151
|
Zarrinpar A, Chaix A, Xu ZZ, Chang MW, Marotz CA, Saghatelian A, Knight R, Panda S. Antibiotic-induced microbiome depletion alters metabolic homeostasis by affecting gut signaling and colonic metabolism. Nat Commun 2018; 9:2872. [PMID: 30030441 PMCID: PMC6054678 DOI: 10.1038/s41467-018-05336-9] [Citation(s) in RCA: 350] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 06/28/2018] [Indexed: 12/11/2022] Open
Abstract
Antibiotic-induced microbiome depletion (AIMD) has been used frequently to study the role of the gut microbiome in pathological conditions. However, unlike germ-free mice, the effects of AIMD on host metabolism remain incompletely understood. Here we show the effects of AIMD to elucidate its effects on gut homeostasis, luminal signaling, and metabolism. We demonstrate that AIMD, which decreases luminal Firmicutes and Bacteroidetes species, decreases baseline serum glucose levels, reduces glucose surge in a tolerance test, and improves insulin sensitivity without altering adiposity. These changes occur in the setting of decreased luminal short-chain fatty acids (SCFAs), especially butyrate, and the secondary bile acid pool, which affects whole-body bile acid metabolism. In mice, AIMD alters cecal gene expression and gut glucagon-like peptide 1 signaling. Extensive tissue remodeling and decreased availability of SCFAs shift colonocyte metabolism toward glucose utilization. We suggest that AIMD alters glucose homeostasis by potentially shifting colonocyte energy utilization from SCFAs to glucose. Antibiotic-induced microbiome depletion is one of the most common approaches to modulate the gut microbiome. Here the authors demonstrate that it affects gut homeostasis and glucose metabolism by decreasing luminal short chain fatty acids and leading to a shift of energy utilization by colonocytes.
Collapse
Affiliation(s)
- Amir Zarrinpar
- Regulatory Biology Laboratory, The Salk Institute, 10010 N. Torrey Pines Road, La Jolla, CA, 92037, USA. .,Division of Gastroenterology, University of California, San Diego, 9500 Gilman Drive, MC 0983, La Jolla, CA, 92093-0983, USA. .,Center for Microbiome Innovation, University of California, San Diego, 9500 Gilman Drive, MC 0436, La Jolla, CA, 92093-0436, USA. .,Division of Gastroenterology, VA San Diego Health Systems, 3350 La Jolla Village Drive, MC 9111D, La Jolla, CA, 92161, USA.
| | - Amandine Chaix
- Regulatory Biology Laboratory, The Salk Institute, 10010 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Zhenjiang Z Xu
- Center for Microbiome Innovation, University of California, San Diego, 9500 Gilman Drive, MC 0436, La Jolla, CA, 92093-0436, USA.,Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, MC 0763, La Jolla, CA, 92093-0763, USA.,Department of Computer Science and Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Max W Chang
- Integrative Genomics and Bioinformatics Core, The Salk Institute, 10010 N. Torrey Pines Road, La Jolla, CA, 92037, USA.,Division of Endocrinology, University of California, San Diego, 9500 Gilman Drive #0640, La Jolla, CA, 92093-0640, USA
| | - Clarisse A Marotz
- Center for Microbiome Innovation, University of California, San Diego, 9500 Gilman Drive, MC 0436, La Jolla, CA, 92093-0436, USA.,Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, MC 0763, La Jolla, CA, 92093-0763, USA
| | - Alan Saghatelian
- Protein Biology Laboratory, The Salk Institute, 10010 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Rob Knight
- Center for Microbiome Innovation, University of California, San Diego, 9500 Gilman Drive, MC 0436, La Jolla, CA, 92093-0436, USA.,Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, MC 0763, La Jolla, CA, 92093-0763, USA.,Department of Computer Science and Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Satchidananda Panda
- Regulatory Biology Laboratory, The Salk Institute, 10010 N. Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
152
|
Gut Microbiota and Mucosal Immunity in the Neonate. Med Sci (Basel) 2018; 6:medsci6030056. [PMID: 30018263 PMCID: PMC6163169 DOI: 10.3390/medsci6030056] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/04/2018] [Accepted: 07/12/2018] [Indexed: 12/17/2022] Open
Abstract
Gut microbiota colonization is a complex, dynamic, and step-wise process that is in constant development during the first years of life. This microbial settlement occurs in parallel with the maturation of the immune system, and alterations during this period, due to environmental and host factors, are considered to be potential determinants of health-outcomes later in life. Given that host–microbe interactions are mediated by the immune system response, it is important to understand the close relationship between immunity and the microbiota during birth, lactation, and early infancy. This work summarizes the evidence to date on early gut microbiota colonization, and how it influences the maturation of the infant immune system and health during the first 1000 days of life. This review will also address the influence of perinatal antibiotic intake and the importance of delivery mode and breastfeeding for an appropriate development of gut immunity.
Collapse
|
153
|
Castro-Mejía JL, Jakesevic M, Fabricius NF, Krych Ł, Nielsen DS, Kot W, Bendtsen KM, Vogensen FK, Hansen CH, Hansen AK. Gut microbiota recovery and immune response in ampicillin-treated mice. Res Vet Sci 2018; 118:357-364. [DOI: 10.1016/j.rvsc.2018.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 02/07/2023]
|
154
|
Sheng Y, Ren H, Limbu SM, Sun Y, Qiao F, Zhai W, Du ZY, Zhang M. The Presence or Absence of Intestinal Microbiota Affects Lipid Deposition and Related Genes Expression in Zebrafish ( Danio rerio). Front Microbiol 2018; 9:1124. [PMID: 29896183 PMCID: PMC5987169 DOI: 10.3389/fmicb.2018.01124] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/14/2018] [Indexed: 01/14/2023] Open
Abstract
Understanding how intestinal microbiota alters energy homeostasis and lipid metabolism is a critical process in energy balance and health. However, the exact role of intestinal microbiota in the regulation of lipid metabolism in fish remains unclear. Here, we used two zebrafish models (germ-free and antibiotics-treated zebrafish) to identify the role of intestinal microbiota in lipid metabolism. Conventional and germ-free zebrafish larvae were fed with egg yolk. Transmission electron microscopy was used to detect the presence of lipid droplets in the intestinal epithelium. The results showed that, microbiota increased lipid accumulation in the intestinal epithelium. The mRNA sequencing technology was used to assess genes expression level. We found majority of the differentially expressed genes were related to lipid metabolism. Due to the limitation of germ-free zebrafish larvae, antibiotics-treated zebrafish were also used to identify the relationship between the gut microbiota and the host lipid metabolism. Oil-red staining showed antibiotics-treated zebrafish had less intestinal lipid accumulation than control group. The mRNA expression of genes related to lipid metabolism in liver and intestine was also quantified by using real-time PCR. The results indicated that apoa4, hsl, cox15, slc2a1a, and lss were more related to intestinal bacteria in fish, while the influence of intestinal microbiota on the activity of fabp6, acsl5, cd36, and gpat2 was different between the liver and intestine. This study identified several genes regulated by intestinal microbiota. Furthermore, the advantages and disadvantages of each model have been discussed. This study provides valuable information for exploring host-microbiota interactions in zebrafish in future.
Collapse
Affiliation(s)
- Yi Sheng
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| | - Hui Ren
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| | - Samwel M Limbu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China.,Department of Aquatic Sciences and Fisheries Technology, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Yuhong Sun
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| | - Fang Qiao
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| | - Wanying Zhai
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
| | - Zhen-Yu Du
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| | - Meiling Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
155
|
Antimicrobial-Induced Cytopenia and Bone Marrow Hypocellularity in Patients with Cirrhosis. BONE MARROW RESEARCH 2018; 2018:4029648. [PMID: 29888008 PMCID: PMC5977016 DOI: 10.1155/2018/4029648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/29/2018] [Accepted: 04/05/2018] [Indexed: 02/07/2023]
Abstract
There is great variation in cytopenias in cirrhotic patients with same severity and hypersplenism and their causative factors are not clear. Recent studies have highlighted the role of gut microbiome in regulation of constant and emergency hematopoiesis. Broad-spectrum antibiotics can disrupt the homeostatic or adaptive microbiota in cirrhosis, leading to impaired hematopoiesis and a higher susceptibility to infections. We studied all patients with cirrhosis with cytopenia (anemia, leucopenia, and/or thrombocytopenia), admitted in the Institute of Liver & Biliary Sciences, between January 2016 and July 2017, who underwent a bone marrow examination. The effect of the different antimicrobial agents on peripheral blood counts and bone marrow cellularity was assessed. A total of 196 patients' data was analyzed for this study. Patients on antimicrobials (n = 115) had significantly lower hemoglobin (p < 0.001), total leucocyte count (p = 0.048), and platelet count (p = 0.043) compared to patients not on antimicrobials. On unadjusted analysis, significant association with thrombocytopenia existed in beta-lactams (OR = 1.56, 95% CI = 1.06–2.40), quinolones (OR = 1.66, 95% CI = 1.11–2.61), and antifungals (OR = 2.24, 95% CI = 1.96–4.34). Cephalosporins were found to be significantly associated with anemia (OR = 1.91, 95% CI = 1.07–3.41). Patients who received antimicrobials had hypocellular marrow (p < 0.001) as compared to nonrecipients of antibiotics. The adjusted analysis showed that quinolones and beta-lactam antibiotics are the drug classes having significant association with thrombocytopenia and alternative class of drug should be explored in these patients to avoid severe thrombocytopenia.
Collapse
|
156
|
Wrzosek L, Ciocan D, Borentain P, Spatz M, Puchois V, Hugot C, Ferrere G, Mayeur C, Perlemuter G, Cassard AM. Transplantation of human microbiota into conventional mice durably reshapes the gut microbiota. Sci Rep 2018; 8:6854. [PMID: 29717179 PMCID: PMC5931539 DOI: 10.1038/s41598-018-25300-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/18/2018] [Indexed: 02/07/2023] Open
Abstract
Human microbiota-associated (HMA) mice are an important model to study the relationship between liver diseases and intestinal microbiota. We describe a new method to humanize conventional mice based on bowel cleansing with polyethylene glycol followed by fecal microbiota transplantation (FMT) from a human donor. Four successive bowel cleansings were sufficient to empty the intestine and decrease the microbiota by 90%. We then compared four different strategies based on the frequency of FMT over four weeks: (1) twice a week; (2) once a week; (3) two FMTs; (4) one FMT. We were able to transfer human bacteria to mice, irrespective of the strategy used. We detected human bacteria after four weeks, even if only one FMT was performed, but there was a shift of the microbiota over time. FMT twice a week for four weeks was too frequent and perturbed the stability of the newly formed ecosystem. FMT once a week appears to be the best compromise as it allowed engraftment of Faecalibacterium, and a higher diversity of bacteria belonging to the Bacteroidales order. Our easy to establish HMA mouse model could be used as an alternative to classical HMA mice to study the relationship between the liver and the microbiota.
Collapse
Affiliation(s)
- Laura Wrzosek
- INSERM U996, Inflammation Chemokines and Immunopathology, Faculté de Médecine-Univ Paris-Sud, Université Paris-Saclay, Clamart, France
| | - Dragos Ciocan
- INSERM U996, Inflammation Chemokines and Immunopathology, Faculté de Médecine-Univ Paris-Sud, Université Paris-Saclay, Clamart, France
| | - Patrick Borentain
- INSERM U996, Inflammation Chemokines and Immunopathology, Faculté de Médecine-Univ Paris-Sud, Université Paris-Saclay, Clamart, France
- Service d'Hépato-Gastroentérologie, Hôpital de la Timone, Marseille, France
| | - Madeleine Spatz
- INSERM U996, Inflammation Chemokines and Immunopathology, Faculté de Médecine-Univ Paris-Sud, Université Paris-Saclay, Clamart, France
| | - Virginie Puchois
- INSERM U996, Inflammation Chemokines and Immunopathology, Faculté de Médecine-Univ Paris-Sud, Université Paris-Saclay, Clamart, France
| | - Cindy Hugot
- INSERM U996, Inflammation Chemokines and Immunopathology, Faculté de Médecine-Univ Paris-Sud, Université Paris-Saclay, Clamart, France
| | - Gladys Ferrere
- INSERM U996, Inflammation Chemokines and Immunopathology, Faculté de Médecine-Univ Paris-Sud, Université Paris-Saclay, Clamart, France
| | - Camille Mayeur
- INRA, UMR 1319 MICALIS, AgroParisTech, Jouy-en-Josas, France
| | - Gabriel Perlemuter
- INSERM U996, Inflammation Chemokines and Immunopathology, Faculté de Médecine-Univ Paris-Sud, Université Paris-Saclay, Clamart, France
- AP-HP, Hepatogastroenterology and Nutrition, Hôpital Antoine-Béclère, Clamart, France
| | - Anne-Marie Cassard
- INSERM U996, Inflammation Chemokines and Immunopathology, Faculté de Médecine-Univ Paris-Sud, Université Paris-Saclay, Clamart, France.
| |
Collapse
|
157
|
Kohl KD, Brun A, Bordenstein SR, Caviedes-Vidal E, Karasov WH. Gut microbes limit growth in house sparrow nestlings (Passer domesticus) but not through limitations in digestive capacity. Integr Zool 2018; 13:139-151. [PMID: 29168619 PMCID: PMC5873389 DOI: 10.1111/1749-4877.12289] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recent research often lauds the services and beneficial effects of host‐associated microbes on animals. However, hosting these microbes may come at a cost. For example, germ‐free and antibiotic‐treated birds generally grow faster than their conventional counterparts. In the wild, juvenile body size is correlated with survival, so hosting a microbiota may incur a fitness cost. Avian altricial nestlings represent an interesting study system in which to investigate these interactions, given that they exhibit the fastest growth rates among vertebrates, and growth is limited by their digestive capacity. We investigated whether reduction and restructuring of the microbiota by antibiotic treatment would: (i) increase growth and food conversion efficiency in nestling house sparrows (Passer domesticus); (ii) alter aspects of gut anatomy or function (particularly activities of digestive carbohydrases and their regulation in response to dietary change); and (iii) whether there were correlations between relative abundances of microbial taxa, digestive function and nestling growth. Antibiotic treatment significantly increased growth and food conversion efficiency in nestlings. Antibiotics did not alter aspects of gut anatomy that we considered but depressed intestinal maltase activity. There were no significant correlations between abundances of microbial taxa and aspects of host physiology. Overall, we conclude that microbial‐induced growth limitation in developing birds is not driven by interactions with digestive capacity. Rather, decreased energetic and material costs of immune function or beneficial effects from microbes enriched under antibiotic treatment may underlie these effects. Understanding the costs and tradeoffs of hosting gut microbial communities represents an avenue of future research.
Collapse
Affiliation(s)
- Kevin D Kohl
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA.,Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Antonio Brun
- Department of Forest and Wildlife Ecology, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Seth R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Enrique Caviedes-Vidal
- Institute for Multidisciplinary Research in Biology of San Luis, National Scientific and Technical Research Council, San Luis, Argentina.,Department of Biochemistry and Biological Sciences, Universidad Nacional de San Luis, San Luis, Argentina
| | - William H Karasov
- Department of Forest and Wildlife Ecology, University of Wisconsin - Madison, Madison, Wisconsin, USA
| |
Collapse
|
158
|
Topical application of aminoglycoside antibiotics enhances host resistance to viral infections in a microbiota-independent manner. Nat Microbiol 2018; 3:611-621. [PMID: 29632368 PMCID: PMC5918160 DOI: 10.1038/s41564-018-0138-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/27/2018] [Indexed: 12/27/2022]
Abstract
Antibiotics are widely used to treat infections in humans. However, the impact of antibiotic use on host cells is understudied. Here we identify an antiviral effect of commonly used aminoglycoside antibiotics. We show that topical mucosal application of aminoglycosides prophylactically increased host resistance to a broad range of viral infections including herpes simplex viruses, influenza A virus and Zika virus. Aminoglycoside treatment also reduced viral replication in primary human cells. This antiviral activity was independent of the microbiota as aminoglycoside treatment protected germ-free mice. Microarray analysis uncovered a marked upregulation of transcripts for interferon-stimulated genes (ISGs) following aminoglycoside application. ISG induction was mediated by TLR3, and required TIR-domain-containing adapter-inducing interferon-β (TRIF), signaling adaptor, and interferon regulatory factors 3 (IRF3) and IRF7, transcription factors that promote ISG expression. XCR1+ dendritic cells, which uniquely express TLR3, were recruited to the vaginal mucosa upon aminoglycoside treatment and were required for ISG induction. These results highlight an unexpected ability of aminoglycoside antibiotics to confer broad antiviral resistance in vivo.
Collapse
|
159
|
Zhou L, Limbu SM, Shen M, Zhai W, Qiao F, He A, Du ZY, Zhang M. Environmental concentrations of antibiotics impair zebrafish gut health. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:245-254. [PMID: 29291524 DOI: 10.1016/j.envpol.2017.12.073] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 12/12/2017] [Accepted: 12/20/2017] [Indexed: 06/07/2023]
Abstract
Antibiotics have been widely used in human and veterinary medicine to both treat and prevent disease. Due to their high water solubility and low bioavailability, many antibiotic residues have been found in aquatic environments. Fish are an indispensable link between the environmental pollution and human health. However, the chronic effects of environmental concentrations of antibiotics in fish have not been thoroughly investigated. Sulfamethoxazole (SMX) and oxytetracycline (OTC) are frequently detected in aquatic environments. In this study, zebrafish were exposed to SMX (260 ng/L) and OTC (420 ng/L) for a six-week period. Results indicated that exposure to antibiotics did not influence weight gain of fish but increased the metabolic rate and caused higher mortality when treated fish were challenged with Aeromonas hydrophila. Furthermore, exposure to antibiotics in water resulted in a significant decrease in intestinal goblet cell numbers, alkaline phosphatase (AKP), acid phosphatase (ACP) activities, and the anti-oxidant response while there was a significant increase in expression of inflammatory factors. Antibiotic exposure also disturbed the intestinal microbiota in the OTC-exposed group. Our results indicated that environmental antibiotic concentrations can impair the gut health of zebrafish. The potential health risk of antibiotic residues in water should be evaluated in the future.
Collapse
Affiliation(s)
- Li Zhou
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, 500 DongChuan Road, Shanghai 200241, China
| | - Samwel Mchele Limbu
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, 500 DongChuan Road, Shanghai 200241, China; Department of Aquatic Sciences and Fisheries Technology, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Meilin Shen
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, 500 DongChuan Road, Shanghai 200241, China
| | - Wanying Zhai
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, 201306, China
| | - Fang Qiao
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, 500 DongChuan Road, Shanghai 200241, China
| | - Anyuan He
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, 500 DongChuan Road, Shanghai 200241, China; Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Zhen-Yu Du
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, 500 DongChuan Road, Shanghai 200241, China.
| | - Meiling Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, 500 DongChuan Road, Shanghai 200241, China.
| |
Collapse
|
160
|
Wan Q, Cheng RY, Guo JW, Wang K, Shen X, Pu FF, Li M, He F. [Effect of ceftriaxone on the intestinal epithelium and microbiota in neonatal mice]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2018; 20:318-325. [PMID: 29658459 PMCID: PMC7390033 DOI: 10.7499/j.issn.1008-8830.2018.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/22/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To investigate the effect of ceftriaxone on the intestinal epithelium and microbiota in mice in the early-life stage, as well as the recovery of the intestinal epithelium and reconstruction of intestinal microbiota in adult mice. METHODS A total of 36 BALB/C neonatal mice were randomly divided into control group and experimental group, with 18 mice in each group. The mice in the experimental group were given ceftriaxone 100 mg/kg every day by gavage within 21 days after birth. Those in the control group were given an equal volume of normal saline by gavage. Immunohistochemistry was used to measure the expression of Ki67, Muc2, and ZO-1 in the intestinal epithelium. qPCR and next-generation sequencing were used to analyze the overall concentration and composition of fecal bacteria. RESULTS After 21 days of ceftriaxone intervention, the experimental group had a significant reduction in body weight, a significant reduction in the expression of Ki67 and ZO-1 and a significant increase in the expression of Muc2 in intestinal epithelial cells, a significant reduction in the overall concentration of fecal bacteria, and a significant increase in the diversity of fecal bacteria compared with the control group (P<0.05). Firmicutes was the most common type of fecal bacteria in the experimental group, and there were large amounts of Staphylococcus and Enterococcus. The experimental group had a certain degree of recovery of the intestinal epithelium, but there were still significant differences in body weight and the structure of intestinal microbiota between the two groups at 56 days after birth (P<0.05). CONCLUSIONS Early ceftriaxone intervention significantly affects the development of the intestinal epithelium and the construction of intestinal microbiota in the early-life stage. The injury of the intestinal microbiota in the early-life stage may continue to the adult stage and affect growth and development and physiological metabolism.
Collapse
Affiliation(s)
- Qun Wan
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu 610041, China.
| | | | | | | | | | | | | | | |
Collapse
|
161
|
Ji S, Jiang T, Yan H, Guo C, Liu J, Su H, Alugongo GM, Shi H, Wang Y, Cao Z, Li S. Ecological Restoration of Antibiotic-Disturbed Gastrointestinal Microbiota in Foregut and Hindgut of Cows. Front Cell Infect Microbiol 2018; 8:79. [PMID: 29594071 PMCID: PMC5859144 DOI: 10.3389/fcimb.2018.00079] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 02/27/2018] [Indexed: 12/28/2022] Open
Abstract
Antibiotically disturbed gastrointestinal microbiota needs a long period time to be restored to normal, which may cause a series of problems to the host. The understanding of restoration of the biased microbiota by antibiotics remains largely unknown. Here, we investigated the microbiota shift in foregut (rumen) and hindgut (rectum) of lactating cows after antibiotics exposure as well as after antibiotics withdrawal with (Microbiota transplantation, MT group) or without (Control, CON group) microbiota transplantation. We were able to demonstrate that microbiota in both foregut and hindgut significantly changed after 3 or 14 days of antibiotics exposure, and the changes persisted over long period of time (>18 days) after withdrawing the antibiotics. We further observed a faster restoration of microbiota in both foregut and hindgut of MT group than CON group, microbiota in foregut was mainly benefited from microbiota transplantation by restoring the alpha-diversity as well as within-group similarity, while microbiota in hindgut was primarily benefited from microbiota transplantation by reestablishing the co-occurrence network (nodes number, edges number, density, modularity as well as closeness centrality). These results together expanded our understanding of restoration of the biased microbiota by antibiotics, and may also be instructive to deal with the delayed microbiota restoration at least in cows.
Collapse
Affiliation(s)
- Shoukun Ji
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tao Jiang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Laboratory of Animal Nutrition, College of Animal Science, Tarim University, Alar, China
| | - Hui Yan
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chunyan Guo
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Laboratory of Animal Nutrition, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Jingjing Liu
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Huawei Su
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Gibson M Alugongo
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Haitao Shi
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yajing Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
162
|
Yang SY, Cho MS, Kim NK. Difference between right-sided and left-sided colorectal cancers: from embryology to molecular subtype. Expert Rev Anticancer Ther 2018; 18:351-358. [PMID: 29458272 DOI: 10.1080/14737140.2018.1442217] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Colorectal cancer is one of the most common malignancies in the world, and it exhibits differences in incidence, pathogenesis, molecular pathways, and outcome depending on the location of the tumor. Differences in the microbiome, clinical characteristics, and chromosomal and molecular characteristics have been reported between the right and left side of the colon. Areas covered: This review focuses on the latest developments in epidemiological and chromosomal and molecular studies, which have enhanced our understanding on the underlying genetic and immunological differences between the right-sided colon and the left-sided colorectum in metastatic colorectal cancer. Expert commentary: The numerous findings regarding differences between right- and left-sided colon cancers should have an impact on colorectal cancer screening and therapy. The location of the colorectal cancer should be considered before group stratification into genetic, clinical, and especially chemotherapy trials. A more tailored approach to colon cancer treatment would be highly desirable if future trials further support the hypothesis of two distinct tumor entities.
Collapse
Affiliation(s)
- Seung Yoon Yang
- a Department of Surgery, Severance Hospital , Yonsei University College of Medicine , Seoul , South Korea
| | - Min Soo Cho
- a Department of Surgery, Severance Hospital , Yonsei University College of Medicine , Seoul , South Korea
| | - Nam Kyu Kim
- a Department of Surgery, Severance Hospital , Yonsei University College of Medicine , Seoul , South Korea
| |
Collapse
|
163
|
Meisel JS, Sfyroera G, Bartow-McKenney C, Gimblet C, Bugayev J, Horwinski J, Kim B, Brestoff JR, Tyldsley AS, Zheng Q, Hodkinson BP, Artis D, Grice EA. Commensal microbiota modulate gene expression in the skin. MICROBIOME 2018; 6:20. [PMID: 29378633 PMCID: PMC5789709 DOI: 10.1186/s40168-018-0404-9] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 01/18/2018] [Indexed: 05/10/2023]
Abstract
BACKGROUND The skin harbors complex communities of resident microorganisms, yet little is known of their physiological roles and the molecular mechanisms that mediate cutaneous host-microbe interactions. Here, we profiled skin transcriptomes of mice reared in the presence and absence of microbiota to elucidate the range of pathways and functions modulated in the skin by the microbiota. RESULTS A total of 2820 genes were differentially regulated in response to microbial colonization and were enriched in gene ontology (GO) terms related to the host-immune response and epidermal differentiation. Innate immune response genes and genes involved in cytokine activity were generally upregulated in response to microbiota and included genes encoding toll-like receptors, antimicrobial peptides, the complement cascade, and genes involved in IL-1 family cytokine signaling and homing of T cells. Our results also reveal a role for the microbiota in modulating epidermal differentiation and development, with differential expression of genes in the epidermal differentiation complex (EDC). Genes with correlated co-expression patterns were enriched in binding sites for the transcription factors Klf4, AP-1, and SP-1, all implicated as regulators of epidermal differentiation. Finally, we identified transcriptional signatures of microbial regulation common to both the skin and the gastrointestinal tract. CONCLUSIONS With this foundational approach, we establish a critical resource for understanding the genome-wide implications of microbially mediated gene expression in the skin and emphasize prospective ways in which the microbiome contributes to skin health and disease.
Collapse
Affiliation(s)
- Jacquelyn S Meisel
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd, 1015 BRB II/III, Philadelphia, PA, 19104, USA
| | - Georgia Sfyroera
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd, 1015 BRB II/III, Philadelphia, PA, 19104, USA
| | - Casey Bartow-McKenney
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd, 1015 BRB II/III, Philadelphia, PA, 19104, USA
| | - Ciara Gimblet
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd, 1015 BRB II/III, Philadelphia, PA, 19104, USA
| | - Julia Bugayev
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd, 1015 BRB II/III, Philadelphia, PA, 19104, USA
| | - Joseph Horwinski
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd, 1015 BRB II/III, Philadelphia, PA, 19104, USA
| | - Brian Kim
- Department of Dermatology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jonathan R Brestoff
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Amanda S Tyldsley
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd, 1015 BRB II/III, Philadelphia, PA, 19104, USA
| | - Qi Zheng
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd, 1015 BRB II/III, Philadelphia, PA, 19104, USA
| | - Brendan P Hodkinson
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd, 1015 BRB II/III, Philadelphia, PA, 19104, USA
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, 10021, USA
| | - Elizabeth A Grice
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd, 1015 BRB II/III, Philadelphia, PA, 19104, USA.
| |
Collapse
|
164
|
Mullineaux-Sanders C, Suez J, Elinav E, Frankel G. Sieving through gut models of colonization resistance. Nat Microbiol 2018; 3:132-140. [PMID: 29358683 DOI: 10.1038/s41564-017-0095-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 12/08/2017] [Indexed: 12/24/2022]
Abstract
The development of innovative high-throughput genomics and metabolomics technologies has considerably expanded our understanding of the commensal microorganisms residing within the human body, collectively termed the microbiota. In recent years, the microbiota has been reported to have important roles in multiple aspects of human health, pathology and host-pathogen interactions. One function of commensals that has attracted particular interest is their role in protection against pathogens and pathobionts, a concept known as colonization resistance. However, pathogens are also able to sense and exploit the microbiota during infection. Therefore, obtaining a holistic understanding of colonization resistance mechanisms is essential for the development of microbiome-based and microbiome-targeting therapies for humans and animals. Achieving this is dependent on utilizing physiologically relevant animal models. In this Perspective, we discuss the colonization resistance functions of the gut microbiota and sieve through the advantages and limitations of murine models commonly used to study such mechanisms within the context of enteric bacterial infection.
Collapse
Affiliation(s)
- Caroline Mullineaux-Sanders
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Jotham Suez
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Elinav
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Gad Frankel
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, UK.
| |
Collapse
|
165
|
Rodrigues RR, Shulzhenko N, Morgun A. Transkingdom Networks: A Systems Biology Approach to Identify Causal Members of Host-Microbiota Interactions. Methods Mol Biol 2018; 1849:227-242. [PMID: 30298258 PMCID: PMC6557635 DOI: 10.1007/978-1-4939-8728-3_15] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Improvements in sequencing technologies and reduced experimental costs have resulted in a vast number of studies generating high-throughput data. Although the number of methods to analyze these "omics" data has also increased, computational complexity and lack of documentation hinder researchers from analyzing their high-throughput data to its true potential. In this chapter we detail our data-driven, transkingdom network (TransNet) analysis protocol to integrate and interrogate multi-omics data. This systems biology approach has allowed us to successfully identify important causal relationships between different taxonomic kingdoms (e.g., mammals and microbes) using diverse types of data.
Collapse
Affiliation(s)
| | - Natalia Shulzhenko
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Andrey Morgun
- College of Pharmacy, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
166
|
Socias SB, González-Lizárraga F, Avila CL, Vera C, Acuña L, Sepulveda-Diaz JE, Del-Bel E, Raisman-Vozari R, Chehin RN. Exploiting the therapeutic potential of ready-to-use drugs: Repurposing antibiotics against amyloid aggregation in neurodegenerative diseases. Prog Neurobiol 2017; 162:17-36. [PMID: 29241812 DOI: 10.1016/j.pneurobio.2017.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 01/02/2023]
Abstract
Neurodegenerative diseases are chronic and progressive disorders that affect specific regions of the brain, causing gradual disability and suffering that results in a complete inability of patients to perform daily functions. Amyloid aggregation of specific proteins is the most common biological event that is responsible for neuronal death and neurodegeneration in various neurodegenerative diseases. Therapeutic agents capable of interfering with the abnormal aggregation are required, but traditional drug discovery has fallen short. The exploration of new uses for approved drugs provides a useful alternative to fill the gap between the increasing incidence of neurodegenerative diseases and the long-term assessment of classical drug discovery technologies. Drug re-profiling is currently the quickest possible transition from bench to bedside. In this way, experimental evidence shows that some antibiotic compounds exert neuroprotective action through anti-aggregating activity on disease-associated proteins. The finding that many antibiotics can cross the blood-brain barrier and have been used for several decades without serious toxic effects makes them excellent candidates for therapeutic switching towards neurological disorders. The present review is, to our knowledge, the first extensive evaluation and analysis of the anti-amyloidogenic effect of different antibiotics on well-known disease-associated proteins. In addition, we propose a common structural signature derived from the antiaggregant antibiotic molecules that could be relevant to rational drug discovery.
Collapse
Affiliation(s)
- Sergio B Socias
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina, Argentina
| | - Florencia González-Lizárraga
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina, Argentina
| | - Cesar L Avila
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina, Argentina
| | - Cecilia Vera
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina, Argentina
| | - Leonardo Acuña
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina, Argentina; Sorbonne Universite, UPMC Univ Paris 06, INSERM, CNRS, UM75, U1127, UMR 7225, Institut du Cerveau et de la Moelle Epinière, Paris, France
| | - Julia E Sepulveda-Diaz
- Sorbonne Universite, UPMC Univ Paris 06, INSERM, CNRS, UM75, U1127, UMR 7225, Institut du Cerveau et de la Moelle Epinière, Paris, France
| | - Elaine Del-Bel
- Department of Morphology, Physiology and Stomatology, Faculty of Odontology of Ribeirão Preto, University of São Paulo, Brazil; Center of Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil
| | - Rita Raisman-Vozari
- Sorbonne Universite, UPMC Univ Paris 06, INSERM, CNRS, UM75, U1127, UMR 7225, Institut du Cerveau et de la Moelle Epinière, Paris, France.
| | - Rosana N Chehin
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina, Argentina.
| |
Collapse
|
167
|
Dong X, Shulzhenko N, Lemaitre J, Greer RL, Peremyslova K, Quamruzzaman Q, Rahman M, Hasan OSI, Joya SA, Golam M, Christiani DC, Morgun A, Kile ML. Arsenic exposure and intestinal microbiota in children from Sirajdikhan, Bangladesh. PLoS One 2017; 12:e0188487. [PMID: 29211769 PMCID: PMC5718612 DOI: 10.1371/journal.pone.0188487] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/08/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Arsenic has antimicrobial properties at high doses yet few studies have examined its effect on gut microbiota. This warrants investigation since arsenic exposure increases the risk of many diseases in which gut microbiota have been shown to play a role. We examined the association between arsenic exposure from drinking water and the composition of intestinal microbiota in children exposed to low and high arsenic levels during prenatal development and early life. RESULTS 16S rRNA gene sequencing revealed that children with high arsenic exposure had a higher abundance of Proteobacteria in their stool compared to matched controls with low arsenic exposure. Furthermore, whole metagenome shotgun sequencing identified 332 bacterial SEED functions that were enriched in the high exposure group. A separate model showed that these genes, which included genes involved in virulence and multidrug resistance, were positively correlated with arsenic concentration within the group of children in the high arsenic group. We performed reference free genome assembly, and identified strains of E.coli as contributors to the arsenic enriched SEED functions. Further genome annotation of the E.coli genome revealed two strains containing two different arsenic resistance operons that are not present in the gut microbiome of a recently described European human cohort (Metagenomics of the Human Intestinal Tract, MetaHIT). We then performed quantification by qPCR of two arsenic resistant genes (ArsB, ArsC). We observed that the expression of these two operons was higher among the children with high arsenic exposure compared to matched controls. CONCLUSIONS This preliminary study indicates that arsenic exposure early in life was associated with altered gut microbiota in Bangladeshi children. The enrichment of E.coli arsenic resistance genes in the high exposure group provides an insight into the possible mechanisms of how this toxic compound could affect gut microbiota.
Collapse
Affiliation(s)
- Xiaoxi Dong
- College of Pharmacy, Oregon State University, Corvallis, OR, United States of America
| | - Natalia Shulzhenko
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States of America
| | - Julien Lemaitre
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States of America
| | - Renee L. Greer
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States of America
| | - Kate Peremyslova
- College of Pharmacy, Oregon State University, Corvallis, OR, United States of America
| | | | - Mahmudar Rahman
- Dhaka Community Hospital, Wireless Railgate, Dhaka, Bangladesh
| | | | | | - Mostofa Golam
- Dhaka Community Hospital, Wireless Railgate, Dhaka, Bangladesh
| | - David C. Christiani
- Department of Environmental Heath, Harvard TH Chan School of Public Health, Boston, MA, United States of America
| | - Andriy Morgun
- College of Pharmacy, Oregon State University, Corvallis, OR, United States of America
- * E-mail: , (AM); (MLK)
| | - Molly L. Kile
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, United States of America
- * E-mail: , (AM); (MLK)
| |
Collapse
|
168
|
Pham HL, Ho CL, Wong A, Lee YS, Chang MW. Applying the design-build-test paradigm in microbiome engineering. Curr Opin Biotechnol 2017; 48:85-93. [DOI: 10.1016/j.copbio.2017.03.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 03/19/2017] [Indexed: 12/11/2022]
|
169
|
Rodrigues RR, Greer RL, Dong X, DSouza KN, Gurung M, Wu JY, Morgun A, Shulzhenko N. Antibiotic-Induced Alterations in Gut Microbiota Are Associated with Changes in Glucose Metabolism in Healthy Mice. Front Microbiol 2017; 8:2306. [PMID: 29213261 PMCID: PMC5702803 DOI: 10.3389/fmicb.2017.02306] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/08/2017] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome plays an important role in health and disease. Antibiotics are known to alter gut microbiota, yet their effects on glucose tolerance in lean, normoglycemic mice have not been widely investigated. In this study, we aimed to explore mechanisms by which treatment of lean mice with antibiotics (ampicillin, metronidazole, neomycin, vancomycin, or their cocktail) influences the microbiome and glucose metabolism. Specifically, we sought to: (i) study the effects on body weight, fasting glucose, glucose tolerance, and fasting insulin, (ii) examine the changes in expression of key genes of the bile acid and glucose metabolic pathways in the liver and ileum, (iii) identify the shifts in the cecal microbiota, and (iv) infer interactions between gene expression, microbiome, and the metabolic parameters. Treatment with individual or a cocktail of antibiotics reduced fasting glucose but did not affect body weight. Glucose tolerance changed upon treatment with cocktail, ampicillin, or vancomycin as indicated by reduced area under the curve of the glucose tolerance test. Antibiotic treatment changed gene expression in the ileum and liver, and shifted the alpha and beta diversities of gut microbiota. Network analyses revealed associations between Akkermansia muciniphila with fasting glucose and liver farsenoid X receptor (Fxr) in the top ranked host-microbial interactions, suggesting possible mechanisms by which this bacterium can mediate systemic changes in glucose metabolism. We observed Bacteroides uniformis to be positively and negatively correlated with hepatic Fxr and Glucose 6-phosphatase, respectively. Overall, our transkingdom network approach is a useful hypothesis generating strategy that offers insights into mechanisms by which antibiotics can regulate glucose tolerance in non-obese healthy animals. Experimental validation of our predicted microbe-phenotype interactions can help identify mechanisms by which antibiotics affect host phenotypes and gut microbiota.
Collapse
Affiliation(s)
- Richard R. Rodrigues
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, United States
| | - Renee L. Greer
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, United States
| | - Xiaoxi Dong
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, United States
| | - Karen N. DSouza
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, United States
| | - Manoj Gurung
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, United States
| | - Jia Y. Wu
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, United States
| | - Andrey Morgun
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, United States
| | - Natalia Shulzhenko
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
170
|
Starr AE, Deeke SA, Li L, Zhang X, Daoud R, Ryan J, Ning Z, Cheng K, Nguyen LVH, Abou-Samra E, Lavallée-Adam M, Figeys D. Proteomic and Metaproteomic Approaches to Understand Host–Microbe Interactions. Anal Chem 2017; 90:86-109. [DOI: 10.1021/acs.analchem.7b04340] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Amanda E. Starr
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Shelley A. Deeke
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Leyuan Li
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Xu Zhang
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Rachid Daoud
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - James Ryan
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Zhibin Ning
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Kai Cheng
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Linh V. H. Nguyen
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Elias Abou-Samra
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Mathieu Lavallée-Adam
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Daniel Figeys
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
- Molecular Architecture of Life Program, Canadian Institute for Advanced Research, Toronto, Ontario, M5G 1M1, Canada
| |
Collapse
|
171
|
Multi-omics Comparative Analysis Reveals Multiple Layers of Host Signaling Pathway Regulation by the Gut Microbiota. mSystems 2017; 2:mSystems00107-17. [PMID: 29085914 PMCID: PMC5655592 DOI: 10.1128/msystems.00107-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 09/29/2017] [Indexed: 02/06/2023] Open
Abstract
Multiple host pathways were affected by its adaptation to the microbiota. We have found significant transcriptome-proteome discordance caused by the microbiota. This discovery leads to the definite conclusion that transcript-level analysis is not sufficient to predict protein levels and their influence on the function of many specific cellular pathways, so only analysis of combinations of the quantitative data determined at different levels will lead to a complete understanding of the complex relationships between the host and the microbiota. Therefore, our results demonstrate the importance of using an integrative approach to study host-microbiota interaction at the molecular level. The bodies of mammals are hosts to vast microbial communities composed of trillions of bacteria from thousands of species, whose effects on health and development have begun to be appreciated only recently. In this investigation, an integrated analysis combining proteomics and transcriptomics was used to quantitatively compare the terminal ilia from conventional and germfree mice. Female and male mice responded similarly to the microbiota, but C57BL/10A mice responded more strongly than BALB/c mice at both the transcriptome and proteome levels. The microbiota primarily caused upregulation of immunological pathways and downregulation of metabolic pathways in the conventional mice. Many of the affected pathways were altered only at either the transcriptome or proteome level. Of the pathways that were affected at both levels, most were affected concordantly. The discordant pathways were not principally involved in the immune system but instead were related to metabolism, oxidative phosphorylation, protein translation, transport, and turnover. To broaden the discovery of affected host pathways, a meta-analysis was performed using intestinal transcriptomics data from previously published studies of germfree versus conventional mice with diverse microbiota populations. Similar transcript-level responses to the microbiota were found, and many additional affected host pathways were discovered. IMPORTANCE Multiple host pathways were affected by its adaptation to the microbiota. We have found significant transcriptome-proteome discordance caused by the microbiota. This discovery leads to the definite conclusion that transcript-level analysis is not sufficient to predict protein levels and their influence on the function of many specific cellular pathways, so only analysis of combinations of the quantitative data determined at different levels will lead to a complete understanding of the complex relationships between the host and the microbiota. Therefore, our results demonstrate the importance of using an integrative approach to study host-microbiota interaction at the molecular level.
Collapse
|
172
|
Barin JG, Talor MV, Diny NL, Ong S, Schaub JA, Gebremariam E, Bedja D, Chen G, Choi HS, Hou X, Wu L, Cardamone AB, Peterson DA, Rose NR, Čiháková D. Regulation of autoimmune myocarditis by host responses to the microbiome. Exp Mol Pathol 2017; 103:141-152. [PMID: 28822770 PMCID: PMC5721523 DOI: 10.1016/j.yexmp.2017.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 08/09/2017] [Indexed: 12/27/2022]
Abstract
The extensive, diverse communities that constitute the microbiome are increasingly appreciated as important regulators of human health and disease through inflammatory, immune, and metabolic pathways. We sought to elucidate pathways by which microbiota contribute to inflammatory, autoimmune cardiac disease. We employed an animal model of experimental autoimmune myocarditis (EAM), which results in inflammatory and autoimmune pathophysiology and subsequent maladaptive cardiac remodeling and heart failure. Antibiotic dysbiosis protected mice from EAM and fibrotic cardiac dysfunction. Additionally, mice derived from different sources with different microbiome colonization profiles demonstrated variable susceptibility to disease. Unexpectedly, it did not track with segmented filamentous bacteria (SFB)-driven Th17 programming of CD4+ T cells in the steady-state gut. Instead, we found disease susceptibility to track with presence of type 3 innate lymphoid cells (ILC3s). Ablating ILCs by antibody depletion or genetic tools in adoptive transfer variants of the EAM model demonstrated that ILCs and microbiome profiles contributed to the induction of CCL20/CCR6-mediated inflammatory chemotaxis to the diseased heart. From these data, we conclude that sensing of the microbiome by ILCs is an important checkpoint in the development of inflammatory cardiac disease processes through their ability to elicit cardiotropic chemotaxis.
Collapse
Affiliation(s)
- Jobert G Barin
- The Johns Hopkins University School of Medicine, Dept. of Pathology, Div. of Immunology, Baltimore, MD 21205, United States
| | - Monica V Talor
- The Johns Hopkins University School of Medicine, Dept. of Pathology, Div. of Immunology, Baltimore, MD 21205, United States
| | - Nicola L Diny
- The Johns Hopkins Bloomberg School of Public Health, The W. Harry Feinstone Dept. of Molecular Microbiology & Immunology, United States
| | - SuFey Ong
- The Johns Hopkins Bloomberg School of Public Health, The W. Harry Feinstone Dept. of Molecular Microbiology & Immunology, United States
| | - Julie A Schaub
- The Johns Hopkins University School of Medicine, Dept. of Pathology, Div. of Immunology, Baltimore, MD 21205, United States
| | - Elizabeth Gebremariam
- The Johns Hopkins University School of Medicine, Dept. of Pathology, Div. of Immunology, Baltimore, MD 21205, United States
| | - Djahida Bedja
- The Johns Hopkins University School of Medicine, Dept. of Cardiology, United States
| | - Guobao Chen
- The Johns Hopkins University School of Medicine, Dept. of Pathology, Div. of Immunology, Baltimore, MD 21205, United States
| | - Hee Sun Choi
- The Johns Hopkins University School of Medicine, Dept. of Pathology, Div. of Immunology, Baltimore, MD 21205, United States
| | - Xuezhou Hou
- The Johns Hopkins Bloomberg School of Public Health, The W. Harry Feinstone Dept. of Molecular Microbiology & Immunology, United States
| | - Lei Wu
- The Johns Hopkins Bloomberg School of Public Health, The W. Harry Feinstone Dept. of Molecular Microbiology & Immunology, United States
| | - Ashley B Cardamone
- The Johns Hopkins University School of Medicine, Dept. of Pathology, Div. of Immunology, Baltimore, MD 21205, United States
| | - Daniel A Peterson
- The Johns Hopkins University School of Medicine, Dept. of Pathology, Div. of Immunology, Baltimore, MD 21205, United States
| | - Noel R Rose
- Brigham & Women's Hospital, Harvard Medical School, Dept. of Pathology, Boston, MA 02115, United States
| | - Daniela Čiháková
- The Johns Hopkins University School of Medicine, Dept. of Pathology, Div. of Immunology, Baltimore, MD 21205, United States; The Johns Hopkins Bloomberg School of Public Health, The W. Harry Feinstone Dept. of Molecular Microbiology & Immunology, United States.
| |
Collapse
|
173
|
Ruiz VE, Battaglia T, Kurtz ZD, Bijnens L, Ou A, Engstrand I, Zheng X, Iizumi T, Mullins BJ, Müller CL, Cadwell K, Bonneau R, Perez-Perez GI, Blaser MJ. A single early-in-life macrolide course has lasting effects on murine microbial network topology and immunity. Nat Commun 2017; 8:518. [PMID: 28894149 PMCID: PMC5593929 DOI: 10.1038/s41467-017-00531-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/05/2017] [Indexed: 12/17/2022] Open
Abstract
Broad-spectrum antibiotics are frequently prescribed to children. Early childhood represents a dynamic period for the intestinal microbial ecosystem, which is readily shaped by environmental cues; antibiotic-induced disruption of this sensitive community may have long-lasting host consequences. Here we demonstrate that a single pulsed macrolide antibiotic treatment (PAT) course early in life is sufficient to lead to durable alterations to the murine intestinal microbiota, ileal gene expression, specific intestinal T-cell populations, and secretory IgA expression. A PAT-perturbed microbial community is necessary for host effects and sufficient to transfer delayed secretory IgA expression. Additionally, early-life antibiotic exposure has lasting and transferable effects on microbial community network topology. Our results indicate that a single early-life macrolide course can alter the microbiota and modulate host immune phenotypes that persist long after exposure has ceased.High or multiple doses of macrolide antibiotics, when given early in life, can perturb the metabolic and immunological development of lab mice. Here, Ruiz et al. show that even a single macrolide course, given early in life, leads to long-lasting changes in the gut microbiota and immune system of mice.
Collapse
Affiliation(s)
- Victoria E Ruiz
- Departments of Medicine and Microbiology, New York University School of Medicine (NYUSM), New York, NY, 10016, USA
| | - Thomas Battaglia
- Departments of Medicine and Microbiology, New York University School of Medicine (NYUSM), New York, NY, 10016, USA
| | - Zachary D Kurtz
- Departments of Medicine and Microbiology, New York University School of Medicine (NYUSM), New York, NY, 10016, USA
| | - Luc Bijnens
- Janssen R&D, Janssen Pharmaceutical Companies of J&J, Turnhoutseweg 30, Beerse, 2340, Belgium
| | - Amy Ou
- Departments of Medicine and Microbiology, New York University School of Medicine (NYUSM), New York, NY, 10016, USA
| | - Isak Engstrand
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Xuhui Zheng
- Departments of Medicine and Microbiology, New York University School of Medicine (NYUSM), New York, NY, 10016, USA
| | - Tadasu Iizumi
- Departments of Medicine and Microbiology, New York University School of Medicine (NYUSM), New York, NY, 10016, USA
| | - Briana J Mullins
- Departments of Medicine and Microbiology, New York University School of Medicine (NYUSM), New York, NY, 10016, USA
| | - Christian L Müller
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, 10010, USA
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball Institute, NYUSM, New York, NY, 10016, USA
| | - Richard Bonneau
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, 10010, USA.,Department of Biology, Center for Genomics and Systems Biology, NYU, New York, NY, 10003, USA.,Courant Institute of Mathematical Sciences, NYU, New York, NY, 10012, USA
| | - Guillermo I Perez-Perez
- Departments of Medicine and Microbiology, New York University School of Medicine (NYUSM), New York, NY, 10016, USA
| | - Martin J Blaser
- Departments of Medicine and Microbiology, New York University School of Medicine (NYUSM), New York, NY, 10016, USA. .,New York Harbor Department of Veterans Affairs Medical Center, New York, NY, 10010, USA.
| |
Collapse
|
174
|
Yu K, Mu C, Yang Y, Su Y, Zhu W. Segment-specific responses of intestinal epithelium transcriptome to in-feed antibiotics in pigs. Physiol Genomics 2017; 49:582-591. [PMID: 28887368 DOI: 10.1152/physiolgenomics.00020.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/10/2017] [Accepted: 08/28/2017] [Indexed: 11/22/2022] Open
Abstract
Despite widespread use of antibiotics for treatment of human diseases and promotion of growth of agricultural animals, our understanding of their effects on the host is still very limited. We used a model in which pigs were fed with or without a cocktail of antibiotics and found, based on the denaturing gradient gel electrophoresis (DGGE) patterns, that the fecal bacteria from the treatment and control animals were distinct. Furthermore, the total bacterial population in the feces tended to be decreased by the antibiotic treatment (P = 0.07), and the counts of Lactobacillus and Clostridium XIVa were significantly reduced (P < 0.05). To explore the effects of antibiotics on host intestinal epithelium, we assessed gene expression profiles of the jejunum and ileum and their response to antibiotic administration. The results indicate that in-feed antibiotics increased expression of genes involved in immune functions in both the jejunum and ileum, some of which were clustered in the coexpression network. Gene ontology terms of metabolic processes were altered predominantly in the jejunum but not in the ileum. Notably, antibiotics diminished intestinal segment-specific transcriptional changes, especially for genes associated with metabolic functions. This study reveals segment-specific responses of host intestinal epithelium to in-feed antibiotics, which can be a valuable resource for deciphering antibiotic-microbiota-host interactions.
Collapse
Affiliation(s)
- Kaifan Yu
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chunlong Mu
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yuxiang Yang
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yong Su
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Weiyun Zhu
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
175
|
Topical Antimicrobial Treatments Can Elicit Shifts to Resident Skin Bacterial Communities and Reduce Colonization by Staphylococcus aureus Competitors. Antimicrob Agents Chemother 2017. [PMID: 28630195 DOI: 10.1128/aac.00774-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The skin microbiome is a complex ecosystem with important implications for cutaneous health and disease. Topical antibiotics and antiseptics are often employed to preserve the balance of this population and inhibit colonization by more pathogenic bacteria. However, despite their widespread use, the impact of these interventions on broader microbial communities remains poorly understood. Here, we report the longitudinal effects of topical antibiotics and antiseptics on skin bacterial communities and their role in Staphylococcus aureus colonization resistance. In response to antibiotics, cutaneous populations exhibited an immediate shift in bacterial residents, an effect that persisted for multiple days posttreatment. By contrast, antiseptics elicited only minor changes to skin bacterial populations, with few changes to the underlying microbiota. While variable in scope, both antibiotics and antiseptics were found to decrease colonization by commensal Staphylococcus spp. by sequencing- and culture-based methods, an effect which was highly dependent on baseline levels of Staphylococcus Because Staphylococcus residents have been shown to compete with the skin pathogen S. aureus, we also tested whether treatment could influence S. aureus levels at the skin surface. We found that treated mice were more susceptible to exogenous association with S. aureus and that precolonization with the same Staphylococcus residents that were previously disrupted by treatment reduced S. aureus levels by over 100-fold. In all, the results of this study indicate that antimicrobial drugs can alter skin bacterial residents and that these alterations can have critical implications for cutaneous host defense.
Collapse
|
176
|
Peck BCE, Shanahan MT, Singh AP, Sethupathy P. Gut Microbial Influences on the Mammalian Intestinal Stem Cell Niche. Stem Cells Int 2017; 2017:5604727. [PMID: 28904533 PMCID: PMC5585682 DOI: 10.1155/2017/5604727] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/02/2017] [Indexed: 02/07/2023] Open
Abstract
The mammalian intestinal epithelial stem cell (IESC) niche is comprised of diverse epithelial, immune, and stromal cells, which together respond to environmental changes within the lumen and exert coordinated regulation of IESC behavior. There is growing appreciation for the role of the gut microbiota in modulating intestinal proliferation and differentiation, as well as other aspects of intestinal physiology. In this review, we evaluate the diverse roles of known niche cells in responding to gut microbiota and supporting IESCs. Furthermore, we discuss the potential mechanisms by which microbiota may exert their influence on niche cells and possibly on IESCs directly. Finally, we present an overview of the benefits and limitations of available tools to study niche-microbe interactions and provide our recommendations regarding their use and standardization. The study of host-microbe interactions in the gut is a rapidly growing field, and the IESC niche is at the forefront of host-microbe activity to control nutrient absorption, endocrine signaling, energy homeostasis, immune response, and systemic health.
Collapse
Affiliation(s)
- Bailey C. E. Peck
- Department of Surgery, School of Medicine, University of Michigan, Ann Arbor, MI 48105, USA
| | - Michael T. Shanahan
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Ajeet P. Singh
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
177
|
Wurm P, Spindelboeck W, Krause R, Plank J, Fuchs G, Bashir M, Petritsch W, Halwachs B, Langner C, Högenauer C, Gorkiewicz G. Antibiotic-Associated Apoptotic Enterocolitis in the Absence of a Defined Pathogen: The Role of Intestinal Microbiota Depletion. Crit Care Med 2017; 45:e600-e606. [PMID: 28333760 PMCID: PMC5432091 DOI: 10.1097/ccm.0000000000002310] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Supplemental Digital Content is available in the text. Objective: Antibiotic therapy is a major risk factor for the development of diarrhea and colitis with varying severity. Often the origin of antibiotic-associated gastrointestinal deterioration remains elusive and no specific infectious agents could be discerned. Patients: We represent three cases of intractable high-volume diarrhea associated with combined antibiotic and steroid therapy in critically ill patients not fitting into established disease entities. Cases presented with severe apoptotic enterocolitis resembling acute intestinal graft-versus-host-disease. Microbiologic workup precluded known enteropathogens, but microbiota analysis revealed a severely depleted gut microbiota with concomitant opportunistic pathogen overgrowth. Interventions: Fecal microbiota transplantation, performed in one patient, was associated with correction of dysbiosis, rapid clinical improvement, and healing of enterocolitis. Conclusions: Our series represents a severe form of antibiotic-associated colitis in critically ill patients signified by microbiota depletion, and reestablishment of a physiologic gastrointestinal microbiota might be beneficial for this condition.
Collapse
Affiliation(s)
- Philipp Wurm
- 1Institute of Pathology, Medical University of Graz, Graz, Austria. 2Theodor Escherich Laboratory for Medical Microbiome Research, Medical University of Graz, Graz, Austria. 3Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria. 4Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, Graz, Austria. 5Department of Anesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, Austria. 6Division of Endocrinology and Metabolism, Department of Internal Medicine, Medical University of Graz, Graz, Austria. 7BioTechMed, Interuniversity Cooperation, Graz, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Abstract
PURPOSE OF REVIEW The gut microbiota can be considered a hidden organ that plays essential roles in host homeostasis. Exploration of the effects of microbiota on bone has just begun. Complimentary studies using germ-free mice, antibiotic, and probiotic treatments reveal a complicated relationship between microbiota and bone. Here, we review recent reports addressing the effect of gut microbiota on bone health, discuss potential reasons for discrepant findings, and explore potential mechanisms for these effects. RECENT FINDINGS Manipulation of microbiota by colonization of germ-free mice, antibiotics, or probiotic supplementation significantly alters bone remodeling, bone development and growth, as well as bone mechanical strength. Different experimental models reveal context-dependent effects of gut microbiota on bone. By examining phenotypic effects, experimental context, and proposed mechanisms, revealed by recent reports, we hope to provide comprehensive and fresh insights into the many facets of microbiota and bone interactions.
Collapse
Affiliation(s)
- Jing Yan
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, 60 Fenwood Road, 6002Q, Boston, MA, 02115, USA
| | - Julia F Charles
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, 60 Fenwood Road, 6002Q, Boston, MA, 02115, USA.
| |
Collapse
|
179
|
Ponziani FR, Zocco MA, D’Aversa F, Pompili M, Gasbarrini A. Eubiotic properties of rifaximin: Disruption of the traditional concepts in gut microbiota modulation. World J Gastroenterol 2017; 23:4491-4499. [PMID: 28740337 PMCID: PMC5504364 DOI: 10.3748/wjg.v23.i25.4491] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/14/2017] [Accepted: 05/19/2017] [Indexed: 02/06/2023] Open
Abstract
Antibiotics are usually prescribed to cure infections but they also have significant modulatory effects on the gut microbiota. Several alterations of the intestinal bacterial community have been reported during antibiotic treatment, including the reduction of beneficial bacteria as well as of microbial alpha-diversity. Although after the discontinuation of antibiotic therapies it has been observed a trend towards the restoration of the original condition, the new steady state is different from the previous one, as if antibiotics induced some kind of irreversible perturbation of the gut microbial community. The poorly absorbed antibiotic rifaximin seem to be different from the other antibiotics, because it exerts non-traditional effects additional to the bactericidal/bacteriostatic activity on the gut microbiota. Rifaximin is able to reduce bacterial virulence and translocation, has anti-inflammatory properties and has been demonstrated to positively modulate the gut microbial composition. Animal models, culture studies and metagenomic analyses have demonstrated an increase in Bifidobacterium, Faecalibacterium prausnitzii and Lactobacillus abundance after rifaximin treatment, probably consequent to the induction of bacterial resistance, with no major change in the overall gut microbiota composition. Antibiotics are therefore modulators of the symbiotic relationship between the host and the gut microbiota. Specific antibiotics, such as rifaximin, can also induce eubiotic changes in the intestinal ecosystem; this additional property may represent a therapeutic advantage in specific clinical settings.
Collapse
|
180
|
Antibiotic growth promoter olaquindox increases pathogen susceptibility in fish by inducing gut microbiota dysbiosis. SCIENCE CHINA-LIFE SCIENCES 2017; 60:1260-1270. [DOI: 10.1007/s11427-016-9072-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 05/09/2017] [Indexed: 01/08/2023]
|
181
|
Ji SK, Yan H, Jiang T, Guo CY, Liu JJ, Dong SZ, Yang KL, Wang YJ, Cao ZJ, Li SL. Preparing the Gut with Antibiotics Enhances Gut Microbiota Reprogramming Efficiency by Promoting Xenomicrobiota Colonization. Front Microbiol 2017; 8:1208. [PMID: 28702022 PMCID: PMC5487471 DOI: 10.3389/fmicb.2017.01208] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/14/2017] [Indexed: 12/20/2022] Open
Abstract
Gut microbiota plays multiple important roles in intestinal and physiological homeostasis, and using fecal microbiota transplantation (FMT) to reprogram gut microbiota has demonstrated promise for redressing intestinal and physiological disorders. This study tested the alterations in reprogramming efficiency caused by different gut preparation procedures and explored the associated underlying mechanisms. We prepared the guts of mice for FMT by administering one of the three most-clinically used pretreatments [antibiotics, bowel cleansing (BC) solution, or no pretreatment], and we found that preparing the gut with antibiotics induced a more efficient modification of the gut bacterial community than was induced by either of the other two pretreatment types. The increased efficiency of antibiotic treatment appeared to occur via increasing the xenomicrobiota colonization. Further analysis demonstrated that antibiotic treatment of mice induced intestinal microbiota disruption, mostly by expelling antibiotic-sensitive bacteria, while the indigenous microbiota was maintained after treatment with a BC solution or in the absence of pretreatment. The amount of antibiotic-resistant bacteria increased shortly after antibiotics usage but subsequently decreased after FMT administration. Together, these results suggest that FMT relied on the available niches in the intestinal mucosa and that preparing the gut with antibiotics facilitated xenomicrobiota colonization in the intestinal mucosa, which thus enhanced the overall gut microbiota reprogramming efficiency.
Collapse
Affiliation(s)
- Shou K Ji
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural UniversityBeijing, China
| | - Hui Yan
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural UniversityBeijing, China
| | - Tao Jiang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural UniversityBeijing, China.,College of Animal Science, Tarim UniversityAlar, China
| | - Chun Y Guo
- Jinzhong Vocational and Technical CollegeJinzhong, China.,College of Animal Science and Technology, Shihezi UniversityShihezi, China
| | - Jing J Liu
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural UniversityBeijing, China
| | - Shuang Z Dong
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural UniversityBeijing, China
| | - Kai L Yang
- College of Animal Science, Xinjiang Agricultural UniversityUrumqi, China
| | - Ya J Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural UniversityBeijing, China
| | - Zhi J Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural UniversityBeijing, China
| | - Sheng L Li
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural UniversityBeijing, China
| |
Collapse
|
182
|
Gao R, Kong C, Huang L, Li H, Qu X, Liu Z, Lan P, Wang J, Qin H. Mucosa-associated microbiota signature in colorectal cancer. Eur J Clin Microbiol Infect Dis 2017; 36:2073-2083. [PMID: 28600626 DOI: 10.1007/s10096-017-3026-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/22/2017] [Indexed: 12/15/2022]
Abstract
The aim of this study was to explore the gut microbiota profiles of colorectal cancer (CRC) patients and to examine the relationship between gut microbiota and other key molecular factors involved in CRC tumorigenesis. In this study, a 16S rDNA sequencing platform was used to identify possible differences in the microbiota signature between CRC and adjacent normal mucosal tissue. Differences in the microbiota composition in different anatomical colorectal tumor sites and their potential association with KRAS mutation were also explored. In this study, the number of Firmicutes and Actinobacteria decreased, while the number of Fusobacteria increased in the gut of CRC patients. In addition, at the genus level, Fusobacterium was identified as the key contributor to CRC tumorigenesis. In addition, a different distribution of gut microbiota in ascending and descending colon cancer samples was observed. Lipopolysaccharide biosynthesis-associated microbial genes were enriched in tumor tissues. Our study suggests that specific mucosa-associated microbiota signature and function are significantly changed in the gut of CRC patients, which may provide insight into the progression of CRC. These findings could also be of value in the creation of new prevention and treatment strategies for this type of cancer.
Collapse
Affiliation(s)
- R Gao
- Department of GI Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, No.301 Yanchang Road, Zhabei District, Shanghai, China
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - C Kong
- Department of GI Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, No.301 Yanchang Road, Zhabei District, Shanghai, China
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - L Huang
- Department of GI Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, No.301 Yanchang Road, Zhabei District, Shanghai, China
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - H Li
- Department of GI Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, No.301 Yanchang Road, Zhabei District, Shanghai, China
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - X Qu
- Department of GI Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, No.301 Yanchang Road, Zhabei District, Shanghai, China
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - Z Liu
- Department of GI Surgery, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong Province, China
| | - P Lan
- Department of GI Surgery, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong Province, China
| | - J Wang
- Department of GI Surgery, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong Province, China
| | - H Qin
- Department of GI Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, No.301 Yanchang Road, Zhabei District, Shanghai, China.
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
183
|
Vyshenska D, Lam KC, Shulzhenko N, Morgun A. Interplay between viruses and bacterial microbiota in cancer development. Semin Immunol 2017; 32:14-24. [PMID: 28602713 DOI: 10.1016/j.smim.2017.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 05/03/2017] [Accepted: 05/30/2017] [Indexed: 12/29/2022]
Abstract
During the last few decades we have become accustomed to the idea that viruses can cause tumors. It is much less considered and discussed, however, that most people infected with oncoviruses will never develop cancer. Therefore, the genetic and environmental factors that tip the scales from clearance of viral infection to development of cancer are currently an area of active investigation. Microbiota has recently emerged as a potentially critical factor that would affect this balance by increasing or decreasing the ability of viral infection to promote carcinogenesis. In this review, we provide a model of microbiome contribution to the development of oncogenic viral infections and viral associated cancers, give examples of this process in human tumors, and describe the challenges that prevent progress in the field as well as their potential solutions.
Collapse
Affiliation(s)
- Dariia Vyshenska
- College of Pharmacy, Oregon State University, 1601 SW Jefferson Way, Corvallis, OR 97331, USA
| | - Khiem C Lam
- College of Pharmacy, Oregon State University, 1601 SW Jefferson Way, Corvallis, OR 97331, USA
| | - Natalia Shulzhenko
- College of Veterinary Medicine, Oregon State University, 208 Dryden Hall, Corvallis, OR 97331, USA.
| | - Andrey Morgun
- College of Pharmacy, Oregon State University, 1601 SW Jefferson Way, Corvallis, OR 97331, USA.
| |
Collapse
|
184
|
Ekmekciu I, von Klitzing E, Fiebiger U, Escher U, Neumann C, Bacher P, Scheffold A, Kühl AA, Bereswill S, Heimesaat MM. Immune Responses to Broad-Spectrum Antibiotic Treatment and Fecal Microbiota Transplantation in Mice. Front Immunol 2017; 8:397. [PMID: 28469619 PMCID: PMC5395657 DOI: 10.3389/fimmu.2017.00397] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 03/21/2017] [Indexed: 12/12/2022] Open
Abstract
Compelling evidence demonstrates the pivotal role of the commensal intestinal microbiota in host physiology and the detrimental effects of its perturbations following antibiotic treatment. Aim of this study was to investigate the impact of antibiotics induced depletion and subsequent restoration of the intestinal microbiota composition on the murine mucosal and systemic immunity. To address this, conventional C57BL/6j mice were subjected to broad-spectrum antibiotic treatment for 8 weeks. Restoration of the intestinal microbiota by peroral fecal microbiota transplantation (FMT) led to reestablishment of small intestinal CD4+, CD8+, and B220+ as well as of colonic CD4+ cell numbers as early as 7 days post-FMT. However, at d28 following FMT, colonic CD4+ and B220+ cell numbers were comparable to those in secondary abiotic (ABx) mice. Remarkably, CD8+ cell numbers were reduced in the colon upon antibiotic treatment, and FMT was not sufficient to restore this immune cell subset. Furthermore, absence of gut microbial stimuli resulted in decreased percentages of memory/effector T cells, regulatory T cells, and activated dendritic cells in the small intestine, colon, mesenteric lymph nodes (MLN), and spleen. Concurrent antibiotic treatment caused decreased cytokine production (IFN-γ, IL-17, IL-22, and IL-10) of CD4+ cells in respective compartments. These effects were, however, completely restored upon FMT. In summary, broad-spectrum antibiotic treatment resulted in profound local (i.e., small and large intestinal), peripheral (i.e., MLN), and systemic (i.e., splenic) changes in the immune cell repertoire that could, at least in part, be restored upon FMT. Further studies need to unravel the distinct molecular mechanisms underlying microbiota-driven changes in immune homeostasis subsequently providing novel therapeutic or even preventive approaches in human immunopathologies.
Collapse
Affiliation(s)
- Ira Ekmekciu
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Eliane von Klitzing
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Ulrike Fiebiger
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Ulrike Escher
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Christian Neumann
- Department of Cellular Immunology, Clinic for Rheumatology and Clinical Immunology, Charité - University Medicine Berlin, Berlin, Germany.,German Rheumatism Research Center (DRFZ), Leibniz Association, Berlin, Germany
| | - Petra Bacher
- Department of Cellular Immunology, Clinic for Rheumatology and Clinical Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Alexander Scheffold
- Department of Cellular Immunology, Clinic for Rheumatology and Clinical Immunology, Charité - University Medicine Berlin, Berlin, Germany.,German Rheumatism Research Center (DRFZ), Leibniz Association, Berlin, Germany
| | - Anja A Kühl
- Department of Medicine I for Gastroenterology, Infectious Diseases and Rheumatology, Research Center ImmunoSciences (RCIS), Charité - University Medicine Berlin, Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Markus M Heimesaat
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| |
Collapse
|
185
|
Davison JM, Lickwar CR, Song L, Breton G, Crawford GE, Rawls JF. Microbiota regulate intestinal epithelial gene expression by suppressing the transcription factor Hepatocyte nuclear factor 4 alpha. Genome Res 2017; 27:1195-1206. [PMID: 28385711 PMCID: PMC5495071 DOI: 10.1101/gr.220111.116] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 03/30/2017] [Indexed: 02/07/2023]
Abstract
Microbiota influence diverse aspects of intestinal physiology and disease in part by controlling tissue-specific transcription of host genes. However, host genomic mechanisms mediating microbial control of intestinal gene expression are poorly understood. Hepatocyte nuclear factor 4 (HNF4) is the most ancient family of nuclear receptor transcription factors with important roles in human metabolic and inflammatory bowel diseases, but a role in host response to microbes is unknown. Using an unbiased screening strategy, we found that zebrafish Hnf4a specifically binds and activates a microbiota-suppressed intestinal epithelial transcriptional enhancer. Genetic analysis revealed that zebrafish hnf4a activates nearly half of the genes that are suppressed by microbiota, suggesting microbiota negatively regulate Hnf4a. In support, analysis of genomic architecture in mouse intestinal epithelial cells disclosed that microbiota colonization leads to activation or inactivation of hundreds of enhancers along with drastic genome-wide reduction of HNF4A and HNF4G occupancy. Interspecies meta-analysis suggested interactions between HNF4A and microbiota promote gene expression patterns associated with human inflammatory bowel diseases. These results indicate a critical and conserved role for HNF4A in maintaining intestinal homeostasis in response to microbiota.
Collapse
Affiliation(s)
- James M Davison
- Department of Molecular Genetics and Microbiology, Center for the Genomics of Microbial Systems, Duke University, Durham, North Carolina 27710, USA.,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Colin R Lickwar
- Department of Molecular Genetics and Microbiology, Center for the Genomics of Microbial Systems, Duke University, Durham, North Carolina 27710, USA
| | - Lingyun Song
- Department of Pediatrics, Division of Medical Genetics, Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA
| | - Ghislain Breton
- Department of Integrative Biology and Pharmacology, McGovern Medical School, Houston, Texas 77030, USA
| | - Gregory E Crawford
- Department of Pediatrics, Division of Medical Genetics, Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA
| | - John F Rawls
- Department of Molecular Genetics and Microbiology, Center for the Genomics of Microbial Systems, Duke University, Durham, North Carolina 27710, USA
| |
Collapse
|
186
|
Jin S, Zhao D, Cai C, Song D, Shen J, Xu A, Qiao Y, Ran Z, Zheng Q. Low-dose penicillin exposure in early life decreases Th17 and the susceptibility to DSS colitis in mice through gut microbiota modification. Sci Rep 2017; 7:43662. [PMID: 28272549 PMCID: PMC5341569 DOI: 10.1038/srep43662] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/25/2017] [Indexed: 12/15/2022] Open
Abstract
Antibiotic exposure in early life can lead to a significant change of the gut microbiota and may contribute to later onset of inflammatory bowel disease (IBD). However, the relationship between early-life antibiotic treatment and IBD is ambiguous, according to contradicting results of epidemiologic studies. In the present study, we demonstrated that low-dose penicillin pre-treatment had a unique protective effect against mouse colitis induced by dextran sodium sulfate (DSS). Low-dose penicillin also suppressed the expression of pro-inflammatory cytokine IL-17 in various intestinal tissues, and decreased the amount of Th17 cells in small-intestine lamina propria. Neither metronidazole nor enrofloxacin had a similar effect. We further confirmed that low-dose penicillin could cause specific changes of the gut microbiota, especially the eradication of segmented filamentous bacteria (SFB). Mice without SFB inoculation showed no disparity when treated with penicillin or water. Taken together, the results showed that low-dose penicillin can achieve a highly specific manipulation of sensitive bacteria and interfere with development of intestinal immune system in early life. The study may further indicate the possibility of achieving a favorable immune state among a certain group of patients with IBD, or other autoimmune diseases, by fine-tuning the gut microbiota.
Collapse
Affiliation(s)
- Shuang Jin
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiao-Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China
| | - Di Zhao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiao-Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China
| | - Chenwen Cai
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiao-Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China
| | - Dongjuan Song
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiao-Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China
| | - Jun Shen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiao-Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China
| | - Antao Xu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiao-Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China
| | - Yuqi Qiao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiao-Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China
| | - Zhihua Ran
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiao-Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China
| | - Qing Zheng
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiao-Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China
| |
Collapse
|
187
|
Cao H, Xu M, Dong W, Deng B, Wang S, Zhang Y, Wang S, Luo S, Wang W, Qi Y, Gao J, Cao X, Yan F, Wang B. Secondary bile acid-induced dysbiosis promotes intestinal carcinogenesis. Int J Cancer 2017; 140:2545-2556. [PMID: 28187526 DOI: 10.1002/ijc.30643] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/08/2017] [Accepted: 01/30/2017] [Indexed: 12/13/2022]
Abstract
The gut microbiota plays an important role in maintaining intestinal homeostasis. Dysbiosis is associated with intestinal tumorigenesis. Deoxycholic acid (DCA), a secondary bile acid increased by a western diet, correlates with intestinal carcinogenesis. However, evidence relating bile acids, intestinal microbiota and tumorigenesis are limited. In our study, we investigated the effect of DCA on induction of intestinal dysbiosis and its roles in intestinal carcinogenesis. Alteration of the composition of the intestinal microbiota was induced in DCA-treated APCmin/+ mice, which was accompanied by impaired intestinal barrier, gut low grade inflammation and tumor progression. The transfer of fecal microbiota from DCA-treated mice to another group of Apcmin/+ mice increased tumor multiplicity, induced inflammation and recruited M2 phenotype tumor-associated macrophages. Importantly, the fecal microbiota transplantation activated the tumor-associated Wnt/β-catenin signaling pathway. Moreover, microbiota depletion by a cocktail of antibiotics was sufficient to block DCA-induced intestinal carcinogenesis, further suggesting the role of dysbiosis in tumor development. Our study demonstrated that alteration of the microbial community induced by DCA promoted intestinal carcinogenesis.
Collapse
Affiliation(s)
- Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, People's Republic of China.,Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Mengque Xu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, People's Republic of China.,Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Wenxiao Dong
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, People's Republic of China
| | - Baoru Deng
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, People's Republic of China
| | - Sinan Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, People's Republic of China
| | - Yujie Zhang
- Department of Pathology, General Hospital, Tianjin Medical University, Tianjin, People's Republic of China
| | - Shan Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, People's Republic of China
| | - Shenhui Luo
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, People's Republic of China
| | - Weiqiang Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, People's Republic of China
| | - Yanrong Qi
- Department of Gastroenterology and Hepatology, Tianjin Haibin People's Hospital, Tianjin, People's Republic of China
| | - Jianxin Gao
- Department of Gastroenterology and Hepatology, Tianjin Haibin People's Hospital, Tianjin, People's Republic of China
| | - Xiaocang Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, People's Republic of China
| | - Fang Yan
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, People's Republic of China.,Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
188
|
Youngster I, Avorn J, Belleudi V, Cantarutti A, Díez-Domingo J, Kirchmayer U, Park BJ, Peiró S, Sanfélix-Gimeno G, Schröder H, Schüssel K, Shin JY, Shin SM, Simonsen GS, Blix HS, Tong A, Trifirò G, Ziv-Baran T, Kim SC. Antibiotic Use in Children - A Cross-National Analysis of 6 Countries. J Pediatr 2017; 182:239-244.e1. [PMID: 28012694 DOI: 10.1016/j.jpeds.2016.11.027] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/13/2016] [Accepted: 11/07/2016] [Indexed: 01/24/2023]
Abstract
OBJECTIVES To describe the rates of pediatric antibiotic use across 6 countries on 3 continents. STUDY DESIGN Cross-national analysis of 7 pediatric cohorts in 6 countries (Germany, Italy, South Korea, Norway, Spain, and the US) was performed for 2008-2012. Antibiotic dispensings were identified and grouped into subclasses. We calculated the rates of antimicrobial prescriptions per person-year specific to each age group, comparing the rates across different countries. RESULTS A total of 74 744 302 person-years from all participating centers were included in this analysis. Infants in South Korea had the highest rate of antimicrobial consumption, with 3.41 prescribed courses per child-year during the first 2 years of life. This compares with 1.6 in Lazio, Italy; 1.4 in Pedianet, Italy; 1.5 in Spain; 1.1 in the US; 1.0 in Germany; and 0.5 courses per child-year in Norway. Of antimicrobial prescriptions written in Norway, 64.8% were for first-line penicillins, compared with 38.2% in Germany, 31.8% in the US, 27.7% in Spain, 25.1% in the Italian Pedianet population, 9.8% in South Korea, and 8% in the Italian Lazio population. CONCLUSIONS We found substantial differences of up to 7.5-fold in pediatric antimicrobial use across several industrialized countries from Europe, Asia, and North America. These data reinforce the need to develop strategies to decrease the unnecessary use of antimicrobial agents.
Collapse
Affiliation(s)
- Ilan Youngster
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA.
| | - Jerry Avorn
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Valeria Belleudi
- Department of Epidemiology, Lazio Regional Health Service, Rome, Italy
| | - Anna Cantarutti
- Department of Statistics and Quantitative Methods, University of Milano-Bicocca, Milan, Italy
| | - Javier Díez-Domingo
- Health Services Research Unit, Center for Public Health Research, Valencia, Spain
| | - Ursula Kirchmayer
- Department of Epidemiology, Lazio Regional Health Service, Rome, Italy
| | - Byung-Joo Park
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Salvador Peiró
- Health Services Research Unit, Center for Public Health Research, Valencia, Spain
| | | | - Helmut Schröder
- Wissenschaftliches Institut der AOK WIdO (Scientific Institute of the AOK), Berlin, Germany
| | - Katrin Schüssel
- Wissenschaftliches Institut der AOK WIdO (Scientific Institute of the AOK), Berlin, Germany
| | - Ju-Young Shin
- Korea Institute of Drug Safety and Risk Management, Seoul, Republic of Korea
| | - Sun Mi Shin
- Korea Institute of Drug Safety and Risk Management, Seoul, Republic of Korea
| | - Gunnar Skov Simonsen
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Hege Salvesen Blix
- Department of Pharmacoepidemiology, Norwegian Institute of Public Health, Oslo, Norway
| | - Angela Tong
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Gianluca Trifirò
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Tomer Ziv-Baran
- Department of Epidemiology and Preventive Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Seoyoung C Kim
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
189
|
Dzutsev A, Badger JH, Perez-Chanona E, Roy S, Salcedo R, Smith CK, Trinchieri G. Microbes and Cancer. Annu Rev Immunol 2017; 35:199-228. [PMID: 28142322 DOI: 10.1146/annurev-immunol-051116-052133] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Commensal microorganisms (the microbiota) live on all the surface barriers of our body and are particularly abundant and diverse in the distal gut. The microbiota and its larger host represent a metaorganism in which the cross talk between microbes and host cells is necessary for health, survival, and regulation of physiological functions locally, at the barrier level, and systemically. The ancestral molecular and cellular mechanisms stemming from the earliest interactions between prokaryotes and eukaryotes have evolved to mediate microbe-dependent host physiology and tissue homeostasis, including innate and adaptive resistance to infections and tissue repair. Mostly because of its effects on metabolism, cellular proliferation, inflammation, and immunity, the microbiota regulates cancer at the level of predisposing conditions, initiation, genetic instability, susceptibility to host immune response, progression, comorbidity, and response to therapy. Here, we review the mechanisms underlying the interaction of the microbiota with cancer and the evidence suggesting that the microbiota could be targeted to improve therapy while attenuating adverse reactions.
Collapse
Affiliation(s)
- Amiran Dzutsev
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| | - Jonathan H Badger
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| | - Ernesto Perez-Chanona
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| | - Soumen Roy
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| | - Rosalba Salcedo
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| | - Carolyne K Smith
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| |
Collapse
|
190
|
Yun Y, Kim HN, Kim SE, Chang Y, Ryu S, Shin H, Woo SY, Kim HL. The Effect of Probiotics, Antibiotics, and Antipyretic Analgesics on Gut Microbiota Modification. ACTA ACUST UNITED AC 2017. [DOI: 10.4167/jbv.2017.47.1.64] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Yeojun Yun
- Department of Biochemistry, Ewha Medical Research Institute, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Han-Na Kim
- Department of Biochemistry, Ewha Medical Research Institute, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Song E Kim
- Department of Biochemistry, Ewha Medical Research Institute, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Yoosoo Chang
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, School of Medicine, Sungkyunkwan University, Seoul, Korea
| | - Seungho Ryu
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, School of Medicine, Sungkyunkwan University, Seoul, Korea
| | - Hocheol Shin
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, School of Medicine, Sungkyunkwan University, Seoul, Korea
| | - So-Youn Woo
- Department of Microbiology, Ewha Medical Research Institute, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Hyung-Lae Kim
- Department of Biochemistry, Ewha Medical Research Institute, School of Medicine, Ewha Womans University, Seoul, Korea
| |
Collapse
|
191
|
Thomas LD, Vyshenska D, Shulzhenko N, Yambartsev A, Morgun A. Differentially correlated genes in co-expression networks control phenotype transitions. F1000Res 2016; 5:2740. [PMID: 28163897 PMCID: PMC5247791 DOI: 10.12688/f1000research.9708.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/10/2016] [Indexed: 01/06/2023] Open
Abstract
Background: Co-expression networks are a tool widely used for analysis of “Big Data” in biology that can range from transcriptomes to proteomes, metabolomes and more recently even microbiomes. Several methods were proposed to answer biological questions interrogating these networks. Differential co-expression analysis is a recent approach that measures how gene interactions change when a biological system transitions from one state to another. Although the importance of differentially co-expressed genes to identify dysregulated pathways has been noted, their role in gene regulation is not well studied. Herein we investigated differentially co-expressed genes in a relatively simple mono-causal process (B lymphocyte deficiency) and in a complex multi-causal system (cervical cancer). Methods: Co-expression networks of B cell deficiency (Control and BcKO) were reconstructed using Pearson correlation coefficient for two
mus musculus datasets: B10.A strain (12 normal, 12 BcKO) and BALB/c strain (10 normal, 10 BcKO). Co-expression networks of cervical cancer (normal and cancer) were reconstructed using local partial correlation method for five datasets (total of 64 normal, 148 cancer). Differentially correlated pairs were identified along with the location of their genes in BcKO and in cancer networks. Minimum Shortest Path and Bi-partite Betweenness Centrality where statistically evaluated for differentially co-expressed genes in corresponding networks. Results: We show that in B cell deficiency the differentially co-expressed genes are highly enriched with immunoglobulin genes (causal genes). In cancer we found that differentially co-expressed genes act as “bottlenecks” rather than causal drivers with most flows that come from the key driver genes to the peripheral genes passing through differentially co-expressed genes. Using
in vitro knockdown experiments for two out of 14 differentially co-expressed genes found in cervical cancer (FGFR2 and CACYBP), we showed that they play regulatory roles in cancer cell growth. Conclusion: Identifying differentially co-expressed genes in co-expression networks is an important tool in detecting regulatory genes involved in alterations of phenotype.
Collapse
Affiliation(s)
- Lina D Thomas
- Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Anatoly Yambartsev
- Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil
| | - Andrey Morgun
- College of Pharmacy, Oregon State University, Corvallis, USA
| |
Collapse
|
192
|
Greer RL, Dong X, Moraes ACF, Zielke RA, Fernandes GR, Peremyslova E, Vasquez-Perez S, Schoenborn AA, Gomes EP, Pereira AC, Ferreira SRG, Yao M, Fuss IJ, Strober W, Sikora AE, Taylor GA, Gulati AS, Morgun A, Shulzhenko N. Akkermansia muciniphila mediates negative effects of IFNγ on glucose metabolism. Nat Commun 2016; 7:13329. [PMID: 27841267 PMCID: PMC5114536 DOI: 10.1038/ncomms13329] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/23/2016] [Indexed: 12/19/2022] Open
Abstract
Cross-talk between the gut microbiota and the host immune system regulates host metabolism, and its dysregulation can cause metabolic disease. Here, we show that the gut microbe Akkermansia muciniphila can mediate negative effects of IFNγ on glucose tolerance. In IFNγ-deficient mice, A. muciniphila is significantly increased and restoration of IFNγ levels reduces A. muciniphila abundance. We further show that IFNγ-knockout mice whose microbiota does not contain A. muciniphila do not show improvement in glucose tolerance and adding back A. muciniphila promoted enhanced glucose tolerance. We go on to identify Irgm1 as an IFNγ-regulated gene in the mouse ileum that controls gut A. muciniphila levels. A. muciniphila is also linked to IFNγ-regulated gene expression in the intestine and glucose parameters in humans, suggesting that this trialogue between IFNγ, A. muciniphila and glucose tolerance might be an evolutionally conserved mechanism regulating metabolic health in mice and humans. Mice deficient in the pro-inflammatory cytokine IFNγ have improved glucose tolerance. Here, the authors show that this effect depends on the gut microbe Akkermansia muciniphila, whose abundance increases in the absence IFNγ, and which is known to have beneficial effects on host metabolism.
Collapse
Affiliation(s)
- Renee L Greer
- College of Veterinary Medicine, Oregon State University, 105 Dryden Hall, 450 SW 30th Street, Corvallis, Oregon 97331, USA
| | - Xiaoxi Dong
- College of Pharmacy, Oregon State University, 1601 SW Jefferson Way, Corvallis, Oregon 97331, USA
| | - Ana Carolina F Moraes
- Department of Epidemiology, School of Public Health, University of São Paulo, Av. Dr Arnaldo, 715, São Paulo, SP 01246-904, Brazil
| | - Ryszard A Zielke
- College of Pharmacy, Oregon State University, 1601 SW Jefferson Way, Corvallis, Oregon 97331, USA
| | - Gabriel R Fernandes
- Oswaldo Cruz Foundation, René Rachou Research Center, Av. Augusto de Lima, 1715, Belo Horizonte, MG 30190-002, Brazil
| | - Ekaterina Peremyslova
- College of Pharmacy, Oregon State University, 1601 SW Jefferson Way, Corvallis, Oregon 97331, USA
| | - Stephany Vasquez-Perez
- College of Veterinary Medicine, Oregon State University, 105 Dryden Hall, 450 SW 30th Street, Corvallis, Oregon 97331, USA
| | - Alexi A Schoenborn
- Division of Pediatric Gastroenterology, University of North Carolina at Chapel Hill, 260 MacNider Building, CB# 7220, Chapel Hill, North Carolina 27599, USA
| | - Everton P Gomes
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, Av. Dr Eneas de Carvalho Aguiar, 44, São Paulo, SP 05403-000, Brazil
| | - Alexandre C Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, Av. Dr Eneas de Carvalho Aguiar, 44, São Paulo, SP 05403-000, Brazil
| | - Sandra R G Ferreira
- Department of Epidemiology, School of Public Health, University of São Paulo, Av. Dr Arnaldo, 715, São Paulo, SP 01246-904, Brazil
| | - Michael Yao
- Mucosal Immunity Section, Laboratory of Immune Defenses, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892, USA
| | - Ivan J Fuss
- Mucosal Immunity Section, Laboratory of Immune Defenses, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892, USA
| | - Warren Strober
- Mucosal Immunity Section, Laboratory of Immune Defenses, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892, USA
| | - Aleksandra E Sikora
- College of Pharmacy, Oregon State University, 1601 SW Jefferson Way, Corvallis, Oregon 97331, USA
| | - Gregory A Taylor
- Geriatric Research, Education and Clinical Center, VA Medical Center, Departments of Medicine, Molecular Genetics and Microbiology and Immunology, Division of Geriatrics and Center for the Study of Aging and Human Development, Duke Box 3003, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Ajay S Gulati
- Division of Pediatric Gastroenterology, University of North Carolina at Chapel Hill, 260 MacNider Building, CB# 7220, Chapel Hill, North Carolina 27599, USA
| | - Andrey Morgun
- College of Pharmacy, Oregon State University, 1601 SW Jefferson Way, Corvallis, Oregon 97331, USA
| | - Natalia Shulzhenko
- College of Veterinary Medicine, Oregon State University, 105 Dryden Hall, 450 SW 30th Street, Corvallis, Oregon 97331, USA
| |
Collapse
|
193
|
Ianiro G, Tilg H, Gasbarrini A. Antibiotics as deep modulators of gut microbiota: between good and evil. Gut 2016; 65:1906-1915. [PMID: 27531828 DOI: 10.1136/gutjnl-2016-312297] [Citation(s) in RCA: 430] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 12/11/2022]
Abstract
The recent increase in our knowledge of human gut microbiota has changed our view on antibiotics. Antibiotics are, indeed, no longer considered only beneficial, but also potentially harmful drugs, as their abuse appears to play a role in the pathogenesis of several disorders associated with microbiota impairment (eg, Clostridium difficile infection or metabolic disorders). Both drug-related factors (such as antibiotic class, timing of exposure or route of administration) and host-related factors appear to influence the alterations of human gut microbiota produced by antibiotics. Nevertheless, antibiotics are nowadays considered a reliable therapy for some non-communicable disorders, including IBS or hepatic encephalopathy. Moreover, some antibiotics can also act positively on gut microbiota, providing a so-called 'eubiotic' effect, by increasing abundance of beneficial bacteria. Therefore, antibiotics appear to change, for better or worse, the nature of several disorders, including IBS, IBD, metabolic disorders or liver disease. This reviews aims to address the potential of antibiotics in the development of major non-communicable disorders associated with the alteration of gut microbiota and on newly discovered therapeutic avenues of antibiotics beyond the cure of infectious diseases.
Collapse
Affiliation(s)
- Gianluca Ianiro
- Internal Medicine, Gastroenterology and Liver Unit, "Agostino Gemelli" University Hospital, Catholic University of Rome, Italy
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Antonio Gasbarrini
- Internal Medicine, Gastroenterology and Liver Unit, "Agostino Gemelli" University Hospital, Catholic University of Rome, Italy
| |
Collapse
|
194
|
Yambartsev A, Perlin MA, Kovchegov Y, Shulzhenko N, Mine KL, Dong X, Morgun A. Unexpected links reflect the noise in networks. Biol Direct 2016; 11:52. [PMID: 27737689 PMCID: PMC5480421 DOI: 10.1186/s13062-016-0155-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 10/01/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Gene covariation networks are commonly used to study biological processes. The inference of gene covariation networks from observational data can be challenging, especially considering the large number of players involved and the small number of biological replicates available for analysis. RESULTS We propose a new statistical method for estimating the number of erroneous edges in reconstructed networks that strongly enhances commonly used inference approaches. This method is based on a special relationship between sign of correlation (positive/negative) and directionality (up/down) of gene regulation, and allows for the identification and removal of approximately half of all erroneous edges. Using the mathematical model of Bayesian networks and positive correlation inequalities we establish a mathematical foundation for our method. Analyzing existing biological datasets, we find a strong correlation between the results of our method and false discovery rate (FDR). Furthermore, simulation analysis demonstrates that our method provides a more accurate estimate of network error than FDR. CONCLUSIONS Thus, our study provides a new robust approach for improving reconstruction of covariation networks. REVIEWERS This article was reviewed by Eugene Koonin, Sergei Maslov, Daniel Yasumasa Takahashi.
Collapse
Affiliation(s)
- Anatoly Yambartsev
- Department of Statistics, Institute of Mathematics and Statistics, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Michael A Perlin
- College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Yevgeniy Kovchegov
- Department of Mathematics, College of Science, Oregon State University, Corvallis, OR, USA
| | - Natalia Shulzhenko
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Karina L Mine
- Instituto de Imunogenética - Associação Fundo de Incentivo à Pesquisa (IGEN-AFIP), São Paulo, SP, Brazil
| | - Xiaoxi Dong
- College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Andrey Morgun
- College of Pharmacy, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
195
|
Bhat M, Arendt BM, Bhat V, Renner EL, Humar A, Allard JP. Implication of the intestinal microbiome in complications of cirrhosis. World J Hepatol 2016; 8:1128-1136. [PMID: 27721918 PMCID: PMC5037326 DOI: 10.4254/wjh.v8.i27.1128] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/06/2016] [Accepted: 08/01/2016] [Indexed: 02/06/2023] Open
Abstract
The intestinal microbiome (IM) is altered in patients with cirrhosis, and emerging literature suggests that this impacts on the development of complications. The PubMed database was searched from January 2000 to May 2015 for studies and review articles on the composition, pathophysiologic effects and therapeutic modulation of the IM in cirrhosis. The following combination of relevant text words and MeSH terms were used, namely intestinal microbiome, microbiota, or dysbiosis, and cirrhosis, encephalopathy, spontaneous bacterial peritonitis, hepatorenal syndrome, variceal bleeding, hepatopulmonary syndrome, portopulmonary hypertension and hepatocellular carcinoma. The search results were evaluated for pertinence to the subject of IM and cirrhosis, as well as for quality of study design. The IM in cirrhosis is characterized by a decreased proportion of Bacteroides and Lactobacilli, and an increased proportion of Enterobacteriaceae compared to healthy controls. Except for alcoholic cirrhosis, the composition of the IM in cirrhosis is not affected by the etiology of the liver disease. The percentage of Enterobacteriaceae increases with worsening liver disease severity and decompensation and is associated with bacteremia, spontaneous bacterial peritonitis and hepatic encephalopathy. Lactulose, rifaximin and Lactobacillus-containing probiotics have been shown to partially reverse the cirrhosis associated enteric dysbiosis, in conjunction with improvement in encephalopathy. The IM is altered in cirrhosis, and this may contribute to the development of complications associated with end-stage liver disease. Therapies such as lactulose, rifaximin and probiotics may, at least partially, reverse the cirrhosis-associated changes in the IM. This, in turn, may prevent or alleviate the severity of complications.
Collapse
|
196
|
Harakeh SM, Khan I, Kumosani T, Barbour E, Almasaudi SB, Bahijri SM, Alfadul SM, Ajabnoor GMA, Azhar EI. Gut Microbiota: A Contributing Factor to Obesity. Front Cell Infect Microbiol 2016; 6:95. [PMID: 27625997 PMCID: PMC5003832 DOI: 10.3389/fcimb.2016.00095] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 08/17/2016] [Indexed: 12/25/2022] Open
Abstract
Obesity, a global epidemic of the modern era, is a risk factor for cardiovascular diseases (CVD) and diabetes. The pervasiveness of obesity and overweight in both developed as well as developing populations is on the rise and placing a huge burden on health and economic resources. Consequently, research to control this emerging epidemic is of utmost importance. Recently, host interactions with their resident gut microbiota (GM) have been reported to be involved in the pathogenesis of many metabolic diseases, including obesity, diabetes, and CVD. Around 10(14) microorganisms reside within the lower human intestine and many of these 10(14) microorganisms have developed mutualistic or commensal associations with the host and actively involved in many physiological processes of the host. However, dysbiosis (altered gut microbial composition) with other predisposing genetic and environmental factors, may contribute to host metabolic disorders resulting in many ailments. Therefore, delineating the role of GM as a contributing factor to obesity is the main objective of this review. Obesity research, as a field is expanding rapidly due to major advances in nutrigenomics, metabolomics, RNA silencing, epigenetics, and other disciplines that may result in the emergence of new technologies and methods to better interpret causal relationships between microbiota and obesity.
Collapse
Affiliation(s)
- Steve M Harakeh
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University Jeddah, Saudi Arabia
| | - Imran Khan
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz UniversityJeddah, Saudi Arabia; Department of Biochemistry, Faculty of Science, King Abdulaziz UniversityJeddah, Saudi Arabia
| | - Taha Kumosani
- Department of Biochemistry, Faculty of Science, King Abdulaziz UniversityJeddah, Saudi Arabia; Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz UniversityJeddah, Saudi Arabia
| | - Elie Barbour
- Department of Animal and Veterinary Sciences, Faculty of Agricultural and Food Sciences, American University of BeirutBeirut, Lebanon; Department of Biochemistry, Faculty of Science, King Abdulaziz UniversityJeddah, Saudi Arabia
| | - Saad B Almasaudi
- Biology Department, Faculty of Science, King Abdulaziz University Jeddah, Saudi Arabia
| | - Suhad M Bahijri
- Clinical Biochemistry Department, College of Medicine, Nutrition Unit-King Fahd Medical Research Center, King Abdulaziz University Jeddah, Saudi Arabia
| | | | - Ghada M A Ajabnoor
- Clinical Biochemistry Department, College of Medicine, Nutrition Unit-King Fahd Medical Research Center, King Abdulaziz University Jeddah, Saudi Arabia
| | - Esam I Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz UniversityJeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Science, King Abdulaziz UniversityJeddah, Saudi Arabia
| |
Collapse
|
197
|
Janssen AWF, Kersten S. Potential mediators linking gut bacteria to metabolic health: a critical view. J Physiol 2016; 595:477-487. [PMID: 27418465 PMCID: PMC5233664 DOI: 10.1113/jp272476] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/01/2016] [Indexed: 12/20/2022] Open
Abstract
Growing evidence suggests that the bacteria present in our gut may play a role in mediating the effect of genetics and lifestyle on obesity and metabolic diseases. Most of the current literature on gut bacteria consists of cross‐sectional and correlative studies, rendering it difficult to make any causal inferences as to the influence of gut bacteria on obesity and related metabolic disorders. Interventions with germ‐free animals, treatment with antibiotic agents, and microbial transfer experiments have provided some evidence that disturbances in gut bacteria may causally contribute to obesity‐related insulin resistance and adipose tissue inflammation. Several potential mediators have been hypothesized to link the activity and composition of gut bacteria to insulin resistance and adipose tissue function, including lipopolysaccharide, angiopoietin‐like protein 4, bile acids and short‐chain fatty acids. In this review we critically evaluate the current evidence related to the direct role of gut bacteria in obesity‐related metabolic perturbations, with a focus on insulin resistance and adipose tissue inflammation. It is concluded that the knowledge base in support of a role for the gut microbiota in metabolic regulation and in particular insulin resistance and adipose tissue inflammation needs to be strengthened.
![]()
Collapse
Affiliation(s)
- Aafke W F Janssen
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
198
|
Abstract
PURPOSE OF REVIEW It is long known that immune and metabolic cascades intersect at various cross-points. More recently, the regulatory influence of the microbiota on both of these cascades has emerged. Advances with therapeutic implications for chronic immunologic and metabolic disorders are examined. RECENT FINDINGS Disturbances of the microbiota, particularly in early life, may be the proximate environmental risk factor in socioeconomically developed societies for development of chronic immune-allergic and metabolic disorders, including obesity. Antibiotics and dietary factors contribute to this risk. Multiple microbial signalling molecules mediate host-microbe interactions including bacterial metabolites such as short-chain fatty acids, bile salts and others. SUMMARY New strategies for manipulating the composition and metabolic activity of the gut microbiota have emerged and offer a realistic prospect of personalized therapeutic options in immune and metabolic diseases.
Collapse
Affiliation(s)
- Fergus Shanahan
- Department of Medicine and APC Microbiome Institute, National University of Ireland, Cork, Ireland
| | | |
Collapse
|
199
|
Toll-like receptors in the pathogenesis of chemotherapy-induced gastrointestinal toxicity. Curr Opin Support Palliat Care 2016; 10:157-64. [DOI: 10.1097/spc.0000000000000202] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
200
|
Möhle L, Mattei D, Heimesaat MM, Bereswill S, Fischer A, Alutis M, French T, Hambardzumyan D, Matzinger P, Dunay IR, Wolf SA. Ly6C(hi) Monocytes Provide a Link between Antibiotic-Induced Changes in Gut Microbiota and Adult Hippocampal Neurogenesis. Cell Rep 2016; 15:1945-56. [PMID: 27210745 DOI: 10.1016/j.celrep.2016.04.074] [Citation(s) in RCA: 312] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 02/15/2016] [Accepted: 04/20/2016] [Indexed: 12/18/2022] Open
Abstract
Antibiotics, though remarkably useful, can also cause certain adverse effects. We detected that treatment of adult mice with antibiotics decreases hippocampal neurogenesis and memory retention. Reconstitution with normal gut flora (SPF) did not completely reverse the deficits in neurogenesis unless the mice also had access to a running wheel or received probiotics. In parallel to an increase in neurogenesis and memory retention, both SPF-reconstituted mice that ran and mice supplemented with probiotics exhibited higher numbers of Ly6C(hi) monocytes in the brain than antibiotic-treated mice. Elimination of Ly6C(hi) monocytes by antibody depletion or the use of knockout mice resulted in decreased neurogenesis, whereas adoptive transfer of Ly6C(hi) monocytes rescued neurogenesis after antibiotic treatment. We propose that the rescue of neurogenesis and behavior deficits in antibiotic-treated mice by exercise and probiotics is partially mediated by Ly6C(hi) monocytes.
Collapse
Affiliation(s)
- Luisa Möhle
- Institute of Medical Microbiology, University of Magdeburg, 39106 Magdeburg, Germany
| | - Daniele Mattei
- Department of Cellular Neuroscience, Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Markus M Heimesaat
- Charité - University Medicine Berlin, Department of Microbiology and Hygiene, 14195 Berlin, Germany
| | - Stefan Bereswill
- Charité - University Medicine Berlin, Department of Microbiology and Hygiene, 14195 Berlin, Germany
| | - André Fischer
- Charité - University Medicine Berlin, Department of Microbiology and Hygiene, 14195 Berlin, Germany
| | - Marie Alutis
- Charité - University Medicine Berlin, Department of Microbiology and Hygiene, 14195 Berlin, Germany
| | - Timothy French
- Institute of Medical Microbiology, University of Magdeburg, 39106 Magdeburg, Germany
| | - Dolores Hambardzumyan
- Department of Neurosciences at the Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA; Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Polly Matzinger
- Ghost Lab, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892-9760, USA
| | - Ildiko R Dunay
- Institute of Medical Microbiology, University of Magdeburg, 39106 Magdeburg, Germany
| | - Susanne A Wolf
- Department of Cellular Neuroscience, Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany.
| |
Collapse
|