151
|
The Role of Neutrophil Extracellular Traps in Central Nervous System Diseases and Prospects for Clinical Application. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9931742. [PMID: 34336122 PMCID: PMC8294981 DOI: 10.1155/2021/9931742] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 07/01/2021] [Indexed: 12/13/2022]
Abstract
Neutrophil extracellular traps (NETs) are complexes of decondensed DNA fibers and antimicrobial peptides that are released by neutrophils and play important roles in many noninfectious diseases, such as cystic fibrosis, systemic lupus erythematosus, diabetes, and cancer. Recently, the formation of NETs has been detected in many central nervous system diseases and is thought to play different roles in the occurrence and development of these diseases. Researchers have detected NETs in acute ischemic stroke thrombi, and these NETs are thought to promote coagulation and thrombosis. NETs in ischemic brain parenchyma were identified as the cause of secondary nerve damage. High levels of NETs were also detected in grade IV glioma tissues, where NETs were involved in the proliferation and invasion of glioma cells by activating a signaling pathway. Extracellular web-like structures have also recently been observed in mice with traumatic brain injury (TBI), and it was hypothesized that NETs contribute to the development of edema after TBI. This article reviews the effect of NETs on multiple diseases that affect the CNS and explores their clinical application prospects.
Collapse
|
152
|
Nakabo S, Romo-Tena J, Kaplan MJ. Neutrophils as Drivers of Immune Dysregulation in Autoimmune Diseases with Skin Manifestations. J Invest Dermatol 2021; 142:823-833. [PMID: 34253374 DOI: 10.1016/j.jid.2021.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/22/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022]
Abstract
Dysregulation in the phenotype and function of neutrophils may play important roles in the initiation and perpetuation of autoimmune responses, including conditions affecting the skin. Neutrophils can have local and systemic effects on innate and adaptive immune cells as well as on resident cells in the skin, including keratinocytes (KCs). Aberrant formation/clearance of neutrophil extracellular traps (NETs) in systemic autoimmunity and chronic inflammatory diseases have been associated with the externalization of modified autoantigens in peripheral blood and tissues. NETs can impact the function of many cells, including macrophages, lymphocytes, dendritic cells, fibroblasts, and KCs. Emerging evidence has unveiled the pathogenic key roles of neutrophils in systemic lupus erythematosus, idiopathic inflammatory myopathies, psoriasis, hidradenitis suppurativa, and other chronic inflammatory conditions. As such, neutrophil-targeting strategies represent promising therapeutic options for these diseases.
Collapse
Affiliation(s)
- Shuichiro Nakabo
- Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jorge Romo-Tena
- Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA; Medical Science PhD Program, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
153
|
Thakur M, Evans B, Schindewolf M, Baumgartner I, Döring Y. Neutrophil Extracellular Traps Affecting Cardiovascular Health in Infectious and Inflammatory Diseases. Cells 2021; 10:1689. [PMID: 34359859 PMCID: PMC8305819 DOI: 10.3390/cells10071689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are web-like structures of decondensed extracellular chromatin fibers and neutrophil granule proteins released by neutrophils. NETs participate in host immune defense by entrapping pathogens. They are pro-inflammatory in function, and they act as an initiator of vascular coagulopathies by providing a platform for the attachment of various coagulatory proteins. NETs are diverse in their ability to alter physiological and pathological processes including infection and inflammation. In this review, we will summarize recent findings on the role of NETs in bacterial/viral infections associated with vascular inflammation, thrombosis, atherosclerosis and autoimmune disorders. Understanding the complex role of NETs in bridging infection and chronic inflammation as well as discussing important questions related to their contribution to pathologies outlined above may pave the way for future research on therapeutic targeting of NETs applicable to specific infections and inflammatory disorders.
Collapse
Affiliation(s)
- Manovriti Thakur
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (M.T.); (B.E.); (M.S.); (I.B.)
| | - Bryce Evans
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (M.T.); (B.E.); (M.S.); (I.B.)
| | - Marc Schindewolf
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (M.T.); (B.E.); (M.S.); (I.B.)
| | - Iris Baumgartner
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (M.T.); (B.E.); (M.S.); (I.B.)
| | - Yvonne Döring
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (M.T.); (B.E.); (M.S.); (I.B.)
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), 80336 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| |
Collapse
|
154
|
Liu Y, Kaplan MJ. Neutrophil Dysregulation in the Pathogenesis of Systemic Lupus Erythematosus. Rheum Dis Clin North Am 2021; 47:317-333. [PMID: 34215366 DOI: 10.1016/j.rdc.2021.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The recent identifications of a subset of proinflammatory neutrophils, low-density granulocytes, and their ability to readily form neutrophil extracellular traps led to a resurgence of interest in neutrophil dysregulation in the pathogenesis of systemic lupus erythematosus (SLE). This article presents an overview on how neutrophil dysregulation modulates the innate and adaptive immune responses in SLE and their putative roles in disease pathogenesis. The therapeutic potential of targeting this pathogenic process in the treatment of SLE is also discussed.
Collapse
Affiliation(s)
- Yudong Liu
- Department of Clinical Laboratory, Peking University People's Hospital, 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 10 Center Drive, 12N248C, Bethesda, MD 20892-1930, USA.
| |
Collapse
|
155
|
Zhang S, Guo M, Liu Q, Liu J, Cui Y. Neutrophil extracellular traps induce thrombogenicity in severe carotid stenosis. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:1025-1036. [PMID: 34102007 PMCID: PMC8342215 DOI: 10.1002/iid3.466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/27/2022]
Abstract
Background Severe carotid stenosis is a common cause of stroke. In addition, previous clinical studies revealed that patients symptomatic of carotid stenosis suffer from increased episodes of stroke compared with their asymptomatic counterparts. However, the mechanism underlying these differences in the recurrence of stroke remains unclear. Objective The present study aimed to evaluate the levels of neutrophil extracellular traps (NETs) in the plasma of patients with severe carotid stenosis and investigate whether NETs induced procoagulant activity (PCA) in severe carotid stenosis. The study also sought to investigate the interactions between platelets or endothelial cells (ECs) and NETs. Methods The levels of NETs in plasma were quantified using enzyme‐linked immunosorbent assay (ELISA). In addition, NETting neutrophils and neutrophil‐platelet aggregates were detected through flow cytometry. On the other hand, the morphology of NETs formation and endothelial cells were analyzed through confocal microscopy. Finally, the procoagulant activity (PCA) of NETs and endothelial cells were assessed through ELISA and fibrin formation. Results Patients with symptomatic carotid stenosis patients had significantly higher levels of NETs markers compared with their asymptomatic counterparts and healthy subjects. In addition, increased levels of neutrophil‐platelet aggregates induced the generation of NETs in patients with symptomatic carotid stenosis. Moreover, NETs contributed to PCA through tissue factor (TF), in patients with carotid stenosis. Furthermore, NETs disrupted the endothelial barrier and converted endothelial cells (ECs) into PCA to enhance the PCA in patients with carotid stenosis. Conclusions The current study revealed differences in the levels of NETs in the plasma of symptomatic and asymptomatic patients suffering from carotid stenosis. The study also uncovered the interaction between NETs and thrombogenicity in carotid stenosis. Therefore, inhibiting NETs may be a potential biomarker and therapeutic target for recurring stroke in severe carotid stenosis.
Collapse
Affiliation(s)
- Shihua Zhang
- Department of Neurosurgery of the First Affiliated Hospital, Jiamusi University, Jiamusi, China
| | - Mengfan Guo
- Department of Pathology of the First Affiliated Hospital, Jiamusi University, Jiamusi, China
| | - Qianzi Liu
- Department of Pharmacy, Jiamusi University, Jiamusi, China
| | - Jingfeng Liu
- Department of Outpatient of the First Affiliated Hospital, Jiamusi University, Jiamusi, China
| | - Yankun Cui
- Department of Neurosurgery of the First Affiliated Hospital, Jiamusi University, Jiamusi, China
| |
Collapse
|
156
|
Hasni SA, Gupta S, Davis M, Poncio E, Temesgen-Oyelakin Y, Carlucci PM, Wang X, Naqi M, Playford MP, Goel RR, Li X, Biehl AJ, Ochoa-Navas I, Manna Z, Shi Y, Thomas D, Chen J, Biancotto A, Apps R, Cheung F, Kotliarov Y, Babyak AL, Zhou H, Shi R, Stagliano K, Tsai WL, Vian L, Gazaniga N, Giudice V, Lu S, Brooks SR, MacKay M, Gregersen P, Mehta NN, Remaley AT, Diamond B, O’Shea JJ, Gadina M, Kaplan MJ. Phase 1 double-blind randomized safety trial of the Janus kinase inhibitor tofacitinib in systemic lupus erythematosus. Nat Commun 2021; 12:3391. [PMID: 34099646 PMCID: PMC8185103 DOI: 10.1038/s41467-021-23361-z] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/22/2021] [Indexed: 02/05/2023] Open
Abstract
Increased risk of premature cardiovascular disease (CVD) is well recognized in systemic lupus erythematosus (SLE). Aberrant type I-Interferon (IFN)-neutrophil interactions contribute to this enhanced CVD risk. In lupus animal models, the Janus kinase (JAK) inhibitor tofacitinib improves clinical features, immune dysregulation and vascular dysfunction. We conducted a randomized, double-blind, placebo-controlled clinical trial of tofacitinib in SLE subjects (ClinicalTrials.gov NCT02535689). In this study, 30 subjects are randomized to tofacitinib (5 mg twice daily) or placebo in 2:1 block. The primary outcome of this study is safety and tolerability of tofacitinib. The secondary outcomes include clinical response and mechanistic studies. The tofacitinib is found to be safe in SLE meeting study's primary endpoint. We also show that tofacitinib improves cardiometabolic and immunologic parameters associated with the premature atherosclerosis in SLE. Tofacitinib improves high-density lipoprotein cholesterol levels (p = 0.0006, CI 95%: 4.12, 13.32) and particle number (p = 0.0008, CI 95%: 1.58, 5.33); lecithin: cholesterol acyltransferase concentration (p = 0.024, CI 95%: 1.1, -26.5), cholesterol efflux capacity (p = 0.08, CI 95%: -0.01, 0.24), improvements in arterial stiffness and endothelium-dependent vasorelaxation and decrease in type I IFN gene signature, low-density granulocytes and circulating NETs. Some of these improvements are more robust in subjects with STAT4 risk allele.
Collapse
Affiliation(s)
- Sarfaraz A. Hasni
- grid.420086.80000 0001 2237 2479Lupus Clinical Trials Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD USA
| | - Sarthak Gupta
- grid.420086.80000 0001 2237 2479Lupus Clinical Trials Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD USA ,grid.420086.80000 0001 2237 2479Systemic Autoimmunity Branch, NIAMS, NIH, Bethesda, MD USA
| | - Michael Davis
- grid.420086.80000 0001 2237 2479Lupus Clinical Trials Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD USA
| | - Elaine Poncio
- grid.420086.80000 0001 2237 2479Lupus Clinical Trials Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD USA
| | - Yenealem Temesgen-Oyelakin
- grid.420086.80000 0001 2237 2479Lupus Clinical Trials Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD USA
| | - Philip M. Carlucci
- grid.420086.80000 0001 2237 2479Systemic Autoimmunity Branch, NIAMS, NIH, Bethesda, MD USA
| | - Xinghao Wang
- grid.420086.80000 0001 2237 2479Systemic Autoimmunity Branch, NIAMS, NIH, Bethesda, MD USA
| | - Mohammad Naqi
- grid.420086.80000 0001 2237 2479Lupus Clinical Trials Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD USA
| | - Martin P. Playford
- grid.279885.90000 0001 2293 4638Section of Inflammation and Cardiometabolic Diseases, National Heart Lung and Blood Institute (NHLBI), NIH, Bethesda, MD USA
| | - Rishi R. Goel
- grid.420086.80000 0001 2237 2479Systemic Autoimmunity Branch, NIAMS, NIH, Bethesda, MD USA
| | - Xiaobai Li
- grid.410305.30000 0001 2194 5650NIH Clinical Center Biostatistics and Clinical Epidemiology Service, Bethesda, MD USA
| | - Ann J. Biehl
- grid.420086.80000 0001 2237 2479Office of the Clinical Director, NIAMS, NIH, Bethesda, MD USA
| | - Isabel Ochoa-Navas
- grid.420086.80000 0001 2237 2479Lupus Clinical Trials Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD USA
| | - Zerai Manna
- grid.420086.80000 0001 2237 2479Lupus Clinical Trials Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD USA
| | - Yinghui Shi
- grid.420086.80000 0001 2237 2479Translational Immunology Section, NIAMS, NIH, Bethesda, MD USA
| | - Donald Thomas
- Arthritis and Pain Associates of PG County, Greenbelt, MD USA
| | - Jinguo Chen
- grid.94365.3d0000 0001 2297 5165Trans-NIH Center for Human Immunology, Autoimmunity and Inflammation, NIH, Bethesda, MD USA
| | - Angélique Biancotto
- grid.94365.3d0000 0001 2297 5165Trans-NIH Center for Human Immunology, Autoimmunity and Inflammation, NIH, Bethesda, MD USA
| | - Richard Apps
- grid.94365.3d0000 0001 2297 5165Trans-NIH Center for Human Immunology, Autoimmunity and Inflammation, NIH, Bethesda, MD USA
| | - Foo Cheung
- grid.94365.3d0000 0001 2297 5165Trans-NIH Center for Human Immunology, Autoimmunity and Inflammation, NIH, Bethesda, MD USA
| | - Yuri Kotliarov
- grid.94365.3d0000 0001 2297 5165Trans-NIH Center for Human Immunology, Autoimmunity and Inflammation, NIH, Bethesda, MD USA
| | - Ashley L. Babyak
- grid.94365.3d0000 0001 2297 5165Trans-NIH Center for Human Immunology, Autoimmunity and Inflammation, NIH, Bethesda, MD USA
| | - Huizhi Zhou
- grid.94365.3d0000 0001 2297 5165Trans-NIH Center for Human Immunology, Autoimmunity and Inflammation, NIH, Bethesda, MD USA
| | - Rongye Shi
- grid.94365.3d0000 0001 2297 5165Trans-NIH Center for Human Immunology, Autoimmunity and Inflammation, NIH, Bethesda, MD USA
| | - Katie Stagliano
- grid.94365.3d0000 0001 2297 5165Trans-NIH Center for Human Immunology, Autoimmunity and Inflammation, NIH, Bethesda, MD USA
| | - Wanxia Li Tsai
- grid.420086.80000 0001 2237 2479Translational Immunology Section, NIAMS, NIH, Bethesda, MD USA
| | - Laura Vian
- grid.420086.80000 0001 2237 2479Translational Immunology Section, NIAMS, NIH, Bethesda, MD USA
| | - Nathalia Gazaniga
- grid.420086.80000 0001 2237 2479Translational Immunology Section, NIAMS, NIH, Bethesda, MD USA
| | - Valentina Giudice
- grid.279885.90000 0001 2293 4638Hematology Branch, NHLBI, NIH, Bethesda, MD USA
| | - Shajia Lu
- grid.420086.80000 0001 2237 2479Translational Immunology Section, NIAMS, NIH, Bethesda, MD USA
| | - Stephen R. Brooks
- grid.420086.80000 0001 2237 2479Biodata Mining and Discovery Section, NIAMS, NIH, Bethesda, MD USA
| | - Meggan MacKay
- grid.250903.d0000 0000 9566 0634Feinstein Institute for Medical Research, Manhasset, NY USA
| | - Peter Gregersen
- grid.250903.d0000 0000 9566 0634Feinstein Institute for Medical Research, Manhasset, NY USA
| | - Nehal N. Mehta
- grid.279885.90000 0001 2293 4638Section of Inflammation and Cardiometabolic Diseases, National Heart Lung and Blood Institute (NHLBI), NIH, Bethesda, MD USA
| | - Alan T. Remaley
- grid.279885.90000 0001 2293 4638Translational Vascular Medicine Branch, NHLBI, NIH, Bethesda, MD USA
| | - Betty Diamond
- grid.250903.d0000 0000 9566 0634Feinstein Institute for Medical Research, Manhasset, NY USA
| | - John J. O’Shea
- grid.420086.80000 0001 2237 2479Molecular Immunology and Inflammation Branch, NIAMS, NIH, Bethesda, MD USA
| | - Massimo Gadina
- grid.420086.80000 0001 2237 2479Translational Immunology Section, NIAMS, NIH, Bethesda, MD USA
| | - Mariana J. Kaplan
- grid.420086.80000 0001 2237 2479Systemic Autoimmunity Branch, NIAMS, NIH, Bethesda, MD USA
| |
Collapse
|
157
|
Chirivi RGS, van Rosmalen JWG, van der Linden M, Euler M, Schmets G, Bogatkevich G, Kambas K, Hahn J, Braster Q, Soehnlein O, Hoffmann MH, Es HHGV, Raats JMH. Therapeutic ACPA inhibits NET formation: a potential therapy for neutrophil-mediated inflammatory diseases. Cell Mol Immunol 2021; 18:1528-1544. [PMID: 32203195 PMCID: PMC8166830 DOI: 10.1038/s41423-020-0381-3] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 02/10/2020] [Indexed: 12/21/2022] Open
Abstract
Excessive release of neutrophil extracellular traps (NETs) is associated with disease severity and contributes to tissue injury, followed by severe organ damage. Pharmacological or genetic inhibition of NET release reduces pathology in multiple inflammatory disease models, indicating that NETs are potential therapeutic targets. Here, we demonstrate using a preclinical basket approach that our therapeutic anti-citrullinated protein antibody (tACPA) has broad therapeutic potential. Treatment with tACPA prevents disease symptoms in various mouse models with plausible NET-mediated pathology, including inflammatory arthritis (IA), pulmonary fibrosis, inflammatory bowel disease and sepsis. We show that citrulline residues in the N-termini of histones 2A and 4 are specific targets for therapeutic intervention, whereas antibodies against other N-terminal post-translational histone modifications have no therapeutic effects. Because citrullinated histones are generated during NET release, we investigated the ability of tACPA to inhibit NET formation. tACPA suppressed NET release from human neutrophils triggered with physiologically relevant human disease-related stimuli. Moreover, tACPA diminished NET release and potentially initiated NET uptake by macrophages in vivo, which was associated with reduced tissue damage in the joints of a chronic arthritis mouse model of IA. To our knowledge, we are the first to describe an antibody with NET-inhibiting properties and thereby propose tACPA as a drug candidate for NET-mediated inflammatory diseases, as it eliminates the noxious triggers that lead to continued inflammation and tissue damage in a multidimensional manner.
Collapse
Affiliation(s)
- Renato G S Chirivi
- ModiQuest B.V., Oss, The Netherlands.
- Citryll B.V., Oss, The Netherlands.
| | | | | | - Maximilien Euler
- Department of Internal Medicine 3 - Rheumatology and Immunology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | | | - Galina Bogatkevich
- Department of Medicine, Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Konstantinos Kambas
- Laboratory of Molecular Hematology, Democritus University of Thrace, Alexandroupoli, Greece
| | - Jonas Hahn
- Department of Internal Medicine 3 - Rheumatology and Immunology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Quinte Braster
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Markus H Hoffmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | | | | |
Collapse
|
158
|
Seet D, Allameen NA, Tay SH, Cho J, Mak A. Cognitive Dysfunction in Systemic Lupus Erythematosus: Immunopathology, Clinical Manifestations, Neuroimaging and Management. Rheumatol Ther 2021; 8:651-679. [PMID: 33993432 PMCID: PMC8217391 DOI: 10.1007/s40744-021-00312-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/22/2021] [Indexed: 12/23/2022] Open
Abstract
Cognitive dysfunction (CD) is a common yet often clinically subtle manifestation that considerably impacts the health-related quality of life in patients with systemic lupus erythaematosus (SLE). Given the inconsistencies in CD assessment and challenges in its attribution to SLE, the reported prevalence of CD differs widely, ranging from 3 to 88%. The clinical presentation of CD in SLE is non-specific and may manifest concurrently with overt neuropsychiatric illness such as psychosis or mood disorders or as isolated impairment of attention, working memory, executive dysfunction or processing speed. Despite the lack of standardized and sensitive neuropsychological tests and validated diagnostic biomarkers of CD in SLE, significant progress has been made in identifying pathogenic neural pathways and neuroimaging. Furthermore, several autoantibodies, cytokines, pro-inflammatory mediators and metabolic factors have been implicated in the pathogenesis of CD in SLE. Abrogation of the integrity of the blood-brain barrier (BBB) and ensuing autoantibody-mediated neurotoxicity, complement and microglial activation remains the widely accepted mechanism of SLE-related CD. Although several functional neuroimaging modalities have consistently demonstrated abnormalities that correlate with CD in SLE patients, a consensus remains to be reached as to their clinical utility in diagnosing CD. Given the multifactorial aetiology of CD, a multi-domain interventional approach that addresses the risk factors and disease mechanisms of CD in a concurrent fashion is the favourable therapeutic direction. While cognitive rehabilitation and exercise training remain important, specific pharmacological agents that target microglial activation and maintain the BBB integrity are potential candidates for the treatment of SLE-related CD.
Collapse
Affiliation(s)
- Dominic Seet
- Division of Rheumatology, Department of Medicine, University Medicine Cluster, National University Health System, 1E Kent Ridge Road, Level 10, NUHS Tower Block, Singapore, 119228 Singapore
| | - Nur Azizah Allameen
- Division of Rheumatology, Department of Medicine, University Medicine Cluster, National University Health System, 1E Kent Ridge Road, Level 10, NUHS Tower Block, Singapore, 119228 Singapore
| | - Sen Hee Tay
- Division of Rheumatology, Department of Medicine, University Medicine Cluster, National University Health System, 1E Kent Ridge Road, Level 10, NUHS Tower Block, Singapore, 119228 Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jiacai Cho
- Division of Rheumatology, Department of Medicine, University Medicine Cluster, National University Health System, 1E Kent Ridge Road, Level 10, NUHS Tower Block, Singapore, 119228 Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Anselm Mak
- Division of Rheumatology, Department of Medicine, University Medicine Cluster, National University Health System, 1E Kent Ridge Road, Level 10, NUHS Tower Block, Singapore, 119228 Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
159
|
Significance of Mast Cell Formed Extracellular Traps in Microbial Defense. Clin Rev Allergy Immunol 2021; 62:160-179. [PMID: 34024033 PMCID: PMC8140557 DOI: 10.1007/s12016-021-08861-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 02/07/2023]
Abstract
Mast cells (MCs) are critically involved in microbial defense by releasing antimicrobial peptides (such as cathelicidin LL-37 and defensins) and phagocytosis of microbes. In past years, it has become evident that in addition MCs may eliminate invading pathogens by ejection of web-like structures of DNA strands embedded with proteins known together as extracellular traps (ETs). Upon stimulation of resting MCs with various microorganisms, their products (including superantigens and toxins), or synthetic chemicals, MCs become activated and enter into a multistage process that includes disintegration of the nuclear membrane, release of chromatin into the cytoplasm, adhesion of cytoplasmic granules on the emerging DNA web, and ejection of the complex into the extracellular space. This so-called ETosis is often associated with cell death of the producing MC, and the type of stimulus potentially determines the ratio of surviving vs. killed MCs. Comparison of different microorganisms with specific elimination characteristics such as S pyogenes (eliminated by MCs only through extracellular mechanisms), S aureus (removed by phagocytosis), fungi, and parasites has revealed important aspects of MC extracellular trap (MCET) biology. Molecular studies identified that the formation of MCET depends on NADPH oxidase-generated reactive oxygen species (ROS). In this review, we summarize the present state-of-the-art on the biological relevance of MCETosis, and its underlying molecular and cellular mechanisms. We also provide an overview over the techniques used to study the structure and function of MCETs, including electron microscopy and fluorescence microscopy using specific monoclonal antibodies (mAbs) to detect MCET-associated proteins such as tryptase and histones, and cell-impermeant DNA dyes for labeling of extracellular DNA. Comparing the type and biofunction of further MCET decorating proteins with ETs produced by other immune cells may help provide a better insight into MCET biology in the pathogenesis of autoimmune and inflammatory disorders as well as microbial defense.
Collapse
|
160
|
Roles of selenoprotein S in reactive oxygen species-dependent neutrophil extracellular trap formation induced by selenium-deficient arteritis. Redox Biol 2021; 44:102003. [PMID: 34034080 PMCID: PMC8166917 DOI: 10.1016/j.redox.2021.102003] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 12/22/2022] Open
Abstract
Selenium (Se) deficiency and poor plasma Se levels can cause cardiovascular diseases by decreasing selenoprotein levels. Neutrophil extracellular traps (NETs) may be the vicious cycle center of inflammation in vasculitis. Here, we show that Se deficiency induced arteritis mainly by reducing selenoprotein S (SelS), and promoted the progression of arteritis by regulating the recruitment of neutrophils and NET formation. Silencing SelS induced chicken arterial endothelial cells (PAECs) to secrete cytokines, and activated neutrophils to promote NET formation. Conversely, scavenging DNA-NETs promoted cytokine secretion in PAECs. The NET formation regulated by siSelS was dependent on a reactive oxygen species (ROS) burst. We also found that the PPAR pathway was a major mediator of NET formation induced by Se-deficient arteritis. Overall, our results reveal how Se deficiency regulates NET formation in the progression of arteritis and support silencing-SelS worsens arteritis.
Collapse
|
161
|
Zivkovic S, Ayazi M, Hammel G, Ren Y. For Better or for Worse: A Look Into Neutrophils in Traumatic Spinal Cord Injury. Front Cell Neurosci 2021; 15:648076. [PMID: 33967695 PMCID: PMC8100532 DOI: 10.3389/fncel.2021.648076] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/08/2021] [Indexed: 12/23/2022] Open
Abstract
Neutrophils are short-lived cells of the innate immune system and the first line of defense at the site of an infection and tissue injury. Pattern recognition receptors on neutrophils recognize pathogen-associated molecular patterns or danger-associated molecular patterns, which recruit them to the destined site. Neutrophils are professional phagocytes with efficient granular constituents that aid in the neutralization of pathogens. In addition to phagocytosis and degranulation, neutrophils are proficient in creating neutrophil extracellular traps (NETs) that immobilize pathogens to prevent their spread. Because of the cytotoxicity of the associated granular proteins within NETs, the microbes can be directly killed once immobilized by the NETs. The role of neutrophils in infection is well studied; however, there is less emphasis placed on the role of neutrophils in tissue injury, such as traumatic spinal cord injury. Upon the initial mechanical injury, the innate immune system is activated in response to the molecules produced by the resident cells of the injured spinal cord initiating the inflammatory cascade. This review provides an overview of the essential role of neutrophils and explores the contribution of neutrophils to the pathologic changes in the injured spinal cord.
Collapse
Affiliation(s)
- Sandra Zivkovic
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Maryam Ayazi
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Grace Hammel
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Yi Ren
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| |
Collapse
|
162
|
Ammendolia DA, Bement WM, Brumell JH. Plasma membrane integrity: implications for health and disease. BMC Biol 2021; 19:71. [PMID: 33849525 PMCID: PMC8042475 DOI: 10.1186/s12915-021-00972-y] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Plasma membrane integrity is essential for cellular homeostasis. In vivo, cells experience plasma membrane damage from a multitude of stressors in the extra- and intra-cellular environment. To avoid lethal consequences, cells are equipped with repair pathways to restore membrane integrity. Here, we assess plasma membrane damage and repair from a whole-body perspective. We highlight the role of tissue-specific stressors in health and disease and examine membrane repair pathways across diverse cell types. Furthermore, we outline the impact of genetic and environmental factors on plasma membrane integrity and how these contribute to disease pathogenesis in different tissues.
Collapse
Affiliation(s)
- Dustin A Ammendolia
- Cell Biology Program, Hospital for Sick Children, 686 Bay Street PGCRL, Toronto, ON, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - William M Bement
- Center for Quantitative Cell Imaging and Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - John H Brumell
- Cell Biology Program, Hospital for Sick Children, 686 Bay Street PGCRL, Toronto, ON, M5G 0A4, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A1, Canada. .,SickKids IBD Centre, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
| |
Collapse
|
163
|
Petito E, Falcinelli E, Paliani U, Cesari E, Vaudo G, Sebastiano M, Cerotto V, Guglielmini G, Gori F, Malvestiti M, Becattini C, Paciullo F, De Robertis E, Bury L, Lazzarini T, Gresele P. Association of Neutrophil Activation, More Than Platelet Activation, With Thrombotic Complications in Coronavirus Disease 2019. J Infect Dis 2021; 223:933-944. [PMID: 33280009 PMCID: PMC7798977 DOI: 10.1093/infdis/jiaa756] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 infection is associated with hypercoagulability, which predisposes to venous thromboembolism (VTE). We analyzed platelet and neutrophil activation in patients with coronavirus disease 2019 (COVID-19) and their association with VTE. METHODS Hospitalized patients with COVID-19 and age- and sex-matched healthy controls were studied. Platelet and leukocyte activation, neutrophil extracellular traps (NETs), and matrix metalloproteinase 9, a neutrophil-released enzyme, were measured. Four patients were restudied after recovery. The activating effect of plasma from patients with COVID-19 on control platelets and leukocytes and the inhibiting activity of common antithrombotic agents on it were studied. RESULTS A total of 36 patients with COVID-19 and 31 healthy controls were studied; VTE developed in 8 of 36 patients with COVID-19 (22.2%). Platelets and neutrophils were activated in patients with COVID-19. NET, but not platelet activation, biomarkers correlated with disease severity and were associated with thrombosis. Plasmatic matrix metalloproteinase 9 was significantly increased in patients with COVID-19. Platelet and neutrophil activation markers, but less so NETs, normalized after recovery. In vitro, plasma from patients with COVID-19 triggered platelet and neutrophil activation and NET formation, the latter blocked by therapeutic-dose low-molecular-weight heparin, but not by aspirin or dypiridamole. CONCLUSIONS Platelet and neutrophil activation are key features of patients with COVID-19. NET biomarkers may help to predict clinical worsening and VTE and may guide low-molecular-weight heparin treatment.
Collapse
Affiliation(s)
- Eleonora Petito
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Emanuela Falcinelli
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Ugo Paliani
- Division of Internal Medicine, ASL 1 Umbria, Città di Castello, Italy
| | - Enrica Cesari
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Gaetano Vaudo
- Unit of Internal Medicine, Terni University Hospital, Terni, Italy
| | - Manuela Sebastiano
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Vittorio Cerotto
- Section of Anesthesia, Intensive Care and Pain Medicine, Department of Emergency and Urgency, Città di Castello Hospital, Città di Castello, Italy
| | - Giuseppe Guglielmini
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Fabio Gori
- Section of Anesthesia, Intensive Care, and Pain Medicine, Azienda Ospedaliera-Universitaria Santa Maria della Misericordia, Perugia, Italy
| | - Marco Malvestiti
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Cecilia Becattini
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Francesco Paciullo
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Edoardo De Robertis
- Department of Surgical and Biomedical Sciences, Division of Anaesthesia, Analgesia, and Intensive Care, University of Perugia, Perugia, Italy
| | - Loredana Bury
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Teseo Lazzarini
- Section of Anesthesia and Intensive Care, Presidio Alto Chiascio, USL Umbria 1, Gubbio, Italy
| | - Paolo Gresele
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | | |
Collapse
|
164
|
Gao H, Wang X, Lin C, An Z, Yu J, Cao H, Fan Y, Liang X. Exosomal MALAT1 derived from ox-LDL-treated endothelial cells induce neutrophil extracellular traps to aggravate atherosclerosis. Biol Chem 2021; 401:367-376. [PMID: 31318684 DOI: 10.1515/hsz-2019-0219] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/10/2019] [Indexed: 12/31/2022]
Abstract
The objective of this study was to reveal a novel mechanism underlying the progression of atherosclerosis (AS) associated with endothelial cells (ECs) and neutrophils. Transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA) were used to observe the morphology and particle size of isolated exosomes. Western blotting was applied to examine exosomal markers, while the expression of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) was measured by quantitative real-time polymerase chain reaction (qRT-PCR). The production of inflammatory cytokines and reactive oxygen species (ROS) was determined by an enzyme-linked immunosorbent assay (ELISA) and a dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay. Circulating neutrophil extracellular traps (NETs) were represented by myeloperoxidase (MPO)-DNA complexes. NETs formation was assessed using immunofluorescence microscopy. Atherosclerotic lesion development was measured by Oil Red O (ORO) staining. In the results, MALAT1 expression was increased in exosomes extracted from oxidized low-density lipoprotein (ox-LDL)-treated human umbilical vein endothelial cells (HUVECs). When co-cultured with human neutrophils, exosomes derived from ox-LDL-treated HUVECs were revealed to promote NETs formation, which was mediated by exosomal MALAT1. Furthermore, ox-LDL-treated HUVECs-derived exosomes were demonstrated to trigger hyperlipidemia, inflammatory response and NETs release in a mouse model of AS. In conclusion, exosomal MALAT1 derived from ox-LDL-treated ECs initiated NETs formation, which in turn deteriorated AS.
Collapse
Affiliation(s)
- Hailai Gao
- Department of Cardiovascular, The First Hospital of Harbin, No. 151 Diduan Street, Daoli District, Harbin 150010, Heilongjiang, China
| | - XiaoLi Wang
- Department of Pneumology, Qingdao Women and Children's Hospital, No. 6 Tongfu Road, Shibei District, Qingdao 266000, Shandong, China
| | - Chaolan Lin
- Department of Cardiovascular, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Zhujun An
- Department of ICU, Harbin Red Cross Center Hospital, No. 415 Xinyang Road, Daoli District, Harbin 150076, Heilongjiang, China
| | - Jiangbo Yu
- Department of Cardiovascular, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Huanyi Cao
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Horse Material Water, Shatin, New Territories, Hong Kong
| | - Ying Fan
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Xiao Liang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
| |
Collapse
|
165
|
Sule G, Abuaita BH, Steffes PA, Fernandes AT, Estes SK, Dobry C, Pandian D, Gudjonsson JE, Kahlenberg JM, O'Riordan MX, Knight JS. Endoplasmic reticulum stress sensor IRE1α propels neutrophil hyperactivity in lupus. J Clin Invest 2021; 131:137866. [PMID: 33561013 DOI: 10.1172/jci137866] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 02/05/2021] [Indexed: 12/29/2022] Open
Abstract
Neutrophils amplify inflammation in lupus through the release of neutrophil extracellular traps (NETs). The endoplasmic reticulum stress sensor inositol-requiring enzyme 1 α (IRE1α) has been implicated as a perpetuator of inflammation in various chronic diseases; however, IRE1α has been little studied in relation to neutrophil function or lupus pathogenesis. Here, we found that neutrophils activated by lupus-derived immune complexes demonstrated markedly increased IRE1α ribonuclease activity. Importantly, in neutrophils isolated from patients with lupus, we also detected heightened IRE1α activity that was correlated with global disease activity. Immune complex-stimulated neutrophils produced both mitochondrial ROS (mitoROS) and the activated form of caspase-2 in an IRE1α-dependent fashion, whereas inhibition of IRE1α mitigated immune complex-mediated NETosis (in both human neutrophils and a mouse model of lupus). Administration of an IRE1α inhibitor to lupus-prone MRL/lpr mice over 8 weeks reduced mitoROS levels in peripheral blood neutrophils, while also restraining plasma cell expansion and autoantibody formation. In summary, these data identify a role for IRE1α in the hyperactivity of lupus neutrophils and show that this pathway is upstream of mitochondrial dysfunction, mitoROS formation, and NETosis. We believe that inhibition of the IRE1α pathway is a novel strategy for neutralizing NETosis in lupus, and potentially other inflammatory conditions.
Collapse
Affiliation(s)
- Gautam Sule
- Division of Rheumatology, Department of Internal Medicine
| | | | - Paul A Steffes
- Division of Rheumatology, Department of Internal Medicine
| | | | - Shanea K Estes
- Division of Rheumatology, Department of Internal Medicine
| | - Craig Dobry
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | | - Jason S Knight
- Division of Rheumatology, Department of Internal Medicine
| |
Collapse
|
166
|
Cecchi I, Radin M, Rodríguez-Carrio J, Tambralli A, Knight JS, Sciascia S. Utilizing type I interferon expression in the identification of antiphospholipid syndrome subsets. Expert Rev Clin Immunol 2021; 17:395-406. [PMID: 33686921 PMCID: PMC10183148 DOI: 10.1080/1744666x.2021.1901581] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Antiphospholipid Syndrome (APS) is a systemic autoimmune disease with a complex multifactorial pathogenesis, combining genetic background, traditional cardiovascular risk factors, disease-specific features such as the presence of antiphospholipid antibodies (aPL), and an imbalance of various immune system functions. Recent data support the role of interferons (IFNs), especially type IIFN (IFN-I), in the onset and development of APS clinical manifestations, including thrombotic events and obstetric complications. AREAS COVERED In this review, the authors aimed to discuss the growing body of evidence on the relevance of IFN-I pathways in APS, both from a basic mechanistic perspective, focusing on its possible use in disease/patients stratification. The IFN-I signature has shown promising, although preliminary, results in segregating aPL-positive subjects by aPL profile, association with other autoimmune conditions, such as lupus, age at onset, and current treatment, among others. EXPERT OPINION To date, the scarce available data as well as methodological and technical heterogeneity among studies limit the comparability of the results, thus requiring further validation to translate these findings to routine clinical practice. Therefore, further research is required in pursuit of more nuanced patient profiling and the development of new immunomodulatory therapeutic strategies for APS beyond anti-coagulant and antiplatelet agents.
Collapse
Affiliation(s)
- Irene Cecchi
- Center of Research of Immunopathology and Rare Diseases - Nephrology and Dialysis Coordinating Center of Piemonte and Aosta Valley Network for Rare Diseases, S. Giovanni Bosco Hospital, Department of Clinical and Biological Sciences, University of Turin, Turin Italy
| | - Massimo Radin
- Center of Research of Immunopathology and Rare Diseases - Nephrology and Dialysis Coordinating Center of Piemonte and Aosta Valley Network for Rare Diseases, S. Giovanni Bosco Hospital, Department of Clinical and Biological Sciences, University of Turin, Turin Italy
| | - Javier Rodríguez-Carrio
- Department of Functional Biology, Immunology Area, Faculty of Medicine, University of Oviedo, Oviedo, Spain.,Group of Basic and Translational Research in Inflammatory Diseases, Instituto De Investigación Sanitaria Del Principado De Asturias (ISPA), Oviedo, Spain
| | - Ajay Tambralli
- Division of Rheumatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jason S Knight
- Division of Rheumatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Savino Sciascia
- Center of Research of Immunopathology and Rare Diseases - Nephrology and Dialysis Coordinating Center of Piemonte and Aosta Valley Network for Rare Diseases, S. Giovanni Bosco Hospital, Department of Clinical and Biological Sciences, University of Turin, Turin Italy
| |
Collapse
|
167
|
Chen Z, Zhang H, Qu M, Nan K, Cao H, Cata JP, Chen W, Miao C. Review: The Emerging Role of Neutrophil Extracellular Traps in Sepsis and Sepsis-Associated Thrombosis. Front Cell Infect Microbiol 2021; 11:653228. [PMID: 33816356 PMCID: PMC8010653 DOI: 10.3389/fcimb.2021.653228] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/25/2021] [Indexed: 12/17/2022] Open
Abstract
Patients with sepsis commonly suffer from coagulation dysfunction and lead to the formation of thrombus. During the development of sepsis, neutrophils migrate from the circulating blood to infected tissues and mediate the formation of neutrophil extracellular traps (NETs) that kill pathogens. However, the overactivation of neutrophils can promote the formation of immunothrombosis and even cause disseminated intravascular coagulation (DIC), which damages microcirculation. The outcome of sepsis depends on early recognition and intervention, so clinical evaluation of NETs function may be a valuable biomarker for early diagnosis of sepsis. The interaction of NETs with platelets, complement, and endothelium mediates the formation of immunothrombosis in sepsis. Inhibiting the formation of NETs is also considered to be one of the potential treatments for sepsis. In this review, we will discuss the key role of neutrophils and NETs in sepsis and septic thrombosis, in order to reveal new mechanisms for thrombosis treatment of sepsis.
Collapse
Affiliation(s)
- Zhaoyuan Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengdi Qu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ke Nan
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hanzhong Cao
- Anesthesiology and Surgical Oncology Research Group, Department of Anesthesiology and Perioperative Medicine, Nantong, China
| | - Juan P Cata
- Department of Anesthesiology and Perioperative Medicine, Anesthesiology and Surgical Oncology Research Group, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Wankun Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.,Zhangjiang Institute, Fudan University, Shanghai, China
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
168
|
Fresneda Alarcon M, McLaren Z, Wright HL. Neutrophils in the Pathogenesis of Rheumatoid Arthritis and Systemic Lupus Erythematosus: Same Foe Different M.O. Front Immunol 2021; 12:649693. [PMID: 33746988 PMCID: PMC7969658 DOI: 10.3389/fimmu.2021.649693] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/12/2021] [Indexed: 12/14/2022] Open
Abstract
Dysregulated neutrophil activation contributes to the pathogenesis of autoimmune diseases including rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Neutrophil-derived reactive oxygen species (ROS) and granule proteases are implicated in damage to and destruction of host tissues in both conditions (cartilage in RA, vascular tissue in SLE) and also in the pathogenic post-translational modification of DNA and proteins. Neutrophil-derived cytokines and chemokines regulate both the innate and adaptive immune responses in RA and SLE, and neutrophil extracellular traps (NETs) expose nuclear neoepitopes (citrullinated proteins in RA, double-stranded DNA and nuclear proteins in SLE) to the immune system, initiating the production of auto-antibodies (ACPA in RA, anti-dsDNA and anti-acetylated/methylated histones in SLE). Neutrophil apoptosis is dysregulated in both conditions: in RA, delayed apoptosis within synovial joints contributes to chronic inflammation, immune cell recruitment and prolonged release of proteolytic enzymes, whereas in SLE enhanced apoptosis leads to increased apoptotic burden associated with development of anti-nuclear auto-antibodies. An unbalanced energy metabolism in SLE and RA neutrophils contributes to the pathology of both diseases; increased hypoxia and glycolysis in RA drives neutrophil activation and NET production, whereas decreased redox capacity increases ROS-mediated damage in SLE. Neutrophil low-density granulocytes (LDGs), present in high numbers in the blood of both RA and SLE patients, have opposing phenotypes contributing to clinical manifestations of each disease. In this review we will describe the complex and contrasting phenotype of neutrophils and LDGs in RA and SLE and discuss their discrete roles in the pathogenesis of each condition. We will also review our current understanding of transcriptomic and metabolomic regulation of neutrophil phenotype in RA and SLE and discuss opportunities for therapeutic targeting of neutrophil activation in inflammatory auto-immune disease.
Collapse
Affiliation(s)
- Michele Fresneda Alarcon
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Zoe McLaren
- Liverpool University Hospitals National Health Service (NHS) Foundation Trust, Liverpool, United Kingdom
| | - Helen Louise Wright
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
169
|
Casey KA, Smith MA, Sinibaldi D, Seto NL, Playford MP, Wang X, Carlucci PM, Wang L, Illei G, Yu B, Wang S, Remaley AT, Mehta NN, Kaplan MJ, White WI. Modulation of Cardiometabolic Disease Markers by Type I Interferon Inhibition in Systemic Lupus Erythematosus. Arthritis Rheumatol 2021; 73:459-471. [PMID: 32909675 PMCID: PMC11302498 DOI: 10.1002/art.41518] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/03/2020] [Indexed: 08/08/2024]
Abstract
OBJECTIVE Neutrophil dysregulation and the type I interferon (IFN) axis have been proposed to contribute to premature cardiovascular disease, a leading cause of mortality in patients with systemic lupus erythematosus (SLE). In the present study, we evaluated the ability of anifrolumab, a type I IFN receptor-blocking antibody, to reduce neutrophil extracellular trap (NET) formation and modulate cardiometabolic disease markers in comparison to placebo. METHODS Study subjects comprised patients with moderate-to-severe SLE who were enrolled in phase IIb of the MUSE trial (A Phase II, Randomized Study to Evaluate the Efficacy and Safety of MEDI-546 in Subjects with Systemic Lupus Erythematosus), with healthy individuals as controls. Blood samples were collected from SLE patients (n = 305) and healthy controls (n = 10-20) before the initiation of treatment (baseline) and from SLE patients after they had been treated with 300 mg of anifrolumab (n = 99) or placebo (n = 102). Baseline IFN gene signature test status was determined, and the IFN gene signature (21-gene panel) was monitored over time. Serum proteins were measured by multiplex immunoassay or ultrasensitive Simoa assay. NET complexes, cholesterol efflux capacity (CEC), and glycoprotein acetylation (GlycA) and other lipid parameters were assessed in plasma. RESULTS Formation of NET complexes and levels of tumor necrosis factor (TNF) and interleukin-10 (IL-10) were correlated with extent of type I IFN pathway activity. NET complexes and IL-10 levels were up-regulated in SLE patients compared to healthy controls (P < 0.008). The cardiometabolic disease markers CEC and GlycA were also found to be dysregulated in patients with SLE (P < 0.001 versus healthy controls). Type I IFN receptor inhibition with anifrolumab significantly reduced NET complexes and GlycA and improved CEC compared to baseline (P < 0.05) whereas no improvements were seen with placebo. Levels of TNF and IL-10 were reduced with anifrolumab compared to placebo (P < 0.05). CONCLUSION These data support a key role for type I IFNs in modulating factors contributing to SLE vasculopathy and suggest that inhibition of this pathway could decrease cardiovascular risk in individuals with SLE.
Collapse
Affiliation(s)
| | | | | | - Nickie L. Seto
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland
| | | | - Xinghao Wang
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland
| | - Philip M. Carlucci
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland
| | | | | | | | | | - Alan T. Remaley
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Nehal N. Mehta
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Mariana J. Kaplan
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland
| | | |
Collapse
|
170
|
Zhang J, Yu M, Liu B, Zhou P, Zuo N, Wang Y, Feng Y, Zhang Y, Wang J, He Y, Wu Y, Dong Z, Hong L, Shi J. Neutrophil extracellular traps enhance procoagulant activity and thrombotic tendency in patients with obstructive jaundice. Liver Int 2021; 41:333-347. [PMID: 33159371 DOI: 10.1111/liv.14725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Patients with obstructive jaundice (OJ) are considered to be prothrombotic with increased risk of thromboembolism complications. The role of neutrophil extracellular traps (NETs) in procoagulant activity (PCA) and thrombosis risk in patients with OJ is unclear. In this study, we investigated NETs formation in OJ patients and the role of elevated unconjugated bilirubin (UCB) in inducing NETs, resulting in enhanced PCA and endothelial injury. METHODS NETs of OJ patients and healthy controls were measured. NETs PCA was assessed via coagulation time (CT), fibrin formation and purified coagulation complex production assays. Visualization of NETs and mitochondrial reactive oxygen species (MitoROS) were performed with a fluorescence microscope. We further used confocal microscopy to quantify the exposure of phosphatidylserine (PS), fibrin strands and FVa/Xa on Human umbilical vein endothelial cells (HUVECs). RESULTS Assessment of NETs components levels revealed greater NETs production in OJ patients than in healthy controls. Importantly, OJ-NETs were responsible for enhanced PCA. UCB induced NETs formation via MitoROS accumulation and mitochondrial mobilization. HUVECs cocultured with OJ NETs lost their cell-cell junctions and consequently converted to a procoagulant phenotype. The PCA was attenuated by using DNase I alone or in combination with lactadherin. CONCLUSIONS Our results suggest that UCB-induced NETs play a prominent role in promoting the hypercoagulable and prothrombotic state in OJ patients. The increased MitoROS accumulation in neutrophils initiated NETosis. NETs are promising targets for indicating or improving coagulation disorders in OJ patients.
Collapse
Affiliation(s)
- Jinming Zhang
- Department of Hematology and Rheumatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Muxin Yu
- Jiaxing University College of Medicine, Jiaxing, China
| | - Biou Liu
- Department of General Surgery, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Peng Zhou
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Nan Zuo
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yufeng Wang
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yiming Feng
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yue Zhang
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jiaojiao Wang
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yujing He
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yinsong Wu
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Zengxiang Dong
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Luojia Hong
- Department of Hematology and Rheumatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jialan Shi
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China.,Departments of Research and Medicine, VA Boston Healthcare System, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
171
|
Gupta S, Kaplan MJ. Bite of the wolf: innate immune responses propagate autoimmunity in lupus. J Clin Invest 2021; 131:144918. [PMID: 33529160 PMCID: PMC7843222 DOI: 10.1172/jci144918] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The etiopathogenesis of systemic lupus erythematosus (SLE), a clinically heterogeneous multisystemic syndrome that derives its name from the initial characterization of facial lesions that resemble the bite of a wolf, is considered a complex, multifactorial interplay between underlying genetic susceptibility factors and the environment. Prominent pathogenic factors include the induction of aberrant cell death pathways coupled with defective cell death clearance mechanisms that promote excessive externalization of modified cellular and nuclear debris with subsequent loss of tolerance to a wide variety of autoantigens and innate and adaptive immune dysregulation. While abnormalities in adaptive immunity are well recognized and are key to the pathogenesis of SLE, recent findings have emphasized fundamental roles of the innate immune system in the initiation and propagation of autoimmunity and the development of organ damage in this disease. This Review focuses on recent discoveries regarding the role of components of the innate immune system, specifically neutrophils and interferons, in promoting various aspects of lupus pathogenesis, with potential implications for novel therapeutic strategies.
Collapse
|
172
|
Bashant KR, Aponte AM, Randazzo D, Rezvan Sangsari P, Wood AJ, Bibby JA, West EE, Vassallo A, Manna ZG, Playford MP, Jordan N, Hasni S, Gucek M, Kemper C, Conway Morris A, Morgan NY, Toepfner N, Guck J, Mehta NN, Chilvers ER, Summers C, Kaplan MJ. Proteomic, biomechanical and functional analyses define neutrophil heterogeneity in systemic lupus erythematosus. Ann Rheum Dis 2021; 80:209-218. [PMID: 32988843 PMCID: PMC7855438 DOI: 10.1136/annrheumdis-2020-218338] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Low-density granulocytes (LDGs) are a distinct subset of proinflammatory and vasculopathic neutrophils expanded in systemic lupus erythematosus (SLE). Neutrophil trafficking and immune function are intimately linked to cellular biophysical properties. This study used proteomic, biomechanical and functional analyses to further define neutrophil heterogeneity in the context of SLE. METHODS Proteomic/phosphoproteomic analyses were performed in healthy control (HC) normal density neutrophils (NDNs), SLE NDNs and autologous SLE LDGs. The biophysical properties of these neutrophil subsets were analysed by real-time deformability cytometry and lattice light-sheet microscopy. A two-dimensional endothelial flow system and a three-dimensional microfluidic microvasculature mimetic (MMM) were used to decouple the contributions of cell surface mediators and biophysical properties to neutrophil trafficking, respectively. RESULTS Proteomic and phosphoproteomic differences were detected between HC and SLE neutrophils and between SLE NDNs and LDGs. Increased abundance of type 1 interferon-regulated proteins and differential phosphorylation of proteins associated with cytoskeletal organisation were identified in SLE LDGs relative to SLE NDNs. The cell surface of SLE LDGs was rougher than in SLE and HC NDNs, suggesting membrane perturbances. While SLE LDGs did not display increased binding to endothelial cells in the two-dimensional assay, they were increasingly retained/trapped in the narrow channels of the lung MMM. CONCLUSIONS Modulation of the neutrophil proteome and distinct changes in biophysical properties are observed alongside differences in neutrophil trafficking. SLE LDGs may be increasingly retained in microvasculature networks, which has important pathogenic implications in the context of lupus organ damage and small vessel vasculopathy.
Collapse
Affiliation(s)
- Kathleen R Bashant
- NIAMS, National Institutes of Health, Bethesda, Maryland, USA
- Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - Angel M Aponte
- NHLBI, National Institutes of Health, Bethesda, Maryland, USA
| | - Davide Randazzo
- NIAMS, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Alexander Jt Wood
- Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - Jack A Bibby
- NHLBI, National Institutes of Health, Bethesda, Maryland, USA
| | - Erin E West
- NHLBI, National Institutes of Health, Bethesda, Maryland, USA
| | - Arlette Vassallo
- Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - Zerai G Manna
- NIAMS, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Natasha Jordan
- Rheumatology Department, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Sarfaraz Hasni
- NIAMS, National Institutes of Health, Bethesda, Maryland, USA
| | - Marjan Gucek
- NHLBI, National Institutes of Health, Bethesda, Maryland, USA
| | - Claudia Kemper
- NHLBI, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Nicole Y Morgan
- NIBIB, National Institutes of Health, Bethesda, Maryland, USA
| | - Nicole Toepfner
- Department of Pediatrics/Carl Gustav Carus University Hospital, Technical University Dresden, Dresden, Sachsen, Germany
| | - Jochen Guck
- Biological Optomechanics Division, Max Planck Institute for the Science of Light, Erlangen, Bayern, Germany
| | - Nehal N Mehta
- NHLBI, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Charlotte Summers
- Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
| | | |
Collapse
|
173
|
McClung DM, Kalusche WJ, Jones KE, Ryan MJ, Taylor EB. Hypertension and endothelial dysfunction in the pristane model of systemic lupus erythematosus. Physiol Rep 2021; 9:e14734. [PMID: 33527772 PMCID: PMC7851437 DOI: 10.14814/phy2.14734] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 12/19/2020] [Indexed: 01/01/2023] Open
Abstract
Autoimmune diseases such as psoriasis, rheumatoid arthritis, and systemic lupus erythematosus (SLE) have high rates of hypertension and cardiovascular disease. Systemic lupus erythematosus is a prototypic autoimmune disorder that primarily affects women of childbearing age and is associated with a loss of self-tolerance, autoreactive B and T lymphocytes, and the production of autoantibodies, especially to nuclear components. In this study, we hypothesized that the pristane-inducible model of SLE would develop hypertension and vascular dysfunction as the disease progressed. To test this hypothesis, female C57BL/6 mice were administered PBS or pristane. Seven months after pristane administration, mice developed various autoantibodies, including anti-dsDNA IgG, anti-ssDNA IgG, and anti-nRNP IgG, as well as hypergammaglobulinemia. Several other immunological changes, including increased circulating neutrophils and increased CD4- CD8- (double negative) thymocytes were also detected. Mean arterial pressure (MAP) was elevated in pristane-treated mice when compared to PBS-treated mice. In addition, second-order mesenteric arteries from pristine-treated mice had impaired relaxation to the endothelium-dependent vasodilator acetylcholine compared to PBS-treated mice. These data suggest that the immune system dysfunction present in the pristane model of lupus contributes to the development of hypertension and vascular dysfunction.
Collapse
Affiliation(s)
- Daniel M. McClung
- Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMSUSA
| | - William J. Kalusche
- Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMSUSA
| | - Katie E. Jones
- Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMSUSA
| | - Michael J. Ryan
- Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMSUSA
- G.V. (Sonny) Montgomery Veterans Affairs Medical CenterJacksonMSUSA
| | - Erin B. Taylor
- Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMSUSA
| |
Collapse
|
174
|
Abstract
PURPOSE OF REVIEW Neutrophils are the most numerous and the first responder cells of the innate immune system. Evidence suggests that neutrophils may play an essential role in the pathogenesis of multiple systemic diseases. A novel mechanism of neutrophil extracellular traps (NETs) leading to breaking of self-tolerance and generation of autoimmune responses in predisposed individuals has been described in various autoimmune conditions. The purpose of the review is to identify these important mechanisms of NETs leading to autoimmunity in various rheumatic diseases. RECENT FINDINGS NETs contain histone and chromatin, which contain important autoantigens. Many autoimmune conditions are associated with increased NET-generating capacity, unique low-density granulocyte population, and impaired NET degradation leading to persistent inflammation and tissue damage. NETs can also activate other immune cells, and their components may amplify the inflammatory response by activation of complement pathways and inflammasomes. NETs can also contribute to autoantibody formation in disorders such as rheumatoid arthritis, ANCA-associated vasculitis, and systemic lupus erythematosus by providing a constant source of autoantigens. NETs can also serve as biomarkers providing insights into disease diagnosis and therapeutics. NETs seem to play a primary role in inflammatory disease pathogenesis. Identification of different NET pathogenic pathways in various rheumatic conditions could provide new insights into disease pathogenesis and therapeutic targets could be developed towards the future treatment of inflammatory autoimmune diseases.
Collapse
|
175
|
Prevel R, Roubaud-Baudron C, Tellier E, Le Besnerais M, Kaplanski G, Veyradier A, Benhamou Y, Coppo P. [Endothelial dysfunction in thrombotic thrombocytopenic purpura: therapeutic perspectives]. Rev Med Interne 2021; 42:202-209. [PMID: 33455838 DOI: 10.1016/j.revmed.2020.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 11/19/2020] [Accepted: 12/26/2020] [Indexed: 01/05/2023]
Abstract
Immune Thrombotic Thrombocytopenic Purpura (iTTP) is a rare but severe disease with a mortality rate of almost 100 % in the absence of adequate treatment. iTTP is caused by a severe deficiency in ADAMTS13 activity due to the production of inhibitory antibodies. Age has been shown to be a major prognostic factor. iTTP patients in the elderly (60yo and over) have more frequent organ involvement, especially heart and kidney failures compared with younger patients. They also have non-specific neurologic symptoms leading to a delayed diagnosis. Factors influencing this impaired survival among older patients remain unknown so far. Alteration of the functional capacity of involved organs could be part of the explanation as could be the consequences of vascular aging. In fact, severe ADAMTS13 deficiency is necessary but likely not sufficient for iTTP physiopathology. A second hit leading to endothelial activation is thought to play a central role in iTTP. Interestingly, the mechanisms involved in endothelial activation may share common features with those involved in vascular aging, potentially leading to endothelial dysfunction. It could thus be interesting to better investigate the causes of mid- and long-term mortality among older iTTP patients to confirm whether inflammation and endothelial activation really impact vascular aging and long-term mortality in those patients, in addition to their presumed role at iTTP acute phase. If so, further insights into the mechanisms involved could lead to new therapeutic targets.
Collapse
Affiliation(s)
- R Prevel
- CHU Bordeaux, Pôle de Gérontologie Clinique, 33000 Bordeaux, France; CHU Bordeaux, FHU Acronim 33000 Bordeaux, France; University Bordeaux, INSERM 1045 CRCTB 33000 Bordeaux, France
| | - C Roubaud-Baudron
- CHU Bordeaux, Pôle de Gérontologie Clinique, 33000 Bordeaux, France; University Bordeaux, INSERM UMR 1053 Bariton 33000 Bordeaux, France
| | - E Tellier
- Vascular Research Center of Marseille, Inserm, UMRS_1076, Aix-Marseille Université, Marseille, France
| | - M Le Besnerais
- Service de Médecine Interne, CHU Charles Nicolle, Rouen, France; INSERM U1096, UFR médecine pharmacie Rouen, Rouen, France
| | - G Kaplanski
- Vascular Research Center of Marseille, Inserm, UMRS_1076, Aix-Marseille Université, Marseille, France; Aix-Marseille université, 13284, Service de médecine interne, hôpital de la Conception, AP-HM, 147, boulevard Baille, 13385 Marseille cedex 05, France; Centre de Référence des Microangiopathies Thrombotiques (CNR-MAT, www.cnr-mat.fr), Paris, France
| | - A Veyradier
- Centre de Référence des Microangiopathies Thrombotiques (CNR-MAT, www.cnr-mat.fr), Paris, France; Hématologie biologique, Hôpital Lariboisière, AP-HP, Université Paris Diderot, Paris, France
| | - Y Benhamou
- Service de Médecine Interne, CHU Charles Nicolle, Rouen, France; INSERM U1096, UFR médecine pharmacie Rouen, Rouen, France; Centre de Référence des Microangiopathies Thrombotiques (CNR-MAT, www.cnr-mat.fr), Paris, France
| | - P Coppo
- Centre de Référence des Microangiopathies Thrombotiques (CNR-MAT, www.cnr-mat.fr), Paris, France; Service d'Hématologie, Centre de Référence des Microangiopathies Thrombotiques (CNR-MAT, www.cnr-mat.fr), AP-HP.6, Paris, France.
| | | |
Collapse
|
176
|
Panopoulos S, Thomas K, Georgiopoulos G, Boumpas D, Katsiari C, Bertsias G, Drosos AA, Boki K, Dimitroulas T, Garyfallos A, Papagoras C, Katsimbri P, Tziortziotis A, Adamichou C, Kaltsonoudis E, Argyriou E, Vosvotekas G, Sfikakis PP, Vassilopoulos D, Tektonidou MG. Comparable or higher prevalence of comorbidities in antiphospholipid syndrome vs rheumatoid arthritis: a multicenter, case-control study. Rheumatology (Oxford) 2021; 60:170-178. [PMID: 32596727 DOI: 10.1093/rheumatology/keaa321] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Evidence on comorbidity prevalence in antiphospholipid syndrome (APS) and its difference from high comorbidity burden rheumatic diseases is limited. Herein, we compare multiple comorbidities between APS and RA. METHODS A total of 326 patients from the Greek APS registry [237 women, mean age 48.7 (13.4) years, 161 primary APS (PAPS), 165 SLE-APS] were age/sex matched (1:2 ratio) with 652 patients from a Greek multicentre RA cohort of 3115 patients. Prevalence of cardiovascular (CV) risk factors, stroke, coronary artery disease (CAD), osteoporosis, diabetes mellitus (DM), chronic obstructive pulmonary disease (COPD), depression and neoplasms were compared between APS and RA patients using multivariate regression analysis. RESULTS Ηyperlipidemia and obesity (ΒΜΙ ≥ 30 kg/m2) were comparable while hypertension, smoking, stroke and CAD were more prevalent in APS compared with RA patients. Osteoporosis and depression were more frequent in APS, while DM, COPD and neoplasms did not differ between the two groups. Comparison of APS subgroups to 1:2 matched RA patients revealed that smoking and stroke were more prevalent in both PAPS and SLE-APS vs RA. Hypertension, CAD and osteoporosis were more frequent only in SLE-APS vs RA, whereas DM was less prevalent in PAPS vs RA. Hyperlipidaemia was independently associated with CV events (combined stroke and CAD) in PAPS and SLE-APS, while CS duration was associated with osteoporosis in SLE-APS. CONCLUSION Comorbidity burden in APS (PAPS and SLE-APS) is comparable or higher than that in RA, entailing a high level of diligence for CV risk prevention, awareness for depression and CS exposure minimization.
Collapse
Affiliation(s)
- Stylianos Panopoulos
- Joint Rheumatology Program, Medical School, National and Kapodistrian University of Athens, Athens
| | - Konstantinos Thomas
- Joint Rheumatology Program, Medical School, National and Kapodistrian University of Athens, Athens
| | - Georgios Georgiopoulos
- Joint Rheumatology Program, Medical School, National and Kapodistrian University of Athens, Athens
| | - Dimitrios Boumpas
- Joint Rheumatology Program, Medical School, National and Kapodistrian University of Athens, Athens
| | | | | | | | | | | | | | | | - Pelagia Katsimbri
- Joint Rheumatology Program, Medical School, National and Kapodistrian University of Athens, Athens
| | | | | | | | | | | | - Petros P Sfikakis
- Joint Rheumatology Program, Medical School, National and Kapodistrian University of Athens, Athens
| | - Dimitrios Vassilopoulos
- Joint Rheumatology Program, Medical School, National and Kapodistrian University of Athens, Athens
| | - Maria G Tektonidou
- Joint Rheumatology Program, Medical School, National and Kapodistrian University of Athens, Athens
| |
Collapse
|
177
|
Hu J, Kang H, Chen H, Yao J, Yi X, Tang W, Wan M. Targeting neutrophil extracellular traps in severe acute pancreatitis treatment. Therap Adv Gastroenterol 2020; 13:1756284820974913. [PMID: 33281940 PMCID: PMC7692350 DOI: 10.1177/1756284820974913] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/26/2020] [Indexed: 02/05/2023] Open
Abstract
Severe acute pancreatitis (SAP) is a critical abdominal disease associated with high death rates. A systemic inflammatory response promotes disease progression, resulting in multiple organ dysfunction. The functions of neutrophils in the pathology of SAP have been presumed traditionally to be activation of chemokine and cytokine cascades accompanying the inflammatory process. Recently, since their discovery, a new type of antimicrobial mechanism, neutrophil extracellular traps (NETs), and their role in SAP, has attracted widespread attention from the scientific community. Significantly different from phagocytosis and degranulation, NETs kill extracellular microorganisms by releasing DNA fibers decorated with granular proteins. In addition to their strong antimicrobial functions, NETs participate in the pathophysiological process of many noninfectious diseases. In SAP, NETs injure normal tissues under inflammatory stress, which is associated with the activation of inflammatory cells, to cause an inflammatory cascade, and SAP products also trigger NET formation. Thus, due to the interaction between NET generation and SAP, a treatment targeting NETs might become a key point in SAP therapy. In this review, we summarize the mechanism of NETs in protecting the host from pathogen invasion, the stimulus that triggers NET formation, organ injury associated with SAP involving NETs, methods to interrupt the harmful effects of NETs, and different therapeutic strategies to preserve the organ function of patients with SAP by targeting NETs.
Collapse
Affiliation(s)
| | | | - Huan Chen
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jiaqi Yao
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaolin Yi
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Wenfu Tang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | | |
Collapse
|
178
|
Ding X, Xiang W, He X. IFN-I Mediates Dysfunction of Endothelial Progenitor Cells in Atherosclerosis of Systemic Lupus Erythematosus. Front Immunol 2020; 11:581385. [PMID: 33262760 PMCID: PMC7686511 DOI: 10.3389/fimmu.2020.581385] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a multi-system autoimmune disease including the cardiovascular system. Atherosclerosis is the most common cardiovascular complication of SLE and a significant risk factor for morbidity and mortality. Vascular damage/protection mechanism in SLE patients is out of balance, caused by the cascade reaction among oxidative stress, proinflammatory cytokines, Neutrophil Extracellular Traps, activation of B cells and autoantibodies and abnormal T cells. As a precursor cell repairing vascular endothelium, endothelial progenitor cells (EPCs) belong to the protective mechanism and show the reduced number and impaired function in SLE. However, the pathological mechanism of EPCs dysfunction in SLE remains ill-defined. This paper reviews the latest SLE epidemiology and pathogenesis, discusses the changes in the number and function of EPCs in SLE, expounds the role of EPCs in SLE atherosclerosis, and provides new guidance and theoretical basis for exploring novel targets for SLE treatment.
Collapse
Affiliation(s)
- Xuewei Ding
- Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
- Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Xiang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, NHC Key Laboratory of Control of Tropical diseases (Hainan Medical University), Haikou, China
| | - Xiaojie He
- Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
- Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
179
|
Liu Y, Kaplan MJ. Neutrophils in the Pathogenesis of Rheumatic Diseases: Fueling the Fire. Clin Rev Allergy Immunol 2020; 60:1-16. [DOI: 10.1007/s12016-020-08816-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2020] [Indexed: 12/11/2022]
|
180
|
Álvarez Moreno Y, Bú Figueroa J, Bú Figueroa E, Soto Fonseca M, Escober Torres J. Internal carotid artery thrombosis in COVID 19. Colomb Med (Cali) 2020; 51:e504560. [PMID: 33402757 PMCID: PMC7744109 DOI: 10.25100/cm.v51i3.4560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/11/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023] Open
Abstract
CASE DESCRIPTION 37-year-old female with PCR-RT swab for COVID-19 positive, with neurological manifestation as a result of internal carotid artery occlusion. CLINICAL FINDINGS Nasal congestion and sneezing of 5 days duration; pulsatile headache in the left hemicranium 3 days prior to admission, with intensity 6/10 according to the visual analogue scale, accompanied by phosphenes, photophobia and diplopia; with subsequent developing right hemiparesis over a 26-hour period. TREATMENT AND RESULT She was given medical management with oral antiplatelet agents and anticoagulants (subcutaneous and oral) during his hospitalization, it was not possible to perform thrombolysis and thrombectomy due to the high risk of complications. He was discharged at 14 days, without functional limitation, symmetrical strength in upper and lower limbs, bilateral visual acuity 20/20, denying headache. CLINICAL RELEVANCE The case presented here describes a pattern in how data supporting an association between COVID-19 and stroke in young populations with or without typical vascular risk factors, sometimes with only mild respiratory symptoms, is increasing. Prospective studies are required to further evaluate this association, as well as anticoagulation studies to prevent these potentially life-threatening events.
Collapse
|
181
|
López P, Rodríguez-Carrio J, Martínez-Zapico A, Pérez-Álvarez ÁI, Suárez-Díaz S, Mozo L, Benavente L, Caminal-Montero L, Suárez A. Low-density granulocytes and monocytes as biomarkers of cardiovascular risk in systemic lupus erythematosus. Rheumatology (Oxford) 2020; 59:1752-1764. [PMID: 32031658 DOI: 10.1093/rheumatology/keaa016] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/08/2020] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE The aim was to evaluate the most relevant cell populations involved in vascular homeostasis as potential biomarkers of SLE-related cardiovascular disease (CVD). METHODS Low-density granulocytes (LDGs), monocyte subsets, endothelial progenitor cells, angiogenic T (Tang) cells, CD4+CD28null and Th1/Th17 lymphocytes and serum cytokine levels were quantified in 109 SLE patients and 33 controls in relationship to the presence of subclinical carotid atheromatosis or cardiovascular disease. A second cohort including 31 recent-onset SLE patients was also included. RESULTS Raised monocyte and LDG counts, particularly those LDGs negative for CD16/CD14 expression (nLDGs), in addition to the ratios of monocytes and nLDGs to high-density lipoprotein-cholesterol (HDLc) molecules (MHR and nLHR, respectively), were present in SLE patients with traditional risk factors or subclinical atheromatosis but not in those who were CV-free, thus revealing their value in the identification of patients at risk of CVD, even at the onset of disease. Accordingly, nLDGs were correlated positively with carotid intima-media thickness (cIMT) and with inflammatory markers (CRP and IL-6). A bias towards more differentiated monocyte subsets, related to increased IFN-α and IL-17 serum levels, was also observed in patients. Intermediate monocytes were especially expanded, but independently of their involvement in CVD. Finally, CD4+CD28null, Th17 and Th1 lymphocytes were increased, with CD4+CD28null and Th17 cells being associated with cIMT, whereas endothelial progenitor and Tang cell levels were reduced in all SLE patients. CONCLUSION The present study highlights the potential use of MHR and nLHR as valuable biomarkers of CVD risk in SLE patients, even at diagnosis. The increased amounts of nLDGs, monocytes, Th17 and senescent-CD28null subsets, coupled with reduced pro-angiogenic endothelial progenitor cells and Tang cells, could underlie the development of atheromatosis in SLE.
Collapse
Affiliation(s)
- Patricia López
- Department of Functional Biology, Immunology Area, Faculty of Medicine, University of Oviedo.,Group of Basic and Translational Research in Inflammatory Diseases, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)
| | - Javier Rodríguez-Carrio
- Department of Functional Biology, Immunology Area, Faculty of Medicine, University of Oviedo.,Group of Basic and Translational Research in Inflammatory Diseases, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)
| | - Aleida Martínez-Zapico
- Group of Basic and Translational Research in Inflammatory Diseases, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA).,Department of Internal Medicine, Hospital Universitario Central de Asturias
| | - Ángel I Pérez-Álvarez
- Group of Basic and Translational Research in Inflammatory Diseases, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA).,Department of Neurology, Hospital Universitario Central de Asturias
| | - Silvia Suárez-Díaz
- Group of Basic and Translational Research in Inflammatory Diseases, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA).,Department of Internal Medicine, Hospital Universitario Central de Asturias
| | - Lourdes Mozo
- Group of Basic and Translational Research in Inflammatory Diseases, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA).,Department of Immunology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Lorena Benavente
- Group of Basic and Translational Research in Inflammatory Diseases, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA).,Department of Neurology, Hospital Universitario Central de Asturias
| | - Luis Caminal-Montero
- Group of Basic and Translational Research in Inflammatory Diseases, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA).,Department of Internal Medicine, Hospital Universitario Central de Asturias
| | - Ana Suárez
- Department of Functional Biology, Immunology Area, Faculty of Medicine, University of Oviedo.,Group of Basic and Translational Research in Inflammatory Diseases, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)
| |
Collapse
|
182
|
Shrivastava G, Valenzuela Leon PC, Calvo E. Inflammasome Fuels Dengue Severity. Front Cell Infect Microbiol 2020; 10:489. [PMID: 33014899 PMCID: PMC7511630 DOI: 10.3389/fcimb.2020.00489] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/06/2020] [Indexed: 01/10/2023] Open
Abstract
Dengue is an acute febrile disease triggered by dengue virus. Dengue is the widespread and rapidly transmitted mosquito-borne viral disease of humans. Diverse symptoms and diseases due to Dengue virus (DENV) infection ranges from dengue fever, dengue hemorrhagic fever (life-threatening) and dengue shock syndrome characterized by shock, endothelial dysfunction and vascular leakage. Several studies have linked the severity of dengue with the induction of inflammasome. DENV activates the NLRP3-specific inflammasome in DENV infected human patients, mice; specifically, mouse bone marrow derived macrophages (BMDMs), dendritic cells, endothelial cells, human peripheral blood mononuclear cells (PBMCs), keratinocytes, monocyte-differentiated macrophages (THP-1), and platelets. Dengue virus mediated inflammasome initiates the maturation of IL-1β and IL-18, which are critical for dengue pathology and inflammatory response. Several studies have reported the molecular mechanism through which (host and viral factors) dengue induces inflammasome, unravels the possible mechanisms of DENV pathogenesis and sets up the stage for the advancement of DENV therapeutics. In this perspective article, we discuss the potential implications and our understanding of inflammasome mechanisms of dengue virus and highlight research areas that have potential to inhibit the pathogenesis of viral diseases, specifically for dengue.
Collapse
Affiliation(s)
- Gaurav Shrivastava
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Paola Carolina Valenzuela Leon
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
183
|
Birkelund S, Bennike TB, Kastaniegaard K, Lausen M, Poulsen TBG, Kragstrup TW, Deleuran BW, Christiansen G, Stensballe A. Proteomic analysis of synovial fluid from rheumatic arthritis and spondyloarthritis patients. Clin Proteomics 2020; 17:29. [PMID: 32782445 PMCID: PMC7412817 DOI: 10.1186/s12014-020-09292-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 07/29/2020] [Indexed: 01/03/2023] Open
Abstract
Background The aetiologies and pathogeneses of the joint diseases rheumatoid arthritis (RA) and spondyloarthritis (SpA) are still not fully elucidated. To increase our understanding of the molecular pathogenesis, we analysed the protein composition of synovial fluid (SF) from rheumatoid arthritis (RA) and spondyloarthritis (SpA) patients. Methods Fifty-six synovial fluid samples (RA, n = 32; SpA, n = 24) were digested with trypsin, and the resulting peptides were separated by liquid chromatography and analysed by tandem mass spectrometry. Additionally, the concentration of cell-free DNA (cfDNA) in the synovial fluid was measured, and plasma C-reactive protein (CRP) was determined. Results Three hundred thirty five proteins were identified within the SF. The more abundant proteins seen in RA SF were inflammatory proteins, including proteins originating from neutrophil granulocytes, while SpA SF had less inflammatory proteins and a higher concentration of haptoglobin. The concentration of cell-free DNA in the SF increased together with proteins that may have originated from neutrophils. Plasma CRP levels in both RA and SpA, correlated to other acute phase reactants. Conclusions The proteomic results underline that neutrophils are central in the RA pathology but not in SpA, and even though inhibitors of neutrophils (migration, proteinase inhibitors) were present in the SF it was not sufficient to interrupt the disease process.
Collapse
Affiliation(s)
- Svend Birkelund
- Department of Health Science and Technology, Aalborg University, 9200 Aalborg Ø, Denmark.,Department of Health Science and Technology, Medical Microbiology and Immunology, Aalborg University, Fredriks Bajers Vej 3b, 9200 Aalborg Ø, Denmark
| | - Tue Bjerg Bennike
- Department of Health Science and Technology, Aalborg University, 9200 Aalborg Ø, Denmark
| | - Kenneth Kastaniegaard
- Department of Health Science and Technology, Aalborg University, 9200 Aalborg Ø, Denmark.,Biogenity, 9200 Aalborg Ø, Denmark
| | - Mads Lausen
- Department of Health Science and Technology, Aalborg University, 9200 Aalborg Ø, Denmark
| | | | - Tue Wenzel Kragstrup
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.,Department of Rheumatology, Aarhus University Hospital, 8000 Aarhus C, Denmark
| | - Bent Winding Deleuran
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.,Department of Rheumatology, Aarhus University Hospital, 8000 Aarhus C, Denmark
| | - Gunna Christiansen
- Department of Health Science and Technology, Aalborg University, 9200 Aalborg Ø, Denmark
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, 9200 Aalborg Ø, Denmark
| |
Collapse
|
184
|
Leppkes M, Knopf J, Naschberger E, Lindemann A, Singh J, Herrmann I, Stürzl M, Staats L, Mahajan A, Schauer C, Kremer AN, Völkl S, Amann K, Evert K, Falkeis C, Wehrfritz A, Rieker RJ, Hartmann A, Kremer AE, Neurath MF, Muñoz LE, Schett G, Herrmann M. Vascular occlusion by neutrophil extracellular traps in COVID-19. EBioMedicine 2020; 58:102925. [PMID: 32745993 PMCID: PMC7397705 DOI: 10.1016/j.ebiom.2020.102925] [Citation(s) in RCA: 338] [Impact Index Per Article: 67.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Coronavirus induced disease 2019 (COVID-19) can be complicated by severe organ damage leading to dysfunction of the lungs and other organs. The processes that trigger organ damage in COVID-19 are incompletely understood. METHODS Samples were donated from hospitalized patients. Sera, plasma, and autopsy-derived tissue sections were examined employing flow cytometry, enzyme-linked immunosorbent assays, and immunohistochemistry. PATIENT FINDINGS Here, we show that severe COVID-19 is characterized by a highly pronounced formation of neutrophil extracellular traps (NETs) inside the micro-vessels. Intravascular aggregation of NETs leads to rapid occlusion of the affected vessels, disturbed microcirculation, and organ damage. In severe COVID-19, neutrophil granulocytes are strongly activated and adopt a so-called low-density phenotype, prone to spontaneously form NETs. In accordance, markers indicating NET turnover are consistently increased in COVID-19 and linked to disease severity. Histopathology of the lungs and other organs from COVID-19 patients showed congestions of numerous micro-vessels by aggregated NETs associated with endothelial damage. INTERPRETATION These data suggest that organ dysfunction in severe COVID-19 is associated with excessive NET formation and vascular damage. FUNDING Deutsche Forschungsgemeinschaft (DFG), EU, Volkswagen-Stiftung.
Collapse
Affiliation(s)
- Moritz Leppkes
- Department of Internal Medicine 1, University Medical Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany.
| | - Jasmin Knopf
- Department of Internal Medicine 3, University Medical Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Elisabeth Naschberger
- Division of Molecular and Experimental Surgery, Translational Research Center, Department of Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Aylin Lindemann
- Department of Internal Medicine 1, University Medical Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Jeeshan Singh
- Department of Internal Medicine 3, University Medical Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Irmgard Herrmann
- Department of Internal Medicine 3, University Medical Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Translational Research Center, Department of Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Léonie Staats
- Department of Internal Medicine 1, University Medical Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Aparna Mahajan
- Department of Internal Medicine 3, University Medical Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Christine Schauer
- Department of Internal Medicine 3, University Medical Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Anita N Kremer
- Department of Internal Medicine 5, Hematology and Oncology, University Medical Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Simon Völkl
- Department of Internal Medicine 5, Hematology and Oncology, University Medical Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, University Medical Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Katja Evert
- Institute of Pathology, University Medical Center Regensburg, Germany
| | | | - Andreas Wehrfritz
- Department of Anaesthesiology, University Medical Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Ralf J Rieker
- Institute of Pathology, University Medical Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Medical Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas E Kremer
- Department of Internal Medicine 1, University Medical Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Markus F Neurath
- Department of Internal Medicine 1, University Medical Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Luis E Muñoz
- Department of Internal Medicine 3, University Medical Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3, University Medical Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3, University Medical Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| |
Collapse
|
185
|
Qi JL, He JR, Liu CB, Jin SM, Gao RY, Yang X, Bai HM, Ma YB. Pulmonary Staphylococcus aureus infection regulates breast cancer cell metastasis via neutrophil extracellular traps (NETs) formation. MedComm (Beijing) 2020; 1:188-201. [PMID: 34766117 PMCID: PMC8491238 DOI: 10.1002/mco2.22] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/20/2022] Open
Abstract
The formation of neutrophil extracellular traps (NETs) was recently identified as one of the most important processes for the maintenance of host tissue homeostasis in bacterial infection. Meanwhile, pneumonia infection has a poor effect on cancer patients receiving immunotherapy. Whether pneumonia‐mediated NETs increase lung metastasis remains unclear. In this study, we identified a critical role for multidrug‐resistant Staphylococcus aureus infection‐induced NETs in the regulation of cancer cell metastasis. Notably, S. aureus triggered autophagy‐dependent NETs formation in vitro and in vivo and increased cancer cell metastasis. Targeting autophagy effectively regulated NETs formation, which contributed to the control of cancer metastasis in vivo. Moreover, the degradation of NETs by DNase I significantly suppresses metastasis in lung. Our work offers novel insight into the mechanisms of metastasis induced by bacterial pneumonia and provides a potential therapeutic strategy for pneumonia‐related metastasis.
Collapse
Affiliation(s)
- Jia-Long Qi
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Medical Biology Kunming China
| | - Jin-Rong He
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Medical Biology Kunming China.,School of Basic Medical School Kunming Medical University Kunming China
| | - Cun-Bao Liu
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Medical Biology Kunming China
| | - Shu-Mei Jin
- Department of Pharmacology Laboratory Yunnan Institute of Materia Medica NO24, LENGSHUITANG, BIJI ROAD, XISHAN QU Kunming 650000 China
| | - Rui-Yu Gao
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Medical Biology Kunming China
| | - Xu Yang
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Medical Biology Kunming China
| | - Hong-Mei Bai
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Medical Biology Kunming China
| | - Yan-Bing Ma
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Medical Biology Kunming China
| |
Collapse
|
186
|
Mostafa MN, Osama M. The implications of neutrophil extracellular traps in the pathophysiology of atherosclerosis and atherothrombosis. Exp Biol Med (Maywood) 2020; 245:1376-1384. [PMID: 32727216 DOI: 10.1177/1535370220945989] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
IMPACT STATEMENT Fatal consequences of atherosclerosis and atherothrombosis give research in this field great importance. This review provides recent information about the implications of neutrophils in the pathophysiology of atherosclerosis and atherothrombosis via formation and release of neutrophil extracellular traps (NETs), thereby enhancing our understanding on how the process of atherosclerosis develops and how its consequences occur. Information provided in this review suggests NETs as a new therapeutic target and a rich point for research. This review gives answers to questions about the mechanisms of atherosclerosis and atherothrombosis progression through studying the implications of NETs in these processes.
Collapse
Affiliation(s)
| | - Mahmoud Osama
- Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
187
|
Neutrophil Extracellular Traps: Signaling Properties and Disease Relevance. Mediators Inflamm 2020; 2020:9254087. [PMID: 32774152 PMCID: PMC7407020 DOI: 10.1155/2020/9254087] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are characterized as extracellular DNA fibers comprised of histone and cytoplasmic granule proteins. NETs were first described as a form of innate response against pathogen invasion, which can capture pathogens, degrade bacterial toxic factors, and kill bacteria. Additionally, NETs also provide a scaffold for protein and cell binding. Protein binding to NETs further activate the coagulation system which participates in thrombosis. In addition, NETs also can damage the tissues due to the proteins they carry. Many studies have suggested that the excessive formation of NETs may contribute to a range of diseases, including thrombosis, atherosclerosis, autoimmune diseases, and sepsis. In this review, we describe the structure and components of NETs, models of NET formation, and detection methods. We also discuss the molecular mechanism of NET formation and their disease relevance. Modulation of NET formation may provide a new route for the prevention and treatment of releated human diseases.
Collapse
|
188
|
Chen HJ, Tas SW, de Winther MPJ. Type-I interferons in atherosclerosis. J Exp Med 2020; 217:132613. [PMID: 31821440 PMCID: PMC7037237 DOI: 10.1084/jem.20190459] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/05/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022] Open
Abstract
Chen et al. review the effects of type-I IFNs and the potential of anti–type-I IFN therapies in atherosclerosis. The contribution of dyslipidemia and inflammation in atherosclerosis is well established. Along with effective lipid-lowering treatments, the recent success of clinical trials with anti-inflammatory therapies and the accelerated atherosclerosis in many autoimmune diseases suggest that targeting inflammation may open new avenues for the prevention and the treatment for cardiovascular diseases (CVDs). In the past decades, studies have widened the role of type-I interferons (IFNs) in disease, from antivirus defense to autoimmune responses and immuno-metabolic syndromes. While elevated type-I IFN level in serum is associated with CVD incidence in patients with interferonopathies, experimental data have attested that type-I IFNs affect plaque-residing macrophages, potentiate foam cell and extracellular trap formation, induce endothelial dysfunction, alter the phenotypes of dendritic cells and T and B lymphocytes, and lead to exacerbated atherosclerosis outcomes. In this review, we discuss the production and the effects of type-I IFNs in different atherosclerosis-associated cell types from molecular biology studies, animal models, and clinical observations, and the potential of new therapies against type-I IFN signaling for atherosclerosis.
Collapse
Affiliation(s)
- Hung-Jen Chen
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Sander W Tas
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical Immunology, and Laboratory for Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, Netherlands
| | - Menno P J de Winther
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Institute for Cardiovascular Prevention, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
189
|
Didier K, Giusti D, Le Jan S, Terryn C, Muller C, Pham BN, Le Naour R, Antonicelli FD, Servettaz A. Neutrophil Extracellular Traps Generation Relates with Early Stage and Vascular Complications in Systemic Sclerosis. J Clin Med 2020; 9:jcm9072136. [PMID: 32645862 PMCID: PMC7408748 DOI: 10.3390/jcm9072136] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/02/2020] [Accepted: 07/05/2020] [Indexed: 01/19/2023] Open
Abstract
Systemic sclerosis (SSc) is a systemic disease characterized by a great clinical and immunological heterogeneity whose pathophysiology is still being unraveled. Recently, innate immunity has been proposed to participate to the pathogenesis of SSc. In this study, we investigated the release of neutrophil extracellular traps (NETs) according to patient phenotype. Polymorphonuclear neutrophils (PMN) from 34 SSc patients and 26 healthy controls were stimulated by serum from SSc or healthy subject. NETs were visualized using epifluorescence microscope after DNA, myeloperoxidase, and Histone H3 tagging. Area of NETs were quantified using an original macro running in ImageJ® software. PMN from SSc patients were significantly more prone to releasing NETs than control PMN after autologous stimulation. PMN from patients with severe vascular complications (pulmonary arterial hypertension, digital ulcers) produced more NETs than PMN from other SSc patients and their aberrant NET production appeared to be sustained over time. In patients with pulmonary interstitial disease or extensive cutaneous fibrosis, NET production was high at an early stage of the disease before progressively decreasing. Both serum factors and PMN activation status were involved in the enhanced production of NETs in SSc. Consequently, neutrophils and especially NETosis represent new physiopathological and therapeutic fields in SSc.
Collapse
Affiliation(s)
- Kevin Didier
- EA7509 IRMAIC, University of Reims-Champagne-Ardenne, 51100 Reims, France; (D.G.); (S.L.J.); (C.M.); (B.N.P.); (R.L.N.); (F.D.A.); (A.S.)
- Department of Internal Medicine, Infectious Diseases, and Clinical Immunology, Reims Teaching Hospitals, Robert Debré Hospital, 51100 Reims, France
- Correspondence: ; Tel.: +33-3267-873-02
| | - Delphine Giusti
- EA7509 IRMAIC, University of Reims-Champagne-Ardenne, 51100 Reims, France; (D.G.); (S.L.J.); (C.M.); (B.N.P.); (R.L.N.); (F.D.A.); (A.S.)
- Laboratory of Immunology, Reims University Hospital, University of Champagne-Ardenne, 51100 Reims, France
| | - Sebastien Le Jan
- EA7509 IRMAIC, University of Reims-Champagne-Ardenne, 51100 Reims, France; (D.G.); (S.L.J.); (C.M.); (B.N.P.); (R.L.N.); (F.D.A.); (A.S.)
| | - Christine Terryn
- PICT Platform, University of Reims Champagne-Ardenne, 51100 Reims, France;
| | - Celine Muller
- EA7509 IRMAIC, University of Reims-Champagne-Ardenne, 51100 Reims, France; (D.G.); (S.L.J.); (C.M.); (B.N.P.); (R.L.N.); (F.D.A.); (A.S.)
| | - Bach Nga Pham
- EA7509 IRMAIC, University of Reims-Champagne-Ardenne, 51100 Reims, France; (D.G.); (S.L.J.); (C.M.); (B.N.P.); (R.L.N.); (F.D.A.); (A.S.)
- Laboratory of Immunology, Reims University Hospital, University of Champagne-Ardenne, 51100 Reims, France
| | - Richard Le Naour
- EA7509 IRMAIC, University of Reims-Champagne-Ardenne, 51100 Reims, France; (D.G.); (S.L.J.); (C.M.); (B.N.P.); (R.L.N.); (F.D.A.); (A.S.)
| | - Frank D. Antonicelli
- EA7509 IRMAIC, University of Reims-Champagne-Ardenne, 51100 Reims, France; (D.G.); (S.L.J.); (C.M.); (B.N.P.); (R.L.N.); (F.D.A.); (A.S.)
| | - Amelie Servettaz
- EA7509 IRMAIC, University of Reims-Champagne-Ardenne, 51100 Reims, France; (D.G.); (S.L.J.); (C.M.); (B.N.P.); (R.L.N.); (F.D.A.); (A.S.)
- Department of Internal Medicine, Infectious Diseases, and Clinical Immunology, Reims Teaching Hospitals, Robert Debré Hospital, 51100 Reims, France
| |
Collapse
|
190
|
Hanata N, Shoda H, Hatano H, Nagafuchi Y, Komai T, Okamura T, Suzuki A, Gunarta IK, Yoshioka K, Yamamoto K, Fujio K. Peptidylarginine Deiminase 4 Promotes the Renal Infiltration of Neutrophils and Exacerbates the TLR7 Agonist-Induced Lupus Mice. Front Immunol 2020; 11:1095. [PMID: 32655553 PMCID: PMC7324481 DOI: 10.3389/fimmu.2020.01095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/06/2020] [Indexed: 12/19/2022] Open
Abstract
Peptidylarginine deiminase 4 (PAD4), encoded by PADI4, plays critical roles in the immune system; however, its contribution to the pathogenesis of lupus nephritis remains controversial. The pathological roles of PAD4 were investigated in lupus model mice. An imiquimod (IMQ)-induced lupus model was analyzed in wild-type (WT) and Padi4-knockout (KO) mice. Proteinuria, serum anti-double stranded DNA (anti-dsDNA) antibody, and renal infiltrated cells were evaluated. Neutrophil migration and adhesion were assessed using adoptive transfer and adhesion assay. PAD4-regulated pathways were identified by RNA-sequencing of Padi4 KO neutrophils. Padi4 KO mice exhibited significant improvements in proteinuria progression compared with WT mice, whereas, serum anti-dsDNA antibody and immune complex deposition in the glomeruli showed no difference between both mice strains. Padi4 KO mice showed decreased neutrophil infiltration in the kidneys. Adoptively transferred Padi4 KO neutrophils showed decreased migration to the kidneys of IMQ-treated WT mice, and adhesion to ICAM-1 was impaired in Padi4 KO neutrophils. Padi4 KO neutrophils exhibited reduced upregulation of p38 mitogen-activated protein kinase (MAPK) pathways. Toll-like receptor 7 (TLR7)-primed Padi4 KO neutrophils demonstrated reduced phosphorylation of p38 MAPK and lower expression of JNK-associated leucine zipper protein (JLP), a p38 MAPK scaffold protein. Neutrophils from heterozygous Jlp KO mice showed impaired adhesion to ICAM-1 and decreased migration to the kidneys of IMQ-treated WT mice. These results indicated a pivotal role of PAD4-p38 MAPK pathway in renal neutrophil infiltration in TLR7 agonist-induced lupus nephritis, and the importance of neutrophil-mediated kidney inflammation. Inhibition of the PAD4-p38 MAPK pathway may help in formulating a novel therapeutic strategy against lupus nephritis.
Collapse
Affiliation(s)
- Norio Hanata
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hirofumi Shoda
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroaki Hatano
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuo Nagafuchi
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshihiko Komai
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomohisa Okamura
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akari Suzuki
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - I Ketut Gunarta
- Division of Molecular Cell Signaling, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Katsuji Yoshioka
- Division of Molecular Cell Signaling, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Kazuhiko Yamamoto
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
191
|
|
192
|
Matrix Metalloproteinases as Biomarkers of Atherosclerotic Plaque Instability. Int J Mol Sci 2020; 21:ijms21113946. [PMID: 32486345 PMCID: PMC7313469 DOI: 10.3390/ijms21113946] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases responsible for tissue remodeling and degradation of extracellular matrix (ECM) proteins. MMPs may modulate various cellular and signaling pathways in atherosclerosis responsible for progression and rupture of atherosclerotic plaques. The effect of MMPs polymorphisms and the expression of MMPs in both the atherosclerotic plaque and plasma was shown. They are independent predictors of atherosclerotic plaque instability in stable coronary heart disease (CHD) patients. Increased levels of MMPs in patients with advanced cardiovascular disease (CAD) and acute coronary syndrome (ACS) was associated with future risk of cardiovascular events. These data confirm that MMPs may be biomarkers in plaque instability as they target in potential drug therapies for atherosclerosis. They provide important prognostic information, independent of traditional risk factors, and may turn out to be useful in improving risk stratification.
Collapse
|
193
|
Fetz AE, Radic MZ, Bowlin GL. Neutrophils in Biomaterial-Guided Tissue Regeneration: Matrix Reprogramming for Angiogenesis. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:95-106. [PMID: 32299302 DOI: 10.1089/ten.teb.2020.0028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Biomaterial-guided in situ tissue regeneration uses biomaterials to stimulate and guide the body's endogenous, regenerative processes to drive functional tissue repair and regeneration. To be successful, cell migration into the biomaterials is essential, which requires angiogenesis to maintain cell viability. Neutrophils, the first cells responding to an implanted biomaterial, are now known to play an integral part in angiogenesis in multiple tissues and exhibit considerable potential for driving angiogenesis in the context of tissue regeneration. In terms of biomaterial-guided in situ tissue regeneration, harnessing the proangiogenic potential of the neutrophil through its robust secretion of matrix metalloproteinase 9 (MMP-9) may provide a mechanism to improve biomaterial performance by initiating matrix reprogramming. This review will discuss neutrophils as matrix reprogrammers and what is currently known about their ability to create a microenvironment that is more conducive for angiogenesis and tissue regeneration through the secretion of MMP-9. It will first review a set of ground-breaking studies in tumor biology and then present an overview of what is currently known about neutrophils and MMP-9 in biomaterial vascularization. Finally, it will conclude with potential strategies and considerations to engage neutrophils in biomaterial-guided angiogenesis and in situ tissue regeneration. Impact statement This review draws attention to a highly neglected topic in tissue engineering, the role of neutrophils in biomaterial-guided tissue regeneration and angiogenesis. Moreover, it highlights their abundant secretion of matrix metalloproteinase 9 (MMP-9) for matrix reprogramming, a topic with great potential yet to be vetted in the literature. It presents strategies and considerations for designing the next generation of immunomodulatory biomaterials. While there is literature discussing the overall role of neutrophils in angiogenesis, there are a limited number of review articles focused on this highly relevant topic in the context of biomaterial integration and tissue regeneration, making this a necessary and impactful article.
Collapse
Affiliation(s)
- Allison E Fetz
- Department of Biomedical Engineering, University of Memphis, Memphis, Tennessee, USA
| | - Marko Z Radic
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Gary L Bowlin
- Department of Biomedical Engineering, University of Memphis, Memphis, Tennessee, USA
| |
Collapse
|
194
|
Yang L, Liu L, Zhang R, Hong J, Wang Y, Wang J, Zuo J, Zhang J, Chen J, Hao H. IL-8 mediates a positive loop connecting increased neutrophil extracellular traps (NETs) and colorectal cancer liver metastasis. J Cancer 2020; 11:4384-4396. [PMID: 32489457 PMCID: PMC7255375 DOI: 10.7150/jca.44215] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/04/2020] [Indexed: 12/21/2022] Open
Abstract
Host and tumorous inflammation actively affect liver metastasis of colorectal cancer (CRC). Neutrophils have been recognized as one active participant in metastasis procedure, with controversial roles however. Activated neutrophils release extracellular traps (NETs) which are involved in infection and multiple pathological conditions. NETs on cancer metastasis is getting recognized but less elucidated in mechanism. How NETs interact with cancer cells is still largely unknown. In this study, we found that neutrophils from CRC patients, especially those with liver metastatic, underwent remarkably enhanced NETs. Clinically, sera and pathological NETs marker closely correlated with onset of liver metastasis. Through in vivo and in vitro studies, we proved that increased NETs positively contribute to onset of CRC liver metastasis. Digesting NETs with DNase 1 diminished the increased liver metastasis associated with NETs. In detail, NETs trapped CRC cells in liver and exerted no cytotoxicity on tumor cells, but boosted tumorous proliferation and invasion capacity. We further found this enhanced malignancy of trapped CRC cells was due to the elevated tumorous interleukin (IL)-8 expression triggered by NETs. Blocking IL-8 activity effectively abrogated the enhanced proliferation and invasion triggered by NETs. Moreover, overproduced IL-8 in turn activate neutrophils towards NETs formation, thus forming a positive loop optimizing CRC liver metastasis. Collectively, our study propose a novel positive feedback between elevated tumorous IL-8 and NETs to promote CRC liver metastasis, and identify potential strategy against liver metastasis.
Collapse
Affiliation(s)
- Luyu Yang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Caner Metastasis Institute, Fudan University, Shanghai, China
| | - Lu Liu
- Department of Infection Disease, Huashan Hospital, Fudan University, Shanghai, China
| | - Rui Zhang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Hong
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yaping Wang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Wang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jieliang Zuo
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jubo Zhang
- Department of Infection Disease, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinhong Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Hankun Hao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
195
|
Pruchniak MP, Ostafin M, Wachowska M, Jakubaszek M, Kwiatkowska B, Olesinska M, Zycinska K, Demkow U. Neutrophil extracellular traps generation and degradation in patients with granulomatosis with polyangiitis and systemic lupus erythematosus. Autoimmunity 2020; 52:126-135. [PMID: 31257985 DOI: 10.1080/08916934.2019.1631812] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neutrophils are one of the first cells to arrive at the site of infection, where they apply several strategies to kill pathogens: degranulation, respiratory burst, phagocytosis, and release of neutrophil extracellular traps (NETs). Recent discoveries try to connect NETs formation with autoimmune diseases, like systemic lupus erythematosus (SLE) or granulomatosis with polyangiitis (GPA) and place them among one of the factors responsible for disease pathogenesis. The aim of the study was to assess the NETotic capabilities of neutrophils obtained from freshly diagnosed autoimmune patients versus healthy controls. Further investigation involved assessing NETs production among treated patients. In the latter step, NETs degradation potency of collected sera from non-treated patients was checked. Lastly, the polymorphisms of the DNASE I gene among tested subjects were checked. NETs formation was measured in a neutrophil culture by fluorometry, while degradation assessment was performed with patients' sera and extracellular source of DNA. Additionally, Sanger sequencing was used to check potential SNP mutations between patients. About 121 subjects were enrolled into this study, 54 of them with a diagnosed autoimmune disorder. Neutrophils stimulated with NETosis inducers were able to release NETs in all cases. We have found that disease affected patients produce NETs more rapidly and in larger quantities than control groups, with up to 82.5% more released. Most importantly, we showed a difference between the diseases themselves. NETs release was 68.5% higher in GPA samples when compared to SLE ones while stimulated with Calcium Ionophore. Serum nucleases were less effective at degrading NETs in both autoimmune diseases, with a reduction in degradation of 20.9% observed for GPA and 18.2% for SLE when compared with the controls. Potential therapies targeting neutrophils and NETs should be specifically tailored to the type of the disease. Since there are significant differences between NETs release and disease type, a standard neutrophil targeted therapy could prevent over-generation of traps in some cases, while in others it would deplete the cells, leaving the immune system unresponsive to primary infections.
Collapse
Affiliation(s)
- Michal Przemyslaw Pruchniak
- a Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age , Medical University of Warsaw , Warsaw , Poland.,b Postgraduate School of Molecular Medicine , Medical University of Warsaw , Warsaw , Poland
| | - Magdalena Ostafin
- a Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age , Medical University of Warsaw , Warsaw , Poland
| | - Malgorzata Wachowska
- a Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age , Medical University of Warsaw , Warsaw , Poland
| | - Michal Jakubaszek
- c National Institute of Geriatrics, Rheumatology and Rehabilitation, Early Arthritis Clinic , Warsaw , Poland
| | - Brygida Kwiatkowska
- c National Institute of Geriatrics, Rheumatology and Rehabilitation, Early Arthritis Clinic , Warsaw , Poland
| | - Marzena Olesinska
- d Department of Connective Tissue Diseases, National Institute of Geriatrics, Rheumatology and Rehabilitation , Warsaw , Poland
| | - Katarzyna Zycinska
- e Department of Family Medicine, Internal and Metabolic Diseases , Medical University of Warsaw , Warsaw , Poland
| | - Urszula Demkow
- a Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age , Medical University of Warsaw , Warsaw , Poland
| |
Collapse
|
196
|
Lu Y, Dong Y, Zhang Y, Shen D, Wang X, Ge R, Zhang M, Xia Y, Wang X. Antiphospholipid antibody-activated NETs exacerbate trophoblast and endothelial cell injury in obstetric antiphospholipid syndrome. J Cell Mol Med 2020; 24:6690-6703. [PMID: 32369873 PMCID: PMC7299718 DOI: 10.1111/jcmm.15321] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/07/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
Despite the widespread use of antiplatelets and anticoagulants, women with antiphospholipid syndrome (APS) may face pregnancy complications associated with placental dysplasia. Neutrophil extracellular traps (NETs) are involved in the pathogenesis of many autoimmune diseases, including vascular APS; however, their role in obstetric APS is unclear. Herein, we investigated the role of NETs by quantifying cell‐free DNA and NET marker levels. Live‐cell imaging was used to visualize NET formation, and MAPK signalling pathway proteins were analysed. Cell migration, invasion and tube formation assays were performed to observe the effects of NETs on trophoblasts and human umbilical vein endothelial cells (HUVECs). The concentrations of cell‐free DNA and NETs in sera of pregnant patients with APS were elevated compared with that of healthy controls (HCs) matched to gestational week. APS neutrophils were predisposed to spontaneous NET release and IgG purified from the patients (APS‐IgG) induced neutrophils from HCs to release NETs. Additionally, APS‐IgG NET induction was abolished with inhibitors of reactive oxygen species, AKT, p38 MAPK and ERK1/2. Moreover, NETs were detrimental to trophoblasts and HUVECs. In summary, APS‐IgG‐induced NET formation deserves further investigation as a potential novel therapeutic target in obstetrical APS.
Collapse
Affiliation(s)
- Yuan Lu
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Yan Dong
- Department of Obstetrics and Gynaecology, Linyi People's Hospital, Linyi, China
| | - Yan Zhang
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Di Shen
- Department of Obstetrics and Gynaecology, Maternal and Child Health Care of Shandong Province, Jinan, China
| | - Xiyao Wang
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Ruxiu Ge
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Meihua Zhang
- The Laboratory of Placenta-Related Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health and Family Planning Commission of China, Jinan, China
| | - Yu Xia
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Xietong Wang
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Department of Obstetrics and Gynaecology, Maternal and Child Health Care of Shandong Province, Jinan, China.,The Laboratory of Placenta-Related Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health and Family Planning Commission of China, Jinan, China
| |
Collapse
|
197
|
Update on the cellular and molecular aspects of lupus nephritis. Clin Immunol 2020; 216:108445. [PMID: 32344016 DOI: 10.1016/j.clim.2020.108445] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/26/2020] [Accepted: 04/23/2020] [Indexed: 12/17/2022]
Abstract
Recent progress has highlighted the involvement of a variety of innate and adaptive immune cells in lupus nephritis. These include activated neutrophils producing extracellular chromatin traps that induce type I interferon production and endothelial injury, metabolically-rewired IL-17-producing T-cells causing tissue inflammation, follicular and extra-follicular helper T-cells promoting the maturation of autoantibody-producing B-cells that may also sustain the formation of germinal centers, and alternatively activated monocytes/macrophages participating in tissue repair and remodeling. The role of resident cells such as podocytes and tubular epithelial cells is increasingly recognized in regulating the local immune responses and determining the kidney function and integrity. These findings are corroborated by advanced, high-throughput genomic studies, which have revealed an unprecedented amount of data highlighting the molecular heterogeneity of immune and non-immune cells implicated in lupus kidney disease. Importantly, this research has led to the discovery of putative pathogenic pathways, enabling the rationale design of novel treatments.
Collapse
|
198
|
Fousert E, Toes R, Desai J. Neutrophil Extracellular Traps (NETs) Take the Central Stage in Driving Autoimmune Responses. Cells 2020; 9:cells9040915. [PMID: 32276504 PMCID: PMC7226846 DOI: 10.3390/cells9040915] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 12/15/2022] Open
Abstract
Following fifteen years of research, neutrophil extracellular traps (NETs) are widely reported in a large range of inflammatory infectious and non-infectious diseases. Cumulating evidences from in vitro, in vivo and clinical diagnostics suggest that NETs may play a crucial role in inflammation and autoimmunity in a variety of autoimmune diseases, such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE) and anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV). Most likely, NETs contribute to breaking self-tolerance in autoimmune diseases in several ways. During this review, we discuss the current knowledge on how NETs could drive autoimmune responses. NETs can break self-tolerance by being a source of autoantigens for autoantibodies found in autoimmune diseases, such as anti-citrullinated protein antibodies (ACPAs) in RA, anti-dsDNA in SLE and anti-myeloperoxidase and anti-protein 3 in AAV. Moreover, NET components could accelerate the inflammatory response by mediating complement activation, acting as danger-associated molecular patterns (DAMPs) and inflammasome activators, for example. NETs also can activate other immune cells, such as B cells, antigen-presenting cells and T cells. Additionally, impaired clearance of NETs in autoimmune diseases prolongs the presence of active NETs and their components and, in this way, accelerate immune responses. NETs have not only been implicated as drivers of inflammation, but also are linked to resolution of inflammation. Therefore, NETs may be central regulators of inflammation and autoimmunity, serve as biomarkers, as well as promising targets for future therapeutics of inflammatory autoimmune diseases.
Collapse
|
199
|
Okeke EB, Louttit C, Fry C, Najafabadi AH, Han K, Nemzek J, Moon JJ. Inhibition of neutrophil elastase prevents neutrophil extracellular trap formation and rescues mice from endotoxic shock. Biomaterials 2020; 238:119836. [PMID: 32045782 PMCID: PMC7075277 DOI: 10.1016/j.biomaterials.2020.119836] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/22/2020] [Accepted: 01/30/2020] [Indexed: 12/22/2022]
Abstract
Neutrophil elastase (NE) is a serine protease stored in the azurophilic granules of neutrophils and released into the extracellular milieu during inflammatory response or formation of neutrophil extracellular traps (NETs). Neutrophils release NETs to entrap pathogens by externalizing their cellular contents in a DNA framework decorated with anti-microbials and proteases, including NE. Importantly, excess NETs in tissues are implicated in numerous pathologies, including sepsis, rheumatoid arthritis, vasculitis, and cancer. However, it remains unknown how to effectively prevent NET formation. Here, we show that NE plays a major role during NET formation and that inhibition of NE is a promising approach for decreasing NET-mediated tissue injury. NE promoted NET formation by human neutrophils. Whereas sivelestat, a small molecule inhibitor of NE, inhibited the formation of NETs in vitro , administration of free sivelestat did not have any efficacy in a murine model of lipopolysaccharide-induced endotoxic shock. To improve the efficacy of sivelestat in vivo, we have developed a nanoparticle system for delivering sivelestat. We demonstrate that nanoparticle-mediated delivery of sivelestat effectively inhibited NET formation, decreased the clinical signs of lung injury, reduced NE and other proinflammatory cytokines in serum, and rescued animals against endotoxic shock. Collectively, our data demonstrates that NE signaling can initiate NET formation and that nanoparticle-mediated inhibition of NE improves drug efficacy for preventing NET formation.
Collapse
Affiliation(s)
- Emeka B Okeke
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, United States; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Cameron Louttit
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, United States; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Chris Fry
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Alireza Hassani Najafabadi
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, United States; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Kai Han
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, United States; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Jean Nemzek
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI, 48109, United States.
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, United States; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, United States; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States; Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, 48109, United States.
| |
Collapse
|
200
|
Guo Y, Liu R, Chen L, Wu W, Zhang S. Neutrophil activation and neutrophil derived neutrophil extracellular trap formation in patients with coronary artery ectasia. BMC Cardiovasc Disord 2020; 20:101. [PMID: 32122307 PMCID: PMC7050139 DOI: 10.1186/s12872-020-01398-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/23/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND This study investigated neutrophil activation and neutrophil-derived extracellular traps formation in coronary artery ectasia. METHODS We enrolled 90 patients who underwent coronary angiography, and included 30 patients with coronary artery ectasia (CAE), 30 patients with obstructive coronary artery disease (CAD) and 30 patients with normal coronary arteries (CON). Intra-neutrophil mean myeloperoxidase index (MPXI) was determined using an automated blood cell counter (ADVIA2120 Hematology System). Serum concentrations of plasma adhesion molecules, cytokines, and neutrophil-derived extracellular traps were quantified. RESULTS The intra-neutrophil mean myeloperoxidase index was reduced in CAE patients compared to CAD and CON patients (1.02 ± 3.01, 3.22 ± 3.03, 3.52 ± 4.25, respectively; CAE vs CAD, p = 0.016 and CAE vs CON, p = 0.007). Multiple logistic regression analysis showed that MPXI and dsDNA were independent factors that predicted the presence of CAE. CAE patients had higher levels of plasma adhesion molecules (P-selectin glycoprotein ligand-1, E-selectin, L-selectin) and interleukin 1 beta levels. Neutrophil extracellular trap concentrations were significantly higher in the CAE group compared to CAD and CON patients (284.31(258.33-449.91) ng/mL, 225.12(203.34-257.13) ng/mL, and 247.37(231.04-273.01) ng/mL, respectively; CAE vs CAD, p = 0.000 and CAE vs CON, p = 0.001). CONCLUSIONS Peripheral neutrophils from CAE patients were activated and neutrophil extracellular traps were elevated in the plasma. IL-1β and soluble adhesion molecules may be the causal factors for neutrophil activation.
Collapse
Affiliation(s)
- Yuchao Guo
- Department of Cardiology, Peking Union Medical College & Chinese Academy of Medical Science, Peking Union Medical College Hospital, No. 1 Shuai Fu Yuan, Beijing, 100730, China
| | - Ruifeng Liu
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Beijing, 100050, China
| | - Lianfeng Chen
- Department of Cardiology, Peking Union Medical College & Chinese Academy of Medical Science, Peking Union Medical College Hospital, No. 1 Shuai Fu Yuan, Beijing, 100730, China
| | - Wei Wu
- Department of Cardiology, Peking Union Medical College & Chinese Academy of Medical Science, Peking Union Medical College Hospital, No. 1 Shuai Fu Yuan, Beijing, 100730, China.
| | - Shuyang Zhang
- Department of Cardiology, Peking Union Medical College & Chinese Academy of Medical Science, Peking Union Medical College Hospital, No. 1 Shuai Fu Yuan, Beijing, 100730, China.
| |
Collapse
|