151
|
Fang L, Yao Y, Guan X, Liao Y, Wang B, Cui L, Han S, Zou H, Su D, Ma Y, Liu B, Wang Y, Huang R, Ruan Y, Yu X, Yao Y, Liu C, Zhang Y. China special issue on gastrointestinal tumors-Regulatory-immunoscore-A novel indicator to guide precision adjuvant chemotherapy in colorectal cancer. Int J Cancer 2023; 153:1904-1915. [PMID: 37085990 DOI: 10.1002/ijc.34539] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 04/23/2023]
Abstract
Novel biomarkers are essential to improve the treatment efficacy and overall survival of stage II and III colorectal cancer (CRC), allowing for personalized treatment decisions. Here, the densities of CD8+ and FOXP3+ T cells in the tumor and invasive margin were processed by immunohistochemistry and digital pathology to form a scoring system named regulatory-Immunoscore (RIS). Cox proportional hazards regression models were used to determine the risk factors associated with time to recurrence. Harrell's concordance index and the time-dependent area under the curve were used to assess model performance. A total of 1213 stage I-III DNA mismatch repair-proficient colorectal cancer (pMMR CRC) patients were randomly assigned to a training set (n = 642) and a validation set (n = 571). From the Cox multivariable analysis, the association of RIS with survival was independent of patient age, sex and anatomy-based tumor risk parameters (P < .0001). For stage II patients, chemotherapy was significantly associated with better recurrence time in patients with low (95% confidence interval [CI]: 0.11-0.54, P = .001) and intermediate (95% CI = 0.25-0.57, P < .001) RIS values. In stage III patients treated with adjuvant chemotherapy, a treatment duration of 6 or more months was significantly associated with better recurrence time in patients with intermediate RIS values (95% CI = 0.38-0.90, P = .016) when compared with duration under 6 months. Therefore, these findings suggest that RIS is reliable for predicting recurrence risk and treatment responsiveness for patients with stage I-III pMMR CRC.
Collapse
Affiliation(s)
- Lin Fang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
| | - Yang Yao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Xin Guan
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Yuanyu Liao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Bojun Wang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
| | - Luying Cui
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Shuling Han
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Haoyi Zou
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Dan Su
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yue Ma
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
| | - Biao Liu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yao Wang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Rui Huang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
| | - Yuli Ruan
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Xuefan Yu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yuanfei Yao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Chao Liu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| |
Collapse
|
152
|
Matsumiya Y, Suenaga M, Ishikawa T, Kudo T, Nakagawa T, Okamoto K, Tokunaga M, Hurtado C, Yamada Y, Oka K, Takahashi M, Lopez Kostner LF, O'Ryan Gallardo ML, Uetake H, Kinugasa Y. Clinical significance of Bacteroides fragilis as a potential prognostic factor in colorectal cancer. Anaerobe 2023; 84:102784. [PMID: 37806638 DOI: 10.1016/j.anaerobe.2023.102784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/30/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023]
Abstract
INTRODUCTION Bacteroides fragilis (B. fragilis) is considered to act in an anti-inflammatory manner on the intestinal tract. On the contrary, enterotoxigenic B. fragilis (ETBF), a subtype of B. fragilis, produces an enterotoxin (BFT; B. fragilis toxin), leading to asymptomatic chronic infections and colonic tumor formation. However, the impact of B. fragilis and ETBF on the clinical outcome of colorectal cancer (CRC) remains unclear. We aim to assess whether their presence affects the outcome in patients with CRC after curative resection. METHODS We obtained 197 pairs of matched formalin-fixed paraffin-embedded samples from cancerous and adjacent non-cancerous tissues of patients with pathological stage (pstage) II and III CRC after curative resection. The presence of B. fragilis and ETBF were estimated using real-time polymerase chain reaction, and recurrence-free survival (RFS) and overall survival (OS) of the patients were analyzed. RESULTS 16S rRNA for B. fragilis and bft DNA were detected in 120 (60.9%) and 12 (6.1%) of the 197 patients, respectively. B. fragilis-positive patients had better RFS than B. fragilis-negative patients, although that was not statistically significant. In subgroup analysis, better outcomes on RFS were observed in the presence of B. fragilis in pstage II and left-sided CRC. The association of B. fragilis positivity on OS was accentuated in the depth of T4 subgroup. No significant differences were observed in RFS and OS between ETBF and non-toxigenic B. fragilis. CONCLUSIONS Our findings suggest that the presence of B. fragilis is associated with better outcomes in patients with pstage II and III CRC after curative resection.
Collapse
Affiliation(s)
- Yuriko Matsumiya
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan; University of Chile and TMDU Joint Degree Doctoral Program in Medical Sciences with Mention of a Medical Specialty, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan.
| | - Mitsukuni Suenaga
- Department of Specialized Surgeries, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, 1-5-45 Yushima Bunkyo-ku, Tokyo, Japan; Department of Clinical Oncology, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan.
| | - Toshiaki Ishikawa
- Department of Specialized Surgeries, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, 1-5-45 Yushima Bunkyo-ku, Tokyo, Japan.
| | - Toshifumi Kudo
- Department of Specialized Surgeries, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, 1-5-45 Yushima Bunkyo-ku, Tokyo, Japan.
| | - Tsuyoshi Nakagawa
- Department of Specialized Surgeries, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, 1-5-45 Yushima Bunkyo-ku, Tokyo, Japan.
| | - Kentaro Okamoto
- Department of Specialized Surgeries, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, 1-5-45 Yushima Bunkyo-ku, Tokyo, Japan.
| | - Masanori Tokunaga
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan.
| | - Claudia Hurtado
- Clínica Las Condes Laboratorio de Oncología y Genética Molecular, Dirección Académica, Clínica Las Condes, Estoril 450, Las Condes, Santiago, Chile.
| | - Yuki Yamada
- Central Research Institute, Miyarisan Pharmaceutical Co., Ltd., 2-22-9, Toro-cho, Kita-ku, Saitama-shi, Saitama, Japan.
| | - Kentaro Oka
- Central Research Institute, Miyarisan Pharmaceutical Co., Ltd., 2-22-9, Toro-cho, Kita-ku, Saitama-shi, Saitama, Japan.
| | - Motomichi Takahashi
- Central Research Institute, Miyarisan Pharmaceutical Co., Ltd., 2-22-9, Toro-cho, Kita-ku, Saitama-shi, Saitama, Japan.
| | - Luis Francisco Lopez Kostner
- Coloproctology Unit, Cancer Center, Clínica Universidad de Los Andes, Avda. Plaza 2501, Las Condes, Santiago, Chile.
| | - Miguel Luis O'Ryan Gallardo
- Microbiology and Mycology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Av. Libertador Bernardo O'Higgins 1058, Santiago, Chile.
| | - Hiroyuki Uetake
- Department of Clinical Research, National Hospital Organization, Disaster Medical Center, 3256 Midori-cho, Tachikawa-city, Tokyo, Japan.
| | - Yusuke Kinugasa
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
153
|
Liu Q, Wang L, He D, Wu Y, Liu X, Yang Y, Chen Z, Dong Z, Luo Y, Song Y. Application Value of Antimicrobial Peptides in Gastrointestinal Tumors. Int J Mol Sci 2023; 24:16718. [PMID: 38069041 PMCID: PMC10706433 DOI: 10.3390/ijms242316718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Gastrointestinal cancer is a common clinical malignant tumor disease that seriously endangers human health and lacks effective treatment methods. As part of the innate immune defense of many organisms, antimicrobial peptides not only have broad-spectrum antibacterial activity but also can specifically kill tumor cells. The positive charge of antimicrobial peptides under neutral conditions determines their high selectivity to tumor cells. In addition, antimicrobial peptides also have unique anticancer mechanisms, such as inducing apoptosis, autophagy, cell cycle arrest, membrane destruction, and inhibition of metastasis, which highlights the low drug resistance and high specificity of antimicrobial peptides. In this review, we summarize the related studies on antimicrobial peptides in the treatment of digestive tract tumors, mainly oral cancer, esophageal cancer, gastric cancer, liver cancer, pancreatic cancer, and colorectal cancer. This paper describes the therapeutic advantages of antimicrobial peptides due to their unique anticancer mechanisms. The length, net charge, and secondary structure of antimicrobial peptides can be modified by design or modification to further enhance their anticancer effects. In summary, as an emerging cancer treatment drug, antimicrobial peptides need to be further studied to realize their application in gastrointestinal cancer diseases.
Collapse
Affiliation(s)
- Qi Liu
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Lei Wang
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Dongxia He
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yuewei Wu
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xian Liu
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yahan Yang
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhizhi Chen
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhan Dong
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Ying Luo
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yuzhu Song
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- Medical College, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
154
|
Van Dingenen L, Segers C, Wouters S, Mysara M, Leys N, Kumar-Singh S, Malhotra-Kumar S, Van Houdt R. Dissecting the role of the gut microbiome and fecal microbiota transplantation in radio- and immunotherapy treatment of colorectal cancer. Front Cell Infect Microbiol 2023; 13:1298264. [PMID: 38035338 PMCID: PMC10687483 DOI: 10.3389/fcimb.2023.1298264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and poses a major burden on the human health worldwide. At the moment, treatment of CRC consists of surgery in combination with (neo)adjuvant chemotherapy and/or radiotherapy. More recently, immune checkpoint blockers (ICBs) have also been approved for CRC treatment. In addition, recent studies have shown that radiotherapy and ICBs act synergistically, with radiotherapy stimulating the immune system that is activated by ICBs. However, both treatments are also associated with severe toxicity and efficacy issues, which can lead to temporary or permanent discontinuation of these treatment programs. There's growing evidence pointing to the gut microbiome playing a role in these issues. Some microorganisms seem to contribute to radiotherapy-associated toxicity and hinder ICB efficacy, while others seem to reduce radiotherapy-associated toxicity or enhance ICB efficacy. Consequently, fecal microbiota transplantation (FMT) has been applied to reduce radio- and immunotherapy-related toxicity and enhance their efficacies. Here, we have reviewed the currently available preclinical and clinical data in CRC treatment, with a focus on how the gut microbiome influences radio- and immunotherapy toxicity and efficacy and if these treatments could benefit from FMT.
Collapse
Affiliation(s)
- Lena Van Dingenen
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Charlotte Segers
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Shari Wouters
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Mohamed Mysara
- Bioinformatics Group, Center for Informatics Science, School of Information Technology and Computer Science, Nile University, Giza, Egypt
| | - Natalie Leys
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Samir Kumar-Singh
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Rob Van Houdt
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| |
Collapse
|
155
|
Benešová I, Křížová Ľ, Kverka M. Microbiota as the unifying factor behind the hallmarks of cancer. J Cancer Res Clin Oncol 2023; 149:14429-14450. [PMID: 37555952 PMCID: PMC10590318 DOI: 10.1007/s00432-023-05244-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
The human microbiota is a complex ecosystem that colonizes body surfaces and interacts with host organ systems, especially the immune system. Since the composition of this ecosystem depends on a variety of internal and external factors, each individual harbors a unique set of microbes. These differences in microbiota composition make individuals either more or less susceptible to various diseases, including cancer. Specific microbes are associated with cancer etiology and pathogenesis and several mechanisms of how they drive the typical hallmarks of cancer were recently identified. Although most microbes reside in the distal gut, they can influence cancer initiation and progression in distant tissues, as well as modulate the outcomes of established cancer therapies. Here, we describe the mechanisms by which microbes influence carcinogenesis and discuss their current and potential future applications in cancer diagnostics and management.
Collapse
Affiliation(s)
- Iva Benešová
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology v.v.i., Czech Academy of Sciences, Vídeňská 1083, 142 00, Prague 4-Krč, Czech Republic
| | - Ľudmila Křížová
- Department of Oncology, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | - Miloslav Kverka
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology v.v.i., Czech Academy of Sciences, Vídeňská 1083, 142 00, Prague 4-Krč, Czech Republic.
| |
Collapse
|
156
|
Desai S. Influence of pathogens on host genome and epigenome in development of head and neck cancer. Cancer Rep (Hoboken) 2023; 6:e1846. [PMID: 37322598 PMCID: PMC10644332 DOI: 10.1002/cnr2.1846] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/11/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Head and neck cancer (HNSCC) is a heterogeneous group of cancers, affecting multiple regions such as oral cavity, pharynx, larynx, and nasal region, each showing a distinct molecular profile. HNSCC accounts for more than 6 million cases worldwide, soaring mainly in the developing countries. RECENT FINDINGS The aetiology of HNSCC is complex and multifactorial, involving both genetic and environmental factors. The critical role of microbiome, which includes bacteria, viruses, and fungi, is under spotlight due to the recent reports on their contribution in the development and progression of HNSCC. This review focuses on the effect of opportunistic pathogens on the host genome and epigenome, which contributes to the disease progression. Drawing parallels from the host-pathogen interactions observed in other tumour types arising from the epithelial tissue such as colorectal cancer, the review also calls attention to the potential explorations of the role of pathogens in HNSCC biology and discusses the clinical implications of microbiome research in detection and treatment of HNSCC. CONCLUSION Our understanding of the genomic effects of the microbes on the disease progression and the mechanistic insights of the host-pathogen interaction will pave way to novel treatment and preventive approaches in HNSCC.
Collapse
|
157
|
Kang C, Zhang J, Xue M, Li X, Ding D, Wang Y, Jiang S, Chu FF, Gao Q, Zhang M. Metabolomics analyses of cancer tissue from patients with colorectal cancer. Mol Med Rep 2023; 28:219. [PMID: 37772396 PMCID: PMC10568249 DOI: 10.3892/mmr.2023.13106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/31/2023] [Indexed: 09/30/2023] Open
Abstract
The alteration of metabolism is essential for the initiation and progression of numerous types of cancer, including colorectal cancer (CRC). Metabolomics has been used to study CRC. At present, the reprogramming of the metabolism in CRC remains to be fully elucidated. In the present study, comprehensive untargeted metabolomics analysis was performed on the paired CRC tissues and adjacent normal tissues from patients with CRC (n=35) using ultra‑high‑performance liquid chromatography‑mass spectrometry. Subsequently, bioinformatic analysis was performed on the differentially expressed metabolites. The changes in these differential metabolites were compared among groups of patients based on sex, anatomical tumor location, grade of tumor differentiation and stage of disease. A total of 927 metabolites were detected in the tissue samples, and 24 metabolites in the CRC tissue were significantly different compared with the adjacent normal tissue. The present study revealed that the levels of three amino acid metabolites were increased in the CRC tissue, specifically, N‑α‑acetyl‑ε‑(2‑propenal)‑Lys, cyclo(Glu‑Glu) and cyclo(Phe‑Glu). The metabolites with decreased levels in the CRC tissue included quinaldic acid (also referred to as quinoline‑2‑carboxilic acid), 17α‑ and 17β‑estradiol, which are associated with tumor suppression activities, as well as other metabolites such as, anhydro‑β‑glucose, Asp‑Arg, lysophosphatidylcholine, lysophosphatidylethanolamine (lysoPE), lysophosphatidylinositol, carnitine, 5'‑deoxy‑5'‑(methylthio) adenosine, 2'‑deoxyinosine‑5'‑monophosphate and thiamine monophosphate. There was no difference in the levels of the differential metabolites between male and female patients. The differentiation of CRC also showed no impact on the levels of the differential metabolites. The levels of lysoPE were increased in the right side of the colon compared with the left side of the colon and rectum. Analysis of the different tumor stages indicated that 2‑aminobenzenesulfonic acid, P‑sulfanilic acid and quinoline‑4‑carboxylic acid were decreased in stage I CRC tissue compared with stage II, III and IV CRC tissue. The levels of N‑α‑acetyl‑ε‑(2‑propenal)‑Lys, methylcysteine and 5'‑deoxy‑5'‑(methylthio) adenosine varied at different stages of tumorigenesis. These differential metabolites were implicated in multiple metabolism pathways, including carbohydrate, amino acid, lipid, nucleotide and hormone. In conclusion, the present study demonstrated that CRC tumors had altered metabolites compared with normal tissue. The data from the metabolic profile of CRC tissues in the present study provided supportive evidence to understand tumorigenesis.
Collapse
Affiliation(s)
- Chunbo Kang
- Department of Surgery, Center of Gastrointestinal Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, P.R. China
| | - Jie Zhang
- Department of Surgery, Center of Gastrointestinal Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, P.R. China
| | - Mei Xue
- Department of Gastroenterology and Hepatology, Center of Gastrointestinal Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, P.R. China
| | - Xiaowei Li
- Department of Surgery, Center of Gastrointestinal Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, P.R. China
| | - Danyang Ding
- Department of Surgery, Center of Gastrointestinal Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, P.R. China
| | - Ye Wang
- Department of Surgery, Center of Gastrointestinal Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, P.R. China
| | - Shujing Jiang
- Department of Acute Medicine, Queen Elizabeth Hospital, London SE18 4QH, UK
| | - Fong-Fong Chu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of The City of Hope, Duarte, CA 91010, USA
| | - Qiang Gao
- Department of Gastroenterology and Hepatology, Center of Gastrointestinal Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, P.R. China
| | - Mengqiao Zhang
- Department of Gastroenterology and Hepatology, Center of Gastrointestinal Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, P.R. China
| |
Collapse
|
158
|
Kim JH, Yu J, Kim DK, Lee S, Lee SH, Ahn BK, Kim TI, Park SJ. Tumor microbiome analysis provides prognostic value for patients with stage III colorectal cancer. Front Oncol 2023; 13:1212812. [PMID: 37965445 PMCID: PMC10641399 DOI: 10.3389/fonc.2023.1212812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/26/2023] [Indexed: 11/16/2023] Open
Abstract
INTRODUCTION Although patients with colorectal cancer (CRC) can receive optimal treatment, the risk of recurrence remains. This study aimed to evaluate whether the tumor microbiome can be a predictor of recurrence in patients with stage III CRC. METHODS Using 16S rRNA gene sequencing, we analyzed the microbiomes of tumor and adjacent tissues acquired during surgery in 65 patients with stage III CRC and evaluated the correlation of the tissue microbiome with CRC recurrence. Additionally, the tumor tissue microbiome data of 71 patients with stage III CRC from another center were used as a validation set. RESULTS The microbial diversity and abundance significantly differed between tumor and adjacent tissues. In particular, Streptococcus and Gemella were more abundant in tumor tissue samples than in adjacent tissue samples. The microbial diversity and abundance in tumor and adjacent tissues did not differ according to the presence of recurrence, except for one genus in the validation set. Logistic regression analysis revealed that a recurrence prediction model including tumor tissue microbiome data had a better prediction performance than clinical factors (area under the curve [AUC] 0.846 vs. 0.679, p = 0.009), regardless of sex (male patients: AUC 0.943 vs. 0.818, p = 0.043; female patients: AUC 0.885 vs. 0.590, p = 0.017). When this prediction model was applied to the validation set, it had a higher AUC value than clinical factors in female patients. CONCLUSION Our results suggest that the tumor microbiome of patients with CRC be a potential predictor of postoperative disease recurrence.
Collapse
Affiliation(s)
- Jae Hyun Kim
- Department of Internal Medicine, Kosin University College of Medicine, Busan, Republic of Korea
| | - Jongwook Yu
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dong Keon Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seunghun Lee
- Department of Colorectal Surgery, Kosin University College of Medicine, Busan, Republic of Korea
| | - Seung Hyun Lee
- Department of Colorectal Surgery, Kosin University College of Medicine, Busan, Republic of Korea
| | - Byung Kwon Ahn
- Department of Colorectal Surgery, Kosin University College of Medicine, Busan, Republic of Korea
| | - Tae Il Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seun Ja Park
- Department of Internal Medicine, Kosin University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
159
|
Xiao J, Wang J, Zhou C, Luo J. Development and Validation of a Propionate Metabolism-Related Gene Signature for Prognostic Prediction of Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:1673-1687. [PMID: 37808224 PMCID: PMC10557974 DOI: 10.2147/jhc.s420614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023] Open
Abstract
Background Studies have demonstrated that propionate metabolism-related genes (PMRGs) are associated with cancer progression. PMRGs are not known to be involved in Hepatocellular carcinoma (HCC). Methods In this study, The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were accessed for HCC-related transcriptome data and clinical information. First, DE-PMRGs were derived by intersecting PMRGs and DEGs between HCC tissues and normal controls. The clusterProfiler R package was then used to enrich DE-PMRGs. In addition, biomarkers of HCC were identified, and a prognostic model was developed. Using functional analysis and tumor microenvironment analysis, new insights were obtained into HCC. The expression of biomarkers was validated using quantitative real-time polymerase chain reaction (qRT-PCR). Results 132 DE-PMRGs were obtained by intersecting 3690 DEGs and 291 PMRGs. Steroid and organic acid metabolism were associated with these genes. For the construction of the risk model for HCC samples, five biomarkers were identified, including Acyl-CoA dehydrogenase short chain (ACADS), CYP19A1, formiminotransferase cyclodeaminase (FTCD), glucose-6-phosphate dehydrogenase (G6PD), and glutamic-oxaloacetic transaminase (GOT2). ACADS, FTCD, and GOT2 were positive factors, whereas CYP19A1 and G6PD were negative. HCC patients with AUC greater than 0.6 were predicted to survive 1/2/3/4/5 years, indicating decent efficiency of the model. The probability of 1/3/5-survival for HCC was also predicted by the nomogram using the risk score, pathologic T stage, and cancer status. Moreover, functional enrichment analysis revealed the high-risk genes were associated with invasion and epithelial-mesenchymal transition. Significantly, immune cell infiltration and immune checkpoint expression were linked to HCC development. Conclusion This study identified five biomarkers of propionate metabolism that can predict HCC prognosis. This finding may provide a deeper understanding of PMRG function in HCC.
Collapse
Affiliation(s)
- Jincheng Xiao
- Department of Radiology, Zhengzhou University Affiliated Cancer Hospital, Zhengzhou, 450008, People’s Republic of China
| | - Jing Wang
- Department of General Medicine, the First Medical Center, Department of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Chaoqun Zhou
- Department of Pathology, Huaihe Hospital, Henan University, Henan University, Kaifeng, 475000, People’s Republic of China
| | - Junpeng Luo
- Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, 475000, People’s Republic of China
- Academy for Advanced Interdisciplinary Studies, Henan University, Zhengzhou, 450046, People’s Republic of China
| |
Collapse
|
160
|
Witt RG, Cass SH, Tran T, Damania A, Nelson EE, Sirmans E, Burton EM, Chelvanambi M, Johnson S, Tawbi HA, Gershenwald JE, Davies MA, Spencer C, Mishra A, Wong MC, Ajami NJ, Peterson CB, Daniel CR, Wargo JA, McQuade JL, Nelson KC. Gut Microbiome in Patients With Early-Stage and Late-Stage Melanoma. JAMA Dermatol 2023; 159:1076-1084. [PMID: 37647056 PMCID: PMC10469295 DOI: 10.1001/jamadermatol.2023.2955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 06/20/2023] [Indexed: 09/01/2023]
Abstract
Importance The gut microbiome modulates the immune system and responses to immunotherapy in patients with late-stage melanoma. It is unknown whether fecal microbiota profiles differ between healthy individuals and patients with melanoma or if microbiota profiles differ among patients with different stages of melanoma. Defining gut microbiota profiles in individuals without melanoma and those with early-stage and late-stage melanoma may reveal features associated with disease progression. Objective To characterize and compare gut microbiota profiles between healthy volunteers and patients with melanoma and between patients with early-stage and late-stage melanoma. Design, Setting, and Participants This single-site case-control study took place at an academic comprehensive cancer center. Fecal samples were collected from systemic treatment-naive patients with stage I to IV melanoma from June 1, 2015, to January 31, 2019, and from healthy volunteers from June 1, 2021, to January 31, 2022. Patients were followed up for disease recurrence until November 30, 2021. Main Outcomes and Measures Fecal microbiota was profiled by 16S ribosomal RNA sequencing. Clinical and pathologic characteristics, treatment, and disease recurrence were extracted from electronic medical records. Fecal microbiome diversity, taxonomic profiles and inferred functional profiles were compared between groups. Results A total of 228 participants were enrolled (126 men [55.3%]; median age, 59 [range, 21-90] years), including 49 volunteers without melanoma, 38 patients with early-stage melanoma (29 with stage I or melanoma in situ and 9 with stage II), and 141 with late-stage melanoma (66 with stage III and 75 with stage IV). Community differences were observed between patients with melanoma and volunteers. Patients with melanoma had a higher relative abundance of Fusobacterium compared with controls on univariate analysis (0.19% vs 0.003%; P < .001), but this association was attenuated when adjusted for covariates (log2 fold change of 5.18 vs controls; P = .09). Microbiomes were distinct between patients with early-stage and late-stage melanoma. Early-stage melanoma had a higher alpha diversity (Inverse Simpson Index 14.6 [IQR, 9.8-23.0] vs 10.8 [IQR, 7.2-16.8]; P = .003), and a higher abundance of the genus Roseburia on univariate analysis (2.4% vs 1.2%; P < .001) though statistical significance was lost with covariate adjustment (log2 fold change of 0.86 vs controls; P = .13). Multiple functional pathways were differentially enriched between groups. No associations were observed between the microbial taxa and disease recurrence in patients with stage III melanoma treated with adjuvant immunotherapy. Conclusions and Relevance The findings of this case-control study suggest that fecal microbiota profiles were significantly different among patients with melanoma and controls and between patients with early-stage and late-stage melanoma. Prospective investigations of the gut microbiome and changes that occur with disease progression may identify future microbial targets for intervention.
Collapse
Affiliation(s)
- Russell G. Witt
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Samuel H. Cass
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Tiffaney Tran
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston
| | - Ashish Damania
- Platform for Innovative Microbiome and Translational Research, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Emelie E. Nelson
- John P. and Kathrine G. McGovern Medical School at UTHealth Houston, Houston, Texas
| | - Elizabeth Sirmans
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Elizabeth M. Burton
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Manoj Chelvanambi
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Sarah Johnson
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Hussein A. Tawbi
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Jeffrey E. Gershenwald
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Michael A. Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Christine Spencer
- Department of Informatics, Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - Aditya Mishra
- John P. and Kathrine G. McGovern Medical School at UTHealth Houston, Houston, Texas
| | - Matthew C. Wong
- John P. and Kathrine G. McGovern Medical School at UTHealth Houston, Houston, Texas
| | - Nadim J. Ajami
- John P. and Kathrine G. McGovern Medical School at UTHealth Houston, Houston, Texas
| | - Christine B. Peterson
- Department of Biostatistics, Division of Basic Science Research, The University of Texas MD Anderson Cancer Center, Houston
| | - Carrie R. Daniel
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston
| | - Jennifer A. Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Jennifer L. McQuade
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Kelly C. Nelson
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston
| |
Collapse
|
161
|
Kaliamoorthy S, Priya Sayeeram S, SundarRaj S, Balakrishnan J, Nagarajan M, Samidorai A. Investigating the Association Between Fusobacterium nucleatum and Oral Squamous Cell Carcinoma: A Pilot Case-Control Study on Tissue Samples. Cureus 2023; 15:e47238. [PMID: 38022043 PMCID: PMC10654264 DOI: 10.7759/cureus.47238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Background Fusobacterium nucleatum (F. nucleatum) has been increasingly linked to oral squamous cell carcinoma (OSCC), prompting this study to explore its presence using polymerase chain reaction (PCR) and evaluate its clinical significance. Methods In this pilot case-control study, 12 OSCC tissue samples and 12 non-cancerous oral mucosal tissue samples were analyzed. Total RNA extraction and complementary DNA (cDNA) synthesis were performed using Trizol-based methods, followed by PCR amplification and gel electrophoresis. The clinical characteristics of participants and PCR results were recorded. Results Among the OSCC tissue samples, three out of 12 tested positive for F. nucleatum, while none of the control samples showed its presence. The detection rate of F. nucleatum in OSCC was 25%. Gel analysis confirmed specific amplicon amplification, and ImageJ software enabled copy number quantification. Discussion Our findings support previous research indicating a potential association between F. nucleatum and OSCC. Understanding the etiological significance of F. nucleatum in OSCC has clinical implications, including early detection, risk stratification, and prognostication. However, the limited sample size and the need for further research to elucidate underlying mechanisms are acknowledged. Conclusion This pilot study provides initial evidence of F. nucleatum's presence in a subset of OSCC samples, supporting its potential association with oral cancer. Detecting F. nucleatum in OSCC tissues holds promise for future research and clinical applications as a diagnostic and prognostic biomarker. Understanding its role in oral carcinogenesis will facilitate the development of targeted therapeutic strategies. Larger studies are warranted to validate these findings and investigate the precise mechanisms involved.
Collapse
Affiliation(s)
- Sriram Kaliamoorthy
- Dentistry, Vinayaka Mission's Medical College and Hospital, Vinayaka Mission's Research Foundation (DU), Karaikal, IND
| | - Sugantha Priya Sayeeram
- Dental Surgery, Thanjavur Medical College, The Tamilnadu Dr. M.G.R Medical University, Thanjavur, IND
| | - Shanmugapriya SundarRaj
- Dental Surgery, Thanjavur Medical College, The Tamilnadu Dr. M.G.R Medical University, Thanjavur, IND
| | - Jeyakumar Balakrishnan
- Central Research Laboratory, Vinayaka Mission's Medical College and Hospital, Vinayaka Mission's Research Foundation (DU), Karaikal, IND
| | - Mahendirakumar Nagarajan
- Prosthodontics and Crown & Bridge, Cuddalore Government Dental College, The Tamilnadu Dr. M.G.R Medical University, Chidambaram, IND
| | - Agila Samidorai
- Periodontics, Chettinad Dental College and Research Institute, The Tamilnadu Dr. M.G.R Medical University, Chennai, IND
| |
Collapse
|
162
|
Khan SU, Fatima K, Malik F, Kalkavan H, Wani A. Cancer metastasis: Molecular mechanisms and clinical perspectives. Pharmacol Ther 2023; 250:108522. [PMID: 37661054 DOI: 10.1016/j.pharmthera.2023.108522] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Metastatic progression combined with non-responsiveness towards systemic therapy often shapes the course of disease for cancer patients and commonly determines its lethal outcome. The complex molecular events that promote metastasis are a combination of both, the acquired pro-metastatic properties of cancer cells and a metastasis-permissive or -supportive tumor micro-environment (TME). Yet, dissemination is a challenging process for cancer cells that requires a series of events to enable cancer cell survival and growth. Metastatic cancer cells have to initially detach themselves from primary tumors, overcome the challenges of their intravasal journey and colonize distant sites that are suited for their metastases. The implicated obstacles including anoikis and immune surveillance, can be overcome by intricate intra- and extracellular signaling pathways, which we will summarize and discuss in this review. Further, emerging modulators of metastasis, like the immune-microenvironment, microbiome, sublethal cell death engagement, or the nervous system will be integrated into the existing working model of metastasis.
Collapse
Affiliation(s)
- Sameer Ullah Khan
- The University of Texas MD Anderson Cancer Center, Division of Genitourinary Medical Oncology, Holcombe Blvd, Houston, TX 77030, USA; Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu and Kashmir, India
| | - Kaneez Fatima
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu and Kashmir, India; Academy of Scientific and Innovative Research (ASIR), Ghaziabad 201002, India
| | - Fayaz Malik
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu and Kashmir, India; Academy of Scientific and Innovative Research (ASIR), Ghaziabad 201002, India.
| | - Halime Kalkavan
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany.
| | - Abubakar Wani
- St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN 38105, United States.
| |
Collapse
|
163
|
Huang R, Yao Y, Tong X, Wang L, Qian W, Lu J, Zhang W, Liu Y, Wang S, Xian S, Zhu Y, Huang J, Guo X, Gu M, Lv H, Bi W, Meng C, Chang Z, Zhang J, Xu D, Ji S. Tracing the evolving dynamics and research hotspots of microbiota and immune microenvironment from the past to the new era. Microbiol Spectr 2023; 11:e0013523. [PMID: 37768071 PMCID: PMC10581186 DOI: 10.1128/spectrum.00135-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/31/2023] [Indexed: 09/29/2023] Open
Abstract
Gut microbiota can regulate many physiological processes within gastrointestinal tract and other distal sites. Dysbiosis may not only influence chronic diseases like the inflammatory bowel disease (IBD), metabolic disease, tumor and its therapeutic efficacy, but also deteriorate acute injuries. This article aims to review the documents in this field and summarize the research hotspots as well as developing processes. Gut microbiota and immune microenvironment-related documents from 1976 to 2022 were obtained from the Web of Science Core Collection database. Bibliometrics was used to assess the core authors and journals, most contributive countries and affiliations together with hotspots in this field and keyword co-occurrence analysis. Data were visualized to help comprehension. Nine hundred and twelve documents about gut microbiota and immune microenvironment were retrieved, and the annual publications increased gradually. The most productive author, country, and affiliation were "Zitvogel L," USA and "UNIV TEXAS MD ANDERSON CANC CTR," respectively. FRONTIERS IN IMMUNOLOGY, CANCERS, and INTERNATIONAL JOURNAL OF MOLECULAR SCIENCE were the periodicals with most publications. Keyword co-occurrence analysis identified three clusters, including gut microbiota, inflammation, and IBD. Combined with the visualized analysis of documents and keyword co-occurrence as well as literature reading, we recognized three key topics of gut microbiota: cancer and therapy; immunity, inflammation and IBD; acute injuries and metabolic diseases. This article revealed researches on gut microbiota and immune microenvironment were growing. More attention should be given to the latest hotspots like gut microbiota, inflammation, IBD, cancer and immunotherapy, acute traumas, and metabolic diseases.IMPORTANCEGut microbiota can regulate many physiological processes within gastrointestinal tract and other distal sites. Dysbiosis may not only influence chronic diseases like inflammatory bowel disease (IBD), metabolic disease, tumor and its therapeutic efficacy, but also deteriorate acute injuries. While the application of bibliometrics in the field of gut microbiota and immune microenvironment still remains blank, which focused more on the regulation of the gut microbiota on the immune microenvironment of different kinds of diseases. Here, we intended to review and summarize the presented documents in gut microbiota and immune microenvironment field by bibliometrics. And we revealed researches on gut microbiota and immune microenvironment were growing. More attention should be given to the latest hotspots like gut microbiota, inflammation, IBD, cancer and immunotherapy, acute traumas, and metabolic diseases.
Collapse
Affiliation(s)
- Runzhi Huang
- Department of Burn Surgery, First Affiliated Hospital of Naval Medical University, and Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yuntao Yao
- Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xirui Tong
- Department of Burn Surgery, First Affiliated Hospital of Naval Medical University, and Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Lei Wang
- Beijing Genomics Institute (BGI), Shenzhen, China
| | - Weijin Qian
- Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianyu Lu
- Department of Burn Surgery, First Affiliated Hospital of Naval Medical University, and Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Wei Zhang
- Department of Burn Surgery, First Affiliated Hospital of Naval Medical University, and Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yifan Liu
- Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Siqiao Wang
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Shuyuan Xian
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Yushu Zhu
- Department of Burn Surgery, First Affiliated Hospital of Naval Medical University, and Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jie Huang
- Department of Burn Surgery, First Affiliated Hospital of Naval Medical University, and Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xinya Guo
- Department of Burn Surgery, First Affiliated Hospital of Naval Medical University, and Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Minyi Gu
- Department of Burn Surgery, First Affiliated Hospital of Naval Medical University, and Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Hanlin Lv
- Beijing Genomics Institute (BGI), Shenzhen, China
| | - Wenshuai Bi
- Beijing Genomics Institute (BGI), Shenzhen, China
| | - Chenwei Meng
- Beijing Genomics Institute (BGI), Shenzhen, China
| | - Zhengyan Chang
- Department of Pathology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dayuan Xu
- Department of Burn Surgery, First Affiliated Hospital of Naval Medical University, and Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Shizhao Ji
- Department of Burn Surgery, First Affiliated Hospital of Naval Medical University, and Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
164
|
Takeda K, Koi M, Okita Y, Sajibu S, Keku TO, Carethers JM. Fusobacterium nucleatum Load Correlates with KRAS Mutation and Sessile Serrated Pathogenesis in Colorectal Adenocarcinoma. CANCER RESEARCH COMMUNICATIONS 2023; 3:1940-1951. [PMID: 37772997 PMCID: PMC10530411 DOI: 10.1158/2767-9764.crc-23-0179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/14/2023] [Accepted: 09/05/2023] [Indexed: 09/30/2023]
Abstract
Fusobacterium nucleatum (Fn) has been frequently detected in colorectal cancer. A high load of Fn has been associated with subtypes of colorectal cancers, located in the proximal colon, exhibiting microsatellite instability-high (MSI-H), MLH1 promoter hypermethylation, the CpG island hypermethylation phenotype-high, or BRAF mutation in some studies. Although these features characterize the sessile serrated pathway (SSP) of colon cancers, other studies have shown that Fn infection is associated with KRAS mutations mainly characteristic of non-serrated neoplasia. It is also not clear at what point the association of Fn infection with these genomic alterations is established during colorectal carcinogenesis. Here we show that MSI-H, MLH1 hypermethylation, BRAF mutation or KRAS mutations were independently associated with Fn infection in colorectal cancer. On the other hand, increasing Fn copy number in tissues was associated with increased probability to exhibit MSI-H, MLH1 hypermethylation or BRAF mutations but not KRAS mutations in colorectal cancer. We also show that Fn load was significantly less than that of colorectal cancer and no association was detected between BRAF/KRAS mutations or MLH1 hypermethylation and Fn infection in adenomas. Our combined data suggest that increasing loads of Fn during and/or after adenomacarcinoma transition might promote SSP but not KRAS-driven colorectal carcinogenesis. Alternatively, Fn preferentially colonizes colorectal cancers with SSP and KRAS mutations but can expand more in colorectal cancers with SSP. SIGNIFICANCE The authors demonstrated that Fn is enriched in colorectal cancers exhibiting the SSP phenotype, and in colorectal cancers carrying KRAS mutations. Fn infection should be considered as a candidate risk factor specific to colorectal cancers with the SSP phenotype and with KRAS mutations.
Collapse
Affiliation(s)
- Koki Takeda
- Division of Gastroenterology and Hepatology, Department of Internal Medicine and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Minoru Koi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Divsion of Gastroenterology and Hepatology, Department of Medicine and Moores Cancer Center, University of California San Diego, San Diego, California
| | - Yoshiki Okita
- Department of Gastrointestinal and Pediatric Surgery, Graduate School of Medicine, Mie University, Mie, Japan
| | - Sija Sajibu
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Temitope O. Keku
- Division of Gastroenterology and Hepatology, Departments of Medicine and Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - John M. Carethers
- Division of Gastroenterology and Hepatology, Department of Internal Medicine and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Divsion of Gastroenterology and Hepatology, Department of Medicine and Moores Cancer Center, University of California San Diego, San Diego, California
| |
Collapse
|
165
|
Pignatelli P, Nuccio F, Piattelli A, Curia MC. The Role of Fusobacterium nucleatum in Oral and Colorectal Carcinogenesis. Microorganisms 2023; 11:2358. [PMID: 37764202 PMCID: PMC10537357 DOI: 10.3390/microorganisms11092358] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/02/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
In recent years, several studies have suggested a strong association of microorganisms with several human cancers. Two periodontopathogenic species in particular have been mentioned frequently: Fusobacterium nucleatum (F. nucleatum) and Porphyromonas gingivalis. Chronic periodontal disease has been reported to be a risk factor for oral squamous cell carcinoma (OSCC), colorectal cancer (CRC) and pancreatic cancer. F. nucleatum is a Gram-negative anaerobic bacterium that lives in the oral cavity, urogenital, intestinal and upper digestive tract. It plays a significant role as a co-aggregation factor, with almost all bacterial species that participate in oral plaque formation acting as a bridge between early and late colonizers. F. nucleatum, gives an important inflammatory contribution to tumorigenesis progression and is associated with epithelial-derived malignancies, such as OSCC and CRC. F. nucleatum produces an adhesion protein, FadA, which binds to VE-cadherin on endothelial cells and to E-cadherins on epithelial cells. The last binding activates oncogenic pathways, such as Wnt/βcatenin, in oral and colorectal carcinogenesis. F. nucleatum also affects immune response because its Fap2 protein interacts with an immune receptor named TIGIT present on some T cells and natural killer cells inhibiting immune cells activities. Morover, F. nucleatum release outer membrane vesicles (OMVs), which induce the production of proinflammatory cytokines and initiating inflammation. F. nucleatum migrates from the oral cavity and reaches the colon hematogenously but it is not known if in the bloodstream it reaches the CRC as free, erythrocyte-bound bacteria or in OMV. F. nucleatum abundance in CRC tissue has been inversely correlated with overall survival (OS). The prevention and treatment of periodontal disease through the improvement of oral hygiene should be included in cancer prevention protocols. FadA virulence factors may also serve as novel targets for therapeutic intervention of oral and colorectal cancer.
Collapse
Affiliation(s)
- Pamela Pignatelli
- COMDINAV DUE, Nave Cavour, Italian Navy, Stazione Navale Mar Grande, 74122 Taranto, Italy;
| | - Federica Nuccio
- MARICENSELEZ ANCONA, Centro di Selezione M.M., Italian Navy, 60127 Ancona, Italy;
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University for Health Sciences, 00131 Rome, Italy;
- Facultad de Medicina, UCAM Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain
| | - Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
166
|
Baima G, Ribaldone DG, Romano F, Aimetti M, Romandini M. The Gum-Gut Axis: Periodontitis and the Risk of Gastrointestinal Cancers. Cancers (Basel) 2023; 15:4594. [PMID: 37760563 PMCID: PMC10526746 DOI: 10.3390/cancers15184594] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Periodontitis has been linked to an increased risk of various chronic non-communicable diseases, including gastrointestinal cancers. Indeed, dysbiosis of the oral microbiome and immune-inflammatory pathways related to periodontitis may impact the pathophysiology of the gastrointestinal tract and its accessory organs through the so-called "gum-gut axis". In addition to the hematogenous spread of periodontal pathogens and inflammatory cytokines, recent research suggests that oral pathobionts may translocate to the gastrointestinal tract through saliva, possibly impacting neoplastic processes in the gastrointestinal, liver, and pancreatic systems. The exact mechanisms by which oral pathogens contribute to the development of digestive tract cancers are not fully understood but may involve dysbiosis of the gut microbiome, chronic inflammation, and immune modulation/evasion, mainly through the interaction with T-helper and monocytic cells. Specifically, keystone periodontal pathogens, including Porphyromonas gingivalis and Fusobacterium nucleatum, are known to interact with the molecular hallmarks of gastrointestinal cancers, inducing genomic mutations, and promote a permissive immune microenvironment by impairing anti-tumor checkpoints. The evidence gathered here suggests a possible role of periodontitis and oral dysbiosis in the carcinogenesis of the enteral tract. The "gum-gut axis" may therefore represent a promising target for the development of strategies for the prevention and treatment of gastrointestinal cancers.
Collapse
Affiliation(s)
- Giacomo Baima
- Department of Surgical Sciences, University of Turin, 10125 Torino, Italy; (G.B.); (F.R.); (M.A.)
| | | | - Federica Romano
- Department of Surgical Sciences, University of Turin, 10125 Torino, Italy; (G.B.); (F.R.); (M.A.)
| | - Mario Aimetti
- Department of Surgical Sciences, University of Turin, 10125 Torino, Italy; (G.B.); (F.R.); (M.A.)
| | - Mario Romandini
- Department of Periodontology, Faculty of Dentistry, University of Oslo, 0313 Oslo, Norway
| |
Collapse
|
167
|
Zhu Q, Dovletgeldiyev A, Shen C, Li K, Hu S, He Z. Comparative genomic analysis of Fusobacterium nucleatum reveals high intra-species diversity and cgmlst marker construction. Gut Pathog 2023; 15:43. [PMID: 37710263 PMCID: PMC10503116 DOI: 10.1186/s13099-023-00570-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Fusobacterium nucleatum is a one of the most important anaerobic opportunistic pathogens in the oral and intestinal tracts of human and animals. It can cause various diseases such as infections, Lemierre's syndrome, oral cancer and colorectal cancer. The comparative genomic studies on the population genome level, have not been reported. RESULTS We analyzed all publicly available Fusobacterium nucleatums' genomic data for a comparative genomic study, focusing on the pan-genomic features, virulence genes, plasmid genomes and developed cgmlst molecular markers. We found the pan-genome shows a clear open tendency and most of plasmids in Fusobacterium nucleatum are mainly transmitted intraspecifically. CONCLUSIONS Our comparative analysis of Fusobacterium nucleatum systematically revealed the open pan-genomic features and phylogenetic tree based on cgmlst molecular markers. What's more, we also identified common plasmid typing among genomes. We hope that our study will provide a theoretical basis for subsequent functional studies.
Collapse
Affiliation(s)
- Qianhui Zhu
- School of Engineering Medicine, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Arslan Dovletgeldiyev
- School of Engineering Medicine, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing, China
| | - Chen Shen
- Departmant of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, Liaoning, China
| | - Kexin Li
- Systems Biology and Bioinformatics (SBI), Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Songnian Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zilong He
- School of Engineering Medicine, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, China.
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing, China.
| |
Collapse
|
168
|
Piawah S, Kyaw TS, Trepka K, Stewart AL, Mora RV, Stanfield D, Levine K, Van Blarigan EL, Venook A, Turnbaugh PJ, Nguyen T, Atreya CE. Associations between the Gut Microbiota, Race, and Ethnicity of Patients with Colorectal Cancer: A Pilot and Feasibility Study. Cancers (Basel) 2023; 15:4546. [PMID: 37760515 PMCID: PMC10526839 DOI: 10.3390/cancers15184546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is more prevalent among some racial and ethnic minority and low socioeconomic status populations. Although the gut microbiota is a risk factor for CRC and varies with race and ethnicity, its role in CRC disparities remains poorly understood. METHODS We examined the feasibility of recruiting sociodemographically diverse CRC patients for a microbiome study involving a home stool collection. We also explored whether race and ethnicity were associated with gut microbiome composition. We recruited Black/African American, Hispanic/Latino, and non-Hispanic White patients who were receiving care for active CRC to complete a comprehensive dietary and lifestyle survey, self-collect a stool sample, and complete an exit interview. Gut microbial diversity and composition were analyzed using 16S rRNA gene sequencing. RESULTS 30 individuals consented (of 35 who were eligible and contacted) with 5 (17%) Black/African American, 11 (37%) Hispanic/Latino, and 14 (46%) non-Hispanic White. A total of 22 (73%) completed the dietary and lifestyle survey; 18 (63%) returned a stool sample. Even after controlling for socioeconomic, dietary, or treatment-related covariates, microbiome composition was associated with race and ethnicity. Fusobacteriota (a phylum associated with the development and progression of CRC) was significantly higher in the Black/African American group compared to others, and microbial diversity was higher in samples from non-Hispanic White individuals compared to Hispanic/Latino individuals. CONCLUSION Our study shows that it is feasible to recruit and collect stool samples from diverse individuals with CRC and found significant associations in gut microbial structure with race and ethnicity.
Collapse
Affiliation(s)
- Sorbarikor Piawah
- Department of Medicine, University of California, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94143, USA
- UCSF Center for Aging in Diverse Communities, San Francisco, CA 94143, USA
| | - Than S. Kyaw
- Department of Microbiology and Immunology, University of California, San Francisco, CA 92521, USA
- School of Medicine, University of California, San Francisco, CA 92521, USA
| | - Kai Trepka
- Department of Microbiology and Immunology, University of California, San Francisco, CA 92521, USA
| | - Anita L. Stewart
- UCSF Center for Aging in Diverse Communities, San Francisco, CA 94143, USA
- Institute for Health & Aging, University of California, San Francisco, CA 92521, USA
- School of Nursing, University of California, San Francisco, CA 92521, USA
| | - Rosa V. Mora
- School of Medicine, University of California, San Francisco, CA 92521, USA
| | - Dalila Stanfield
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94143, USA
| | - Kendall Levine
- Department of Medicine, University of California, San Francisco, CA 94143, USA
- Zuckerberg San Francisco General Hospital, San Francisco, CA 94110, USA
| | - Erin L. Van Blarigan
- Department of Urology, University of California, San Francisco, CA 92521, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA 92521, USA
| | - Alan Venook
- Department of Medicine, University of California, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94143, USA
| | - Peter J. Turnbaugh
- Department of Microbiology and Immunology, University of California, San Francisco, CA 92521, USA
- Chan Zuckerberg Biohub-San Francisco, San Francisco, CA 40385, USA
| | - Tung Nguyen
- Department of Medicine, University of California, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94143, USA
- UCSF Center for Aging in Diverse Communities, San Francisco, CA 94143, USA
| | - Chloe E. Atreya
- Department of Medicine, University of California, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94143, USA
- Osher Center for Integrative Medicine, San Francisco, CA 94115, USA
| |
Collapse
|
169
|
Nagakubo D, Kaibori Y. Oral Microbiota: The Influences and Interactions of Saliva, IgA, and Dietary Factors in Health and Disease. Microorganisms 2023; 11:2307. [PMID: 37764151 PMCID: PMC10535076 DOI: 10.3390/microorganisms11092307] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Recent advances in metagenomic analyses have made it easier to analyze microbiota. The microbiota, a symbiotic community of microorganisms including bacteria, archaea, fungi, and viruses within a specific environment in tissues such as the digestive tract and skin, has a complex relationship with the host. Recent studies have revealed that microbiota composition and balance particularly affect the health of the host and the onset of disease. Influences such as diet, food preferences, and sanitation play crucial roles in microbiota composition. The oral cavity is where the digestive tract directly communicates with the outside. Stable temperature and humidity provide optimal growth environments for many bacteria. However, the oral cavity is a unique environment that is susceptible to pH changes, salinity, food nutrients, and external pathogens. Recent studies have emphasized the importance of the oral microbiota, as changes in bacterial composition and balance could contribute to the development of systemic diseases. This review focuses on saliva, IgA, and fermented foods because they play critical roles in maintaining the oral bacterial environment by regulating its composition and balance. More attention should be paid to the oral microbiota and its regulatory factors in oral and systemic health.
Collapse
Affiliation(s)
- Daisuke Nagakubo
- Division of Health and Hygienic Sciences, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Hyogo, Japan
| | - Yuichiro Kaibori
- Division of Health and Hygienic Sciences, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Hyogo, Japan
- Laboratory of Analytics for Biomolecules, Faculty of Pharmaceutical Science, Setsunan University, 45-1 Nagaotoge-cho, Hirakata-shi 573-0101, Osaka, Japan;
| |
Collapse
|
170
|
Zhuang YP, Zhou HL, Chen HB, Zheng MY, Liang YW, Gu YT, Li WT, Qiu WL, Zhou HG. Gut microbiota interactions with antitumor immunity in colorectal cancer: From understanding to application. Biomed Pharmacother 2023; 165:115040. [PMID: 37364479 DOI: 10.1016/j.biopha.2023.115040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023] Open
Abstract
Colorectal cancer (CRC) is one of highly prevalent cancer. Immunotherapy with immune checkpoint inhibitors (ICIs) has dramatically changed the landscape of treatment for many advanced cancers, but CRC still exhibits suboptimal response to immunotherapy. The gut microbiota can affect both anti-tumor and pro-tumor immune responses, and further modulate the efficacy of cancer immunotherapy, particularly in the context of therapy with ICIs. Therefore, a deeper understanding of how the gut microbiota modulates immune responses is crucial to improve the outcomes of CRC patients receiving immunotherapy and to overcome resistance in nonresponders. The present review aims to describe the relationship between the gut microbiota, CRC, and antitumor immune responses, with a particular focus on key studies and recent findings on the effect of the gut microbiota on the antitumor immune activity. We also discuss the potential mechanisms by which the gut microbiota influences host antitumor immune responses as well as the prospective role of intestinal flora in CRC treatment. Furthermore, the therapeutic potential and limitations of different modulation strategies for the gut microbiota are also discussed. These insights may facilitate to better comprehend the interplay between the gut microbiota and the antitumor immune responses of CRC patients and provide new research pathways to enhance immunotherapy efficacy and expand the patient population that could be benefited by immunotherapy.
Collapse
Affiliation(s)
- Yu-Pei Zhuang
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hong-Li Zhou
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hai-Bin Chen
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ming-Yue Zheng
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu-Wei Liang
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu-Tian Gu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wen-Ting Li
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Wen-Li Qiu
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Hong-Guang Zhou
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
171
|
Tamagawa H, Tamagawa A, Aoyama T, Hashimoto I, Maezawa Y, Hara K, Kato A, Kamiya N, Otani K, Numata M, Kazama K, Morita J, Tanabe M, Onuma S, Cho H, Sawazaki S, Ohshima T, Yukawa N, Mitsudo K, Saito A, Rino Y. Influence of the Oral Health Assessment Tool Score on Survival of Patients With Esophageal Cancer. In Vivo 2023; 37:2253-2259. [PMID: 37652503 PMCID: PMC10500491 DOI: 10.21873/invivo.13327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND/AIM We investigated the influence of the preoperative Oral Health Assessment Tool (OHAT) score on the outcomes of patients with esophageal cancer after curative surgery. PATIENTS AND METHODS This study included 90 patients with esophageal cancer who underwent curative surgery and who were screened with the OHAT between 2008 and 2021. The OHAT consists of eight categories with three possible scores. The risk factors for 5-year overall survival (OS) and recurrence-free survival (RFS) were identified. RESULTS Patients were divided into healthy (n=42) and unhealthy (n=48) groups. The OHAT score was identified as a significant risk factor for postoperative pneumonia (11.9% vs. 43.8%, p=0.001) and postoperative hospital stay (20.5 days vs. 50.1 days, p=0.042). The 5-year OS rate after surgery was 71.2% in the healthy group and 43.2% in the unhealthy group, which was a significant difference (p=0.015). A multivariate analysis showed that a high OHAT score was a significant independent factor for 5-year OS (p=0.034). CONCLUSION The OHAT score was a useful prognostic marker in patients who underwent curative surgery for esophageal cancer. To improve the oncological outcomes of patients with esophageal cancer, it is necessary to carefully plan perioperative oral/dental care using the OHAT score.
Collapse
Affiliation(s)
- Hiroshi Tamagawa
- Department of Surgery, Yokohama City University, Yokohama, Japan
| | - Ayako Tamagawa
- Department of Surgery, Yokohama City University, Yokohama, Japan
| | - Toru Aoyama
- Department of Surgery, Yokohama City University, Yokohama, Japan;
| | - Itaru Hashimoto
- Department of Surgery, Yokohama City University, Yokohama, Japan
| | - Yukio Maezawa
- Department of Surgery, Yokohama City University, Yokohama, Japan
| | - Kentaro Hara
- Department of Surgery, Yokohama City University, Yokohama, Japan
| | - Aya Kato
- Department of Surgery, Yokohama City University, Yokohama, Japan
| | - Natsumi Kamiya
- Department of Surgery, Yokohama City University, Yokohama, Japan
| | - Kazuki Otani
- Department of Surgery, Yokohama City University, Yokohama, Japan
| | - Masakatsu Numata
- Department of Surgery, Yokohama City University, Yokohama, Japan
| | - Keisuke Kazama
- Department of Surgery, Yokohama City University, Yokohama, Japan
| | - Jyunya Morita
- Department of Surgery, Yokohama City University, Yokohama, Japan
| | - Mie Tanabe
- Department of Surgery, Yokohama City University, Yokohama, Japan
| | - Shizune Onuma
- Department of Surgery, Yokohama City University, Yokohama, Japan
| | - Haruhiko Cho
- Department of Surgery, Yokohama City University, Yokohama, Japan
| | - Sho Sawazaki
- Department of Surgery, Yokohama City University, Yokohama, Japan
| | - Takashi Ohshima
- Department of Gastroenterological Surgery, Kanagawa Cancer Hospital, Yokohama, Japan
| | - Norio Yukawa
- Department of Surgery, Yokohama City University, Yokohama, Japan
| | - Kenji Mitsudo
- Department of Oral and Maxillofacial Surgery, Yokohama City University, Yokohama, Japan
| | - Aya Saito
- Department of Surgery, Yokohama City University, Yokohama, Japan
| | - Yasushi Rino
- Department of Surgery, Yokohama City University, Yokohama, Japan
| |
Collapse
|
172
|
Su S, Bu Q, Bai X, Huang Y, Wang F, Hong J, Fang JY, Wu S, Sheng C. Discovery of potent natural product higenamine derivatives as novel Anti-Fusobacterium nucleatum agents. Bioorg Chem 2023; 138:106586. [PMID: 37178651 DOI: 10.1016/j.bioorg.2023.106586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/11/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023]
Abstract
Fusobacterium nucleatum (F. nucleatum) is closely associated with the occurrence and development of colorectal cancer (CRC). Discovery of specific antibacterial agents against F. nucleatum was urgent for the prevention and treatment of CRC. We screened a natural product library and successfully identified higenamine as an antibacterial hit against F. nucleatum. Further hit optimizations led to the discovery of new higenamine derivatives with improved anti-F. nucleatum activity. Among them, compound 7c showed potent antibacterial activity against F. nucleatum (MIC50 = 0.005 μM) with good selectivity toward intestinal bacteria and normal cells. It significantly inhibited the migration of CRC cells induced by F. nucleatum. Mechanism study revealed that compound 7c impaired the integrity of biofilm and cell wall, which represents a good starting point for the development of novel anti-F. nucleatum agents.
Collapse
Affiliation(s)
- Sijia Su
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Road, Wenzhou, Zheijang 325035, China; Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China
| | - Qingwei Bu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Road, Wenzhou, Zheijang 325035, China; Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China
| | - Xuexin Bai
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China
| | - Yahui Huang
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China
| | - Fangfang Wang
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China
| | - Jie Hong
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shanchao Wu
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China
| | - Chunquan Sheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan Road, Wenzhou, Zheijang 325035, China; Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
173
|
Gweon TG. [Gut Microbiome and Colorectal Cancer]. THE KOREAN JOURNAL OF GASTROENTEROLOGY = TAEHAN SOHWAGI HAKHOE CHI 2023; 82:56-62. [PMID: 37621240 DOI: 10.4166/kjg.2023.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/26/2023]
Abstract
Colorectal cancer (CRC) is one of the most common cancers in Korea. A majority of CRCs are caused by progressive genomic alterations referred to as the adenoma-carcinoma sequence. The factors that may increase the risk of CRC include obesity and consumption of a high-fat diet, red meat, processed meat, and alcohol. Recently, the role of gut microbiota in the formation, progression and treatment of CRCs has been investigated in depth. An altered gut microbiota can drive carcinogenesis and cause the development of CRC. Studies have also shown the role of gut microbiota in the prevention of CRC and the impact of therapies involving gut microbiota on CRC. Herein, we summarize the current understanding of the role of the gut microbiota in the development of CRC and its therapeutic potential, including the prevention of CRC and in enhancing efficacy of chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Tae-Geun Gweon
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
174
|
Xue X, Li R, Chen Z, Li G, Liu B, Guo S, Yue Q, Yang S, Xie L, Zhang Y, Zhao J, Tan R. The role of the symbiotic microecosystem in cancer: gut microbiota, metabolome, and host immunome. Front Immunol 2023; 14:1235827. [PMID: 37691931 PMCID: PMC10484231 DOI: 10.3389/fimmu.2023.1235827] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/12/2023] [Indexed: 09/12/2023] Open
Abstract
The gut microbiota is not just a simple nutritional symbiosis that parasitizes the host; it is a complex and dynamic ecosystem that coevolves actively with the host and is involved in a variety of biological activities such as circadian rhythm regulation, energy metabolism, and immune response. The development of the immune system and immunological functions are significantly influenced by the interaction between the host and the microbiota. The interactions between gut microbiota and cancer are of a complex nature. The critical role that the gut microbiota plays in tumor occurrence, progression, and treatment is not clear despite the already done research. The development of precision medicine and cancer immunotherapy further emphasizes the importance and significance of the question of how the microbiota takes part in cancer development, progression, and treatment. This review summarizes recent literature on the relationship between the gut microbiome and cancer immunology. The findings suggest the existence of a "symbiotic microecosystem" formed by gut microbiota, metabolome, and host immunome that is fundamental for the pathogenesis analysis and the development of therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Xiaoyu Xue
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
| | - Rui Li
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Zhenni Chen
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Guiyu Li
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
| | - Bisheng Liu
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Shanshan Guo
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
| | - Qianhua Yue
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
| | - Siye Yang
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
| | - Linlin Xie
- Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Classical Chinese Medicine Diagnosis and Treatment Center, Luzhou, China
| | - Yiguan Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
| | - Junning Zhao
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
| | - Ruirong Tan
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
175
|
Zhang X, Wang Y, Fan R, Zhang L, Li Z, Zhang Y, Zheng W, Wang L, Liu B, Quan C. Quantitative Proteomic Analysis of Outer Membrane Vesicles from Fusobacterium nucleatum Cultivated in the Mimic Cancer Environment. Microbiol Spectr 2023; 11:e0039423. [PMID: 37341631 PMCID: PMC10434195 DOI: 10.1128/spectrum.00394-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/25/2023] [Indexed: 06/22/2023] Open
Abstract
Fusobacterium nucleatum is a Gram-negative bacterium that has been identified as an important pathogenic gut bacterium associated with colorectal cancer. Compared with the normal intestine, the pH value of the tumor microenvironment is weakly acidic. The metabolic changes of F. nucleatum in the tumor microenvironment, especially the protein composition of its outer membrane vesicles, remain unclear. Here, we systematically analyzed the effect of environmental pH on the proteome of outer membrane vesicles (OMVs) from F. nucleatum by tandem mass tag (TMT) labeling-high-resolution liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. A total of 991 proteins were identified in acidic OMVs (aOMVs) and neutral OMVs (nOMVs), including known virulence proteins and putative virulence proteins. Finally, 306 upregulated proteins and 360 downregulated proteins were detected in aOMVs, and approximately 70% of the expression of OMV proteins was altered under acidic conditions. A total of 29 autotransporters were identified in F. nucleatum OMVs, and 13 autotransporters were upregulated in aOMVs. Interestingly, three upregulated autotransporters (D5REI9, D5RD69, and D5RBW2) show homology to the known virulence factor Fap2, suggesting that they may be involved in various pathogenic pathways such as the pathway for binding with colorectal cancer cells. Moreover, we found that more than 70% of MORN2 domain-containing proteins may have toxic effects on host cells. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses demonstrated that a number of proteins were significantly enriched in multiple pathways involving fatty acid synthesis and butyrate synthesis. Seven metabolic enzymes involved in fatty acid metabolism pathways were identified in the proteomic data, of which 5 were upregulated and 2 were downregulated in aOMVs, while 14 metabolic enzymes involved in the butyric acid metabolic pathway were downregulated in aOMVs. In conclusion, we found a key difference in virulence proteins and pathways in the outer membrane vesicles of F. nucleatum between the tumor microenvironment pH and normal intestinal pH, which provides new clues for the prevention and treatment of colorectal cancer. IMPORTANCE F. nucleatum is an opportunistic pathogenic bacterium that can be enriched in colorectal cancer tissues, affecting multiple stages of colorectal cancer development. OMVs have been demonstrated to play key roles in pathogenesis by delivering toxins and other virulence factors to host cells. By employing quantitative proteomic analysis, we found that the pH conditions could affect the protein expression of the outer membrane vesicles of F. nucleatum. Under acidic conditions, approximately 70% of the expression of proteins in OMVs was altered. Several virulence factors, such as type 5a secreted autotransporter (T5aSSs) and membrane occupation and recognition nexus (MORN) domain-containing proteins, were upregulated under acidic conditions. A large number of proteins showed significant enrichments in multiple pathways involving fatty acid synthesis and butyrate synthesis. Proteomics analysis of the outer membrane vesicles secreted by pathogenic bacteria in the acidic tumor microenvironment is of great significance for elucidating the pathogenicity mechanism and its application in vaccine and drug delivery vehicles.
Collapse
Affiliation(s)
- Xuqiang Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of the Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
| | - Yuxin Wang
- Key Laboratory of Biotechnology and Bioresources Utilization of the Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
| | - Ruochen Fan
- Key Laboratory of Biotechnology and Bioresources Utilization of the Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning, China
| | - Liying Zhang
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning, China
| | - Zhuting Li
- Key Laboratory of Biotechnology and Bioresources Utilization of the Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
| | - Yanmei Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of the Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
| | - Wei Zheng
- Key Laboratory of Biotechnology and Bioresources Utilization of the Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
| | - Lulu Wang
- Key Laboratory of Biotechnology and Bioresources Utilization of the Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning, China
| | - Baoquan Liu
- Key Laboratory of Biotechnology and Bioresources Utilization of the Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
| | - Chunshan Quan
- Key Laboratory of Biotechnology and Bioresources Utilization of the Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
| |
Collapse
|
176
|
Byrd DA, Fan W, Greathouse KL, Wu MC, Xie H, Wang X. The intratumor microbiome is associated with microsatellite instability. J Natl Cancer Inst 2023; 115:989-993. [PMID: 37192013 PMCID: PMC10407713 DOI: 10.1093/jnci/djad083] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/14/2023] [Accepted: 05/09/2023] [Indexed: 05/18/2023] Open
Abstract
Intratumoral microbes may have multifunctional roles in carcinogenesis. Microsatellite instability (MSI) is associated with higher tumor immunity and mutational burden. Using whole transcriptome and whole genome sequencing microbial abundance data, we investigated associations of intratumoral microbes with MSI, survival, and MSI-relevant tumor molecular characteristics across multiple cancer types including colorectal cancer (CRC), stomach adenocarcinoma, and endometrial carcinoma. Among 451 CRC patients, our key finding was strong associations of multiple CRC-associated genera, including Dialister and Casatella, with MSI. Dialister and Casatella abundance was associated with improved overall survival (hazard ratiomortality = 0.56, 95% confidence interval = 0.34 to 0.92, and hazard ratiomortality = 0.44, 95% confidence interval = 0.27 to 0.72), respectively, comparing higher relative to lower quantiles. Multiple intratumor microbes were associated with immune genes and tumor mutational burden. Diversity of oral cavity-originating microbes was also associated with MSI among CRC and stomach adenocarcinoma patients. Overall, our findings suggest the intratumor microbiota may differ by MSI status and play a role in influencing the tumor microenvironment.
Collapse
Affiliation(s)
- Doratha A Byrd
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Wenyi Fan
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - K Leigh Greathouse
- Department of Human Sciences and Design, Robbins College of Health and Human Sciences, Baylor University, Waco, TX, USA
| | - Michael C Wu
- Biostatistics Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Hao Xie
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Xuefeng Wang
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
177
|
Li X, Feng J, Wang Z, Liu G, Wang F. Features of combined gut bacteria and fungi from a Chinese cohort of colorectal cancer, colorectal adenoma, and post-operative patients. Front Microbiol 2023; 14:1236583. [PMID: 37614602 PMCID: PMC10443710 DOI: 10.3389/fmicb.2023.1236583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/20/2023] [Indexed: 08/25/2023] Open
Abstract
Colorectal cancer (CRC) accounts for the third highest morbidity burden among malignant tumors worldwide. Previous studies investigated gut microbiome changes that occur during colorectal adenomas (CRA) progression to overt CRC, thus highlighting the importance of the gut microbiome in carcinogenesis. However, few studies have examined gut microbiome characteristics across the entire spectrum, from CRC development to treatment. The study used 16S ribosomal ribonucleic acid and internal transcribed spacer amplicon sequencing to compare the composition of gut bacteria and fungi in a Chinese cohort of healthy controls (HC), CRC patients, CRA patients, and CRC postoperative patients (PP). Our analysis showed that beta diversity was significantly different among the four groups based on the gut bacterial and fungal data. A total of 51 species of bacteria and 8 species of fungi were identified in the HC, CRA, CRC, and PP groups. Correlation networks for both the gut bacteria and fungi in HC vs. CRA, HC vs. CRC, and HC vs. PP indicated some hub bacterial and fungal genera in each model, and the correlation between bacterial and fungal data indicated that a highly significant negative correlation exists among groups. Quantitative polymerase chain reaction (qPCR) analysis in a large cohort of HC, CRC, CRA, and PP patients demonstrated a significantly increasing trend of Fusobacterium nucleatum, Bifidobacterium bifidum, Candida albicans, and Saccharomyces cerevisiae in the feces of CRC patients than that of HC patients (p < 0.01). However, the abundance levels of CRA and PP were significantly lower in HC patients than those in CRC patients. Further studies are required to identify the functional consequences of the altered bacterial/fungal composition on metabolism and CRC tumorigenesis in the host.
Collapse
Affiliation(s)
- Xiaopeng Li
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Radiation Oncology, Anhui No. 2 Provincial People's Hospital, Hefei, China
| | - Jiahui Feng
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Zhanggui Wang
- Department of Radiation Oncology, Anhui No. 2 Provincial People's Hospital, Hefei, China
| | - Gang Liu
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Fan Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
178
|
Nawab S, Bao Q, Ji LH, Luo Q, Fu X, Fan S, Deng Z, Ma W. The Pathogenicity of Fusobacterium nucleatum Modulated by Dietary Fibers-A Possible Missing Link between the Dietary Composition and the Risk of Colorectal Cancer. Microorganisms 2023; 11:2004. [PMID: 37630564 PMCID: PMC10458976 DOI: 10.3390/microorganisms11082004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
The dietary composition has been approved to be strongly associated with the risk of colorectal cancer (CRC), one of the most serious malignancies worldwide, through regulating the gut microbiota structure, thereby influencing the homeostasis of colonic epithelial cells by producing carcinogens, i.e., ammonia or antitumor metabolites, like butyrate. Though butyrate-producing Fusobacterium nucleatum has been considered a potential tumor driver associated with chemotherapy resistance and poor prognosis in CRC, it was more frequently identified in the gut microbiota of healthy individuals rather than CRC tumor tissues. First, within the concentration range tested, the fermentation broth of F. nucleatum exhibited no significant effects on Caco-2 and NCM460 cells viability except for a notable up-regulation of the expression of TLR4 (30.70%, p < 0.0001) and Myc (47.67%, p = 0.021) and genes encoding proinflammatory cytokines including IL1B (197.57%, p < 0.0001), IL6 (1704.51%, p < 0.0001), and IL8 (897.05%, p < 0.0001) in Caco-2 cells exclusively. Although no marked effects of polydextrose or fibersol-2 on the growth of F. nucleatum, Caco-2 and NCM460 cells were observed, once culture media supplemented with polydextrose or fibersol-2, the corresponding fermentation broths of F. nucleatum significantly inhibited the growth of Caco-2 cells up to 48.90% (p = 0.0003, 72 h, 10%) and 52.96% (p = 0.0002, 72 h, 10%), respectively in a dose-dependent manner. These two kinds of fibers considerably promoted butyrate production of F. nucleatum up to 205.67% (p < 0.0001, 6% polydextrose at 24 h) and 153.46% (p = 0.0002, 6% fibersol-2 at 12 h), which explained why and how the fermentation broths of F. nucleatum cultured with fibers suppressing the growth of Caco-2 cells. Above findings indicated that dietary fiber determined F. nucleatum to be a carcinogenic or antitumor bacterium, and F. nucleatum played an important role in the association between the dietary composition, primarily the content of dietary fibers, and the risk of CRC.
Collapse
Affiliation(s)
- Sadia Nawab
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qelger Bao
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Lin-Hua Ji
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Qian Luo
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiang Fu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shuxuan Fan
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wei Ma
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
179
|
Ugai T, Shimizu T, Kawamura H, Ugai S, Takashima Y, Usui G, Väyrynen JP, Okadome K, Haruki K, Akimoto N, Masugi Y, da Silva A, Mima K, Zhang X, Chan AT, Wang M, Garrett WS, Freeman GJ, Meyerhardt JA, Nowak JA, Song M, Giannakis M, Ogino S. Inverse relationship between Fusobacterium nucleatum amount and tumor CD274 (PD-L1) expression in colorectal carcinoma. Clin Transl Immunology 2023; 12:e1453. [PMID: 37538192 PMCID: PMC10394676 DOI: 10.1002/cti2.1453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 08/05/2023] Open
Abstract
Objectives The CD274 (programmed cell death 1 ligand 1, PD-L1)/PDCD1 (programmed cell death 1, PD-1) immune checkpoint axis is known to regulate the antitumor immune response. Evidence also supports an immunosuppressive effect of Fusobacterium nucleatum. We hypothesised that tumor CD274 overexpression might be inversely associated with abundance of F. nucleatum in colorectal carcinoma. Methods We assessed tumor CD274 expression by immunohistochemistry and F. nucleatum DNA within tumor tissue by quantitative PCR in 812 cases among 4465 incident rectal and colon cancer cases that had occurred in two prospective cohort studies. Multivariable logistic regression analyses with inverse probability weighting were used to adjust for selection bias because of tissue data availability and potential confounders including microsatellite instability status, CpG island methylator phenotype, LINE-1 methylation level and KRAS, BRAF and PIK3CA mutations. Results Fusobacterium nucleatum DNA was detected in tumor tissue in 109 (13%) cases. Tumor CD274 expression level was inversely associated with the amount of F. nucleatum in colorectal cancer tissue (P = 0.0077). For one category-unit increase in three ordinal F. nucleatum categories (negative vs. low vs. high), multivariable-adjusted odds ratios (with 95% confidence interval) of the low, intermediate and high CD274 categories (vs. negative) were 0.78 (0.41-1.51), 0.64 (0.32-1.28) and 0.50 (0.25-0.99), respectively (P trend = 0.032). Conclusions Tumor CD274 expression level was inversely associated with the amount of F. nucleatum in colorectal cancer tissue, suggesting that different immunosuppressive mechanisms (i.e. PDCD1 immune checkpoint activation and tumor F. nucleatum enrichment) tend to be used by different tumor subgroups.
Collapse
Affiliation(s)
- Tomotaka Ugai
- Program in MPE Molecular Pathological Epidemiology, Department of PathologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
- Department of EpidemiologyHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - Takashi Shimizu
- Program in MPE Molecular Pathological Epidemiology, Department of PathologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
| | - Hidetaka Kawamura
- Program in MPE Molecular Pathological Epidemiology, Department of PathologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
| | - Satoko Ugai
- Department of EpidemiologyHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - Yasutoshi Takashima
- Program in MPE Molecular Pathological Epidemiology, Department of PathologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
| | - Genki Usui
- Program in MPE Molecular Pathological Epidemiology, Department of PathologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
| | - Juha P Väyrynen
- Program in MPE Molecular Pathological Epidemiology, Department of PathologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
- Department of Medical OncologyDana‐Farber Cancer Institute and Harvard Medical SchoolBostonMAUSA
- Cancer and Translational Medicine Research Unit, Medical Research Center OuluOulu University Hospital and University of OuluOuluFinland
| | - Kazuo Okadome
- Program in MPE Molecular Pathological Epidemiology, Department of PathologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
| | - Koichiro Haruki
- Program in MPE Molecular Pathological Epidemiology, Department of PathologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
| | - Naohiko Akimoto
- Program in MPE Molecular Pathological Epidemiology, Department of PathologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
| | - Yohei Masugi
- Program in MPE Molecular Pathological Epidemiology, Department of PathologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
| | | | - Kosuke Mima
- Department of Gastroenterological Surgery, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Xuehong Zhang
- Channing Division of Network Medicine, Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
- Department of NutritionHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - Andrew T Chan
- Channing Division of Network Medicine, Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
- Clinical and Translational Epidemiology UnitMassachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
- Division of GastroenterologyMassachusetts General HospitalBostonMAUSA
- Department of Immunology and Infectious DiseasesHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - Molin Wang
- Department of EpidemiologyHarvard T.H. Chan School of Public HealthBostonMAUSA
- Channing Division of Network Medicine, Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
- Department of BiostatisticsHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - Wendy S Garrett
- Department of Medical OncologyDana‐Farber Cancer Institute and Harvard Medical SchoolBostonMAUSA
- Department of Immunology and Infectious DiseasesHarvard T.H. Chan School of Public HealthBostonMAUSA
- Department of Molecular MetabolismHarvard T.H. Chan School of Public HealthBostonMAUSA
- Harvard T.H. Chan Microbiome in Public Health CenterBostonMAUSA
- Broad Institute of MIT and HarvardCambridgeMAUSA
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
| | - Gordon J Freeman
- Department of Medical OncologyDana‐Farber Cancer Institute and Harvard Medical SchoolBostonMAUSA
| | - Jeffrey A Meyerhardt
- Department of Medical OncologyDana‐Farber Cancer Institute and Harvard Medical SchoolBostonMAUSA
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of PathologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
| | - Mingyang Song
- Department of NutritionHarvard T.H. Chan School of Public HealthBostonMAUSA
- Clinical and Translational Epidemiology UnitMassachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
- Division of GastroenterologyMassachusetts General HospitalBostonMAUSA
| | - Marios Giannakis
- Department of Medical OncologyDana‐Farber Cancer Institute and Harvard Medical SchoolBostonMAUSA
- Broad Institute of MIT and HarvardCambridgeMAUSA
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of PathologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
- Department of EpidemiologyHarvard T.H. Chan School of Public HealthBostonMAUSA
- Broad Institute of MIT and HarvardCambridgeMAUSA
- Cancer Immunology and Cancer Epidemiology ProgramsDana‐Farber Harvard Cancer CenterBostonMAUSA
| |
Collapse
|
180
|
Li J, Guo Y, Liu J, Guo F, Du L, Yang Y, Li X, Ma Y. Depicting the landscape of gut microbial-metabolic interaction and microbial-host immune heterogeneity in deficient and proficient DNA mismatch repair colorectal cancers. J Immunother Cancer 2023; 11:e007420. [PMID: 37597851 PMCID: PMC10441105 DOI: 10.1136/jitc-2023-007420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2023] [Indexed: 08/21/2023] Open
Abstract
BACKGROUND Accumulating evidence has indicated the role of gut microbiota in remodeling host immune signatures, but various interplays underlying colorectal cancers (CRC) with deficient DNA mismatch repair (dMMR) and proficient DNA mismatch repair (pMMR) remain poorly understood. This study aims to decipher the gut microbiome-host immune interactions between dMMR and pMMR CRC. METHOD We performed metagenomic sequencing and metabolomic analysis of fecal samples from a cohort encompassing 455 participants, including 21 dMMR CRC, 207 pMMR CRC, and 227 healthy controls. Among them, 50 tumor samples collected from 5 dMMR CRC and 45 pMMR CRC were conducted bulk RNA sequencing. RESULTS Pronounced microbiota and metabolic heterogeneity were identified with 211 dMMR-enriched species, such as Fusobacterium nucleatum and Akkermansia muciniphila, 2 dMMR-depleted species, such as Flavonifractor plautii, 13 dMMR-enriched metabolites, such as retinoic acid, and 77 dMMR-depleted metabolites, such as lactic acid, succinic acid, and 2,3-dihydroxyvaleric acid. F. plautii was enriched in pMMR CRC and it was positively associated with fatty acid degradation, which might account for the accumulation of dMMR-depleted metabolites classified as short chain organic acid (lactic acid, succinic acid, and 2,3-dihydroxyvaleric acid) in pMMR CRC. The microbial-metabolic association analysis revealed the characterization of pMMR CRC as the accumulation of lactate induced by the depletion of specific gut microbiota which was negatively associated with antitumor immune, whereas the nucleotide metabolism and peptide degradation mediated by dMMR-enriched species characterized dMMR CRC. MMR-specific metabolic landscapes were related to distinctive immune features, such as CD8+ T cells, dendritic cells and M2-like macrophages. CONCLUSIONS Our mutiomics results delineate a heterogeneous landscape of microbiome-host immune interactions within dMMR and pMMR CRC from aspects of bacterial communities, metabolic features, and correlation with immunocyte compartment, which infers the underlying mechanism of heterogeneous immune responses.
Collapse
Affiliation(s)
- Jinming Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yangyang Guo
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianqiang Liu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Endoscopy, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Fanying Guo
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong province, China
| | - Yongzhi Yang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinxiang Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanlei Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
181
|
Xie Z, Zhu R, Huang X, Yao F, Jin S, Huang Q, Wang D, Li H, Wang Q, Long H, Wu Q. Metabolomic analysis of gut metabolites in patients with colorectal cancer: Association with disease development and outcome. Oncol Lett 2023; 26:358. [PMID: 37545617 PMCID: PMC10398631 DOI: 10.3892/ol.2023.13944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 05/16/2023] [Indexed: 08/08/2023] Open
Abstract
Colorectal cancer (CRC) is one of the leading global malignancies with low 5-year survival and high mortality rates. Despite extensive research, the precise role of gut metabolites in CRC development and clinical outcomes remains unclear, while its elucidation may aid the development of improved clinical diagnosis and treatment options. In the present study, targeted metabolomic analysis was conducted on fecal samples from 35 patients with CRC, 37 patients with colorectal adenoma and 30 healthy controls (HC) to identify metabolite biomarkers. Using orthogonal partial least squares discriminant analysis, metabolomic features distinguishing the three groups were identified. Receiver operating characteristic (ROC) curve analysis was used to assess diagnostic utility for distinguishing CRC from HC. The association of gut metabolites with survival in patients with CRC was also analyzed by comparing short-term survivors (STS) and long-term survivors (LTS), and the prognostic ability of metabolites was predicted using Cox regression and Kaplan-Meier analysis. The results of the current study showed that the enriched pathways in CRC included 'caffeine metabolism', 'thiamine metabolism', 'phenylalanine, tyrosine and tryptophan biosynthesis' and 'phenylalanine metabolism'. ROC analysis found that 9,10-dihydroxy-12-octadecenoic acid, cholesterol ester (18:2) and lipoxinA4 distinguished CRC from HC. Joint quantification of these three metabolites resulted in an area under the ROC curve of 0.969 in the diagnosis of CRC. The analysis of the current study also showed that the expression of metabolites involved in 'sphingolipid metabolism' was mainly dysregulated in LTS and STS, while N-acetylmannosamine and 2,5-dihydroxybenzaldehyde were associated with better overall survival. In conclusion, the present study provided preliminary insight into the metabolic changes associated with CRC and may have important implications for the development of future diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Zhufu Xie
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China
| | - Rui Zhu
- Department of Gastroenterology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, Hubei 430064, P.R. China
| | - Xiaoying Huang
- Department of Public Health, The First Hospital of Wuhan, Wuhan, Hubei 430000, P.R. China
| | - Fei Yao
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Shu Jin
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Qiyou Huang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China
| | - Dequan Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China
| | - Huan Li
- Department of Gastroenterology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, Hubei 430064, P.R. China
| | - Qiang Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China
| | - Hui Long
- Department of Gastroenterology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, Hubei 430064, P.R. China
| | - Qingming Wu
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China
- Department of Gastroenterology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, Hubei 430064, P.R. China
| |
Collapse
|
182
|
Qu R, Zhang Y, Ma Y, Zhou X, Sun L, Jiang C, Zhang Z, Fu W. Role of the Gut Microbiota and Its Metabolites in Tumorigenesis or Development of Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205563. [PMID: 37263983 PMCID: PMC10427379 DOI: 10.1002/advs.202205563] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/20/2023] [Indexed: 06/03/2023]
Abstract
Colorectal cancer (CRC) is the most common cancer of the digestive system with high mortality and morbidity rates. Gut microbiota is found in the intestines, especially the colorectum, and has structured crosstalk interactions with the host that affect several physiological processes. The gut microbiota include CRC-promoting bacterial species, such as Fusobacterium nucleatum, Escherichia coli, and Bacteroides fragilis, and CRC-protecting bacterial species, such as Clostridium butyricum, Streptococcus thermophilus, and Lacticaseibacillus paracasei, which along with other microorganisms, such as viruses and fungi, play critical roles in the development of CRC. Different bacterial features are identified in patients with early-onset CRC, combined with different patterns between fecal and intratumoral microbiota. The gut microbiota may be beneficial in the diagnosis and treatment of CRC; some bacteria may serve as biomarkers while others as regulators of chemotherapy and immunotherapy. Furthermore, metabolites produced by the gut microbiota play essential roles in the crosstalk with CRC cells. Harmful metabolites include some primary bile acids and short-chain fatty acids, whereas others, including ursodeoxycholic acid and butyrate, are beneficial and impede tumor development and progression. This review focuses on the gut microbiota and its metabolites, and their potential roles in the development, diagnosis, and treatment of CRC.
Collapse
Affiliation(s)
- Ruize Qu
- Department of General SurgeryPeking University Third HospitalBeijing100191P. R. China
- Cancer CenterPeking University Third HospitalBeijing100191P. R. China
| | - Yi Zhang
- Department of General SurgeryPeking University Third HospitalBeijing100191P. R. China
- Cancer CenterPeking University Third HospitalBeijing100191P. R. China
| | - Yanpeng Ma
- Department of General SurgeryPeking University Third HospitalBeijing100191P. R. China
- Cancer CenterPeking University Third HospitalBeijing100191P. R. China
| | - Xin Zhou
- Department of General SurgeryPeking University Third HospitalBeijing100191P. R. China
- Cancer CenterPeking University Third HospitalBeijing100191P. R. China
| | - Lulu Sun
- State Key Laboratory of Women's Reproductive Health and Fertility PromotionPeking UniversityBeijing100191P. R. China
- Department of Endocrinology and MetabolismPeking University Third HospitalBeijing100191P. R. China
| | - Changtao Jiang
- Center of Basic Medical ResearchInstitute of Medical Innovation and ResearchThird HospitalPeking UniversityBeijing100191P. R. China
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesPeking University and the Key Laboratory of Molecular Cardiovascular Science (Peking University)Ministry of EducationBeijing100191P. R. China
- Center for Obesity and Metabolic Disease ResearchSchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
| | - Zhipeng Zhang
- Department of General SurgeryPeking University Third HospitalBeijing100191P. R. China
- Cancer CenterPeking University Third HospitalBeijing100191P. R. China
| | - Wei Fu
- Department of General SurgeryPeking University Third HospitalBeijing100191P. R. China
- Cancer CenterPeking University Third HospitalBeijing100191P. R. China
| |
Collapse
|
183
|
Wang X, Chen Q, Zhu Y, Wang K, Chang Y, Wu X, Bao W, Cao T, Chen H, Zhang Y, Qin H. Destroying pathogen-tumor symbionts synergizing with catalytic therapy of colorectal cancer by biomimetic protein-supported single-atom nanozyme. Signal Transduct Target Ther 2023; 8:277. [PMID: 37474504 PMCID: PMC10359331 DOI: 10.1038/s41392-023-01491-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 07/22/2023] Open
Abstract
The crucial role of intratumoral bacteria in the progression of cancer has been gradually recognized with the development of sequencing technology. Several intratumoral bacteria which have been identified as pathogens of cancer that induce progression, metastasis, and poor outcome of cancer, while tumor vascular networks and immunosuppressive microenvironment provide shelters for pathogens localization. Thus, the mutually-beneficial interplay between pathogens and tumors, named "pathogen-tumor symbionts", is probably a potential therapeutic site for tumor treatment. Herein, we proposed a destroying pathogen-tumor symbionts strategy that kills intratumoral pathogens, F. nucleatum, to break the symbiont and synergize to kill colorectal cancer (CRC) cells. This strategy was achieved by a groundbreaking protein-supported copper single-atom nanozyme (BSA-Cu SAN) which was inspired by the structures of native enzymes that are based on protein, with metal elements as the active center. BSA-Cu SAN can exert catalytic therapy by generating reactive oxygen species (ROS) and depleting GSH. The in vitro and in vivo experiments demonstrate that BSA-Cu SAN passively targets tumor sites and efficiently scavenges F. nucleatum in situ to destroy pathogen-tumor symbionts. As a result, ROS resistance of CRC through elevated autophagy mediated by F. nucleatum was relieved, contributing to apoptosis of cancer cells induced by intracellular redox imbalance generated by BSA-Cu SAN. Particularly, BSA-Cu SAN experiences renal clearance, avoiding long-term systemic toxicity. This work provides a feasible paradigm for destroying pathogen-tumor symbionts to block intratumoral pathogens interplay with CRC for antitumor therapy and an optimized trail for the SAN catalytic therapy by the clearable protein-supported SAN.
Collapse
Affiliation(s)
- Xinyue Wang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Qian Chen
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China.
| | - Yefei Zhu
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Kairuo Wang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Yongliang Chang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Xiawei Wu
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Weichao Bao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Shanghai, 200050, China
| | - Tongcheng Cao
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Hangrong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Shanghai, 200050, China
| | - Yang Zhang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China.
- Precision Medicine Center, Taizhou Central Hospital, 999 Donghai Road, Taizhou, 318000, Zhejiang, China.
| | - Huanlong Qin
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China.
| |
Collapse
|
184
|
Vuković Đerfi K, Salar A, Cacev T, Kapitanović S. EMAST Type of Microsatellite Instability-A Distinct Entity or Blurred Overlap between Stable and MSI Tumors. Genes (Basel) 2023; 14:1474. [PMID: 37510378 PMCID: PMC10380056 DOI: 10.3390/genes14071474] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Microsatellite instability (MSI) represents an accumulation of frameshifts in short tandem repeats, microsatellites, across the genome due to defective DNA mismatch repair (dMMR). MSI has been associated with distinct clinical, histological, and molecular features of tumors and has proven its prognostic and therapeutic value in different types of cancer. Recently, another type of microsatellite instability named elevated microsatellite alterations at selected tetranucleotide repeats (EMAST) has been reported across many different tumors. EMAST tumors have been associated with chronic inflammation, higher tumor stage, and poor prognosis. Nevertheless, the clinical significance of EMAST and its relation to MSI remains unclear. It has been proposed that EMAST arises as a result of isolated MSH3 dysfunction or as a secondary event in MSI tumors. Even though previous studies have associated EMAST with MSI-low phenotype in tumors, recent studies show a certain degree of overlap between EMAST and MSI-high tumors. However, even in stable tumors, (MSS) frameshifts in microsatellites can be detected as a purely stochastic event, raising the question of whether EMAST truly represents a distinct type of microsatellite instability. Moreover, a significant fraction of patients with MSI tumors do not respond to immunotherapy and it can be speculated that in these tumors, EMAST might act as a modifying factor.
Collapse
Affiliation(s)
- Kristina Vuković Đerfi
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Anamarija Salar
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Tamara Cacev
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Sanja Kapitanović
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
185
|
Dregelies T, Haumaier F, Sterlacci W, Backert S, Vieth M. Detection of Fusobacterium nucleatum in Patients with Colitis-Associated Colorectal Cancer. Curr Microbiol 2023; 80:293. [PMID: 37468740 PMCID: PMC10356651 DOI: 10.1007/s00284-023-03398-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/30/2023] [Indexed: 07/21/2023]
Abstract
Fusobacterium nucleatum is supposed to play a critical role in the development of colorectal cancer. The species has also been associated with ulcerative colitis (UC) that can progress into colorectal cancer, however, the involvement of bacteria in this process remains unclear. We analysed 177 colon biopsies obtained from patients during screening, including 20 healthy controls, 56 UC cases and 69 cases at different stages of progression to colitis-associated cancer (CAC); 32 samples of sporadic colorectal carcinoma (sCRC) were also included. The presence of F. nucleatum was detected by quantitative real-time PCR (qPCR). Our data show an association between the presence of the bacteria and the progression of carcinogenesis in UC patients. In 39.5% of CAC samples F. nucleatum was detected, compared to only 1.8% in UC cases. The bacteria were detected in 6.3% of samples with initial neoplastic transformation, so-called low-grade dysplasia (LGD), whereas high-grade dysplasia (HGD) resulted in 33.3% of samples positive for F. nucleatum. The fraction of F. nucleatum-positive samples from sCRC cases was 56.3%, which was not significantly different to the CAC group. We conclude that F. nucleatum is associated with the occurrence and progression of colon carcinogenesis, rather than with UC itself.
Collapse
Affiliation(s)
- Theresa Dregelies
- Institut für Mikrobiologie, Friedrich-Alexander-Universität, Staudtstr. 5, 91058, Erlangen, Germany
- Institut für Pathologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Klinikum Bayreuth, Preuschwitzer Str. 101, 95445, Bayreuth, Germany
| | - Franziska Haumaier
- Institut für Pathologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Klinikum Bayreuth, Preuschwitzer Str. 101, 95445, Bayreuth, Germany
| | - William Sterlacci
- Institut für Pathologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Klinikum Bayreuth, Preuschwitzer Str. 101, 95445, Bayreuth, Germany
| | - Steffen Backert
- Institut für Mikrobiologie, Friedrich-Alexander-Universität, Staudtstr. 5, 91058, Erlangen, Germany
| | - Michael Vieth
- Institut für Pathologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Klinikum Bayreuth, Preuschwitzer Str. 101, 95445, Bayreuth, Germany.
| |
Collapse
|
186
|
Debertin J, Teles F, Martin LM, Lu J, Koestler DC, Kelsey KT, Beck JD, Platz EA, Michaud DS. Antibodies to oral pathobionts and colon cancer risk in the CLUE I cohort study. Int J Cancer 2023; 153:302-311. [PMID: 36971101 PMCID: PMC10389748 DOI: 10.1002/ijc.34527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 03/29/2023]
Abstract
Periodontitis has been associated with an increased risk for gastrointestinal cancers. The objective of our study was to investigate the association of antibodies to oral bacteria and the risk of colon cancer in a cohort setting. Using the CLUE I cohort, a prospective cohort initiated in 1974 in Washington County, Maryland, we conducted a nested case-control study to examine the association of levels of IgG antibodies to 11 oral bacterial species (13 total strains) with risk of colon cancer diagnosed a median of 16 years later (range: 1-26 years). Antibody response was measured using checkerboard immunoblotting assays. We included 200 colon cancer cases and 200 controls matched on age, sex, cigarette smoking status, time of blood draw and pipe or cigar smoking status. Controls were selected using incidence density sampling. Conditional logistic regression models were used to assess the association between antibody levels and colon cancer risk. In the overall analysis, we observed significant inverse associations for 6 of the 13 antibodies measured (P-trends <.05) and one positive association for antibody levels to Aggregatibacter actinomycetemcomitans (ATCC 29523; P-trend = .04). While we cannot rule out a role for periodontal disease in colon cancer risk, findings from our study suggest that a strong adaptive immune response may be associated with a lower risk of colon cancer. More studies will need to examine whether the positive associations we observed with antibodies to A. actinomycetemcomitans reflect a true causal association for this bacterium.
Collapse
Affiliation(s)
- Julia Debertin
- Department of Public Health & Community Medicine, Tufts University School of Medicine, Tufts University, Boston, MA
| | - Flavia Teles
- Department of Basic & Translational Sciences, University of Pennsylvania, Philadelphia, PA
| | - Lynn M. Martin
- Department of Basic & Translational Sciences, University of Pennsylvania, Philadelphia, PA
| | - Jiayun Lu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Devin C. Koestler
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS
- University of Kansas Cancer Center, Kansas City, KS
| | - Karl T. Kelsey
- Department of Epidemiology, Brown University, Providence, RI
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI
| | - James D. Beck
- Division of Comprehensive Oral Health/Periodontology, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC
| | - Elizabeth A. Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD
| | - Dominique S. Michaud
- Department of Public Health & Community Medicine, Tufts University School of Medicine, Tufts University, Boston, MA
- Department of Epidemiology, Brown University, Providence, RI
| |
Collapse
|
187
|
Ray A, Moore TF, Pandit R, Burke AD, Borsch DM. An Overview of Selected Bacterial Infections in Cancer, Their Virulence Factors, and Some Aspects of Infection Management. BIOLOGY 2023; 12:963. [PMID: 37508393 PMCID: PMC10376897 DOI: 10.3390/biology12070963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/30/2023]
Abstract
In cancer development and its clinical course, bacteria can be involved in etiology and secondary infection. Regarding etiology, various epidemiological studies have revealed that Helicobacter pylori can directly impact gastric carcinogenesis. The Helicobacter pylori-associated virulence factor cytotoxin-associated gene A perhaps plays an important role through different mechanisms such as aberrant DNA methylation, activation of nuclear factor kappa B, and modulation of the Wnt/β-catenin signaling pathway. Many other bacteria, including Salmonella and Pseudomonas, can also affect Wnt/β-catenin signaling. Although Helicobacter pylori is involved in both gastric adenocarcinoma and mucosa-associated lymphoid tissue lymphoma, its role in the latter disease is more complicated. Among other bacterial species, Chlamydia is linked with a diverse range of diseases including cancers of different sites. The cellular organizations of Chlamydia are highly complex. Interestingly, Escherichia coli is believed to be associated with colon cancer development. Microorganisms such as Escherichia coli and Pseudomonas aeruginosa are frequently isolated from secondary infections in cancer patients. In these patients, the common sites of infection are the respiratory, gastrointestinal, and urinary tracts. There is an alarming rise in infections with multidrug-resistant bacteria and the scarcity of suitable antimicrobial agents adversely influences prognosis. Therefore, effective implementation of antimicrobial stewardship strategies is important in cancer patients.
Collapse
Affiliation(s)
- Amitabha Ray
- College of Medical Science, Alderson Broaddus University, 101 College Hill Drive, Philippi, WV 26416, USA
| | - Thomas F Moore
- College of Medical Science, Alderson Broaddus University, 101 College Hill Drive, Philippi, WV 26416, USA
| | | | | | - Daniel M Borsch
- Lake Erie College of Osteopathic Medicine at Seton Hill, Greensburg, PA 15601, USA
| |
Collapse
|
188
|
Mouradov D, Greenfield P, Li S, In EJ, Storey C, Sakthianandeswaren A, Georgeson P, Buchanan DD, Ward RL, Hawkins NJ, Skinner I, Jones IT, Gibbs P, Ma C, Liew YJ, Fung KYC, Sieber OM. Oncomicrobial Community Profiling Identifies Clinicomolecular and Prognostic Subtypes of Colorectal Cancer. Gastroenterology 2023; 165:104-120. [PMID: 36933623 DOI: 10.1053/j.gastro.2023.03.205] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/10/2023] [Accepted: 03/09/2023] [Indexed: 03/20/2023]
Abstract
BACKGROUND & AIMS Dysbiosis of gut microbiota is linked to the development of colorectal cancer (CRC). However, microbiota-based stratification of CRC tissue and how this relates to clinicomolecular characteristics and prognosis remains to be clarified. METHODS Tumor and normal mucosa from 423 patients with stage I to IV CRC were profiled by bacterial 16S rRNA gene sequencing. Tumors were characterized for microsatellite instability (MSI), CpG island methylator phenotype (CIMP), APC, BRAF, KRAS, PIK3CA, FBXW7, SMAD4, and TP53 mutations, subsets for chromosome instability (CIN), mutation signatures, and consensus molecular subtypes (CMS). Microbial clusters were validated in an independent cohort of 293 stage II/III tumors. RESULTS Tumors reproducibly stratified into 3 oncomicrobial community subtypes (OCSs) with distinguishing features: OCS1 (Fusobacterium/oral pathogens, proteolytic, 21%), right-sided, high-grade, MSI-high, CIMP-positive, CMS1, BRAF V600E, and FBXW7 mutated; OCS2 (Firmicutes/Bacteroidetes, saccharolytic, 44%), and OCS3 (Escherichia/Pseudescherichia/Shigella, fatty acid β-oxidation, 35%) both left-sided and exhibiting CIN. OCS1 was associated with MSI-related mutation signatures (SBS15, SBS20, ID2, and ID7) and OCS2 and OCS3 with SBS18 related to damage by reactive oxygen species. Among stage II/III patients, OCS1 and OCS3 both had poorer overall survival compared with OCS2 for microsatellite stable tumors (multivariate hazard ratio [HR], 1.85; 95% confidence interval [CI], 1.15-2.99; P = .012; and HR, 1.52; 95% CI 1.01-2.29; P = .044, respectively) and left-sided tumors (multivariate HR, 2.66; 95% CI, 1.45-4.86; P = .002; and HR, 1.76; 95% CI, 1.03-3.02; P = .039, respectively). CONCLUSIONS OCS classification stratified CRCs into 3 distinct subgroups with different clinicomolecular features and outcomes. Our findings provide a framework for a microbiota-based stratification of CRC to refine prognostication and to inform the development of microbiota-targeted interventions.
Collapse
Affiliation(s)
- Dmitri Mouradov
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Paul Greenfield
- Energy Business Unit, Commonwealth Scientific and Industrial Research Organization, Lindfield, New South Wales, Australia; School of Natural Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Shan Li
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Eun-Jung In
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Claire Storey
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Anuratha Sakthianandeswaren
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Peter Georgeson
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia; University of Melbourne Center for Cancer Research, Victorian Comprehensive Cancer Center, Melbourne, Victoria, Australia
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia; University of Melbourne Center for Cancer Research, Victorian Comprehensive Cancer Center, Melbourne, Victoria, Australia; Genomic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Robyn L Ward
- Prince of Wales Clinical School and Lowy Cancer Research Center, UNSW Sydney, Sydney, New South Wales, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Nicholas J Hawkins
- School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Iain Skinner
- Department of Surgery, Western Health, Footscray, Victoria, Australia
| | - Ian T Jones
- Department of Surgery, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Peter Gibbs
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia; Department of Medical Oncology, Western Health, St Albans, Victoria, Australia; Department of Medical Oncology, Western Health, Footscray, Victoria, Australia
| | - Chenkai Ma
- Molecular Diagnostics Solutions, Commonwealth Scientific and Industrial Research Organization Health and Biosecurity, Westmead, New South Wales, Australia
| | - Yi Jin Liew
- Molecular Diagnostics Solutions, Commonwealth Scientific and Industrial Research Organization Health and Biosecurity, Westmead, New South Wales, Australia
| | - Kim Y C Fung
- Molecular Diagnostics Solutions, Commonwealth Scientific and Industrial Research Organization Health and Biosecurity, Westmead, New South Wales, Australia
| | - Oliver M Sieber
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia; Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia; Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
189
|
McGregor AK, Chan ACK, Schroeder MD, Do LTM, Saini G, Murphy MEP, Wolthers KR. A new member of the flavodoxin superfamily from Fusobacterium nucleatum that functions in heme trafficking and reduction of anaerobilin. J Biol Chem 2023; 299:104902. [PMID: 37302554 PMCID: PMC10404700 DOI: 10.1016/j.jbc.2023.104902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/13/2023] Open
Abstract
Fusobacterium nucleatum is an opportunistic oral pathogen that is associated with various cancers. To fulfill its essential need for iron, this anaerobe will express heme uptake machinery encoded at a single genetic locus. The heme uptake operon includes HmuW, a class C radical SAM-dependent methyltransferase that degrades heme anaerobically to release Fe2+ and a linear tetrapyrrole called anaerobilin. The last gene in the operon, hmuF encodes a member of the flavodoxin superfamily of proteins. We discovered that HmuF and a paralog, FldH, bind tightly to both FMN and heme. The structure of Fe3+-heme-bound FldH (1.6 Å resolution) reveals a helical cap domain appended to the ⍺/β core of the flavodoxin fold. The cap creates a hydrophobic binding cleft that positions the heme planar to the si-face of the FMN isoalloxazine ring. The ferric heme iron is hexacoordinated to His134 and a solvent molecule. In contrast to flavodoxins, FldH and HmuF do not stabilize the FMN semiquinone but instead cycle between the FMN oxidized and hydroquinone states. We show that heme-loaded HmuF and heme-loaded FldH traffic heme to HmuW for degradation of the protoporphyrin ring. Both FldH and HmuF then catalyze multiple reductions of anaerobilin through hydride transfer from the FMN hydroquinone. The latter activity eliminates the aromaticity of anaerobilin and the electrophilic methylene group that was installed through HmuW turnover. Hence, HmuF provides a protected path for anaerobic heme catabolism, offering F. nucleatum a competitive advantage in the colonization of anoxic sites of the human body.
Collapse
Affiliation(s)
| | - Anson C K Chan
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Megan D Schroeder
- Department of Chemistry, University of British Columbia, Kelowna, Canada
| | - Long T M Do
- Department of Chemistry, University of British Columbia, Kelowna, Canada
| | - Gurpreet Saini
- Department of Chemistry, University of British Columbia, Kelowna, Canada
| | - Michael E P Murphy
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Kirsten R Wolthers
- Department of Chemistry, University of British Columbia, Kelowna, Canada.
| |
Collapse
|
190
|
Darbyshire A, Mothersole R, Wolthers KR. Biosynthesis of meso-lanthionine in Fusobacterium nucleatum. Arch Biochem Biophys 2023:109666. [PMID: 37329940 DOI: 10.1016/j.abb.2023.109666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/19/2023]
Abstract
The opportunistic oral pathogen, Fusobacterium nucleatum contains meso-lanthionine as the diaminodicarboxylic acid in the pentapeptide crosslink of the peptidoglycan layer. The diastereomer, l,l-lanthionine is formed by lanthionine synthase, a PLP-dependent enzyme that catalyzes the β-replacement of l-cysteine with a second equivalent of l-cysteine. In this study, we explored possible enzymatic mechanisms for the formation of meso-lanthionine. Our inhibition studies with lanthionine synthase, described herein, revealed that meso-diaminopimelate, a bioisostere of meso-lanthionine, is a more potent inhibitor of lanthionine synthase compared to the diastereomer, l,l-diaminopimelate. These results suggested that lanthionine synthase could also form meso-lanthionine by the β-replacement of l-cysteine with d-cysteine. Through steady-state and pre-steady state kinetic analysis, we confirm that d-cysteine reacts with the ⍺-aminoacylate intermediate with a kon that was 2-3-fold faster and Kd value that was 2-3fold lower compared to l-cysteine. However, given that intracellular levels of d-cysteine levels are assumed to be significantly lower than that of l-cysteine, we also determined if the gene product, FN1732, with low sequence identity to diaminopimelate epimerase could convert l,l-lanthionine to meso-lanthionine. Using diaminopimelate dehydrogenase in a coupled spectrophotometric assay, we show that FN1732 can convert l,l-lanthionine to meso-lanthionine with a kcat of 0.07 ± 0.001 s-1 and a KM of 1.9 ± 0.1 mM. In summary, our results provide two possible enzymatic mechanisms for the biosynthesis of meso-lanthionine in F. nucleatum.
Collapse
Affiliation(s)
- Amanda Darbyshire
- Department of Chemistry, University of British Columbia, Okanagan Campus, Kelowna, B.C, V1V 1V7, Canada
| | - Robert Mothersole
- Department of Chemistry, University of British Columbia, Okanagan Campus, Kelowna, B.C, V1V 1V7, Canada
| | - Kirsten R Wolthers
- Department of Chemistry, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, Canada.
| |
Collapse
|
191
|
Zhao M, Lau MC, Haruki K, Väyrynen JP, Gurjao C, Väyrynen SA, Dias Costa A, Borowsky J, Fujiyoshi K, Arima K, Hamada T, Lennerz JK, Fuchs CS, Nishihara R, Chan AT, Ng K, Zhang X, Meyerhardt JA, Song M, Wang M, Giannakis M, Nowak JA, Yu KH, Ugai T, Ogino S. Bayesian risk prediction model for colorectal cancer mortality through integration of clinicopathologic and genomic data. NPJ Precis Oncol 2023; 7:57. [PMID: 37301916 PMCID: PMC10257677 DOI: 10.1038/s41698-023-00406-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Routine tumor-node-metastasis (TNM) staging of colorectal cancer is imperfect in predicting survival due to tumor pathobiological heterogeneity and imprecise assessment of tumor spread. We leveraged Bayesian additive regression trees (BART), a statistical learning technique, to comprehensively analyze patient-specific tumor characteristics for the improvement of prognostic prediction. Of 75 clinicopathologic, immune, microbial, and genomic variables in 815 stage II-III patients within two U.S.-wide prospective cohort studies, the BART risk model identified seven stable survival predictors. Risk stratifications (low risk, intermediate risk, and high risk) based on model-predicted survival were statistically significant (hazard ratios 0.19-0.45, vs. higher risk; P < 0.0001) and could be externally validated using The Cancer Genome Atlas (TCGA) data (P = 0.0004). BART demonstrated model flexibility, interpretability, and comparable or superior performance to other machine-learning models. Integrated bioinformatic analyses using BART with tumor-specific factors can robustly stratify colorectal cancer patients into prognostic groups and be readily applied to clinical oncology practice.
Collapse
Affiliation(s)
- Melissa Zhao
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Mai Chan Lau
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Koichiro Haruki
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Juha P Väyrynen
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Carino Gurjao
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sara A Väyrynen
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Andressa Dias Costa
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Jennifer Borowsky
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kenji Fujiyoshi
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kota Arima
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Tsuyoshi Hamada
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jochen K Lennerz
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Reiko Nishihara
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kimmie Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Xuehong Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Mingyang Song
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Molin Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kun-Hsing Yu
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Tomotaka Ugai
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Cancer Immunology and Cancer Epidemiology Programs, Dana-Farber Harvard Cancer Center, Boston, MA, USA.
| |
Collapse
|
192
|
Li J, Wu G, Yang J, Yan J, Li D, Wang Q, Xia Y, Zhu J, Guo B, Cheng F, Sun J, Cao H, Zhang F. Pulmonary microbiota signatures adjacent to adenocarcinoma, squamous cell carcinoma and benign lesion. Front Oncol 2023; 13:1163359. [PMID: 37361591 PMCID: PMC10288182 DOI: 10.3389/fonc.2023.1163359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/10/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction The occurrence and progression of lung cancer are influenced by pulmonary microbiota, yet the relationship between changes in the pulmonary microbiota and lung cancer remains unclear. Methods To investigate the correlation between pulmonary microbiota and the signature of lung lesions, we analyzed the microbial composition at sites adjacent to the stage 1 adenocarcinoma, squamous carcinoma and benign lesion tissues in 49 patients by using 16S ribosomal RNA gene sequencing. We then conducted Linear discriminant analysis, receiver operating characteristic (ROC) curve analysis and PICRUSt prediction based on 16S sequencing results. Results Overall, the microbiota composition at sites close to lung lesions showed significant differences between different lesion types. Based on the results of LEfSe analysis, Ralstonia, Acinetobacter and Microbacterium are the dominant genera of lung adenocarcinoma (LUAD), lung squamous carcinoma (LUSC) and benign lesions (BENL), respectively. Furthermore, we determined the diagnostic value of the abundance ratio of Ralstonia to Acinetobacter in adenocarcinoma patients through ROC curve analysis. The PICRUSt analysis revealed 15 remarkably different metabolic pathways in these lesion types. In LUAD patients, the increase of the pathway associated with xenobiotic biodegradation may be due to the continuous proliferation of microbe with degradation ability of xenobiotics, which implied that LUAD patients are often exposed to harmful environment. Discussion The abundance of Ralstonia was related to the development of lung cancer. By measuring the abundance of microbiota in diseased tissues, we can distinguish between different types of lesions. The differences in pulmonary microbiota between lesion types are significant in understanding the occurrence and development of lung lesions.
Collapse
Affiliation(s)
- Jinyou Li
- Department of Thoracic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Department of Thoracic Surgery, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Gang Wu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Ju Yang
- Department of Nutrition, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Functional Food Clinical Evaluation Center, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Lifestyle-Medicine Strategy to Improve Outcome for Cancer patients (LIOC) Group, Chinese Society of Nutritional Oncology, Beijing, China
| | - Jiai Yan
- Department of Nutrition, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Functional Food Clinical Evaluation Center, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Lifestyle-Medicine Strategy to Improve Outcome for Cancer patients (LIOC) Group, Chinese Society of Nutritional Oncology, Beijing, China
| | - Dan Li
- Department of Nutrition, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Functional Food Clinical Evaluation Center, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Lifestyle-Medicine Strategy to Improve Outcome for Cancer patients (LIOC) Group, Chinese Society of Nutritional Oncology, Beijing, China
| | - Qinyue Wang
- Department of Nutrition, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Functional Food Clinical Evaluation Center, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Lifestyle-Medicine Strategy to Improve Outcome for Cancer patients (LIOC) Group, Chinese Society of Nutritional Oncology, Beijing, China
| | - Yanping Xia
- Department of Nutrition, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Functional Food Clinical Evaluation Center, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Lifestyle-Medicine Strategy to Improve Outcome for Cancer patients (LIOC) Group, Chinese Society of Nutritional Oncology, Beijing, China
| | - Jie Zhu
- Department of Infection Control, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Baoliang Guo
- School of Bioengineering, Jiangnan University, Wuxi, Jiangsu, China
| | - Fengyue Cheng
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Jing Sun
- Department of Nutrition, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Functional Food Clinical Evaluation Center, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Lifestyle-Medicine Strategy to Improve Outcome for Cancer patients (LIOC) Group, Chinese Society of Nutritional Oncology, Beijing, China
| | - Hong Cao
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Department of Nutrition, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Functional Food Clinical Evaluation Center, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Lifestyle-Medicine Strategy to Improve Outcome for Cancer patients (LIOC) Group, Chinese Society of Nutritional Oncology, Beijing, China
- School of Bioengineering, Jiangnan University, Wuxi, Jiangsu, China
| | - Feng Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Department of Nutrition, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Functional Food Clinical Evaluation Center, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- School of Bioengineering, Jiangnan University, Wuxi, Jiangsu, China
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, China
- Chinese Society of Nutritional Oncology, Beijing, China
| |
Collapse
|
193
|
Geier DA, Geier MR. Colon Cancer Risk Following Intestinal Clostridioides difficile Infection: A Longitudinal Cohort Study. J Clin Med Res 2023; 15:310-320. [PMID: 37434772 PMCID: PMC10332880 DOI: 10.14740/jocmr4919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/02/2023] [Indexed: 07/13/2023] Open
Abstract
Background The gut microbiome may play an important role in the etiology and progression of colon cancer. The present hypothesis-testing study compared the colon cancer incidence rate among adults diagnosed with intestinal Clostridioides (formerly Clostridium) difficile (Cdiff) (the Cdiff cohort) to adults not diagnosed with intestinal Cdiff infection (the non-Cdiff cohort). Methods De-identified eligibility and claim healthcare records within the Independent Healthcare Research Database (IHRD) from a longitudinal cohort of adults (the overall cohort) enrolled in the Florida Medicaid system between 1990 through 2012 were examined. Adults with ≥ 8 outpatient office visits over 8 years of continuous eligibility were examined. There were 964 adults in the Cdiff cohort and 292,136 adults in the non-Cdiff cohort. Frequency and Cox proportional hazards models were utilized. Results Colon cancer incidence rate in the non-Cdiff cohort remained relatively uniform over the entire study period, whereas a marked increase was observed in the Cdiff cohort within the first 4 years of a Cdiff diagnosis. Colon cancer incidence was significantly increased (about 2.7-fold) in the Cdiff cohort (3.11 per 1,000 person-years) compared to the non-Cdiff cohort (1.16 per 1,000 person-years). Adjustments for gender, age, residency, birthdate, colonoscopy screening, family history of cancer, and personal history of tobacco abuse, alcohol abuse/dependence, drug abuse/dependence, and overweight/obesity, as well as consideration of diagnostic status for ulcerative and infection colitis, immunodeficiency, and personal history of cancer did not significantly change the observed results. Conclusions This is the first epidemiological study associating Cdiff with an increased risk for colon cancer. Future studies should further evaluate this relationship.
Collapse
Affiliation(s)
- David A. Geier
- Research Department, Institute of Chronic Illnesses, Inc., Silver Spring, MD, USA
| | - Mark R. Geier
- Research Department, Institute of Chronic Illnesses, Inc., Silver Spring, MD, USA
| |
Collapse
|
194
|
Zhang H, Zuo L, Li J, Geng Z, Ge S, Song X, Wang Y, Zhang X, Wang L, Zhao T, Deng M, Chai D, Wang Q, Yang Z, Liu Q, Qiu Q, He X, Yang Y, Ge Y, Wu R, Zheng L, Li J, Chen R, Sun J, Hu J. Construction of a fecal immune-related protein-based biomarker panel for colorectal cancer diagnosis: a multicenter study. Front Immunol 2023; 14:1126217. [PMID: 37313408 PMCID: PMC10258350 DOI: 10.3389/fimmu.2023.1126217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 05/09/2023] [Indexed: 06/15/2023] Open
Abstract
Purpose To explore fecal immune-related proteins that can be used for colorectal cancer (CRC) diagnosis. Patients and methods Three independent cohorts were used in present study. In the discovery cohort, which included 14 CRC patients and 6 healthy controls (HCs), label-free proteomics was applied to identify immune-related proteins in stool that could be used for CRC diagnosis. Exploring potential links between gut microbes and immune-related proteins by 16S rRNA sequencing. The abundance of fecal immune-associated proteins was verified by ELISA in two independent validation cohorts and a biomarker panel was constructed that could be used for CRC diagnosis. The validation cohort I included 192 CRC patients and 151 HCs from 6 different hospitals. The validation cohort II included 141 CRC patients, 82 colorectal adenoma (CRA) patients, and 87 HCs from another hospital. Finally, the expression of biomarkers in cancer tissues was verified by immunohistochemistry (IHC). Results In the discovery study, 436 plausible fecal proteins were identified. And among 67 differential fecal proteins (|log2 fold change| > 1, P< 0.01) that could be used for CRC diagnosis, 16 immune-related proteins with diagnostic value were identified. The 16S rRNA sequencing results showed a positive correlation between immune-related proteins and the abundance of oncogenic bacteria. In the validation cohort I, a biomarker panel consisting of five fecal immune-related proteins (CAT, LTF, MMP9, RBP4, and SERPINA3) was constructed based on the least absolute shrinkage and selection operator (LASSO) and multivariate logistic regression. The biomarker panel was found to be superior to hemoglobin in the diagnosis of CRC in both validation cohort I and validation cohort II. The IHC result showed that protein expression levels of these five immune-related proteins were significantly higher in CRC tissue than in normal colorectal tissue. Conclusion A novel biomarker panel consisting of fecal immune-related proteins can be used for the diagnosis of CRC.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Lugen Zuo
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jing Li
- Department of Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhijun Geng
- Department of Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Sitang Ge
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xue Song
- Department of Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yueyue Wang
- Department of Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xiaofeng Zhang
- Department of Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Lian Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Tianhao Zhao
- Department of Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Gastroenterology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Min Deng
- Department of Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Gastroenterology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Damin Chai
- Department of Pathology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Qiusheng Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zi Yang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Quanli Liu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Quanwei Qiu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xuxu He
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yiqun Yang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yuanyuan Ge
- Department of Colorectal Surgery, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Rong Wu
- Department of General Surgery, Zhongda Hospital, Southeast University, Nanjing, China
| | - Lin Zheng
- Department of Clinical Laboratory, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Jianjun Li
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Runkai Chen
- Department of General Surgery, Chinese PLA General Hospital, Beijing, China
| | - Jialiang Sun
- Department of General Surgery, Shanghai Fengxian District Central Hospital, Shanghai, China
| | - Jianguo Hu
- Department of Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
195
|
Qu X, Yin F, Pei M, Chen Q, Zhang Y, Lu S, Zhang X, Liu Z, Li X, Chen H, Zhang Y, Qin H. Modulation of Intratumoral Fusobacterium nucleatum to Enhance Sonodynamic Therapy for Colorectal Cancer with Reduced Phototoxic Skin Injury. ACS NANO 2023. [PMID: 37201179 DOI: 10.1021/acsnano.3c01308] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Intratumoral pathogens can contribute to cancer progression and affect therapeutic response. Fusobacterium nucleatum, a core pathogen of colorectal cancer (CRC), is an important cause of low therapeutic efficacy and metastasis. Thus, the modulation of intratumoral pathogens may provide a target for cancer therapy and metastasis inhibition. Herein, we propose an intratumoral F. nucleatum-modulating strategy for enhancing the therapeutic efficacy of CRC and inhibiting lung metastasis by designing an antibacterial nanoplatform (Au@BSA-CuPpIX), which produced reactive oxygen species (ROS) under ultrasound and exhibited strong antibacterial activity. Importantly, Au@BSA-CuPpIX reduced the levels of apoptosis-inhibiting proteins by inhibiting intratumoral F. nucleatum, thereby enhancing ROS-induced apoptosis. In vivo results demonstrated that Au@BSA-CuPpIX effectively eliminated F. nucleatum to enhance the therapeutic efficacy of sonodynamic therapy (SDT) for orthotopic CRC and inhibit lung metastasis. Notably, entrapped gold nanoparticles reduced the phototoxicity of metalloporphyrin accumulated in the skin during tumor treatment, preventing severe inflammation and damage to the skin. Therefore, this study proposes a strategy for the elimination of F. nucleatum in CRC to enhance the therapeutic effect of SDT, thus providing a promising paradigm for improving cancer treatment with fewer toxic side effects and promoting the clinical translational potential of SDT.
Collapse
Affiliation(s)
- Xiao Qu
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Fang Yin
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Manman Pei
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Qian Chen
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yuanyuan Zhang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Shengwei Lu
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Xuelian Zhang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Ziyuan Liu
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Xinyao Li
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Hangrong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Shanghai 200050, China
| | - Yang Zhang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Precision Medicine Center, Taizhou Central Hospital, 999 Donghai Road, Taizhou, Zhejiang 318000, China
| | - Huanlong Qin
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| |
Collapse
|
196
|
Gu M, Yin W, Zhang J, Yin J, Tang X, Ling J, Tang Z, Yin W, Wang X, Ni Q, Zhu Y, Chen T. Role of gut microbiota and bacterial metabolites in mucins of colorectal cancer. Front Cell Infect Microbiol 2023; 13:1119992. [PMID: 37265504 PMCID: PMC10229905 DOI: 10.3389/fcimb.2023.1119992] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/03/2023] [Indexed: 06/03/2023] Open
Abstract
Colorectal cancer (CRC) is a major health burden, accounting for approximately 10% of all new cancer cases worldwide. Accumulating evidence suggests that the crosstalk between the host mucins and gut microbiota is associated with the occurrence and development of CRC. Mucins secreted by goblet cells not only protect the intestinal epithelium from microorganisms and invading pathogens but also provide a habitat for commensal bacteria. Conversely, gut dysbiosis results in the dysfunction of mucins, allowing other commensals and their metabolites to pass through the intestinal epithelium, potentially triggering host responses and the subsequent progression of CRC. In this review, we summarize how gut microbiota and bacterial metabolites regulate the function and expression of mucin in CRC and novel treatment strategies for CRC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiangjun Wang
- Department of General Surgery, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Qing Ni
- Department of General Surgery, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Yunxiang Zhu
- Department of General Surgery, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Tuo Chen
- Department of General Surgery, Affiliated Hospital of Yangzhou University, Yangzhou, China
| |
Collapse
|
197
|
Rejali L, Seifollahi Asl R, Sanjabi F, Fatemi N, Asadzadeh Aghdaei H, Saeedi Niasar M, Ketabi Moghadam P, Nazemalhosseini Mojarad E, Mini E, Nobili S. Principles of Molecular Utility for CMS Classification in Colorectal Cancer Management. Cancers (Basel) 2023; 15:2746. [PMID: 37345083 PMCID: PMC10216373 DOI: 10.3390/cancers15102746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
Colorectal cancer (CRC) is the second cause of cancer-related deaths in both sexes globally and presents different clinical outcomes that are described by a range of genomic and epigenomic alterations. Despite the advancements in CRC screening plans and treatment strategies, the prognosis of CRC is dismal. In the last two decades, molecular biomarkers predictive of prognosis have been identified in CRC, although biomarkers predictive of treatment response are only available for specific biological drugs used in stage IV CRC. Translational clinical trials mainly based on "omic" strategies allowed a better understanding of the biological heterogeneity of CRCs. These studies were able to classify CRCs into subtypes mainly related to prognosis, recurrence risk, and, to some extent, also to treatment response. Accordingly, the comprehensive molecular characterizations of CRCs, including The Cancer Genome Atlas (TCGA) and consensus molecular subtype (CMS) classifications, were presented to improve the comprehension of the genomic and epigenomic landscapes of CRCs for a better patient management. The CMS classification obtained by the CRC subtyping consortium categorizes CRC into four consensus molecular subtypes (CMS1-4) characterized by different prognoses. In this review, we discussed the CMS classification in different settings with a focus on its relationships with precursor lesions, tumor immunophenotype, and gut microbiota, as well as on its role in predicting prognosis and/or response to pharmacological treatments, as a crucial step towards precision medicine.
Collapse
Affiliation(s)
- Leili Rejali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran P.O. Box 19875-17411, Iran; (L.R.); (R.S.A.); (N.F.); (H.A.A.); (M.S.N.); (P.K.M.)
| | - Romina Seifollahi Asl
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran P.O. Box 19875-17411, Iran; (L.R.); (R.S.A.); (N.F.); (H.A.A.); (M.S.N.); (P.K.M.)
| | - Fatemeh Sanjabi
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Sciences, Tehran P.O. Box 14496-14535, Iran;
| | - Nayeralsadat Fatemi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran P.O. Box 19875-17411, Iran; (L.R.); (R.S.A.); (N.F.); (H.A.A.); (M.S.N.); (P.K.M.)
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran P.O. Box 19875-17411, Iran; (L.R.); (R.S.A.); (N.F.); (H.A.A.); (M.S.N.); (P.K.M.)
| | - Mahsa Saeedi Niasar
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran P.O. Box 19875-17411, Iran; (L.R.); (R.S.A.); (N.F.); (H.A.A.); (M.S.N.); (P.K.M.)
| | - Pardis Ketabi Moghadam
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran P.O. Box 19875-17411, Iran; (L.R.); (R.S.A.); (N.F.); (H.A.A.); (M.S.N.); (P.K.M.)
| | - Ehsan Nazemalhosseini Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Yaman Street, Chamran Expressway, Tehran P.O. Box 19857-17411, Iran;
| | - Enrico Mini
- Department of Health Sciences, University of Florence, Viale Pieraccini, 6, 50139 Firenze, Italy;
| | - Stefania Nobili
- Department of Neuroscience, Psychology, Drug Research and Child Health—NEUROFARBA—Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini, 6, 50139 Firenze, Italy
| |
Collapse
|
198
|
Wong CC, Yu J. Gut microbiota in colorectal cancer development and therapy. Nat Rev Clin Oncol 2023:10.1038/s41571-023-00766-x. [PMID: 37169888 DOI: 10.1038/s41571-023-00766-x] [Citation(s) in RCA: 225] [Impact Index Per Article: 112.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2023] [Indexed: 05/13/2023]
Abstract
Colorectal cancer (CRC) is one of the commonest cancers globally. A unique aspect of CRC is its intimate association with the gut microbiota, which forms an essential part of the tumour microenvironment. Research over the past decade has established that dysbiosis of gut bacteria, fungi, viruses and Archaea accompanies colorectal tumorigenesis, and these changes might be causative. Data from mechanistic studies demonstrate the ability of the gut microbiota to interact with the colonic epithelia and immune cells of the host via the release of a diverse range of metabolites, proteins and macromolecules that regulate CRC development. Preclinical and some clinical evidence also underscores the role of the gut microbiota in modifying the therapeutic responses of patients with CRC to chemotherapy and immunotherapy. Herein, we summarize our current understanding of the role of gut microbiota in CRC and outline the potential translational and clinical implications for CRC diagnosis, prevention and treatment. Emphasis is placed on how the gut microbiota could now be better harnessed by developing targeted microbial therapeutics as chemopreventive agents against colorectal tumorigenesis, as adjuvants for chemotherapy and immunotherapy to boost drug efficacy and safety, and as non-invasive biomarkers for CRC screening and patient stratification. Finally, we highlight the hurdles and potential solutions to translating our knowledge of the gut microbiota into clinical practice.
Collapse
Affiliation(s)
- Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
199
|
Alexander JL, Posma JM, Scott A, Poynter L, Mason SE, Doria ML, Herendi L, Roberts L, McDonald JAK, Cameron S, Hughes DJ, Liska V, Susova S, Soucek P, der Sluis VHV, Gomez-Romero M, Lewis MR, Hoyles L, Woolston A, Cunningham D, Darzi A, Gerlinger M, Goldin R, Takats Z, Marchesi JR, Teare J, Kinross J. Pathobionts in the tumour microbiota predict survival following resection for colorectal cancer. MICROBIOME 2023; 11:100. [PMID: 37158960 PMCID: PMC10165813 DOI: 10.1186/s40168-023-01518-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/15/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND AND AIMS The gut microbiota is implicated in the pathogenesis of colorectal cancer (CRC). We aimed to map the CRC mucosal microbiota and metabolome and define the influence of the tumoral microbiota on oncological outcomes. METHODS A multicentre, prospective observational study was conducted of CRC patients undergoing primary surgical resection in the UK (n = 74) and Czech Republic (n = 61). Analysis was performed using metataxonomics, ultra-performance liquid chromatography-mass spectrometry (UPLC-MS), targeted bacterial qPCR and tumour exome sequencing. Hierarchical clustering accounting for clinical and oncological covariates was performed to identify clusters of bacteria and metabolites linked to CRC. Cox proportional hazards regression was used to ascertain clusters associated with disease-free survival over median follow-up of 50 months. RESULTS Thirteen mucosal microbiota clusters were identified, of which five were significantly different between tumour and paired normal mucosa. Cluster 7, containing the pathobionts Fusobacterium nucleatum and Granulicatella adiacens, was strongly associated with CRC (PFDR = 0.0002). Additionally, tumoral dominance of cluster 7 independently predicted favourable disease-free survival (adjusted p = 0.031). Cluster 1, containing Faecalibacterium prausnitzii and Ruminococcus gnavus, was negatively associated with cancer (PFDR = 0.0009), and abundance was independently predictive of worse disease-free survival (adjusted p = 0.0009). UPLC-MS analysis revealed two major metabolic (Met) clusters. Met 1, composed of medium chain (MCFA), long-chain (LCFA) and very long-chain (VLCFA) fatty acid species, ceramides and lysophospholipids, was negatively associated with CRC (PFDR = 2.61 × 10-11); Met 2, composed of phosphatidylcholine species, nucleosides and amino acids, was strongly associated with CRC (PFDR = 1.30 × 10-12), but metabolite clusters were not associated with disease-free survival (p = 0.358). An association was identified between Met 1 and DNA mismatch-repair deficiency (p = 0.005). FBXW7 mutations were only found in cancers predominant in microbiota cluster 7. CONCLUSIONS Networks of pathobionts in the tumour mucosal niche are associated with tumour mutation and metabolic subtypes and predict favourable outcome following CRC resection. Video Abstract.
Collapse
Affiliation(s)
- James L Alexander
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, 10th Floor, QEQM Building, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
- Department of Gastroenterology, Imperial College Healthcare NHS Trust, London, UK
| | - Joram M Posma
- Section of Bioinformatics, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Alasdair Scott
- Department of Surgery & Cancer, Imperial College London, London, UK
| | - Liam Poynter
- Department of Surgery & Cancer, Imperial College London, London, UK
| | - Sam E Mason
- Department of Surgery & Cancer, Imperial College London, London, UK
| | - M Luisa Doria
- Department of Surgery & Cancer, Imperial College London, London, UK
| | - Lili Herendi
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, National Phenome Centre, Imperial College London, London, UK
| | - Lauren Roberts
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, 10th Floor, QEQM Building, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - Julie A K McDonald
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Simon Cameron
- Institute of Global Food Security, School of Biosciences, Queen's University Belfast, Belfast, UK
| | - David J Hughes
- Cancer Biology and Therapeutics Group, School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Vaclav Liska
- Department of Surgery, Faculty Hospital and Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - Simona Susova
- Faculty of Medicine in Pilsen, Biomedical Centre, Charles University in Prague, Pilsen, Czech Republic
| | - Pavel Soucek
- Faculty of Medicine in Pilsen, Biomedical Centre, Charles University in Prague, Pilsen, Czech Republic
| | - Verena Horneffer-van der Sluis
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, National Phenome Centre, Imperial College London, London, UK
| | - Maria Gomez-Romero
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, National Phenome Centre, Imperial College London, London, UK
| | - Matthew R Lewis
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, National Phenome Centre, Imperial College London, London, UK
| | - Lesley Hoyles
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, 10th Floor, QEQM Building, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
- Department of Biosciences, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Andrew Woolston
- Translational Oncogenomics Laboratory, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - David Cunningham
- GI Cancer Unit, Department of Medical Oncology, Royal Marsden NHS Foundation Trust, London, UK
| | - Ara Darzi
- Department of Surgery & Cancer, Imperial College London, London, UK
| | - Marco Gerlinger
- Translational Oncogenomics Laboratory, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
- GI Cancer Unit, Department of Medical Oncology, Royal Marsden NHS Foundation Trust, London, UK
| | - Robert Goldin
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, 10th Floor, QEQM Building, St. Mary's Hospital, Praed Street, London, W2 1NY, UK
| | - Zoltan Takats
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, National Phenome Centre, Imperial College London, London, UK
| | - Julian R Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, 10th Floor, QEQM Building, St. Mary's Hospital, Praed Street, London, W2 1NY, UK.
| | - Julian Teare
- Department of Surgery & Cancer, Imperial College London, London, UK
| | - James Kinross
- Department of Surgery & Cancer, Imperial College London, London, UK
| |
Collapse
|
200
|
Sambruni G, Macandog AD, Wirbel J, Cagnina D, Catozzi C, Dallavilla T, Borgo F, Fazio N, Fumagalli-Romario U, Petz WL, Manzo T, Ravenda SP, Zeller G, Nezi L, Schaefer MH. Location and condition based reconstruction of colon cancer microbiome from human RNA sequencing data. Genome Med 2023; 15:32. [PMID: 37131219 PMCID: PMC10155404 DOI: 10.1186/s13073-023-01180-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 04/13/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND The association between microbes and cancer has been reported repeatedly; however, it is not clear if molecular tumour properties are connected to specific microbial colonisation patterns. This is due mainly to the current technical and analytical strategy limitations to characterise tumour-associated bacteria. METHODS Here, we propose an approach to detect bacterial signals in human RNA sequencing data and associate them with the clinical and molecular properties of the tumours. The method was tested on public datasets from The Cancer Genome Atlas, and its accuracy was assessed on a new cohort of colorectal cancer patients. RESULTS Our analysis shows that intratumoural microbiome composition is correlated with survival, anatomic location, microsatellite instability, consensus molecular subtype and immune cell infiltration in colon tumours. In particular, we find Faecalibacterium prausnitzii, Coprococcus comes, Bacteroides spp., Fusobacterium spp. and Clostridium spp. to be strongly associated with tumour properties. CONCLUSIONS We implemented an approach to concurrently analyse clinical and molecular properties of the tumour as well as the composition of the associated microbiome. Our results may improve patient stratification and pave the path for mechanistic studies on microbiota-tumour crosstalk.
Collapse
Affiliation(s)
- Gaia Sambruni
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
| | - Angeli D Macandog
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
| | - Jakob Wirbel
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Danilo Cagnina
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
| | - Carlotta Catozzi
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
| | - Tiziano Dallavilla
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
| | - Francesca Borgo
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
- Center for Omics Sciences, IRCCS San Raffaele Institute, Milano, Italy
| | - Nicola Fazio
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology-IRCCS, Milano, Italy
| | | | - Wanda L Petz
- Digestive Surgery, European Institute of Oncology-IRCCS, Milano, Italy
| | - Teresa Manzo
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
| | - Simona P Ravenda
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology-IRCCS, Milano, Italy
| | - Georg Zeller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Luigi Nezi
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy.
| | - Martin H Schaefer
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy.
| |
Collapse
|