McAlpine
- Inst. of Ecology and Evolution, Department of Biology, University of Oregon, Eugene, OR, 97402, USA
| | - D Navas
- Herbario Nacional del Ecuador (QCNE), sección botánica del Instituto Nacional de Biodiversidad (INABIO), Avenida Río Coca E6-115 e Isla Fernandina, Sector Jipijapa, Quito, Ecuador
| | - T Policha
- Inst. of Ecology and Evolution, Department of Biology, University of Oregon, Eugene, OR, 97402, USA
| | - D C Thomas
- Inst. of Ecology and Evolution, Department of Biology, University of Oregon, Eugene, OR, 97402, USA
- Bayreuth Center of Ecology and Research, University of Bayreuth, Bayreuth, Bayern, DE, Germany
| | - B A Roy
- Inst. of Ecology and Evolution, Department of Biology, University of Oregon, Eugene, OR, 97402, USA
| |
Collapse
|
158
|
Zeb M, Ullah A, Ullah F, Haq A, Ullah I, Badshah L, Haq MA. Diversity and biological characteristics of macrofungi of district Bajaur, a remote area of Pakistan in the Hindu Kush range. Heliyon 2023; 9:e17818. [PMID: 37539235 PMCID: PMC10395124 DOI: 10.1016/j.heliyon.2023.e17818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 08/05/2023] Open
Abstract
The present study was carried out to document the diversity and ecological characteristics of macrofungi of Bajaur, Pakistan. The diversity of macrofungi comprised 51 species belonging to 22 families and 37 genera. The families Agaricaceae (7 species) and Psathyrellaceae (7 species) were found dominant followed by Tricholomataceae (4 species), Fomitopsidaceae and Polyporaceae (4 species each) and Amanitaceae (3 species). White (23 species), brown (11 species), and yellow were the most prevalent morphological colours in basidiocarps (8 species). Among the identified species, 32 were saprophytic in nutrition followed by 7 parasitic, 6 saprophytic and parasitic both, while 6 mycorrhizal that make association with higher plants. The distribution of macrofungal species in the three tehsils of Bajaur was also evaluated based on Shannon diversity index, Simpson diversity index and evenness. The highest Shannon diversity index and Simpson diversity index were found for tehsil Utman Kheil at 3.73 and 0.97, while the maximum value of evenness for tehsil Khar with 0.92 value. The results indicate a very high species richness of the study site. Four species out of the total were identified to be new reports from Pakistan. This survey's findings suggested that there is a wide variety of macrofungi that might be used as food and alternative medications if further research is carried out.
Collapse
Affiliation(s)
- Mubarak Zeb
- Department of Botany, Govt. Post Graduate College Khar, District Bajaur, Pakistan
| | - Abd Ullah
- Department of Botany, Govt. Post Graduate College Khar, District Bajaur, Pakistan
| | - Farman Ullah
- Department of Botany, Govt. Post Graduate College Khar, District Bajaur, Pakistan
| | - Aminul Haq
- Department of Botany, Govt. Post Graduate College Khar, District Bajaur, Pakistan
| | - Irshad Ullah
- Department of Botany, Islamia College University, Peshawar, Pakistan
| | - Lal Badshah
- Department of Botany, University of Peshawar, Pakistan
| | - Muhammad Abdul Haq
- Department of Botany, Govt. Post Graduate College Khar, District Bajaur, Pakistan
| |
Collapse
|
159
|
Wijayawardene NN, Boonyuen N, Ranaweera CB, de Zoysa HKS, Padmathilake RE, Nifla F, Dai DQ, Liu Y, Suwannarach N, Kumla J, Bamunuarachchige TC, Chen HH. OMICS and Other Advanced Technologies in Mycological Applications. J Fungi (Basel) 2023; 9:688. [PMID: 37367624 PMCID: PMC10302638 DOI: 10.3390/jof9060688] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
Fungi play many roles in different ecosystems. The precise identification of fungi is important in different aspects. Historically, they were identified based on morphological characteristics, but technological advancements such as polymerase chain reaction (PCR) and DNA sequencing now enable more accurate identification and taxonomy, and higher-level classifications. However, some species, referred to as "dark taxa", lack distinct physical features that makes their identification challenging. High-throughput sequencing and metagenomics of environmental samples provide a solution to identifying new lineages of fungi. This paper discusses different approaches to taxonomy, including PCR amplification and sequencing of rDNA, multi-loci phylogenetic analyses, and the importance of various omics (large-scale molecular) techniques for understanding fungal applications. The use of proteomics, transcriptomics, metatranscriptomics, metabolomics, and interactomics provides a comprehensive understanding of fungi. These advanced technologies are critical for expanding the knowledge of the Kingdom of Fungi, including its impact on food safety and security, edible mushrooms foodomics, fungal secondary metabolites, mycotoxin-producing fungi, and biomedical and therapeutic applications, including antifungal drugs and drug resistance, and fungal omics data for novel drug development. The paper also highlights the importance of exploring fungi from extreme environments and understudied areas to identify novel lineages in the fungal dark taxa.
Collapse
Affiliation(s)
- Nalin N. Wijayawardene
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China;
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka; (H.K.S.d.Z.); (F.N.); (T.C.B.)
- Section of Genetics, Institute for Research and Development in Health and Social Care, No: 393/3, Lily Avenue, Off Robert Gunawardane Mawatha, Battaramulla 10120, Sri Lanka
| | - Nattawut Boonyuen
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand;
| | - Chathuranga B. Ranaweera
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, General Sir John Kotelawala Defence University Sri Lanka, Kandawala Road, Rathmalana 10390, Sri Lanka;
| | - Heethaka K. S. de Zoysa
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka; (H.K.S.d.Z.); (F.N.); (T.C.B.)
| | - Rasanie E. Padmathilake
- Department of Plant Sciences, Faculty of Agriculture, Rajarata University of Sri Lanka, Pulliyankulama, Anuradhapura 50000, Sri Lanka;
| | - Faarah Nifla
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka; (H.K.S.d.Z.); (F.N.); (T.C.B.)
| | - Dong-Qin Dai
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China;
| | - Yanxia Liu
- Guizhou Academy of Tobacco Science, No.29, Longtanba Road, Guanshanhu District, Guiyang 550000, China;
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (J.K.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (J.K.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thushara C. Bamunuarachchige
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka; (H.K.S.d.Z.); (F.N.); (T.C.B.)
| | - Huan-Huan Chen
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China;
- Key Laboratory of Insect-Pollinator Biology of Ministry of Agriculture and Rural Affairs, Institute of Agricultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
160
|
Abstract
Investigation of fungal biology has been frequently motivated by the fact that many fungal species are important plant and animal pathogens. Such efforts have contributed significantly toward our understanding of fungal pathogenic lifestyles (virulence factors and strategies) and the interplay with host immune systems. In parallel, work on fungal allorecognition systems leading to the characterization of fungal regulated cell death determinants and pathways, has been instrumental for the emergent concept of fungal immunity. The uncovered evolutionary trans-kingdom parallels between fungal regulated cell death pathways and innate immune systems incite us to reflect further on the concept of a fungal immune system. Here, I briefly review key findings that have shaped the fungal immunity paradigm, providing a perspective on what I consider its most glaring knowledge gaps. Undertaking to fill such gaps would establish firmly the fungal immune system inside the broader field of comparative immunology.
Collapse
Affiliation(s)
- Asen Daskalov
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- ImmunoConcEpT, CNRS UMR 5164, University of Bordeaux, Bordeaux, France
| |
Collapse
|
161
|
Yang EF, Dai DQ, Bhat JD, Dawoud TM, Promputtha I, Adikaram N, Stephenson SL, Karunarathna SC, Tibpromma S. Taxonomic and Phylogenetic Studies of Saprobic Fungi Associated with Mangifera indica in Yunnan, China. J Fungi (Basel) 2023; 9:680. [PMID: 37367616 DOI: 10.3390/jof9060680] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023] Open
Abstract
Fungi are a large and diverse group of microorganisms, and although the estimated number of species ranges between 2 and 11 million, only around 150,000 species have been described thus far. The investigation of plant-associated fungi is beneficial for estimating global fungal diversity, for ecosystem conservation, and for the continued development of industry and agriculture. Mango, one of the world's five most economically important fruit crops, is grown in over 100 countries and has been demonstrated to have a great economical value. During surveys of mango-associated saprobic fungi in Yunnan (China), we discovered three new species (Acremoniisimulans hongheensis, Chaenothecopsis hongheensis and Hilberina hongheensis) and five new records. The phylogenetic analyses of multi-gene sequences (LSU, SSU, ITS, rpb2, tef1-α and tub2) coupled with morphological examinations were used to identify all the taxa.
Collapse
Affiliation(s)
- Er-Fu Yang
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Master of Science Program in Applied Microbiology (International Program), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Dong-Qin Dai
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Jayarama D Bhat
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Biology Division, Vishnugupta Vishwavidyapeetam, Ashoke, Gokarna 581326, India
| | - Turki M Dawoud
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Itthayakorn Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nimal Adikaram
- National Institute of Fundamental Studies, Kandy 20000, Sri Lanka
| | - Steven L Stephenson
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Samantha C Karunarathna
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
- National Institute of Fundamental Studies, Kandy 20000, Sri Lanka
| | - Saowaluck Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| |
Collapse
|
162
|
Rajendhran J, Yun Y, Tang W, Li Y. Editorial: Molecular mechanism in the development and pathogenesis of fungi. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1231925. [PMID: 37746128 PMCID: PMC10512295 DOI: 10.3389/ffunb.2023.1231925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 09/26/2023]
Affiliation(s)
- Jeyaprakash Rajendhran
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Yingzi Yun
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei Tang
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ya Li
- Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
163
|
Díaz-Puertas R, Adamek M, Mallavia R, Falco A. Fish Skin Mucus Extracts: An Underexplored Source of Antimicrobial Agents. Mar Drugs 2023; 21:350. [PMID: 37367675 DOI: 10.3390/md21060350] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023] Open
Abstract
The slow discovery of new antibiotics combined with the alarming emergence of antibiotic-resistant bacteria underscores the need for alternative treatments. In this regard, fish skin mucus has been demonstrated to contain a diverse array of bioactive molecules with antimicrobial properties, including peptides, proteins, and other metabolites. This review aims to provide an overview of the antimicrobial molecules found in fish skin mucus and its reported in vitro antimicrobial capacity against bacteria, fungi, and viruses. Additionally, the different methods of mucus extraction, which can be grouped as aqueous, organic, and acidic extractions, are presented. Finally, omic techniques (genomics, transcriptomics, proteomics, metabolomics, and multiomics) are described as key tools for the identification and isolation of new antimicrobial compounds. Overall, this study provides valuable insight into the potential of fish skin mucus as a promising source for the discovery of new antimicrobial agents.
Collapse
Affiliation(s)
- Rocío Díaz-Puertas
- Institute of Research, Development and Innovation in Healthcare Biotechnology in Elche (IDiBE), Miguel Hernández University, 03202 Elche, Spain
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine, 30559 Hannover, Germany
| | - Ricardo Mallavia
- Institute of Research, Development and Innovation in Healthcare Biotechnology in Elche (IDiBE), Miguel Hernández University, 03202 Elche, Spain
| | - Alberto Falco
- Institute of Research, Development and Innovation in Healthcare Biotechnology in Elche (IDiBE), Miguel Hernández University, 03202 Elche, Spain
| |
Collapse
|
164
|
Karunarathna SC, Haelewaters D, Lionakis MS, Tibpromma S, Jianchu X, Hughes AC, Mortimer PE. Assessing the threat of bat-associated fungal pathogens. One Health 2023; 16:100553. [PMID: 37363244 PMCID: PMC10288076 DOI: 10.1016/j.onehlt.2023.100553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 06/28/2023] Open
Abstract
Fungal pathogens have become an increasingly important topic in recent decades. Yet whilst various cankers and blights have gained attention in temperate woodlands and crops, the scope for fungal pathogens of animals and their potential threat has received far less attention. With a shifting climate, the threat from fungal pathogens is predicted to increase in the future, thus understanding the spread of fungi over landscapes as well as taxa that may be at risk is of particular importance. Cave ecosystems provide potential refugia for various fungi, and roosts for bats. With their well vascularized wings and wide-ranging distributions, bats present potential fungal vectors. Furthermore, whilst bat immune systems are generally robust to bacterial and viral pathogens, they can be susceptible to fungal pathogens, particularly during periods of stress such as hibernation. Here we explore why bats are important and interesting vectors for fungi across landscapes and discuss knowledge gaps that require further research.
Collapse
Affiliation(s)
- Samantha C. Karunarathna
- Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 65201, PR China
| | - Danny Haelewaters
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
- Research Group Mycology, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Michail S. Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases, National Institutes of Health, USA
| | - Saowaluck Tibpromma
- Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 65201, PR China
| | - Xu Jianchu
- Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 65201, PR China
| | - Alice C. Hughes
- School of Biological Sciences, University of Hong Kong, Hong Kong SAR, PR China
| | - Peter E. Mortimer
- Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 65201, PR China
| |
Collapse
|
165
|
Manassov N, Samy MN, Datkhayev U, Avula B, Adams SJ, Katragunta K, Raman V, Khan IA, Ross SA. Ultrastructural, Energy-Dispersive X-ray Spectroscopy, Chemical Study and LC-DAD-QToF Chemical Characterization of Cetraria islandica (L.) Ach. Molecules 2023; 28:molecules28114493. [PMID: 37298969 DOI: 10.3390/molecules28114493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
The lichen Cetraria islandica (L.) Ach. has been used in traditional and modern medicines for its many biological properties such as immunological, immunomodulating, antioxidant, antimicrobial, and anti-inflammatory activities. This species is gaining popularity in the market, with interest from many industries for selling as medicines, dietary supplements, and daily herbal drinks. This study profiled the morpho-anatomical features by light, fluorescence, and scanning electron microscopy; conducted an elemental analysis using energy-dispersive X-ray spectroscopy; and phytochemical analysis was performed using high-resolution mass spectrometry combined with a liquid chromatography system (LC-DAD-QToF) of C. islandica. In total, 37 compounds were identified and characterized based on comparisons with the literature data, retention times, and their mass fragmentation mechanism/s. The identified compounds were classified under five different classes, i.e., depsidones, depsides, dibenzofurans, aliphatic acids, and others that contain simple organic acids in majority. Two major compounds (fumaroprotocetraric acid and cetraric acid) were identified in the aqueous ethanolic and ethanolic extracts of C. islandica lichen. This detailed morpho-anatomical, EDS spectroscopy, and the developed LC-DAD-QToF approach for C. islandica will be important for correct species identification and can serve as a useful tool for taxonomical validation and chemical characterization. Additionally, chemical study of the extract of C. islandica led to isolation and structural elucidation of nine compounds, namely cetraric acid (1), 9'-(O-methyl)protocetraric acid (2), usnic acid (3), ergosterol peroxide (4), oleic acid (5), palmitic acid (6), stearic acid (7), sucrose (8), and arabinitol (9).
Collapse
Affiliation(s)
- Nurlen Manassov
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
- S.D. Asfendiyarov Kazakh National Medical University, School of Pharmacy, Almaty 050012, Kazakhstan
| | - Mamdouh Nabil Samy
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Ubaidilla Datkhayev
- S.D. Asfendiyarov Kazakh National Medical University, School of Pharmacy, Almaty 050012, Kazakhstan
| | - Bharathi Avula
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Sebastian John Adams
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Kumar Katragunta
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Vijayasankar Raman
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Ikhlas A Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Samir A Ross
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
- S.D. Asfendiyarov Kazakh National Medical University, School of Pharmacy, Almaty 050012, Kazakhstan
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| |
Collapse
|
166
|
Samaradiwakara NP, de Farias ARG, Tennakoon DS, Aluthmuhandiram JVS, Bhunjun CS, Chethana KWT, Kumla J, Lumyong S. Appendage-Bearing Sordariomycetes from Dipterocarpus alatus Leaf Litter in Thailand. J Fungi (Basel) 2023; 9:625. [PMID: 37367561 DOI: 10.3390/jof9060625] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Leaf litter is an essential functional aspect of forest ecosystems, acting as a source of organic matter, a protective layer in forest soils, and a nurturing habitat for micro- and macro-organisms. Through their successional occurrence, litter-inhabiting microfungi play a key role in litter decomposition and nutrient recycling. Despite their importance in terrestrial ecosystems and their abundance and diversity, information on the taxonomy, diversity, and host preference of these decomposer taxa is scarce. This study aims to clarify the taxonomy and phylogeny of four saprobic fungal taxa inhabiting Dipterocarpus alatus leaf litter. Leaf litter samples were collected from Doi Inthanon National Park in Chiang Mai, northern Thailand. Fungal isolates were characterized based on morphology and molecular phylogeny of the nuclear ribosomal DNA (ITS, LSU) and protein-coding genes (tub2, tef1-α, rpb2). One novel saprobic species, Ciliochorella dipterocarpi, and two new host records, Pestalotiopsis dracontomelon and Robillarda australiana, are introduced. The newly described taxa are compared with similar species, and comprehensive descriptions, micrographs, and phylogenetic trees are provided.
Collapse
Affiliation(s)
- Nethmini P Samaradiwakara
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | | | - Danushka S Tennakoon
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Janith V S Aluthmuhandiram
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Chitrabhanu S Bhunjun
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - K W Thilini Chethana
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Jaturong Kumla
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| |
Collapse
|
167
|
Tomazin R, Pliberšek T, Oštrbenk Valenčak A, Matos T. Different BD BACTEC ™ Blood Culture Bottle Types for the Detection of Fungi in Simulated Sterile Body Fluid Samples. Diagnostics (Basel) 2023; 13:diagnostics13101699. [PMID: 37238183 DOI: 10.3390/diagnostics13101699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Blood culture systems are a potential alternative to classical cultivation of fungi on mycological media, but there are limited data on the suitability of these systems for culturing other sample types (e.g., sterile body fluids). We conducted a prospective study to evaluate different types of blood culture (BC) bottles for the detection of different fungal species in non-blood samples. A total of 43 fungal isolates were tested for their ability to grow in BD BACTEC Mycosis-IC/F (Mycosis bottles), BD BACTEC Plus Aerobic/F (Aerobic bottles) and BD BACTEC Plus Anaerobic/F (Anaerobic bottles) (Becton Dickinson, East Rutherford, NJ, USA) BC bottles inoculated with spiked samples without the addition of blood or fastidious organism supplement. Time to detection (TTD) was determined for all BC types tested and compared between groups. In general, Mycosis and Aerobic bottles were similar (p > 0.05). The Anaerobic bottles failed to support growth in >86% of cases. The Mycosis bottles were superior in detecting Candida glabrata, Cryptococcus spp. and Aspergillus spp. (p < 0.05). The performance of Mycosis and Aerobic bottles was similar, but if cryptococcosis or aspergillosis is suspected, the use of Mycosis bottles is recommended. Anaerobic bottles are not recommended for fungal detection.
Collapse
Affiliation(s)
- Rok Tomazin
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška Cesta 4, SI-1000 Ljubljana, Slovenia
| | | | - Anja Oštrbenk Valenčak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška Cesta 4, SI-1000 Ljubljana, Slovenia
| | - Tadeja Matos
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška Cesta 4, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
168
|
Tang D, Huang O, Zou W, Wang Y, Wang Y, Dong Q, Sun T, Yang G, Yu H. Six new species of zombie-ant fungi from Yunnan in China. IMA Fungus 2023; 14:9. [PMID: 37170179 PMCID: PMC10173673 DOI: 10.1186/s43008-023-00114-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 03/28/2023] [Indexed: 05/13/2023] Open
Abstract
Some Ophiocordyceps species infecting ants are able to manipulate the host behavior. The hosts are manipulated in order to move to location that are advantageous for fungal spore transmission. Ophiocordyceps species that are able to manipulate the ant's behavior are called "zombie-ant fungi". They are widespread within tropical forests worldwide, with relatively few reports from subtropical monsoon evergreen broad-leaf forest. Zombie-ant fungi have been described and reported in different countries worldwide. However, there were a few reports from China. This study proposed six new species of zombie-ant fungi from China based on multi-gene (SSU, LSU, TEF, RPB1 and RPB2) phylogenetic analyses and morphological characteristics. Six novel species of Ophiocordyceps from China were identified as the Ophiocordyceps unilateralis core clade, forming a separate lineage with other species. Six novel species of Ophiocordyceps with hirsutella-like asexual morphs exclusively infecting ants were presented herein, namely, Ophiocordyceps acroasca, Ophiocordyceps bifertilis, Ophiocordyceps subtiliphialida, Ophiocordyceps basiasca, Ophiocordyceps nuozhaduensis and Ophiocordyceps contiispora. Descriptions and illustrations for six taxon were provided. Five of these species were collected from the subtropical monsoon evergreen broad-leaf forest, and one was collected from the rainforest and subtropical monsoon evergreen broad-leaf forest. This work proposes that the same host of Camponotus can be infected by multiple ant pathogenic fungi, while multiple ants of Polyrhachis can be infected by the same pathogenic fungi at the same time. This study contributes towards a better understanding of the evolutionary relationship between hosts and fungi, and provides novel insights into the morphology, distribution, parasitism, and ecology of Ophiocordyceps unilateralis sensu lato. We have provided a method for obtaining living cultures of Ophiocordyceps unilateralis complex species and their asexual morphs based on the living cultures, which is of significant value for further studies of Ophiocordyceps unilateralis complex species in the future.
Collapse
Affiliation(s)
- Dexiang Tang
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650504, China
- School of Life Science, Yunnan University, Kunming, 650504, China
| | - Ou Huang
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650504, China
- School of Life Science, Yunnan University, Kunming, 650504, China
| | - Weiqiu Zou
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650504, China
- School of Life Science, Yunnan University, Kunming, 650504, China
| | - Yuanbing Wang
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650504, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yao Wang
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650504, China
| | - Quanying Dong
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650504, China
- School of Life Science, Yunnan University, Kunming, 650504, China
| | - Tao Sun
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650504, China
- School of Life Science, Yunnan University, Kunming, 650504, China
| | - Gang Yang
- The Council of Management and Conservation of Sun River National Park, Puer, 665000, China
| | - Hong Yu
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650504, China.
| |
Collapse
|
169
|
Cittadino GM, Andrews J, Purewal H, Estanislao Acuña Avila P, Arnone JT. Functional Clustering of Metabolically Related Genes Is Conserved across Dikarya. J Fungi (Basel) 2023; 9:jof9050523. [PMID: 37233234 DOI: 10.3390/jof9050523] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/08/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Transcriptional regulation is vital for organismal survival, with many layers and mechanisms collaborating to balance gene expression. One layer of this regulation is genome organization, specifically the clustering of functionally related, co-expressed genes along the chromosomes. Spatial organization allows for position effects to stabilize RNA expression and balance transcription, which can be advantageous for a number of reasons, including reductions in stochastic influences between the gene products. The organization of co-regulated gene families into functional clusters occurs extensively in Ascomycota fungi. However, this is less characterized within the related Basidiomycota fungi despite the many uses and applications for the species within this clade. This review will provide insight into the prevalence, purpose, and significance of the clustering of functionally related genes across Dikarya, including foundational studies from Ascomycetes and the current state of our understanding throughout representative Basidiomycete species.
Collapse
Affiliation(s)
- Gina M Cittadino
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| | - Johnathan Andrews
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| | - Harpreet Purewal
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| | | | - James T Arnone
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| |
Collapse
|
170
|
Debeljak P, Baltar F. Fungal Diversity and Community Composition across Ecosystems. J Fungi (Basel) 2023; 9:jof9050510. [PMID: 37233221 DOI: 10.3390/jof9050510] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
Fungi have shaped the biosphere since the development of life on Earth. Despite fungi being present in all environments, most of the available fungal research has focused on soils. As a result, the role and composition of fungal communities in aquatic (marine and freshwater) environments remain largely unexplored. The use of different primers to characterise fungal communities has additionally complicated intercomparisons among studies. Consequently, we lack a basic global assessment of fungal diversity across major ecosystems. Here, we took advantage of a recently published 18S rRNA dataset comprising samples from major ecosystems (terrestrial, freshwater, and marine) to attempt a global assessment of fungal diversity and community composition. We found the highest fungal diversities for terrestrial > freshwater > marine environments, and pronounced gradients of fungal diversity along temperature, salinity, and latitude in all ecosystems. We also identified the most abundant taxa in each of these ecosystems, mostly dominated by Ascomycota and Basidiomycota, except in freshwater rivers where Chytridiomycota dominated. Collectively, our analysis provides a global analysis of fungal diversity across all major environmental ecosystems, highlighting the most distinct order and ASVs (amplicon sequencing variants) by ecosystem, and thus filling a critical gap in the study of the Earth's mycobiome.
Collapse
Affiliation(s)
- Pavla Debeljak
- Fungal & Biogeochemical Oceanography, Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Vienna, Austria
- SupBiotech, 94800 Villejuif, France
| | - Federico Baltar
- Fungal & Biogeochemical Oceanography, Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
171
|
Niazi SK, Basavarajappa DS, Kumaraswamy SH, Bepari A, Hiremath H, Nagaraja SK, Rudrappa M, Hugar A, Cordero MAW, Nayaka S. GC-MS Based Characterization, Antibacterial, Antifungal and Anti-Oncogenic Activity of Ethyl Acetate Extract of Aspergillus niger Strain AK-6 Isolated from Rhizospheric Soil. Curr Issues Mol Biol 2023; 45:3733-3756. [PMID: 37232710 DOI: 10.3390/cimb45050241] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 05/27/2023] Open
Abstract
Rhizospheric soil is the richest niche of different microbes that produce biologically active metabolites. The current study investigated the antimicrobial, antifungal and anticancer activities of ethyl acetate extract of the potent rhizospheric fungus Aspergillus niger AK6 (AK-6). A total of six fungal isolates were isolated, and isolate AK-6 was selected based on primary screening. Further, it exhibited moderate antimicrobial activity against pathogens such as Klebsiella pneumonia, Candida albicans, Escherichia coli, Shigella flexneri, Bacillus subtilis and Staphylococcus aureus. The morphological and molecular characterization (18S rRNA) confirmed that the isolate AK-6 belonged to Aspergillus niger. Further, AK-6 showed potent antifungal activity with 47.2%, 59.4% and 64.1% of inhibition against Sclerotium rolfsii, Cercospora canescens and Fusarium sambucinum phytopathogens. FT-IR analysis displayed different biological functional groups. Consequently, the GC-MS analysis displayed bioactive compounds, namely, n-didehydrohexacarboxyl-2,4,5-trimethylpiperazine (23.82%), dibutyl phthalate (14.65%), e-5-heptadecanol (8.98%), and 2,4-ditert-butylphenol (8.60%), among the total of 15 compounds isolated. Further, the anticancer activity of AK-6 was exhibited against the MCF-7 cell line of human breast adenocarcinoma with an IC50 value of 102.01 μg/mL. Furthermore, flow cytometry depicted 17.3%, 26.43%, and 3.16% of early and late apoptosis and necrosis in the AK-6 extarct treated MCF-7 cell line, respectively. The results of the present analysis suggest that the isolated Aspergillus niger strain AK-6 extract has the potential to be explored as a promising antimicrobial, antifungal and anticancer drug for medical and agricultural applications.
Collapse
Affiliation(s)
- Shaik Kalimulla Niazi
- Department of Preparatory Health Sciences, Riyadh Elm University, Riyadh 12611, Saudi Arabia
| | | | - Sushma Hatti Kumaraswamy
- Department of Pharmacology, Jagadguru Jayadeva Murugarajendra Medical College (JJMMC), Davanagere 577004, Karnataka, India
| | - Asmatanzeem Bepari
- Department of Basic Health Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Halaswamy Hiremath
- Department of Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India
| | | | - Muthuraj Rudrappa
- Department of Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India
| | - Anil Hugar
- Department of Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India
| | - Mary Anne Wong Cordero
- Department of Basic Health Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Sreenivasa Nayaka
- Department of Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India
| |
Collapse
|
172
|
Christinaki AC, Theelen B, Zania A, Coutinho SDA, Cabañes JF, Boekhout T, Kouvelis VN. Co-evolution of large inverted repeats and G-quadruplex DNA in fungal mitochondria may facilitate mitogenome stability: the case of Malassezia. Sci Rep 2023; 13:6308. [PMID: 37072481 PMCID: PMC10113387 DOI: 10.1038/s41598-023-33486-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023] Open
Abstract
Mitogenomes are essential due to their contribution to cell respiration. Recently they have also been implicated in fungal pathogenicity mechanisms. Members of the basidiomycetous yeast genus Malassezia are an important fungal component of the human skin microbiome, linked to various skin diseases, bloodstream infections, and they are increasingly implicated in gut diseases and certain cancers. In this study, the comparative analysis of Malassezia mitogenomes contributed to phylogenetic tree construction for all species. The mitogenomes presented significant size and gene order diversity which correlates to their phylogeny. Most importantly, they showed the inclusion of large inverted repeats (LIRs) and G-quadruplex (G4) DNA elements, rendering Malassezia mitogenomes a valuable test case for elucidating the evolutionary mechanisms responsible for this genome diversity. Both LIRs and G4s coexist and convergently evolved to provide genome stability through recombination. This mechanism is common in chloroplasts but, hitherto, rarely found in mitogenomes.
Collapse
Affiliation(s)
- Anastasia C Christinaki
- Section of Genetics and Biotechnology, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Bart Theelen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Alkmini Zania
- Section of Genetics and Biotechnology, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | | | - Javier F Cabañes
- Veterinary Mycology Group, Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Vassili N Kouvelis
- Section of Genetics and Biotechnology, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece.
| |
Collapse
|
173
|
Valenzuela R, Luna-Vega I, Martínez-Pineda M, Martínez-González CR, García-Jiménez J, de la Fuente J, Bautista-Hernández S, Acosta-Castellanos S, Raymundo T. Novelties in Macrofungi of the Tropical Montane Cloud Forest in Mexico. J Fungi (Basel) 2023; 9:jof9040477. [PMID: 37108931 PMCID: PMC10143667 DOI: 10.3390/jof9040477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The tropical montane cloud forest in Mexico is the most diverse and threatened ecosystem. Mexican macrofungi numbers more than 1408 species. This study described four new species of Agaricomycetes (Bondarzewia, Gymnopilus, Serpula, Sparassis) based on molecular and morphological characteristics. Our results support that Mexico is among the most biodiverse countries in terms of macrofungi in the Neotropics.
Collapse
Affiliation(s)
- Ricardo Valenzuela
- Laboratorio de Micología, Departamento de Botánica, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City 11340, CDMX, Mexico
| | - Isolda Luna-Vega
- Laboratorio de Biogeografía y Sistemática, Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, CDMX, Mexico
| | - Michelle Martínez-Pineda
- Laboratorio de Micología, Departamento de Botánica, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City 11340, CDMX, Mexico
| | - César Ramiro Martínez-González
- Instituto de Horticultura, Departamento de Fitotecnia, Universidad Autónoma Chapingo, Km 38.5 Carretera Federal México-Texcoco, Texcoco 56230, Estado de México, Mexico
| | - Jesús García-Jiménez
- Tecnológico Nacional de México, Instituto Tecnológico de Ciudad Victoria, Blvd. Emilio Portes Gil #1301 Pte., Ciudad Victoria 87010, Tamaulipas, Mexico
| | - Javier de la Fuente
- Colegio de Posgraduados, Km 36.5, Montecillo, Texcoco 56230, Estado de México, Mexico
| | - Silvia Bautista-Hernández
- Laboratorio de Micología, Departamento de Botánica, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City 11340, CDMX, Mexico
| | - Salvador Acosta-Castellanos
- Laboratorio de Micología, Departamento de Botánica, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City 11340, CDMX, Mexico
| | - Tania Raymundo
- Laboratorio de Micología, Departamento de Botánica, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City 11340, CDMX, Mexico
| |
Collapse
|
174
|
Urquhart AS, Vogan AA, Gardiner DM, Idnurm A. Starships are active eukaryotic transposable elements mobilized by a new family of tyrosine recombinases. Proc Natl Acad Sci U S A 2023; 120:e2214521120. [PMID: 37023132 PMCID: PMC10104507 DOI: 10.1073/pnas.2214521120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/04/2023] [Indexed: 04/07/2023] Open
Abstract
Transposable elements in eukaryotic organisms have historically been considered "selfish," at best conferring indirect benefits to their host organisms. The Starships are a recently discovered feature in fungal genomes that are, in some cases, predicted to confer beneficial traits to their hosts and also have hallmarks of being transposable elements. Here, we provide experimental evidence that Starships are indeed autonomous transposons, using the model Paecilomyces variotii, and identify the HhpA "Captain" tyrosine recombinase as essential for their mobilization into genomic sites with a specific target site consensus sequence. Furthermore, we identify multiple recent horizontal gene transfers of Starships, implying that they jump between species. Fungal genomes have mechanisms to defend against mobile elements, which are frequently detrimental to the host. We discover that Starships are also vulnerable to repeat-induced point mutation defense, thereby having implications on the evolutionary stability of such elements.
Collapse
Affiliation(s)
- Andrew S. Urquhart
- Commonwealth Scientific and Industrial Research Organisation, St Lucia, QLD4067, Australia
- Applied Biosciences, Macquarie University, Macquarie Park, NSW2109, Australia
| | - Aaron A. Vogan
- Department of Organismal Biology, Uppsala University, 752 36Uppsala, Sweden
| | - Donald M. Gardiner
- Commonwealth Scientific and Industrial Research Organisation, St Lucia, QLD4067, Australia
- University of Queensland, St Lucia, QLD4067, Australia
| | - Alexander Idnurm
- School of BioSciences, University of Melbourne, Parkville, VIC3010, Australia
| |
Collapse
|
175
|
Birt HWG, Pattison AB, Skarshewski A, Daniells J, Raghavendra A, Dennis PG. The core fungal microbiome of banana (Musa spp.). Front Microbiol 2023; 14:1127779. [PMID: 37065131 PMCID: PMC10098452 DOI: 10.3389/fmicb.2023.1127779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/08/2023] [Indexed: 04/03/2023] Open
Abstract
Here, we report a metabarcoding (ITS2) study to define the common core fungal microbiome (mycobiome) of healthy Musa spp. (bananas and plantains). To identify a list of 21 core fungal taxa, we first characterised the effects of edaphic conditions and host genotype – two factors that are likely to differ between farms – on the diversity of fungal communities in bulk soil and seven plant compartments. This experiment facilitated shortlisting of core ‘candidates’, which were then elevated to full core status if also found to frequent a wide-range of field-grown Musa spp. and exhibit hub-like characteristics in network analyses. Subsequently, we conducted a meta-analysis of eleven publicly available datasets of Musa spp. associated fungi demonstrating that the core fungi identified in our study have close relatives in other countries. The diversity and composition of mycobiomes differed between plant compartments and soils, but not genotypes. The core mycobiome included Fusarium oxysporum and its relatives, which dominated all plant compartments, as well as members of the Sordariomycetes, Dothideomycetes, and Mortierellomycota. Our study provides a robust list of common core fungal taxa for Musa spp. Further studies may consider how changes in the frequencies and activities of these taxa influence host fitness and whether they can be managed to improve banana production.
Collapse
Affiliation(s)
- Henry W. G. Birt
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Anthony B. Pattison
- Department of Agriculture and Fisheries, Centre for Wet Tropics Agriculture, South Johnstone, QLD, Australia
| | - Adam Skarshewski
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Jeff Daniells
- Department of Agriculture and Fisheries, Centre for Wet Tropics Agriculture, South Johnstone, QLD, Australia
| | - Anil Raghavendra
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Paul G. Dennis
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD, Australia
- *Correspondence: Paul G. Dennis,
| |
Collapse
|
176
|
N. M. Furtado A, Leonardi M, Comandini O, Neves MA, C. Rinaldi A. Restinga ectomycorrhizae: a work in progress. F1000Res 2023; 12:317. [PMID: 37265684 PMCID: PMC10230178 DOI: 10.12688/f1000research.131558.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 06/03/2023] Open
Abstract
Background: The Brazilian Atlantic Forest is one of the most biodiverse terrestrial ecoregions of the world. Among its constituents, restinga vegetation makes a particular case, acting as a buffer zone between the oceans and the forest. Covering some 80% of Brazilian coastline (over 7,300 km in length), restinga is a harsh environment where plants and fungi interact in complex ways that just now are beginning to be unveiled. Ectomycorrhizal symbiosis, in particular, plays a so far ungauged and likely underestimated role. We recently described the morpho-anatomical and molecular features of the ectomycorrhizae formed by several basidiomycetous mycobionts on the host plant Guapira opposita, but the mycorrhizal biology of restinga is still largely unexplored. Here, we report new data on the ectomycorrhizal fungal symbionts of G. opposita, based on the collection of sporomata and ectomycorrhizal root tips in restinga stands occurring in southern Brazil. Methods: To obtain a broader view of restinga mycorrhizal and ecological potential, we compiled a comprehensive and up-to-date checklist of fungal species reported or supposed to establish ectomycorrhizae on restinga-inhabiting host plants, mainly on the basis of field observations. Results: Our list comprises some 726 records, 74 of which correspond to putative ectomycorrhizal taxa specifically associated with restinga. These include several members of Boletaceae, Amanita, Tomentella/ Thelephora, Russula/ Lactifluus, and Clavulina, as well as hypogeous fungi, like the recently described Longistriata flava. Conclusions: Our survey reveals a significant diversity of the restinga ectomycorrhizal mycobiota, indicating the importance of this symbiosis for the ecological functioning of a unique yet poorly known and threatened ecosystem.
Collapse
Affiliation(s)
- Ariadne N. M. Furtado
- Departamento de Botânica, Campus Universitário Reitor João David Ferreira Lima, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, 88040-960, Brazil
| | - Marco Leonardi
- Dipartimento di Scienze della Vita, della Salute e dell'Ambiente, Universita degli Studi dell'Aquila, L'Aquila, Abruzzo, I-67100, Italy
| | - Ornella Comandini
- Dipartimento di Scienze Biomediche, Universita degli Studi di Cagliari, Cagliari, Sardinia, I-09042, Italy
| | - Maria Alice Neves
- Departamento de Botânica, Campus Universitário Reitor João David Ferreira Lima, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, 88040-960, Brazil
| | - Andrea C. Rinaldi
- Dipartimento di Scienze Biomediche, Universita degli Studi di Cagliari, Cagliari, Sardinia, I-09042, Italy
| |
Collapse
|
177
|
Corona Ramirez A, Bregnard D, Junier T, Cailleau G, Dorador C, Bindschedler S, Junier P. Assessment of fungal spores and spore-like diversity in environmental samples by targeted lysis. BMC Microbiol 2023; 23:68. [PMID: 36918804 PMCID: PMC10015814 DOI: 10.1186/s12866-023-02809-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/01/2023] [Indexed: 03/15/2023] Open
Abstract
At particular stages during their life cycles, fungi use multiple strategies to form specialized structures to survive unfavorable environmental conditions. These strategies encompass sporulation, as well as cell-wall melanization, multicellular tissue formation or even dimorphism. The resulting structures are not only used to disperse to other environments, but also to survive long periods of time awaiting favorable growth conditions. As a result, these specialized fungal structures are part of the microbial seed bank, which is known to influence the microbial community composition and contribute to the maintenance of diversity. Despite the importance of the microbial seed bank in the environment, methods to study the diversity of fungal structures with improved resistance only target spores dispersing in the air, omitting the high diversity of these structures in terms of morphology and environmental distribution. In this study, we applied a separation method based on cell lysis to enrich lysis-resistant fungal structures (for instance, spores, sclerotia, melanized yeast) to obtain a proxy of the composition of the fungal seed bank. This approach was first evaluated in-vitro in selected species. The results obtained showed that DNA from fungal spores and from yeast was only obtained after the application of the enrichment method, while mycelium was always lysed. After validation, we compared the diversity of the total and lysis-resistant fractions in the polyextreme environment of the Salar de Huasco, a high-altitude athalassohaline wetland in the Chilean Altiplano. Environmental samples were collected from the salt flat and from microbial mats in small surrounding ponds. Both the lake sediments and microbial mats were dominated by Ascomycota and Basidiomycota, however, the diversity and composition of each environment differed at lower taxonomic ranks. Members of the phylum Chytridiomycota were enriched in the lysis-resistant fraction, while members of the phylum Rozellomycota were never detected in this fraction. Moreover, we show that the community composition of the lysis-resistant fraction reflects the diversity of life cycles and survival strategies developed by fungi in the environment. To the best of our knowledge this is the first time that the fungal diversity is explored in the Salar de Huasco. In addition, the method presented here provides a simple and culture independent approach to assess the diversity of fungal lysis-resistant cells in the environment.
Collapse
Affiliation(s)
- Andrea Corona Ramirez
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Danaé Bregnard
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Thomas Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Vital-IT Group, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Guillaume Cailleau
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Cristina Dorador
- Department of Biotechnology, University of Antofagasta, Antofagasta, Chile
| | - Saskia Bindschedler
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.
| |
Collapse
|
178
|
Zhou LW, May TW. Fungal taxonomy: current status and research agendas for the interdisciplinary and globalisation era. Mycology 2023; 14:52-59. [PMID: 36816771 PMCID: PMC9930751 DOI: 10.1080/21501203.2022.2103194] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
Fungal taxonomy is a fundamental discipline that aims to recognise all fungi and their kinships. Approximately 5% of a practical estimate of 2.2-3.8 million species globally are currently known, and consequently the Fungal Tree of Life (FTOL) is very incompletely reconstructed. With the advances of new technologies, mycology is marching into the interdisciplinary and globalisation era. To make fungal taxonomy relevant, innovative sampling methods and phylogenomics analyses should be performed to reconstruct a much more comprehensive FTOL. In association with this densely sampled FTOL, multiomics will reveal what drives fungal species diversification and how fungal traits evolve to adapt to various environments, while metagenomics will facilitate the understanding and protection of the ecological functions of fungi. A coordinated approach to pursuing these research agendas that includes conceiving of and costing a mission to describe all the fungi on the planet will unlock potential of fungi to support sustainable development of our society.
Collapse
Affiliation(s)
- Li-Wei Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China,CONTACT Li-Wei Zhou
| | - Tom W. May
- Royal Botanic Gardens Victoria, Melbourne, Australia,Tom W. May
| |
Collapse
|
179
|
Gangwar R, Ghosh A, Kumar S, Maurya VK. Antibacterial, Antioxidant and Nutraceutical Potential of New Culinary-Medicinal Mushroom Russula lakhanpalii (Agaricomycetes) from India. Int J Med Mushrooms 2023; 25:77-85. [PMID: 36749059 DOI: 10.1615/intjmedmushrooms.2022046844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Russula lakhanpalii is a wild edible mushroom, collected from Pedkhal block of Pauri Garhwal, India. The nutritional composition, antioxidant activity (AOA), and antibacterial activity (ABA) of R. lakhanpalii were analyzed for the first time in this study. Dried fruiting bodies of R. lakhanpalii were reported to contain 17.7% ash, 10% crude fiber, 13.4% protein, 30.9% carbohydrate, and 5% unsaturated lipids. In addition, 10.22-72.56% DPPH scavenging activity also confirmed the good antioxidant nature of R. lakhanpalii. The methanolic extract of R. lakhanpalii fruiting bodies inhibited the growth of five pathogenic bacteria in vitro; Klebsiella pneumoniae (MTCC 4030), Micrococcus luteus (MTCC 1809), Staphylococcus aureus (MTCC 1144), Escherichia coli (MTCC 68), and Streptococcus pneumoniae (MTCC 655). The maximum and minimum zone of inhibitions (ZOIs) reported were 17.8 ± 1.04 mm (K. pneumoniae) and 11.16 ± 0.76 mm, (E. coli), respectively. The noticeable feature of the extract was the inhibition of erythromycin-resistant E. coli and M. luteus by it, which were resistant to 15 μg/disc concentration of erythromycin. Dietary components, antibacterial and antioxidant potentials of R. lakhanpalii suggested its nutraceutical and medicinal applications.
Collapse
Affiliation(s)
- Reena Gangwar
- Department of Botany and Microbiology, Hemvati Nandan Bahuguna Garhwal University, Srinagar Garhwal, Uttarakhand, 246174, India
| | - Aniket Ghosh
- Department of Botany, Hemvati Nandan Bahuguna Garhwal University, Srinagar Garhwal, Uttarakhand, 246174, India; Central National Herbarium, Botanical Survey of India, Salt Lake City, Kolkata 700064, India
| | - Shambhu Kumar
- Forest Pathology Department, KSCSTE-Kerala Forest Research Institute, Peechi, Thrissur, Kerala, 680653, India
| | - Vineet Kumar Maurya
- Department of Botany and Microbiology, Hemvati Nandan Bahuguna Garhwal University, Srinagar Garhwal, Uttarakhand, 246174, India
| |
Collapse
|
180
|
Fiałkowska E, Górska-Andrzejak J, Pajdak-Stós A. The role of environmental factors in the conidiation of the predacious rotiferovorous fungus Zoophagus insidians (Zoopagomycota). FUNGAL ECOL 2023. [DOI: 10.1016/j.funeco.2022.101197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
181
|
Pushparaj K, Meyyazhagan A, Bhotla HK, Arumugam VA, Pappuswamy M, Vadivalagan C, Hakeem KR, Balasubramanian B, Liu W, Mousavi Khaneghah A. The crux of bioactive metabolites in endophytic and thermophilic fungi and their proximal prospects in biotechnological and industrial domains. Toxicon 2023; 223:107007. [PMID: 36563862 DOI: 10.1016/j.toxicon.2022.107007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Fungi are ubiquitous in distribution and are found in grasses to hot springs. Their mode of nutrition provides sustenance for living and propagation. Ironically, varied fungal species have developed customized strategies for protection and survival by producing diverse secondary metabolites. The review aimed to project the contrasting potential features of the endophytic and thermophilic fungi groups. The metabolites and the enzymes of endophytic and thermophilic fungi served as the backbone to thrive and adapt within-host and in extreme conditions like higher pH, heat, and salinity, respectively. Identification, knowledge of their biochemistry and pathway, exploration, production, and utilization of these bioactive molecules in various commercial, industrial, and pharmaceutical domains were briefly discussed. The uniqueness of endophytes includes stress management and improved biomass production of the host, green fuel production, omnipresence, selected triple-symbiosis with the virus, synthesis of polyketides, and other active metabolites are widely used in biomedical applications and agriculture management. This review attempted to limelight the specific applications of thermophilic fungal metabolites and the roles of thermo-stable enzymes in bioprospecting. Moreover, probing the metabolites of thermophiles rendered novel antibiotic compounds, which were proven effective against multi-drug resistant bacteria and harboured the potential to curtail infectious diseases.
Collapse
Affiliation(s)
- Karthika Pushparaj
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641 043, Tamil Nadu, India
| | - Arun Meyyazhagan
- Department of Life Science, CHRIST (Deemed to Be University), Bengaluru, Karnataka, 560076, India
| | - Haripriya Kuchi Bhotla
- Department of Life Science, CHRIST (Deemed to Be University), Bengaluru, Karnataka, 560076, India
| | - Vijaya Anand Arumugam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Manikantan Pappuswamy
- Department of Life Science, CHRIST (Deemed to Be University), Bengaluru, Karnataka, 560076, India
| | | | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | | | - Wenchao Liu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China.
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. WacławDąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, 36 Rakowiecka St., 02-532, Warsaw, Poland; Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan.
| |
Collapse
|
182
|
Ghobad-Nejhad M, Dima B, Cui BK, Si J. Editorial: Basidiomycete fungi: From biosystematics and biodiversity to biotechnology. Front Microbiol 2023; 14:1128319. [PMID: 36778884 PMCID: PMC9910330 DOI: 10.3389/fmicb.2023.1128319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023] Open
Affiliation(s)
- Masoomeh Ghobad-Nejhad
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran,Iranian Cryptogamic Herbarium (ICH), Iranian Research Organization for Science and Technology (IROST), Tehran, Iran,*Correspondence: Masoomeh Ghobad-Nejhad ✉ ; ✉
| | - Bálint Dima
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Bao-Kai Cui
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Jing Si
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|
183
|
Liu J, Zhang Y, Shi Y, Zheng Y, Zhu Y, Guan Z, Shen D, Dou D. FungiExp: a user-friendly database and analysis platform for exploring fungal gene expression and alternative splicing. Bioinformatics 2023; 39:6992664. [PMID: 36655761 PMCID: PMC9887077 DOI: 10.1093/bioinformatics/btad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/21/2022] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
SUMMARY Fungi form a large and heterogeneous group of eukaryotic organisms with diverse ecological niches. The high importance of fungi contrasts with our limited understanding of fungal lifestyle and adaptability to environment. Over the last decade, the high-throughput sequencing technology produced tremendous RNA-sequencing (RNA-seq) data. However, there is no comprehensive database for mycologists to conveniently explore fungal gene expression and alternative splicing. Here, we have developed FungiExp, an online database including 35 821 curated RNA-seq samples derived from 220 fungal species, together with gene expression and alternative splicing profiles. It allows users to query and visualize gene expression and alternative splicing in the collected RNA-seq samples. Furthermore, FungiExp contains several online analysis tools, such as differential/specific, co-expression network and cross-species gene expression conservation analysis. Through these tools, users can obtain new insights by re-analyzing public RNA-seq data or upload personal data to co-analyze with public RNA-seq data. AVAILABILITY AND IMPLEMENTATION The FungiExp is freely available at https://bioinfo.njau.edu.cn/fungiExp. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jinding Liu
- Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China,Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Yaru Zhang
- College of Information Management, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yapin Shi
- College of Information Management, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yiqing Zheng
- College of Information Management, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yali Zhu
- College of Information Management, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhuoran Guan
- College of Information Management, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Danyu Shen
- To whom correspondence should be addressed.
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
184
|
Zainudin RA, Sabri S, Salleh AB, Abu A, Khairuddin RFR, Oslan SN. In silico identification of prospective virulence factors associated with candidiasis in Meyerozyma guilliermondii strain SO from genome dataset. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2023. [DOI: 10.1186/s43042-023-00384-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Abstract
Background
Meyerozyma guilliermondii is a prospective yeast that has extensively contributed to the biotechnology sector. In 2015, M. guilliermondii strain SO which was isolated from spoiled orange has successfully been developed as an inducer-free expression system and attained a significant impact in producing industrially important recombinant proteins. The species possesses high similarity to Candida albicans which may cause candidiasis. The industrial-benefiting M. guilliermondii strain SO has been underexplored for its virulence status. Thus, this study aimed to document the potential virulence factors through the comprehensive in silico analysis of M. guilliermondii strain SO genome. This analysis demonstrated the molecular characterization which could distinguish the pathogenicity status of M. guilliermondii.
Results
The genome data were generated from Illumina HiSeq 4000 sequencing platform and assembled into 51 scaffolds successfully accumulating a genome size of 10.63 Mbp. These enclosed 5,335 CDS genes and 5,349 protein sequences with 43.72% GC content. About 99.29% of them were annotated to public databases. Komagataella phaffii, Saccharomyces cerevisiae and the reference strain of M. guilliermondii (ATCC 6260) were used as the controls. They were compared with our in-house strain SO to identify the consensus domain or subdomain which could putatively be considered as virulence factors. Candida albicans was used as the pathogenic model. Hence, hidden Markov model against strain SO proteome had identified secreted aspartic proteases (SAP), phospholipase C (PLC) and phospholipase D (PLD) with an E-value of 2.4e−107, 9.5e−200 and 0.0e+00, respectively, in resemblance of C. albicans. The topology of the phylogenetic analysis indicated that these virulence factors in M. guilliermondii strain SO and C. albicans branched from the same node and clustered together as a clade, signifying their molecular relatedness and congeneric among these species, subsequently proposing the virulence status of M. guilliermondii.
Conclusion
The SAP, PLC and PLD genes’ features that were significant in expressing determinants of pathogenicity were successfully identified in M. guilliermondii strain SO genome dataset, thus concluding the virulency of this species. On account of this finding, the strategy of gene knockout through CRISPR-Cas9 or homologous recombination strategies is needed to engineer the feasible novel expression host system. Over and above, the genetically modified strain of M. guilliermondii allegedly may eradicate the risk of candidiasis infection.
Collapse
|
185
|
Otero A, Barcenas-Peña A, Lumbsch HT, Grewe F. Reference-Based RADseq Unravels the Evolutionary History of Polar Species in 'the Crux Lichenologorum' Genus Usnea (Parmeliaceae, Ascomycota). J Fungi (Basel) 2023; 9:99. [PMID: 36675920 PMCID: PMC9865703 DOI: 10.3390/jof9010099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/03/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Nearly 90% of fungal diversity, one of the most speciose branches in the tree of life, remains undescribed. Lichenized fungi as symbiotic associations are still a challenge for species delimitation, and current species diversity is vastly underestimated. The ongoing democratization of Next-Generation Sequencing is turning the tables. Particularly, reference-based RADseq allows for metagenomic filtering of the symbiont sequence and yields robust phylogenomic trees of closely related species. We implemented reference-based RADseq to disentangle the evolution of neuropogonoid lichens, which inhabit harsh environments and belong to Usnea (Parmeliaceae, Ascomycota), one of the most taxonomically intriguing genera within lichenized fungi. Full taxon coverage of neuropogonoid lichens was sampled for the first time, coupled with phenotype characterizations. More than 20,000 loci of 126 specimens were analyzed through concatenated and coalescent-based methods, including time calibrations. Our analysis addressed the major taxonomic discussions over recent decades. Subsequently, two species are newly described, namely U. aymondiana and U. fibriloides, and three species names are resurrected. The late Miocene and Pliocene-Pleistocene boundary is inferred as the timeframe for neuropogonoid lichen diversification. Ultimately, this study helped fill the gap of fungal diversity by setting a solid backbone phylogeny which raises new questions about which factors may trigger complex evolutionary scenarios.
Collapse
Affiliation(s)
- Ana Otero
- The Grainger Bioinformatics Center & Negaunee Integrative Research Center, Science & Education, The Field Museum, Chicago, IL 60605, USA
| | | | | | | |
Collapse
|
186
|
Shumskaya M, Filippova N, Lorentzen L, Blue S, Andrew C, Lorusso NS. Citizen science helps in the study of fungal diversity in New Jersey. Sci Data 2023; 10:10. [PMID: 36599859 DOI: 10.1038/s41597-022-01916-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
The history of fungal diversity of the Northeastern United States is currently fragmentary and restricted to particular functional groups or limited geospatial scales. Here, we describe a unique by its size, lifespan and data originators dataset, to improve our understanding of species occurrence and distribution across the state and time. Between the years 2007 to 2019, over 30 parks and nature preserves were sampled during forays conducted by members of the New Jersey Mycological Association (USA), a nonprofit organization of fungi enthusiasts. The dataset contains over 400 000 occurrences of over 1400 species across the state, made up mostly of the phylum Basidiomycota (89%) and Ascomycota (11%), with most observations resolved at the species level (>99%). The database is georeferenced and openly accessible through the Global Biodiversity Information Facility (GBIF) repository. This dataset marks a productive endeavor to contribute to our knowledge of the biodiversity of fungi in the Northeastern United States leveraging citizen science to better resolve biodiversity of this critical and understudied kingdom.
Collapse
Affiliation(s)
- Maria Shumskaya
- Department of Biology, Kean University, 1000 Morris Ave, Union, NJ, 07083, USA.
| | - Nina Filippova
- Yugra State University, Chekhova str., 16, Khanty-Mansiysk, 628012, Russia
| | - Laura Lorentzen
- Department of Biology, Kean University, 1000 Morris Ave, Union, NJ, 07083, USA
| | - Shazneka Blue
- Department of Biology, Kean University, 1000 Morris Ave, Union, NJ, 07083, USA
| | - Carrie Andrew
- Oberlin College & Conservatory, Biology Department, 119 Woodland Street, Oberlin, Ohio, 44074, USA
| | - Nicholas S Lorusso
- Department of Biology, Kean University, 1000 Morris Ave, Union, NJ, 07083, USA
- Department of Natural Sciences, University of North Texas at Dallas, 7300 University Hills Blvd, Dallas, TX, 75241, USA
| |
Collapse
|
187
|
Reynolds NK, Stajich JE, Benny GL, Barry K, Mondo S, LaButti K, Lipzen A, Daum C, Grigoriev IV, Ho HM, Crous PW, Spatafora JW, Smith ME. Mycoparasites, Gut Dwellers, and Saprotrophs: Phylogenomic Reconstructions and Comparative Analyses of Kickxellomycotina Fungi. Genome Biol Evol 2023; 15:evac185. [PMID: 36617272 PMCID: PMC9866270 DOI: 10.1093/gbe/evac185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 01/09/2023] Open
Abstract
Improved sequencing technologies have profoundly altered global views of fungal diversity and evolution. High-throughput sequencing methods are critical for studying fungi due to the cryptic, symbiotic nature of many species, particularly those that are difficult to culture. However, the low coverage genome sequencing (LCGS) approach to phylogenomic inference has not been widely applied to fungi. Here we analyzed 171 Kickxellomycotina fungi using LCGS methods to obtain hundreds of marker genes for robust phylogenomic reconstruction. Additionally, we mined our LCGS data for a set of nine rDNA and protein coding genes to enable analyses across species for which no LCGS data were obtained. The main goals of this study were to: 1) evaluate the quality and utility of LCGS data for both phylogenetic reconstruction and functional annotation, 2) test relationships among clades of Kickxellomycotina, and 3) perform comparative functional analyses between clades to gain insight into putative trophic modes. In opposition to previous studies, our nine-gene analyses support two clades of arthropod gut dwelling species and suggest a possible single evolutionary event leading to this symbiotic lifestyle. Furthermore, we resolve the mycoparasitic Dimargaritales as the earliest diverging clade in the subphylum and find four major clades of Coemansia species. Finally, functional analyses illustrate clear variation in predicted carbohydrate active enzymes and secondary metabolites (SM) based on ecology, that is biotroph versus saprotroph. Saprotrophic Kickxellales broadly lack many known pectinase families compared with saprotrophic Mucoromycota and are depauperate for SM but have similar numbers of predicted chitinases as mycoparasitic.
Collapse
Affiliation(s)
| | - Jason E Stajich
- Department of Microbiology & Plant Pathology and Institute for Integrative Genome Biology, University of California–Riverside
| | | | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory
| | - Stephen Mondo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory
| | - Kurt LaButti
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory
| | - Chris Daum
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory
- Department of Plant and Microbial Biology, University of California Berkeley
| | - Hsiao-Man Ho
- Department of Science Education, University of Education, 134, Section 2, Heping E. Road, National Taipei, Taipei 106, Taiwan
| | - Pedro W Crous
- Department of Evolutionary Phytopathology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | | | | |
Collapse
|
188
|
Amara AA, El-Baky NA. Fungi as a Source of Edible Proteins and Animal Feed. J Fungi (Basel) 2023; 9:73. [PMID: 36675894 PMCID: PMC9863462 DOI: 10.3390/jof9010073] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/16/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
It is expected that the world population will reach 9 billion by 2050. Thus, meat, dairy or plant-based protein sources will fail to meet global demand. New solutions must be offered to find innovative and alternative protein sources. As a natural gift, edible wild mushrooms growing in the wet and shadow places and can be picked by hand have been used as a food. From searching mushrooms in the forests and producing single cell proteins (SCP) in small scales to mega production, academia, United Nations Organizations, industries, political makers and others, play significant roles. Fermented traditional foods have also been reinvestigated. For example, kefir, miso, and tempeh, are an excellent source for fungal isolates for protein production. Fungi have unique criteria of consuming various inexpensive wastes as sources of carbon and energy for producing biomass, protein concentrate or amino acids with a minimal requirement of other environmental resources (e.g., light and water). Fungal fermented foods and SCP are consumed either intentionally or unintentionally in our daily meals and have many applications in food and feed industries. This review addresses fungi as an alternative source of edible proteins and animal feed, focusing mainly on SCP, edible mushrooms, fungal fermented foods, and the safety of their consumption.
Collapse
Affiliation(s)
- Amro A. Amara
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Universities and Research Center District, New Borg El-Arab City P.O. Box 21934, Alexandria, Egypt
| | - Nawal Abd El-Baky
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Universities and Research Center District, New Borg El-Arab City P.O. Box 21934, Alexandria, Egypt
| |
Collapse
|
189
|
Safeer A, Kleijburg F, Bahri S, Beriashvili D, Veldhuizen EJA, van Neer J, Tegelaar M, de Cock H, Wösten HAB, Baldus M. Probing Cell-Surface Interactions in Fungal Cell Walls by High-Resolution 1 H-Detected Solid-State NMR Spectroscopy. Chemistry 2023; 29:e202202616. [PMID: 36181715 PMCID: PMC10099940 DOI: 10.1002/chem.202202616] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Indexed: 11/05/2022]
Abstract
Solid-state NMR (ssNMR) spectroscopy facilitates the non-destructive characterization of structurally heterogeneous biomolecules in their native setting, for example, comprising proteins, lipids and polysaccharides. Here we demonstrate the utility of high and ultra-high field 1 H-detected fast MAS ssNMR spectroscopy, which exhibits increased sensitivity and spectral resolution, to further elucidate the atomic-level composition and structural arrangement of the cell wall of Schizophyllum commune, a mushroom-forming fungus from the Basidiomycota phylum. These advancements allowed us to reveal that Cu(II) ions and the antifungal peptide Cathelicidin-2 mainly bind to cell wall proteins at low concentrations while glucans are targeted at high metal ion concentrations. In addition, our data suggest the presence of polysaccharides containing N-acetyl galactosamine (GalNAc) and proteins, including the hydrophobin proteins SC3, shedding more light on the molecular make-up of cells wall as well as the positioning of the polypeptide layer. Obtaining such information may be of critical relevance for future research into fungi in material science and biomedical contexts.
Collapse
Affiliation(s)
- Adil Safeer
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht (The, Netherlands
| | - Fleur Kleijburg
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht (The, Netherlands
| | - Salima Bahri
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht (The, Netherlands
| | - David Beriashvili
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht (The, Netherlands
| | - Edwin J A Veldhuizen
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Utrecht University, Yalelaan 1, 3584 CL, Utrecht (The, Netherlands
| | - Jacq van Neer
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht (The, Netherlands
| | - Martin Tegelaar
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht (The, Netherlands
| | - Hans de Cock
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht (The, Netherlands
| | - Han A B Wösten
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht (The, Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht (The, Netherlands
| |
Collapse
|
190
|
Visagie CM, Boekhout T, Theelen B, Dijksterhuis J, Yilmaz N, Seifert KA. Da Vinci's yeast: Blastobotrys davincii f.a., sp. nov. Yeast 2023; 40:7-31. [PMID: 36168284 PMCID: PMC10108157 DOI: 10.1002/yea.3816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/11/2022] [Accepted: 09/15/2022] [Indexed: 01/18/2023] Open
Abstract
A new species of the yeast genus Blastobotrys was discovered during a worldwide survey of culturable xerophilic fungi in house dust. Several culture-dependent and independent studies from around the world detected the same species from a wide range of substrates including indoor air, cave wall paintings, bats, mummies, and the iconic self-portrait of Leonardo da Vinci from ca 1512. However, none of these studies identified their strains, clones, or OTUs as Blastobotrys. We introduce the new species as Blastobotrys davincii f.a., sp. nov. (holotype CBS H-24879) and delineate it from other species using morphological, phylogenetic, and physiological characters. The new species of asexually (anamorphic) budding yeast is classified in Trichomonascaceae and forms a clade along with its associated sexual state genus Trichomonascus. Despite the decade-old requirement to use a single generic name for fungi, both names are still used. Selection of the preferred name awaits a formal nomenclatural proposal. We present arguments for adopting Blastobotrys over Trichomonascus and introduce four new combinations as Blastobotrys allociferrii (≡ Candida allociferrii), B. fungorum (≡ Sporothrix fungorum), B. mucifer (≡ Candida mucifera), and Blastobotrys vanleenenianus (≡ Trichomonascus vanleenenianus). We provide a nomenclatural review and an accepted species list for the 37 accepted species in the Blastobotrys/Trichomonascus clade. Finally, we discuss the identity of the DNA clones detected on the da Vinci portrait, and the importance of using appropriate media to isolate xerophilic or halophilic fungi.
Collapse
Affiliation(s)
- Cobus M Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.,Ottawa Research and Development Centre, Agriculture & Agri-Food Canada, Ottawa, Ontario, Canada
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Bart Theelen
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Jan Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Neriman Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.,Ottawa Research and Development Centre, Agriculture & Agri-Food Canada, Ottawa, Ontario, Canada
| | - Keith A Seifert
- Ottawa Research and Development Centre, Agriculture & Agri-Food Canada, Ottawa, Ontario, Canada.,Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
191
|
Visagie CM, Yilmaz N. Along the footpath of Penicillium discovery: Six new species from the Woodville Big Tree Forest Trail. Mycologia 2023; 115:87-106. [PMID: 36441981 DOI: 10.1080/00275514.2022.2135915] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, we studied the diversity of Penicillium occurring in soil collected along the Woodville Big Tree Forest Trail situated close to the coastal town of Wilderness in South Africa. Strains were accessioned into a collection and then identified to species based on β-tubulin DNA sequences, which is the recommended DNA barcode for the genus. The 74 strains were found to represent 18 species, including six we consider undescribed. Here, we introduce them as Penicillium claroviride, P. kalander, P. mattheeae, P. outeniquaense, P. subfuscum, and P. umkhoba. Phylogenetic comparisons were made, and genealogical concordance was demonstrated for these new species using DNA sequences from nuc rDNA internal transcribed spacer region ITS1-5.8S-ITS2 (ITS barcode), β-tubulin, calmodulin, and RNA polymerase II second largest subunit. Notes on morphological characters distinguishing the new species from their close relatives are provided.
Collapse
Affiliation(s)
- Cobus M Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Neriman Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
192
|
Akhmetova GK, Knapp DG, Özer G, O'Donnell K, Laraba I, Kiyas A, Zabolotskich V, Kovács GM, Molnár O. Multilocus molecular phylogenetic-led discovery and formal recognition of four novel root-colonizing Fusarium species from northern Kazakhstan and the phylogenetically divergent Fusarium steppicola lineage. Mycologia 2023; 115:16-31. [PMID: 36441982 DOI: 10.1080/00275514.2022.2119761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, DNA sequence data were used to characterize 290 Fusarium strains isolated during a survey of root-colonizing endophytic fungi of agricultural and nonagricultural plants in northern Kazakhstan. The Fusarium collection was screened for species identity using partial translation elongation factor 1-α (TEF1) gene sequences. Altogether, 16 different Fusarium species were identified, including eight known and four novel species, as well as the discovery of the phylogenetically divergent F. steppicola lineage. Isolates of the four putatively novel fusaria were further analyzed phylogenetically with a multilocus data set comprising partial sequences of TEF1, RNA polymerase II largest (RPB1) and second-largest (RPB2) subunits, and calmodulin (CaM) to assess their genealogical exclusivity. Based on the molecular phylogenetic and comprehensive morphological analyses, four new species are formally described herein: F. campestre, F. kazakhstanicum, F. rhizicola, and F. steppicola.
Collapse
Affiliation(s)
- Galiya K Akhmetova
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary.,Department of Soil and Crop Management, A.I. Barayev Research and Production Center for Grain Farming, 021601 Shortandy, Kazakhstan
| | - Dániel G Knapp
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary.,Department of Plant Pathology, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, 1022 Budapest, Hungary
| | - Göksel Özer
- Department of Plant Protection, Faculty of Agriculture, Bolu Abant Izzet Baysal University, 14030 Bolu, Turkey
| | - Kerry O'Donnell
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U. S. Department of Agriculture, Peoria, Illinois 61604
| | - Imane Laraba
- Oak Ridge Institute for Science and Education (ORISE), Peoria, Illinois 61604
| | - Aldabergen Kiyas
- Department of Soil and Crop Management, A.I. Barayev Research and Production Center for Grain Farming, 021601 Shortandy, Kazakhstan
| | - Vladimir Zabolotskich
- Department of Soil and Crop Management, A.I. Barayev Research and Production Center for Grain Farming, 021601 Shortandy, Kazakhstan
| | - Gábor M Kovács
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary.,Department of Plant Pathology, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, 1022 Budapest, Hungary
| | - Orsolya Molnár
- Department of Plant Pathology, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, 1022 Budapest, Hungary
| |
Collapse
|
193
|
Olds CG, Berta‐Thompson JW, Loucks JJ, Levy RA, Wilson AW. Applying a modified metabarcoding approach for the sequencing of macrofungal specimens from fungarium collections. APPLICATIONS IN PLANT SCIENCES 2023; 11:e11508. [PMID: 36818783 PMCID: PMC9934593 DOI: 10.1002/aps3.11508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 06/18/2023]
Abstract
Premise Fungaria are an underutilized resource for understanding fungal biodiversity. The effort and cost of producing DNA barcode sequence data for large numbers of fungal specimens can be prohibitive. This study applies a modified metabarcoding approach that provides a labor-efficient and cost-effective solution for sequencing the fungal DNA barcodes of hundreds of specimens at once. Methods We applied a two-step PCR approach using nested, barcoded primers to sequence the fungal nrITS2 region of 766 macrofungal specimens using the Illumina platform. The specimens represent a broad taxonomic sampling of the Dikarya. Of these, 382 Lactarius specimens were analyzed to identify molecular operational taxonomic units (MOTUs) using a phylogenetic approach. The raw sequences were trimmed, filtered, assessed, and analyzed using the DADA2 amplicon de-noising toolkit and Biopython. The sequences were compared to the NCBI and UNITE databases and Sanger nrITS sequences from the same specimens. Results The taxonomic identities derived from the nrITS2 sequence data were >90% accurate across all specimens sampled. A phylogenetic analysis of the Lactarius sequences identified 20 MOTUs. Discussion The results demonstrate the capacity of these methods to produce nrITS2 sequences from large numbers of fungarium specimens. This provides an opportunity to more effectively use fungarium collections to advance fungal diversity identification and documentation.
Collapse
Affiliation(s)
- C. Gary Olds
- The Department of Research and ConservationDenver Botanic GardensDenverColoradoUSA
- The Department of Integrative BiologyUniversity of Colorado DenverDenverColoradoUSA
| | | | - Justin J. Loucks
- The Department of Research and ConservationDenver Botanic GardensDenverColoradoUSA
| | - Richard A. Levy
- The Department of Research and ConservationDenver Botanic GardensDenverColoradoUSA
| | - Andrew W. Wilson
- The Department of Research and ConservationDenver Botanic GardensDenverColoradoUSA
| |
Collapse
|
194
|
Devkota S, Fang W, Arunachalam K, Phyo KMM, Shakya B. Systematic review of fungi, their diversity and role in ecosystem services from the Far Eastern Himalayan Landscape (FHL). Heliyon 2023; 9:e12756. [PMID: 36685357 PMCID: PMC9850047 DOI: 10.1016/j.heliyon.2022.e12756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Fungi are morphologically and ecologically diverse kingdom but less explored in the global perspective. This systematic review of mainly higher fungi (mushrooms) and lichenized fungi (lichens) was aimed to convey comprehensive knowledge on these understudied taxa, especially considering diversity, research trends, taxonomic/geographic knowledge gaps, and their contribution to ecosystem services. We investigated literature from the Far Eastern Himalayas and adjacent areas. We followed the PRISM (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) framework for the evidence synthesis and reporting. Search strings were used to explore literature both in English and Chinese databases. Publications were validated examining the title, locality, abstract and full text. We included 75 eligible studies after screening 12,872 publications. The result on species diversity extrapolated from literature was consolidated as a species checklist and published on the Global Biodiversity Information Facility (GBIF) portal. This review demonstrates a significant shortage of research work on fungi, and a lack of quantitative data on diversity, ecology, and ecosystem services. Mycological inventories with multidisciplinary perspectives are urgent in the Landscape to better understand the importance of fungi in conservation and sustainable development science. This review is especially useful when global environmental and climate concerns are focused on the use of nature-based solutions, and fungi as integral part of all ecological processes, could play important role in enhancing ecosystem services and therefore benefits coming to people as natural solutions.
Collapse
Affiliation(s)
- Shiva Devkota
- Global Institute for Interdisciplinary Studies (GIIS), Kathmandu, GPO Box 3226, Nepal
- Himalayan Climate and Science Institute (HCSI), Washington DC, USA
| | - Wei Fang
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany (KIB), Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Karuppusamy Arunachalam
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany (KIB), Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, 05282, Myanmar
| | | | - Bandana Shakya
- Centre for Integrated Mountain Development (ICIMOD), Khumaltar, Lalitpur, 44700, GPO Box 3226, Nepal
| |
Collapse
|
195
|
Abd-Elsalam KA. Fungal nanotechnology for improving farm productivity and sustainability: A note from the editor. FUNGAL CELL FACTORIES FOR SUSTAINABLE NANOMATERIALS PRODUCTIONS AND AGRICULTURAL APPLICATIONS 2023:1-19. [DOI: 10.1016/b978-0-323-99922-9.00002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
196
|
Wijesinghe SN, Calabon MS, Xiao Y, Jones EG, Hyde KD. A novel coniothyrium-like genus in <i>Coniothyriaceae</i> (<i>Pleosporales</i>) from salt marsh ecosystems in Thailand. STUDIES IN FUNGI 2023. [DOI: 10.48130/sif-2023-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
|
197
|
Hofmann B, Dreyling L, Dal Grande F, Otte J, Schmitt I. Habitat and tree species identity shape aboveground and belowground fungal communities in central European forests. Front Microbiol 2023; 14:1067906. [PMID: 36950169 PMCID: PMC10025312 DOI: 10.3389/fmicb.2023.1067906] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/07/2023] [Indexed: 03/08/2023] Open
Abstract
Introduction Trees interact with fungi in mutualistic, saprotrophic, and pathogenic relationships. With their extensive aboveground and belowground structures, trees provide diverse habitats for fungi. Thus, tree species identity is an important driver of fungal community composition in forests. Methods Here we investigate how forest habitat (bark surface vs. soil) and tree species identity (deciduous vs. coniferous) affect fungal communities in two Central European forests. We assess differences and interactions between fungal communities associated with bark surfaces and soil, in forest plots dominated either by Fagus sylvatica, Picea abies, or Pinus sylvestris in two study regions in southwestern and northeastern Germany. Results ITS metabarcoding yielded 3,357 fungal amplicon sequence variants (ASVs) in the northern and 6,088 in the southern region. Overall, soil communities were 4.7 times more diverse than bark communities. Habitat type explained 48-69% of the variation in alpha diversity, while tree species identity explained >1-3%. NMDS ordinations showed that habitat type and host tree species structured the fungal communities. Overall, few fungal taxa were shared between habitats, or between tree species, but the shared taxa were highly abundant. Network analyses, based on co-occurrence patterns, indicate that aboveground and belowground communities form distinct subnetworks. Discussion Our study suggests that habitat (bark versus soil) and tree species identity are important factors structuring fungal communities in temperate European forests. The aboveground (bark-associated) fungal community is currently poorly known, including a high proportion of reads assigned to "unknown Ascomycota" or "unknown Dothideomycetes." The role of bark as a habitat and reservoir of unique fungal diversity in forests has been underestimated.
Collapse
Affiliation(s)
- Benjamin Hofmann
- Institute of Ecology, Diversity and Evolution, Goethe University Frankfurt, Frankfurt, Germany
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany
| | - Lukas Dreyling
- Institute of Ecology, Diversity and Evolution, Goethe University Frankfurt, Frankfurt, Germany
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany
| | - Francesco Dal Grande
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany
- Department of Biology, University of Padova, Padua, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Jürgen Otte
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany
| | - Imke Schmitt
- Institute of Ecology, Diversity and Evolution, Goethe University Frankfurt, Frankfurt, Germany
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany
- *Correspondence: Imke Schmitt,
| |
Collapse
|
198
|
Tissue Cultivation, Preparation, and Extraction of High Molecular Weight DNA for Single-Molecule Genome Sequencing of Plant-Associated Fungi. Methods Mol Biol 2022; 2605:79-102. [PMID: 36520390 DOI: 10.1007/978-1-0716-2871-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Extraction of high-quality, high molecular weight DNA is a critical step for sequencing an organism's genome. For fungi, DNA extraction is often complicated by co-precipitation of secondary metabolites, the most destructive being polysaccharides, polyphenols, and melanin. Different DNA extraction protocols and clean-up methods have been developed to address challenging materials and contaminants; however, the method of fungal cultivation and tissue preparation also plays a critical role to limit the production of inhibitory compounds prior to extraction. Here, we provide protocols and guidelines for (i) fungal tissue cultivation and processing with solid media containing a cellophane overlay or in liquid media, (ii) DNA extraction with customized recommendations for taxonomically and ecologically diverse plant-associated fungi, and (iii) assessing DNA quantity and quality for downstream genome sequencing with single-molecule technology such as PacBio.
Collapse
|
199
|
Slavin YN, Bach H. Mechanisms of Antifungal Properties of Metal Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12244470. [PMID: 36558323 PMCID: PMC9781740 DOI: 10.3390/nano12244470] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 05/13/2023]
Abstract
The appearance of resistant species of fungi to the existent antimycotics is challenging for the scientific community. One emergent technology is the application of nanotechnology to develop novel antifungal agents. Metal nanoparticles (NPs) have shown promising results as an alternative to classical antimycotics. This review summarizes and discusses the antifungal mechanisms of metal NPs, including combinations with other antimycotics, covering the period from 2005 to 2022. These mechanisms include but are not limited to the generation of toxic oxygen species and their cellular target, the effect of the cell wall damage and the hyphae and spores, and the mechanisms of defense implied by the fungal cell. Lastly, a description of the impact of NPs on the transcriptomic and proteomic profiles is discussed.
Collapse
|
200
|
Bell V, Silva CRPG, Guina J, Fernandes TH. Mushrooms as future generation healthy foods. Front Nutr 2022; 9:1050099. [PMID: 36562045 PMCID: PMC9763630 DOI: 10.3389/fnut.2022.1050099] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
The potential of edible mushrooms as an unexploited treasure trove, although rarely included in known food guidelines, is highlighted. Their role in shielding people against the side effects of an unhealthy stylish diet is reviewed. Mushrooms complement the human diet with various bioactive molecules not identified or deficient in foodstuffs of plant and animal sources, being considered a functional food for the prevention of several human diseases. Mushrooms have been widely used as medicinal products for more than 2,000 years, but globally the potential field of use of wild mushrooms has been untapped. There is a broad range of edible mushrooms which remain poorly identified or even unreported which is a valuable pool as sources of bioactive compounds for biopharma utilization and new dietary supplements. Some unique elements of mushrooms and their role in preventative healthcare are emphasized, through their positive impact on the immune system. The potential of mushrooms as antiviral, anti-inflammatory, anti-neoplastic, and other health concerns is discussed. Mushrooms incorporate top sources of non-digestible oligosaccharides, and ergothioneine, which humans are unable to synthesize, the later a unique antioxidant, cytoprotective, and anti-inflammatory element, with therapeutic potential, approved by world food agencies. The prebiotic activity of mushrooms beneficially affects gut homeostasis performance and the balance of gut microbiota is enhanced. Several recent studies on neurological impact and contribution to the growth of nerve and brain cells are mentioned. Indeed, mushrooms as functional foods' nutraceuticals are presently regarded as next-generation foods, supporting health and wellness, and are promising prophylactic or therapeutic agents.
Collapse
Affiliation(s)
- V. Bell
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Coimbra, Portugal
| | - C. R. P. G. Silva
- Department of Health and Social Care, School of Health and Care Management, Arden University, Coventry, United Kingdom
| | - J. Guina
- Instituto Superior de Estudos Universitários de Nampula (ISEUNA), Universidade a Politécnica, Nampula, Mozambique
| | - T. H. Fernandes
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Lisbon, Lisbon, Portugal
- Centro de Estudos Interdisciplinares Lurio (CEIL), Lúrio University, Nampula, Mozambique
| |
Collapse
|