151
|
Ahmed M, Metwaly A, Haller D. Modeling microbe-host interaction in the pathogenesis of Crohn's disease. Int J Med Microbiol 2021; 311:151489. [PMID: 33676240 DOI: 10.1016/j.ijmm.2021.151489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/19/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
Alterations in the gut microbiota structure and function are thought to play an important role in the pathogenesis of Crohn's disease (CD). The rapid advancement of high-throughput sequencing technologies led to the identification of microbiome risk signatures associated with distinct disease phenotypes and progressing disease entities. Functional validation of the identified microbiome signatures is essential to understand the underlying mechanisms of microbe-host interactions. Germfree mouse models are available to study the functional role of disease-conditioning complex gut microbial ecosystems (dysbiosis) or pathobionts (single bacteria) in the pathogenesis of CD-like inflammation. Here, we discuss the clinical and mechanistic relevance and limitations of gnotobiotic mouse models in the context of CD. In addition, we will address the role of diet as an essential external factor modulating microbiome changes, potentially underlying disease initiation and development.
Collapse
Affiliation(s)
- Mohamed Ahmed
- Technical University of Munich, Chair of Nutrition and Immunology, School of Life Sciences, 85354 Freising, Germany
| | - Amira Metwaly
- Technical University of Munich, Chair of Nutrition and Immunology, School of Life Sciences, 85354 Freising, Germany
| | - Dirk Haller
- Technical University of Munich, Chair of Nutrition and Immunology, School of Life Sciences, 85354 Freising, Germany; Technical University of Munich, ZIEL Institute for Food & Health, Germany.
| |
Collapse
|
152
|
Gill T, Rosenbaum JT. Putative Pathobionts in HLA-B27-Associated Spondyloarthropathy. Front Immunol 2021; 11:586494. [PMID: 33537028 PMCID: PMC7848169 DOI: 10.3389/fimmu.2020.586494] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022] Open
Abstract
Spondyloarthritis (SpA) is a group of immune mediated inflammatory diseases with a strong association to the major histocompatibility (MHC) class I molecule, HLA-B27. Although the association between HLA-B27 and AS has been known for almost 50 years, the mechanisms underlying disease pathogenesis are elusive. Over the years, three hypotheses have been proposed to explain HLA-B27 and disease association: 1) HLA B27 presents arthritogenic peptides and thus creates a pathological immune response; 2) HLA-B27 misfolding causes endoplasmic reticulum (ER) stress which activates the unfolded protein response (UPR); 3) HLA-B27 dimerizes on the cell surface and acts as a target for natural killer (NK) cells. None of these hypotheses explains SpA pathogenesis completely. Evidence supports the hypothesis that HLA-B27-related diseases have a microbial pathogenesis. In animal models of various SpAs, a germ-free environment abrogates disease development and colonizing these animals with gut commensal microbes can restore disease manifestations. The depth of microbial influence on SpA development has been realized due to our ability to characterize microbial communities in the gut using next-generation sequencing approaches. In this review, we will discuss various putative pathobionts in the pathogenesis of HLA-B27-associated diseases. We pursue whether a single pathobiont or a disruption of microbial community and function is associated with HLA-B27-related diseases. Furthermore, rather than a specific pathobiont, metabolic functions of various disease-associated microbes might be key. While the use of germ-free models of SpA have facilitated understanding the role of microbes in disease development, future studies with animal models that mimic diverse microbial communities instead of mono-colonization are indispensable. We discuss the causal mechanisms underlying disease pathogenesis including the role of these pathobionts on mucin degradation, mucosal adherence, and gut epithelial barrier disruption and inflammation. Finally, we review the various uses of microbes as therapeutic modalities including pre/probiotics, diet, microbial metabolites and fecal microbiota transplant. Unravelling these complex host-microbe interactions will lead to the development of new targets/therapies for alleviation of SpA and other HLA-B27 associated diseases.
Collapse
Affiliation(s)
- Tejpal Gill
- Division of Arthritis and Rheumatic Diseases, Department of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - James T Rosenbaum
- Departments of Ophthalmology, Medicine, and Cell Biology, Oregon Health & Science University, Portland, OR, United States.,Legacy Devers Eye Institute, Portland, OR, United States
| |
Collapse
|
153
|
Zheng L, Wen XL. Gut microbiota and inflammatory bowel disease: The current status and perspectives. World J Clin Cases 2021; 9:321-333. [PMID: 33521100 PMCID: PMC7812881 DOI: 10.12998/wjcc.v9.i2.321] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/20/2020] [Accepted: 12/06/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic immune-mediated disease that affects the gastrointestinal tract. It is argued that environment, microbiome, and immune-mediated factors interact in a genetically susceptible host to trigger IBD. Recently, there has been increased interest in the development, progression, and treatment of IBD because of our understanding of the microbiome. Researchers have proved that some factors can alter the microbiome and the pathogenesis of IBD. As a result, there has been increasing interest in the application of probiotics, prebiotics, antibiotics, fecal microbiota transplantation, and gene manipulation in treating IBD because of the possible curative effect of microbiome-modulating interventions. In this review, we summarize the findings from human and animal studies and discuss the effect of the gut microbiome in treating patients with IBD.
Collapse
Affiliation(s)
- Lie Zheng
- Department of Gastroenterology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an 730000, Shaanxi Province, China
| | - Xin-Li Wen
- Department of Gastroenterology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an 730000, Shaanxi Province, China
| |
Collapse
|
154
|
Misselwitz B, Wyss A, Raselli T, Cerovic V, Sailer AW, Krupka N, Ruiz F, Pot C, Pabst O. The oxysterol receptor GPR183 in inflammatory bowel diseases. Br J Pharmacol 2021; 178:3140-3156. [PMID: 33145756 DOI: 10.1111/bph.15311] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022] Open
Abstract
Immune cell trafficking is an important mechanism for the pathogenesis of inflammatory bowel disease (IBD). The oxysterol receptor GPR183 and its ligands, dihydroxylated oxysterols, can mediate positioning of immune cells including innate lymphoid cells. GPR183 has been mapped to an IBD risk locus, however another gene, Ubac2 is encoded on the reverse strand and associated with Behçet's disease, therefore the role of GPR183 as a genetic risk factor requires validation. GPR183 and production of its oxysterol ligands are up-regulated in human IBD and murine colitis. Gpr183 inactivation reduced severity of colitis in group 3 innate lymphoid cells-dependent colitis and in IL-10 colitis but not in dextran sodium sulphate colitis. Irrespectively, Gpr183 knockout strongly reduced accumulation of intestinal lymphoid tissue in health and all colitis models. In conclusion, genetic, translational and experimental studies implicate GPR183 in IBD pathogenesis and GPR183-dependent cell migration might be a therapeutic drug target for IBD. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Collapse
Affiliation(s)
- Benjamin Misselwitz
- Gastroenterology, University Hospital of Visceral Surgery and Medicine, Inselspital Bern and Bern University, Bern, Switzerland
| | - Annika Wyss
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Tina Raselli
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Vuk Cerovic
- Institute of Molecular Medicine, RWTH Aachen University, Aachen, Germany
| | - Andreas W Sailer
- Disease Area X, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Niklas Krupka
- Gastroenterology, University Hospital of Visceral Surgery and Medicine, Inselspital Bern and Bern University, Bern, Switzerland
| | - Florian Ruiz
- Service of Neurology, University of Lausanne, Lausanne, Switzerland.,Department of Clinical Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Caroline Pot
- Service of Neurology, University of Lausanne, Lausanne, Switzerland.,Department of Clinical Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Oliver Pabst
- Institute of Molecular Medicine, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
155
|
Associations of Genetic Variants Contributing to Gut Microbiota Composition in Immunoglobin A Nephropathy. mSystems 2021; 6:6/1/e00819-20. [PMID: 33436510 PMCID: PMC7901477 DOI: 10.1128/msystems.00819-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The gut microbiota and host genetics are implicated in the pathogenesis of IgAN. Recent studies have confirmed that microbial compositions are heritable (microbiome quantitative trait loci [QTL]). The gut microbiota has been implicated in immunoglobin A nephropathy (IgAN) because the intestinal immune response is assumed to be one of the disease triggers. Since the microbial composition is heritable, we hypothesize that genetic variants controlling gut microbiota composition may be associated with susceptibility to IgAN or clinical phenotypes. A total of 175 gut-microbiome-associated genetic variants were retrieved from the Genome-Wide Association Study (GWAS) Catalog. Genetic associations were examined in 1,511 patients with IgAN and 4,469 controls. Subphenotype associations and microbiome annotations were undertaken for a better understanding of how genes shaped phenotypes. Likely candidate microbes suggested in genetic associations were validated using 16S rRNA gene sequencing in two independent data sets with 119 patients with IgAN and 45 controls in total. Nine genetic variants were associated with susceptibility to IgAN. Risk genotypes of LYZL1 were associated with higher serum levels of galactose-deficient IgA1 (Gd-IgA1). Other significant findings included the associations between the risk genotype of SIPA1L3 and early age at onset, PLTP and worse kidney function, and AL365503.1 and more severe hematuria. Besides, risk genotypes of LYZL1 and SIPA1L3 were associated with decreased abundances of Dialister and Bacilli, respectively. Risk genotypes of PLTP and AL365503.1 were associated with increased abundances of Erysipelotrichaceae and Lachnobacterium, respectively. 16S data validated a decreased tendency for Dialister and an increased tendency for Erysipelotrichaceae in IgAN. In this pilot study, our results provided preliminary evidence that the gut microbiota in IgAN was affected by host genetics and shed new light on candidate bacteria for future pathogenesis studies. IMPORTANCE The gut microbiota and host genetics are implicated in the pathogenesis of IgAN. Recent studies have confirmed that microbial compositions are heritable (microbiome quantitative trait loci [QTL]). The relationship between host genetics and the microbiota and the role of the microbiota in IgAN are unclear. We retrieved the GWAS Catalog and associated microbiome QTL in IgAN, observing that nine genetic variants were associated with IgAN susceptibility and some clinical phenotypes. In a consistent way, the decreased abundance of Dialister was associated with higher serum levels of Gd-IgA1, and 16S rRNA gene analysis confirmed the decreased abundance of Dialister in IgAN. These data provided preliminary evidence that the gut microbiota in IgAN was affected by host genetics, which is a new strategy for future pathogenesis and intervention studies.
Collapse
|
156
|
Urbauer E, Rath E, Haller D. Mitochondrial Metabolism in the Intestinal Stem Cell Niche-Sensing and Signaling in Health and Disease. Front Cell Dev Biol 2021; 8:602814. [PMID: 33469536 PMCID: PMC7813778 DOI: 10.3389/fcell.2020.602814] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial metabolism, dynamics, and stress responses in the intestinal stem cell niche play a pivotal role in regulating intestinal epithelial cell homeostasis, including self-renewal and differentiation. In addition, mitochondria are increasingly recognized for their involvement in sensing the metabolic environment and their capability of integrating host and microbial-derived signals. Gastrointestinal diseases such as inflammatory bowel diseases and colorectal cancer are characterized by alterations of intestinal stemness, the microbial milieu, and mitochondrial metabolism. Thus, mitochondrial function emerges at the interface of determining health and disease, and failure to adapt mitochondrial function to environmental cues potentially results in aberrant tissue responses. A mechanistic understanding of the underlying role of mitochondrial fitness in intestinal pathologies is still in its infancy, and therapies targeting mitochondrial (dys)function are currently lacking. This review discusses mitochondrial signaling and metabolism in intestinal stem cells and Paneth cells as critical junction translating host- and microbe-derived signals into epithelial responses. Consequently, we propose mitochondrial fitness as a hallmark for intestinal epithelial cell plasticity, determining the regenerative capacity of the epithelium.
Collapse
Affiliation(s)
- Elisabeth Urbauer
- Chair of Nutrition and Immunology, Technische Universität München, Freising-Weihenstephan, Germany
| | - Eva Rath
- Chair of Nutrition and Immunology, Technische Universität München, Freising-Weihenstephan, Germany
| | - Dirk Haller
- Chair of Nutrition and Immunology, Technische Universität München, Freising-Weihenstephan, Germany.,ZIEL Institute for Food & Health, Technische Universität München, Munich, Germany
| |
Collapse
|
157
|
Dash NR, Al Bataineh MT. Metagenomic Analysis of the Gut Microbiome Reveals Enrichment of Menaquinones (Vitamin K2) Pathway in Diabetes Mellitus. Diabetes Metab J 2021; 45:77-85. [PMID: 32431114 PMCID: PMC7850878 DOI: 10.4093/dmj.2019.0202] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/11/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease with a high prevalence worldwide, especially among overweight and obese populations. T2DM is multifactorial with several genetic and acquired risk factors that lead to insulin resistance. Mounting evidence indicates that alteration of gut microbiome composition contribute to insulin resistance and inflammation. However, the precise link between T2DM and gut microbiome role and composition remains unknown. METHODS We evaluated the metabolic capabilities of the gut microbiome of twelve T2DM and six healthy individuals through shotgun metagenomics using MiSeq platform. RESULTS We identified no significant differences in the overall taxonomic composition between healthy and T2DM subjects when controlling for differences in diet. However, results showed that T2DM enriched in metabolic pathways involved in menaquinone (vitamin K2) superpathway biosynthesis (PWY-5838) as compared to healthy individuals. Covariance analysis between the bacterial genera and metabolic pathways displaying difference in abundance (analysis of variance P<0.05) in T2DM as compared to healthy subjects revealed that genera belonging Firmicutes, Actinobacteria, and Bacteroidetes phyla contribute significantly to vitamin K2 biosynthesis. Further, the microbiome corresponding to T2DM with high glycosylated hemoglobin (HbA1c) (>6.5%) exhibit high abundance of genes involved in lysine biosynthesis and low abundance of genes involved in creatinine degradation as compared to T2DM with lower HbA1c (<6.5%). CONCLUSION The identified differences in metabolic capabilities provide important information that may eventually lead to the development of novel biomarkers and more effective management strategies to treat T2DM.
Collapse
Affiliation(s)
- Nihar Ranjan Dash
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohammad Tahseen Al Bataineh
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical & Health Sciences at University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
158
|
The RNA-binding protein tristetraprolin regulates RALDH2 expression by intestinal dendritic cells and controls local Treg homeostasis. Mucosal Immunol 2021; 14:80-91. [PMID: 32467605 PMCID: PMC9386908 DOI: 10.1038/s41385-020-0302-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/10/2020] [Accepted: 04/21/2020] [Indexed: 02/04/2023]
Abstract
AU-rich element (ARE)-mediated mRNA decay represents a key mechanism to avoid excessive production of inflammatory cytokines. Tristetraprolin (TTP, encoded by Zfp36) is a major ARE-binding protein, since Zfp36-/- mice develop a complex multiorgan inflammatory syndrome that shares many features with spondyloarthritis. The role of TTP in intestinal homeostasis is not known. Herein, we show that Zfp36-/- mice do not develop any histological signs of gut pathology. However, they display a clear increase in intestinal inflammatory markers and discrete alterations in microbiota composition. Importantly, oral antibiotic treatment reduced both local and systemic joint and skin inflammation. We further show that absence of overt intestinal pathology is associated with local expansion of regulatory T cells. We demonstrate that this is related to increased vitamin A metabolism by gut dendritic cells, and identify RALDH2 as a direct target of TTP. In conclusion, these data bring insights into the interplay between microbiota-dependent gut and systemic inflammation during immune-mediated disorders, such as spondyloarthritis.
Collapse
|
159
|
Khaloian S, Rath E, Hammoudi N, Gleisinger E, Blutke A, Giesbertz P, Berger E, Metwaly A, Waldschmitt N, Allez M, Haller D. Mitochondrial impairment drives intestinal stem cell transition into dysfunctional Paneth cells predicting Crohn's disease recurrence. Gut 2020; 69:1939-1951. [PMID: 32111634 PMCID: PMC7569388 DOI: 10.1136/gutjnl-2019-319514] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 01/23/2020] [Accepted: 02/03/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Reduced Paneth cell (PC) numbers are observed in inflammatory bowel diseases and impaired PC function contributes to the ileal pathogenesis of Crohn's disease (CD). PCs reside in proximity to Lgr5+ intestinal stem cells (ISC) and mitochondria are critical for ISC-renewal and differentiation. Here, we characterise ISC and PC appearance under inflammatory conditions and describe the role of mitochondrial function for ISC niche-maintenance. DESIGN Ileal tissue samples from patients with CD, mouse models for mitochondrial dysfunction (Hsp60Δ/ΔISC) and CD-like ileitis (TNFΔARE), and intestinal organoids were used to characterise PCs and ISCs in relation to mitochondrial function. RESULTS In patients with CD and TNFΔARE mice, inflammation correlated with reduced numbers of Lysozyme-positive granules in PCs and decreased Lgr5 expression in crypt regions. Disease-associated changes in PC and ISC appearance persisted in non-inflamed tissue regions of patients with CD and predicted the risk of disease recurrence after surgical resection. ISC-specific deletion of Hsp60 and inhibition of mitochondrial respiration linked mitochondrial function to the aberrant PC phenotype. Consistent with reduced stemness in vivo, crypts from inflamed TNFΔARE mice fail to grow into organoids ex vivo. Dichloroacetate-mediated inhibition of glycolysis, forcing cells to shift to mitochondrial respiration, improved ISC niche function and rescued the ability of TNFΔARE mice-derived crypts to form organoids. CONCLUSION We provide evidence that inflammation-associated mitochondrial dysfunction in the intestinal epithelium triggers a metabolic imbalance, causing reduced stemness and acquisition of a dysfunctional PC phenotype. Blocking glycolysis might be a novel drug target to antagonise PC dysfunction in the pathogenesis of CD.
Collapse
Affiliation(s)
- Sevana Khaloian
- Chair of Nutrition and Immunology, Technische Universität München, Freising-Weihenstephan, Germany
| | - Eva Rath
- Chair of Nutrition and Immunology, Technische Universität München, Freising-Weihenstephan, Germany
| | - Nassim Hammoudi
- Department of Gastroenterology, Hôpital Saint-Louis, APHP, INSERM U1160, Université de Paris 1, Paris, Île-de-France, France
| | - Elisabeth Gleisinger
- Chair of Nutrition and Immunology, Technische Universität München, Freising-Weihenstephan, Germany
| | - Andreas Blutke
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Pieter Giesbertz
- Chair of Nutrition Physiology, Technische Universität München, Freising-Weihenstephan, Germany
| | - Emanuel Berger
- Chair of Nutrition and Immunology, Technische Universität München, Freising-Weihenstephan, Germany
| | - Amira Metwaly
- Chair of Nutrition and Immunology, Technische Universität München, Freising-Weihenstephan, Germany
| | - Nadine Waldschmitt
- Chair of Nutrition and Immunology, Technische Universität München, Freising-Weihenstephan, Germany
| | - Matthieu Allez
- Department of Gastroenterology, Hôpital Saint-Louis, APHP, INSERM U1160, Université de Paris 1, Paris, Île-de-France, France
| | - Dirk Haller
- Chair of Nutrition and Immunology, Technische Universität München, Freising-Weihenstephan, Germany .,ZIEL Institute for Food & Health, Technische Universität München, München, Germany
| |
Collapse
|
160
|
Kuballa A, Geraci M, Johnston M, Sorrentino D. The Gut Microbial Profile of Preclinical Crohn's Disease Is Similar to That of Healthy Controls. Inflamm Bowel Dis 2020; 26:1682-1690. [PMID: 32339246 DOI: 10.1093/ibd/izaa072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIMS It is unclear whether microbial dysbiosis plays an etiologic role in Crohn's disease (CD) or is the result of protracted inflammation. Here, we test the hypothesis that dysbiosis predates clinical CD in asymptomatic first-degree relatives (FDRs) of CD patients: normal (FDR1), with borderline inflammation (FDR2), and with frank, very early inflammation (FDR3). METHODS The gut microbial diversity was tested in ileocecal biopsies through next generation sequencing of the 16S rRNA gene in 10 healthy controls (HCs), 22 patients with active, untreated CD, and 25 FDRs (9 FDR1; 12 FDR2; 4 FDR3). The metagenomic functions of 41 microbiome-related processes were inferred by Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis. RESULTS Compared with HCs, alpha diversity in CD patients was decreased, with an observed decrease in Faecalibacterium prausnitzii and increase in Bacteroides fragilis. In FDRs, microbial diversity was unchanged compared with HCs. In Operational Taxonomic Units and PICRUSt Principal coordinates and component analyses, the ellipse centroid of FDRs was diagonally opposed to that of CD patients, but close to the HC centroid. In both analyses, statistically significant differences in terms of beta diversity were found between CD and HC but not between FDR and HC. CONCLUSIONS In FDRs (including FDR3-who bear preclinical/biologic onset disease), we found that the microbial profile is remarkably similar to HC. If confirmed in larger studies, this finding suggests that clinical CD-associated dysbiosis could result from the changed microenvironment due to disease evolution over time.
Collapse
Affiliation(s)
- Anna Kuballa
- Inflammation Research Cluster, School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Marco Geraci
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Meredith Johnston
- Inflammation Research Cluster, School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Dario Sorrentino
- IBD Center, Division of Gastroenterology, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA.,Department of Clinical and Experimental Medical Sciences, University of Udine School of Medicine, Udine, Italy
| |
Collapse
|
161
|
Chu F, Esworthy RS, Shen B, Doroshow JH. Role of the microbiota in ileitis of a mouse model of inflammatory bowel disease-Glutathione peroxide isoenzymes 1 and 2-double knockout mice on a C57BL background. Microbiologyopen 2020; 9:e1107. [PMID: 32810389 PMCID: PMC7568258 DOI: 10.1002/mbo3.1107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/19/2020] [Accepted: 07/25/2020] [Indexed: 12/13/2022] Open
Abstract
C57Bl6 (B6) mice devoid of glutathione peroxidases 1 and 2 (Gpx1/2-DKO) develop ileitis after weaning. We previously showed germ-free Gpx1/2-DKO mice of mixed B6.129 background did not develop ileocolitis. Here, we examine the composition of the ileitis provoking microbiota in B6 Gpx1/2-DKO mice. DNA was isolated from the ileum fecal stream and subjected to high-throughput sequencing of the V3 and V4 regions of the 16S rRNA gene to determine the abundance of operational taxonomic units (OTUs). We analyzed the role of bacteria by comparing the microbiomes of the DKO and pathology-free non-DKO mice. Mice were treated with metronidazole, streptomycin, and vancomycin to alter pathology and correlate the OTU abundances with pathology levels. Principal component analysis based on Jaccard distance of abundance showed 3 distinct outcomes relative to the source Gpx1/2-DKO microbiome. Association analyses of pathology and abundance of OTUs served to rule out 7-11 of 24 OTUs for involvement in the ileitis. Collections of OTUs were identified that appeared to be linked to ileitis in this animal model and would be classified as commensals. In Gpx1/2-DKO mice, host oxidant generation from NOX1 and DUOX2 in response to commensals may compromise the ileum epithelial barrier, a role generally ascribed to oxidants generated from mitochondria, NOX2 and endoplasmic reticulum stress in response to presumptive pathogens in IBD. Elevated oxidant levels may contribute to epithelial cell shedding, which is strongly associated with progress toward inflammation in Gpx1/2-DKO mice and predictive of relapse in IBD by allowing leakage of microbial components into the submucosa.
Collapse
Affiliation(s)
- Fong‐Fong Chu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital and College of Clinical Medicine of HenanUniversity of Science and TechnologyLuoyangChina
| | - R. Steven Esworthy
- Department of Cancer Genetics and EpigeneticsBeckman Research InstituteCity of HopeDuarteCAUSA
| | - Binghui Shen
- Department of Cancer Genetics and EpigeneticsBeckman Research InstituteCity of HopeDuarteCAUSA
| | - James H. Doroshow
- Center for Cancer Research and Division of Cancer Treatment and DiagnosisNational Cancer InstituteBethesdaMDUSA
| |
Collapse
|
162
|
Cuffaro B, Assohoun ALW, Boutillier D, Súkeníková L, Desramaut J, Boudebbouze S, Salomé-Desnoulez S, Hrdý J, Waligora-Dupriet AJ, Maguin E, Grangette C. In Vitro Characterization of Gut Microbiota-Derived Commensal Strains: Selection of Parabacteroides distasonis Strains Alleviating TNBS-Induced Colitis in Mice. Cells 2020; 9:cells9092104. [PMID: 32947881 PMCID: PMC7565435 DOI: 10.3390/cells9092104] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022] Open
Abstract
Alterations in the gut microbiota composition and diversity seem to play a role in the development of chronic diseases, including inflammatory bowel disease (IBD), leading to gut barrier disruption and induction of proinflammatory immune responses. This opens the door for the use of novel health-promoting bacteria. We selected five Parabacteroides distasonis strains isolated from human adult and neonates gut microbiota. We evaluated in vitro their immunomodulation capacities and their ability to reinforce the gut barrier and characterized in vivo their protective effects in an acute murine model of colitis. The in vitro beneficial activities were highly strain dependent: two strains exhibited a potent anti-inflammatory potential and restored the gut barrier while a third strain reinstated the epithelial barrier. While their survival to in vitro gastric conditions was variable, the levels of P. distasonis DNA were higher in the stools of bacteria-treated animals. The strains that were positively scored in vitro displayed a strong ability to rescue mice from colitis. We further showed that two strains primed dendritic cells to induce regulatory T lymphocytes from naïve CD4+ T cells. This study provides better insights on the functionality of commensal bacteria and crucial clues to design live biotherapeutics able to target inflammatory chronic diseases such as IBD.
Collapse
Affiliation(s)
- Bernardo Cuffaro
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.C.); (D.B.); (J.D.)
- Institut Micalis, MIHA Team, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France; (A.L.W.A.); (S.B.)
| | - Aka L. W. Assohoun
- Institut Micalis, MIHA Team, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France; (A.L.W.A.); (S.B.)
- Laboratoire de Biotechnologie et Microbiologie des Aliments, UFR en Sciences et Technologies des Aliments, Université Nangui Abrogoua, Abidjan 00225, Côte d’Ivoire
| | - Denise Boutillier
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.C.); (D.B.); (J.D.)
| | - Lenka Súkeníková
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, 121 08 Prague, Czech Republic; (L.S.); (J.H.)
| | - Jérémy Desramaut
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.C.); (D.B.); (J.D.)
| | - Samira Boudebbouze
- Institut Micalis, MIHA Team, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France; (A.L.W.A.); (S.B.)
| | - Sophie Salomé-Desnoulez
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41-UMS 2014-PLBS, 59000 Lille, France;
| | - Jiří Hrdý
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, 121 08 Prague, Czech Republic; (L.S.); (J.H.)
| | | | - Emmanuelle Maguin
- Institut Micalis, MIHA Team, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France; (A.L.W.A.); (S.B.)
- Correspondence: (E.M.); (C.G.); Tel.: +33-681-151-925 (E.M.); +33-320-877-392 (C.G.)
| | - Corinne Grangette
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.C.); (D.B.); (J.D.)
- Correspondence: (E.M.); (C.G.); Tel.: +33-681-151-925 (E.M.); +33-320-877-392 (C.G.)
| |
Collapse
|
163
|
Dogra SK, Doré J, Damak S. Gut Microbiota Resilience: Definition, Link to Health and Strategies for Intervention. Front Microbiol 2020; 11:572921. [PMID: 33042082 PMCID: PMC7522446 DOI: 10.3389/fmicb.2020.572921] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
The gut microbiota is a new frontier in health and disease. Not only many diseases are associated with perturbed microbiota, but an increasing number of studies point to a cause-effect relationship. Defining a healthy microbiota is not possible at the current state of our knowledge mostly because of high interindividual variability. A resilient microbiota could be used as surrogate for healthy microbiota. In addition, the gut microbiota is an “organ” with frontline exposure to environmental changes and insults. During the lifetime of an individual, it is exposed to challenges such as unhealthy diet, medications and infections. Impaired ability to bounce back to the pre-challenge baseline may lead to dysbiosis. It is therefore legitimate to postulate that maintaining a resilient microbiota may be important for health. Here we review the concept of resilience, what is known about the characteristics of a resilient microbiota, and how to assess microbiota resilience experimentally using a model of high fat diet challenge in humans. Interventions to maintain microbiota resilience can be guided by the knowledge of what microbial species or functions are perturbed by challenges, and designed to replace diminished species with probiotics, when available, or boost them with prebiotics. Fibers with multiple structures and composition can also be used to increase microbiota diversity, a characteristic of the microbiota that may be associated with resilience. We finally discuss some open questions and knowledge gaps.
Collapse
Affiliation(s)
| | - Joel Doré
- Université Paris-Saclay, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, MetaGenoPolis, AgroParisTech, Microbiologie de l'Alimentation au Service de la Santé, Jouy-en-Josas, France
| | - Sami Damak
- Nestlé Research, Société des Produits Nestlé SA, Lausanne, Switzerland
| |
Collapse
|
164
|
Kozlova EV, Hegde S, Roundy CM, Golovko G, Saldaña MA, Hart CE, Anderson ER, Hornett EA, Khanipov K, Popov VL, Pimenova M, Zhou Y, Fovanov Y, Weaver SC, Routh AL, Heinz E, Hughes GL. Microbial interactions in the mosquito gut determine Serratia colonization and blood-feeding propensity. ISME JOURNAL 2020; 15:93-108. [PMID: 32895494 PMCID: PMC7852612 DOI: 10.1038/s41396-020-00763-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/05/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
Abstract
How microbe–microbe interactions dictate microbial complexity in the mosquito gut is unclear. Previously we found that, Serratia, a gut symbiont that alters vector competence and is being considered for vector control, poorly colonized Aedes aegypti yet was abundant in Culex quinquefasciatus reared under identical conditions. To investigate the incompatibility between Serratia and Ae. aegypti, we characterized two distinct strains of Serratia marcescens from Cx. quinquefasciatus and examined their ability to infect Ae. aegypti. Both Serratia strains poorly infected Ae. aegypti, but when microbiome homeostasis was disrupted, the prevalence and titers of Serratia were similar to the infection in its native host. Examination of multiple genetically diverse Ae. aegypti lines found microbial interference to S. marcescens was commonplace, however, one line of Ae. aegypti was susceptible to infection. Microbiome analysis of resistant and susceptible lines indicated an inverse correlation between Enterobacteriaceae bacteria and Serratia, and experimental co-infections in a gnotobiotic system recapitulated the interference phenotype. Furthermore, we observed an effect on host behavior; Serratia exposure to Ae. aegypti disrupted their feeding behavior, and this phenotype was also reliant on interactions with their native microbiota. Our work highlights the complexity of host–microbe interactions and provides evidence that microbial interactions influence mosquito behavior.
Collapse
Affiliation(s)
- Elena V Kozlova
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Shivanand Hegde
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Christopher M Roundy
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - George Golovko
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Miguel A Saldaña
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.,Department of Paediatrics and Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Charles E Hart
- The Institute for Translational Science, University of Texas Medical Branch, Galveston, TX, USA.,Institute for Global Health and Translational Science and SUNY Center for Environmental Health and Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Enyia R Anderson
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Emily A Hornett
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK.,Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Vsevolod L Popov
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Maria Pimenova
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yiyang Zhou
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yuriy Fovanov
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Scott C Weaver
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Andrew L Routh
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Eva Heinz
- Departments of Vector Biology and Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
165
|
Axelrod CL, Brennan CJ, Cresci G, Paul D, Hull M, Fealy CE, Kirwan JP. UCC118 supplementation reduces exercise-induced gastrointestinal permeability and remodels the gut microbiome in healthy humans. Physiol Rep 2020; 7:e14276. [PMID: 31758610 PMCID: PMC6874782 DOI: 10.14814/phy2.14276] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 01/25/2023] Open
Abstract
Dysregulation of gut microbiota and intestinal barrier function has emerged as potential mechanisms underlying digestive diseases, yet targeted therapies are lacking The purpose of this investigation was to assess the efficacy of UCC118, a characterized probiotic strain, on exercise‐induced GI permeability in healthy humans. In a randomized, double‐blind, placebo‐controlled crossover study, seven healthy adults received 4 weeks of daily UCC118 or placebo supplementation. GI hyperpermeability was induced by strenuous treadmill running performed before and after each supplementation period. While running, participants ingested 5 g of lactulose, rhamnose, and sucrose. Urine was collected before, immediately after, and every hour for 5 h after exercise to assess GI permeability. Metagenomic sequencing was performed on fecal homogenates collected prior to exercise to identify changes in microbial diversity and taxon abundances. Inflammatory biomarkers were assessed from blood and fecal homogenates collected prior to and immediately following the cessation of exercise. Exercise significantly induced intestinal permeability of lactulose, rhamnose, and sucrose (P < 0.001). UCC118 significantly reduced sucrose (Δ = −0.38 ± 0.13 vs. 1.69 ± 0.79; P < 0.05) recovery, with no substantial change in lactulose (Δ = −0.07 ± 0.23 vs. 0.35 ± 0.15; P = 0.16) or rhamnose (Δ = −0.06 ± 0.22 vs. 0.48 ± 0.28; P = 0.22). Taxonomic sequencing revealed 99 differentially regulated bacteria spanning 6 taxonomic ranks (P < 0.05) after UCC118 supplementation. No differences in plasma IL‐6 or fecal zonulin were observed after UCC118 supplementation. The results described herein provide proof of principle that 4 weeks of UCC118 supplementation attenuated exercise‐induced intestinal hyperpermeability. Further research is warranted to investigate the as‐yet‐to‐be defined molecular processes of intestinal hyperpermeability and the effects of probiotic supplementation. Dysregulation of gut microbiota and intestinal barrier function have emerged as potential mechanisms underlying digestive diseases, yet targeted therapies are lacking. In a randomized, double‐blind, placebo‐controlled crossover study, 7 healthy adults 30 received 4 weeks of daily UCC118 or placebo supplementation. UCC118 significantly reduced sucrose recovery. Taxonomic sequencing revealed 99 differentially regulated gut microbes by UCC118. The results herein provide proof of principle that UCC118 supplementation can reduce intestinal hyperpermeability.![]()
Collapse
Affiliation(s)
- Christopher L Axelrod
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio.,Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Los Angeles.,Department of Translational Services, Pennington Biomedical Research Center, Baton Rouge, Los Angeles
| | - Connery J Brennan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Gail Cresci
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Deborah Paul
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Michaela Hull
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Ciarán E Fealy
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - John P Kirwan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio.,Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Los Angeles
| |
Collapse
|
166
|
Effects of Probiotic Strains on Disease Activity and Enteric Permeability in Psoriatic Arthritis-A Pilot Open-Label Study. Nutrients 2020; 12:nu12082337. [PMID: 32764250 PMCID: PMC7468965 DOI: 10.3390/nu12082337] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/28/2020] [Accepted: 08/02/2020] [Indexed: 12/16/2022] Open
Abstract
(1) Background: Psoriatic Arthritis (PsA) is a painful disease of the joints and spine. Recent reports observed distinct enteric dysbiosis in PsA; intake of probiotic strains is considered to ameliorate enteric dysbiosis. If probiotics are effective in PsA is elusive. (2) Methods: In this pilot open-label study we enrolled 10 PsA patients with low to medium disease activity who received probiotics for 12 weeks. Analysis of faecal zonulin, α1-antitrypsin and calprotectin, as well as peripheral immune phenotyping was performed at baseline, after 12 weeks and 12 weeks after termination of probiotic intake. (3) Results: All patients showed increased levels of the enteric permeability marker zonulin which correlated with the frequency of peripheral Th17 cells. Calprotectin, a marker for intestinal inflammation was elevated in 6 out of 10 patients. Probiotic intake resulted in a reduction of disease activity and gut permeability. These effects, however, were not sustained beyond termination of probiotic intake. (4) Conclusions: PsA patients suffer from enhanced enteric permeability and inflammation. Probiotics may ameliorate disease activity in PsA by targeting these alterations.
Collapse
|
167
|
Parker C, Zhao J, Pearce DA, Kovács AD. Comparative analysis of the gut microbiota composition in the Cln1 R151X and Cln2 R207X mouse models of Batten disease and in three wild-type mouse strains. Arch Microbiol 2020; 203:85-96. [PMID: 32749661 DOI: 10.1007/s00203-020-02007-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/27/2020] [Accepted: 07/25/2020] [Indexed: 02/07/2023]
Abstract
Accumulated evidence indicates that the gut microbiota affects brain function and may be altered in neurological diseases. In this study, we analyzed the gut microbiota in Cln1R151X and Cln2R207X mice, models of the childhood neurodegenerative disorders, infantile CLN1 and late infantile CLN2 Batten diseases. Significant alterations were found in the overall gut microbiota composition and also at the individual taxonomic ranks as compared to wild-type mice. The disease-specific alterations in the gut microbiota of Cln1R151X and Cln2R207X mice may contribute to the disease phenotypes observed in these mouse models. We also compared the gut microbiota composition of three wild-type mouse strains frequently used in transgenic studies: 129S6/SvEv, C57BL/6J and mixed 129S6/SvEv × C57BL/6J. Our results show that the gut microbiota of 129S6/SvEv and C57BL/6J mice differs remarkably, which likely contributes to the known, pronounced differences in behavior and disease susceptibility between these two wild-type mouse strains.
Collapse
Affiliation(s)
- Camille Parker
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E. 60th Street N., Sioux Falls, SD, 57014, USA
| | - Jing Zhao
- Population Health Group, Sanford Research, Sioux Falls, SD, 57104, USA.,Department of Internal Medicine, University of South Dakota, Sioux Falls, SD, 57105, USA.,Center for Biostatistics, Ohio State University, Columbus, OH, 43210, USA
| | - David A Pearce
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E. 60th Street N., Sioux Falls, SD, 57014, USA.,Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, 57105, USA
| | - Attila D Kovács
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E. 60th Street N., Sioux Falls, SD, 57014, USA. .,Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, 57105, USA.
| |
Collapse
|
168
|
Revisiting the gut-joint axis: links between gut inflammation and spondyloarthritis. Nat Rev Rheumatol 2020; 16:415-433. [PMID: 32661321 DOI: 10.1038/s41584-020-0454-9] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2020] [Indexed: 02/07/2023]
Abstract
Gut inflammation is strongly associated with spondyloarthritis (SpA), as exemplified by the high prevalence of inflammatory bowel disease (IBD) and the even higher occurrence of subclinical gut inflammation in patients with SpA. The gut-joint axis of inflammation in SpA is further reinforced by similarities in immunopathogenesis at both anatomical sites and by the clinical success of therapies blocking TNF and IL-23 in IBD and in some forms of SpA. Many genetic risk factors are shared between SpA and IBD, and changes in the composition of gut microbiota are seen in both diseases. Current dogma is that inflammation in SpA initiates in the gut and leads to joint inflammation; however, although conceptually attractive, some research does not support this causal relationship. For example, therapies targeting IL-17A are efficacious in the joint but not the gut, and interfering with gut trafficking by targeting molecules such as α4β7 in IBD can lead to onset or flares of SpA. Several important knowledge gaps remain that must be addressed in future studies. Determining the true nature of the gut-joint axis has real-world implications for the treatment of patients with co-incident IBD and SpA and for the repurposing of therapeutics from one disease to the other.
Collapse
|
169
|
Glassner KL, Abraham BP, Quigley EMM. The microbiome and inflammatory bowel disease. J Allergy Clin Immunol 2020; 145:16-27. [PMID: 31910984 DOI: 10.1016/j.jaci.2019.11.003] [Citation(s) in RCA: 518] [Impact Index Per Article: 103.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic immune-mediated disease affecting the gastrointestinal tract. IBD consists of 2 subtypes: ulcerative colitis and Crohn disease. IBD is thought to develop as a result of interactions between environmental, microbial, and immune-mediated factors in a genetically susceptible host. Of late, the potential role of the microbiome in the development, progression, and treatment of IBD has been a subject of considerable interest and enquiry. Indeed, studies in human subjects have shown that the gut microbiome is different in patients with IBD compared with that in healthy control subjects. Other evidence in support of a fundamental role for the microbiome in patients with IBD includes identification of mutations in genes involved in microbiome-immune interactions among patients with IBD and epidemiologic observations implicating such microbiota-modulating risk factors as antibiotic use, cigarette smoking, levels of sanitation, and diet in the pathogenesis of IBD. Consequently, there has been much interest in the possible benefits of microbiome-modulating interventions, such as probiotics, prebiotics, antibiotics, fecal microbiota transplantation, and gene manipulation in the treatment of IBD. In this review we will discuss the role of the gut microbiome in patients with IBD; our focus will be on human studies.
Collapse
Affiliation(s)
- Kerri L Glassner
- Fondren IBD Program, Lynda K. and David M. Underwood Center for Digestive Disorders, Division of Gastroenterology and Hepatology, Houston Methodist Hospital and Weill Cornell Medical College, Houston, Tex.
| | - Bincy P Abraham
- Fondren IBD Program, Lynda K. and David M. Underwood Center for Digestive Disorders, Division of Gastroenterology and Hepatology, Houston Methodist Hospital and Weill Cornell Medical College, Houston, Tex
| | - Eamonn M M Quigley
- Fondren IBD Program, Lynda K. and David M. Underwood Center for Digestive Disorders, Division of Gastroenterology and Hepatology, Houston Methodist Hospital and Weill Cornell Medical College, Houston, Tex
| |
Collapse
|
170
|
Puértolas-Balint F, Schroeder BO. Does an Apple a Day Also Keep the Microbes Away? The Interplay Between Diet, Microbiota, and Host Defense Peptides at the Intestinal Mucosal Barrier. Front Immunol 2020; 11:1164. [PMID: 32655555 PMCID: PMC7325984 DOI: 10.3389/fimmu.2020.01164] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
A crucial mechanism of intestinal defense includes the production and secretion of host defense peptides (HDPs). HDPs control pathogens and commensals at the intestinal interface by direct killing, by sequestering vital ions, or by causing bacterial cells to aggregate in the mucus layer. Accordingly, the combined activity of various HDPs neutralizes gut bacteria before reaching the mucosa and thus helps to maintain the homeostatic balance between the host and its microbes at the mucosal barrier. Defects in the mucosal barrier have been associated with various diseases that are on the rise in the Western world. These include metabolic diseases, such as obesity and type 2 diabetes, and inflammatory intestinal disorders, including ulcerative colitis and Crohn's disease, the two major entities of inflammatory bowel disease. While the etiology of these diseases is multifactorial, highly processed Western-style diet (WSD) that is rich in carbohydrates and fat and low in dietary fiber content, is considered to be a contributing lifestyle factor. As such, WSD does not only profoundly affect the resident microbes in the intestine, but can also directly alter HDP function, thereby potentially contributing to intestinal mucosal barrier dysfunction. In this review we aim to decipher the complex interaction between diet, microbiota, and HDPs. We discuss how HDP expression can be modulated by specific microbes and their metabolites as well as by dietary factors, including fibers, lipids, polyphenols and vitamins. We identify several dietary compounds that lead to reduced HDP function, but also factors that stimulate HDP production in the intestine. Furthermore, we argue that the effect of HDPs against commensal bacteria has been understudied when compared to pathogens, and that local environmental conditions also need to be considered. In addition, we discuss the known molecular mechanisms behind HDP modulation. We believe that a better understanding of the diet-microbiota-HDP interdependence will provide insights into factors underlying modern diseases and will help to identify potential dietary interventions or probiotic supplementation that can promote HDP-mediated intestinal barrier function in the Western gut.
Collapse
Affiliation(s)
- Fabiola Puértolas-Balint
- Laboratory for Molecular Infection Medicine Sweden (MIMS) -The Nordic EMBL Partnership for Molecular Medicine, Umeå University, Umeå, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Bjoern O Schroeder
- Laboratory for Molecular Infection Medicine Sweden (MIMS) -The Nordic EMBL Partnership for Molecular Medicine, Umeå University, Umeå, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
171
|
Li C, Chen J, Li SC. Understanding Horizontal Gene Transfer network in human gut microbiota. Gut Pathog 2020; 12:33. [PMID: 32670414 PMCID: PMC7346641 DOI: 10.1186/s13099-020-00370-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/23/2020] [Indexed: 12/19/2022] Open
Abstract
Background Horizontal Gene Transfer (HGT) is the process of transferring genetic materials between species. Through sharing genetic materials, microorganisms in the human microbiota form a network. The network can provide insights into understanding the microbiota. Here, we constructed the HGT networks from the gut microbiota sequencing data and performed network analysis to characterize the HGT networks of gut microbiota. Results We constructed the HGT network and perform the network analysis to two typical gut microbiota datasets, a 283-sample dataset of Mother-to-Child and a 148-sample dataset of longitudinal inflammatory bowel disease (IBD) metagenome. The results indicated that (1) the HGT networks are scale-free. (2) The networks expand their complexities, sizes, and edge numbers, accompanying the early stage of lives; and microbiota established in children shared high similarity as their mother (p-value = 0.0138), supporting the transmission of microbiota from mother to child. (3) Groups harbor group-specific network edges, and network communities, which can potentially serve as biomarkers. For instances, IBD patient group harbors highly abundant communities of Proteobacteria (p-value = 0.0194) and Actinobacteria (p-value = 0.0316); children host highly abundant communities of Proteobacteria (p-value = 2.8785\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$e^{-5}$$\end{document}e-5) and Actinobacteria (p-value = 0.0015), and the mothers host highly abundant communities of Firmicutes (p-value = 8.0091\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$e^{-7}$$\end{document}e-7). IBD patient networks contain more HGT edges in pathogenic genus, including Mycobacterium, Sutterella, and Pseudomonas. Children’s networks contain more edges from Bifidobacterium and Escherichia. Conclusion Hence, we proposed the HGT network constructions from the gut microbiota sequencing data. The HGT networks capture the host state and the response of microbiota to the environmental and host changes, and they are essential to understand the human microbiota.
Collapse
Affiliation(s)
- Chen Li
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jiaxing Chen
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Shuai Cheng Li
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
172
|
Caruso R, Lo BC, Núñez G. Host-microbiota interactions in inflammatory bowel disease. Nat Rev Immunol 2020; 20:411-426. [PMID: 32005980 DOI: 10.1038/s41577-019-0268-7] [Citation(s) in RCA: 461] [Impact Index Per Article: 92.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2019] [Indexed: 12/25/2022]
Abstract
The mammalian intestine is colonized by trillions of microorganisms that have co-evolved with the host in a symbiotic relationship. The presence of large numbers of symbionts near the epithelial surface of the intestine poses an enormous challenge to the host because it must avoid the activation of harmful inflammatory responses to the microorganisms while preserving its ability to mount robust immune responses to invading pathogens. In patients with inflammatory bowel disease, there is a breakdown of the multiple strategies that the immune system has evolved to promote the separation between symbiotic microorganisms and the intestinal epithelium and the effective killing of penetrant microorganisms, while suppressing the activation of inappropriate T cell responses to resident microorganisms. Understanding the complex interactions between intestinal microorganisms and the host may provide crucial insight into the pathogenesis of inflammatory bowel disease as well as new avenues to prevent and treat the disease.
Collapse
Affiliation(s)
- Roberta Caruso
- Department of Pathology and Rogel Cancer Center, the University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Bernard C Lo
- Department of Pathology and Rogel Cancer Center, the University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, the University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
173
|
Abstract
The interplay between the commensal microbiota and the mammalian immune system development and function includes multifold interactions in homeostasis and disease. The microbiome plays critical roles in the training and development of major components of the host's innate and adaptive immune system, while the immune system orchestrates the maintenance of key features of host-microbe symbiosis. In a genetically susceptible host, imbalances in microbiota-immunity interactions under defined environmental contexts are believed to contribute to the pathogenesis of a multitude of immune-mediated disorders. Here, we review features of microbiome-immunity crosstalk and their roles in health and disease, while providing examples of molecular mechanisms orchestrating these interactions in the intestine and extra-intestinal organs. We highlight aspects of the current knowledge, challenges and limitations in achieving causal understanding of host immune-microbiome interactions, as well as their impact on immune-mediated diseases, and discuss how these insights may translate towards future development of microbiome-targeted therapeutic interventions.
Collapse
|
174
|
Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res 2020; 30:492-506. [PMID: 32433595 PMCID: PMC7264227 DOI: 10.1038/s41422-020-0332-7] [Citation(s) in RCA: 2058] [Impact Index Per Article: 411.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/20/2020] [Indexed: 02/08/2023] Open
Abstract
The interplay between the commensal microbiota and the mammalian immune system development and function includes multifold interactions in homeostasis and disease. The microbiome plays critical roles in the training and development of major components of the host's innate and adaptive immune system, while the immune system orchestrates the maintenance of key features of host-microbe symbiosis. In a genetically susceptible host, imbalances in microbiota-immunity interactions under defined environmental contexts are believed to contribute to the pathogenesis of a multitude of immune-mediated disorders. Here, we review features of microbiome-immunity crosstalk and their roles in health and disease, while providing examples of molecular mechanisms orchestrating these interactions in the intestine and extra-intestinal organs. We highlight aspects of the current knowledge, challenges and limitations in achieving causal understanding of host immune-microbiome interactions, as well as their impact on immune-mediated diseases, and discuss how these insights may translate towards future development of microbiome-targeted therapeutic interventions.
Collapse
Affiliation(s)
- Danping Zheng
- Immunology Department, Weizmann Institute of Science, 234 Herzl Street, 7610001, Rehovot, Israel.,Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Timur Liwinski
- Immunology Department, Weizmann Institute of Science, 234 Herzl Street, 7610001, Rehovot, Israel.,1st Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, 234 Herzl Street, 7610001, Rehovot, Israel. .,Cancer-Microbiome Division, Deutsches Krebsforschungszentrum (DKFZ), Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
175
|
Wang Y, Zhou Y, Xiao X, Zheng J, Zhou H. Metaproteomics: A strategy to study the taxonomy and functionality of the gut microbiota. J Proteomics 2020; 219:103737. [DOI: 10.1016/j.jprot.2020.103737] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/15/2022]
|
176
|
Wehkamp J, Stange EF. An Update Review on the Paneth Cell as Key to Ileal Crohn's Disease. Front Immunol 2020; 11:646. [PMID: 32351509 PMCID: PMC7174711 DOI: 10.3389/fimmu.2020.00646] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
The Paneth cells reside in the small intestine at the bottom of the crypts of Lieberkühn, intermingled with stem cells, and provide a niche for their neighbors by secreting growth and Wnt-factors as well as different antimicrobial peptides including defensins, lysozyme and others. The most abundant are the human Paneth cell α-defensin 5 and 6 that keep the crypt sterile and control the local microbiome. In ileal Crohn's disease various mechanisms including established genetic risk factors contribute to defects in the production and ordered secretion of these peptides. In addition, life-style risk factors for Crohn's disease like tobacco smoking also impact on Paneth cell function. Taken together, current evidence suggest that defective Paneth cells may play the key role in initiating inflammation in ileal, and maybe ileocecal, Crohn's disease by allowing bacterial attachment and invasion.
Collapse
Affiliation(s)
- Jan Wehkamp
- University of Tübingen, Medizinische Klinik I, Tübingen, Germany
| | - Eduard F Stange
- University of Tübingen, Medizinische Klinik I, Tübingen, Germany
| |
Collapse
|
177
|
Xia Y, Chen Y, Wang G, Yang Y, Song X, Xiong Z, Zhang H, Lai P, Wang S, Ai L. Lactobacillus plantarum AR113 alleviates DSS-induced colitis by regulating the TLR4/MyD88/NF-κB pathway and gut microbiota composition. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103854] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
178
|
Cortés-Martín A, Iglesias-Aguirre CE, Meoro A, Selma MV, Espín JC. There is No Distinctive Gut Microbiota Signature in the Metabolic Syndrome: Contribution of Cardiovascular Disease Risk Factors and Associated Medication. Microorganisms 2020; 8:microorganisms8030416. [PMID: 32183480 PMCID: PMC7143903 DOI: 10.3390/microorganisms8030416] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/09/2020] [Accepted: 03/14/2020] [Indexed: 02/06/2023] Open
Abstract
The gut microbiota (GM) has attracted attention as a new target to combat several diseases, including metabolic syndrome (MetS), a pathological condition with many factors (diabetes, obesity, dyslipidemia, hypertension, etc.) that increase cardiovascular disease (CVD) risk. However, the existence of a characteristic taxonomic signature associated with obesity-related metabolic dysfunctions is under debate. To investigate the contribution of the CVD risk factors and(or) their associated drug treatments in the composition and functionality of GM in MetS patients, we compared the GM of obese individuals (n = 69) vs. MetS patients (n = 50), as well as within patients, depending on their treatments. We also explored associations between medication, GM, clinical variables, endotoxemia, and short-chain fatty acids. Poly-drug treatments, conventional in MetS patients, prevented the accurate association between medication and GM profiles. Our results highlight the heterogeneity of taxonomic signatures in MetS patients, which mainly depend on the CVD risk factors. Hypertension and(or) its associated medication was the primary trait involved in the shaping of GM, with an overabundance of lipopolysaccharide-producing microbial groups from the Proteobacteria phylum. In the context of precision medicine, our results highlight that targeting GM to prevent and(or) treat MetS should consider MetS patients more individually, according to their CVD risk factors and associated medication.
Collapse
Affiliation(s)
- Adrián Cortés-Martín
- Laboratory of Food & Health, Research Group on Quality, Safety, and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, Spain; (A.C.-M.); (C.E.I.-A.); (M.V.S.)
| | - Carlos E. Iglesias-Aguirre
- Laboratory of Food & Health, Research Group on Quality, Safety, and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, Spain; (A.C.-M.); (C.E.I.-A.); (M.V.S.)
| | - Amparo Meoro
- Service of Endocrinology, Reina Sofía University Hospital, Avda. Intendente Jorge Palacios s/n, 30003 Murcia, Spain;
| | - María Victoria Selma
- Laboratory of Food & Health, Research Group on Quality, Safety, and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, Spain; (A.C.-M.); (C.E.I.-A.); (M.V.S.)
| | - Juan Carlos Espín
- Laboratory of Food & Health, Research Group on Quality, Safety, and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, Spain; (A.C.-M.); (C.E.I.-A.); (M.V.S.)
- Correspondence:
| |
Collapse
|
179
|
Hradicka P, Beal J, Kassayova M, Foey A, Demeckova V. A Novel Lactic Acid Bacteria Mixture: Macrophage-Targeted Prophylactic Intervention in Colorectal Cancer Management. Microorganisms 2020; 8:microorganisms8030387. [PMID: 32168834 PMCID: PMC7142725 DOI: 10.3390/microorganisms8030387] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/25/2020] [Accepted: 03/10/2020] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common forms of cancer. Its onset from chronic inflammation is widely accepted. Moreover, dysbiosis plays an undeniable role, thus the use of probiotics in CRC has been suggested. They exhibit both anti- and pro-inflammatory properties and restore balance in the microbiota. The aim of this study was to investigate the immunomodulatory properties of six lactobacilli with probiotic features in an in vitro model of macrophage-like cells and to test these pooled probiotics for their anti-tumour properties in a chemically induced CRC model using Wistar male rats. Upon co-culture of M1- and M2-like macrophages with lactobacilli, cytokine release (TNF-α, IL-1β, IL-18, IL-23) and phagocytic activity using fluorescent-labelled bacteria were tested. The effects of orally administered probiotics on basic cancer and immune parameters and cytokine concentration (TNF-α, IL-1β, IL-18) in colon tumours were studied. Tested lactobacilli exhibited both pro- and anti-inflammatory properties in in vitro conditions. In vivo study showed that the administration of probiotics was able to decrease multiplicity, volume and total tumour numbers, restore colon length (p < 0.05) and increase IL-18 production (p < 0.05) in tumour tissue. These data indicate both an immunomodulatory effect of probiotics on distinct macrophage subsets and a protective effect against chemically-induced CRC.
Collapse
Affiliation(s)
- Petra Hradicka
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University in Kosice, Srobarova 2, 041 54 Kosice, Slovak; (P.H.); (M.K.)
| | - Jane Beal
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK;
| | - Monika Kassayova
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University in Kosice, Srobarova 2, 041 54 Kosice, Slovak; (P.H.); (M.K.)
| | - Andrew Foey
- School of Biomedical Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK;
| | - Vlasta Demeckova
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University in Kosice, Srobarova 2, 041 54 Kosice, Slovak; (P.H.); (M.K.)
- Correspondence:
| |
Collapse
|
180
|
Schirmer M, Garner A, Vlamakis H, Xavier RJ. Microbial genes and pathways in inflammatory bowel disease. Nat Rev Microbiol 2020; 17:497-511. [PMID: 31249397 DOI: 10.1038/s41579-019-0213-6] [Citation(s) in RCA: 558] [Impact Index Per Article: 111.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Perturbations in the intestinal microbiome are implicated in inflammatory bowel disease (IBD). Studies of treatment-naive patients have identified microbial taxa associated with disease course and treatment efficacy. To gain a mechanistic understanding of how the microbiome affects gastrointestinal health, we need to move from census to function. Bacteria, including those that adhere to epithelial cells as well as several Clostridium species, can alter differentiation of T helper 17 cells and regulatory T cells. Similarly, microbial products such as short-chain fatty acids and sphingolipids also influence immune responses. Metagenomics and culturomics have identified strains of Ruminococcus gnavus and adherent invasive Escherichia coli that are linked to IBD and gut inflammation. Integrated analysis of multiomics data, including metagenomics, metatranscriptomics and metabolomics, with measurements of host response and culturomics, have great potential in understanding the role of the microbiome in IBD. In this Review, we highlight current knowledge of gut microbial factors linked to IBD pathogenesis and discuss how multiomics data from large-scale population studies in health and disease have been used to identify specific microbial strains, transcriptional changes and metabolic alterations associated with IBD.
Collapse
Affiliation(s)
| | - Ashley Garner
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hera Vlamakis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA.
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA.
| |
Collapse
|
181
|
Zhang R, Yuan S, Ye J, Wang X, Zhang X, Shen J, Yuan M, Liao W. Polysaccharide from flammuliana velutipes improves colitis via regulation of colonic microbial dysbiosis and inflammatory responses. Int J Biol Macromol 2020; 149:1252-1261. [PMID: 32035958 DOI: 10.1016/j.ijbiomac.2020.02.044] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/11/2022]
Abstract
The aim of this study is to investigate whether Flammuliana Velutipes Polysaccharide (FVP) could aid in the prevention of colitis. Effect of FVP on colitis was evaluated using dextran sulfate sodium (DSS)-induced colitis in rats. Influence of FVP on the expression of inflammation related biomarkers and signal pathway element of TLR4\NF-κB were assessed. The composition and taxonomy of colonic microbiota were analyzed by 16S rDNA high throughput sequencing, and the concentrations of caecal short fatty chain acids were assessed by chromatography-mass spectrometry. Our results showed that FVP treatment could regulate the colonic microbial dysbiosis and promote the levels of caecal short fatty chain acids, leading to down-regulation of TLR4\NF-κB signal pathway, which finally ameliorate the colitis. Thus, the present study is the first attempt to elucidate the effect of FVP on colitis and support the potential application of FVP as a functional food ingredient or preventive drugs for colitis.
Collapse
Affiliation(s)
- Rongjun Zhang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, China; Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Sijie Yuan
- The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, Guangdong, China
| | - Jufeng Ye
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Xiangdong Wang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Xudong Zhang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Jie Shen
- The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, Guangdong, China
| | - Miaomiao Yuan
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, Guangdong, China.
| | - Wenzhen Liao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, China.
| |
Collapse
|
182
|
Li LL, Wang YT, Zhu LM, Liu ZY, Ye CQ, Qin S. Inulin with different degrees of polymerization protects against diet-induced endotoxemia and inflammation in association with gut microbiota regulation in mice. Sci Rep 2020; 10:978. [PMID: 31969646 PMCID: PMC6976630 DOI: 10.1038/s41598-020-58048-w] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 01/09/2020] [Indexed: 12/12/2022] Open
Abstract
Societal lifestyle changes, especially increased consumption of a high-fat diet lacking dietary fibers, lead to gut microbiota dysbiosis and enhance the incidence of adiposity and chronic inflammatory disease. We aimed to investigate the metabolic effects of inulin with different degrees of polymerization on high-fat diet-fed C57BL/6 J mice and to evaluate whether different health outcomes are related to regulation of the gut microbiota. Short-chain and long-chain inulins exert beneficial effects through alleviating endotoxemia and inflammation. Antiinflammation was associated with a proportional increase in short-chain fatty acid-producing bacteria and an increase in the concentration of short-chain fatty acids. Inulin might decrease endotoxemia by increasing the proportion of Bifidobacterium and Lactobacillus, and their inhibition of endotoxin secretion may also contribute to antiinflammation. Interestingly, the beneficial health effects of long-chain inulin were more pronounced than those of short-chain inulin. Long-chain inulin was more dependent than short-chain inulin on species capable of processing complex polysaccharides, such as Bacteroides. A good understanding of inulin-gut microbiota-host interactions helps to provide a dietary strategy that could target and prevent high-fat diet-induced endotoxemia and inflammation through a prebiotic effect.
Collapse
Affiliation(s)
- Li-Li Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yu-Ting Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- School of Public Health, Nantong University, Nantong, 226019, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Li-Meng Zhu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Zheng-Yi Liu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Chang-Qing Ye
- School of Public Health, Nantong University, Nantong, 226019, China.
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
183
|
Impact of commonly used drugs on the composition and metabolic function of the gut microbiota. Nat Commun 2020; 11:362. [PMID: 31953381 PMCID: PMC6969170 DOI: 10.1038/s41467-019-14177-z] [Citation(s) in RCA: 455] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023] Open
Abstract
The human gut microbiota has now been associated with drug responses and efficacy, while chemical compounds present in these drugs can also impact the gut bacteria. However, drug–microbe interactions are still understudied in the clinical context, where polypharmacy and comorbidities co-occur. Here, we report relations between commonly used drugs and the gut microbiome. We performed metagenomics sequencing of faecal samples from a population cohort and two gastrointestinal disease cohorts. Differences between users and non-users were analysed per cohort, followed by a meta-analysis. While 19 of 41 drugs are found to be associated with microbial features, when controlling for the use of multiple medications, proton-pump inhibitors, metformin, antibiotics and laxatives show the strongest associations with the microbiome. We here provide evidence for extensive changes in taxonomy, metabolic potential and resistome in relation to commonly used drugs. This paves the way for future studies and has implications for current microbiome studies by demonstrating the need to correct for multiple drug use. Here, via a metagenomics analysis of population-based and disease cohorts, Vich Vila et al. study the impact of 41 commonly used medications on the taxonomic structures, metabolic potential and resistome of the gut microbiome, underscoring the importance of correcting for multiple drug use in microbiome studies.
Collapse
|
184
|
Zeng H, Larson KJ, Cheng WH, Bukowski MR, Safratowich BD, Liu Z, Hakkak R. Advanced liver steatosis accompanies an increase in hepatic inflammation, colonic, secondary bile acids and Lactobacillaceae/Lachnospiraceae bacteria in C57BL/6 mice fed a high-fat diet. J Nutr Biochem 2020; 78:108336. [PMID: 32004929 DOI: 10.1016/j.jnutbio.2019.108336] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 10/30/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in Western countries, and the gut-liver axis is implicated in liver disease pathogenesis. We hypothesize that advanced liver steatosis accompanies an increase in hepatic inflammation, colonic secondary bile acids (BAs) and secondary BA-producing bacteria in mice fed a high-fat (HF) diet model of obesity. Four-week old male C57BL/6 mice were fed an HF (45% energy) or a low-fat (LF) (10% energy) diet for 21 weeks. At the end of the study, body weight and body fat percentage in the HF group were 0.23- and 0.41-fold greater than those in the LF group, respectively. Similarly, the HF group exhibited an increase in hepatic lipid droplets, inflammatory cell infiltration, inducible nitric oxide synthase, and hepatocellular ballooning (but without hepatic Mallory bodies) which are key histological features of advanced hepatic steatosis. Furthermore, RNA sequencing, qPCR and immunohistological methods found that nicotinamide n-methyltransferase and selenoprotein P, two inflammation-related hepatic genes, were upregulated in the HF group. Consistent with the hepatic inflammation, the levels of proinflammatory plasma-cytokines (TNF-α and IL6), colonic secondary BAs (LCA, DCA) and secondary BA producing bacteria (e.g., lactobacillaceae/Lachnospiraceae) were at least 0.5-fold greater in the HF group compared with the LF group. Taken together, the data demonstrate that advanced liver-steatosis is concurrent with an elevated level of hepatic inflammation, colonic secondary bile acids and their associated bacteria in mice fed an HF diet. These data suggest a potential gut-liver crosstalk at the stage of advanced liver-steatosis.
Collapse
Affiliation(s)
- Huawei Zeng
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203.
| | - Kate J Larson
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203
| | - Wen-Hsing Cheng
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, MS, 39762
| | - Michael R Bukowski
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203
| | - Bryan D Safratowich
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203
| | - Zhenhua Liu
- School of Public Health and Health Science, University of Massachusetts, Amherst, MA 01003
| | - Reza Hakkak
- Departments of Dietetics and Nutrition, University of Arkansas for Medical Sciences, Little Rock, AR, 72205; Arkansas Children Research Institute, Little Rock, AR, 72202
| |
Collapse
|
185
|
Manipulating resident microbiota to enhance regulatory immune function to treat inflammatory bowel diseases. J Gastroenterol 2020; 55:4-14. [PMID: 31482438 PMCID: PMC6942586 DOI: 10.1007/s00535-019-01618-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/20/2019] [Indexed: 02/04/2023]
Abstract
Altered intestinal microbial composition (dysbiosis) and metabolic products activate aggressive mucosal immune responses that mediate inflammatory bowel diseases (IBD). This dysbiosis impairs the function of regulatory immune cells, which normally promote mucosal homeostasis. Normalizing and maintaining regulatory immune cell function by correcting dysbiosis provides a promising approach to treat IBD patients. However, existing microbe-targeted therapies, including antibiotics, prebiotics, probiotics, and fecal microbial transplantation, provide variable outcomes that are not optimal for current clinical application. This review discusses recent progress in understanding the dysbiosis of IBD and the basis for therapeutic restoration of homeostatic immune function by manipulating an individual patient's microbiota composition and function. We believe that identifying more precise therapeutic targets and developing appropriate rapid diagnostic tools will guide more effective and safer microbe-based induction and maintenance treatments for IBD patients that can be applied in a personalized manner.
Collapse
|
186
|
Newman KM, Vaughn BP. Efficacy of intestinal microbiota transplantation in ulcerative colitis: a review of current literature and knowledge. MINERVA GASTROENTERO 2020; 65. [DOI: 10.23736/s1121-421x.19.02610-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
187
|
Stolzer I, Kaden-Volynets V, Ruder B, Letizia M, Bittel M, Rausch P, Basic M, Bleich A, Baines JF, Neurath MF, Wirtz S, Weidinger C, Bischoff SC, Becker C, Günther C. Environmental Microbial Factors Determine the Pattern of Inflammatory Lesions in a Murine Model of Crohn's Disease-Like Inflammation. Inflamm Bowel Dis 2020; 26:66-79. [PMID: 31276162 DOI: 10.1093/ibd/izz142] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Indexed: 12/19/2022]
Abstract
Crohn's disease (CD) patients can be grouped into patients suffering from ileitis, ileocolitis, jejunoileitis, and colitis. The pathophysiological mechanism underlying this regional inflammation is still unknown. Although most murine models of inflammatory bowel disease (IBD) develop inflammation in the colon, there is an unmet need for novel models that recapitulate the spontaneous and fluctuating nature of inflammation as seen in CD. Recently, mice with an intestinal epithelial cell-specific deletion for Caspase-8 (Casp8ΔIEC mice), which are characterized by cell death-driven ileitis and disrupted Paneth cell homeostasis, have been identified as a novel model of CD-like ileitis. Here we uncovered that genetic susceptibility alone is sufficient to drive ileitis in Casp8ΔIEC mice. In sharp contrast, environmental factors, such as a disease-relevant microbial flora, determine colonic inflammation. Accordingly, depending on the microbial environment, isogenic Casp8ΔIEC mice either exclusively developed ileitis or suffered from pathologies in several parts of the gastrointestinal tract. Colitis in these mice was characterized by massive epithelial cell death, leading to spread of commensal gut microbes to the extra-intestinal space and hence an aberrant activation of the systemic immunity. We further uncovered that Casp8ΔIEC mice show qualitative and quantitative changes in the intestinal microbiome associated with an altered mucosal and systemic immune response. In summary, we identified that inflammation in this murine model of CD-like inflammation is characterized by an immune reaction, presumably directed against a disease-relevant microbiota in a genetically susceptible host, with impaired mucosal barrier function and bacterial clearance at the epithelial interface.
Collapse
Affiliation(s)
- Iris Stolzer
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | | | - Barbara Ruder
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Marilena Letizia
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Berlin, Germany
| | - Miriam Bittel
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Philipp Rausch
- Max Planck Institute for Evolutionary Biology, Evolutionary Genomics, Plön, Germany.,Institute for Experimental Medicine, Evolutionary Genomics, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Marijana Basic
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - John F Baines
- Max Planck Institute for Evolutionary Biology, Evolutionary Genomics, Plön, Germany.,Institute for Experimental Medicine, Evolutionary Genomics, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Markus F Neurath
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Wirtz
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Carl Weidinger
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Berlin, Germany
| | - Stephan C Bischoff
- Department of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Christoph Becker
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Claudia Günther
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
188
|
Sun Q, Xu X, Zhang J, Sun M, Tian Q, Li Q, Cao W, Zhang X, Wang H, Liu J, Zhang J, Meng X, Wu L, Song M, Liu H, Wang W, Wang Y. Association of suboptimal health status with intestinal microbiota in Chinese youths. J Cell Mol Med 2020; 24:1837-1847. [PMID: 31808612 PMCID: PMC6991644 DOI: 10.1111/jcmm.14880] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/21/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023] Open
Abstract
Suboptimal health status (SHS), a physical state between health and disease, is a subclinical and reversible stage of chronic disease. Previous studies have shown alterations in the intestinal microbiota in patients with some chronic diseases. This study aimed to investigate the association between SHS and intestinal microbiota in a case-control study with 50 SHS individuals and 50 matched healthy controls. Intestinal microbiota was analysed by MiSeq 250PE. Alpha diversity of intestinal microbiota in SHS individuals was higher compared with that of healthy controls (Simpson index, W = 2238, P = .048). Beta diversity was different between SHS and healthy controls (P = .018). At the phylum level, the relative abundance of Verrucomicrobia was higher in the SHS group than that in the controls (W = 2201, P = .049). Compared with that of the control group, nine genera were significantly higher and five genera were lower in abundance in the SHS group (all P < .05). The intestinal microbiota, analysed by a random forest model, was able to distinguish individuals with SHS from the controls, with an area under the curve of 0.79 (95% confidence interval: 0.77-0.81). We demonstrated that the alteration of intestinal microbiota occurs with SHS, an early stage of disease, which might shed light on the importance of intestinal microbiota in the primary prevention of noncommunicable chronic diseases.
Collapse
Affiliation(s)
- Qi Sun
- Beijing Key Laboratory of Clinical EpidemiologySchool of Public HealthCapital Medical UniversityBeijingChina
- National Research Institute for Family PlanningBeijingChina
- Graduate School of Peking Union Medical CollegeBeijingChina
| | - Xizhu Xu
- School of Public HealthShandong First Medical University & Shandong Academy of Medical SciencesTaianChina
| | - Jie Zhang
- Beijing Key Laboratory of Clinical EpidemiologySchool of Public HealthCapital Medical UniversityBeijingChina
| | - Ming Sun
- Beijing Key Laboratory of Clinical EpidemiologySchool of Public HealthCapital Medical UniversityBeijingChina
| | - Qiuyue Tian
- Beijing Key Laboratory of Clinical EpidemiologySchool of Public HealthCapital Medical UniversityBeijingChina
| | - Qihuan Li
- Beijing Key Laboratory of Clinical EpidemiologySchool of Public HealthCapital Medical UniversityBeijingChina
| | - Weijie Cao
- Beijing Key Laboratory of Clinical EpidemiologySchool of Public HealthCapital Medical UniversityBeijingChina
| | - Xiaoyu Zhang
- Beijing Key Laboratory of Clinical EpidemiologySchool of Public HealthCapital Medical UniversityBeijingChina
| | - Hao Wang
- Beijing Key Laboratory of Clinical EpidemiologySchool of Public HealthCapital Medical UniversityBeijingChina
| | - Jiaonan Liu
- Beijing Key Laboratory of Clinical EpidemiologySchool of Public HealthCapital Medical UniversityBeijingChina
| | - Jinxia Zhang
- Beijing Key Laboratory of Clinical EpidemiologySchool of Public HealthCapital Medical UniversityBeijingChina
| | - Xiaoni Meng
- Beijing Key Laboratory of Clinical EpidemiologySchool of Public HealthCapital Medical UniversityBeijingChina
| | - Lijuan Wu
- Beijing Key Laboratory of Clinical EpidemiologySchool of Public HealthCapital Medical UniversityBeijingChina
| | - Manshu Song
- Beijing Key Laboratory of Clinical EpidemiologySchool of Public HealthCapital Medical UniversityBeijingChina
| | - Hongqi Liu
- University HospitalWeifang UniversityWeifangChina
| | - Wei Wang
- Beijing Key Laboratory of Clinical EpidemiologySchool of Public HealthCapital Medical UniversityBeijingChina
- School of Public HealthShandong First Medical University & Shandong Academy of Medical SciencesTaianChina
- School of Medical and Health SciencesEdith Cowan UniversityPerthWAAustralia
| | - Youxin Wang
- Beijing Key Laboratory of Clinical EpidemiologySchool of Public HealthCapital Medical UniversityBeijingChina
| |
Collapse
|
189
|
Hu H, Lin A, Kong M, Yao X, Yin M, Xia H, Ma J, Liu H. Intestinal microbiome and NAFLD: molecular insights and therapeutic perspectives. J Gastroenterol 2020; 55:142-158. [PMID: 31845054 PMCID: PMC6981320 DOI: 10.1007/s00535-019-01649-8] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/19/2019] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of dysregulated lipid and glucose metabolism, which is often associated with obesity, dyslipidemia and insulin resistance. In view of the high morbidity and health risks of NAFLD, the lack of effective cure has drawn great attention. In recent years, a line of evidence has suggested a close linkage between the intestine and liver diseases such as NAFLD. We summarized the composition and characteristics of intestinal microbes and reviewed molecular insights into the intestinal microbiome in development and progression of NAFLD. Intestinal microbes mainly include bacteria, archaea, viruses and fungi, and the crosstalk between non-bacterial intestinal microbes and human liver diseases should be paid more attention. Intestinal microbiota imbalance may not only increase the intestinal permeability to gut microbes but also lead to liver exposure to harmful substances that promote hepatic lipogenesis and fibrosis. Furthermore, we focused on reviewing the latest "gut-liver axis"-targeting treatment, including the application of antibiotics, probiotics, prebiotics, synbiotics, farnesoid X receptor agonists, bile acid sequestrants, gut-derived hormones, adsorbents and fecal microbiota transplantation for NAFLD. In this review, we also discussed the potential mechanisms of "gut-liver axis" manipulation and efficacy of these therapeutic strategies for NAFLD treatment.
Collapse
Affiliation(s)
- Haiming Hu
- grid.257143.60000 0004 1772 1285Hubei University of Chinese Medicine, Wuhan, Hubei China
| | - Aizhen Lin
- grid.477392.cHubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei China
| | - Mingwang Kong
- grid.257143.60000 0004 1772 1285Hubei University of Chinese Medicine, Wuhan, Hubei China
| | - Xiaowei Yao
- grid.257143.60000 0004 1772 1285Hubei University of Chinese Medicine, Wuhan, Hubei China
| | - Mingzhu Yin
- grid.257143.60000 0004 1772 1285Hubei University of Chinese Medicine, Wuhan, Hubei China
| | - Hui Xia
- grid.257143.60000 0004 1772 1285Hubei University of Chinese Medicine, Wuhan, Hubei China
| | - Jun Ma
- grid.257143.60000 0004 1772 1285Hubei University of Chinese Medicine, Wuhan, Hubei China
| | - Hongtao Liu
- grid.257143.60000 0004 1772 1285Hubei University of Chinese Medicine, Wuhan, Hubei China
| |
Collapse
|
190
|
Kim S, Thapa I, Zhang L, Ali H. A novel graph theoretical approach for modeling microbiomes and inferring microbial ecological relationships. BMC Genomics 2019; 20:945. [PMID: 31856723 PMCID: PMC6923821 DOI: 10.1186/s12864-019-6288-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Microbiomes play vital roles in shaping environments and stabilize them based on their compositions and inter-species relationships among its species. Variations in microbial properties have been reported to have significant impact on their host environment. For example, variants in gut microbiomes have been reported to be associated with several chronic conditions, such as inflammatory disease and irritable bowel syndrome. However, how microbial bacteria contribute to pathogenesis still remains unclear and major research questions in this domain remain unanswered. Methods We propose a split graph model to represent the composition and interactions of a given microbiome. We used metagenomes from Korean populations in this study. The dataset consists of three different types of samples, viz. mucosal tissue and stool from Crohn’s disease patients and stool from healthy individuals. We use the split graph model to analyze the impact of microbial compositions on various host phenotypes. Utilizing the graph model, we have developed a pipeline that integrates genomic information and pathway analysis to characterize both critical informative components of inter-bacterial correlations and associations between bacterial taxa and various metabolic pathways. Results The obtained results highlight the importance of the microbial communities and their inter-relationships and show how these microbial structures are correlated with Crohn’s disease. We show that there are significant positive associations between detected taxonomic biomarkers as well as multiple functional modules in the split graph of mucosal tissue samples from CD patients. Bacteria Moraxellaceae and Pseudomonadaceae were detected as taxonomic biomarkers in CD groups. Higher abundance of these bacteria have been reported in previous study and several metabolic pathways associated with these bacteria were characterized in CD samples. Conclusions The proposed pipeline provides a new way to approach the analysis of complex microbiomes. The results obtained from this study show great potential in unraveling mechansims in complex biological systems to understand how various components in such complex environments are associated with critical biological functions.
Collapse
Affiliation(s)
- Suyeon Kim
- School of Interdisciplinary Informatics, University of Nebraska at Omaha, Omaha, 68182, NE, USA
| | - Ishwor Thapa
- School of Interdisciplinary Informatics, University of Nebraska at Omaha, Omaha, 68182, NE, USA
| | - Ling Zhang
- School of Interdisciplinary Informatics, University of Nebraska at Omaha, Omaha, 68182, NE, USA
| | - Hesham Ali
- College of Information Science and Technology, University of Nebraska at Omaha, Omaha, 68182, NE, USA.
| |
Collapse
|
191
|
Ahmed N, Mahmoud NF, Solyman S, Hanora A. Human Nasal Microbiome as Characterized by Metagenomics Differs Markedly Between Rural and Industrial Communities in Egypt. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 23:573-582. [PMID: 31651219 DOI: 10.1089/omi.2019.0144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Microbial communities residing in the nose play important roles in human health and disease. We report marked differences in nasal microbiota between a rural community and an industrial setting located near a major urban city. Nasal samples were collected from 19 healthy male subjects: 9 samples from persons living in a rural village, and 10 samples from ceramic factory workers in a major industrial Egyptian city. The nasal microbiota in the rural sample had higher and distinct diversity compared with industrial samples from workers exposed to pollution daily. Taxonomic analysis of the sequences revealed five major phyla; among these phyla were Actinobacteria, Proteobacteria, Bacteroidetes, and Fusobacteria, revealing significant abundance variation by geographical location. For example, the rural group had a significant increase in representation of Actinobacteria and Bacteroidetes (p = 0.004, p = 0.01, respectively) compared with the industrial group. However, the industrial group showed a significant increase in relative abundance of phylum Proteobacteria (p = 0.02). The most predominant genera for the rural group were Corynebacterium, Staphylococcus, Alloiococcus, and Peptoniphilus. By contrast, the industrial group was dominated by Staphylococcus, Sphingomonas, and Moraxella. Environmental pollution might alter the nasal microbiome leading to an attendant disturbance in the microbiome community structure. The clinical and public health implications of these nasal microbiome variations by rural and industrialized geography warrant further research. This study contributes to our knowledge of the bacterial composition of nasal microbiome in rural and industrialized geographies, and informs public health, respiratory medicine, and occupational health scholarship.
Collapse
Affiliation(s)
- Nada Ahmed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ministry of Health, Cairo, Egypt
| | - Nora Fahmy Mahmoud
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Samar Solyman
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Amro Hanora
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
192
|
Gastro-intestinal and oral microbiome signatures associated with healthy aging. GeroScience 2019; 41:907-921. [PMID: 31620923 DOI: 10.1007/s11357-019-00098-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 08/28/2019] [Indexed: 12/11/2022] Open
Abstract
The human oral and gut microbiomes influence health via competition for a distinct niche in the body with pathogens, via metabolic capabilities that increase host digestive capacity and generate compounds engaged in signaling pathways and modulation of immune system functions. Old age alters our metabolic and regenerative capacity. Following recruitment of 65 human subjects in the age range of 70 to 82, we discerned healthy aging (HA) and non-healthy aging (NHA) cohorts discordant in the occurrence of one or more major diseases: (1) cancer, (2) acute or chronic cardiovascular diseases, (3) acute or chronic pulmonary diseases, (4) diabetes, and (5) stroke or neurodegenerative disorders. We analyzed these cohorts' oral microbiomes (saliva) and gut microbiomes (stool) to assess diversity and identify microbial biomarkers for HA. In contrast to the gut microbiome where no change was observed, we found that the saliva microbiome had higher α-diversity in the HA compared with the NHA group. We observed the genus Akkermansia to be significantly more abundant in the gut microbiota of the HA group. Akkermansia muciniphila is a colonic mucin-degrading bacterium believed to have beneficial effects on gastrointestinal health, particularly in the context of diabetes and obesity. Erysipelotrichaceae UCG-003 was a taxon increased in abundance in the HA cohort. Streptococcus was the only genus observed to be significantly decreased in abundance in both the gut and oral microbiomes of the HA cohort compared with the NHA cohort. Our data support the notion that these microbes are potential probiotics to decrease the risks of non-healthy aging.
Collapse
|
193
|
Muraro D, Parker A, Vaux L, Filippi S, Almet AA, Fletcher AG, Watson AJM, Pin C, Maini PK, Byrne HM. Chronic TNFα-driven injury delays cell migration to villi in the intestinal epithelium. J R Soc Interface 2019; 15:rsif.2018.0037. [PMID: 30068555 DOI: 10.1098/rsif.2018.0037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 07/03/2018] [Indexed: 12/19/2022] Open
Abstract
The intestinal epithelium is a single layer of cells which provides the first line of defence of the intestinal mucosa to bacterial infection. Cohesion of this physical barrier is supported by renewal of epithelial stem cells, residing in invaginations called crypts, and by crypt cell migration onto protrusions called villi; dysregulation of such mechanisms may render the gut susceptible to chronic inflammation. The impact that excessive or misplaced epithelial cell death may have on villus cell migration is currently unknown. We integrated cell-tracking methods with computational models to determine how epithelial homeostasis is affected by acute and chronic TNFα-driven epithelial cell death. Parameter inference reveals that acute inflammatory cell death has a transient effect on epithelial cell dynamics, whereas cell death caused by chronic elevated TNFα causes a delay in the accumulation of labelled cells onto the villus compared to the control. Such a delay may be reproduced by using a cell-based model to simulate the dynamics of each cell in a crypt-villus geometry, showing that a prolonged increase in cell death slows the migration of cells from the crypt to the villus. This investigation highlights which injuries (acute or chronic) may be regenerated and which cause disruption of healthy epithelial homeostasis.
Collapse
Affiliation(s)
- Daniele Muraro
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, UK .,Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, UK
| | - Aimee Parker
- Gut Health and Food Safety Research Programme, Institute of Food Research, Norwich, UK
| | - Laura Vaux
- Gut Health and Food Safety Research Programme, Institute of Food Research, Norwich, UK
| | - Sarah Filippi
- Department of Mathematics, Imperial College London, London, UK.,Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Axel A Almet
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, UK
| | - Alexander G Fletcher
- School of Mathematics and Statistics and Bateson Centre, University of Sheffield, Sheffield, UK
| | | | - Carmen Pin
- Gut Health and Food Safety Research Programme, Institute of Food Research, Norwich, UK
| | - Philip K Maini
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, UK
| | - Helen M Byrne
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, UK
| |
Collapse
|
194
|
Depletion of dietary aryl hydrocarbon receptor ligands alters microbiota composition and function. Sci Rep 2019; 9:14724. [PMID: 31604984 PMCID: PMC6789125 DOI: 10.1038/s41598-019-51194-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 09/24/2019] [Indexed: 12/17/2022] Open
Abstract
The intestinal microbiota is critical for maintaining homeostasis. Dysbiosis, an imbalance in the microbial community, contributes to the susceptibility of several diseases. Many factors are known to influence gut microbial composition, including diet. We have previously shown that fecal immunoglobulin (Ig) A levels are decreased in mice fed a diet free of aryl hydrocarbon receptor (AhR) ligands. Here, we hypothesize this IgA decrease is secondary to diet-induced dysbiosis. We assigned mice to a conventional diet, an AhR ligand-free diet, or an AhR ligand-free diet supplemented with the dietary AhR ligand indole-3-carbinol (I3C). We observed a global alteration of fecal microbiota upon dietary AhR ligand deprivation. Compared to mice on the conventional diet, family Erysipelotrichaceae was enriched in the feces of mice on the AhR ligand-free diet but returned to normal levels upon dietary supplementation with I3C. Faecalibaculum rodentium, an Erysipelotrichaceae species, depleted its growth media of AhR ligands. Cultured fecal bacteria from mice on the AhR ligand-free diet, but not the other two diets, were able to alter IgA levels in vitro, as was F. rodentium alone. Our data point to the critical role of AhR dietary ligands in shaping the composition and proper functioning of gut microbiota.
Collapse
|
195
|
Vich Vila A, Imhann F, Collij V, Jankipersadsing SA, Gurry T, Mujagic Z, Kurilshikov A, Bonder MJ, Jiang X, Tigchelaar EF, Dekens J, Peters V, Voskuil MD, Visschedijk MC, van Dullemen HM, Keszthelyi D, Swertz MA, Franke L, Alberts R, Festen EAM, Dijkstra G, Masclee AAM, Hofker MH, Xavier RJ, Alm EJ, Fu J, Wijmenga C, Jonkers DMAE, Zhernakova A, Weersma RK. Gut microbiota composition and functional changes in inflammatory bowel disease and irritable bowel syndrome. Sci Transl Med 2019; 10:10/472/eaap8914. [PMID: 30567928 DOI: 10.1126/scitranslmed.aap8914] [Citation(s) in RCA: 359] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 04/06/2018] [Accepted: 07/16/2018] [Indexed: 12/15/2022]
Abstract
Changes in the gut microbiota have been associated with two of the most common gastrointestinal diseases, inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS). Here, we performed a case-control analysis using shotgun metagenomic sequencing of stool samples from 1792 individuals with IBD and IBS compared with control individuals in the general population. Despite substantial overlap between the gut microbiome of patients with IBD and IBS compared with control individuals, we were able to use gut microbiota composition differences to distinguish patients with IBD from those with IBS. By combining species-level profiles and strain-level profiles with bacterial growth rates, metabolic functions, antibiotic resistance, and virulence factor analyses, we identified key bacterial species that may be involved in two common gastrointestinal diseases.
Collapse
Affiliation(s)
- Arnau Vich Vila
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, Netherlands.,University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Floris Imhann
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, Netherlands.,University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Valerie Collij
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, Netherlands.,University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Soesma A Jankipersadsing
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Thomas Gurry
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Zlatan Mujagic
- Maastricht University Medical Center+, Division Gastroenterology-Hepatology, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht, Netherlands
| | - Alexander Kurilshikov
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Marc Jan Bonder
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Xiaofang Jiang
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ettje F Tigchelaar
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Jackie Dekens
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Vera Peters
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, Netherlands
| | - Michiel D Voskuil
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, Netherlands.,University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Marijn C Visschedijk
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, Netherlands.,University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Hendrik M van Dullemen
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, Netherlands
| | - Daniel Keszthelyi
- Maastricht University Medical Center+, Division Gastroenterology-Hepatology, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht, Netherlands
| | - Morris A Swertz
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Lude Franke
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Rudi Alberts
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, Netherlands.,University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Eleonora A M Festen
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, Netherlands.,University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Gerard Dijkstra
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, Netherlands
| | - Ad A M Masclee
- Maastricht University Medical Center+, Division Gastroenterology-Hepatology, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht, Netherlands
| | - Marten H Hofker
- University of Groningen and University Medical Center Groningen, Department of Pediatrics, Groningen, Netherlands
| | - Ramnik J Xavier
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Eric J Alm
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jingyuan Fu
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, Netherlands.,University of Groningen and University Medical Center Groningen, Department of Pediatrics, Groningen, Netherlands
| | - Cisca Wijmenga
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Daisy M A E Jonkers
- Maastricht University Medical Center+, Division Gastroenterology-Hepatology, NUTRIM School for Nutrition, and Translational Research in Metabolism, Maastricht, Netherlands
| | - Alexandra Zhernakova
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, Netherlands
| | - Rinse K Weersma
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, Netherlands.
| |
Collapse
|
196
|
Abstract
Introduction: Inflammatory bowel diseases (IBD) are on the rise worldwide. This review covers the current concepts of the etiology of Crohn´s disease and ulcerative colitis by focusing on an unbalanced interaction between the intestinal microbiota and the mucosal barrier. Understanding these issues is of paramount importance for the development of targeted therapies aiming at the disease cause.Area covered: Gut microbiota alterations and a dysfunctional intestinal mucosa are associated with IBD. Here we focus on specific defense structures of the mucosal barrier, namely antimicrobial peptides and the mucus layer, which keep the gut microbiota at a distance under healthy conditions and are defective in IBD.Expert commentary: The microbiology of both forms of IBD is different but characterized by a reduced bacterial diversity and richness. Abundance of certain bacterial species is altered, and the compositional changes are related to disease activity. In IBD the mucus layer above the epithelium is contaminated by bacteria and the immune reaction is dominated by the antibacterial response. Human genetics suggest that many of the basic deficiencies in the mucosal response, due to Paneth cell, defensin and mucus defects, are primary. Nutrition may also be important but so far there is no therapy targeting the mucosal barrier.
Collapse
Affiliation(s)
- Eduard F Stange
- Innere Medizin I, Medizinische Universitätsklinik, Tübingen, Germany
| | - Bjoern O Schroeder
- Laboratory for Molecular Infection Medicine Sweden (MIMS) -The Nordic EMBL Partnership for Molecular Medicine, and Department of Molecular Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
197
|
Wang SL, Shao BZ, Zhao SB, Chang X, Wang P, Miao CY, Li ZS, Bai Y. Intestinal autophagy links psychosocial stress with gut microbiota to promote inflammatory bowel disease. Cell Death Dis 2019; 10:391. [PMID: 31564717 PMCID: PMC6766473 DOI: 10.1038/s41419-019-1634-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/14/2019] [Accepted: 05/07/2019] [Indexed: 12/14/2022]
Abstract
Psychosocial stress is a critical inducing factor of inflammatory bowel diseases (IBD), while autophagy is a novel central issue of IBD development. The present study investigated the potential role of autophagy in stress-related IBD in patients and animal model. The correlation between psychosocial stress and intestinal autophagy was determined in 23 patients with IBD. Corticotropin-releasing hormone (CRH), a well-established inducer of psychosocial stress, was administrated in dextran sulfate sodium (DSS)-induced IBD mice and lipopolysaccharide (LPS)-stimulated bone marrow-derived macrophages (BMDM). In IBD patients, the autophagy markers beclin-1, LC3-II/I ratio, Atg16L1, and Atg4B were significantly enhanced. The psychosocial stress score was positively associated with the levels of beclin-1 and the LC3II/I ratio in intestinal biopsy specimens. In IBD mouse model, CRH significantly aggravated intestinal inflammation, increased Paneth cell metaplasia, and enhanced intestinal autophagy (beclin-1, Atg16L1, PIK3R4, and Atg4B upregulation; GAA, CTSD, and PPKAA1 downregulation). Additionally, the CRH-induced gut microbial dysbiosis was evidenced by a marked increase in the number of detrimental bacteria. In LPS-stimulated BMDM, CRH substantially increased M1/M2 polarization and thus promoted inflammation. In both IBD mice and LPS-treated BMDM, blockade of autophagy by chloroquine abrogated the unbeneficial effects of CRH, whereas autophagy inducer rapamycin resulted in a pronounced protective effect against IBD lesion. Our data demonstrate that psychosocial stress may link the enhanced intestinal autophagy by modulating gut microbiota and inflammation to aggravate IBD. These data indicate autophagy as a promising therapeutic target for psychosocial stress-related IBD.
Collapse
Affiliation(s)
- Shu-Ling Wang
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Bo-Zong Shao
- General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - Sheng-Bing Zhao
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Xin Chang
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Pei Wang
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, China.
| | - Zhao-Shen Li
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China.
| | - Yu Bai
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China.
| |
Collapse
|
198
|
Zheng A, Yi H, Li F, Han L, Yu J, Cheng X, Su H, Hong K, Li J. Changes in Gut Microbiome Structure and Function of Rats with Isoproterenol-Induced Heart Failure. Int Heart J 2019; 60:1176-1183. [DOI: 10.1536/ihj.18-194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Ancai Zheng
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University
- Department of Cardiovascular Medicine, The Affiliated Ganzhou Hospital of Nanchang University
| | - Hong Yi
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University
| | - Fan Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University
| | - Lu Han
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University
| | - Jianhua Yu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University
| | - Xiaoshu Cheng
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University
| | - Hai Su
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University
| | - Kui Hong
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University
| | - Juxiang Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University
| |
Collapse
|
199
|
Hrncirova L, Machova V, Trckova E, Krejsek J, Hrncir T. Food Preservatives Induce Proteobacteria Dysbiosis in Human-Microbiota Associated Nod2-Deficient Mice. Microorganisms 2019; 7:microorganisms7100383. [PMID: 31548508 PMCID: PMC6843281 DOI: 10.3390/microorganisms7100383] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/13/2019] [Accepted: 09/20/2019] [Indexed: 12/14/2022] Open
Abstract
The worldwide incidence of many immune-mediated and metabolic diseases, initially affecting only the wealthy Western countries, is increasing rapidly. Many of these diseases are associated with the compositional and functional alterations of gut microbiota, i.e., dysbiosis. The most consistent markers of the dysbiosis are a decrease in microbiota diversity and an expansion of Proteobacteria. The role of food preservatives as potential triggers of gut microbiota dysbiosis has been long overlooked. Using a human microbiota-associated mouse model, we demonstrate that a mixture of common antimicrobial food additives induces dysbiosis characterised by an overgrowth of Proteobacteria phylum and a decrease in the Clostridiales order. Remarkably, human gut microbiota in a Nod2-deficient genetic background is even more susceptible to the induction of Proteobacteria dysbiosis by additives than the microbiota in a wild-type background. To conclude, our data demonstrate that antimicrobial food additives trigger gut microbiota dysbiosis in both wild-type and Nod2-deficient backgrounds and at the exposure levels reached in European populations. Whether this additive-modified gut microbiota plays a significant role in the pathogenesis of immune-mediated and metabolic diseases remains to be elucidated.
Collapse
Affiliation(s)
- Lucia Hrncirova
- Charles University in Prague, The Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic.
- The Institute of Microbiology, The Czech Academy of Sciences, 549 22 Novy Hradek, Czech Republic.
| | - Vladimira Machova
- The Institute of Microbiology, The Czech Academy of Sciences, 549 22 Novy Hradek, Czech Republic.
| | - Eva Trckova
- The Institute of Microbiology, The Czech Academy of Sciences, 549 22 Novy Hradek, Czech Republic.
| | - Jan Krejsek
- Charles University in Prague, The Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic.
| | - Tomas Hrncir
- The Institute of Microbiology, The Czech Academy of Sciences, 549 22 Novy Hradek, Czech Republic.
| |
Collapse
|
200
|
Schmidt F, Dahlke K, Batra A, Keye J, Wu H, Friedrich M, Glauben R, Ring C, Loh G, Schaubeck M, Hackl H, Trajanoski Z, Schumann M, Kühl AA, Blaut M, Siegmund B. Microbial Colonization in Adulthood Shapes the Intestinal Macrophage Compartment. J Crohns Colitis 2019; 13:1173-1185. [PMID: 30938416 DOI: 10.1093/ecco-jcc/jjz036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Contact with distinct microbiota early in life has been shown to educate the mucosal immune system, hence providing protection against immune-mediated diseases. However, the impact of early versus late colonization with regard to the development of the intestinal macrophage compartment has not been studied so far. METHODS Germ-free mice were colonized with specific-pathogen-free [SPF] microbiota at the age of 5 weeks. The ileal and colonic macrophage compartment were analysed by immunohistochemistry, flow cytometry, and RNA sequencing 1 and 5 weeks after colonization and in age-matched SPF mice, which had had contact with microbiota since birth. To evaluate the functional differences, dextran sulfate sodium [DSS]-induced colitis was induced, and barrier function analyses were undertaken. RESULTS Germ-free mice were characterized by an atrophied intestinal wall and a profoundly reduced number of ileal macrophages. Strikingly, morphological restoration of the intestine occurred within the first week after colonization. In contrast, ileal macrophages required 5 weeks for complete restoration, whereas colonic macrophages were numerically unaffected. However, following DSS exposure, the presence of microbiota was a prerequisite for colonic macrophage infiltration. One week after colonization, mild colonic inflammation was observed, paralleled by a reduced inflammatory response after DSS treatment, in comparison with SPF mice. This attenuated inflammation was paralleled by a lack of TNFα production of LPS-stimulated colonic macrophages from SPF and colonized mice, suggesting desensitization of colonized mice by the colonization itself. CONCLUSIONS This study provides the first data indicating that after colonization of adult mice, the numeric, phenotypic, and functional restoration of the macrophage compartment requires the presence of intestinal microbiota and is time dependent.
Collapse
Affiliation(s)
- Franziska Schmidt
- Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Berlin, Germany
| | - Katja Dahlke
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Arvind Batra
- Neuroimmunology, Max-Planck-Institute of Neurobiology, Planegg-Martinsried, Germany
| | - Jacqueline Keye
- Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Berlin, Germany
| | - Hao Wu
- Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Berlin, Germany
| | - Marie Friedrich
- Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Berlin, Germany
| | - Rainer Glauben
- Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Christiane Ring
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Gunnar Loh
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Monika Schaubeck
- Neuroimmunology, Max-Planck-Institute of Neurobiology, Planegg-Martinsried, Germany
| | - Hubert Hackl
- Biocenter, Division of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Zlatko Trajanoski
- Biocenter, Division of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Schumann
- Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Anja A Kühl
- Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Michael Blaut
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Britta Siegmund
- Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|