151
|
Zhang Y, Chandra V, Riquelme Sanchez E, Dutta P, Quesada PR, Rakoski A, Zoltan M, Arora N, Baydogan S, Horne W, Burks J, Xu H, Hussain P, Wang H, Gupta S, Maitra A, Bailey JM, Moghaddam SJ, Banerjee S, Sahin I, Bhattacharya P, McAllister F. Interleukin-17-induced neutrophil extracellular traps mediate resistance to checkpoint blockade in pancreatic cancer. J Exp Med 2021; 217:152058. [PMID: 32860704 PMCID: PMC7953739 DOI: 10.1084/jem.20190354] [Citation(s) in RCA: 280] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/25/2020] [Accepted: 07/06/2020] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a lethal malignancy with an immunosuppressive microenvironment that is resistant to most therapies. IL17 is involved in pancreatic tumorigenesis, but its role in invasive PDAC is undetermined. We hypothesized that IL17 triggers and sustains PDAC immunosuppression. We inhibited IL17/IL17RA signaling using pharmacological and genetic strategies alongside mass cytometry and multiplex immunofluorescence techniques. We uncovered that IL17 recruits neutrophils, triggers neutrophil extracellular traps (NETs), and excludes cytotoxic CD8 T cells from tumors. Additionally, IL17 blockade increases immune checkpoint blockade (PD-1, CTLA4) sensitivity. Inhibition of neutrophils or Padi4-dependent NETosis phenocopies IL17 neutralization. NMR spectroscopy revealed changes in tumor lactate as a potential early biomarker for IL17/PD-1 combination efficacy. Higher expression of IL17 and PADI4 in human PDAC corresponds with poorer prognosis, and the serum of patients with PDAC has higher potential for NETosis. Clinical studies with IL17 and checkpoint blockade represent a novel combinatorial therapy with potential efficacy for this lethal disease.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Vidhi Chandra
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Erick Riquelme Sanchez
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX.,Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile
| | - Prasanta Dutta
- Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Pompeyo R Quesada
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Amanda Rakoski
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michelle Zoltan
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Seyda Baydogan
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - William Horne
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh, Pittsburgh, PA
| | - Jared Burks
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hanwen Xu
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Perwez Hussain
- Laboratory of Human Carcinogenesis, National Cancer Institute, Bethesda, MD
| | - Huamin Wang
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX.,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sonal Gupta
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Anirban Maitra
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX.,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX.,Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jennifer M Bailey
- Department of Gastroenterology, University of Texas Health Sciences Center, Houston, TX
| | - Seyed J Moghaddam
- Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sulagna Banerjee
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, FL
| | - Ismet Sahin
- Department of Engineering, Texas Southern University, Houston, TX
| | - Pratip Bhattacharya
- Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX.,Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
152
|
Stempor PA, Avni D, Leibowitz R, Sidi Y, Stępień M, Dzieciątkowski T, Dobosz P. Comprehensive Analysis of Correlations in the Expression of miRNA Genes and Immune Checkpoint Genes in Bladder Cancer Cells. Int J Mol Sci 2021; 22:2553. [PMID: 33806327 PMCID: PMC7961343 DOI: 10.3390/ijms22052553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
Personalised medicine is the future and hope for many patients, including those with cancers. Early detection, as well as rapid, well-selected treatment, are key factors leading to a good prognosis. MicroRNA mediated gene regulation is a promising area of development for new diagnostic and therapeutic methods, crucial for better prospects for patients. Bladder cancer is a frequent neoplasm, with high lethality and lacking modern, advanced therapeutic modalities, such as immunotherapy. MicroRNAs are involved in bladder cancer pathogenesis, proliferation, control and response to treatment, which we summarise in this perspective in response to lack of recent review publications in this field. We further performed a correlation-based analysis of microRNA and gene expression data in bladder cancer (BLCA) TCGA dataset. We identified 27 microRNAs hits with opposite expression profiles to genes involved in immune response in bladder cancer, and 24 microRNAs hits with similar expression profiles. We discuss previous studies linking the functions of these microRNAs to bladder cancer and assess if they are good candidates for personalised medicine therapeutics and diagnostics. The discussed functions include regulation of gene expression, interplay with transcription factors, response to treatment, apoptosis, cell proliferation and angiogenesis, initiation and development of cancer, genome instability and tumour-associated inflammatory reaction.
Collapse
Affiliation(s)
- Przemysław A. Stempor
- SmartImmune Ltd, Accelerate Cambridge, University of Cambridge Judge Business School, Cambridge CB4 1EE, UK;
| | - Dror Avni
- Laboratory of Molecular Cell Biology, Center for Cancer Research and Department of Medicine C, Sheba Medical Center, Tel Hashome 52621, Israel;
| | - Raya Leibowitz
- Oncology Institute, Shamir Medical Center, Be’er Yaakov, Tel Hashome 52621, Israel;
- Faculty of Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel;
| | - Yechezkel Sidi
- Faculty of Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel;
| | - Maria Stępień
- Faculty of Medicine, Medical University of Lublin, 20-059 Lublin, Poland;
| | | | - Paula Dobosz
- Department of Hematology, Transplantationand Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
153
|
Carpenter E, Nelson S, Bednar F, Cho C, Nathan H, Sahai V, di Magliano MP, Frankel TL. Immunotherapy for pancreatic ductal adenocarcinoma. J Surg Oncol 2021; 123:751-759. [PMID: 33595893 DOI: 10.1002/jso.26312] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a lethal cancer with an urgent need for better medical therapies. Efforts have been made to investigate the efficacy of immunotherapy, particularly given the hallmarks of immune suppression and exhaustion in PDAC tumors. Here, we review the molecular components responsible for the immune-privileged state in PDAC and provide an overview of the immunotherapeutic strategies for PDAC including vaccine therapy, checkpoint blockade, myeloid-targeted therapy, and immune agonist therapy.
Collapse
Affiliation(s)
- Eileen Carpenter
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sarah Nelson
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Filip Bednar
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Clifford Cho
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Hari Nathan
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Vaibhav Sahai
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Timothy L Frankel
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
154
|
Wang W, Yan L, Guan X, Dong B, Zhao M, Wu J, Tian X, Hao C. Identification of an Immune-Related Signature for Predicting Prognosis in Patients With Pancreatic Ductal Adenocarcinoma. Front Oncol 2021; 10:618215. [PMID: 33718118 PMCID: PMC7945593 DOI: 10.3389/fonc.2020.618215] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/31/2020] [Indexed: 12/26/2022] Open
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is one of the highest fatality rate cancers with poor survival rates. The tumor microenvironment (TME) is vital for tumor immune responses, leading to resistance to chemotherapy and poor prognosis of PDAC patients. This study aimed to provide a comprehensive evaluation of the immune genes and microenvironment in PDAC that might help in predicting prognosis and guiding clinical treatments. METHODS We developed a prognosis-associated immune signature (i.e., PAIS) based on immune-associated genes to predict the overall survival of patients with PDAC. The clinical significance and immune landscapes of the signature were comprehensively analyzed. RESULTS Owing to gene expression profiles from TCGA database, functional enrichment analysis revealed a significant difference in the immune response between PDAC and normal pancreas. Using transcriptome data analysis of a training set, we identified an immune signature represented by 5 genes (ESR2, IDO1, IL20RB, PPP3CA, and PLAU) related to the overall survival of patients with PDAC, significantly. This training set was well-validated in a test set. Our results indicated a clear association between a high-risk score and a very poor prognosis. Stratification analysis and multivariate Cox regression analysis revealed that PAIS was an important prognostic factor. We also found that the risk score was positively correlated with the inflammatory response, antigen-presenting process, and expression level of some immunosuppressive checkpoint molecules (e.g., CD73, PD-L1, CD80, and B7-H3). These results suggested that high-risk patients had a suppressed immune response. However, they could respond better to chemotherapy. In addition, PAIS was positively correlated with the infiltration of M2 macrophages in PDAC. CONCLUSIONS This study highlighted the relationship between the immune response and prognosis in PDAC and developed a clinically feasible signature that might serve as a powerful prognostic tool and help further optimize the cancer therapy paradigm.
Collapse
Affiliation(s)
- Weijia Wang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Liang Yan
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaoya Guan
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Bin Dong
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Central Laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Min Zhao
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jianhui Wu
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiuyun Tian
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Chunyi Hao
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
155
|
Sunami Y, Böker V, Kleeff J. Targeting and Reprograming Cancer-Associated Fibroblasts and the Tumor Microenvironment in Pancreatic Cancer. Cancers (Basel) 2021; 13:697. [PMID: 33572223 PMCID: PMC7915918 DOI: 10.3390/cancers13040697] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is the fourth leading cause of cancer deaths in the United States both in female and male, and is projected to become the second deadliest cancer by 2030. The overall five-year survival rate remains at around 10%. Pancreatic cancer exhibits a remarkable resistance to established therapeutic options such as chemotherapy and radiotherapy, due to dense stromal tumor microenvironment. Cancer-associated fibroblasts are the major stromal cell type and source of extracellular matrix proteins shaping a physical and metabolic barrier thereby reducing therapeutic efficacy. Targeting cancer-associated fibroblasts has been considered a promising therapeutic strategy. However, depleting cancer-associated fibroblasts may also have tumor-promoting effects due to their functional heterogeneity. Several subtypes of cancer-associated fibroblasts have been suggested to exhibit tumor-restraining function. This review article summarizes recent preclinical and clinical investigations addressing pancreatic cancer therapy through targeting specific subtypes of cancer-associated fibroblasts, deprogramming activated fibroblasts, administration of mesenchymal stem cells, as well as reprogramming tumor-promoting cancer-associated fibroblasts to tumor-restraining cancer-associated fibroblasts. Further, inter-cellular mediators between cancer-associated fibroblasts and the surrounding tissue microenvironment are discussed. It is important to increase our understanding of cancer-associated fibroblast heterogeneity and the tumor microenvironment for more specific and personalized therapies for pancreatic cancer patients in the future.
Collapse
Affiliation(s)
- Yoshiaki Sunami
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120 Halle, Germany; (V.B.); (J.K.)
| | | | | |
Collapse
|
156
|
Vonderhaar EP, Barnekow NS, McAllister D, McOlash L, Eid MA, Riese MJ, Tarakanova VL, Johnson BD, Dwinell MB. STING Activated Tumor-Intrinsic Type I Interferon Signaling Promotes CXCR3 Dependent Antitumor Immunity in Pancreatic Cancer. Cell Mol Gastroenterol Hepatol 2021; 12:41-58. [PMID: 33548597 PMCID: PMC8081932 DOI: 10.1016/j.jcmgh.2021.01.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Pancreatic ductal adenocarcinoma (PDA) is a lethal chemoresistant cancer that exhibits early metastatic spread. The highly immunosuppressive PDA tumor microenvironment renders patients resistant to emerging immune-targeted therapies. Building from our prior work, we evaluated stimulator of interferon genes (STING) agonist activation of PDA cell interferon-α/β-receptor (IFNAR) signaling in systemic antitumor immune responses. METHODS PDA cells were implanted subcutaneously to wild-type, IFNAR-, or CXCR3-knockout mice. Tumor growth was monitored, and immune responses were comprehensively profiled. RESULTS Human and mouse STING agonist ADU-S100 reduced local and distal tumor burden and activated systemic antitumor immune responses in PDA-bearing mice. Effector T-cell infiltration and inflammatory cytokine and chemokine production, including IFN-dependent CXCR3-agonist chemokines, were elevated, whereas suppressive immune populations were decreased in treated tumors. Intratumoral STING agonist treatment also generated inflammation in distal noninjected tumors and peripheral immune tissues. STING agonist treatment of type I IFN-responsive PDA tumors engrafted to IFNAR-/- recipient mice was sufficient to contract tumors and stimulate local and systemic T-cell activation. Tumor regression and CD8+ T-cell infiltration were abolished in PDA engrafted to CXCR3-/- mice treated with STING agonist. CONCLUSIONS These data indicate that STING agonists promote T-cell infiltration and counteract immune suppression in locally treated and distant tumors. Tumor-intrinsic type I IFN signaling initiated systemic STING-mediated antitumor inflammation and required CXCR3 expression. STING-mediated induction of systemic immune responses provides an approach to harness the immune system to treat primary and disseminated pancreatic cancers.
Collapse
Affiliation(s)
- Emily P Vonderhaar
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin; Center for Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin; LaBahn Pancreatic Cancer Program, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Nicholas S Barnekow
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin; Center for Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Donna McAllister
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin; Center for Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Laura McOlash
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin; Center for Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mahmoud Abu Eid
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin; Center for Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Matthew J Riese
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin; Center for Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin; LaBahn Pancreatic Cancer Program, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin; Versiti Blood Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Vera L Tarakanova
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin; Center for Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Bryon D Johnson
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin; Center for Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin; LaBahn Pancreatic Cancer Program, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael B Dwinell
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin; Center for Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin; LaBahn Pancreatic Cancer Program, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
157
|
Schmiechen ZC, Stromnes IM. Mechanisms Governing Immunotherapy Resistance in Pancreatic Ductal Adenocarcinoma. Front Immunol 2021; 11:613815. [PMID: 33584701 PMCID: PMC7876239 DOI: 10.3389/fimmu.2020.613815] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/10/2020] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a lethal malignancy with an overall 5-year survival rate of 10%. Disease lethality is due to late diagnosis, early metastasis and resistance to therapy, including immunotherapy. PDA creates a robust fibroinflammatory tumor microenvironment that contributes to immunotherapy resistance. While previously considered an immune privileged site, evidence demonstrates that in some cases tumor antigen-specific T cells infiltrate and preferentially accumulate in PDA and are central to tumor cell clearance and long-term remission. Nonetheless, PDA can rapidly evade an adaptive immune response using a myriad of mechanisms. Mounting evidence indicates PDA interferes with T cell differentiation into potent cytolytic effector T cells via deficiencies in naive T cell priming, inducing T cell suppression or promoting T cell exhaustion. Mechanistic research indicates that immunotherapy combinations that change the suppressive tumor microenvironment while engaging antigen-specific T cells is required for treatment of advanced disease. This review focuses on recent advances in understanding mechanisms limiting T cell function and current strategies to overcome immunotherapy resistance in PDA.
Collapse
Affiliation(s)
- Zoe C. Schmiechen
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Ingunn M. Stromnes
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN, United States
- Center for Genome Engineering, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
158
|
Marine Seagrass Extract of Thalassia testudinum Suppresses Colorectal Tumor Growth, Motility and Angiogenesis by Autophagic Stress and Immunogenic Cell Death Pathways. Mar Drugs 2021; 19:md19020052. [PMID: 33499163 PMCID: PMC7912590 DOI: 10.3390/md19020052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Marine plants have become an inexhaustible reservoir of new phytopharmaceuticals for cancer treatment. We demonstrate in vitro/in vivo antitumor efficacy of a standardized polyphenol extract from the marine angiosperm Thalassia testudinum (TTE) in colon tumor cell lines (RKO, SW480, and CT26) and a syngeneic allograft murine colorectal cancer model. MTT assays revealed a dose-dependent decrease of cell viability of RKO, CT26, and SW480 cells upon TTE treatment with IC50 values of, respectively, 175, 115, and 60 μg/mL. Furthermore, TTE significantly prevented basal and bFGF-induced angiogenesis in the chicken chorioallantoic membrane angiogenesis assay. In addition, TTE suppressed bFGF-induced migration of endothelial cells in a wound closure assay. Finally, TTE treatment abrogated CT26 colorectal cancer growth and increased overall organism survival in a syngeneic murine allograft model. Corresponding transcriptome profiling and pathway analysis allowed for the identification of the mechanism of action for the antitumor effects of TTE. In line with our in vitro/in vivo results, TTE treatment triggers ATF4-P53-NFκB specific gene expression and autophagy stress pathways. This results in suppression of colon cancer cell growth, cell motility, and angiogenesis pathways in vitro and in addition promotes antitumor immunogenic cell death in vivo.
Collapse
|
159
|
Zhang W, Zhang K, Zhang P, Zheng J, Min C, Li X. Research Progress of Pancreas-Related Microorganisms and Pancreatic Cancer. Front Oncol 2021; 10:604531. [PMID: 33520714 PMCID: PMC7841623 DOI: 10.3389/fonc.2020.604531] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022] Open
Abstract
Pancreatic cancer is one of the most common digestive system cancers. Early diagnosis is difficult owing to the lack of specific symptoms and reliable biomarkers. The cause of pancreatic cancer remains ambiguous. Smoking, drinking, new-onset diabetes, and chronic pancreatitis have been proven to be associated with the occurrence of pancreatic cancer. In recent years, a large number of studies have clarified that a variety of microorganisms colonized in pancreatic cancer tissues are also closely related to the occurrence and development of pancreatic cancer, and the specific mechanisms include inflammatory induction, immune regulation, metabolism, and microenvironment changes caused by microorganism. The mechanism of action of the pancreatic colonized microbiome in the tumor microenvironment, as well as immunotherapy approaches require further study in order to find more evidence to explain the complex relationship between the pancreatic colonized microbiome and PDAC. Relevant studies targeting the microbiome may provide insight into the mechanisms of PDAC development and progression, improving treatment effectiveness and overall patient prognosis. In this article, we focus on the research relating to the microorganisms colonized in pancreatic cancer tissues, including viruses, bacteria, and fungi. We also highlight the microbial diversity in the occurrence, invasion, metastasis, treatment, and prognosis of pancreatic cancer in order to elucidate its significance in the early diagnosis and new therapeutic treatment of pancreatic cancer, which urgently need to be improved in clinical practice. The elimination or increase in diversity of the pancreatic microbiome is beneficial for prolonging the survival of PDAC patients, improving the response to chemotherapy drugs, and reducing tumor burden. The colonization of microorganisms in the pancreas may become a new hotspot in the diagnosis and treatment of pancreatic cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoyu Li
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
160
|
Yang S, Liu Q, Liao Q. Tumor-Associated Macrophages in Pancreatic Ductal Adenocarcinoma: Origin, Polarization, Function, and Reprogramming. Front Cell Dev Biol 2021; 8:607209. [PMID: 33505964 PMCID: PMC7829544 DOI: 10.3389/fcell.2020.607209] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy. PDAC is only cured by surgical resection in its early stage, but there remains a relatively high possibility of recurrence. The development of PDAC is closely associated with the tumor microenvironment. Tumor-associated macrophages (TAMs) are one of the most abundant immune cell populations in the pancreatic tumor stroma. TAMs are inclined to M2 deviation in the tumor microenvironment, which promotes and supports tumor behaviors, including tumorigenesis, immune escape, metastasis, and chemotherapeutic resistance. Herein, we comprehensively reviewed the latest researches on the origin, polarization, functions, and reprogramming of TAMs in PDAC.
Collapse
Affiliation(s)
- Sen Yang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qiaofei Liu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Quan Liao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
161
|
Yi M, Niu M, Xu L, Luo S, Wu K. Regulation of PD-L1 expression in the tumor microenvironment. J Hematol Oncol 2021; 14:10. [PMID: 33413496 PMCID: PMC7792099 DOI: 10.1186/s13045-020-01027-5] [Citation(s) in RCA: 392] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/17/2020] [Indexed: 12/30/2022] Open
Abstract
Programmed death-ligand 1 (PD-L1) on cancer cells engages with programmed cell death-1 (PD-1) on immune cells, contributing to cancer immune escape. For multiple cancer types, the PD-1/PD-L1 axis is the major speed-limiting step of the anti-cancer immune response. In this context, blocking PD-1/PD-L1 could restore T cells from exhausted status and eradicate cancer cells. However, only a subset of PD-L1 positive patients benefits from α-PD-1/PD-L1 therapies. Actually, PD-L1 expression is regulated by various factors, leading to the diverse significances of PD-L1 positivity. Understanding the mechanisms of PD-L1 regulation is helpful to select patients and enhance the treatment effect. In this review, we focused on PD-L1 regulators at the levels of transcription, post-transcription, post-translation. Besides, we discussed the potential applications of these laboratory findings in the clinic.
Collapse
Affiliation(s)
- Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Linping Xu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Suxia Luo
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China.
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China.
| |
Collapse
|
162
|
Zhang F, Zhong W, Li H, Huang K, Yu M, Liu Y. TP53 Mutational Status-Based Genomic Signature for Prognosis and Predicting Therapeutic Response in Pancreatic Cancer. Front Cell Dev Biol 2021; 9:665265. [PMID: 34124046 PMCID: PMC8187932 DOI: 10.3389/fcell.2021.665265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/09/2021] [Indexed: 02/05/2023] Open
Abstract
TP53 mutation is a critical driver mutation that affects the carcinogenesis and prognosis of patients with pancreatic cancer (PC). Currently, there is no driver mutation-derived signature based on TP53 mutational status for prognosis and predicting therapeutic response in PC. In the present study, we characterized the TP53 mutational phenotypes in multiple patient cohorts and developed a prognostic TP53-associated signature based on differentially expressed genes between PC samples with mutated TP53 and wild-type TP53. Comprehensive investigations were carried out in prognostic stratification, genetic variation, immune cell infiltration, and efficacy prediction of chemotherapy and targeted therapy. We found that TP53 mutation commonly occurred as a survival-related driver mutation in PC. In total, 1,154 differentially expressed genes were found between two distinct TP53 mutational phenotypes. A five-gene TP53-associated signature was constructed in The Cancer Genome Atlas (TCGA) cohort by least absolute shrinkage and selection operator (LASSO)-Cox analysis and proven to be a robust prognostic predictor, which performed well in three independent Gene Expression Omnibus (GEO) validating cohorts. Remarkably, patients in the low-risk group were characterized with decreased tumor mutation burden and activity of immunity, with favorable prognosis. Higher fractions of macrophages M0 and impaired CD8 + T cells were observed in patients in the high-risk group, suggesting immunosuppression with poor survival. Patients in the high-risk group also demonstrated enhanced response to specific chemotherapeutic agents, including gemcitabine and paclitaxel. Several targeted inhibitors, like histamine receptor inhibitor, were screened out as promising drugs for PC treatment. Collectively, the TP53-associated signature is a novel prognostic biomarker and predictive indicator of PC. The signature could contribute to optimizing prognostic stratification and guide effective PC treatments.
Collapse
Affiliation(s)
- Feng Zhang
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Wenhui Zhong
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Honghao Li
- The Sixth Affiliated Hospital, Sun Yat-sen University Guangdong Gastrointestinal Hospital, Guangzhou, China
| | - Kaijun Huang
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Min Yu
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Min Yu,
| | - Yubin Liu
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Yubin Liu,
| |
Collapse
|
163
|
Ghidini M, Lampis A, Mirchev MB, Okuducu AF, Ratti M, Valeri N, Hahne JC. Immune-Based Therapies and the Role of Microsatellite Instability in Pancreatic Cancer. Genes (Basel) 2020; 12:33. [PMID: 33383713 PMCID: PMC7823781 DOI: 10.3390/genes12010033] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/11/2020] [Accepted: 12/25/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is one of the most aggressive malignancies with limited treatment options thus resulting in high morbidity and mortality. Among all cancers, with a five-year survival rates of only 2-9%, pancreatic cancer holds the worst prognostic outcome for patients. To improve the overall survival, an earlier diagnosis and stratification of cancer patients for personalized treatment options are urgent needs. A minority of pancreatic cancers belong to the spectrum of Lynch syndrome-associated cancers and are characterized by microsatellite instability (MSI). MSI is a consequence of defective mismatch repair protein functions and it has been well characterized in other gastrointestinal tumors such as colorectal and gastric cancer. In the latter, high levels of MSI are linked to a better prognosis and to an increased benefit to immune-based therapies. Therefore, the same therapies could offer an opportunity of treatment for pancreatic cancer patients with MSI. In this review, we summarize the current knowledge about immune-based therapies and MSI in pancreatic cancer.
Collapse
Affiliation(s)
- Michele Ghidini
- Division of Medical Oncology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Andrea Lampis
- Division of Molecular Pathology, The Institute of Cancer Research, London SM25NG, UK; (A.L.); (M.R.); (N.V.)
- Centre for Evolution and Cancer, The Institute of Cancer Research, London SM25NG, UK
| | - Milko B. Mirchev
- Clinic of Gastroenterology, Medical University, 9002 Varna, Bulgaria;
| | | | - Margherita Ratti
- Division of Molecular Pathology, The Institute of Cancer Research, London SM25NG, UK; (A.L.); (M.R.); (N.V.)
- Centre for Evolution and Cancer, The Institute of Cancer Research, London SM25NG, UK
- Medical Department, Division of Oncology, ASST di Cremona, Ospedale di Cremona, 26100 Cremona, Italy
| | - Nicola Valeri
- Division of Molecular Pathology, The Institute of Cancer Research, London SM25NG, UK; (A.L.); (M.R.); (N.V.)
- Centre for Evolution and Cancer, The Institute of Cancer Research, London SM25NG, UK
- Department of Medicine, The Royal Marsden NHS Foundation Trust, London SM25NG, UK
| | - Jens C. Hahne
- Division of Molecular Pathology, The Institute of Cancer Research, London SM25NG, UK; (A.L.); (M.R.); (N.V.)
- Centre for Evolution and Cancer, The Institute of Cancer Research, London SM25NG, UK
| |
Collapse
|
164
|
Carpenter ES, Steele NG, Pasca di Magliano M. Targeting the Microenvironment to Overcome Gemcitabine Resistance in Pancreatic Cancer. Cancer Res 2020; 80:3070-3071. [PMID: 32753486 DOI: 10.1158/0008-5472.can-20-1692] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 11/16/2022]
Abstract
Pancreatic cancer is characterized by an extensive and complex microenvironment, and is resistant to both chemotherapy and immune checkpoint blockade. The study by Principe and colleagues in this issue of Cancer Research proposes a combinatorial approach based on targeting the very mechanisms of resistance to gemcitabine, a commonly used chemotherapeutic agent. The authors show that gemcitabine treatment causes profound changes in the pancreatic cancer microenvironment, including elevated TGFβ signaling and immune checkpoint expression, as well as increased antigen presentation in tumor cells. Accordingly, they show that the combination of chemotherapy, TGFβ signaling inhibition, and immune checkpoint blockade effectively restores antitumor immunity and results in a significant survival benefit.See related article by Principe et al., p. 3101.
Collapse
Affiliation(s)
- Eileen S Carpenter
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Nina G Steele
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Marina Pasca di Magliano
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
165
|
Holokai L, Chakrabarti J, Lundy J, Croagh D, Adhikary P, Richards SS, Woodson C, Steele N, Kuester R, Scott A, Khreiss M, Frankel T, Merchant J, Jenkins BJ, Wang J, Shroff RT, Ahmad SA, Zavros Y. Murine- and Human-Derived Autologous Organoid/Immune Cell Co-Cultures as Pre-Clinical Models of Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2020; 12:E3816. [PMID: 33348809 PMCID: PMC7766822 DOI: 10.3390/cancers12123816] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 12/21/2022] Open
Abstract
Purpose: Pancreatic ductal adenocarcinoma (PDAC) has the lowest five-year survival rate of all cancers in the United States. Programmed death 1 receptor (PD-1)-programmed death ligand 1 (PD-L1) immune checkpoint inhibition has been unsuccessful in clinical trials. Myeloid-derived suppressor cells (MDSCs) are known to block anti-tumor CD8+ T cell immune responses in various cancers including pancreas. This has led us to our objective that was to develop a clinically relevant in vitro organoid model to specifically target mechanisms that deplete MDSCs as a therapeutic strategy for PDAC. Method: Murine and human pancreatic ductal adenocarcinoma (PDAC) autologous organoid/immune cell co-cultures were used to test whether PDAC can be effectively treated with combinatorial therapy involving PD-1 inhibition and MDSC depletion. Results: Murine in vivo orthotopic and in vitro organoid/immune cell co-culture models demonstrated that polymorphonuclear (PMN)-MDSCs promoted tumor growth and suppressed cytotoxic T lymphocyte (CTL) proliferation, leading to diminished efficacy of checkpoint inhibition. Mouse- and human-derived organoid/immune cell co-cultures revealed that PD-L1-expressing organoids were unresponsive to nivolumab in vitro in the presence of PMN-MDSCs. Depletion of arginase 1-expressing PMN-MDSCs within these co-cultures rendered the organoids susceptible to anti-PD-1/PD-L1-induced cancer cell death. Conclusions: Here we use mouse- and human-derived autologous pancreatic cancer organoid/immune cell co-cultures to demonstrate that elevated infiltration of polymorphonuclear (PMN)-MDSCs within the PDAC tumor microenvironment inhibit T cell effector function, regardless of PD-1/PD-L1 inhibition. We present a pre-clinical model that may predict the efficacy of targeted therapies to improve the outcome of patients with this aggressive and otherwise unpredictable malignancy.
Collapse
Affiliation(s)
- Loryn Holokai
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, OH 45220, USA; (L.H.); (C.W.)
| | - Jayati Chakrabarti
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85719, USA; (J.C.); (P.A.)
| | - Joanne Lundy
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (J.L.); (B.J.J.)
- Department of Molecular Translational Science, School of Clinical Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Daniel Croagh
- Department of Surgery, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3800, Australia;
| | - Pritha Adhikary
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85719, USA; (J.C.); (P.A.)
| | - Scott S. Richards
- Department of Gastroenterology and Hepatology, University of Arizona College of Medicine, Tucson, AZ 85719, USA; (S.S.R.); (R.K.); (J.M.)
| | - Chantal Woodson
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, OH 45220, USA; (L.H.); (C.W.)
| | - Nina Steele
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA; (N.S.); (T.F.)
| | - Robert Kuester
- Department of Gastroenterology and Hepatology, University of Arizona College of Medicine, Tucson, AZ 85719, USA; (S.S.R.); (R.K.); (J.M.)
| | - Aaron Scott
- Division of Hematology and Oncology, University of Arizona College of Medicine, Tucson, AZ 85719, USA; (A.S.); (M.K.); (R.T.S.)
| | - Mohammad Khreiss
- Division of Hematology and Oncology, University of Arizona College of Medicine, Tucson, AZ 85719, USA; (A.S.); (M.K.); (R.T.S.)
| | - Timothy Frankel
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA; (N.S.); (T.F.)
| | - Juanita Merchant
- Department of Gastroenterology and Hepatology, University of Arizona College of Medicine, Tucson, AZ 85719, USA; (S.S.R.); (R.K.); (J.M.)
| | - Brendan J. Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (J.L.); (B.J.J.)
- Department of Molecular Translational Science, School of Clinical Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Jiang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
| | - Rachna T. Shroff
- Division of Hematology and Oncology, University of Arizona College of Medicine, Tucson, AZ 85719, USA; (A.S.); (M.K.); (R.T.S.)
| | - Syed A. Ahmad
- Department of Surgery, Division of Surgical Oncology, University of Cincinnati, Cincinnati, OH 45221, USA;
| | - Yana Zavros
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85719, USA; (J.C.); (P.A.)
| |
Collapse
|
166
|
Yin K, Xia X, Rui K, Wang T, Wang S. Myeloid-Derived Suppressor Cells: A New and Pivotal Player in Colorectal Cancer Progression. Front Oncol 2020; 10:610104. [PMID: 33384962 PMCID: PMC7770157 DOI: 10.3389/fonc.2020.610104] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) remains a devastating human malignancy with poor prognosis. Of the various factors, immune evasion mechanisms play pivotal roles in CRC progression and impede the effects of cancer therapy. Myeloid-derived suppressor cells (MDSCs) constitute an immature population of myeloid cells that are typical during tumor progression. These cells have the ability to induce strong immunosuppressive effects within the tumor microenvironment (TME) and promote CRC development. Indeed, MDSCs have been shown to accumulate in both tumor-bearing mice and CRC patients, and may therefore become an obstacle for cancer immunotherapy. Consequently, numerous studies have focused on the characterization of MDSCs and their immunosuppressive capacity, as well as developing novel approaches to suppress MDSCs function with different approaches. Current therapeutic strategies that target MDSCs in CRC include inhibition of their recruitment and alteration of their function, alone or in combination with other therapies including chemotherapy, radiotherapy and immunotherapy. Herein, we summarize the recent roles and mechanisms of MDSCs in CRC progression. In addition, a brief review of MDSC-targeting approaches for potential CRC therapy is presented.
Collapse
Affiliation(s)
- Kai Yin
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xueli Xia
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ke Rui
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Tingting Wang
- Department of Laboratory Medicine, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Children's Hospital, Wuxi, China
| | - Shengjun Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
167
|
Verhaar ER, Woodham AW, Ploegh HL. Nanobodies in cancer. Semin Immunol 2020; 52:101425. [PMID: 33272897 DOI: 10.1016/j.smim.2020.101425] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/24/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
Abstract
For treatment and diagnosis of cancer, antibodies have proven their value and now serve as a first line of therapy for certain cancers. A unique class of antibody fragments called nanobodies, derived from camelid heavy chain-only antibodies, are gaining increasing acceptance as diagnostic tools and are considered also as building blocks for chimeric antigen receptors as well as for targeted drug delivery. The small size of nanobodies (∼15 kDa), their stability, ease of manufacture and modification for diverse formats, short circulatory half-life, and high tissue penetration, coupled with excellent specificity and affinity, account for their attractiveness. Here we review applications of nanobodies in the sphere of tumor biology.
Collapse
Affiliation(s)
- Elisha R Verhaar
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, United States
| | - Andrew W Woodham
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
168
|
Do novel treatment strategies enhance T cell-mediated Immunity: Opportunities and challenges in pancreatic cancer immunotherapy. Int Immunopharmacol 2020; 90:107199. [PMID: 33246828 DOI: 10.1016/j.intimp.2020.107199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
Abstract
Although immunotherapy is successful when included as component of treatment strategies for advanced cancers, data are insufficient for evaluating its efficacy for treating patients with pancreatic cancer (PC). PC is remarkably resistant to current immunotherapies because of its strongly immunosuppressive tumor microenvironment comprising immunosuppressive cells such as myeloid-derived suppressor cells and regulatory T cells, which limit the efficacy of T cell infiltration. Thus, the ability to achieve robust and durable intrinsic T cell efficacy may represent the key for improving patients' outcomes. Recent studies show that the efficacy of immunotherapy for treating PC will be significantly improved when combined with novel treatment strategies. This review summarizes the latest research in this rapidly progressing area and provides an overview of how current therapies enhance T cell-mediated immunotherapies that employ immune checkpoint inhibitors, cytokines, cell receptor modulators, tumor microenvironment regulators, vaccines, and gene-targeted immunotherapies. We highlight novel discoveries, which promise to guide future management of PC, and clinical trials aimed to increase the overall survival rate of patients with PC.
Collapse
|
169
|
Krishnamoorthy M, Lenehan JG, Burton JP, Maleki Vareki S. Immunomodulation in Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12113340. [PMID: 33198059 PMCID: PMC7696309 DOI: 10.3390/cancers12113340] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/30/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer has a high mortality rate, and its incidence is increasing worldwide. The almost universal poor prognosis of pancreatic cancer is partly due to symptoms presenting only at late stages and limited effective treatments. Recently, immune checkpoint blockade inhibitors have drastically improved patient survival in metastatic and advanced settings in certain cancers. Unfortunately, these therapies are ineffective in pancreatic cancer. However, tumor biopsies from long-term survivors of pancreatic cancer are more likely to be infiltrated by cytotoxic T-cells and certain species of bacteria that activate T-cells. These observations suggest that T-cell activation is essential for anti-tumor immunity in pancreatic cancers. This review discusses the immunological mechanisms responsible for effective anti-tumor immunity and how immune-based strategies can be exploited to develop new pancreatic cancer treatments.
Collapse
Affiliation(s)
- Mithunah Krishnamoorthy
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 3K7, Canada; (M.K.); (J.P.B.)
- Cancer Research Laboratory Program, Lawson Health Research Institute, London, ON N6A 5W9, Canada
| | - John G. Lenehan
- Division of Medical Oncology, Department of Oncology, University of Western Ontario, London, ON N6A 3K7, Canada;
| | - Jeremy P. Burton
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 3K7, Canada; (M.K.); (J.P.B.)
- Canadian Centre for Human Microbiome and Probiotics, Lawson Health Research Institute, London, ONN6A 4V2, Canada
- Division of Urology, Department of Surgery, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Saman Maleki Vareki
- Cancer Research Laboratory Program, Lawson Health Research Institute, London, ON N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON N6A 3K7, Canada
- Division of Experimental Oncology, Department of Oncology, University of Western Ontario, London, ON N6A 3K7, Canada
- Correspondence: ; Tel.: +519-685-8500 (ext. 55769)
| |
Collapse
|
170
|
Vonderheide RH, Bear AS. Tumor-Derived Myeloid Cell Chemoattractants and T Cell Exclusion in Pancreatic Cancer. Front Immunol 2020; 11:605619. [PMID: 33304355 PMCID: PMC7693439 DOI: 10.3389/fimmu.2020.605619] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/15/2020] [Indexed: 12/31/2022] Open
Abstract
Like many tumor types, pancreatic ductal adenocarcinoma (PDAC) exhibits a rich network of tumor-derived cytokines and chemokines that drive recruitment of myeloid cells to the tumor microenvironment (TME). These cells, which include tumor-associated macrophages and myeloid derived suppressor cells, block the recruitment and priming of T cells, resulting in T cell exclusion within the TME. Genetic or pharmacologic disruption of this chemokine/cytokine network reliably converts the PDAC TME to a T cell-high phenotype and sensitizes tumors to immunotherapy across multiple preclinical models. Thus, neutralization of tumor-derived chemokines/cytokines or blockade of their respective receptors represents a potentially potent strategy to reverse myeloid immunosuppression in PDAC, enabling benefit from checkpoint inhibition not otherwise achievable in this disease. Inhibition of oncogenic pathways that drive tumor-intrinsic expression of chemoattractants may be similarly effective.
Collapse
Affiliation(s)
- Robert H Vonderheide
- Abramson Cancer Center, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Adham S Bear
- Abramson Cancer Center, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
171
|
Li J, Yuan S, Norgard RJ, Yan F, Sun YH, Kim IK, Merrell AJ, Sela Y, Jiang Y, Bhanu NV, Garcia BA, Vonderheide RH, Blanco A, Stanger BZ. Epigenetic and Transcriptional Control of the Epidermal Growth Factor Receptor Regulates the Tumor Immune Microenvironment in Pancreatic Cancer. Cancer Discov 2020; 11:736-753. [PMID: 33158848 DOI: 10.1158/2159-8290.cd-20-0519] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/09/2020] [Accepted: 11/03/2020] [Indexed: 12/24/2022]
Abstract
Although immunotherapy has revolutionized cancer care, patients with pancreatic ductal adenocarcinoma (PDA) rarely respond to these treatments, a failure that is attributed to poor infiltration and activation of T cells in the tumor microenvironment (TME). We performed an in vivo CRISPR screen and identified lysine demethylase 3A (KDM3A) as a potent epigenetic regulator of immunotherapy response in PDA. Mechanistically, KDM3A acts through Krueppel-like factor 5 (KLF5) and SMAD family member 4 (SMAD4) to regulate the expression of the epidermal growth factor receptor (EGFR). Ablation of KDM3A, KLF5, SMAD4, or EGFR in tumor cells altered the immune TME and sensitized tumors to combination immunotherapy, whereas treatment of established tumors with an EGFR inhibitor, erlotinib, prompted a dose-dependent increase in intratumoral T cells. This study defines an epigenetic-transcriptional mechanism by which tumor cells modulate their immune microenvironment and highlights the potential of EGFR inhibitors as immunotherapy sensitizers in PDA. SIGNIFICANCE: PDA remains refractory to immunotherapies. Here, we performed an in vivo CRISPR screen and identified an epigenetic-transcriptional network that regulates antitumor immunity by converging on EGFR. Pharmacologic inhibition of EGFR is sufficient to rewire the immune microenvironment. These results offer a readily accessible immunotherapy-sensitizing strategy for PDA.This article is highlighted in the In This Issue feature, p. 521.
Collapse
Affiliation(s)
- Jinyang Li
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Salina Yuan
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert J Norgard
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Fangxue Yan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yu H Sun
- Center for RNA Biology, Department of Biochemistry and Biophysics, Department of Biology, University of Rochester Medical Center, Rochester, New York
| | - Il-Kyu Kim
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Allyson J Merrell
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yogev Sela
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yanqing Jiang
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Natarajan V Bhanu
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Benjamin A Garcia
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert H Vonderheide
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania.,Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, Pennsylvania.,Institute for Immunology, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrés Blanco
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ben Z Stanger
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania. .,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
172
|
Sodergren MH, Mangal N, Wasan H, Sadanandam A, Balachandran VP, Jiao LR, Habib N. Immunological combination treatment holds the key to improving survival in pancreatic cancer. J Cancer Res Clin Oncol 2020; 146:2897-2911. [PMID: 32748119 PMCID: PMC7519893 DOI: 10.1007/s00432-020-03332-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/22/2020] [Indexed: 12/18/2022]
Abstract
Advances in surgery, peri-operative care and systemic chemotherapy have not significantly improved the prognosis of pancreatic cancer for several decades. Early clinical trials of immunotherapy have yielded disappointing results proposing other means by which the tumour microenvironment serves to decrease the immune response. Additionally, the emergence of various subtypes of pancreatic cancer has emerged as a factor for treatment responses with immunogenic subtypes carrying a better prognosis. Herein we discuss the reasons for the poor response to checkpoint inhibitors and outline a rationale why combination treatments are likely to be most effective. We review the therapies which could provide optimal synergistic effects to immunotherapy including chemotherapy, agents targeting the stroma, co-stimulatory molecules, vaccinations and methods of immunogenic tumour priming including radiofrequency ablation. Finally, we discuss reasons why peri-operative and in particular neoadjuvant combination treatments are likely to be most effective and should be considered for early clinical trials.
Collapse
Affiliation(s)
- M H Sodergren
- Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, DuCane Road, London, W12 0HS, UK.
| | - N Mangal
- Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, DuCane Road, London, W12 0HS, UK
| | - H Wasan
- Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, DuCane Road, London, W12 0HS, UK
| | - A Sadanandam
- Division of Molecular Pathology, Institute for Cancer Research, London, UK
- Centre for Molecular Pathology, Royal Marsden Hospital, London, UK
| | - V P Balachandran
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, USA
| | - L R Jiao
- Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, DuCane Road, London, W12 0HS, UK
| | - N Habib
- Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, DuCane Road, London, W12 0HS, UK
| |
Collapse
|
173
|
Steele NG, Carpenter ES, Kemp SB, Sirihorachai VR, The S, Delrosario L, Lazarus J, Amir EAD, Gunchick V, Espinoza C, Bell S, Harris L, Lima F, Irizarry-Negron V, Paglia D, Macchia J, Chu AKY, Schofield H, Wamsteker EJ, Kwon R, Schulman A, Prabhu A, Law R, Sondhi A, Yu J, Patel A, Donahue K, Nathan H, Cho C, Anderson MA, Sahai V, Lyssiotis CA, Zou W, Allen BL, Rao A, Crawford HC, Bednar F, Frankel TL, Pasca di Magliano M. Multimodal Mapping of the Tumor and Peripheral Blood Immune Landscape in Human Pancreatic Cancer. NATURE CANCER 2020; 1:1097-1112. [PMID: 34296197 PMCID: PMC8294470 DOI: 10.1038/s43018-020-00121-4] [Citation(s) in RCA: 302] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is characterized by an immune-suppressive tumor microenvironment that renders it largely refractory to immunotherapy. We implemented a multimodal analysis approach to elucidate the immune landscape in PDA. Using a combination of CyTOF, single-cell RNA sequencing, and multiplex immunohistochemistry on patient tumors, matched blood, and non-malignant samples, we uncovered a complex network of immune-suppressive cellular interactions. These experiments revealed heterogeneous expression of immune checkpoint receptors in individual patient's T cells and increased markers of CD8+ T cell dysfunction in advanced disease stage. Tumor-infiltrating CD8+ T cells had an increased proportion of cells expressing an exhausted expression profile that included upregulation of the immune checkpoint TIGIT, a finding that we validated at the protein level. Our findings point to a profound alteration of the immune landscape of tumors, and to patient-specific immune changes that should be taken into account as combination immunotherapy becomes available for pancreatic cancer.
Collapse
Affiliation(s)
- Nina G Steele
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Eileen S Carpenter
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Samantha B Kemp
- Molecular and Cellular Pathology Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | | | - Stephanie The
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | | | - Jenny Lazarus
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | | | - Valerie Gunchick
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Carlos Espinoza
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Samantha Bell
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Lindsey Harris
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Fatima Lima
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | | | - Daniel Paglia
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Justin Macchia
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Angel Ka Yan Chu
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | | | - Erik-Jan Wamsteker
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Richard Kwon
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Allison Schulman
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Anoop Prabhu
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Ryan Law
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Arjun Sondhi
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Jessica Yu
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Arpan Patel
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Katelyn Donahue
- Cancer Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Hari Nathan
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Clifford Cho
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Michelle A Anderson
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Vaibhav Sahai
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Costas A Lyssiotis
- Molecular and Cellular Pathology Graduate Program, University of Michigan, Ann Arbor, MI, USA
- Cancer Biology Program, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Weiping Zou
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Benjamin L Allen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Arvind Rao
- Cancer Biology Program, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Michigan Institute of Data Science (MIDAS), University of Michigan, Ann Arbor, MI, USA
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Howard C Crawford
- Molecular and Cellular Pathology Graduate Program, University of Michigan, Ann Arbor, MI, USA.
- Cancer Biology Program, University of Michigan, Ann Arbor, MI, USA.
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
| | - Filip Bednar
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.
| | | | - Marina Pasca di Magliano
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
- Molecular and Cellular Pathology Graduate Program, University of Michigan, Ann Arbor, MI, USA.
- Cancer Biology Program, University of Michigan, Ann Arbor, MI, USA.
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
174
|
Huber M, Brehm CU, Gress TM, Buchholz M, Alashkar Alhamwe B, Pogge von Strandmann E, Slater EP, Bartsch JW, Bauer C, Lauth M. The Immune Microenvironment in Pancreatic Cancer. Int J Mol Sci 2020; 21:E7307. [PMID: 33022971 PMCID: PMC7583843 DOI: 10.3390/ijms21197307] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023] Open
Abstract
The biology of solid tumors is strongly determined by the interactions of cancer cells with their surrounding microenvironment. In this regard, pancreatic cancer (pancreatic ductal adenocarcinoma, PDAC) represents a paradigmatic example for the multitude of possible tumor-stroma interactions. PDAC has proven particularly refractory to novel immunotherapies, which is a fact that is mediated by a unique assemblage of various immune cells creating a strongly immunosuppressive environment in which this cancer type thrives. In this review, we outline currently available knowledge on the cross-talk between tumor cells and the cellular immune microenvironment, highlighting the physiological and pathological cellular interactions, as well as the resulting therapeutic approaches derived thereof. Hopefully a better understanding of the complex tumor-stroma interactions will one day lead to a significant advancement in patient care.
Collapse
Affiliation(s)
- Magdalena Huber
- Institute for Medical Microbiology and Hospital Hygiene, Philipps University Marburg, 35043 Marburg, Germany;
| | - Corinna U. Brehm
- Institute of Pathology, University Hospital Giessen-Marburg, 35043 Marburg, Germany;
| | - Thomas M. Gress
- Department of Gastroenterology, Endocrinology, Metabolism and Infectiology, Center for Tumor- and Immunology (ZTI), Philipps University Marburg, 35043 Marburg, Germany; (T.M.G.); (M.B.); (C.B.)
| | - Malte Buchholz
- Department of Gastroenterology, Endocrinology, Metabolism and Infectiology, Center for Tumor- and Immunology (ZTI), Philipps University Marburg, 35043 Marburg, Germany; (T.M.G.); (M.B.); (C.B.)
| | - Bilal Alashkar Alhamwe
- Institute for Tumor Immunology, Clinic for Hematology, Oncology and Immunology, Center for Tumor Biology and Immunology (ZTI), Philipps University Marburg, 35043 Marburg, Germany; (E.P.v.S.); (B.A.A.)
| | - Elke Pogge von Strandmann
- Institute for Tumor Immunology, Clinic for Hematology, Oncology and Immunology, Center for Tumor Biology and Immunology (ZTI), Philipps University Marburg, 35043 Marburg, Germany; (E.P.v.S.); (B.A.A.)
| | - Emily P. Slater
- Department of Visceral-, Thoracic- and Vascular Surgery, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany;
| | - Jörg W. Bartsch
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany;
| | - Christian Bauer
- Department of Gastroenterology, Endocrinology, Metabolism and Infectiology, Center for Tumor- and Immunology (ZTI), Philipps University Marburg, 35043 Marburg, Germany; (T.M.G.); (M.B.); (C.B.)
| | - Matthias Lauth
- Department of Gastroenterology, Endocrinology, Metabolism and Infectiology, Center for Tumor- and Immunology (ZTI), Philipps University Marburg, 35043 Marburg, Germany; (T.M.G.); (M.B.); (C.B.)
| |
Collapse
|
175
|
Hessmann E, Buchholz SM, Demir IE, Singh SK, Gress TM, Ellenrieder V, Neesse A. Microenvironmental Determinants of Pancreatic Cancer. Physiol Rev 2020; 100:1707-1751. [DOI: 10.1152/physrev.00042.2019] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) belongs to the most lethal solid tumors in humans. A histological hallmark feature of PDAC is the pronounced tumor microenvironment (TME) that dynamically evolves during tumor progression. The TME consists of different non-neoplastic cells such as cancer-associated fibroblasts, immune cells, endothelial cells, and neurons. Furthermore, abundant extracellular matrix components such as collagen and hyaluronic acid as well as matricellular proteins create a highly dynamic and hypovascular TME with multiple biochemical and physical interactions among the various cellular and acellular components that promote tumor progression and therapeutic resistance. In recent years, intensive research efforts have resulted in a significantly improved understanding of the biology and pathophysiology of the TME in PDAC, and novel stroma-targeted approaches are emerging that may help to improve the devastating prognosis of PDAC patients. However, none of anti-stromal therapies has been approved in patients so far, and there is still a large discrepancy between multiple successful preclinical results and subsequent failure in clinical trials. Furthermore, recent findings suggest that parts of the TME may also possess tumor-restraining properties rendering tailored therapies even more challenging.
Collapse
Affiliation(s)
- Elisabeth Hessmann
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Soeren M. Buchholz
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Ihsan Ekin Demir
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Shiv K. Singh
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Thomas M. Gress
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Volker Ellenrieder
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Albrecht Neesse
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| |
Collapse
|
176
|
Yang W, Chen N, Li L, Chen X, Liu X, Zhang Y, Cui J. Favorable Immune Microenvironment in Patients with EGFR and MAPK Co-Mutations. LUNG CANCER (AUCKLAND, N.Z.) 2020; 11:59-71. [PMID: 32982525 PMCID: PMC7490071 DOI: 10.2147/lctt.s262822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/13/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE Although EGFR-mutated patients generally do not benefit from checkpoint inhibitors (ICIs), some patients in the KEYNOTE-001 study consistently benefited from this treatment. This study investigated immune microenvironment characteristics to identify the subgroup of patients that may benefit from ICIs. MATERIALS AND METHODS Using data from The Cancer Genome Atlas Program (TCGA) and Cancer Proteome Atlas, TMB and protein level of PD-L1 were explored in the patients with EGFR mutations and wild-type patients. Different patterns of EGFR mutations (according to EGFR co-mutation with different downstream pathway genesets) were used to group EGFR mutation population. Estimated infiltration analyses were used to explore changes in the immune microenvironment. RESULTS This study analyzed somatic mutation data from 1287 patients from five cohorts (TCGA, Broad, The Tumour Sequencing Project, Memorial Sloan Kettering Cancer Center, Catalogue Of Somatic Mutations In Cancer database). The probability of EGFR mutation was approximately 14.30% (184/1287) and the co-mutation rate was 11.41% (21/184) in patients with EGFR mutations. Glycosaminoglycan-related pathways were significantly upregulated in the EGFR mutant group. EGFR-mutated patients had lower TMB and PD-L1 protein levels than those in wild-type patients. Increase immature DCs infiltration and decreased NK CD56dim, T gamma delta, cytotoxic, and Th2 cell infiltration were the main immune changes in EGFR-mutated patients. Patients with EGFR-MAPK co-mutations had higher levels of TMB and PD-L1 protein expression. Meanwhile, the co-mutated patients had a similar immune microenvironment as that in wild-type patients. CONCLUSION In this study, we defined a subgroup of patients with EGFR-MAPK co-mutations. These co-mutated patients may benefit from ICI treatment.
Collapse
Affiliation(s)
- Wang Yang
- The Cancer Center of the First Hospital of Jilin University, Changchun, Jilin130021, People’s Republic of China
| | - Naifei Chen
- The Cancer Center of the First Hospital of Jilin University, Changchun, Jilin130021, People’s Republic of China
| | - Lingyu Li
- The Cancer Center of the First Hospital of Jilin University, Changchun, Jilin130021, People’s Republic of China
| | - Xiao Chen
- The Cancer Center of the First Hospital of Jilin University, Changchun, Jilin130021, People’s Republic of China
| | - Xiangliang Liu
- The Cancer Center of the First Hospital of Jilin University, Changchun, Jilin130021, People’s Republic of China
| | - Yongfei Zhang
- The Cancer Center of the First Hospital of Jilin University, Changchun, Jilin130021, People’s Republic of China
| | - Jiuwei Cui
- The Cancer Center of the First Hospital of Jilin University, Changchun, Jilin130021, People’s Republic of China
| |
Collapse
|
177
|
Cruz AF, Rohban R, Esni F. Macrophages in the pancreas: Villains by circumstances, not necessarily by actions. IMMUNITY INFLAMMATION AND DISEASE 2020; 8:807-824. [PMID: 32885589 PMCID: PMC7654401 DOI: 10.1002/iid3.345] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022]
Abstract
Introduction Mounting evidence suggest that macrophages play crucial roles in disease and tissue regeneration. However, despite much efforts during the past decade, our knowledge about the extent of macrophages' contribution to adult pancreatic regeneration after injury or during pancreatic disease progression is still limited. Nevertheless, it is generally accepted that some macrophage features that normally would contribute to healing and regeneration may be detrimental in pancreatic cancer. Altogether, the current literature contains conflicting reports on whether macrophages act as friends or foe in these conditions. Methods and Results In this review, we briefly review the origins of tissue resident and infiltrating macrophages and the importance of cellular crosstalking between macrophages and other resident cells in tissue regeneration. The primary objective of this review is to summarize our knowledge of the distinct roles of tissue resident and infiltrating macrophages, the impact of M1 and M2 macrophage phenotypes, and emerging evidence on macrophage crosstalking in pancreatic injury, regeneration, and disease. Conclusion Macrophages are involved with various stages of pancreatic cancer development, pancreatitis, and diabetes. Elucidating their role in these conditions will aid the development of targeted therapeutic treatments.
Collapse
Affiliation(s)
- Andrea F Cruz
- Division of Pediatric General and Thoracic Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Rokhsareh Rohban
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Farzad Esni
- Division of Pediatric General and Thoracic Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.,Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| |
Collapse
|
178
|
Chen Q, He Y, Wang Y, Li C, Zhang Y, Guo Q, Zhang Y, Chu Y, Liu P, Chen H, Zhou Z, Zhou W, Zhao Z, Li X, Sun T, Jiang C. Penetrable Nanoplatform for "Cold" Tumor Immune Microenvironment Reeducation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000411. [PMID: 32995118 PMCID: PMC7503208 DOI: 10.1002/advs.202000411] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/05/2020] [Indexed: 05/08/2023]
Abstract
Lack of tumor-infiltration lymphocytes (TILs) and resistances by overexpressed immunosuppressive cells (principally, myeloid-derived suppressor cells (MDSCs)) in tumor milieu are two major challenges hindering the effectiveness of immunotherapy for "immune-cold" tumors. In addition, the natural physical barrier existing in solid cancer also limits deeper delivery of drugs. Here, a tumor-targeting and light-responsive-penetrable nanoplatform (Apt/PDGs^s@pMOF) is developed to elicit intratumoral infiltration of cytotoxic T cells (CTLs) and reeducate immunosuppressive microenvironment simultaneously. In particular, porphyrinic metal-organic framework (pMOF)-based photodynamic therapy (PDT) induces tumor immunogenic cell death (ICD) to promote CTLs intratumoral infiltration and hot "immune-cold" tumor. Upon being triggered by PDT, the nearly 10 nm adsorbed drug-loaded dendrimer de-shields from the nanoplatform and spreads into the deeper tumor, eliminating MDSCs and reversing immunosuppression, eventually reinforcing immune response. Meanwhile, the designed nanoplatform also has a systemic MDSC inhibition effect and moderate improvement of overall antitumor immune responses, resulting in effective suppression of distal tumors within less significant immune-related adverse effects (irAEs) induced.
Collapse
Affiliation(s)
- Qinjun Chen
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Yongqing He
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Yu Wang
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Chao Li
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Yujie Zhang
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Qin Guo
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Yiwen Zhang
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Yongchao Chu
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Peixin Liu
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Hongyi Chen
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Zheng Zhou
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Wenxi Zhou
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Zhenhao Zhao
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Xiaomin Li
- Department of Chemistry and Laboratory of Advanced MaterialsFudan UniversityShanghai200433P. R. China
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery (Ministry of Education)State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyResearch Center on Aging and MedicineFudan UniversityShanghai201203P. R. China
| |
Collapse
|
179
|
Ren D, Qin G, Zhao J, Sun Y, Zhang B, Li D, Wang B, Jin X, Wu H. Metformin activates the STING/IRF3/IFN-β pathway by inhibiting AKT phosphorylation in pancreatic cancer. Am J Cancer Res 2020; 10:2851-2864. [PMID: 33042621 PMCID: PMC7539786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 07/27/2020] [Indexed: 06/11/2023] Open
Abstract
The anti-diabetes drug metformin has emerged as a promising antitumor agent in pancreatic ductal adenocarcinoma (PDAC) among other cancers by promoting the infiltration of immune cells in the tumor microenvironment (TME). However, the mechanisms underlying the antitumor effects of metformin in PDAC remain unclear. In this study, we revealed that metformin induced stimulator of interferon genes (STING) expression in pancreatic cancer cells in a dose- and time-dependent manner. Metformin also activated the STING/IRF3/IFN-β pathway by inhibiting AKT signaling in PDAC cells. Importantly, the combination of metformin with the STING agonist 2'3'-cGAMP exerted synergistic effects in activating the STING/IRF3/IFN-β pathway in pancreatic cancer cells. Additionally, metformin augmented the antitumor effects of 2'3'-cGAMP in mouse models by enhancing the infiltration of T cells in the TME. These findings unveiled a previously unknown mechanism contributing to the antitumor effects of metformin in PDAC, and provide a rationale for its use in combination with existing or novel immunotherapies.
Collapse
Affiliation(s)
- Dianyun Ren
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, China
| | - Gengdu Qin
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, China
| | - Jingyuan Zhao
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, China
| | - Yan Sun
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, China
| | - Bin Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, China
| | - Dan Li
- Cardiovascular Medicine Department, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, China
| | - Bo Wang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, China
| | - Xin Jin
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, China
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, China
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, China
| |
Collapse
|
180
|
Hoffman MT, Kemp SB, Salas-Escabillas DJ, Zhang Y, Steele NG, The S, Long D, Benitz S, Yan W, Margolskee RF, Bednar F, Pasca di Magliano M, Wen HJ, Crawford HC. The Gustatory Sensory G-Protein GNAT3 Suppresses Pancreatic Cancer Progression in Mice. Cell Mol Gastroenterol Hepatol 2020; 11:349-369. [PMID: 32882403 PMCID: PMC7779788 DOI: 10.1016/j.jcmgh.2020.08.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS Pancreatic ductal adenocarcinoma (PDA) initiation and progression are accompanied by an immunosuppressive inflammatory response. Here, we evaluated the immunomodulatory role of chemosensory signaling in metaplastic tuft cells (MTCs) by analyzing the role of GNAT3, a gustatory pathway G-protein expressed by MTCs, during PDA progression. METHODS Gnat3-null (Gnat3-/-) mice were crossbred with animals harboring a Cre-inducible KrasLSL-G12D/+ allele with either Ptf1aCre/+ (KC) or tamoxifen-inducible Ptf1aCreERT/+ (KCERT) mice to drive oncogenic KRAS expression in the pancreas. Ex vivo organoid conditioned medium generated from KC and Gnat3-/-;KC acinar cells was analyzed for cytokine secretion. Experimental pancreatitis was induced in KCERT and Gnat3-/-;KCERT mice to accelerate tumorigenesis, followed by analysis using mass cytometry and single-cell RNA sequencing. To study PDA progression, KC and Gnat3-/-;KC mice were aged to morbidity or 52 weeks. RESULTS Ablation of Gnat3 in KC organoids increased release of tumor-promoting cytokines in conditioned media, including CXCL1 and CXCL2. Analysis of Gnat3-/-;KCERT pancreata found altered expression of immunomodulatory genes in Cxcr2 expressing myeloid-derived suppressor cells (MDSCs) and an increased number of granulocytic MDSCs, a subset of tumor promoting MDSCs. Importantly, expression levels of CXCL1 and CXCL2, known ligands for CXCR2, were also elevated in Gnat3-/-;KCERT pancreata. Consistent with the tumor-promoting role of MDSCs, aged Gnat3-/-;KC mice progressed more rapidly to metastatic carcinoma compared with KC controls. CONCLUSIONS Compromised gustatory sensing, achieved by Gnat3 ablation, enhanced the CXCL1/2-CXCR2 axis to alter the MDSC population and promoted the progression of metastatic PDA.
Collapse
Affiliation(s)
- Megan T Hoffman
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Samantha B Kemp
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Daniel J Salas-Escabillas
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Yaqing Zhang
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Nina G Steele
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Surgery, University of Michigan, Ann Arbor, Michigan; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Stephanie The
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Daniel Long
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Simone Benitz
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Wei Yan
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | | | - Filip Bednar
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Marina Pasca di Magliano
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Surgery, University of Michigan, Ann Arbor, Michigan; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Hui-Ju Wen
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Howard C Crawford
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
181
|
Hegde S. Pancreatic Cancer Immuno-oncology in the Era of Precision Medicine. Indian J Surg Oncol 2020; 12:118-127. [PMID: 33994737 DOI: 10.1007/s13193-020-01192-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/19/2020] [Indexed: 10/23/2022] Open
Abstract
Pancreatic malignancies carry a dismal prognosis globally, with pancreatic adenocarcinomas (PDAC) being particularly aggressive and stubborn. Unfortunately, several therapeutic strategies that show promise in other cancers have failed to make sizeable impact on pancreatic tumor outcomes. Responses to immunotherapies are especially rare in pancreatic cancer, and patients are in need of innovative approaches that can result in more durable responses. Current research in preclinical models and humans has suggested this resistance is due to a uniquely inflammatory and dysfunctional tumor microenvironment; these findings lay the groundwork for targeting these barriers and improving outcomes. Clinical analyses have also revealed unprecedented heterogeneity in tumor and stromal biology of PDAC, underscoring the need for more personalized approaches and combinatorial therapies. This review will highlight the current state of translational research focusing on PDAC immunity, summarize ongoing clinical efforts to tackle PDAC vulnerabilities, and underscore some unresolved challenges in implementing therapies more broadly. A better understanding of immune contexture and tumor heterogeneity in this disease will greatly accelerate drug discovery and implementation of precision medicine for PDAC.
Collapse
Affiliation(s)
- Samarth Hegde
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| |
Collapse
|
182
|
Regulation and modulation of antitumor immunity in pancreatic cancer. Nat Immunol 2020; 21:1152-1159. [PMID: 32807942 DOI: 10.1038/s41590-020-0761-y] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma carries a dismal prognosis, and outcomes have improved little with modern therapeutics. Checkpoint-based immunotherapy has failed to elicit responses in the vast majority of patients with pancreatic cancer. Alongside tumor cell-intrinsic mechanisms associated with oncogenic KRAS-induced inflammation, the tolerogenic myeloid cell infiltrate has emerged as a critical impediment to adaptive antitumor immune responses. Furthermore, the discovery of an intratumoral microbiome and the elucidation of host-microbe interactions that curtail antitumor immunity also present opportunities for intervention. Here we review the mechanisms of immunotherapy resistance in pancreatic ductal adenocarcinoma and discuss strategies to directly augment T cell responses in parallel with myeloid cell- and microbiome-targeted approaches that may enable immune-mediated control of this malignancy.
Collapse
|
183
|
Gonda TA, Fang J, Salas M, Do C, Hsu E, Zhukovskaya A, Siegel A, Takahashi R, Lopez-Bujanda ZA, Drake CG, Manji GA, Wang TC, Olive KP, Tycko B. A DNA Hypomethylating Drug Alters the Tumor Microenvironment and Improves the Effectiveness of Immune Checkpoint Inhibitors in a Mouse Model of Pancreatic Cancer. Cancer Res 2020; 80:4754-4767. [PMID: 32816859 DOI: 10.1158/0008-5472.can-20-0285] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 06/26/2020] [Accepted: 07/30/2020] [Indexed: 11/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer that has proven refractory to immunotherapy. Previously, treatment with the DNA hypomethylating drug decitabine (5-aza-dC; DAC) extended survival in the KPC-Brca1 mouse model of PDAC. Here we investigated the effects of DAC in the original KPC model and tested combination therapy with DAC followed by immune checkpoint inhibitors (ICI). Four protocols were tested: PBS vehicle, DAC, ICI (anti-PD-1 or anti-VISTA), and DAC followed by ICI. For each single-agent and combination treatment, tumor growth was measured by serial ultrasound, tumor-infiltrating lymphoid and myeloid cells were characterized, and overall survival was assessed. Single-agent DAC led to increased CD4+ and CD8+ tumor-infiltrating lymphocytes (TIL), PD1 expression, and tumor necrosis while slowing tumor growth and modestly increasing mouse survival without systemic toxicity. RNA-sequencing of DAC-treated tumors revealed increased expression of Chi3l3 (Ym1), reflecting an increase in a subset of tumor-infiltrating M2-polarized macrophages. While ICI alone had modest effects, DAC followed by either of ICI therapies additively inhibited tumor growth and prolonged mouse survival. The best results were obtained using DAC followed by anti-PD-1, which extended mean survival from 26 to 54 days (P < 0.0001). In summary, low-dose DAC inhibits tumor growth and increases both TILs and a subset of tumor-infiltrating M2-polarized macrophages in the KPC model of PDAC, and DAC followed by anti-PD-1 substantially prolongs survival. Because M2-polarized macrophages are predicted to antagonize antitumor effects, targeting these cells may be important to enhance the efficacy of combination therapy with DAC plus ICI. SIGNIFICANCE: In a pancreatic cancer model, a DNA hypomethylating drug increases tumor-infiltrating effector T cells, increases a subset of M2 macrophages, and significantly prolongs survival in combination with immune checkpoint inhibitors.See related commentary by Nephew, p. 4610.
Collapse
Affiliation(s)
- Tamas A Gonda
- Department of Medicine, Division of Digestive and Liver Diseases, Columbia University Medical Center, New York, New York. .,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York.,Division of Gastroenterology and Hepatology, Department of Medicine, New York University, New York, New York
| | - Jarwei Fang
- Department of Medicine, Division of Digestive and Liver Diseases, Columbia University Medical Center, New York, New York
| | - Martha Salas
- Division of Genetics & Epigenetics, Hackensack-Meridian Health Center for Discovery and Innovation, Nutley, New Jersey
| | - Catherine Do
- Division of Genetics & Epigenetics, Hackensack-Meridian Health Center for Discovery and Innovation, Nutley, New Jersey
| | - Emily Hsu
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Anna Zhukovskaya
- Department of Medicine, Division of Digestive and Liver Diseases, Columbia University Medical Center, New York, New York
| | - Ariel Siegel
- Department of Medicine, Division of Digestive and Liver Diseases, Columbia University Medical Center, New York, New York
| | - Ryota Takahashi
- Department of Medicine, Division of Digestive and Liver Diseases, Columbia University Medical Center, New York, New York.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Zoila A Lopez-Bujanda
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York.,Graduate Program in Pathobiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Charles G Drake
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Gulam A Manji
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Timothy C Wang
- Department of Medicine, Division of Digestive and Liver Diseases, Columbia University Medical Center, New York, New York.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Kenneth P Olive
- Department of Medicine, Division of Digestive and Liver Diseases, Columbia University Medical Center, New York, New York.,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Benjamin Tycko
- Division of Gastroenterology and Hepatology, Department of Medicine, New York University, New York, New York. .,John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey.,Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C
| |
Collapse
|
184
|
Malekghasemi S, Majidi J, Baghbanzadeh A, Abdolalizadeh J, Baradaran B, Aghebati-Maleki L. Tumor-Associated Macrophages: Protumoral Macrophages in Inflammatory Tumor Microenvironment. Adv Pharm Bull 2020; 10:556-565. [PMID: 33062602 PMCID: PMC7539304 DOI: 10.34172/apb.2020.066] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/01/2020] [Accepted: 02/02/2020] [Indexed: 12/13/2022] Open
Abstract
Tumor microenvironment consists of malignant and non-malignant cells. The interaction of these dynamic and different cells is responsible for tumor progression at different levels. The non-malignant cells in TME contain cells such as tumor-associated macrophages (TAMs), cancer associated fibroblasts, pericytes, adipocytes, T cells, B cells, myeloid-derived suppressor cells (MDSCs), tumor-associated neutrophils (TANs), dendritic cells (DCs) and Vascular endothelial cells. TAMs are abundant in most human and murine cancers and their presence are associated with poor prognosis. The major event in tumor microenvironment is macrophage polarization into tumor-suppressive M1 or tumor-promoting M2 types. Although much evidence suggests that TAMS are primarily M2-like macrophages, the mechanism responsible for polarization into M1 and M2 macrophages remain unclear. TAM contributes cancer cell motility, invasion, metastases and angiogenesis. The relationship between TAM and tumor cells lead to used them as a diagnostic marker, therapeutic target and prognosis of cancer. This review presents the origin, polarization, role of TAMs in inflammation, metastasis, immune evasion and angiogenesis as well as they can be used as therapeutic target in variety of cancer cells. It is obvious that additional substantial and preclinical research is needed to support the effectiveness and applicability of this new and promising strategy for cancer treatment.
Collapse
Affiliation(s)
- Somaiyeh Malekghasemi
- Department of Basic Oncology, Oncology Institute, Hacettepe University, Sihhiye, Ankara, TR-06100, Turkey
| | - Jafar Majidi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Department of Basic Oncology, Oncology Institute, Hacettepe University, Sihhiye, Ankara, TR-06100, Turkey
| | - Jalal Abdolalizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
185
|
Myeloid-derived suppressor cell depletion therapy targets IL-17A-expressing mammary carcinomas. Sci Rep 2020; 10:13343. [PMID: 32770025 PMCID: PMC7414122 DOI: 10.1038/s41598-020-70231-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an invasive subtype of breast cancer but paradoxically associated with increased tumor-infiltrating leukocytes. The molecular and cellular mechanisms underlying TNBC immunobiology are incompletely understood. Interleukin (IL)-17A is a pro-inflammatory cytokine that has both pro- and anti-tumor effects and found in 40-80% of TNBC samples. We report here that IL-17A mRNA and protein are detectable in some human TNBC cell lines and further upregulated by IL-23 and LPS stimulation. Furthermore, the impact of tumor-derived IL-17A in host immune response and tumor growth was examined using murine TNBC 4T1 mammary carcinoma cells transduced with an adenoviral vector expressing IL-17A (AdIL-17A) or control vector (Addl). Compared to Addl-transduction, AdIL-17A-transduction enhanced 4T1 tumor growth and lung metastasis in vivo, which was associated with a marked expansion of myeloid-derived suppressor cells (MDSCs). However, AdIL-17A-transduction also induced strong organ-specific and time-dependent immune activation indicated by dynamic changes of NK cells, B cells, CD4, and CD8 T cells in peripheral blood, lung, and tumor site, as well as the plasma levels of IFNγ. Such findings highlight that tumor-associated IL-17A induces concurrent immune activation and immune suppression. Administration of anti-Gr1 or anti-G-CSF antibody effectively depleted MDSCs in vivo, markedly reducing the growth of AdIL-17A-transduced 4T1 tumors, and eliminating lung metastasis. Collectively, our study demonstrates that MDSC depletion is an effective and practical approach for treating IL-17A-enriched mammary carcinomas.
Collapse
|
186
|
Puthenveetil A, Dubey S. Metabolic reprograming of tumor-associated macrophages. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1030. [PMID: 32953830 PMCID: PMC7475460 DOI: 10.21037/atm-20-2037] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/20/2020] [Indexed: 12/11/2022]
Abstract
A large body of scientific evidence corroborated by clinical and animal model experiments indicates that tumor-associated macrophages (TAMs) play a crucial role in tumor development and progression. TAMs are a key immune cell type present in tumor microenvironment (TME) and associated with poor prognosis, drug resistance, enhanced angiogenesis and metastasis in cancer. TAMs are a phenotypically diverse population of myeloid cells which display tremendous plasticity and dynamic metabolic nature. A complete interpretation of pro-tumoral and anti-tumoral metabolic switch in TAMs is essential to understand immune evasion mechanisms in cancer. Recent studies have also implicated epigenetic mechanisms as significantly regulators of TAM functions. In this review we provide an overview of metabolic circuitry in TAMs, its impact on immune effector cells and interventions aimed at rewiring the metabolic circuits in TAMs. Mechanisms responsible for TAM polarization in cancer are also discussed.
Collapse
Affiliation(s)
- Abhishek Puthenveetil
- Amity Institute of Virology & Immunology, Amity University Uttar Pradesh, Noida, India
| | | |
Collapse
|
187
|
Sharma NS, Gupta VK, Garrido VT, Hadad R, Durden BC, Kesh K, Giri B, Ferrantella A, Dudeja V, Saluja A, Banerjee S. Targeting tumor-intrinsic hexosamine biosynthesis sensitizes pancreatic cancer to anti-PD1 therapy. J Clin Invest 2020; 130:451-465. [PMID: 31613799 DOI: 10.1172/jci127515] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is considered to be a highly immunosuppressive and heterogenous neoplasm. Despite improved knowledge regarding the genetic background of the tumor and better understanding of the tumor microenvironment, immune checkpoint inhibitor therapy (targeting CTLA4, PD1, PDL1) has not been very successful against PDAC. The robust desmoplastic stroma, along with an extensive extracellular matrix (ECM) that is rich in hyaluronan, plays an integral role in this immune evasion. Hexosamine biosynthesis pathway (HBP), a shunt pathway of glycolysis, is a metabolic node in cancer cells that can promote survival pathways on the one hand and influence the hyaluronan synthesis in the ECM on the other. The rate-limiting enzyme of the pathway, glutamine-fructose amidotransferase 1 (GFAT1), uses glutamine and fructose 6-phosphate to eventually synthesize uridine diphosphate N-acetylglucosamine (UDP-GlcNAc). In the current manuscript, we targeted this glutamine-utilizing enzyme by a small molecule glutamine analog (6-diazo-5-oxo-l-norleucine [DON]). Our results showed that DON decreased the self-renewal potential and metastatic ability of tumor cells. Further, treatment with DON decreased hyaluronan and collagen in the tumor microenvironment, leading to an extensive remodeling of the ECM and an increased infiltration of CD8+ T cells. Additionally, treatment with DON sensitized pancreatic tumors to anti-PD1 therapy, resulting in tumor regression and prolonged survival.
Collapse
|
188
|
Buchholz SM, Goetze RG, Singh SK, Ammer-Herrmenau C, Richards FM, Jodrell DI, Buchholz M, Michl P, Ellenrieder V, Hessmann E, Neesse A. Depletion of Macrophages Improves Therapeutic Response to Gemcitabine in Murine Pancreas Cancer. Cancers (Basel) 2020; 12:E1978. [PMID: 32698524 PMCID: PMC7409345 DOI: 10.3390/cancers12071978] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/09/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The tumor microenvironment (TME) is composed of fibro-inflammatory cells and extracellular matrix (ECM) components. However, the exact contribution of the various TME compartments towards therapeutic response is unknown. Here, we aim to dissect the specific contribution of tumor-associated macrophages (TAMs) towards drug delivery and response in pancreatic ductal adenocarcinoma (PDAC). METHODS The effect of gemcitabine was assessed in human and murine macrophages, human pancreatic stellate cells (hPSCs), and tumor cells (L3.6pl, BxPC3 and KPC) in vitro. The drug metabolism of gemcitabine was analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Preclinical studies were conducted using KrasG12D;p48-Cre and KrasG12D;p53172H;Pdx-Cre mice to investigate gemcitabine delivery at different stages of tumor progression and upon pharmacological TAM depletion. RESULTS Gemcitabine accumulation was significantly increased in murine PDAC tissue compared to pancreatic intraepithelial neoplasia (PanIN) lesions and healthy control pancreas tissue. In vitro, macrophages accumulated and rapidly metabolized gemcitabine resulting in a significant drug scavenging effect for gemcitabine. Finally, pharmacological TAM depletion enhanced therapeutic response to gemcitabine in tumor-bearing KPC mice. CONCLUSION Macrophages rapidly metabolize gemcitabine in vitro, and pharmacological depletion improves the therapeutic response to gemcitabine in vivo. Our study supports the notion that TAMs might be a promising therapeutic target in PDAC.
Collapse
Affiliation(s)
- Soeren M. Buchholz
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, 37075 Göttingen, Germany; (S.M.B.); (R.G.G.); (S.K.S.); (C.A.-H.); (V.E.); (E.H.)
| | - Robert G. Goetze
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, 37075 Göttingen, Germany; (S.M.B.); (R.G.G.); (S.K.S.); (C.A.-H.); (V.E.); (E.H.)
| | - Shiv K. Singh
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, 37075 Göttingen, Germany; (S.M.B.); (R.G.G.); (S.K.S.); (C.A.-H.); (V.E.); (E.H.)
| | - Christoph Ammer-Herrmenau
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, 37075 Göttingen, Germany; (S.M.B.); (R.G.G.); (S.K.S.); (C.A.-H.); (V.E.); (E.H.)
| | - Frances M. Richards
- Cancer Research UK Cambridge Institute, The University of Cambridge, Li Ka Shing Centre, Cambridge CB2 1TN, UK; (F.M.R.); (D.I.J.)
| | - Duncan I. Jodrell
- Cancer Research UK Cambridge Institute, The University of Cambridge, Li Ka Shing Centre, Cambridge CB2 1TN, UK; (F.M.R.); (D.I.J.)
| | - Malte Buchholz
- Department of Medicine, Division of Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, 35037 Marburg, Germany;
| | - Patrick Michl
- Department of Internal Medicine I, Martin-Luther-University of Halle-Wittenberg, 06120 Halle, Germany;
| | - Volker Ellenrieder
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, 37075 Göttingen, Germany; (S.M.B.); (R.G.G.); (S.K.S.); (C.A.-H.); (V.E.); (E.H.)
| | - Elisabeth Hessmann
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, 37075 Göttingen, Germany; (S.M.B.); (R.G.G.); (S.K.S.); (C.A.-H.); (V.E.); (E.H.)
| | - Albrecht Neesse
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, 37075 Göttingen, Germany; (S.M.B.); (R.G.G.); (S.K.S.); (C.A.-H.); (V.E.); (E.H.)
| |
Collapse
|
189
|
Cramer GM, Moon EK, Cengel KA, Busch TM. Photodynamic Therapy and Immune Checkpoint Blockade
†. Photochem Photobiol 2020; 96:954-961. [DOI: 10.1111/php.13300] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Gwendolyn M. Cramer
- Department of Radiation Oncology Perelman School of Medicine University of Pennsylvania Philadelphia PA USA
| | - Edmund K. Moon
- Department of Medicine Perelman School of Medicine University of Pennsylvania Philadelphia PA USA
| | - Keith A. Cengel
- Department of Radiation Oncology Perelman School of Medicine University of Pennsylvania Philadelphia PA USA
| | - Theresa M. Busch
- Department of Radiation Oncology Perelman School of Medicine University of Pennsylvania Philadelphia PA USA
| |
Collapse
|
190
|
Chaib M, Chauhan SC, Makowski L. Friend or Foe? Recent Strategies to Target Myeloid Cells in Cancer. Front Cell Dev Biol 2020; 8:351. [PMID: 32509781 PMCID: PMC7249856 DOI: 10.3389/fcell.2020.00351] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) is a complex network of epithelial and stromal cells, wherein stromal components provide support to tumor cells during all stages of tumorigenesis. Among these stromal cell populations are myeloid cells, which are comprised mainly of tumor-associated macrophages (TAM), dendritic cells (DC), myeloid-derived suppressor cells (MDSC), and tumor-associated neutrophils (TAN). Myeloid cells play a major role in tumor growth through nurturing cancer stem cells by providing growth factors and metabolites, increasing angiogenesis, as well as promoting immune evasion through the creation of an immune-suppressive microenvironment. Immunosuppression in the TME is achieved by preventing critical anti-tumor immune responses by natural killer and T cells within the primary tumor and in metastatic niches. Therapeutic success in targeting myeloid cells in malignancies may prove to be an effective strategy to overcome chemotherapy and immunotherapy limitations. Current therapeutic approaches to target myeloid cells in various cancers include inhibition of their recruitment, alteration of function, or functional re-education to an antitumor phenotype to overcome immunosuppression. In this review, we describe strategies to target TAMs and MDSCs, consisting of single agent therapies, nanoparticle-targeted approaches and combination therapies including chemotherapy and immunotherapy. We also summarize recent molecular targets that are specific to myeloid cell populations in the TME, while providing a critical review of the limitations of current strategies aimed at targeting a single subtype of the myeloid cell compartment. The goal of this review is to provide the reader with an understanding of the critical role of myeloid cells in the TME and current therapeutic approaches including ongoing or recently completed clinical trials.
Collapse
Affiliation(s)
- Mehdi Chaib
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Subhash C Chauhan
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, United States.,Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Liza Makowski
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States.,Division of Hematology Oncology, Department of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States.,Center for Cancer Research, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
191
|
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is typically diagnosed at an advanced stage, with systemic therapy being the mainstay of treatment. Survival continues to be limited, typically less than 1 year. The PDAC microenvironment is characterized by a paucity of malignant epithelial cells, abundant stroma with predominantly immunosuppressive T cells and myelosuppressive-type macrophages (M2), and hypovascularity. The current treatment options for metastatic PDAC are modified (m)FOLFIRINOX /FOLFIRINOX or nab-paclitaxel and gemcitabine in patients with good performance status (PS) (ECOG 0-1/KPS 70-100%) and gemcitabine with or without a second agent for those with ECOG PS 2-3. New therapies are emerging, and the current guidelines endorse both germline and somatic testing in PDAC to evaluate actionable findings. Important themes related to new therapeutic approaches include DNA damage repair strategies, immunotherapy, targeting the stroma, and cancer-cell metabolism. Targeted therapy alone (outside small genomically defined subsets) or in combination with standard cytotoxic therapy, thus far, has proven disappointing in PDAC; however, novel therapies are evolving with increased integration of genomic profiling along with a better understanding of the tumor microenvironment and immunology. A small but important sub-group of patients have some of these agents available in the clinics for use. Olaparib was recently approved by the US Food and Drug Administration for maintenance therapy in germline BRCA1/2 mutated PDAC following demonstration of survival benefit in a phase 3 trial. Pembrolizumab is approved for patients with defects in mismatch repair/microsatellite instability. PDAC with wild-type KRAS represents a unique subgroup who have enrichment of potentially targetable oncogenic drivers. Small-molecule inhibitors including ERBB inhibitors (e.g., afatinib, MCLA-128), TRK inhibitors (e.g., larotrectinib, entrectinib), ALK/ROS inhibitor (e.g., crizotinib), and BRAF/MEK inhibitors are in development. In a small subset of patients with the KRASG12C mutation, a KRASG12C inhibitor, AMG510, and other agents are being investigated. Major efforts are underway to effectively target the tumor microenvironment and to integrate immunotherapy into the treatment of PDAC, and although thus far the impact has been modest to ineffective, nonetheless, there is optimism that some of the challenges will be overcome.
Collapse
Affiliation(s)
- Ritu Raj Singh
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Mount Sinai St. Luke's and Mount Sinai West, New York, NY, 10019, USA
| | - Eileen M O'Reilly
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Weill Cornell Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA.
- David M. Rubenstein Center for Pancreatic Cancer, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
192
|
Shukla SK, Markov SD, Attri KS, Vernucci E, King RJ, Dasgupta A, Grandgenett PM, Hollingsworth MA, Singh PK, Yu F, Mehla K. Macrophages potentiate STAT3 signaling in skeletal muscles and regulate pancreatic cancer cachexia. Cancer Lett 2020; 484:29-39. [PMID: 32344015 DOI: 10.1016/j.canlet.2020.04.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/06/2020] [Accepted: 04/20/2020] [Indexed: 12/25/2022]
Abstract
Incidence of cachexia is highly prevalent in pancreatic ductal adenocarcinoma (PDAC); advanced disease stage directly correlates with decreased muscle and fat mass in PDAC patients. The pancreatic tumor microenvironment is central to the release of systemic factors that govern lipolysis, proteolysis, and muscle and fat degeneration leading to the cachectic phenotype in cancer patients. The current study explores the role of macrophages, a key immunosuppressive player in the pancreatic tumor microenvironment, in regulating cancer cachexia. We observed a negative correlation between CD163-positive macrophage infiltration and muscle-fiber cross sectional area in human PDAC patients. To investigate the role of macrophages in myodegeneration, we utilized conditioned media transplant assays and orthotopic models of PDAC-induced cachexia in immune-competent mice with and without macrophage depletion. We observed that macrophage-derived conditioned medium, in combination with tumor cell-conditioned medium, promoted muscle atrophy through STAT3 signaling. Furthermore, macrophage depletion attenuated systemic inflammation and muscle wasting in pancreatic tumor-bearing mice. Targeting macrophage-mediated STAT3 activation or macrophage-derived interleukin-1 alpha or interleukin-6 diminished myofiber atrophy. Taken together, the current study identified the critical association between macrophages and cachexia phenotype in pancreatic cancer.
Collapse
Affiliation(s)
- Surendra K Shukla
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Spas D Markov
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kuldeep S Attri
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Enza Vernucci
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ryan J King
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Aneesha Dasgupta
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Paul M Grandgenett
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael A Hollingsworth
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pankaj K Singh
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Fang Yu
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kamiya Mehla
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
193
|
McKelvey KJ, Hudson AL, Prasanna Kumar R, Wilmott JS, Attrill GH, Long GV, Scolyer RA, Clarke SJ, Wheeler HR, Diakos CI, Howell VM. Temporal and spatial modulation of the tumor and systemic immune response in the murine Gl261 glioma model. PLoS One 2020; 15:e0226444. [PMID: 32240177 PMCID: PMC7117758 DOI: 10.1371/journal.pone.0226444] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/16/2020] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma, the most aggressive form of glioma, has a 5-year survival rate of <5%. While radiation and immunotherapies are routinely studied in the murine Gl261 glioma model, little is known about its inherent immune response. This study quantifies the temporal and spatial localization of immune cell populations and mediators during glioma development. Eight-week old male C57Bl/6 mice were orthotopically inoculated with 1x106 Gl261 cells and tumor morphology, local and systemic immune cell populations, and plasma cytokines/chemokines assessed at day 0, 1, 3, 7, 14, and 21 post-inoculation by magnetic resonance imaging, chromogenic immunohistochemistry, multiplex immunofluorescent immunohistochemistry, flow cytometry and multiplex immunoassay respectively. From day 3 tumors were distinguishable with >30% Ki67 and increased tissue vascularization (p<0.05). Increasing tumor proliferation/malignancy and vascularization were associated with significant temporal changes in immune cell populations within the tumor (p<0.05) and systemic compartments (p = 0.02 to p<0.0001). Of note, at day 14 16/24 plasma cytokine/chemokines levels decreased coinciding with an increase in tumor cytotoxic T cells, natural killer and natural killer/T cells. Data derived provide baseline characterization of the local and systemic immune response during glioma development. They reveal that type II macrophages and myeloid-derived suppressor cells are more prevalent in tumors than regulatory T cells, highlighting these cell types for further therapeutic exploration.
Collapse
Affiliation(s)
- Kelly J. McKelvey
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, The University of Sydney Northern Clinical School and Northern Sydney Local Health District, St Leonards, NSW, Australia
- Sydney Vital Translational Research Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
- The Brain Cancer Group, St Leonards, NSW, Australia
- * E-mail:
| | - Amanda L. Hudson
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, The University of Sydney Northern Clinical School and Northern Sydney Local Health District, St Leonards, NSW, Australia
- Sydney Vital Translational Research Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
- The Brain Cancer Group, St Leonards, NSW, Australia
| | - Ramyashree Prasanna Kumar
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, The University of Sydney Northern Clinical School and Northern Sydney Local Health District, St Leonards, NSW, Australia
- Sydney Vital Translational Research Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - James S. Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Grace H. Attrill
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Georgina V. Long
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
- Mater Hospital, North Sydney, NSW, Australia
| | - Richard A. Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- Royal Prince Alfred Hospital and New South Wales Health Pathology, Sydney, NSW, Australia
| | - Stephen J. Clarke
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, The University of Sydney Northern Clinical School and Northern Sydney Local Health District, St Leonards, NSW, Australia
- Sydney Vital Translational Research Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Helen R. Wheeler
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, The University of Sydney Northern Clinical School and Northern Sydney Local Health District, St Leonards, NSW, Australia
- Sydney Vital Translational Research Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
- The Brain Cancer Group, St Leonards, NSW, Australia
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Connie I. Diakos
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, The University of Sydney Northern Clinical School and Northern Sydney Local Health District, St Leonards, NSW, Australia
- Sydney Vital Translational Research Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Viive M. Howell
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, The University of Sydney Northern Clinical School and Northern Sydney Local Health District, St Leonards, NSW, Australia
- Sydney Vital Translational Research Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
- The Brain Cancer Group, St Leonards, NSW, Australia
| |
Collapse
|
194
|
Pan P, Zhu Z, Oshima K, Aldakkak M, Tsai S, Huang YW, Dong W, Zhang J, Lin CW, Wang Y, Yearsley M, Yu J, Wang LS. Black raspberries suppress pancreatic cancer through modulation of NKp46 +, CD8 +, and CD11b + immune cells. FOOD FRONTIERS 2020; 1:70-82. [PMID: 32368735 DOI: 10.1002/fft2.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a fatal disease with a low survival rate (9%). Epidemiologic studies show that healthy dietary patterns enriched of fruits and vegetables lower the risk of PDAC. We previously showed that supplementing black raspberries (BRBs) to patients with colorectal cancer increased tumor-infiltrating NK cells and their cytotoxicity. We aimed to determine whether BRBs combat PDAC by modulating cancer immunity. NOD.SCID mice lacking T and B cells were injected with human Panc-1-Luc cells orthotopically, and immunocompetent Kras LSL.G12D/+ -Trp53 LSL.R172H/+ -Pdx-1-Cre mice were fed BRBs. Peripheral blood mononuclear cells (PBMCs) from PDAC patients were treated with butyrate, a microbial metabolite of BRBs. The absence of T and B cells did not dampen BRBs' anti-tumor effects in the NOD.SCID mice. In the Kras LSL.G12D/+ -Trp53 LSL.R172H/+ -Pdx-1-Cre mice, BRBs significantly prolonged survival (189 days versus 154 days). In both models, BRBs decreased tumor-infiltrating CD11b+ cells and the expression of IL-1β, sEH, and Ki67. BRBs also increased tumor-infiltrating NKp46+ cells and the expression of CD107a, a functional marker of cytolytic NK and CD8+ T cells. In Kras LSL.G12D/+ -Trp53 LSL.R172H/+ -Pdx-1-Cre mice, tumor infiltration of CD8+ T cells was increased by BRBs. Further using the PBMCs from PDAC patients, we show that butyrate decreased the population of myeloid-derived suppressor cells (MDSCs). Butyrate also reversed CD11b+ cell-mediated suppression on CD8+ T cells. Interestingly, there is a negative association between MDSC changes and patients' survival, suggesting that the more decrease in MDSC population induced by butyrate treatment, the longer the patient had survived. Our study suggests the immune-modulating potentials of BRBs in PDAC.
Collapse
Affiliation(s)
- Pan Pan
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin
| | - Zheng Zhu
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center and Beckman Research Institute
| | | | | | - Susan Tsai
- Department of Surgery, Medical College of Wisconsin
| | - Yi-Wen Huang
- Department of Obstetrics and Gynecology, Medical College of Wisconsin
| | - Wenjuan Dong
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center and Beckman Research Institute
| | - Jianying Zhang
- Division of Biostatistics, Department of Science of Informatics, City of Hope National Medical Center and Beckman Research Institute
| | - Chien-Wei Lin
- Division of Biostatistics, Medical College of Wisconsin
| | - Youwei Wang
- The James Cancer Hospital, The Ohio State University
| | | | - Jianhua Yu
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center and Beckman Research Institute
| | - Li-Shu Wang
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin
| |
Collapse
|
195
|
Hegde S, Krisnawan VE, Herzog BH, Zuo C, Breden MA, Knolhoff BL, Hogg GD, Tang JP, Baer JM, Mpoy C, Lee KB, Alexander KA, Rogers BE, Murphy KM, Hawkins WG, Fields RC, DeSelm CJ, Schwarz JK, DeNardo DG. Dendritic Cell Paucity Leads to Dysfunctional Immune Surveillance in Pancreatic Cancer. Cancer Cell 2020; 37:289-307.e9. [PMID: 32183949 PMCID: PMC7181337 DOI: 10.1016/j.ccell.2020.02.008] [Citation(s) in RCA: 297] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 12/04/2019] [Accepted: 02/14/2020] [Indexed: 12/26/2022]
Abstract
Here, we utilized spontaneous models of pancreatic and lung cancer to examine how neoantigenicity shapes tumor immunity and progression. As expected, neoantigen expression during lung adenocarcinoma development leads to T cell-mediated immunity and disease restraint. By contrast, neoantigen expression in pancreatic ductal adenocarcinoma (PDAC) results in exacerbation of a fibro-inflammatory microenvironment that drives disease progression and metastasis. Pathogenic TH17 responses are responsible for this neoantigen-induced tumor progression in PDAC. Underlying these divergent T cell responses in pancreas and lung cancer are differences in infiltrating conventional dendritic cells (cDCs). Overcoming cDC deficiency in early-stage PDAC leads to disease restraint, while restoration of cDC function in advanced PDAC restores tumor-restraining immunity and enhances responsiveness to radiation therapy.
Collapse
Affiliation(s)
- Samarth Hegde
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Varintra E Krisnawan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brett H Herzog
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chong Zuo
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marcus A Breden
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brett L Knolhoff
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Graham D Hogg
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jack P Tang
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John M Baer
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Cedric Mpoy
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kyung Bae Lee
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Katherine A Alexander
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Buck E Rogers
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA; Alvin J. Siteman Comprehensive Cancer Center, St. Louis, MO 63110, USA
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - William G Hawkins
- Department of Surgery, Barnes-Jewish Hospital, St. Louis, MO 63110, USA; Alvin J. Siteman Comprehensive Cancer Center, St. Louis, MO 63110, USA
| | - Ryan C Fields
- Department of Surgery, Barnes-Jewish Hospital, St. Louis, MO 63110, USA; Alvin J. Siteman Comprehensive Cancer Center, St. Louis, MO 63110, USA
| | - Carl J DeSelm
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA; Alvin J. Siteman Comprehensive Cancer Center, St. Louis, MO 63110, USA
| | - Julie K Schwarz
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA; Alvin J. Siteman Comprehensive Cancer Center, St. Louis, MO 63110, USA
| | - David G DeNardo
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Alvin J. Siteman Comprehensive Cancer Center, St. Louis, MO 63110, USA.
| |
Collapse
|
196
|
Zhang Y, Lazarus J, Steele NG, Yan W, Lee HJ, Nwosu ZC, Halbrook CJ, Menjivar RE, Kemp SB, Sirihorachai VR, Velez-Delgado A, Donahue K, Carpenter ES, Brown KL, Irizarry-Negron V, Nevison AC, Vinta A, Anderson MA, Crawford HC, Lyssiotis CA, Frankel TL, Bednar F, Pasca di Magliano M. Regulatory T-cell Depletion Alters the Tumor Microenvironment and Accelerates Pancreatic Carcinogenesis. Cancer Discov 2020; 10:422-439. [PMID: 31911451 PMCID: PMC7224338 DOI: 10.1158/2159-8290.cd-19-0958] [Citation(s) in RCA: 253] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/14/2019] [Accepted: 01/02/2020] [Indexed: 02/06/2023]
Abstract
Regulatory T cells (Treg) are abundant in human and mouse pancreatic cancer. To understand the contribution to the immunosuppressive microenvironment, we depleted Tregs in a mouse model of pancreatic cancer. Contrary to our expectations, Treg depletion failed to relieve immunosuppression and led to accelerated tumor progression. We show that Tregs are a key source of TGFβ ligands and, accordingly, their depletion reprogramed the fibroblast population, with loss of tumor-restraining, smooth muscle actin-expressing fibroblasts. Conversely, we observed an increase in chemokines Ccl3, Ccl6, and Ccl8 leading to increased myeloid cell recruitment, restoration of immune suppression, and promotion of carcinogenesis, an effect that was inhibited by blockade of the common CCL3/6/8 receptor CCR1. Further, Treg depletion unleashed pathologic CD4+ T-cell responses. Our data point to new mechanisms regulating fibroblast differentiation in pancreatic cancer and support the notion that fibroblasts are a heterogeneous population with different and opposing functions in pancreatic carcinogenesis. SIGNIFICANCE: Here, we describe an unexpected cross-talk between Tregs and fibroblasts in pancreatic cancer. Treg depletion resulted in differentiation of inflammatory fibroblast subsets, in turn driving infiltration of myeloid cells through CCR1, thus uncovering a potentially new therapeutic approach to relieve immunosuppression in pancreatic cancer.See related commentary by Aykut et al., p. 345.This article is highlighted in the In This Issue feature, p. 327.
Collapse
Affiliation(s)
- Yaqing Zhang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Jenny Lazarus
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Nina G Steele
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Wei Yan
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Ho-Joon Lee
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Zeribe C Nwosu
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Christopher J Halbrook
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Rosa E Menjivar
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan
| | - Samantha B Kemp
- Molecular and Cellular Pathology Graduate Program, University of Michigan, Ann Arbor, Michigan
| | | | - Ashley Velez-Delgado
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Katelyn Donahue
- Cancer Biology Program, University of Michigan, Ann Arbor, Michigan
| | - Eileen S Carpenter
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Kristee L Brown
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | | | - Anna C Nevison
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Alekya Vinta
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan
| | - Michelle A Anderson
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Howard C Crawford
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Costas A Lyssiotis
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | | | - Filip Bednar
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
| | - Marina Pasca di Magliano
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
197
|
Gleeson FC, Levy MJ, Jackson RA, Murphy SJ, Halling KC, Kipp BR, Graham RP, Zhang L. Endoscopic ultrasound may be used to deliver gene expression signatures using digital mRNA detection methods to immunophenotype pancreatic ductal adenocarcinoma to facilitate personalized immunotherapy. Pancreatology 2020; 20:229-238. [PMID: 31831392 DOI: 10.1016/j.pan.2019.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND & OBJECTIVES Biomarkers are increasingly required to molecularly characterize pancreatic ductal adenocarcinoma (PDAC) subgroup populations, to determine who may benefit from immune based targeted therapy. We evaluated the feasibility of gene expression signature detection and the respective landscape of specific tumor infiltrating lymphocytes (TILs), cancer/testis (CT) antigens, and immune checkpoints for possible future personalized immunotherapy eligibility. METHODS Dedicated digital mRNA oncologic immune profiling of 770 genes using a Nanostring nCounter® PanCancer Immune Profiling Panel was performed using archived endoscopic ultrasound fine needle biopsy (EUS FNB) PDAC specimens as a case series in a tertiary care setting. RESULTS The spectrum of mRNA gene expression within the tumor specimens revealed that 44.8%, 10.0% and 50.7% of evaluated genes had a ≥ 2-fold increase, a ≤ 2-fold reduction or between <2 and >2 change of mRNA expression, when compared to normal controls. The corresponding landscape of TILs, CT antigens, and immune checkpoints highlighted several possibilities that could potentially be amenable to targeted personalized immunotherapy. This includes members of the Tumor Associated Macrophage family (CD68, CXCL5, and MARCO), members of the CT antigen family (PRAME, TTK and PBK) and the "second generation" checkpoints TIM3 and BTLA. CONCLUSIONS Our study represents the ability to successfully perform digital mRNA expression profile analyses to immunophenotype PDAC EUS FNB specimens by evaluating the expression of >730 genes within the tumor immune microenvironment. This may facilitate the search for novel therapeutic targets, offering the opportunity to go beyond immune monotherapy, but perhaps to use combined immunomodulatory agents.
Collapse
Affiliation(s)
- Ferga C Gleeson
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA.
| | - Michael J Levy
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Rory A Jackson
- Division of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA; Division of Laboratory Genetics, Mayo Clinic, Rochester, MN, USA
| | - Stephen J Murphy
- Center of Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Kevin C Halling
- Division of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA; Division of Laboratory Genetics, Mayo Clinic, Rochester, MN, USA
| | - Benjamin R Kipp
- Division of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA; Division of Laboratory Genetics, Mayo Clinic, Rochester, MN, USA
| | | | - Lizhi Zhang
- Division of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
198
|
Buscail L, Bournet B, Cordelier P. Role of oncogenic KRAS in the diagnosis, prognosis and treatment of pancreatic cancer. Nat Rev Gastroenterol Hepatol 2020; 17:153-168. [PMID: 32005945 DOI: 10.1038/s41575-019-0245-4] [Citation(s) in RCA: 446] [Impact Index Per Article: 89.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2019] [Indexed: 02/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is predicted to be the second most common cause of death within the next 10 years. The prognosis for this disease is poor despite diagnostic progress and new chemotherapeutic regimens. The oncogenic KRAS mutation is the major event in pancreatic cancer; it confers permanent activation of the KRAS protein, which acts as a molecular switch to activate various intracellular signalling pathways and transcription factors inducing cell proliferation, migration, transformation and survival. Several laboratory methods have been developed to detect KRAS mutations in biological samples, including digital droplet PCR (which displays high sensitivity). Clinical studies have revealed that a KRAS mutation assay in fine-needle aspiration material combined with cytopathology increases the sensitivity, accuracy and negative predictive value of cytopathology for a positive diagnosis of pancreatic cancer. In addition, the presence of KRAS mutations in serum and plasma (liquid biopsies) correlates with a worse prognosis. The presence of mutated KRAS can also have therapeutic implications, whether at the gene level per se, during its post-translational maturation, interaction with nucleotides and after activation of the various oncogenic signals. Further pharmacokinetic and toxicological studies on new molecules are required, especially small synthetic molecules, before they can be used in the therapeutic arsenal for pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Louis Buscail
- Department of Gastroenterology, University of Toulouse III, Rangueil Hospital, Toulouse, France. .,INSERM UMR 1037, Toulouse Centre for Cancer Research, University of Toulouse III, Toulouse, France.
| | - Barbara Bournet
- Department of Gastroenterology, University of Toulouse III, Rangueil Hospital, Toulouse, France.,INSERM UMR 1037, Toulouse Centre for Cancer Research, University of Toulouse III, Toulouse, France
| | - Pierre Cordelier
- INSERM UMR 1037, Toulouse Centre for Cancer Research, University of Toulouse III, Toulouse, France
| |
Collapse
|
199
|
Trovato R, Canè S, Petrova V, Sartoris S, Ugel S, De Sanctis F. The Engagement Between MDSCs and Metastases: Partners in Crime. Front Oncol 2020; 10:165. [PMID: 32133298 PMCID: PMC7040035 DOI: 10.3389/fonc.2020.00165] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 01/30/2020] [Indexed: 12/18/2022] Open
Abstract
Tumor metastases represent the major cause of cancer-related mortality, confirming the urgent need to identify key molecular pathways and cell-associated networks during the early phases of the metastatic process to develop new strategies to either prevent or control distal cancer spread. Several data revealed the ability of cancer cells to establish a favorable microenvironment, before their arrival in distant organs, by manipulating the cell composition and function of the new host tissue where cancer cells can survive and outgrow. This predetermined environment is termed “pre-metastatic niche” (pMN). pMN development requires that tumor-derived soluble factors, like cytokines, growth-factors and extracellular vesicles, genetically and epigenetically re-program not only resident cells (i.e., fibroblasts) but also non-resident cells such as bone marrow-derived cells. Indeed, by promoting an “emergency” myelopoiesis, cancer cells switch the steady state production of blood cells toward the generation of pro-tumor circulating myeloid cells defined as myeloid-derived suppressor cells (MDSCs) able to sustain tumor growth and dissemination. MDSCs are a heterogeneous subset of myeloid cells with immunosuppressive properties that sustain metastatic process. In this review, we discuss current understandings of how MDSCs shape and promote metastatic dissemination acting in each fundamental steps of cancer progression from primary tumor to metastatic disease.
Collapse
Affiliation(s)
- Rosalinda Trovato
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Stefania Canè
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Varvara Petrova
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Silvia Sartoris
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Stefano Ugel
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Francesco De Sanctis
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
200
|
McKelvey KJ, Hudson AL, Prasanna Kumar R, Eade T, Clarke SJ, Wheeler HR, Diakos CI, Howell VM. Sub-acute Toxicity in Non-cancerous Tissue and Immune-Related Adverse Events of a Novel Combination Therapy for Cancer. Front Oncol 2020; 9:1504. [PMID: 32010614 PMCID: PMC6971197 DOI: 10.3389/fonc.2019.01504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/16/2019] [Indexed: 12/24/2022] Open
Abstract
Brain, lung, and colon tissue experience deleterious immune-related adverse events when immune-oncological agents or radiation are administered. However, there is a paucity of information regarding whether the addition of radiation to immuno-oncological regimens exacerbates the tissue inflammatory response. We used a murine model to evaluate sub-acute tissue damage and the systemic immune response in C57Bl/6 mice when administered systemic anti-programmed cell death protein 1 (αPD-1) immunotherapy alone or in combination with stereotactic fractionated 10 gray/5 X-ray radiation to normal brain, lung or colon tissue. The model indicated that combinatorial αPD-1 immunotherapy and radiation may alter normal colon cell proliferation and cerebral blood vasculature, and induce systemic thrombocytopenia, lymphopenia, immune suppression, and altered immune repertoire (including interleukin-1β). Therein our data supports close monitoring of hematological and immune-related adverse events in patients receiving combination therapy.
Collapse
Affiliation(s)
- Kelly J McKelvey
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, The University of Sydney Northern Clinical School and Northern Sydney Local Health District, St Leonards, NSW, Australia.,Sydney Vital Translational Cancer Research Centre, Royal North Shore Hospital, St Leonards, NSW, Australia.,The Brain Cancer Group, St Leonards, NSW, Australia
| | - Amanda L Hudson
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, The University of Sydney Northern Clinical School and Northern Sydney Local Health District, St Leonards, NSW, Australia.,Sydney Vital Translational Cancer Research Centre, Royal North Shore Hospital, St Leonards, NSW, Australia.,The Brain Cancer Group, St Leonards, NSW, Australia
| | - Ramyashree Prasanna Kumar
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, The University of Sydney Northern Clinical School and Northern Sydney Local Health District, St Leonards, NSW, Australia.,Sydney Vital Translational Cancer Research Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Thomas Eade
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Stephen J Clarke
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, The University of Sydney Northern Clinical School and Northern Sydney Local Health District, St Leonards, NSW, Australia.,Sydney Vital Translational Cancer Research Centre, Royal North Shore Hospital, St Leonards, NSW, Australia.,Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Helen R Wheeler
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, The University of Sydney Northern Clinical School and Northern Sydney Local Health District, St Leonards, NSW, Australia.,Sydney Vital Translational Cancer Research Centre, Royal North Shore Hospital, St Leonards, NSW, Australia.,The Brain Cancer Group, St Leonards, NSW, Australia.,Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Connie I Diakos
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, The University of Sydney Northern Clinical School and Northern Sydney Local Health District, St Leonards, NSW, Australia.,Sydney Vital Translational Cancer Research Centre, Royal North Shore Hospital, St Leonards, NSW, Australia.,Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Viive M Howell
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, The University of Sydney Northern Clinical School and Northern Sydney Local Health District, St Leonards, NSW, Australia.,Sydney Vital Translational Cancer Research Centre, Royal North Shore Hospital, St Leonards, NSW, Australia.,The Brain Cancer Group, St Leonards, NSW, Australia
| |
Collapse
|