151
|
Khorsand B, Asadzadeh Aghdaei H, Nazemalhosseini-Mojarad E, Nadalian B, Nadalian B, Houri H. Overrepresentation of Enterobacteriaceae and Escherichia coli is the major gut microbiome signature in Crohn's disease and ulcerative colitis; a comprehensive metagenomic analysis of IBDMDB datasets. Front Cell Infect Microbiol 2022; 12:1015890. [PMID: 36268225 PMCID: PMC9577114 DOI: 10.3389/fcimb.2022.1015890] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/20/2022] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVES A number of converging strands of research suggest that the intestinal Enterobacteriaceae plays a crucial role in the development and progression of inflammatory bowel disease (IBD), however, the changes in the abundance of Enterobacteriaceae species and their related metabolic pathways in Crohn's disease (CD) and ulcerative colitis (UC) compared to healthy people are not fully explained by comprehensive comparative metagenomics analysis. In the current study, we investigated the alternations of the Enterobacterales population in the gut microbiome of patients with CD and UC compared to healthy subjects. METHODS Metagenomic datasets were selected from the Integrative Human Microbiome Project (HMP2) through the Inflammatory Bowel Disease Multi'omics Database (IBDMDB). We performed metagenome-wide association studies on fecal samples from 191 CD patients, 132 UC patients, and 125 healthy controls (HCs). We used the metagenomics dataset to study bacterial community structure, relative abundance, differentially abundant bacteria, functional analysis, and Enterobacteriaceae-related biosynthetic pathways. RESULTS Compared to the gut microbiome of HCs, six Enterobacteriaceae species were significantly elevated in both CD and UC patients, including Escherichia coli, Klebsiella variicola, Klebsiella quasipneumoniae, Klebsiella pneumoniae, Proteus mirabilis, Citrobacter freundii, and Citrobacter youngae, while Klebsiella oxytoca, Morganella morganii, and Citrobacter amalonaticus were uniquely differentially abundant and enriched in the CD cohort. Four species were uniquely differentially abundant and enriched in the UC cohort, including Citrobacter portucalensis, Citrobacter pasteurii, Citrobacter werkmanii, and Proteus hauseri. Our analysis also showed a dramatically increased abundance of E. coli in their intestinal bacterial community. Biosynthetic pathways of aerobactin siderophore, LPS, enterobacterial common antigen, nitrogen metabolism, and sulfur relay systems encoded by E. coli were significantly elevated in the CD samples compared to the HCs. Menaquinol biosynthetic pathways were associated with UC that belonged to K. pneumoniae strains. CONCLUSIONS In conclusion, compared with healthy people, the taxonomic and functional composition of intestinal bacteria in CD and UC patients was significantly shifted to Enterobacteriaceae species, mainly E. coli and Klebsiella species.
Collapse
Affiliation(s)
- Babak Khorsand
- Gastroenterology and Liver Disease Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Disease Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh Nadalian
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Banafsheh Nadalian
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Houri
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
152
|
Chervy M, Sivignon A, Dambrine F, Buisson A, Sauvanet P, Godfraind C, Allez M, Le Bourhis L, The Remind Group, Barnich N, Denizot J. Epigenetic master regulators HDAC1 and HDAC5 control pathobiont Enterobacteria colonization in ileal mucosa of Crohn's disease patients. Gut Microbes 2022; 14:2127444. [PMID: 36175163 PMCID: PMC9542275 DOI: 10.1080/19490976.2022.2127444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
AIEC Adherent-Invasive Escherichia coli; BSA Bovine serum albumin; CD Crohn's disease; CEABAC10 Carcinoembryonic antigen bacterial artificial chromosome 10; CEACAM Carcinoembryonic antigen-related cell adhesion molecule; FBS Fetal bovine serum; IBD Inflammatory Bowel Disease; HAT Histone acetyltransferase; HDAC Histone deacetylase; kDa KiloDalton; SAHA Suberoylanilide Hydroxamic Acid; Scr Scramble.
Collapse
Affiliation(s)
- Mélissa Chervy
- Université Clermont Auvergne, Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Clermont-Ferrand, France
| | - Adeline Sivignon
- Université Clermont Auvergne, Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Clermont-Ferrand, France,Institut Universitaire de Technologie, Génie Biologique, Aubière, France
| | - Flavie Dambrine
- Université Clermont Auvergne, Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Clermont-Ferrand, France
| | - Anthony Buisson
- Université Clermont Auvergne, Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Clermont-Ferrand, France,Gastroenterology Department, CHU Estaing, Clermont-Ferrand, France
| | - Pierre Sauvanet
- Université Clermont Auvergne, Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Clermont-Ferrand, France,Surgery and Oncology Digestive Department, CHU Estaing, Clermont-Ferrand, France
| | - Catherine Godfraind
- Université Clermont Auvergne, Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Clermont-Ferrand, France,Neuropathology Unit, CHU Gabriel Montpied, Clermont-Ferrand, France
| | - Matthieu Allez
- Gastroenterology Department, Hôpital Saint-Louis - APHP, Paris, France,Université De Paris, Institut de Recherche Saint-Louis, EMily, INSERM U1160, Paris, France,Hôpital Saint-Louis, Paris, France
| | - Lionel Le Bourhis
- Université De Paris, Institut de Recherche Saint-Louis, EMily, INSERM U1160, Paris, France
| | | | - Nicolas Barnich
- Université Clermont Auvergne, Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Clermont-Ferrand, France,Institut Universitaire de Technologie, Génie Biologique, Aubière, France
| | - Jérémy Denizot
- Université Clermont Auvergne, Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Clermont-Ferrand, France,Institut Universitaire de Technologie, Génie Biologique, Aubière, France,CONTACT Jérémy Denizot M2iSH, UMR 1071 Inserm/Université Clermont Auvergne, CBRV, 28 place Henri Dunant, Clermont-Ferrand63001, France
| |
Collapse
|
153
|
Zhang J, Liang F, Chen Z, Chen Y, Yuan J, Xiong Q, Hou S, Huang S, Liu C, Liang J. Vitexin Protects against Dextran Sodium Sulfate-Induced Colitis in Mice and Its Potential Mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12041-12054. [PMID: 36124900 DOI: 10.1021/acs.jafc.2c05177] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Vitexin, one of the major active components in hawthorn, has been shown to possess multiple pharmacological activities. Here, we sought to investigate the effect of vitexin on an ameliorating dextran sodium sulfate (DSS)-induced ulcerative colitis (UC) mouse model and further explored its potential mechanism. The results indicated that vitexin administration could significantly alleviate the signs of colitis via suppressing body weight loss, reducing disease activity index (DAI) score, and mitigating colonic damage. Also, vitexin treatment in colitis mice markedly inhibited the production of pro-inflammation cytokines (such as IL-1β, IL-6, and TNF-α). Meanwhile, vitexin also could markedly down-regulate the phosphorylation levels of p65, IκB, and STAT1. Moreover, vitexin also dose-dependently increased the expressions of muc-2, ZO-1, and occludin proteins in colonic tissues of colitis mice. Further studies revealed that vitexin dramatically modulated the disturbed intestinal flora in colitis mice. Vitexin is beneficial for regulating abundances of some certain bacteria, such as Bacteroides, Helicobacter, Alistipes, Lachnospiraceae_NK4A136_group, and Lachnospiraceae_UCG-006. Interestingly, the correlation analysis indicated that key microbes were strongly correlated with colitis features, such as pro-inflammatory cytokines and gut barrier. Collectively, these results demonstrated that vitexin treatment alleviated inflammation, intestinal barrier dysfunction, and intestinal flora dysbiosis in colitis mice. Vitexin is expected to be a promising compound for UC treatment.
Collapse
Affiliation(s)
- Jing Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Feilin Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Zongwen Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
- Gaozhou Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Gaozhou, Guangdong 510006, China
| | - Yonger Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Jun Yuan
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Qingping Xiong
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Shaozhen Hou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Song Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
- Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, Guangdong 510006, China
| | - Changhui Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Jian Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, China
- Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, Guangdong 510006, China
| |
Collapse
|
154
|
Intercontinental Gut Microbiome Variances in IBD. Int J Mol Sci 2022; 23:ijms231810868. [PMID: 36142786 PMCID: PMC9506019 DOI: 10.3390/ijms231810868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
The development of biomarkers for inflammatory bowel disease (IBD) diagnosis would be relevant in a generalized context. However, intercontinental investigation on these microbial biomarkers remains scarce. We examined taxonomic microbiome variations in IBD using published DNA shotgun metagenomic data. For this purpose, we used sequenced data from our previous Spanish Crohn’s disease (CD) and ulcerative colitis (UC) cohort, downloaded sequence data from a Chinese CD cohort, and downloaded taxonomic and functional profiling tables from a USA CD and UC cohort. At the global level, geographical location and disease phenotype were the main explanatory covariates of microbiome variations. In healthy controls (HC) and UC, geography turned out to be the most important factor, while disease intestinal location was the most important one in CD. Disease severity correlated with lower alpha-diversity in UC but not in CD. Across geography, alpha-diversity was significantly different independently of health status, except for CD. Despite recruitment from different countries and with different disease severity scores, CD patients may harbor a very similar microbial taxonomic profile. Our study pointed out that geographic location, disease activity status, and other environmental factors are important contributing factors in microbiota changes in IBD. We therefore strongly recommend taking these factors into consideration for future IBD studies to obtain globally valid and reproducible biomarkers.
Collapse
|
155
|
Cheng AG, Ho PY, Aranda-Díaz A, Jain S, Yu FB, Meng X, Wang M, Iakiviak M, Nagashima K, Zhao A, Murugkar P, Patil A, Atabakhsh K, Weakley A, Yan J, Brumbaugh AR, Higginbottom S, Dimas A, Shiver AL, Deutschbauer A, Neff N, Sonnenburg JL, Huang KC, Fischbach MA. Design, construction, and in vivo augmentation of a complex gut microbiome. Cell 2022; 185:3617-3636.e19. [PMID: 36070752 PMCID: PMC9691261 DOI: 10.1016/j.cell.2022.08.003] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 03/02/2022] [Accepted: 08/03/2022] [Indexed: 01/26/2023]
Abstract
Efforts to model the human gut microbiome in mice have led to important insights into the mechanisms of host-microbe interactions. However, the model communities studied to date have been defined or complex, but not both, limiting their utility. Here, we construct and characterize in vitro a defined community of 104 bacterial species composed of the most common taxa from the human gut microbiota (hCom1). We then used an iterative experimental process to fill open niches: germ-free mice were colonized with hCom1 and then challenged with a human fecal sample. We identified new species that engrafted following fecal challenge and added them to hCom1, yielding hCom2. In gnotobiotic mice, hCom2 exhibited increased stability to fecal challenge and robust colonization resistance against pathogenic Escherichia coli. Mice colonized by either hCom2 or a human fecal community are phenotypically similar, suggesting that this consortium will enable a mechanistic interrogation of species and genes on microbiome-associated phenotypes.
Collapse
Affiliation(s)
- Alice G Cheng
- Department of Gastroenterology & Hepatology, Stanford School of Medicine, Stanford, CA 94305, USA.
| | - Po-Yi Ho
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Andrés Aranda-Díaz
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Sunit Jain
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Feiqiao B Yu
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Xiandong Meng
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Min Wang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Mikhail Iakiviak
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Kazuki Nagashima
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Aishan Zhao
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | | | - Advait Patil
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Katayoon Atabakhsh
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Allison Weakley
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Jia Yan
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Ariel R Brumbaugh
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Steven Higginbottom
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Alejandra Dimas
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Anthony L Shiver
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Adam Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Norma Neff
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Justin L Sonnenburg
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Michael A Fischbach
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
156
|
Pérez-Jeldres T, Pizarro B, Ascui G, Orellana M, Cerda-Villablanca M, Alvares D, de la Vega A, Cannistra M, Cornejo B, Baéz P, Silva V, Arriagada E, Rivera-Nieves J, Estela R, Hernández-Rocha C, Álvarez-Lobos M, Tobar F. Ethnicity influences phenotype and clinical outcomes: Comparing a South American with a North American inflammatory bowel disease cohort. Medicine (Baltimore) 2022; 101:e30216. [PMID: 36086782 PMCID: PMC10980497 DOI: 10.1097/md.0000000000030216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/12/2022] [Indexed: 11/27/2022] Open
Abstract
Inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn disease (CD), has emerged as a global disease with an increasing incidence in developing and newly industrialized regions such as South America. This global rise offers the opportunity to explore the differences and similarities in disease presentation and outcomes across different genetic backgrounds and geographic locations. Our study includes 265 IBD patients. We performed an exploratory analysis of the databases of Chilean and North American IBD patients to compare the clinical phenotypes between the cohorts. We employed an unsupervised machine-learning approach using principal component analysis, uniform manifold approximation, and projection, among others, for each disease. Finally, we predicted the cohort (North American vs Chilean) using a random forest. Several unsupervised machine learning methods have separated the 2 main groups, supporting the differences between North American and Chilean patients with each disease. The variables that explained the loadings of the clinical metadata on the principal components were related to the therapies and disease extension/location at diagnosis. Our random forest models were trained for cohort classification based on clinical characteristics, obtaining high accuracy (0.86 = UC; 0.79 = CD). Similarly, variables related to therapy and disease extension/location had a high Gini index. Similarly, univariate analysis showed a later CD age at diagnosis in Chilean IBD patients (37 vs 24; P = .005). Our study suggests a clinical difference between North American and Chilean IBD patients: later CD age at diagnosis with a predominantly less aggressive phenotype (39% vs 54% B1) and more limited disease, despite fewer biological therapies being used in Chile for both diseases.
Collapse
Affiliation(s)
- Tamara Pérez-Jeldres
- Department of Gastroenterology, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago, Chile
- Instituto Chileno-Japonés, University of Chile, Santiago, Chile
| | - Benjamín Pizarro
- Radiology Department, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Gabriel Ascui
- La Jolla Institute for Allergy and Immunology, San Diego, CA
| | - Matías Orellana
- Department of Computer Science, Faculty of Physical Sciences and Mathematics of the University of Chile, Santiago, Chile
| | - Mauricio Cerda-Villablanca
- Integrative Biology Program, Institute of Biomedical Sciences, Center for Medical Informatics and Telemedicine, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Danilo Alvares
- Department of Statistics, Pontifical Catholic University of Chile, Santiago, Chile
| | | | - Macarena Cannistra
- Department of Gastroenterology, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago, Chile
| | - Bárbara Cornejo
- Department of Gastroenterology, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago, Chile
| | - Pablo Baéz
- Integrative Biology Program, Institute of Biomedical Sciences, Center for Medical Informatics and Telemedicine, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Verónica Silva
- Instituto Chileno-Japonés, University of Chile, Santiago, Chile
| | | | - Jesús Rivera-Nieves
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California, San Diego, La Jolla, CA
| | - Ricardo Estela
- Instituto Chileno-Japonés, University of Chile, Santiago, Chile
| | - Cristián Hernández-Rocha
- Department of Gastroenterology, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago, Chile
| | - Manuel Álvarez-Lobos
- Department of Gastroenterology, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago, Chile
| | - Felipe Tobar
- Initiative for Data & Artificial Intelligence, University of Chile
- Center for Mathematical Modeling, University of Chile, Santiago, Chile
| |
Collapse
|
157
|
Gerasimidis K, Gkikas K, Stewart C, Neelis E, Svolos V. Microbiome and paediatric gut diseases. Arch Dis Child 2022; 107:784-789. [PMID: 34716173 DOI: 10.1136/archdischild-2020-320875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 10/16/2021] [Indexed: 11/04/2022]
Abstract
In the human gut resides a vast community of microorganisms which perform critical functions for the maintenance of whole body homeostasis. Changes in the composition and function of this community, termed microbiome, are believed to provoke disease onset, including non-communicable diseases. In this review, we debate the current evidence on the role of the gut microbiome in the pathogenesis, outcomes and management of paediatric gut disease. We conclude that even though the gut microbiome is altered in paediatric inflammatory bowel disease, coeliac disease, intestinal failure, necrotising enterocolitis and irritable bowel syndrome, there are currently very few implications for unravelling disease pathogenesis or guiding clinical practice. In the future, the gut microbiome may aid in disease differential diagnosis and prediction of clinical outcomes, and comprise a target for therapeutic interventions.
Collapse
Affiliation(s)
| | | | - Christopher Stewart
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Esther Neelis
- Paediatric Gastroenterology, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Vaios Svolos
- Human Nutrition, University of Glasgow, Glasgow, UK
| |
Collapse
|
158
|
Yan XY, Yao JP, Li YQ, Zhang W, Xi MH, Chen M, Li Y. Global trends in research on miRNA-microbiome interaction from 2011 to 2021: A bibliometric analysis. Front Pharmacol 2022; 13:974741. [PMID: 36110534 PMCID: PMC9468484 DOI: 10.3389/fphar.2022.974741] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/21/2022] [Indexed: 11/30/2022] Open
Abstract
An increasing number of research suggests that the microRNA (miRNA)-microbiome interaction plays an essential role in host health and diseases. This bibliometric analysis aimed to identify the status of global scientific output, research hotspots, and frontiers regarding the study of miRNA-microbiome interaction over the past decade. We retrieved miRNA-microbiome-related studies published from 2011 to 2021 from the Web of Science Core Collection database; the R package bibliometrix was used to analyze bibliometric indicators, and VOSviewer was used to visualize the field status, hotspots, and research trends of miRNA-microbiome interplay. In total, 590 articles and reviews were collected. A visual analysis of the results showed that significant increase in the number of publications over time. China produced the most papers, and the United States contributed the highest number of citations. Shanghai Jiaotong University and the University of California Davis were the most active institutions in the field. Most publications were published in the areas of biochemistry and molecular biology. Yu Aiming was the most prolific writer, as indicated by the h-index and m-index, and Liu Shirong was the most commonly co-cited author. A paper published in the International Journal of Molecular Sciences in 2017 had the highest number of citations. The keywords "expression" and "gut microbiota" appeared most frequently, and the top three groups of diseases that appeared among keywords were cancer (colorectal, et al.), inflammatory bowel disease (Crohn's disease and ulcerative colitis), and neurological disorders (anxiety, Parkinson's disease, et al.). This bibliometric study revealed that most studies have focused on miRNAs (e.g., miR-21, miR-155, and miR-146a), gut microbes (e.g., Escherichia coli, Bifidobacterium, and Fusobacterium nucleatum), and gut bacteria metabolites (e.g., butyric acid), which have the potential to improve the diagnosis, treatment, and prognosis of diseases. We found that therapeutic strategies targeting the miRNA-microbiome axis focus on miRNA drugs produced in vitro; however, some studies suggest that in vivo fermentation can greatly increase the stability and reduce the degradation of miRNA. Therefore, this method is worthy of further research.
Collapse
Affiliation(s)
- Xiang-Yun Yan
- The Third Hospital/Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun-Peng Yao
- The Third Hospital/Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan-Qiu Li
- The Third Hospital/Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Zhang
- Academic Affairs Office, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meng-Han Xi
- The Third Hospital/Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Min Chen
- Clinical Medicine School, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Li
- The Third Hospital/Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
159
|
Nadalian B, Nadalian B, Houri H, Shahrokh S, Abdehagh M, Yadegar A, Ebrahimipour G. Phylogrouping and characterization of Escherichia coli isolated from colonic biopsies and fecal samples of patients with flare of inflammatory bowel disease in Iran. Front Med (Lausanne) 2022; 9:985300. [PMID: 36106322 PMCID: PMC9464868 DOI: 10.3389/fmed.2022.985300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/05/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Although the etiopathogenesis of inflammatory bowel disease (IBD) is still poorly understood, Escherichia coli has been described as a potential causative microorganism in IBD pathogenesis and also disease progression, offering a potential therapeutic target for disease management. Therefore, we conducted this study to investigate the pathotypes, phylogenetic groups, and antimicrobial resistance of E. coli isolates from patients with IBD in Iran. METHODS Fecal and biopsy colonic samples were collected from IBD patients experiencing flare-up episodes referred to Taleghani hospital in Tehran, Iran, between August 2020 and January 2021. Identification of E. coli strains was performed based on biochemical and molecular methods. Antibiotic susceptibility testing was performed as recommended by the Clinical and Laboratory Standards Institute. Phylogrouping and pathotyping of each isolate were carried out using polymerase chain reaction (PCR) and multilocus sequence typing (MLST) assays. RESULTS A total of 132 non-duplicate E. coli strains were isolated from 113 IBD patients, including 96 ulcerative colitis (UC), and 17 Crohn's disease (CD) patients. In our study, 55% of CD-related E. coli and 70.5% of UC-related isolates were non-susceptible to at least three or more unique antimicrobial classes, and were considered as multidrug-resistant (MDR) strains. E. coli strains exhibited a high level of resistance to cefazolin, ampicillin, tetracycline, ceftazidime, ciprofloxacin, and cefotaxime. Enterotoxigenic E. coli (ETEC) and diffusely adherent E. coli (DAEC) were the most prevalent pathotypes, and groups B2 and D were the predominant phylogroups. CONCLUSION In the present study, we found that E. coli strains that colonize the gut of Iranian patients with IBD most frequently belonged to phylogenetic groups B2 and D. We also conclude that E. coli isolates from IBD patients have been revealed to be resistant to commonly used antibiotics, in which most of them harbored strains that would be categorized as MDR.
Collapse
Affiliation(s)
- Banafsheh Nadalian
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Bahareh Nadalian
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Houri
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shabnam Shahrokh
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdehagh
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gholamhossein Ebrahimipour
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
160
|
Chang R, Chen J, Zhong Z, Li Y, Wu K, Zheng H, Yang Y. Inflammatory bowel disease-associated Escherichia coli strain LF82 in the damage of gut and cognition of honeybees. Front Cell Infect Microbiol 2022; 12:983169. [PMID: 36093189 PMCID: PMC9453226 DOI: 10.3389/fcimb.2022.983169] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/01/2022] [Indexed: 12/13/2022] Open
Abstract
Patients with inflammatory bowel disease (IBD) are often accompanied with some cognitive impairment, but the mechanism is unclear. By orally exposing honeybees (Apis mellifera) to IBD-associated Escherichia coli LF82 (LF82), and non-pathogenic Escherichia coli MG1655 (MG1655) as the normal strain, we investigated whether and how LF82 induces enteritis-like manifestations and cognitive behavioral modifications in honeybees using multiparametric analysis. LF82 significantly increased gut permeability, impaired learning and memory ability in olfactory proboscis extension response conditioning, and shortened the lifespan of honeybees. Compared to MG1655, LF82 reduced the levels of tryptophan metabolism pathway substances in the honeybee gut. LF82 also upregulated genes involved in immune and apoptosis-related pathways and downregulated genes involved in G protein-coupled receptors in the honeybee brain. In conclusion, LF82 can induce enteritis-like manifestations and cognition impairment through gut metabolites and brain transcriptome alteration in honeybees. Honeybees can serve as a novel potential model to study the microbiota-gut-brain interaction in IBD condition.
Collapse
Affiliation(s)
- Ruqi Chang
- Medical College of Nankai University, Tianjin, China
| | - Jieteng Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhaopeng Zhong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yiyuan Li
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | | | - Hao Zheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yunsheng Yang
- Medical College of Nankai University, Tianjin, China
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
161
|
Hu J, Tong Y, Shen Z, Li Y, Cheng C, Au R, Xu F, Liu Y, Zhu L, Shen H. Gegen Qinlian decoction ameliorates murine colitis by inhibiting the expansion of Enterobacteriaceae through activating PPAR-γ signaling. Biomed Pharmacother 2022; 154:113571. [PMID: 36007273 DOI: 10.1016/j.biopha.2022.113571] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic and relapsing inflammatory disease of the intestine. Dysbiosis, especially the expansion of facultative anaerobic Enterobacteriaceae, maybe the main pathogenesis of UC. Gegen Qinlian decoction (GD), a traditional Chinese medicinal formula chronicled in the Shang Han Lun, is commonly used to treat UC and has shown an excellent effect on inducing disease remission. However, the role of GD in regulating gut microbiota has not been fully clarified. Herein, we investigated the potential effect of GD on inhibiting the expansion of Enterobacteriaceae and further explored the potential mechanism of this action. Our study demonstrated that GD remarkably reduced body weight loss of colitis mice, shortening of colon length, and inflammation of the colon. Peroxisome proliferator-activated receptor-γ (PPAR-γ) signaling was inactivated in colitis colon tissue, and the abundance of Escherichia coli (E. coli, family of Enterobacteriaceae) in colonic contents and the concentration of lipopolysaccharide (LPS) in colonic tissue were significantly upregulated after DSS-treatment. Notably, GD administration can result in the activation of PPAR-γ and inactivation of iNOS, which lead to the reduction of nitrate, the inhibition of E. coli, and less production of LPS. Combined GD with PPAR-γ antagonist, the effect of GD on the treatment of UC was weakened, and effectless in inhibiting the expansion of Enterobacteriaceae. Therefore, GD ameliorates UC by preventing a dysbiotic expansion of potentially pathogenic E. coli by reducing nitrate levels in the lumen through activating PPAR-γ signaling.
Collapse
Affiliation(s)
- Jingyi Hu
- Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing, China
| | - Yiheng Tong
- Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing, China
| | - Zhaofeng Shen
- Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing, China
| | - Yanan Li
- Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing, China
| | - Cheng Cheng
- Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing, China
| | - Ryan Au
- Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing, China
| | - Feng Xu
- Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing, China
| | - Yajun Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing, China
| | - Lei Zhu
- Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing, China
| | - Hong Shen
- Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of Chinese Medicine), Nanjing, China.
| |
Collapse
|
162
|
Piazzesi A, Putignani L. Extremely small and incredibly close: Gut microbes as modulators of inflammation and targets for therapeutic intervention. Front Microbiol 2022; 13:958346. [PMID: 36071979 PMCID: PMC9441770 DOI: 10.3389/fmicb.2022.958346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/25/2022] [Indexed: 11/15/2022] Open
Abstract
Chronic inflammation is a hallmark for a variety of disorders and is at least partially responsible for disease progression and poor patient health. In recent years, the microbiota inhabiting the human gut has been associated with not only intestinal inflammatory diseases but also those that affect the brain, liver, lungs, and joints. Despite a strong correlation between specific microbial signatures and inflammation, whether or not these microbes are disease markers or disease drivers is still a matter of debate. In this review, we discuss what is known about the molecular mechanisms by which the gut microbiota can modulate inflammation, both in the intestine and beyond. We identify the current gaps in our knowledge of biological mechanisms, discuss how these gaps have likely contributed to the uncertain outcome of fecal microbiota transplantation and probiotic clinical trials, and suggest how both mechanistic insight and -omics-based approaches can better inform study design and therapeutic intervention.
Collapse
Affiliation(s)
- Antonia Piazzesi
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Lorenza Putignani
- Department of Diagnostic and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- *Correspondence: Lorenza Putignani,
| |
Collapse
|
163
|
In Silico Study of Cell Surface Structures of Parabacteroides distasonis Involved in Its Maintenance within the Gut Microbiota. Int J Mol Sci 2022; 23:ijms23169411. [PMID: 36012685 PMCID: PMC9409006 DOI: 10.3390/ijms23169411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
The health-promoting Parabacteroides distasonis, which is part of the core microbiome, has recently received a lot of attention, showing beneficial properties for its host and potential as a new biotherapeutic product. However, no study has yet investigated the cell surface molecules and structures of P. distasonis that allow its maintenance within the gut microbiota. Moreover, although P. distasonis is strongly recognized as an intestinal commensal species with benefits for its host, several works displayed controversial results, showing it as an opportunistic pathogen. In this study, we reported gene clusters potentially involved in the synthesis of capsule, fimbriae-like and pili-like cell surface structures in 26 P. distasonis genomes and applied the new RfbA-typing classification in order to better understand and characterize the beneficial/pathogenic behavior related to P. distasonis strains. Two different types of fimbriae, three different types of pilus and up to fourteen capsular polysaccharide loci were identified over the 26 genomes studied. Moreover, the addition of data to the rfbA-type classification modified the outcome by rearranging rfbA genes and adding a fifth group to the classification. In conclusion, the strain variability in terms of external proteinaceous structure could explain the inter-strain differences previously observed of P. distasonis adhesion capacities and its potential pathogenicity, but no specific structure related to P. distasonis beneficial or detrimental activity was identified.
Collapse
|
164
|
Jacobs JP, Goudarzi M, Lagishetty V, Li D, Mak T, Tong M, Ruegger P, Haritunians T, Landers C, Fleshner P, Vasiliauskas E, Ippoliti A, Melmed G, Shih D, Targan S, Borneman J, Fornace AJ, McGovern DPB, Braun J. Crohn's disease in endoscopic remission, obesity, and cases of high genetic risk demonstrates overlapping shifts in the colonic mucosal-luminal interface microbiome. Genome Med 2022; 14:91. [PMID: 35971134 PMCID: PMC9377146 DOI: 10.1186/s13073-022-01099-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Crohn's disease (CD) patients demonstrate distinct intestinal microbial compositions and metabolic characteristics compared to unaffected controls. However, the impact of inflammation and underlying genetic risk on these microbial profiles and their relationship to disease phenotype are unclear. We used lavage sampling to characterize the colonic mucosal-luminal interface (MLI) microbiome of CD patients in endoscopic remission and unaffected controls relative to obesity, disease genetics, and phenotype. METHODS Cecum and sigmoid colon were sampled from 110 non-CD controls undergoing screening colonoscopy who were stratified by body mass index and 88 CD patients in endoscopic remission (396 total samples). CD polygenic risk score (GRS) was calculated using 186 known CD variants. MLI pellets were analyzed by 16S ribosomal RNA gene sequencing, and supernatants by untargeted liquid chromatography-mass spectrometry. RESULTS CD and obesity were each associated with decreased cecal and sigmoid MLI bacterial diversity and distinct bacterial composition compared to controls, including expansion of Escherichia/Shigella. Cecal and sigmoid dysbiosis indices for CD were significantly greater in obese controls than non-overweight controls. CD, but not obesity, was characterized by altered biogeographic relationship between the sigmoid and cecum. GRS was associated with select taxonomic shifts that overlapped with changes seen in CD compared to controls including Fusobacterium enrichment. Stricturing or penetrating Crohn's disease behavior was characterized by lower MLI bacterial diversity and altered composition, including reduced Faecalibacterium, compared to uncomplicated CD. Taxonomic profiles including reduced Parasutterella were associated with clinical disease progression over a mean follow-up of 3.7 years. Random forest classifiers using MLI bacterial abundances could distinguish disease state (area under the curve (AUC) 0.93), stricturing or penetrating Crohn's disease behavior (AUC 0.82), and future clinical disease progression (AUC 0.74). CD patients showed alterations in the MLI metabolome including increased cholate:deoxycholate ratio compared to controls. CONCLUSIONS Obesity, CD in endoscopic remission, and high CD genetic risk have overlapping colonic mucosal-luminal interface (MLI) microbiome features, suggesting a shared microbiome contribution to CD and obesity which may be influenced by genetic factors. Microbial profiling during endoscopic remission predicted Crohn's disease behavior and progression, supporting that MLI sampling could offer unique insight into CD pathogenesis and provide novel prognostic biomarkers.
Collapse
Affiliation(s)
- Jonathan P Jacobs
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-6949, USA.
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, USA.
| | | | - Venu Lagishetty
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-6949, USA
| | - Dalin Li
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Tytus Mak
- National Institute of Standards and Technology, Gaithersburg, USA
| | - Maomeng Tong
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Paul Ruegger
- Department of Plant Pathology and Microbiology, University of California Riverside, Riverside, USA
| | - Talin Haritunians
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Carol Landers
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Philip Fleshner
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Eric Vasiliauskas
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Andrew Ippoliti
- Department of Medicine, Keck School of Medicine of USC, Los Angeles, USA
| | - Gil Melmed
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, USA
| | - David Shih
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Stephan Targan
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, USA
| | - James Borneman
- Department of Plant Pathology and Microbiology, University of California Riverside, Riverside, USA
| | - Albert J Fornace
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, USA
| | - Dermot P B McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Jonathan Braun
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, USA
| |
Collapse
|
165
|
Fu Q, Song T, Ma X, Cui J. Research progress on the relationship between intestinal microecology and intestinal bowel disease. Animal Model Exp Med 2022; 5:297-310. [PMID: 35962562 PMCID: PMC9434592 DOI: 10.1002/ame2.12262] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/21/2022] [Indexed: 12/02/2022] Open
Abstract
Intestinal microecology is the main component of human microecology. Intestinal microecology consists of intestinal microbiota, intestinal epithelial cells, and intestinal mucosal immune system. These components are interdependent and establish a complex interaction network that restricts each other. According to the impact on the human body, there are three categories of symbiotic bacteria, opportunistic pathogens, and pathogenic bacteria. The intestinal microecology participates in digestion and absorption, and material metabolism, and inhibits the growth of pathogenic microorganisms. It also acts as the body's natural immune barrier, regulates the innate immunity of the intestine, controls the mucosal barrier function, and also participates in the intestinal epithelial cells' physiological activities such as hyperplasia or apoptosis. When the steady‐state balance of the intestinal microecology is disturbed, the existing core intestinal microbiota network changes and leads to obesity, diabetes, and many other diseases, especially irritable bowel syndrome, inflammatory bowel disease (IBD), and colorectal malignancy. Intestinal diseases, including tumors, are particularly closely related to intestinal microecology. This article systematically discusses the research progress on the relationship between IBD and intestinal microecology from the pathogenesis, treatment methods of IBD, and the changes in intestinal microbiota.
Collapse
Affiliation(s)
- Qianhui Fu
- School of Pharmacy, Minzu University of China, Beijing, China.,Ministry of Education, Key Laboratory of Ethnomedicine, Minzu University of China, Beijing, China
| | - Tianyuan Song
- School of Pharmacy, Minzu University of China, Beijing, China.,Ministry of Education, Key Laboratory of Ethnomedicine, Minzu University of China, Beijing, China
| | - Xiaoqin Ma
- School of Pharmacy, Minzu University of China, Beijing, China.,Ministry of Education, Key Laboratory of Ethnomedicine, Minzu University of China, Beijing, China
| | - Jian Cui
- School of Pharmacy, Minzu University of China, Beijing, China.,Ministry of Education, Key Laboratory of Ethnomedicine, Minzu University of China, Beijing, China
| |
Collapse
|
166
|
Fernandes D, Andreyev J. The Role of the Human Gut Microbiome in Inflammatory Bowel Disease and Radiation Enteropathy. Microorganisms 2022; 10:1613. [PMID: 36014031 PMCID: PMC9415405 DOI: 10.3390/microorganisms10081613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 12/04/2022] Open
Abstract
The human gut microbiome plays a key role in regulating host physiology. In a stable state, both the microbiota and the gut work synergistically. The overall homeostasis of the intestinal flora can be affected by multiple factors, including disease states and the treatments given for those diseases. In this review, we examine the relatively well-characterised abnormalities that develop in the microbiome in idiopathic inflammatory bowel disease, and compare and contrast them to those that are found in radiation enteropathy. We discuss how these changes may exert their effects at a molecular level, and the possible role of manipulating the microbiome through the use of a variety of therapies to reduce the severity of the underlying condition.
Collapse
Affiliation(s)
- Darren Fernandes
- The Department of Gastroenterology, United Lincolnshire NHS Trust, Lincoln County Hospital, Lincoln LN2 5QY, UK
| | - Jervoise Andreyev
- The Department of Gastroenterology, United Lincolnshire NHS Trust, Lincoln County Hospital, Lincoln LN2 5QY, UK
- The Biomedical Research Centre, Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
167
|
Nishida A, Nishino K, Ohno M, Sakai K, Owaki Y, Noda Y, Imaeda H. Update on gut microbiota in gastrointestinal diseases. World J Clin Cases 2022; 10:7653-7664. [PMID: 36158494 PMCID: PMC9372855 DOI: 10.12998/wjcc.v10.i22.7653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/20/2022] [Accepted: 06/22/2022] [Indexed: 02/06/2023] Open
Abstract
The human gut is a complex microbial ecosystem comprising approximately 100 trillion microbes collectively known as the "gut microbiota". At a rough estimate, the human gut microbiome contains almost 3.3 million genes, which are about 150 times more than the total human genes present in the human genome. The vast amount of genetic information produces various enzymes and physiologically active substances. Thus, the gut microbiota contributes to the maintenance of host health; however, when healthy microbial composition is perturbed, a condition termed "dysbiosis", the altered gut microbiota can trigger the development of various gastrointestinal diseases. The gut microbiota has consequently become an extremely important research area in gastroenterology. It is also expected that the results of research into the gut microbiota will be applied to the prevention and treatment of human gastrointestinal diseases. A randomized controlled trial conducted by a Dutch research group in 2013 showed the positive effect of fecal microbiota transplantation (FMT) on recurrent Clostridioides difficile infection (CDI). These findings have led to the development of treatments targeting the gut microbiota, such as probiotics and FMT for inflammatory bowel diseases (IBD) and other diseases. This review focuses on the association of the gut microbiota with human gastrointestinal diseases, including CDI, IBD, and irritable bowel syndrome. We also summarize the therapeutic options for targeting the altered gut microbiota, such as probiotics and FMT.
Collapse
Affiliation(s)
- Atsushi Nishida
- Department of Gastroenterology and Hepatology, Nagahama City Hospital, Nagahama 526-8580, Japan
| | - Kyohei Nishino
- Department of Gastroenterology and Hepatology, Nagahama City Hospital, Nagahama 526-8580, Japan
| | - Masashi Ohno
- Department of Gastroenterology and Hepatology, Nagahama City Hospital, Nagahama 526-8580, Japan
| | - Keitaro Sakai
- Department of Gastroenterology and Hepatology, Nagahama City Hospital, Nagahama 526-8580, Japan
| | - Yuji Owaki
- Department of Gastroenterology and Hepatology, Nagahama City Hospital, Nagahama 526-8580, Japan
| | - Yoshika Noda
- Department of Gastroenterology and Hepatology, Nagahama City Hospital, Nagahama 526-8580, Japan
| | - Hirotsugu Imaeda
- Department of Gastroenterology and Hepatology, Nagahama City Hospital, Nagahama 526-8580, Japan
| |
Collapse
|
168
|
Crohn’s Disease, Host–Microbiota Interactions, and Immunonutrition: Dietary Strategies Targeting Gut Microbiome as Novel Therapeutic Approaches. Int J Mol Sci 2022; 23:ijms23158361. [PMID: 35955491 PMCID: PMC9369148 DOI: 10.3390/ijms23158361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Crohn’s disease (CD) is a complex, disabling, idiopathic, progressive, and destructive disorder with an unknown etiology. The pathogenesis of CD is multifactorial and involves the interplay between host genetics, and environmental factors, resulting in an aberrant immune response leading to intestinal inflammation. Due to the high morbidity and long-term management of CD, the development of non-pharmacological approaches to mitigate the severity of CD has recently attracted great attention. The gut microbiota has been recognized as an important player in the development of CD, and general alterations in the gut microbiome have been established in these patients. Thus, the gut microbiome has emerged as a pre-eminent target for potential new treatments in CD. Epidemiological and interventional studies have demonstrated that diet could impact the gut microbiome in terms of composition and functionality. However, how specific dietary strategies could modulate the gut microbiota composition and how this would impact host–microbe interactions in CD are still unclear. In this review, we discuss the most recent knowledge on host–microbe interactions and their involvement in CD pathogenesis and severity, and we highlight the most up-to-date information on gut microbiota modulation through nutritional strategies, focusing on the role of the microbiota in gut inflammation and immunity.
Collapse
|
169
|
García-Díaz M, Cendra MDM, Alonso-Roman R, Urdániz M, Torrents E, Martínez E. Mimicking the Intestinal Host-Pathogen Interactions in a 3D In Vitro Model: The Role of the Mucus Layer. Pharmaceutics 2022; 14:1552. [PMID: 35893808 PMCID: PMC9331835 DOI: 10.3390/pharmaceutics14081552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 12/20/2022] Open
Abstract
The intestinal mucus lines the luminal surface of the intestinal epithelium. This mucus is a dynamic semipermeable barrier and one of the first-line defense mechanisms against the outside environment, protecting the body against chemical, mechanical, or biological external insults. At the same time, the intestinal mucus accommodates the resident microbiota, providing nutrients and attachment sites, and therefore playing an essential role in the host-pathogen interactions and gut homeostasis. Underneath this mucus layer, the intestinal epithelium is organized into finger-like protrusions called villi and invaginations called crypts. This characteristic 3D architecture is known to influence the epithelial cell differentiation and function. However, when modelling in vitro the intestinal host-pathogen interactions, these two essential features, the intestinal mucus and the 3D topography are often not represented, thus limiting the relevance of the models. Here we present an in vitro model that mimics the small intestinal mucosa and its interactions with intestinal pathogens in a relevant manner, containing the secreted mucus layer and the epithelial barrier in a 3D villus-like hydrogel scaffold. This 3D architecture significantly enhanced the secretion of mucus. In infection with the pathogenic adherent invasive E. coli strain LF82, characteristic of Crohn's disease, we observed that this secreted mucus promoted the adhesion of the pathogen and at the same time had a protective effect upon its invasion. This pathogenic strain was able to survive inside the epithelial cells and trigger an inflammatory response that was milder when a thick mucus layer was present. Thus, we demonstrated that our model faithfully mimics the key features of the intestinal mucosa necessary to study the interactions with intestinal pathogens.
Collapse
Affiliation(s)
- María García-Díaz
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; (M.d.M.C.); (R.A.-R.); (M.U.); (E.T.)
| | - Maria del Mar Cendra
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; (M.d.M.C.); (R.A.-R.); (M.U.); (E.T.)
| | - Raquel Alonso-Roman
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; (M.d.M.C.); (R.A.-R.); (M.U.); (E.T.)
| | - María Urdániz
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; (M.d.M.C.); (R.A.-R.); (M.U.); (E.T.)
| | - Eduard Torrents
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; (M.d.M.C.); (R.A.-R.); (M.U.); (E.T.)
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Biology Faculty, University of Barcelona, 08028 Barcelona, Spain
| | - Elena Martínez
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; (M.d.M.C.); (R.A.-R.); (M.U.); (E.T.)
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
170
|
Wang X, Yue H, Zhang H, Wan L, Ji S, Geng C. Preventive Effects of Long-Term Intake of Plant Oils With Different Linoleic Acid/Alpha-Linolenic Acid Ratios on Acute Colitis Mouse Model. Front Nutr 2022; 9:788775. [PMID: 35903457 PMCID: PMC9315388 DOI: 10.3389/fnut.2022.788775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTo investigate the preventive effects of plant oils with different linoleic acid/alpha-linolenic acid (LA/ALA) ratios against colitis symptoms, and dysbiosis of gut microbiota in acute colitis mouse model.MethodsSixty male C57BL/6 mice were assigned into six groups (n = 10): three groups were fed low-fat diets with low, medium, and high LA/ALA ratios; and three groups were fed with high-fat diets with low, medium, and high LA/ALA ratios. After 3 months of diet, the mice were exposed to dextran sodium sulfate solution to induce acute colitis. The severity of colitis was estimated by disease activity index (DAI) and histopathological examination. 16S rRNA gene sequencing was used for the analysis of gut microbiota.ResultsPlant oils with a lower LA/ALA ratio showed higher alleviating effects on the symptoms of colitis, which were accompanied by the better prebiotic characteristics manifested as effectively inhibiting the abnormal expansion of phylum Proteobacteria and genus Escherichia-Shigella in the gut microbiota of colitis mouse models.ConclusionA potential IBD prevention strategy of reducing the LA/ALA ratio in the daily consumed plant oils was proposed in this study. Furthermore, based on the optimized LA/ALA ratio, this preventive effect might not be weakened by the high intake of plant oils.
Collapse
Affiliation(s)
- Xianshu Wang
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
- Shandong Academy of Agricultural Science, Jinan, China
| | - Hao Yue
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Haonan Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
- Shandong Academy of Agricultural Science, Jinan, China
| | - Lei Wan
- Department of Endocrine and Metabolic Diseases, Affiliated Hospital of Wei Fang Medical University, Weifang, China
| | - Shuxia Ji
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chong Geng
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Chong Geng,
| |
Collapse
|
171
|
Li Q, Zhou S, Wang Y, Cong J. Changes of intestinal microbiota and microbiota-based treatments in IBD. Arch Microbiol 2022; 204:442. [PMID: 35776212 DOI: 10.1007/s00203-022-03069-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/13/2022] [Indexed: 12/15/2022]
Abstract
Inflammatory bowel disease (IBD) has gained increasing attention from researchers in terms of its pathophysiology as a global disease with a growing incidence. Although the exact etiology of IBD is still unknown currently, various studies have made us realize that it is related to the dysbiosis of intestinal microbiota and the link between the two may not just be a simple causal relationship, but also a dynamic and complicated one. The intestinal microbiota has been confirmed to be closely related to the occurrence, development, and treatment of IBD. Therefore, this review focuses on the changes in the structure, function, and metabolites of intestinal bacteria, fungi, and viruses in influencing IBD, as well as various approaches to IBD treatment by changing disordered intestinal microbiota. Ultimately, more clinical studies will be needed to focus on the efficacy of intestinal microbiota-based treatments in IBD, because of the existence of both advantages and disadvantages.
Collapse
Affiliation(s)
- Qianyu Li
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Siyu Zhou
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Yanna Wang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jing Cong
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China.
| |
Collapse
|
172
|
Wang X, Liu Y. Offense and Defense in Granulomatous Inflammation Disease. Front Cell Infect Microbiol 2022; 12:797749. [PMID: 35846773 PMCID: PMC9277142 DOI: 10.3389/fcimb.2022.797749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Granulomatous inflammation (GI) diseases are a group of chronic inflammation disorders characterized by focal collections of multinucleated giant cells, epithelioid cells and macrophages, with or without necrosis. GI diseases are closely related to microbes, especially virulent intracellular bacterial infections are important factors in the progression of these diseases. They employ a range of strategies to survive the stresses imposed upon them and persist in host cells, becoming the initiator of the fighting. Microbe-host communication is essential to maintain functions of a healthy host, so defense capacity of hosts is another influence factor, which is thought to combine to determine the result of the fighting. With the development of gene research technology, many human genetic loci were identified to be involved in GI diseases susceptibility, providing more insights into and knowledge about GI diseases. The current review aims to provide an update on the most recent progress in the identification and characterization of bacteria in GI diseases in a variety of organ systems and clinical conditions, and examine the invasion and escape mechanisms of pathogens that have been demonstrated in previous studies, we also review the existing data on the predictive factors of the host, mainly on genetic findings. These strategies may improve our understanding of the mechanisms underlying GI diseases, and open new avenues for the study of the associated conditions in the future.
Collapse
Affiliation(s)
- Xinwen Wang
- Shaanxi Clinical Research Center for Oral Diseases, National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Department of Oral Medicine, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Yuan Liu
- Shaanxi International Joint Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Department of Histology and Pathology, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
173
|
Li Y, Lin X, Wang W, Wang W, Cheng S, Huang Y, Zou Y, Ke J, Zhu L. The Proinflammatory Role of Guanylate-Binding Protein 5 in Inflammatory Bowel Diseases. Front Microbiol 2022; 13:926915. [PMID: 35722277 PMCID: PMC9201962 DOI: 10.3389/fmicb.2022.926915] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/09/2022] [Indexed: 01/31/2023] Open
Abstract
NLRP3 inflammasome is implicated in the pathogenesis of inflammatory bowel diseases (IBD). Since guanylate-binding protein 5 (GBP5) induces the NLRP3 inflammasome activity, we aim to investigate the potential role of GBP5 in IBD pathogenesis. The expression of GBP5, NLRP3 inflammasome, and related cytokines and chemokines was examined in two cohorts of IBD patients and healthy controls, by microarray transcriptome analysis and quantitative real-time PCR. Cellular localization of GBP5 in colonic biopsies was examined by immunohistochemistry and immunofluorescence with confocal microscopy. For functional studies, GBP5 was induced by interferon γ or silenced by siRNA or CRISPR/CAS9 technique, and inflammatory activities were evaluated at mRNA and protein levels. We found that the expression of GBP5 was elevated in colonic mucosa in two geographically and culturally distinct IBD cohorts. In colonic tissues of IBD patients, GBP5 expression was mainly confined to immune cells and the levels of GBP5 expression were correlated with those of the inflammatory cytokines and chemokines. In cultured T and macrophage cells, the expression of proinflammatory cytokines and chemokines was increased when GBP5 was induced, while GBP5 deficiency leads to decreased expression of proinflammatory mediators including gasdermin D, caspase 1, cytokines, and chemokines. We conclude that GBP5 is required in the expression of many proinflammatory cytokines and chemokines in intestinal immune cells. In addition, GBP5 may upregulate inflammatory reactions through an inflammasome-mediated mechanism. Since GBP5 plays a proinflammatory role at the early steps of the inflammatory cascades of IBD pathogenesis, and is implicated in IBD patients of distinct genetic and environmental backgrounds, targeting GBP5 could be an effective strategy for the management of IBD.
Collapse
Affiliation(s)
- Yichen Li
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Department of Colorectal Surgery, The Sixth Affiliated Hospital, Guangdong Institute of Gastroenterology, Sun Yat-sen University, Guangzhou, China
| | - Xutao Lin
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Department of Gastrointestinal Endoscopy, The Sixth Affiliated Hospital, Guangdong Institute of Gastroenterology, Sun Yat-sen University, Guangzhou, China
| | - Wenxia Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Department of Colorectal Surgery, The Sixth Affiliated Hospital, Guangdong Institute of Gastroenterology, Sun Yat-sen University, Guangzhou, China
| | - Wenyu Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Department of Colorectal Surgery, The Sixth Affiliated Hospital, Guangdong Institute of Gastroenterology, Sun Yat-sen University, Guangzhou, China
| | - Sijing Cheng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Department of Colorectal Surgery, The Sixth Affiliated Hospital, Guangdong Institute of Gastroenterology, Sun Yat-sen University, Guangzhou, China.,School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Yibo Huang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Department of Colorectal Surgery, The Sixth Affiliated Hospital, Guangdong Institute of Gastroenterology, Sun Yat-sen University, Guangzhou, China
| | - Yifeng Zou
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Department of Colorectal Surgery, The Sixth Affiliated Hospital, Guangdong Institute of Gastroenterology, Sun Yat-sen University, Guangzhou, China
| | - Jia Ke
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Department of Colorectal Surgery, The Sixth Affiliated Hospital, Guangdong Institute of Gastroenterology, Sun Yat-sen University, Guangzhou, China
| | - Lixin Zhu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Department of Colorectal Surgery, The Sixth Affiliated Hospital, Guangdong Institute of Gastroenterology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
174
|
Ma S, Zhang J, Liu H, Li S, Wang Q. The Role of Tissue-Resident Macrophages in the Development and Treatment of Inflammatory Bowel Disease. Front Cell Dev Biol 2022; 10:896591. [PMID: 35721513 PMCID: PMC9199005 DOI: 10.3389/fcell.2022.896591] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammatory bowel disease (IBD), comprising Crohn’s disease and ulcerative colitis, is a refractory disease with many immune abnormalities and pathologies in the gastrointestinal tract. Because macrophages can distinguish innocuous antigens from potential pathogens to maintain mucosa barrier functions, they are essential cells in the intestinal immune system. With numerous numbers in the intestinal tract, tissue-resident macrophages have a significant effect on the constant regeneration of intestinal epithelial cells and maintaining the immune homeostasis of the intestinal mucosa. They also have a significant influence on IBD through regulating pro-(M1) or anti-inflammatory (M2) phenotype polarization according to different environmental cues. The disequilibrium of the phenotypes and functions of macrophages, disturbed by intracellular or extracellular stimuli, influences the progression of disease. Further investigation of macrophages’ role in the progression of IBD will facilitate deciphering the pathogenesis of disease and exploring novel targets to develop novel medications. In this review, we shed light on the origin and maintenance of intestinal macrophages, as well as the role of macrophages in the occurrence and development of IBD. In addition, we summarize the interaction between gut microbiota and intestinal macrophages, and the role of the macrophage-derived exosome. Furthermore, we discuss the molecular and cellular mechanisms participating in the polarization and functions of gut macrophages, the potential targeted strategies, and current clinical trials for IBD.
Collapse
Affiliation(s)
- Shengjie Ma
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Chang Chun, China
| | - Jiaxin Zhang
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Chang Chun, China
| | - Heshi Liu
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Chang Chun, China
| | - Shuang Li
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Chang Chun, China
| | - Quan Wang
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Chang Chun, China
| |
Collapse
|
175
|
Zhang Y, Bhosle A, Bae S, McIver LJ, Pishchany G, Accorsi EK, Thompson KN, Arze C, Wang Y, Subramanian A, Kearney SM, Pawluk A, Plichta DR, Rahnavard A, Shafquat A, Xavier RJ, Vlamakis H, Garrett WS, Krueger A, Huttenhower C, Franzosa EA. Discovery of bioactive microbial gene products in inflammatory bowel disease. Nature 2022; 606:754-760. [PMID: 35614211 PMCID: PMC9913614 DOI: 10.1038/s41586-022-04648-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/15/2022] [Indexed: 01/26/2023]
Abstract
Microbial communities and their associated bioactive compounds1-3 are often disrupted in conditions such as the inflammatory bowel diseases (IBD)4. However, even in well-characterized environments (for example, the human gastrointestinal tract), more than one-third of microbial proteins are uncharacterized and often expected to be bioactive5-7. Here we systematically identified more than 340,000 protein families as potentially bioactive with respect to gut inflammation during IBD, about half of which have not to our knowledge been functionally characterized previously on the basis of homology or experiment. To validate prioritized microbial proteins, we used a combination of metagenomics, metatranscriptomics and metaproteomics to provide evidence of bioactivity for a subset of proteins that are involved in host and microbial cell-cell communication in the microbiome; for example, proteins associated with adherence or invasion processes, and extracellular von Willebrand-like factors. Predictions from high-throughput data were validated using targeted experiments that revealed the differential immunogenicity of prioritized Enterobacteriaceae pilins and the contribution of homologues of von Willebrand factors to the formation of Bacteroides biofilms in a manner dependent on mucin levels. This methodology, which we term MetaWIBELE (workflow to identify novel bioactive elements in the microbiome), is generalizable to other environmental communities and human phenotypes. The prioritized results provide thousands of candidate microbial proteins that are likely to interact with the host immune system in IBD, thus expanding our understanding of potentially bioactive gene products in chronic disease states and offering a rational compendium of possible therapeutic compounds and targets.
Collapse
Affiliation(s)
- Yancong Zhang
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA,Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA,Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Amrisha Bhosle
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA,Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA,Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Sena Bae
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA,Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Lauren J. McIver
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA,Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Gleb Pishchany
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Emma K. Accorsi
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA,Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA,Center for Communicable Disease Dynamics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Kelsey N. Thompson
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA,Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA,Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Cesar Arze
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Ya Wang
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA,Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA,Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Ayshwarya Subramanian
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA,Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Sean M. Kearney
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - April Pawluk
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA,Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Damian R. Plichta
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ali Rahnavard
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA,Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Afrah Shafquat
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA,Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Ramnik J. Xavier
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA,Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA,Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hera Vlamakis
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Wendy S. Garrett
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA,Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Andy Krueger
- Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
| | - Curtis Huttenhower
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA. .,Harvard Chan Microbiome in Public Health Center, Harvard T.H. Chan School of Public Health, Boston, MA, USA. .,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Eric A. Franzosa
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA,Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA,Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA,These authors jointly supervised this work: Curtis Huttenhower & Eric A. Franzosa
| |
Collapse
|
176
|
Facciotti F. Modulation of intestinal immune cell responses by eubiotic or dysbiotic microbiota in inflammatory bowel diseases. PHARMANUTRITION 2022. [DOI: 10.1016/j.phanu.2022.100303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
177
|
Beneficial Effects of Linseed Supplementation on Gut Mucosa-Associated Microbiota in a Physically Active Mouse Model of Crohn's Disease. Int J Mol Sci 2022; 23:ijms23115891. [PMID: 35682570 PMCID: PMC9180845 DOI: 10.3390/ijms23115891] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/10/2022] [Accepted: 05/22/2022] [Indexed: 02/07/2023] Open
Abstract
The Western diet, rich in lipids and in n-6 polyunsaturated fatty acids (PUFAs), favors gut dysbiosis observed in Crohn's disease (CD). The aim of this study was to assess the effects of rebalancing the n-6/n-3 PUFA ratio in CEABAC10 transgenic mice that mimic CD. Mice in individual cages with running wheels were randomized in three diet groups for 12 weeks: high-fat diet (HFD), HFD + linseed oil (HFD-LS-O) and HFD + extruded linseed (HFD-LS-E). Then, they were orally challenged once with the Adherent-Invasive Escherichia coli (AIEC) LF82 pathobiont. After 12 weeks of diet, total energy intake, body composition, and intestinal permeability were not different between groups. After the AIEC-induced intestinal inflammation, fecal lipocalin-2 concentration was lower at day 6 in n-3 PUFAs supplementation groups (HFD-LS-O and HFD-LS-E) compared to HFD. Analysis of the mucosa-associated microbiota showed that the abundance of Prevotella, Paraprevotella, Ruminococcus, and Clostridiales was higher in the HFD-LS-E group. Butyrate levels were higher in the HFD-LS-E group and correlated with the Firmicutes/Proteobacteria ratio. This study demonstrates that extruded linseed supplementation had a beneficial health effect in a physically active mouse model of CD susceptibility. Additional studies are required to better decipher the matrix influence in the linseed supplementation effect.
Collapse
|
178
|
Otake-Kasamoto Y, Kayama H, Kishikawa T, Shinzaki S, Tashiro T, Amano T, Tani M, Yoshihara T, Li B, Tani H, Liu L, Hayashi A, Okuzaki D, Motooka D, Nakamura S, Okada Y, Iijima H, Takeda K, Takehara T. Lysophosphatidylserines derived from microbiota in Crohn’s disease elicit pathological Th1 response. J Exp Med 2022; 219:213240. [PMID: 35608941 PMCID: PMC9134096 DOI: 10.1084/jem.20211291] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 03/17/2022] [Accepted: 05/02/2022] [Indexed: 12/31/2022] Open
Abstract
Microbiota alteration and IFN-γ–producing CD4+ T cell overactivation are implicated in Crohn’s disease (CD) pathogenesis. However, it remains unclear how dysbiosis enhances Th1 responses, leading to intestinal inflammation. Here, we identified key metabolites derived from dysbiotic microbiota that induce enhanced Th1 responses and exaggerate colitis in mouse models. Patients with CD showed elevated lysophosphatidylserine (LysoPS) concentration in their feces, accompanied by a higher relative abundance of microbiota possessing a gene encoding the phospholipid-hydrolyzing enzyme phospholipase A. LysoPS induced metabolic reprogramming, thereby eliciting aberrant effector responses in both human and mouse IFN-γ–producing CD4+ T cells. Administration of LysoPS into two mouse colitis models promoted large intestinal inflammation. LysoPS-induced aggravation of colitis was impaired in mice lacking P2ry10 and P2ry10b, and their CD4+ T cells were hyporesponsive to LysoPS. Thus, our findings elaborate on the mechanism by which metabolites elevated in patients with CD harboring dysbiotic microbiota promote Th1-mediated intestinal pathology.
Collapse
Affiliation(s)
- Yuriko Otake-Kasamoto
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hisako Kayama
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Osaka, Japan
| | - Toshihiro Kishikawa
- Department of Statistical Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Otorhinolaryngology—Head and Neck Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shinichiro Shinzaki
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Taku Tashiro
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takahiro Amano
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Mizuki Tani
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takeo Yoshihara
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Bo Li
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Haruka Tani
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Li Liu
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Akio Hayashi
- Discovery Technology Research Laboratories, Ono Pharmaceutical Co., Ltd., Osaka, Japan
| | - Daisuke Okuzaki
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - Daisuke Motooka
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - Shota Nakamura
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - Yukinori Okada
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Department of Statistical Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - Hideki Iijima
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
179
|
Zhang S, Morgan X, Dogan B, Martin FP, Strickler S, Oka A, Herzog J, Liu B, Dowd SE, Huttenhower C, Pichaud M, Dogan EI, Satsangi J, Longman R, Yantiss R, Mueller LA, Scherl EJ, Sartor RB, Simpson KW. Mucosal metabolites fuel the growth and virulence of E. coli linked to Crohn's disease. JCI Insight 2022; 7:e157013. [PMID: 35413017 PMCID: PMC9220930 DOI: 10.1172/jci.insight.157013] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/07/2022] [Indexed: 11/24/2022] Open
Abstract
Elucidating how resident enteric bacteria interact with their hosts to promote health or inflammation is of central importance to diarrheal and inflammatory bowel diseases across species. Here, we integrated the microbial and chemical microenvironment of a patient's ileal mucosa with their clinical phenotype and genotype to identify factors favoring the growth and virulence of adherent and invasive E. coli (AIEC) linked to Crohn's disease. We determined that the ileal niche of AIEC was characterized by inflammation, dysbiosis, coculture of Enterococcus, and oxidative stress. We discovered that mucosal metabolites supported general growth of ileal E. coli, with a selective effect of ethanolamine on AIEC that was augmented by cometabolism of ileitis-associated amino acids and glutathione and by symbiosis-associated fucose. This metabolic plasticity was facilitated by the eut and pdu microcompartments, amino acid metabolism, γ-glutamyl-cycle, and pleiotropic stress responses. We linked metabolism to virulence and found that ethanolamine and glutamine enhanced AIEC motility, infectivity, and proinflammatory responses in vitro. We connected use of ethanolamine to intestinal inflammation and L-fuculose phosphate aldolase (fucA) to symbiosis in AIEC monoassociated IL10-/- mice. Collectively, we established that AIEC were pathoadapted to utilize mucosal metabolites associated with health and inflammation for growth and virulence, enabling the transition from symbiont to pathogen in a susceptible host.
Collapse
Affiliation(s)
- Shiying Zhang
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Xochitl Morgan
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Belgin Dogan
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Francois-Pierre Martin
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Suzy Strickler
- Boyce Thompson Institute, Cornell University, Ithaca, New York, USA
| | - Akihiko Oka
- Shimane University Faculty of Medicine, Shimane, Japan
| | - Jeremy Herzog
- Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina (UNC) at Chapel Hill, North Carolina, USA
| | - Bo Liu
- Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina (UNC) at Chapel Hill, North Carolina, USA
| | | | - Curtis Huttenhower
- Biostatistics Department, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | | | - Esra I. Dogan
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Jack Satsangi
- Translational Gastroenterology Unit, Nuffield Department of Medicine, John Radcliffe Hospital Oxford, United Kingdom
| | - Randy Longman
- Jill Roberts Center for Inflammatory Bowel Disease, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Rhonda Yantiss
- Jill Roberts Center for Inflammatory Bowel Disease, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Lukas A. Mueller
- Boyce Thompson Institute, Cornell University, Ithaca, New York, USA
| | - Ellen J. Scherl
- Jill Roberts Center for Inflammatory Bowel Disease, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - R. Balfour Sartor
- Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina (UNC) at Chapel Hill, North Carolina, USA
| | - Kenneth W. Simpson
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
- Jill Roberts Center for Inflammatory Bowel Disease, Weill Cornell Medical College, Cornell University, New York, New York, USA
| |
Collapse
|
180
|
Liang L, Yang C, Liu L, Mai G, Li H, Wu L, Jin M, Chen Y. Commensal bacteria-derived extracellular vesicles suppress ulcerative colitis through regulating the macrophages polarization and remodeling the gut microbiota. Microb Cell Fact 2022; 21:88. [PMID: 35578339 PMCID: PMC9109417 DOI: 10.1186/s12934-022-01812-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/03/2022] [Indexed: 12/13/2022] Open
Abstract
Background The extracellular vesicles (EVs) traffic constitutes an essential pathway of cellular communication. And the molecules in EVs produced by procaryotes help in maintaining homeostasis, addressing microbial imbalance and infections, and regulating the immune system. Despite the fact that Clostridium butyricum (C. butyricum) is commonly used for treating ulcerative colitis (UC), the potential role of C. butyricum-secreted EVs in commensals-host crosstalk remains unclear. Results Here, we performed flow cytometry, western blot, immunohistochemistry and 16S rRNA analysis to explore the role of C. butyricum-derived EVs on macrophage polarization and gut microbiota composition in a dextran sulfate sodium (DSS)-induced UC mouse model. The antibiotic cocktail-induced microbiome depletion and faecal transplantations were used to further investigate the mechanisms by which EVs regulate macrophage balance. Our findings showed that C. butyricum-derived EVs improved the remission of murine colitis and polarized the transformation of macrophages to the M2 type. Furthermore, C. butyricum-derived EVs restored gut dysbiosis and altered the relative abundance of Helicobacter, Escherichia-Shigella, Lactobacillus, Akkermansia and Bacteroides, which, in turn, faecal transplantations from EVs-treated mice relieved the symptoms of UC and improved the impact of EVs on the reprogramming of the M2 macrophages. Conclusion C. butyricum-derived EVs could protect against DSS-induced colitis by regulating the repolarization of M2 macrophages and remodelling the composition of gut microbiota, suggesting the potential efficacy of EVs from commensal and probiotic Clostridium species against UC. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01812-6.
Collapse
|
181
|
Domestic Environment and Gut Microbiota: Lessons from Pet Dogs. Microorganisms 2022; 10:microorganisms10050949. [PMID: 35630391 PMCID: PMC9143008 DOI: 10.3390/microorganisms10050949] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022] Open
Abstract
Accumulating data show the involvement of intestinal microbiota in the development and maintenance of numerous diseases. Many environmental factors influence the composition and function of the gut microbiota. An animal model subjected to the same environmental constraints that will allow better characterization of the microbiota–host dialogue is awaited. The domestic dog has physiological, dietary and pathological characteristics similar to those of humans and shares the domestic environment and lifestyle of its owner. This review exposes how the domestication of dogs has brought them closer to humans based on their intrinsic and extrinsic similarities which were discerned through examining and comparing the current knowledge and data on the intestinal microbiota of humans and canines in the context of several spontaneous pathologies, including inflammatory bowel disease, obesity and diabetes mellitus.
Collapse
|
182
|
Cortes GM, Marcialis MA, Bardanzellu F, Corrias A, Fanos V, Mussap M. Inflammatory Bowel Disease and COVID-19: How Microbiomics and Metabolomics Depict Two Sides of the Same Coin. Front Microbiol 2022; 13:856165. [PMID: 35391730 PMCID: PMC8981987 DOI: 10.3389/fmicb.2022.856165] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/21/2022] [Indexed: 12/11/2022] Open
Abstract
The integrity of the gastrointestinal tract structure and function is seriously compromised by two pathological conditions sharing, at least in part, several pathogenetic mechanisms: inflammatory bowel diseases (IBD) and coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. IBD and COVID-19 are marked by gut inflammation, intestinal barrier breakdown, resulting in mucosal hyperpermeability, gut bacterial overgrowth, and dysbiosis together with perturbations in microbial and human metabolic pathways originating changes in the blood and fecal metabolome. This review compared the most relevant metabolic and microbial alterations reported from the literature in patients with IBD with those in patients with COVID-19. In both diseases, gut dysbiosis is marked by the prevalence of pro-inflammatory bacterial species and the shortfall of anti-inflammatory species; most studies reported the decrease in Firmicutes, with a specific decrease in obligately anaerobic producers short-chain fatty acids (SCFAs), such as Faecalibacterium prausnitzii. In addition, Escherichia coli overgrowth has been observed in IBD and COVID-19, while Akkermansia muciniphila is depleted in IBD and overexpressed in COVID-19. In patients with COVID-19, gut dysbiosis continues after the clearance of the viral RNA from the upper respiratory tract and the resolution of clinical symptoms. Finally, we presented and discussed the impact of gut dysbiosis, inflammation, oxidative stress, and increased energy demand on metabolic pathways involving key metabolites, such as tryptophan, phenylalanine, histidine, glutamine, succinate, citrate, and lipids.
Collapse
Affiliation(s)
- Gian Mario Cortes
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Monserrato, Italy
| | - Maria Antonietta Marcialis
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Monserrato, Italy
| | - Flaminia Bardanzellu
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Monserrato, Italy
| | - Angelica Corrias
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Monserrato, Italy
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Monserrato, Italy
| | - Michele Mussap
- Laboratory Medicine, Department of Surgical Sciences, School of Medicine, University of Cagliari, Monserrato, Italy
| |
Collapse
|
183
|
Xu P, Lv T, Dong S, Cui Z, Luo X, Jia B, Jeon CO, Zhang J. Association between intestinal microbiome and inflammatory bowel disease: insights from bibliometric analysis. Comput Struct Biotechnol J 2022; 20:1716-1725. [PMID: 35495114 PMCID: PMC9019919 DOI: 10.1016/j.csbj.2022.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 12/12/2022] Open
Abstract
Intestinal microbiota has been increasingly studied in the field of IBD over the last 20 years. The gut microbiome, metabolites, and their corresponding host signaling pathways are highly associated with IBD. Probiotics may relieve IBD as a complementary therapy. The pathogenesis and treatment strategies of IBD need to be further studied.
The gut microbiome is highly linked to inflammatory bowel disease (IBD). A total of 3890 publications related to the two terms from 2000 to 2020 were extracted from the Web of Science Core Collection to study the association from a bibliometric perspective. Publications on this topic have grown rapidly since 2008. The United States and Harvard University are the country and institution with the largest number of publications, respectively. Inflammatory Bowel Diseases is the most productive journal with 211 published articles. The most influential journal in this field is Gut with 13,359 citations. The co-citation analysis of references showed that the IBD-related topics with the highest focus are “gut microbiota,” “metagenomics,” “bacterial community,” “fecal microbiota transplantation,” “probiotics,” and “colitis-associated colorectal cancer.” Keyword cluster and keyword burst analyses showed that “gut microbiota,” “metagenomics,” and “fecal microbiota transplantation” are currently the most researched topics in the field of IBD. The literature in this field is mainly distributed between alterations of the intestinal microbiota, microbial metabolites, and related host signaling pathways. Probiotic treatment also frequently appears in literature. This bibliometric analysis can guide future research and promote the development of the field of gut microbiome and IBD.
Collapse
|
184
|
Movva R, Murtaza N, Giri R, Png CW, Davies J, Alabbas S, Oancea I, O'Cuiv P, Morrison M, Begun J, Florin TH. Successful Manipulation of the Gut Microbiome to Treat Spontaneous and Induced Murine Models of Colitis. GASTRO HEP ADVANCES 2022; 1:359-374. [PMID: 39131681 PMCID: PMC11307790 DOI: 10.1016/j.gastha.2021.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 12/31/2021] [Indexed: 08/13/2024]
Abstract
Background and Aims There is clinical interest in the sustainability or otherwise of prebiotic, microbial, and antibiotic treatments to both prevent and treat inflammatory bowel diseases. This study examined the role of antibiotic manipulation of the gut microbiome to treat spontaneous and induced murine models of colitis. Methods Symptomatic, histological, molecular, and microbial ecology and bioinformatic readouts were used to study the effect of a 10-day antibiotic cocktail and then follow-up over 2 months in the spontaneous Winnie colitis mouse preclinical model of ulcerative colitis and also the indirect antibiotic and Winnie microbiotic gavage effects in an acute dextran sodium sulfate-induced colitis model in wild-type mice. Results The antibiotics elicited a striking reduction in both colitis symptoms and blinded histological colitis scores, together with a convergence of the microbial taxonomy of the spontaneous colitis and wild-type control mice, toward a taxonomic phenotype usually considered to be dysbiotic. The improvement in colitis was sustained over the following 8 weeks although the microbial taxonomy changed. In vitro, fecal waters from the antibiotic-treated colitis and wild-type mice suppressed the inflammatory tenor of colonic epithelial cells, and gavaged cecal slurries from these mice moderated the acute induced colitis. Conclusion The results clearly show the possibility of a sustained remission of colitis by microbial manipulation, which is relevant to clinical management of inflammatory bowel diseases. The beneficial effects appeared to depend on the microbial metabolome rather than its taxonomy.
Collapse
Affiliation(s)
- Ramya Movva
- IBD Program, Translational Research Institute, Mater Research – University of Queensland, Brisbane, Queensland, Australia
| | - Nida Murtaza
- Translational Research Institute, Queensland University of Technology
| | - Rabina Giri
- IBD Program, Translational Research Institute, Mater Research – University of Queensland, Brisbane, Queensland, Australia
| | - Chin Wen Png
- IBD Program, Translational Research Institute, Mater Research – University of Queensland, Brisbane, Queensland, Australia
| | - Julie Davies
- IBD Program, Translational Research Institute, Mater Research – University of Queensland, Brisbane, Queensland, Australia
| | - Saleh Alabbas
- IBD Program, Translational Research Institute, Mater Research – University of Queensland, Brisbane, Queensland, Australia
| | - Iulia Oancea
- IBD Program, Translational Research Institute, Mater Research – University of Queensland, Brisbane, Queensland, Australia
| | - Páraic O'Cuiv
- Microbial Biology and Metagenomics Program, UQ Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Mark Morrison
- Microbial Biology and Metagenomics Program, UQ Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Jakob Begun
- IBD Program, Translational Research Institute, Mater Research – University of Queensland, Brisbane, Queensland, Australia
| | - Timothy H. Florin
- IBD Program, Translational Research Institute, Mater Research – University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
185
|
Santana PT, Rosas SLB, Ribeiro BE, Marinho Y, de Souza HSP. Dysbiosis in Inflammatory Bowel Disease: Pathogenic Role and Potential Therapeutic Targets. Int J Mol Sci 2022; 23:3464. [PMID: 35408838 PMCID: PMC8998182 DOI: 10.3390/ijms23073464] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
Microbe-host communication is essential to maintain vital functions of a healthy host, and its disruption has been associated with several diseases, including Crohn's disease and ulcerative colitis, the two major forms of inflammatory bowel disease (IBD). Although individual members of the intestinal microbiota have been associated with experimental IBD, identifying microorganisms that affect disease susceptibility and phenotypes in humans remains a considerable challenge. Currently, the lack of a definition between what is healthy and what is a dysbiotic gut microbiome limits research. Nevertheless, although clear proof-of-concept of causality is still lacking, there is an increasingly evident need to understand the microbial basis of IBD at the microbial strain, genomic, epigenomic, and functional levels and in specific clinical contexts. Recent information on the role of diet and novel environmental risk factors affecting the gut microbiome has direct implications for the immune response that impacts the development of IBD. The complexity of IBD pathogenesis, involving multiple distinct elements, suggests the need for an integrative approach, likely utilizing computational modeling of molecular datasets to identify more specific therapeutic targets.
Collapse
Affiliation(s)
- Patricia Teixeira Santana
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil; (P.T.S.); (S.L.B.R.); (B.E.R.); (Y.M.)
| | - Siane Lopes Bittencourt Rosas
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil; (P.T.S.); (S.L.B.R.); (B.E.R.); (Y.M.)
| | - Beatriz Elias Ribeiro
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil; (P.T.S.); (S.L.B.R.); (B.E.R.); (Y.M.)
| | - Ygor Marinho
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil; (P.T.S.); (S.L.B.R.); (B.E.R.); (Y.M.)
| | - Heitor S. P. de Souza
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil; (P.T.S.); (S.L.B.R.); (B.E.R.); (Y.M.)
- D’Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro 30, Botafogo, Rio de Janeiro 22281-100, RJ, Brazil
| |
Collapse
|
186
|
Zhao Y, Chen L, Chen L, Huang J, Chen S, Yu Z. Exploration of the Potential Relationship Between Gut Microbiota Remodeling Under the Influence of High-Protein Diet and Crohn's Disease. Front Microbiol 2022; 13:831176. [PMID: 35308389 PMCID: PMC8927681 DOI: 10.3389/fmicb.2022.831176] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/07/2022] [Indexed: 12/20/2022] Open
Abstract
Diet and gut microbiota are both important factors in the pathogenesis of Crohn’s disease, and changes in diet can lead to alteration in gut microbiome. However, there is still insufficient exploration on interaction within the gut microbiota under high-protein diet (HPD) intervention. We analyzed the gut microbial network and marker taxa from patients with Crohn’s disease in public database (GMrepo, https://gmrepo.humangut.info) combined with investigation of the changes of composition and function of intestinal microbiome in mice fed on HPD by metagenomic sequencing. The results showed that there was an indirect negative correlation between Escherichia coli and Lachnospiraceae in patients with Crohn’s disease, and Escherichia coli was a marker for both Crohn’s disease and HPD intervention. Besides, enriched HH_1414 (one of the orthologs in eggNOG) related to tryptophan metabolism was from Helicobacter, whereas reduced orthologs (OGs) mainly contributed by Lachnospiraceae after HPD intervention. Our research indicates that some compositional changes in gut microbiota after HPD intervention are consistent with those in patients with Crohn’s disease, providing insights into potential impact of altered gut microbes under HPD on Crohn’s disease.
Collapse
Affiliation(s)
- Yiming Zhao
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Lulu Chen
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Liyu Chen
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
| | - Shuijiao Chen
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zheng Yu
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| |
Collapse
|
187
|
Chen L, Wang J. Gut microbiota and inflammatory bowel disease. WIREs Mech Dis 2022; 14:e1540. [PMID: 35266651 DOI: 10.1002/wsbm.1540] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 12/14/2022]
Abstract
Gut microbiota refers to the complex aggregation of microbes in gut, including bacteria, archaea, fungi, and viruses, and they exert marked influence on the host's health. Perturbations in the gut microbiota have been closely linked to initiation and progression of IBD, which has become a disease with accelerating incidence worldwide, but it remains to be thoroughly investigated how microbial involvement might contribute to IBD. In this review, we discuss the current research findings concerning alterations in the gut microbiota, trans-kingdom interaction between the members of the gut microbiota, their interactions with the immune system of host, their potential role in the IBD pathogenesis, and the relationship between gut microbiota and IBD. We hope to provide a better understanding of the causes of IBD and shed light on the development of microbiome-based therapeutic approaches, which might be a promising strategy to alleviate, manage, and eventually cure IBD. This article is categorized under: Infectious Diseases > Genetics/Genomics/Epigenetics Infectious Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Liang Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science, Beijing, China
| | - Jun Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science, Beijing, China
| |
Collapse
|
188
|
López-Siles M, Camprubí-Font C, Gómez del Pulgar EM, Sabat Mir M, Busquets D, Sanz Y, Martinez-Medina M. Prevalence, Abundance, and Virulence of Adherent-Invasive Escherichia coli in Ulcerative Colitis, Colorectal Cancer, and Coeliac Disease. Front Immunol 2022; 13:748839. [PMID: 35359974 PMCID: PMC8960851 DOI: 10.3389/fimmu.2022.748839] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/31/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND & AIMS Adherent-invasive E. coli (AIEC) has largely been implicated in the pathogenesis of Crohn's disease (CD). E. coli strains with similar genetic backgrounds and virulence genes profiles have been associated with other intestinal disorders, such as ulcerative colitis (UC), colorectal cancer (CRC), and coeliac disease (CeD), but the role of AIEC in these diseases remains unexplored. We aimed to assess the distribution, abundance, and pathogenic features of AIEC in UC, CRC, and CeD. METHODS The AIEC phenotype was investigated in 4,233 E. coli isolated from the ileum and colon of 14 UC and 15 CRC patients and in 38 fecal E. coli strains obtained from 17 CeD and 10 healthy (H) children. AIEC prevalence and abundance were compared with previous data from CD patients and H controls. Clonality, virulence gene carriage, and phylogenetic origin were determined for the AIEC identified. RESULTS In UC, AIEC prevalence was intermediate between CD and H subjects (UC: 35.7%, CD: 55.0%, H: 21.4%), and similar to CD patients with colonic disease (C-CD: 40.0%). In CRC, the prevalence was lower (6.7%) than these groups. In patients with AIEC, the estimated abundance was similar across all intestinal conditions. All AIEC strains isolated from UC and CRC belonged to the B1 phylogroup, except for a strain of the A phylogroup, and the majority (75% of clonally distinct AIEC) harbored the Afa/Dr operon and the cdt gene. None of the E. coli isolated from the CeD cohort were AIEC. Nonetheless, E. coli strains isolated from active CeD patients showed higher invasion indices than those isolated from H and inactive CeD pediatric patients. CONCLUSION We support the hypothesis that AIEC-like strains can be involved not only in CD but also in UC. Further works are needed to study the virulence particularities of these groups of strains and to determine if there is a causative link between AIEC and UC. In contrast, we rule out the possible association of AIEC with CRC. In addition, to further study the E. coli strains in CeD for their possible pathogenic role would be of interest.
Collapse
Affiliation(s)
- Mireia López-Siles
- Microbiology of Intestinal Diseases, Biology Department, Universitat de Girona, Girona, Spain
| | - Carla Camprubí-Font
- Microbiology of Intestinal Diseases, Biology Department, Universitat de Girona, Girona, Spain
| | - Eva M. Gómez del Pulgar
- Instituto de Agroquímica y Tecnología de Alimentos, Spanish National Research Council (CSIC), Paterna, Spain
| | - Miriam Sabat Mir
- Department of Gastroenterology, Hospital Santa Caterina, Salt, Spain
| | - David Busquets
- Department of Gastroenterology, Hospital Universitari Doctor Josep Trueta, Girona, Spain
| | - Yolanda Sanz
- Instituto de Agroquímica y Tecnología de Alimentos, Spanish National Research Council (CSIC), Paterna, Spain
| | | |
Collapse
|
189
|
Bioinspired membrane-based nanomodulators for immunotherapy of autoimmune and infectious diseases. Acta Pharm Sin B 2022; 12:1126-1147. [PMID: 35530145 PMCID: PMC9069404 DOI: 10.1016/j.apsb.2021.09.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/29/2021] [Accepted: 08/11/2021] [Indexed: 12/20/2022] Open
Abstract
Autoimmune or infectious diseases often instigate the undesirable damages to tissues or organs to trigger immune-related diseases, which involve plenty of immune cells, pathogens and autoantibodies. Nanomedicine has a great potential in modulating immune system. Particularly, biomimetic nanomodulators can be designed for prevention, diagnosis and therapy to achieve a better targeted immunotherapy. With the development of materials science and bioengineering, a wide range of membrane-coated nanomodulators are available. Herein, we summarize recent advancements of bioinspired membrane-coated nanoplatform for systemic protection against immune-related diseases including autoimmune and infectious diseases. We also rethink the challenges or limitations in the progress of the therapeutic nanoplatform, and discuss the further application of the nanomodulators in the view of translational medicine for combating immune-related diseases.
Collapse
|
190
|
Chen M, Fan HN, Chen XY, Yi YC, Zhang J, Zhu JS. Alterations in the saliva microbiome in patients with gastritis and small bowel inflammation. Microb Pathog 2022; 165:105491. [DOI: 10.1016/j.micpath.2022.105491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 11/24/2022]
|
191
|
Qiu P, Ishimoto T, Fu L, Zhang J, Zhang Z, Liu Y. The Gut Microbiota in Inflammatory Bowel Disease. Front Cell Infect Microbiol 2022; 12:733992. [PMID: 35273921 PMCID: PMC8902753 DOI: 10.3389/fcimb.2022.733992] [Citation(s) in RCA: 217] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 01/24/2022] [Indexed: 12/16/2022] Open
Abstract
Epidemiological surveys indicate that the incidence of inflammatory bowel disease (IBD) is increasing rapidly with the continuous growth of the economy. A large number of studies have investigated the relationship between the genetic factors related to the susceptibility to IBD and the gut microbiota of patients by using high-throughput sequencing. IBD is considered the outcome of the interaction between host and microorganisms, including intestinal microbial factors, abnormal immune response, and a damaged intestinal mucosal barrier. The imbalance of microbial homeostasis leads to the colonization and invasion of opportunistic pathogens in the gut, which increases the risk of the host immune response and promotes the development of IBD. It is critical to identify the specific pathogens related to the pathogenesis of IBD. An in-depth understanding of various pathogenic factors is of great significance for the early detection of IBD. This review highlights the role of gut microbiota in the pathogenesis of IBD and provides a theoretical basis for the personalized approaches that modulate the gut microbiota to treat IBD.
Collapse
Affiliation(s)
- Peng Qiu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Takatsugu Ishimoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Lingfeng Fu
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jun Zhang
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Zhenyong Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Yang Liu, ; orcid.org/0000-0002-2129-9086
| |
Collapse
|
192
|
The Nutrition-Microbiota-Physical Activity Triad: An Inspiring New Concept for Health and Sports Performance. Nutrients 2022; 14:nu14050924. [PMID: 35267899 PMCID: PMC8912693 DOI: 10.3390/nu14050924] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
The human gut microbiota is currently the focus of converging interest in many diseases and sports performance. This review presents gut microbiota as a real “orchestra conductor” in the host’s physio(patho)logy due to its implications in many aspects of health and disease. Reciprocally, gut microbiota composition and activity are influenced by many different factors, such as diet and physical activity. Literature data have shown that macro- and micro-nutrients influence gut microbiota composition. Cumulative data indicate that gut bacteria are sensitive to modulation by physical activity, as shown by studies using training and hypoactivity models. Sports performance studies have also presented interesting and promising results. Therefore, gut microbiota could be considered a “pivotal” organ for health and sports performance, leading to a new concept: the nutrition-microbiota-physical activity triad. The next challenge for the scientific and medical communities is to test this concept in clinical studies. The long-term aim is to find the best combination of the three elements of this triad to optimize treatments, delay disease onset, or enhance sports performance. The many possibilities offered by biotic supplementation and training modalities open different avenues for future research.
Collapse
|
193
|
Chiang HY, Lu HH, Sudhakar JN, Chen YW, Shih NS, Weng YT, Shui JW. IL-22 initiates an IL-18-dependent epithelial response circuit to enforce intestinal host defence. Nat Commun 2022; 13:874. [PMID: 35169117 PMCID: PMC8847568 DOI: 10.1038/s41467-022-28478-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/26/2022] [Indexed: 12/19/2022] Open
Abstract
IL-18 is emerging as an IL-22-induced and epithelium-derived cytokine which contributes to host defence against intestinal infection and inflammation. In contrast to its known role in Goblet cells, regulation of barrier function at the molecular level by IL-18 is much less explored. Here we show that IL-18 is a bona fide IL-22-regulated gate keeper for intestinal epithelial barrier. IL-22 promotes crypt immunity both via induction of phospho-Stat3 binding to the Il-18 gene promoter and via Il-18 independent mechanisms. In organoid culture, while IL-22 primarily increases organoid size and inhibits expression of stem cell genes, IL-18 preferentially promotes organoid budding and induces signature genes of Lgr5+ stem cells via Akt-Tcf4 signalling. During adherent-invasive E. coli (AIEC) infection, systemic administration of IL-18 corrects compromised T-cell IFNγ production and restores Lysozyme+ Paneth cells in Il-22-/- mice, but IL-22 administration fails to restore these parameters in Il-18-/- mice, thereby placing IL-22-Stat3 signalling upstream of the IL-18-mediated barrier defence function. IL-18 in return regulates Stat3-mediated anti-microbial response in Paneth cells, Akt-Tcf4-triggered expansion of Lgr5+ stem cells to facilitate tissue repair, and AIEC clearance by promoting IFNγ+ T cells.
Collapse
Affiliation(s)
- Hung-Yu Chiang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsueh-Han Lu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | - Yu-Wen Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Nien-Shin Shih
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Ting Weng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jr-Wen Shui
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
194
|
Duan Y, Young R, Schnabl B. Bacteriophages and their potential for treatment of gastrointestinal diseases. Nat Rev Gastroenterol Hepatol 2022; 19:135-144. [PMID: 34782783 PMCID: PMC8966578 DOI: 10.1038/s41575-021-00536-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 02/08/2023]
Abstract
Although bacteriophages have been overshadowed as therapeutic agents by antibiotics for decades, the emergence of multidrug-resistant bacteria and a better understanding of the role of the gut microbiota in human health and disease have brought them back into focus. In this Perspective, we briefly introduce basic phage biology and summarize recent discoveries about phages in relation to their role in the gut microbiota and gastrointestinal diseases, such as inflammatory bowel disease and chronic liver disease. In addition, we review preclinical studies and clinical trials of phage therapy for enteric disease and explore current challenges and potential future directions.
Collapse
Affiliation(s)
- Yi Duan
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Ry Young
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
- Center for Phage Technology, Texas A&M AgriLife Research and Texas A&M University, College Station, TX, USA
- Center for Innovative Phage Applications and Therapeutics, University of California San Diego, La Jolla, CA, USA
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA.
- Center for Innovative Phage Applications and Therapeutics, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
195
|
Luo H, Cao G, Luo C, Tan D, Vong CT, Xu Y, Wang S, Lu H, Wang Y, Jing W. Emerging Pharmacotherapy for Inflammatory Bowel Diseases. Pharmacol Res 2022; 178:106146. [DOI: 10.1016/j.phrs.2022.106146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/13/2022] [Accepted: 02/23/2022] [Indexed: 02/07/2023]
|
196
|
Zhao H, Wang Q, Hu L, Xing S, Gong H, Liu Z, Qin P, Xu J, Du J, Ai W, Peng S, Li Y. Dynamic Alteration of the Gut Microbiota Associated with Obesity and Intestinal Inflammation in Ovariectomy C57BL/6 Mice. Int J Endocrinol 2022; 2022:6600158. [PMID: 35103060 PMCID: PMC8800624 DOI: 10.1155/2022/6600158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Estrogen is a critical hormone that is mainly produced by the ovary in females. Estrogen deficiency leads to various syndromes and diseases, partly due to gut microbiota alterations. Previous studies have shown that estrogen deficiency affects the gut microbiota at 6-8 weeks after ovariectomy, but the immediate effect of estrogen deficiency on the gut microbiota remains poorly understood. METHODS To investigate the short time and dynamic effects of decreased estrogen levels on the gut microbiota and their potential impact on estrogen deficiency-related diseases, we performed metagenomic sequencing of 260 fecal samples from 50 ovariectomy (OVX) and 15 control C57BL/6 female mice at four time points after surgery. RESULTS We found that seven gut microbiota species, including E. coli, Parabacteroides unclassified, Lachnospiraceae bacterium 8_1_57FAA, Bacteroides uniformis, Veillonella unclassified, Bacteroides xylanisolvens, and Firmicutes bacterium M10_2, were abundant in OVX mice. The abundance of these species increased with time after OVX surgery. The relative abundance of the opportunistic pathogen E. coli and the Crohn's disease-related Veillonella spp. was significantly correlated with mouse weight gain in the OVX group. Butyrate production and the Entner-Doudoroff pathway were significantly enriched in the control mouse group, while the degradation of glutamic acid and aspartic acid was enriched in the OVX mouse group. As the time after OVX surgery increased, the bacterial species and metabolic pathways significantly changed and tended to suggest an inflammatory environment, indicating a subhealthy state of the gut microbiota in the OVX mouse group. CONCLUSIONS Taken together, our results show that the dynamic gut microbiota profile alteration caused by estrogen deficiency is related to obesity and inflammation, which may lead to immune and metabolic disorders. This study provides new clues for the treatment of estrogen deficiency-related diseases.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Clinical Laboratory, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Qi Wang
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou 730010, Gansu, China
| | - Liqiu Hu
- Department of Spine Surgery, Shenzhen People's Hospital, Jinan University Second College of Medicine, Shenzhen 518020, China
| | - Shaojun Xing
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Hui Gong
- Department of Clinical Laboratory, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Zhe Liu
- Department of Computer Sciences, City University of Hong Kong, Hong Kong 999077, China
| | - Panpan Qin
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao 266555, China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI-Shenzhen, Shenzhen 518083, Guangdong, China
| | - Jie Xu
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou 730010, Gansu, China
| | - Jihui Du
- Department of Clinical Laboratory, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Wen Ai
- Medical Research Center of Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518102, China
| | - Songlin Peng
- Department of Spine Surgery, Shenzhen People's Hospital, Jinan University Second College of Medicine, Shenzhen 518020, China
| | - Yifan Li
- Department of Clinical Laboratory, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| |
Collapse
|
197
|
Ding Y, Wang K, Xu C, Hao M, Li H, Ding L. Intestinal Claudin-7 deficiency impacts the intestinal microbiota in mice with colitis. BMC Gastroenterol 2022; 22:24. [PMID: 35039003 PMCID: PMC8762895 DOI: 10.1186/s12876-022-02100-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 01/07/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Intestinal epithelial cells form a physical barrier that protects the intestine against the intestinal microbiota through tight junctions (TJs) and adhesive junctions, while barrier disruption may lead to inflammatory bowel disease (IBD). Claudin-7 (Cldn7) has been implicated in this protection as an important member of TJs. Here, we experimentally study the effect of Cldn7 deletion on intestinal microbiota in colitis. METHODS Colitis model was established based on inducible intestinal conditional Cldn7 gene knockout mice (Cldn7fl/fl; villin-CreERT2), by feeding with dextran sodium sulfate (DSS). AB-PAS staining and immunohistochemical staining of Muc2 mucin were used to detect the effect of Cldn7 deficiency on the mucus layer of mice with colitis, and fluorescence in situ hybridization was used to detect how Cldn7 promotes spatial separation of the gut microbiota from the host. The microbiota population was characterized by high-throughput 16S rRNA gene sequencing of DNA extracted from fecal samples. RESULTS Compared with the controls, Cldn7 knockout increased susceptibility to colitis, including greater degree of weight loss, colon shortening, and a significantly higher disease activity index score. DSS-treated Cldn7 knockout mice promoted the migration of bacteria to the intestinal epithelium to some extent by damaging the intestinal mucus layer. Sequencing of 16S rRNA showed that DSS-treated Cldn7 knockout mice reduced the gut microbiota diversity and had greater relative abundance of Escherichia coli. LEfSe analysis indicated that Escherichia coli may be the key bacteria in Cldn7 knockout mice during DSS-induced colitis. Furthermore, the Tax4Fun analysis predicted that DSS-treated Cldn7 knockout mice enriched for microbiota impacting infectious diseases, immune system and metabolic functions. CONCLUSIONS Our data suggests an association between intestinal Cldn7 knockout and microbiota dysbiosis during inflammatory events.
Collapse
Affiliation(s)
- Yuhan Ding
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Tieyilu 10, Yangfangdian, Haidian District, Beijing, 100038, China
| | - Kun Wang
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Tieyilu 10, Yangfangdian, Haidian District, Beijing, 100038, China
| | - Chang Xu
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Tieyilu 10, Yangfangdian, Haidian District, Beijing, 100038, China
- Department of Hepato-Pancreato-Biliary Surgery, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Mengdi Hao
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Tieyilu 10, Yangfangdian, Haidian District, Beijing, 100038, China
| | - Huimin Li
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Tieyilu 10, Yangfangdian, Haidian District, Beijing, 100038, China
| | - Lei Ding
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Tieyilu 10, Yangfangdian, Haidian District, Beijing, 100038, China.
| |
Collapse
|
198
|
Agus A, Richard D, Faïs T, Vazeille E, Chervy M, Bonnin V, Dalmasso G, Denizot J, Billard E, Bonnet R, Buisson A, Barnich N, Delmas J. Propionate catabolism by CD-associated adherent-invasive E. coli counteracts its anti-inflammatory effect. Gut Microbes 2022; 13:1-18. [PMID: 33769191 PMCID: PMC8007151 DOI: 10.1080/19490976.2020.1839318] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Crohn's disease (CD) is a chronic and disabling inflammatory disorder of the gut that is profoundly influenced by intestinal microbiota composition, host genetics and environmental factors. Several groups worldwide have described an imbalance of the gut microbiome composition, called dysbiosis, in CD patients, with an increase in Proteobacteria and Bacteroidetes and a decrease in Firmicutes. A high prevalence of adherent-invasive Escherichia coli (AIEC) pathobionts has been identified in the intestinal mucosa of CD patients. A significant loss in the bacteria that produce short-chain fatty acids (SCFAs) with anti-inflammatory properties, such as propionate, is also a consequence of dysbiosis in CD patients. Here, the AIEC reference strain LF82 was able to degrade propionate in the gut, which was sufficient to counteract the anti-inflammatory effect of propionate both in in vitro models and in mice with DSS-induced colitis. The consumption of propionate by AIEC pathobionts leads to an increase in TNF-α production by macrophages upon infection through the bacterial methyl-citrate pathway. To induce the protective effects of SCFAs on the inflamed gut, we used a G-protein-coupled receptor 43 agonist (GPR43 agonist) that is not metabolizable by intestinal bacteria. Interestingly, this agonist showed anti-inflammatory properties and decreased the severity of colitis in AIEC-infected mice, as assessed by an improvement in the disease activity index (DAI) and a decrease in AIEC pathobiont encroachment. Taken together, these results highlight the effectiveness of GPR43 agonist treatment in the control of gut inflammation and improved our understanding of the ability of AIEC to modulate propionate availability to create an infectious niche to its advantage.
Collapse
Affiliation(s)
- Allison Agus
- Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation Et Susceptibilité De l’Hôte (M2ISH), Centre De Recherche En Nutrition Humaine Auvergne University Clermont Auvergne, Clermont-Ferrand, France,INRAE, AgroParisTech, Micalis Institute, University Paris-Saclay, Jouy-en-Josas, France,Allison Agus Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation Et Susceptibilité De l’Hôte (M2iSH), Centre De Recherche En Nutrition Humaine Auvergne, University Clermont Auvergne, Clermont-Ferrand, France
| | - Damien Richard
- Department of Pharmacology, University Hospital of Clermont-Ferrand, France
| | - Tiphanie Faïs
- Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation Et Susceptibilité De l’Hôte (M2ISH), Centre De Recherche En Nutrition Humaine Auvergne University Clermont Auvergne, Clermont-Ferrand, France,Department of Bacteriology, University Hospital of Clermont-Ferrand, France
| | - Emilie Vazeille
- Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation Et Susceptibilité De l’Hôte (M2ISH), Centre De Recherche En Nutrition Humaine Auvergne University Clermont Auvergne, Clermont-Ferrand, France,Service d’Hépato-Gastro Entérologie, 3iHP, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Mélissa Chervy
- Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation Et Susceptibilité De l’Hôte (M2ISH), Centre De Recherche En Nutrition Humaine Auvergne University Clermont Auvergne, Clermont-Ferrand, France
| | - Virginie Bonnin
- Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation Et Susceptibilité De l’Hôte (M2ISH), Centre De Recherche En Nutrition Humaine Auvergne University Clermont Auvergne, Clermont-Ferrand, France
| | - Guillaume Dalmasso
- Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation Et Susceptibilité De l’Hôte (M2ISH), Centre De Recherche En Nutrition Humaine Auvergne University Clermont Auvergne, Clermont-Ferrand, France
| | - Jérémy Denizot
- Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation Et Susceptibilité De l’Hôte (M2ISH), Centre De Recherche En Nutrition Humaine Auvergne University Clermont Auvergne, Clermont-Ferrand, France,Institut Universitaire De Technologie, University Clermont Auvergne, Clermont-Ferrand, France
| | - Elisabeth Billard
- Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation Et Susceptibilité De l’Hôte (M2ISH), Centre De Recherche En Nutrition Humaine Auvergne University Clermont Auvergne, Clermont-Ferrand, France,Institut Universitaire De Technologie, University Clermont Auvergne, Clermont-Ferrand, France
| | - Richard Bonnet
- Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation Et Susceptibilité De l’Hôte (M2ISH), Centre De Recherche En Nutrition Humaine Auvergne University Clermont Auvergne, Clermont-Ferrand, France,Department of Bacteriology, University Hospital of Clermont-Ferrand, France
| | - Anthony Buisson
- Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation Et Susceptibilité De l’Hôte (M2ISH), Centre De Recherche En Nutrition Humaine Auvergne University Clermont Auvergne, Clermont-Ferrand, France,Service d’Hépato-Gastro Entérologie, 3iHP, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Nicolas Barnich
- Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation Et Susceptibilité De l’Hôte (M2ISH), Centre De Recherche En Nutrition Humaine Auvergne University Clermont Auvergne, Clermont-Ferrand, France,Institut Universitaire De Technologie, University Clermont Auvergne, Clermont-Ferrand, France
| | - Julien Delmas
- Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation Et Susceptibilité De l’Hôte (M2ISH), Centre De Recherche En Nutrition Humaine Auvergne University Clermont Auvergne, Clermont-Ferrand, France,Department of Bacteriology, University Hospital of Clermont-Ferrand, France,CONTACT Julien Delmas
| |
Collapse
|
199
|
Sun Q, Du M, Kang Y, Zhu MJ. Prebiotic effects of goji berry in protection against inflammatory bowel disease. Crit Rev Food Sci Nutr 2022:1-25. [PMID: 34991393 DOI: 10.1080/10408398.2021.2015680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The prevalence of inflammatory bowel disease (IBD) is increasing, which is concerning because IBD is a known risk factor for the development of colorectal cancer. Emerging evidence highlights environmental factors, particularly dietary factors and gut microbiota dysbiosis, as pivotal inducers of IBD onset. Goji berry, an ancient tonic food and a nutraceutical supplement, contains a range of phytochemicals such as polysaccharides, carotenoids, and polyphenols. Among these phytochemicals, L. barbarum polysaccharides (LBPs) are the most important functional constituents, which have protective effects against oxidative stress, inflammation, and neurodegeneration. Recently, the beneficial effects of goji berry and associated LBPs consumption were linked to prebiotic effects, which can prevent dysbiosis associated with IBD. This review assessed pertinent literature on the protective effects of goji berry against IBD focusing on the gut microbiota and their metabolites in mediating the observed beneficial effects.
Collapse
Affiliation(s)
- Qi Sun
- School of Food Science, Washington State University, Pullman, Washington, USA
| | - Min Du
- Department of Animal Science, Washington State University, Pullman, Washington, USA
| | - Yifei Kang
- School of Food Science, Washington State University, Pullman, Washington, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, Washington, USA
| |
Collapse
|
200
|
Strati F, Lattanzi G, Amoroso C, Facciotti F. Microbiota-targeted therapies in inflammation resolution. Semin Immunol 2022; 59:101599. [PMID: 35304068 DOI: 10.1016/j.smim.2022.101599] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/24/2022] [Accepted: 02/15/2022] [Indexed: 02/07/2023]
Abstract
Gut microbiota has been shown to systemically shape the immunological landscape, modulate homeostasis and play a role in both health and disease. Dysbiosis of gut microbiota promotes inflammation and contributes to the pathogenesis of several major disorders in gastrointestinal tract, metabolic, neurological and respiratory diseases. Much effort is now focused on understanding host-microbes interactions and new microbiota-targeted therapies are deeply investigated as a means to restore health or prevent disease. This review details the immunoregulatory role of the gut microbiota in health and disease and discusses the most recent strategies in manipulating individual patient's microbiota for the management and prevention of inflammatory conditions.
Collapse
Affiliation(s)
- Francesco Strati
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy; Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Georgia Lattanzi
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Chiara Amoroso
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Federica Facciotti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy; Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.
| |
Collapse
|