151
|
Chi X, Cheng DY, Sun X, Liu SA, Wang RB, Chen Q, Xing HC. Efficacy of Biejiajian Pill on Intestinal Microbiota in Patients with Hepatitis B Cirrhosis/Liver Fibrosis: A Randomized Double-Blind Controlled Trial. Chin J Integr Med 2023; 29:771-781. [PMID: 37222832 DOI: 10.1007/s11655-023-3542-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2022] [Indexed: 05/25/2023]
Abstract
OBJECTIVE To analyze the efficacy of Biejiajian Pill (BJJP) on intestinal microbiota in patients with hepatitis B cirrhosis/liver fibrosis, and explore its relationship with liver fibrosis. METHODS This was a prospective, randomized double-blind controlled trial. Using the stratified block randomization method, 35 patients with hepatitis B liver cirrhosis/liver fibrosis were randomly assigned (1:1) to receive entecavir (0.5 mg/d) combined with BJJP (3 g/time, 3 times a day) or placebo (simulator as control, SC group, simulator 3 g/time, 3 times a day) for 48 weeks. Blood and stool samples were collected from patients at baseline and week 48 of treatment, respectively. Liver and renal functions as well as hematological indices were detected. Fecal samples were analyzed by 16S rDNA V3-V4 high-throughput sequencing, and intestinal microbiota changes in both groups before and after treatment were compared, and their correlations with liver fibrosis were analyzed. RESULTS Compared with the SC group, there was no significant difference in liver function, renal function and hematology indices in the BJJP group, however, the improvement rate of liver fibrosis was higher in the BJJP group (94.4% vs. 64.7%, P=0.041). Principal coordinate analysis (PCoA) based on weighted Unifrac distance showed significant differences in intestinal microbiota community diversity before and after BJJP treatment (P<0.01 and P=0.003), respectively. After 48 weeks' treatment, the abundance levels of beneficial bacteria (Bifidobacteria, Lactobacillus, Faecalibacterium and Blautia) increased, whereas the abundance levels of potential pathogenic bacteria, including Escherichia coli, Bacteroides, Ruminococcus, Parabacteroides and Prevotella decreased, among which Ruminococcus and Parabacteroides were significantly positively correlated with degree of liver fibrosis (r=0.34, P=0.04; r=0.38, P=0.02), respectively. The microbiota in the SC group did not change significantly throughout the whole process of treatment. CONCLUSION BJJP had a certain regulatory effect on intestinal microbiota of patients with hepatitis B cirrhosis/liver fibrosis (ChiCTR1800016801).
Collapse
Affiliation(s)
- Xin Chi
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing, 100015, China
| | - Dan-Ying Cheng
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
- National Center for Infectious Diseases, Beijing, 100015, China.
- Peking University Ditan Teaching Hospital, Beijing, 100015, China.
| | - Xiu Sun
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing, 100015, China
| | - Shun-Ai Liu
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing, 100015, China
| | - Rong-Bing Wang
- National Center for Infectious Diseases, Beijing, 100015, China
- Central of Integrated Chinese and Western Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Qin Chen
- China Traditional Chinese Medicine Holdings Co. Limited, Guangzhou, 528303, China
| | - Hui-Chun Xing
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing, 100015, China
- Peking University Ditan Teaching Hospital, Beijing, 100015, China
| |
Collapse
|
152
|
Zhang Q, Zhou J, Zhang X, Mao R, Zhang C. Mendelian randomization supports causality between gut microbiota and chronic hepatitis B. Front Microbiol 2023; 14:1243811. [PMID: 37655340 PMCID: PMC10467284 DOI: 10.3389/fmicb.2023.1243811] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/01/2023] [Indexed: 09/02/2023] Open
Abstract
Background Observational studies have provided evidence of a close association between gut microbiota and the progression of chronic hepatitis B (CHB). However, establishing a causal relationship between gut microbiota and CHB remains a subject of investigation. Methods Genome-wide association study (GWAS) summary data of gut microbiota came from the MiBioGen consortium, while the GWAS summary data of CHB came from the Medical Research Council Integrative Epidemiology Unit (IEU) Open GWAS project. Based on the maximum likelihood (ML), Mendelian randomization (MR)-Egger regression, inverse variance weighted (IVW), MR Pleiotropy RESidual Sum and Outlier (MR-PRESSO), and weighted-mode and weighted-median methods, we conducted a bidirectional, two-sample, MR analysis to explore the causal relationship between the gut microbiota and CHB. Additionally, we evaluated the genetic associations between individual gut microbes and CHB using the Linkage disequilibrium score regression (LDSC) program. Results According to the IVW method estimates, genetically predicted class Alphaproteobacteria (odds ratio [OR] = 0.57; 95% confidence interval [CI], 0.34-0.96; false discovery rate [FDR] = 0.046), genus Family XIII AD3011 group (OR = 0.60; 95% CI, 0.39-0.91; FDR = 0.026), genus Prevotella 7 (OR = 0.73; 95% CI, 0.56-0.94; FDR = 0.022) exhibited a protective effect against CHB. On the other hand, family Family XIII (OR = 1.79; 95% CI, 1.03-3.12; FDR = 0.061), genus Eggerthella group (OR = 1.34; 95% CI, 1.04-1.74; FDR = 0.043), genus Eubacterium ventriosum group (OR = 1.59; 95% CI, 1.01-2.51; FDR = 0.056), genus Holdemania (OR = 1.35; 95% CI, 1.00-1.82; FDR = 0.049), and genus Ruminococcus gauvreauii group (OR = 1.69; 95% CI, 1.10-2.61; FDR = 0.076) were associated with an increased risk of CHB. The results from LDSC also indicated a significant genetic correlation between most of the aforementioned gut microbiota and CHB. Our reverse MR analysis demonstrated no causal relationship between genetically predicted CHB and gut microbiota, and we observed no significant horizontal pleiotropy or heterogeneity of instrumental variables (IVs). Conclusion In this study, we identified three types of gut microbiota with a protective effect on CHB and five types with an adverse impact on CHB. We postulate that this information will facilitate the clinical prevention and treatment of CHB through fecal microbiota transplantation.
Collapse
Affiliation(s)
- Quanzheng Zhang
- Department of Critical Care Medicine, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Jinhua Zhou
- Department of Critical Care Medicine, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Xiaoxiao Zhang
- West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Rui Mao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Chuan Zhang
- Department of Critical Care Medicine, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
153
|
Vitulo M, Gnodi E, Rosini G, Meneveri R, Giovannoni R, Barisani D. Current Therapeutical Approaches Targeting Lipid Metabolism in NAFLD. Int J Mol Sci 2023; 24:12748. [PMID: 37628929 PMCID: PMC10454602 DOI: 10.3390/ijms241612748] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD, including nonalcoholic fatty liver (NAFL) and nonalcoholic steatohepatitis (NASH)) is a high-prevalence disorder, affecting about 1 billion people, which can evolve to more severe conditions like cirrhosis or hepatocellular carcinoma. NAFLD is often concomitant with conditions of the metabolic syndrome, such as central obesity and insulin-resistance, but a specific drug able to revert NAFL and prevent its evolution towards NASH is still lacking. With the liver being a key organ in metabolic processes, the potential therapeutic strategies are many, and range from directly targeting the lipid metabolism to the prevention of tissue inflammation. However, side effects have been reported for the drugs tested up to now. In this review, different approaches to the treatment of NAFLD are presented, including newer therapies and ongoing clinical trials. Particular focus is placed on the reverse cholesterol transport system and on the agonists for nuclear factors like PPAR and FXR, but also drugs initially developed for other conditions such as incretins and thyromimetics along with validated natural compounds that have anti-inflammatory potential. This work provides an overview of the different therapeutic strategies currently being tested for NAFLD, other than, or along with, the recommendation of weight loss.
Collapse
Affiliation(s)
- Manuela Vitulo
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (M.V.); (E.G.); (R.M.)
| | - Elisa Gnodi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (M.V.); (E.G.); (R.M.)
| | - Giulia Rosini
- Department of Biology, University of Pisa, 56021 Pisa, Italy; (G.R.); (R.G.)
| | - Raffaella Meneveri
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (M.V.); (E.G.); (R.M.)
| | - Roberto Giovannoni
- Department of Biology, University of Pisa, 56021 Pisa, Italy; (G.R.); (R.G.)
| | - Donatella Barisani
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (M.V.); (E.G.); (R.M.)
| |
Collapse
|
154
|
Dai M, Lui RN, Lau LH. The role of gut microbiome and fecal microbiota transplantation in liver cancer and related complications: mechanisms and therapeutic potentials. HEPATOMA RESEARCH 2023. [DOI: 10.20517/2394-5079.2023.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Liver cancer is the sixth commonest cancer and the third leading cause of cancer mortality worldwide. Accumulating evidence suggests a pivotal role of the gut microbiome in the progression of chronic liver disease and the subsequent development of liver cancer. Additionally, gut microbiome has been shown to contribute to the hosts’ antitumor responses following immunotherapy and chemotherapy for liver cancers, highlighting the therapeutic potential of gut microbiome modulation in enhancing treatment efficacy and reducing drug resistance. Fecal microbiota transplantation (FMT), a novel therapeutic modality to deliver a healthy donor's stool by endoscopy or capsule, has demonstrated potential in managing liver diseases and cancers by restoring and modulating the recipient’s gut microbiome composition. However, existing data on the clinical application of FMT in liver cancers are still limited. This review summarizes the underlying roles and mechanisms of gut microbiome in liver cancer and discusses the therapeutic potential of FMT in liver cancer treatment and the management of its related complications (e.g., hepatic encephalopathy).
Collapse
|
155
|
Jacob R, Prince DS, Kench C, Liu K. Alcohol and its associated liver carcinogenesis. J Gastroenterol Hepatol 2023; 38:1211-1217. [PMID: 37263779 DOI: 10.1111/jgh.16248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
Alcohol consumption is a major cause of cirrhosis and hepatocellular carcinoma (HCC). The prevalence of alcohol-associated hepatocellular carcinoma (aHCC) varies worldwide but is highest in Eastern Europe. Alcohol is the second fastest-growing cause of age-standardized liver cancer mortality with tumors more often diagnosed outside surveillance protocols and at a more advanced stage. Risk factors for aHCC include greater amounts of alcohol consumption, sex, and certain genetic polymorphisms. Smoking, concomitant liver disease, obesity, and diabetes act synergistically in increasing the risk of HCC in alcohol-associated liver disease. Alcohol-related hepatocarcinogenesis results from the complex interactions of several mechanistic pathways. Although not completely understood, underlying mechanisms include acetaldehyde-related hepatotoxicity, oxidative stress, activation of the innate immune system, and alterations of the host microbiome.
Collapse
Affiliation(s)
- Rachael Jacob
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - David S Prince
- Department of Gastroenterology and Liver, Liverpool Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of New South Wales, Sydney, New South Wales, Australia
| | - Charlotte Kench
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Ken Liu
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
156
|
Trivedi Y, Bolgarina Z, Desai HN, Senaratne M, Swami SS, Aye SL, Mohammed L. The Role of Gut Microbiome in Hepatocellular Carcinoma: A Systematic Review. Cureus 2023; 15:e43862. [PMID: 37614827 PMCID: PMC10442465 DOI: 10.7759/cureus.43862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/21/2023] [Indexed: 08/25/2023] Open
Abstract
Gut microbiome dysbiosis is common in patients with chronic liver diseases such as hepatocellular carcinoma (HCC) and plays an essential role in developing, diagnosing, and treating HCC. The purpose of this systematic review, which was carried out following the Preferred Reporting Items for Systematic Review and Meta-analyses 2020 guidelines, is to determine the role of the gut microbiome in the pathogenesis, diagnosis, and treatment of HCC. We collected and reviewed articles, including clinical trials, literature reviews, case-control studies, cross-sectional studies, cohort studies, systematic reviews, and meta-analyses, published between May 30, 2013, and May 30, 2023. The databases used to collect these articles included PubMed, Cochrane Library, Google Scholar, and ScienceDirect. After applying appropriate filters, a total of 2,969 studies were identified. They were further screened and subjected to quality assessment tools which finally yielded 17 studies included in this systematic review. This systematic review provides information regarding the gut-liver axis and the relationship between gut microbiome dysbiosis and HCC.
Collapse
Affiliation(s)
- Yash Trivedi
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Zoryana Bolgarina
- Obstetrics and Gynecology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Heet N Desai
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Mithum Senaratne
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Shivling S Swami
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Soe Lwin Aye
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Lubna Mohammed
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
157
|
Zhang Z, Shi X, Ji J, Guo Y, Peng Q, Hao L, Xue Y, Liu Y, Li C, Lu J, Yu K. Dihydroartemisinin increased the abundance of Akkermansia muciniphila by YAP1 depression that sensitizes hepatocellular carcinoma to anti-PD-1 immunotherapy. Front Med 2023; 17:729-746. [PMID: 37121958 DOI: 10.1007/s11684-022-0978-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/05/2022] [Indexed: 05/02/2023]
Abstract
The effect of anti-programmed cell death 1 (anti-PD-1) immunotherapy is limited in patients with hepatocellular carcinoma (HCC). Yes-associated protein 1 (YAP1) expression increased in liver tumor cells in early HCC, and Akkermansia muciniphila abundance decreased in the colon. The response to anti-PD-1 treatment is associated with A. muciniphila abundance in many tumors. However, the interaction between A. muciniphila abundance and YAP1 expression remains unclear in HCC. Here, anti-PD-1 treatment decreased A. muciniphila abundance in the colon, but increased YAP1 expression in the tumor cells by mice with liver tumors in situ. Mechanistically, hepatocyte-specific Yap1 knockout (Yap1LKO) maintained bile acid homeostasis in the liver, resulting in an increased abundance of A. muciniphila in the colon. Yap1 knockout enhanced anti-PD-1 efficacy. Therefore, YAP1 inhibition is a potential target for increasing A. muciniphila abundance to promote anti-PD-1 efficacy in liver tumors. Dihydroartemisinin (DHA), acting as YAP1 inhibitor, increased A. muciniphila abundance to sensitize anti-PD-1 therapy. A. muciniphila by gavage increased the number and activation of CD8+ T cells in liver tumor niches during DHA treatment or combination with anti-PD-1. Our findings suggested that the combination anti-PD-1 with DHA is an effective strategy for liver tumor treatment.
Collapse
Affiliation(s)
- Zhiqin Zhang
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Xinli Shi
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
| | - Jingmin Ji
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Yinglin Guo
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Qing Peng
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Liyuan Hao
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Yu Xue
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Yiwei Liu
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Caige Li
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Junlan Lu
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Kun Yu
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| |
Collapse
|
158
|
Li N, Yi X, Chen C, Dai Z, Deng Z, Pu J, Zhou Y, Li B, Wang Z, Ran P. The gut microbiome as a potential source of non-invasive biomarkers of chronic obstructive pulmonary disease. Front Microbiol 2023; 14:1173614. [PMID: 37555072 PMCID: PMC10405926 DOI: 10.3389/fmicb.2023.1173614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/12/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND The link between gut microbial dysbiosis and the development of chronic obstructive pulmonary disease (COPD) is of considerable interest. However, little is known regarding the potential for the use of the fecal metagenome for the diagnosis of COPD. METHODS A total of 80 healthy controls, 31 patients with COPD severity stages I or II, and 49 patients with COPD severity stages III or IV fecal samples were subjected to metagenomic analysis. We characterized the gut microbiome, identified microbial taxonomic and functional markers, and constructed a COPD disease classifier using samples. RESULTS The fecal microbial diversity of patients with COPD stages I or II was higher than that of healthy controls, but lower in patients with COPD stages III or IV. Twenty-one, twenty-four, and eleven microbial species, including potential pathogens and pro-inflammatory bacteria, were significantly enriched or depleted in healthy controls, patients with COPD stages I or II, and patients with COPD stages III & IV. The KEGG orthology (KO) gene profiles derived demonstrated notable differences in gut microbial function among the three groups. Moreover, gut microbial taxonomic and functional markers could be used to differentiate patients with COPD from healthy controls, on the basis of areas under receiver operating characteristic curves (AUCs) of 0.8814 and 0.8479, respectively. Notably, the gut microbial taxonomic features differed between healthy individuals and patients in stages I-II COPD, which suggests the utility of fecal metagenomic biomarkers for the diagnosis of COPD (AUC = 0.9207). CONCLUSION Gut microbiota-targeted biomarkers represent potential non-invasive tools for the diagnosis of COPD.
Collapse
Affiliation(s)
- Naijian Li
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xinzhu Yi
- Institute of Ecological Science, School of Life Science, South China Normal University, Guangzhou, Guangdong, China
| | - Chiyong Chen
- The GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhouli Dai
- College of Medicine, Lishui University, Lishui, Zhejiang, China
| | - Zhishan Deng
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jinding Pu
- Department of Respiratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yumin Zhou
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bing Li
- The GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhang Wang
- Institute of Ecological Science, School of Life Science, South China Normal University, Guangzhou, Guangdong, China
| | - Pixin Ran
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
159
|
Mendes I, Vale N. How Can the Microbiome Induce Carcinogenesis and Modulate Drug Resistance in Cancer Therapy? Int J Mol Sci 2023; 24:11855. [PMID: 37511612 PMCID: PMC10380870 DOI: 10.3390/ijms241411855] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Over the years, cancer has been affecting the lives of many people globally and it has become one of the most studied diseases. Despite the efforts to understand the cell mechanisms behind this complex disease, not every patient seems to respond to targeted therapies or immunotherapies. Drug resistance in cancer is one of the limiting factors contributing to unsuccessful therapies; therefore, understanding how cancer cells acquire this resistance is essential to help cure individuals affected by cancer. Recently, the altered microbiome was observed to be an important hallmark of cancer and therefore it represents a promising topic of cancer research. Our review aims to provide a global perspective of some cancer hallmarks, for instance how genetic and epigenetic modifications may be caused by an altered human microbiome. We also provide information on how an altered human microbiome can lead to cancer development as well as how the microbiome can influence drug resistance and ultimately targeted therapies. This may be useful to develop alternatives for cancer treatment, i.e., future personalized medicine that can help in cases where traditional cancer treatment is unsuccessful.
Collapse
Affiliation(s)
- Inês Mendes
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- School of Life and Environmental Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Edifício de Geociências, 5000-801 Vila Real, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
160
|
Su Q, Jin C, Bo Z, Yang Y, Wang J, Wang J, Zhou J, Chen Y, Zeng H, Chen G, Wang Y. Association between gut microbiota and gastrointestinal cancer: a two-sample bi-directional Mendelian randomization study. Front Microbiol 2023; 14:1181328. [PMID: 37533836 PMCID: PMC10390774 DOI: 10.3389/fmicb.2023.1181328] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/04/2023] [Indexed: 08/04/2023] Open
Abstract
Background The gut microbiome is closely related to gastrointestinal (GI) cancer, but the causality of gut microbiome with GI cancer has yet to be fully established. We conducted this two-sample Mendelian randomization (MR) study to reveal the potential causal effect of gut microbiota on GI cancer. Materials and methods Summary-level genetic data of gut microbiome were derived from the MiBioGen consortium and the Dutch Microbiome Project. Summary statistics of six GI cancers were drawn from United Kingdom Biobank. Inverse-variance-weighted (IVW), MR-robust adjusted profile score (MR-RAPS), and weighted-median (WM) methods were used to evaluate the potential causal link between gut microbiota and GI cancer. In addition, we performed sensitivity analyses and reverse MR analyses. Results We identified potential causal associations between 21 bacterial taxa and GI cancers (values of p < 0.05 in all three MR methods). Among them, phylum Verrucomicrobia (OR: 0.17, 95% CI: 0.05-0.59, p = 0.005) retained a strong negative association with intrahepatic cholangiocarcinoma after the Bonferroni correction, whereas order Bacillales (OR: 1.67, 95% CI: 1.23-2.26, p = 0.001) retained a strong positive association with pancreatic cancer. Reverse MR analyses indicated that GI cancer was associated with 17 microbial taxa in all three MR methods, among them, a strong inverse association between colorectal cancer and family Clostridiaceae1 (OR: 0.91, 95% CI: 0.86-0.96, p = 0.001) was identified by Bonferroni correction. Conclusion Our study implicates the potential causal effects of specific microbial taxa on GI cancer, potentially providing new insights into the prevention and treatment of GI cancer through specific gut bacteria.
Collapse
Affiliation(s)
- Qing Su
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Chen Jin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhiyuan Bo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Yang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Jingxian Wang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Juejin Wang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Junxi Zhou
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Yaqing Chen
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Hao Zeng
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Wang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
161
|
Rodríguez-Lara A, Rueda-Robles A, Sáez-Lara MJ, Plaza-Diaz J, Álvarez-Mercado AI. From Non-Alcoholic Fatty Liver Disease to Liver Cancer: Microbiota and Inflammation as Key Players. Pathogens 2023; 12:940. [PMID: 37513787 PMCID: PMC10385788 DOI: 10.3390/pathogens12070940] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
It is estimated that 25% of the world's population has non-alcoholic fatty liver disease. This disease can advance to a more severe form, non-alcoholic steatohepatitis (NASH), a disease with a greater probability of progression to cirrhosis and hepatocellular carcinoma (HCC). NASH could be characterized as a necro-inflammatory complication of chronic hepatic steatosis. The combination of factors that lead to NASH and its progression to HCC in the setting of inflammation is not clearly understood. The portal vein is the main route of communication between the intestine and the liver. This allows the transfer of products derived from the intestine to the liver and the hepatic response pathway of bile and antibody secretion to the intestine. The intestinal microbiota performs a fundamental role in the regulation of immune function, but it can undergo changes that alter its functionality. These changes can also contribute to cancer by disrupting the immune system and causing chronic inflammation and immune dysfunction, both of which are implicated in cancer development. In this article, we address the link between inflammation, microbiota and HCC. We also review the different in vitro models, as well as recent clinical trials addressing liver cancer and microbiota.
Collapse
Affiliation(s)
- Avilene Rodríguez-Lara
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Avda. del Conocimiento s/n., Armilla, 18016 Granada, Spain;
| | - Ascensión Rueda-Robles
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada,18071 Granada, Spain;
| | - María José Sáez-Lara
- Department of Biochemistry and Molecular Biology I, School of Sciences, University of Granada, 18071 Granada, Spain;
| | - Julio Plaza-Diaz
- Children’s Hospital Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
| | - Ana I. Álvarez-Mercado
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Avda. del Conocimiento s/n., Armilla, 18016 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
| |
Collapse
|
162
|
Pomyen Y, Chaisaingmongkol J, Rabibhadana S, Pupacdi B, Sripan D, Chornkrathok C, Budhu A, Budhisawasdi V, Lertprasertsuke N, Chotirosniramit A, Pairojkul C, Auewarakul CU, Ungtrakul T, Sricharunrat T, Phornphutkul K, Sangrajang S, Loffredo CA, Harris CC, Mahidol C, Wang XW, Ruchirawat M. Gut dysbiosis in Thai intrahepatic cholangiocarcinoma and hepatocellular carcinoma. Sci Rep 2023; 13:11406. [PMID: 37452065 PMCID: PMC10349051 DOI: 10.1038/s41598-023-38307-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
Primary liver cancer (PLC), which includes intrahepatic cholangiocarcinoma (iCCA) and hepatocellular carcinoma (HCC), has the highest incidence of all cancer types in Thailand. Known etiological factors, such as viral hepatitis and chronic liver disease do not fully account for the country's unusually high incidence. However, the gut-liver axis, which contributes to carcinogenesis and disease progression, is influenced by the gut microbiome. To investigate this relationship, fecal matter from 44 Thai PLC patients and 76 healthy controls were subjected to whole-genome metagenomic shotgun sequencing and then analyzed by marker gene-based and assembly based methods. Results revealed greater gut microbiome heterogeneity in iCCA compared to HCC and healthy controls. Two Veillonella species were found to be more abundant in iCCA samples and could distinguish iCCA from HCC and healthy controls. Conversely, Ruminococcus gnavus was depleted in iCCA patients and could distinguish HCC from iCCA samples. High Veillonella genus counts in the iCCA group were associated with enriched amino acid biosynthesis and glycolysis pathways, while enriched phospholipid and thiamine metabolism pathways characterized the HCC group with high Blautia genus counts. These findings reveal distinct landscapes of gut dysbiosis among Thai iCCA and HCC patients and warrant further investigation as potential biomarkers.
Collapse
Affiliation(s)
- Yotsawat Pomyen
- Translational Research Unit, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Jittiporn Chaisaingmongkol
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Siritida Rabibhadana
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Benjarath Pupacdi
- Translational Research Unit, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Donlaporn Sripan
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Chidchanok Chornkrathok
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Anuradha Budhu
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Vajarabhongsa Budhisawasdi
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand
- Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | | | | | - Chirayu U Auewarakul
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| | - Teerapat Ungtrakul
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| | | | | | | | | | - Curtis C Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Chulabhorn Mahidol
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Xin Wei Wang
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.
| | - Mathuros Ruchirawat
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand.
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand.
| |
Collapse
|
163
|
Che Y, Chen G, Guo Q, Duan Y, Feng H, Xia Q. Gut microbial metabolite butyrate improves anticancer therapy by regulating intracellular calcium homeostasis. Hepatology 2023; 78:88-102. [PMID: 36947402 DOI: 10.1097/hep.0000000000000047] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/09/2022] [Indexed: 03/23/2023]
Abstract
BACKGROUND AND AIMS Gut microbiota are recognized to be important for anticancer therapy, yet the underlying mechanism is not clear. Here, through the analysis of clinical samples, we identify the mechanism by which the gut microbial metabolite butyrate inhibits HCC and then explore new strategies for HCC treatment. APPROACH AND RESULTS In our study, we demonstrate that gut microbial metabolite butyrate improves anticancer therapy efficacy by regulating intracellular calcium homeostasis. Using liquid chromatography-mass spectrometry analysis, we found that butyrate metabolism is activated in HCC patients compared with healthy individuals. Butyrate levels are lower in the plasma of HCC patients by gas chromatography-mass spectrometry (GC-MS) analysis. Butyrate supplementation or depletion of short-chain Acyl-CoA dehydrogenase (SCAD) gene (ACADS), encoding a key enzyme for butyrate metabolism, significantly inhibits HCC proliferation and metastasis. The profiling analysis of genes upregulated by butyrate supplementation or ACADS knockdown reveals that calcium signaling pathway is activated, leading to dysregulation of intracellular calcium homeostasis and production of reactive oxygen species. Butyrate supplementation improves the therapy efficacy of a tyrosine kinase inhibitor sorafenib. On the basis of these findings, we developed butyrate and sorafenib coencapsulated mPEG-PLGA-PLL nanoparticles coated with anti-GPC3 antibody (BS@PEAL-GPC3) to prolong the retention time of drugs and enhance drug targeting, leading to high anticancer efficacy. BS@PEAL-GPC3 nanoparticles significantly reduce HCC progression. In addition, BS@PEAL-GPC3 nanoparticles display excellent HCC targeting with excellent safety. CONCLUSIONS In conclusion, our findings provide new insight into the mechanism by which the gut microbial metabolites inhibit HCC progression, suggesting a translatable therapeutics approach to enhance the clinical targeted therapeutic efficacy.
Collapse
Affiliation(s)
- Yibin Che
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Guoyu Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Renji Hospital, Shanghai Cancer Institute, Shanghai, China
| | - Qianqian Guo
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Biomedical Engineering, Shanghai, China
- Shanghai Cancer Institute, Renji Hospital, Shanghai, China
| | - Yourong Duan
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Biomedical Engineering, Shanghai, China
- Shanghai Cancer Institute, Renji Hospital, Shanghai, China
| | - Haizhong Feng
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Renji Hospital, Shanghai Cancer Institute, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| |
Collapse
|
164
|
Effenberger M, Waschina S, Bronowski C, Sturm G, Tassiello O, Sommer F, Zollner A, Watschinger C, Grabherr F, Gstir R, Grander C, Enrich B, Bale R, Putzer D, Djanani A, Moschen AR, Zoller H, Rupp J, Schreiber S, Burcelin R, Lass-Flörl C, Trajanoski Z, Oberhuber G, Rosenstiel P, Adolph TE, Aden K, Tilg H. A gut bacterial signature in blood and liver tissue characterizes cirrhosis and hepatocellular carcinoma. Hepatol Commun 2023; 7:e00182. [PMID: 37314752 DOI: 10.1097/hc9.0000000000000182] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/18/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND HCC is the leading cause of cancer in chronic liver disease. A growing body of experimental mouse models supports the notion that gut-resident and liver-resident microbes control hepatic immune responses and, thereby, crucially contribute to liver tumorigenesis. However, a comprehensive characterization of the intestinal microbiome in fueling the transition from chronic liver disease to HCC in humans is currently missing. METHODS Here, we profiled the fecal, blood, and liver tissue microbiome of patients with HCC by 16S rRNA sequencing and compared profiles to nonmalignant cirrhotic and noncirrhotic NAFLD patients. RESULTS We report a distinct bacterial profile, defined from 16S rRNA gene sequences, with reduced α-and β-diversity in the feces of patients with HCC and cirrhosis compared to NAFLD. Patients with HCC and cirrhosis exhibited an increased proportion of fecal bacterial gene signatures in the blood and liver compared to NAFLD. Differential analysis of the relative abundance of bacterial genera identified an increased abundance of Ruminococcaceae and Bacteroidaceae in blood and liver tissue from both HCC and cirrhosis patients compared to NAFLD. Fecal samples from cirrhosis and HCC patients both showed a reduced abundance for several taxa, including short-chain fatty acid-producing genera, such as Blautia and Agathobacter. Using paired 16S rRNA and transcriptome sequencing, we identified a direct association between gut bacterial genus abundance and host transcriptome response within the liver tissue. CONCLUSIONS Our study indicates perturbations of the intestinal and liver-resident microbiome as a critical determinant of patients with cirrhosis and HCC.
Collapse
Affiliation(s)
- Maria Effenberger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Silvio Waschina
- Institute for Human Nutrition and Food Science, Division of Nutriinformatics, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Christina Bronowski
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Gregor Sturm
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Oronzo Tassiello
- Institute for Human Nutrition and Food Science, Division of Nutriinformatics, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Felix Sommer
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Andreas Zollner
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Christina Watschinger
- Department of Internal Medicine I, Gastroenterology, Nephrology, Metabolism & Endocrinology, Johannes Kepler University, Linz, Austria
| | - Felix Grabherr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Ronald Gstir
- Institute of Hygiene and Medical Microbiology, ECMM, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Grander
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Barbara Enrich
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Reto Bale
- Department of Radiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniel Putzer
- Department of Radiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Angela Djanani
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexander R Moschen
- Department of Internal Medicine I, Gastroenterology, Nephrology, Metabolism & Endocrinology, Johannes Kepler University, Linz, Austria
- Christian Doppler Laboratory for Mucosal Immunology, Johannes Kepler University, Linz, Austria
| | - Heinz Zoller
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University Hospital Schleswig-Holstein, Luebeck, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
- Department of Internal Medicine I, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Remy Burcelin
- INSERM 1297 and University Paul Sabatier: Institut des Maladies Métaboliques et Cardiovasculaires, France and Université Paul Sabatier, Toulouse, France
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, ECMM, Medical University of Innsbruck, Innsbruck, Austria
| | - Zlatko Trajanoski
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Georg Oberhuber
- INNPATH, Institute of Pathology, University Hospital of Innsbruck, Innsbruck, Austria
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Konrad Aden
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
- Department of Internal Medicine I, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
165
|
Petrick JL, Florio AA, Zen J, Wang Y, Gewirtz AT, Pfeiffer RM, Loftus S, Inglefield J, Koshiol J, Yang B, Yu K, Hildesheim A, Chen CJ, Yang HI, Lee MH, McGlynn KA. Biomarkers of gut barrier dysfunction and risk of hepatocellular carcinoma in the REVEAL-HBV and REVEAL-HCV cohort studies. Int J Cancer 2023; 153:44-53. [PMID: 36878686 PMCID: PMC10548479 DOI: 10.1002/ijc.34492] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/16/2022] [Accepted: 01/16/2023] [Indexed: 03/08/2023]
Abstract
Gut barrier dysfunction can result in the liver being exposed to an elevated level of gut-derived bacterial products via portal circulation. Growing evidence suggests that systemic exposure to these bacterial products promotes liver diseases including hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). However, prospective studies have not examined the association between biomarkers of gut barrier dysfunction and HCC risk in a population of hepatitis B or C viral (HBV/HCV) carriers. We investigated whether prediagnostic, circulating biomarkers of gut barrier dysfunction were associated with HCC risk, using the Risk Evaluation of Viral Load Elevation and Associated Liver Disease/Cancer (REVEAL)-HBV and REVEAL-HCV cohorts from Taiwan. REVEAL-HBV included 185 cases and 161 matched controls, and REVEAL-HCV 96 cases and 96 matched controls. The biomarkers quantitated were immunoglobulin A (IgA), IgG, and IgM against lipopolysaccharide (LPS) and flagellin, soluble CD14 (an LPS coreceptor), and LPS-binding protein (LBP). Odds ratios (ORs) and 95% confidence intervals (CIs) for associations between biomarker levels and HCC were calculated using multivariable-adjusted logistic regression. A doubling of the circulating levels of antiflagellin IgA or LBP was associated with a 76% to 93% increased risk of HBV-related HCC (OR per one unit change in log2 antiflagellin IgA = 1.76, 95% CI: 1.06-2.93; OR for LBP = 1.93, 95% CI: 1.10-3.38). None of the other markers were associated with an increased risk of HBV-related or HCV-related HCC. Results were similar when cases diagnosed in the first 5 years of follow-up were excluded. Our findings contribute to understanding the interplay of gut barrier dysfunction and primary liver cancer etiology.
Collapse
Affiliation(s)
| | - Andrea A. Florio
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jane Zen
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Yanyu Wang
- Applied Developmental Research Directorate, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Andrew T. Gewirtz
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Ruth M. Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Sarah Loftus
- Applied Developmental Research Directorate, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Jon Inglefield
- Applied Developmental Research Directorate, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Jill Koshiol
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Baiyu Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Kelly Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Allan Hildesheim
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Chien-Jen Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hwai-I Yang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Mei-Hsuan Lee
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Katherine A. McGlynn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
166
|
Fu C, Ni J, Huang R, Gao Y, Li S, Li Y, JinjinLi, Zhong K, Zhang P. Sex different effect of antibiotic and probiotic treatment on intestinal microbiota composition in chemically induced liver injury rats. Genomics 2023; 115:110647. [PMID: 37217087 DOI: 10.1016/j.ygeno.2023.110647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/10/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
Differences in the gut microbiota and metabolic processes between males and females may explain differences in the risk of liver injury; however, the sex-specific effects of antibiotics and probiotics on these relationships are not clear. We evaluated differences in the gut microbiota and the risk of liver injury between male and female rats after the oral administration of antibiotics or probiotics followed by a period of diethylnitrosamine treatment to chemically induce liver injuryusing high-throughput sequencing of fecal microbiota combined with histological analyses of liver and colon tissues. Our results suggest that the ratio of gram-positive to gram-negative bacteria in kanamycin-treated rats was significantly higher than that of other groups, and this difference persisted for the duration of the experiment. Antibiotics significantly changed the composition of the gut microbiota of experimental rats. Clindamycin caused more diethylnitrosamine-induced damage to livers of male rats. Probiotics did not influencethe gut microbiota; however, they hadprotective effects against liver injury induced by diethylnitrosamine, especially in female rats. These results strengthen our understanding of sex differences in the indirect effects of antibiotics or probiotics on metabolism and liver injury in hosts via the gut microbiota.
Collapse
Affiliation(s)
- Chaoyi Fu
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jiajia Ni
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Research and Development Center, Guangdong Meilikang Bio-Sciences Ltd., Foshan 528200, China; Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan 523808, China.
| | - Rong Huang
- Department of Neonatal Surgery, Guangdong Women and Children Hospital, Guangzhou 511400, China
| | - Yi Gao
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou 510515, China.
| | - Shao Li
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yang Li
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - JinjinLi
- School of Life Sciences, Qilu Normal University, Jinan 250200, China
| | - Kebo Zhong
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Peng Zhang
- Department of Organ Transplantation, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 511447, China
| |
Collapse
|
167
|
Lee YT, Fujiwara N, Yang JD, Hoshida Y. Risk stratification and early detection biomarkers for precision HCC screening. Hepatology 2023; 78:319-362. [PMID: 36082510 PMCID: PMC9995677 DOI: 10.1002/hep.32779] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 12/08/2022]
Abstract
Hepatocellular carcinoma (HCC) mortality remains high primarily due to late diagnosis as a consequence of failed early detection. Professional societies recommend semi-annual HCC screening in at-risk patients with chronic liver disease to increase the likelihood of curative treatment receipt and improve survival. However, recent dynamic shift of HCC etiologies from viral to metabolic liver diseases has significantly increased the potential target population for the screening, whereas annual incidence rate has become substantially lower. Thus, with the contemporary HCC etiologies, the traditional screening approach might not be practical and cost-effective. HCC screening consists of (i) definition of rational at-risk population, and subsequent (ii) repeated application of early detection tests to the population at regular intervals. The suboptimal performance of the currently available HCC screening tests highlights an urgent need for new modalities and strategies to improve early HCC detection. In this review, we overview recent developments of clinical, molecular, and imaging-based tools to address the current challenge, and discuss conceptual framework and approaches of their clinical translation and implementation. These encouraging progresses are expected to transform the current "one-size-fits-all" HCC screening into individualized precision approaches to early HCC detection and ultimately improve the poor HCC prognosis in the foreseeable future.
Collapse
Affiliation(s)
- Yi-Te Lee
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California
| | - Naoto Fujiwara
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ju Dong Yang
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, California; Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, Los Angeles, California; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Yujin Hoshida
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
168
|
Lv J, Wang J, Yu Y, Zhao M, Yang W, Liu J, Zhao Y, Yang Y, Wang G, Guo L, Zhao H. Alterations of gut microbiota are associated with blood pressure: a cross-sectional clinical trial in Northwestern China. J Transl Med 2023; 21:429. [PMID: 37391847 PMCID: PMC10311887 DOI: 10.1186/s12967-023-04176-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/30/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND The human gut microbiota (GM) is involved in the pathogenesis of hypertension (HTN), and could be affected by various factors, including sex and geography. However, available data directly linking GM to HTN based on sex differences are limited. METHODS This study investigated the GM characteristics in HTN subjects in Northwestern China, and evaluate the associations of GM with blood pressure levels based on sex differences. A total of 87 HTN subjects and 45 controls were recruited with demographic and clinical characteristics documented. Fecal samples were collected for 16S rRNA gene sequencing and metagenomic sequencing. RESULTS GM diversity was observed higher in females compared to males, and principal coordinate analysis showed an obvious segregation of females and males. Four predominant phyla of fecal GM included Firmicutes, Bacteroidetes, Actinobacteria and Proteobacteria. LEfSe analysis indicated that phylum unidentified_Bacteria was enriched in HTN females, while Leuconostocaceae, Weissella and Weissella_cibaria were enriched in control females (P < 0.05). Functionally, ROC analysis revealed that Cellular Processes (0.796, 95% CI 0.620 ~ 0.916), Human Diseases (0.773, 95% CI 0.595 ~ 0.900), Signal transduction (0.806, 95% CI 0.631 ~ 0.922) and Two-component system (0.806, 95% CI 0.631 ~ 0.922) could differentiate HTN females as effective functional classifiers, which were also positively correlated with systolic blood pressure levels. CONCLUSIONS This work provides evidence of fecal GM characteristics in HTN females and males in a northwestern Chinese population, further supporting the notion that GM dysbiosis may participate in the pathogenesis of HTN, and the role of sex differences should be considered. Trial registration Chinese Clinical Trial Registry, ChiCTR1800019191. Registered 30 October 2018 - Retrospectively registered, http://www.chictr.org.cn/ .
Collapse
Affiliation(s)
- Jing Lv
- Department of Clinical Laboratory, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Jihan Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Yan Yu
- Department of Clinical Laboratory, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Mengyao Zhao
- Department of Clinical Laboratory, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Wenjuan Yang
- Department of Clinical Laboratory, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Junye Liu
- Department of Clinical Laboratory, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yan Zhao
- Department of Clinical Laboratory, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yanjie Yang
- Department of Cardiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guodong Wang
- Department of Quality Control, Xi'an Mental Health Center, Xi'an, China
| | - Lei Guo
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China.
| | - Heping Zhao
- Department of Clinical Laboratory, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
169
|
Kaune T, Griesmann H, Theuerkorn K, Hämmerle M, Laumen H, Krug S, Plumeier I, Kahl S, Junca H, Gustavo dos Anjos Borges L, Michl P, Pieper DH, Rosendahl J. Gender-specific changes of the gut microbiome correlate with tumor development in murine models of pancreatic cancer. iScience 2023; 26:106841. [PMID: 37255660 PMCID: PMC10225934 DOI: 10.1016/j.isci.2023.106841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/14/2023] [Accepted: 05/04/2023] [Indexed: 06/01/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with a dismal outcome. To improve understanding of sequential microbiome changes during PDAC development we analyzed mouse models of pancreatic carcinogenesis (KC mice recapitulating pre-invasive PanIN formation, as well as KPC mice recapitulating invasive PDAC) during early tumor development and subsequent tumor progression. Diversity and community composition were analyzed depending on genotype, age, and gender. Both mouse models demonstrated concordant abundance changes of several genera influenced by one or more of the investigated factors. Abundance was significantly impacted by gender, highlighting the need to further elucidate the impact of gender differences. The findings underline the importance of the microbiome in PDAC development and indicate that microbiological screening of patients at risk and targeting the microbiome in PDAC development may be feasible in future.
Collapse
Affiliation(s)
- Tom Kaune
- Department of Internal Medicine I, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Heidi Griesmann
- Department of Internal Medicine I, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Katharina Theuerkorn
- Department of Internal Medicine I, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Monika Hämmerle
- Institute of Pathology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Helmut Laumen
- Department of Internal Medicine I, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Sebastian Krug
- Department of Internal Medicine I, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
- Klinik für Innere Medizin IV, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Iris Plumeier
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Silke Kahl
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Howard Junca
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Patrick Michl
- Department of Internal Medicine I, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
- Klinik für Innere Medizin IV, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Dietmar H. Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jonas Rosendahl
- Department of Internal Medicine I, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
170
|
Ferreiro AL, Choi J, Ryou J, Newcomer EP, Thompson R, Bollinger RM, Hall-Moore C, Ndao IM, Sax L, Benzinger TLS, Stark SL, Holtzman DM, Fagan AM, Schindler SE, Cruchaga C, Butt OH, Morris JC, Tarr PI, Ances BM, Dantas G. Gut microbiome composition may be an indicator of preclinical Alzheimer's disease. Sci Transl Med 2023; 15:eabo2984. [PMID: 37315112 PMCID: PMC10680783 DOI: 10.1126/scitranslmed.abo2984] [Citation(s) in RCA: 135] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/26/2023] [Indexed: 06/16/2023]
Abstract
Alzheimer's disease (AD) pathology is thought to progress from normal cognition through preclinical disease and ultimately to symptomatic AD with cognitive impairment. Recent work suggests that the gut microbiome of symptomatic patients with AD has an altered taxonomic composition compared with that of healthy, cognitively normal control individuals. However, knowledge about changes in the gut microbiome before the onset of symptomatic AD is limited. In this cross-sectional study that accounted for clinical covariates and dietary intake, we compared the taxonomic composition and gut microbial function in a cohort of 164 cognitively normal individuals, 49 of whom showed biomarker evidence of early preclinical AD. Gut microbial taxonomic profiles of individuals with preclinical AD were distinct from those of individuals without evidence of preclinical AD. The change in gut microbiome composition correlated with β-amyloid (Aβ) and tau pathological biomarkers but not with biomarkers of neurodegeneration, suggesting that the gut microbiome may change early in the disease process. We identified specific gut bacterial taxa associated with preclinical AD. Inclusion of these microbiome features improved the accuracy, sensitivity, and specificity of machine learning classifiers for predicting preclinical AD status when tested on a subset of the cohort (65 of the 164 participants). Gut microbiome correlates of preclinical AD neuropathology may improve our understanding of AD etiology and may help to identify gut-derived markers of AD risk.
Collapse
Affiliation(s)
- Aura L. Ferreiro
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - JooHee Choi
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jian Ryou
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Erin P. Newcomer
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Regina Thompson
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rebecca M. Bollinger
- Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carla Hall-Moore
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - I. Malick Ndao
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Laurie Sax
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tammie L. S. Benzinger
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Susan L. Stark
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO 63110, USA
- Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David M. Holtzman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anne M. Fagan
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Suzanne E. Schindler
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carlos Cruchaga
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Omar H. Butt
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John C. Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Phillip I. Tarr
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Beau M. Ances
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gautam Dantas
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
171
|
Li L, Wang T, Ning Z, Zhang X, Butcher J, Serrana JM, Simopoulos CMA, Mayne J, Stintzi A, Mack DR, Liu YY, Figeys D. Revealing proteome-level functional redundancy in the human gut microbiome using ultra-deep metaproteomics. Nat Commun 2023; 14:3428. [PMID: 37301875 PMCID: PMC10257714 DOI: 10.1038/s41467-023-39149-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Functional redundancy is a key ecosystem property representing the fact that different taxa contribute to an ecosystem in similar ways through the expression of redundant functions. The redundancy of potential functions (or genome-level functional redundancy [Formula: see text]) of human microbiomes has been recently quantified using metagenomics data. Yet, the redundancy of expressed functions in the human microbiome has never been quantitatively explored. Here, we present an approach to quantify the proteome-level functional redundancy [Formula: see text] in the human gut microbiome using metaproteomics. Ultra-deep metaproteomics reveals high proteome-level functional redundancy and high nestedness in the human gut proteomic content networks (i.e., the bipartite graphs connecting taxa to functions). We find that the nested topology of proteomic content networks and relatively small functional distances between proteomes of certain pairs of taxa together contribute to high [Formula: see text] in the human gut microbiome. As a metric comprehensively incorporating the factors of presence/absence of each function, protein abundances of each function and biomass of each taxon, [Formula: see text] outcompetes diversity indices in detecting significant microbiome responses to environmental factors, including individuality, biogeography, xenobiotics, and disease. We show that gut inflammation and exposure to specific xenobiotics can significantly diminish the [Formula: see text] with no significant change in taxonomic diversity.
Collapse
Affiliation(s)
- Leyuan Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 102206, Beijing, China
- School of Pharmaceutical Sciences and Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Tong Wang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Zhibin Ning
- School of Pharmaceutical Sciences and Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Xu Zhang
- School of Pharmaceutical Sciences and Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - James Butcher
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Joeselle M Serrana
- School of Pharmaceutical Sciences and Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Caitlin M A Simopoulos
- School of Pharmaceutical Sciences and Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Janice Mayne
- School of Pharmaceutical Sciences and Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Alain Stintzi
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - David R Mack
- Department of Paediatrics, Faculty of Medicine, University of Ottawa and Children's Hospital of Eastern Ontario Inflammatory Bowel Disease Centre and Research Institute, Ottawa, ON, K1H 8L1, Canada
| | - Yang-Yu Liu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
- Center for Artificial Intelligence and Modeling, The Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Daniel Figeys
- School of Pharmaceutical Sciences and Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
172
|
Kong C, Liang L, Liu G, Du L, Yang Y, Liu J, Shi D, Li X, Ma Y. Integrated metagenomic and metabolomic analysis reveals distinct gut-microbiome-derived phenotypes in early-onset colorectal cancer. Gut 2023; 72:1129-1142. [PMID: 35953094 DOI: 10.1136/gutjnl-2022-327156] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/03/2022] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The incidence of early-onset colorectal cancer (EO-CRC) is steadily increasing. Here, we aimed to characterise the interactions between gut microbiome, metabolites and microbial enzymes in EO-CRC patients and evaluate their potential as non-invasive biomarkers for EO-CRC. DESIGN We performed metagenomic and metabolomic analyses, identified multiomics markers and constructed CRC classifiers for the discovery cohort with 130 late-onset CRC (LO-CRC), 114 EO-CRC subjects and age-matched healthy controls (97 LO-Control and 100 EO-Control). An independent cohort of 38 LO-CRC, 24 EO-CRC, 22 LO-Controls and 24 EO-Controls was analysed to validate the results. RESULTS Compared with controls, reduced alpha-diversity was apparent in both, LO-CRC and EO-CRC subjects. Although common variations existed, integrative analyses identified distinct microbiome-metabolome associations in LO-CRC and EO-CRC. Fusobacterium nucleatum enrichment and short-chain fatty acid depletion, including reduced microbial GABA biosynthesis and a shift in acetate/acetaldehyde metabolism towards acetyl-CoA production characterises LO-CRC. In comparison, multiomics signatures of EO-CRC tended to be associated with enriched Flavonifractor plauti and increased tryptophan, bile acid and choline metabolism. Notably, elevated red meat intake-related species, choline metabolites and KEGG orthology (KO) pldB and cbh gene axis may be potential tumour stimulators in EO-CRC. The predictive model based on metagenomic, metabolomic and KO gene markers achieved a powerful classification performance for distinguishing EO-CRC from controls. CONCLUSION Our large-sample multiomics data suggest that altered microbiome-metabolome interplay helps explain the pathogenesis of EO-CRC and LO-CRC. The potential of microbiome-derived biomarkers as promising non-invasive tools could be used for the accurate detection and distinction of individuals with EO-CRC.
Collapse
Affiliation(s)
- Cheng Kong
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Liang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guang Liu
- Guangdong Hongyuan Pukang Medical Technology Co., Ltd, Guangdong, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong province, China
| | - Yongzhi Yang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianqiang Liu
- Department of Endoscopy, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Debing Shi
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinxiang Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanlei Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
173
|
Duarte MJ, Tien PC, Somsouk M, Price JC. The human microbiome and gut-liver axis in people living with HIV. Curr HIV/AIDS Rep 2023; 20:170-180. [PMID: 37129834 PMCID: PMC10232565 DOI: 10.1007/s11904-023-00657-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
PURPOSE OF REVIEW Chronic liver disease is a major cause of morbidity and mortality amongst people living with HIV (PLWH). Emerging data suggests that gut microbial translocation may play a role in driving and modulating liver disease, a bi-directional relationship termed the gut-liver axis. While it is recognized that PLWH have a high degree of dysbiosis and gut microbial translocation, little is known about the gut-liver axis in PLWH. RECENT FINDINGS Recent studies have shown that microbial translocation can directly lead to hepatic inflammation, and have linked gut microbial signatures, dysbiosis, and translocation to liver disease in PLWH. Additionally, multiple trials have explored interventions targeting the microbiome in PLWH. Emerging research supports the interaction between the gut microbiome and liver disease in PLWH. This offers new opportunities to expand our understanding of the pathophysiology of liver disease in this population, as well as to explore possible clinical interventions.
Collapse
Affiliation(s)
- Maria J Duarte
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Phyllis C Tien
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, CA, USA
- Department of Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Ma Somsouk
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Jennifer C Price
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California, San Francisco, CA, USA.
| |
Collapse
|
174
|
Inchingolo AM, Malcangi G, Piras F, Palmieri G, Settanni V, Riccaldo L, Morolla R, Buongiorno S, de Ruvo E, Inchingolo AD, Mancini A, Inchingolo F, Dipalma G, Benagiano S, Tartaglia GM, Patano A. Precision Medicine on the Effects of Microbiota on Head-Neck Diseases and Biomarkers Diagnosis. J Pers Med 2023; 13:933. [PMID: 37373922 DOI: 10.3390/jpm13060933] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Precision medicine using highly precise technologies and big data has produced personalised medicine with rapid and reliable diagnoses and targeted therapies. The most recent studies have directed precision medicine into the study of tumours. The application of precision medicine in the oral microbiota can be used both in the field of prevention and treatment in the strictly dental field. This article aims to evaluate the interaction between microbiota and oral cancer and the presence of biomarkers as risk predictors. MATERIALS AND METHODS A literature search of PubMed, Scopus, and Web of Science was performed analysing the various interactions between microorganisms, biomarkers, and oral cancer. RESULTS After screening processes, 21 articles were selected for qualitative analysis. CONCLUSION The correlation between oral diseases/cancers and changes in the microbiota explains the increasing utility of precision medicine in enhancing diagnosis and adapting treatment on the individual components of the microbiota. Diagnosing and treating oral diseases and cancers through precision medicine gives, as well as economic advantages to the health care system, predictable and rapid management of the patient.
Collapse
Affiliation(s)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Fabio Piras
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Giulia Palmieri
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Vito Settanni
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Lilla Riccaldo
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Roberta Morolla
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Silvio Buongiorno
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Elisabetta de Ruvo
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | | | - Antonio Mancini
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Stefania Benagiano
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Gianluca Martino Tartaglia
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20122 Milan, Italy
- UOC Maxillo-Facial Surgery and Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Assunta Patano
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| |
Collapse
|
175
|
Calabrese FM, Celano G, Bonfiglio C, Campanella A, Franco I, Annunziato A, Giannelli G, Osella AR, De Angelis M. Synergistic Effect of Diet and Physical Activity on a NAFLD Cohort: Metabolomics Profile and Clinical Variable Evaluation. Nutrients 2023; 15:nu15112457. [PMID: 37299420 DOI: 10.3390/nu15112457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Together with its comorbidities, nonalcoholic fatty liver disease (NAFLD) is likely to rise further with the obesity epidemic. However, the literature's evidence shows how its progression can be reduced by the administration of calorie-restrictive dietary interventions and physical activity regimens. The liver function and the gut microbiota have been demonstrated to be closely related. With the aim of ascertaining the impact of a treatment based on the combination of diet and physical activity (versus physical activity alone), we recruited 46 NAFLD patients who were divided into two groups. As a result, we traced the connection between volatile organic compounds (VOCs) from fecal metabolomics and a set of statistically filtered clinical variables. Additionally, we identified the relative abundances of gut microbiota taxa obtained from 16S rRNA gene sequencing. Statistically significant correlations emerged between VOCs and clinical parameters, as well as between VOCs and gut microbiota taxa. In comparison with a physical activity regimen alone, we disclose how ethyl valerate and pentanoic acid butyl ester, methyl valerate, and 5-hepten-2-one, 6-methyl changed because of the positive synergistic effect exerted by the combination of the Mediterranean diet and physical activity regimens. Moreover, 5-hepten-2-one, 6-methyl positively correlated with Sanguinobacteroides, as well as the two genera Oscillospiraceae-UCG002 and Ruminococcaceae UCG010 genera.
Collapse
Affiliation(s)
| | - Giuseppe Celano
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Caterina Bonfiglio
- National Institute of Gastroenterology S. De Bellis, IRCCS Research Hospital, Via Turi 27, 70013 Castellana Grotte, Italy
| | - Angelo Campanella
- National Institute of Gastroenterology S. De Bellis, IRCCS Research Hospital, Via Turi 27, 70013 Castellana Grotte, Italy
| | - Isabella Franco
- National Institute of Gastroenterology S. De Bellis, IRCCS Research Hospital, Via Turi 27, 70013 Castellana Grotte, Italy
| | - Alessandro Annunziato
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology S. De Bellis, IRCCS Research Hospital, Via Turi 27, 70013 Castellana Grotte, Italy
| | - Alberto Ruben Osella
- National Institute of Gastroenterology S. De Bellis, IRCCS Research Hospital, Via Turi 27, 70013 Castellana Grotte, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy
| |
Collapse
|
176
|
Li X, Yi Y, Wu T, Chen N, Gu X, Xiang L, Jiang Z, Li J, Jin H. Integrated microbiome and metabolome analysis reveals the interaction between intestinal flora and serum metabolites as potential biomarkers in hepatocellular carcinoma patients. Front Cell Infect Microbiol 2023; 13:1170748. [PMID: 37260707 PMCID: PMC10227431 DOI: 10.3389/fcimb.2023.1170748] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/02/2023] [Indexed: 06/02/2023] Open
Abstract
Globally, liver cancer poses a serious threat to human health and quality of life. Despite numerous studies on the microbial composition of the gut in hepatocellular carcinoma (HCC), little is known about the interactions of the gut microbiota and metabolites and their role in HCC. This study examined the composition of the gut microbiota and serum metabolic profiles in 68 patients with HCC, 33 patients with liver cirrhosis (LC), and 34 healthy individuals (NC) using a combination of metagenome sequencing and liquid chromatography-mass spectrometry (LC-MS). The composition of the serum metabolites and the structure of the intestinal microbiota were found to be significantly altered in HCC patients compared to non-HCC patients. LEfSe and metabolic pathway enrichment analysis were used to identify two key species (Odoribacter splanchnicus and Ruminococcus bicirculans) and five key metabolites (ouabain, taurochenodeoxycholic acid, glycochenodeoxycholate, theophylline, and xanthine) associated with HCC, which then were combined to create panels for HCC diagnosis. The study discovered that the diagnostic performance of the metabolome was superior to that of the microbiome, and a panel comprised of key species and key metabolites outperformed alpha-fetoprotein (AFP) in terms of diagnostic value. Spearman's rank correlation test was used to determine the relationship between the intestinal flora and serum metabolites and their impact on hepatocarcinogenesis and progression. A random forest model was used to assess the diagnostic performance of the different histologies alone and in combination. In summary, this study describes the characteristics of HCC patients' intestinal flora and serum metabolism, demonstrates that HCC is caused by the interaction of intestinal flora and serum metabolites, and suggests that two key species and five key metabolites may be potential markers for the diagnosis of HCC.
Collapse
Affiliation(s)
- Xiaoyue Li
- Department of Infectious Diseases, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yongxiang Yi
- Department of Infectious Diseases, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Nanjing, China
| | - Tongxin Wu
- Department of Infectious Diseases, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Nan Chen
- Department of Infectious Diseases, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinyu Gu
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liangliang Xiang
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhaodi Jiang
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Junwei Li
- Department of Infectious Diseases, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Heiying Jin
- Department of Colorectal Surgery, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
177
|
Zhang W, Xu X, Cai L, Cai X. Dysbiosis of the gut microbiome in elderly patients with hepatocellular carcinoma. Sci Rep 2023; 13:7797. [PMID: 37179446 PMCID: PMC10182990 DOI: 10.1038/s41598-023-34765-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/07/2023] [Indexed: 05/15/2023] Open
Abstract
Fecal samples from participants aged 60-80 were collected and sequenced by a high-throughput second-generation sequencer to explore the structural composition of gut microbiota in elderly patients with hepatocellular carcinoma(HCC). Comparison of gut microbiota between patients with hepatocellular carcinoma and healthy controls, α diversity and β diversity were statistically different. At the genus level, compared with the normal group, the abundance of A Blautia, Fusicatenibacter, Anaerostipes, Lachnospiraceae_ND3007_group, CAG-56, Eggerthella, Lachnospiraceae_FCS020_group and Olsenella were decreased significantly in the LC group. In contrast, the abundance of Escherichia-Shigella, Fusobacterium, Megasphaera, Veillonella, Tyzzerella_4, Prevotella_2 and Cronobacter increased significantly. The KEGG and COG pathway analyses showed that the dysbiosis of gut bacteria in primary liver carcinoma is associated with several pathways, including amino acid metabolism, replication and repair, nucleotide metabolism, cell motility, cell growth and death, and transcription. Age is negatively associated with the abundance of Bifidobacterium. Lachnospiraceae_ ND3007_ group, [Eubacterium]_hallii_group, Blautia, Fuscatenibacter and Anaerostipes are negatively correlated with ALT, AST and GGT levels (p < 0.05), respectively. Alpha-fetoprotein (AFP) is positively associated with the abundance of Erysipelatoclostridium, Magasphaera, Prevotella 2, Escherichia-Shigella, Streptococcus and [Eubacterium]_eligens_group (p < 0.05), respectively. A random forest model showed that the genera Eggerthella, Anaerostipes, and Lachnospiraceae_ ND3007_ group demonstrated the best predictive capacity. The area under the Receiver Operating Characteristic Curve of Eggerthella, Anaerostipes and Lachnospiraceae_ ND3007_ group are 0.791, 0.766 and 0.730, respectively. These data are derived from the first known gut microbiome study in elderly patients with hepatocellular carcinoma. Potentially, specific microbiota can be used as a characteristic index for screening, diagnosis, and prognosis of gut microbiota changes in elderly patients with hepatocellular carcinoma and even as a therapeutic clinical target.
Collapse
Affiliation(s)
- Weizheng Zhang
- Clinical Laboratory, Guangzhou Cadre Health Management Center, Guangzhou No. 11 People's Hospital, Guangzhou, China
| | - Xiaosong Xu
- Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Liping Cai
- Department of Basic Nursing, Guangdong Province Chaozhou Health School, Chaozhou, China
| | - Xiangsheng Cai
- Clinical Laboratory, Guangzhou Cadre Health Management Center, Guangzhou No. 11 People's Hospital, Guangzhou, China.
- Institute of Translational Medicine, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
178
|
Zou Y, Sun Y, Chen X, Hong L, Dong G, Bai X, Wang H, Rao B, Ren Z, Yu Z. Nanosecond pulse effectively ablated hepatocellular carcinoma with alterations in the gut microbiome and serum metabolites. Front Pharmacol 2023; 14:1163628. [PMID: 37234705 PMCID: PMC10205996 DOI: 10.3389/fphar.2023.1163628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death in the world. Nanosecond pulsed electric fields (nsPEFs) have emerged as a new treatment for cancer. This study aims to identify the effectiveness of nsPEFs in the treatment of HCC and analyze the alterations in the gut microbiome and serum metabonomics after ablation. Methods: C57BL/6 mice were randomly divided into three groups: healthy control mice (n = 10), HCC mice (n = 10), and nsPEF-treated HCC mice (n = 23). Hep1-6 cell lines were used to establish the HCC model in situ. Histopathological staining was performed on tumor tissues. The gut microbiome was analyzed by 16S rRNA sequencing. Serum metabolites were analyzed by liquid chromatography-mass spectrometry (LC-MS) metabolomic analysis. Spearman's correlation analysis was carried out to analyze the correlation between the gut microbiome and serum metabonomics. Results: The fluorescence image showed that nsPEFs were significantly effective. Histopathological staining identified nuclear pyknosis and cell necrosis in the nsPEF group. The expression of CD34, PCNA, and VEGF decreased significantly in the nsPEF group. Compared with normal mice, the gut microbiome diversity of HCC mice was increased. Eight genera including Alistipes and Muribaculaceae were enriched in the HCC group. Inversely, these genera decreased in the nsPEF group. LC-MS analysis confirmed that there were significant differences in serum metabolism among the three groups. Correlation analysis showed crucial relationships between the gut microbiome and serum metabolites that are involved in nsPEF ablation of HCC. Conclusion: As a new minimally invasive treatment for tumor ablation, nsPEFs have an excellent ablation effect. The alterations in the gut microbiome and serum metabolites may participate in the prognosis of HCC ablation.
Collapse
Affiliation(s)
- Yawen Zou
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinhua Chen
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
| | - Liangjie Hong
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
| | - Gang Dong
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiwen Bai
- Nanchang University Queen Marry School, Nanchang, Jiangxi, China
| | - Haiyu Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Benchen Rao
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zujiang Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
179
|
Shen K, Din AU, Sinha B, Zhou Y, Qian F, Shen B. Translational informatics for human microbiota: data resources, models and applications. Brief Bioinform 2023; 24:7152256. [PMID: 37141135 DOI: 10.1093/bib/bbad168] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/05/2023] Open
Abstract
With the rapid development of human intestinal microbiology and diverse microbiome-related studies and investigations, a large amount of data have been generated and accumulated. Meanwhile, different computational and bioinformatics models have been developed for pattern recognition and knowledge discovery using these data. Given the heterogeneity of these resources and models, we aimed to provide a landscape of the data resources, a comparison of the computational models and a summary of the translational informatics applied to microbiota data. We first review the existing databases, knowledge bases, knowledge graphs and standardizations of microbiome data. Then, the high-throughput sequencing techniques for the microbiome and the informatics tools for their analyses are compared. Finally, translational informatics for the microbiome, including biomarker discovery, personalized treatment and smart healthcare for complex diseases, are discussed.
Collapse
Affiliation(s)
- Ke Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, China
| | - Ahmad Ud Din
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, China
| | - Baivab Sinha
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, China
| | - Yi Zhou
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, China
| | - Fuliang Qian
- Center for Systems Biology, Suzhou Medical College of Soochow University, Suzhou 215123, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Suzhou 215123, China
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, China
| |
Collapse
|
180
|
Lu H, Zhu X, Wu L, Lou X, Pan X, Liu B, Zhang H, Zhu L, Li L, Wu Z. Alterations in the intestinal microbiome and metabolic profile of patients with cirrhosis supplemented with lactulose, Clostridium butyricum, and Bifidobacterium longum infantis: a randomized placebo-controlled trial. Front Microbiol 2023; 14:1169811. [PMID: 37180228 PMCID: PMC10170289 DOI: 10.3389/fmicb.2023.1169811] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/27/2023] [Indexed: 05/16/2023] Open
Abstract
Background Liver cirrhosis is commonly accompanied by intestinal dysbiosis and metabolic defects. Many clinical trials have shown microbiota-targeting strategies represent promising interventions for managing cirrhosis and its complications. However, the influences of the intestinal metagenomes and metabolic profiles of patients have not been fully elucidated. Methods We administered lactulose, Clostridium butyricum, and Bifidobacterium longum infantis as a synbiotic and used shotgun metagenomics and non-targeted metabolomics to characterize the results. Results Patients treated with the synbiotic for 12 weeks had lower dysbiosis index (DI) scores than placebo-treated patients and patients at baseline (NIP group). We identified 48 bacterial taxa enriched in the various groups, 66 differentially expressed genes, 18 differentially expressed virulence factor genes, 10 differentially expressed carbohydrate-active enzyme genes, and 173 metabolites present at differing concentrations in the Synbiotic versus Placebo group, and the Synbiotic versus NIP group. And Bifidobacteria species, especially B. longum, showed positive associations with many differentially expressed genes in synbiotic-treated patients. Metabolites pathway enrichment analysis showed that synbiotic significantly affected purine metabolism and aminoacyl-tRNA biosynthesis. And the purine metabolism and aminoacyl-tRNA biosynthesis were no longer significant differences in the Synbiotic group versus the healthy controls group. In conclusion, although littles influence on clinical parameters in the early intervention, the synbiotic showed a potential benefit to patients by ameliorating intestinal dysbiosis and metabolic defects; and the DI of intestinal microbiota is useful for the evaluation of the effect of clinical microbiota-targeting strategies on cirrhotic patients. Clinical Trial Registration https://www.clinicaltrials.gov, identifiers NCT05687409.
Collapse
Affiliation(s)
- Haifeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaofei Zhu
- Department of Infectious DiseasesHangzhou Ninth People's Hospital, Hangzhou, Zhejiang, China
| | - Lingyun Wu
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaobin Lou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaxia Pan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Bowen Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hua Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lingxiao Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shangdong, China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhongwen Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
181
|
Xia C, Su J, Liu C, Mai Z, Yin S, Yang C, Fu L. Human microbiomes in cancer development and therapy. MedComm (Beijing) 2023; 4:e221. [PMID: 36860568 PMCID: PMC9969057 DOI: 10.1002/mco2.221] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 03/03/2023] Open
Abstract
Colonies formed by bacteria, archaea, fungi, and viral groups and their genomes, metabolites, and expressed proteins constitute complex human microbiomes. An increasing evidences showed that carcinogenesis and disease progression were link to microbiomes. Different organ sources, their microbial species, and their metabolites are different; the mechanisms of carcinogenic or procancerous are also different. Here, we summarize how microbiomes contribute to carcinogenesis and disease progression in cancers of the skin, mouth, esophagus, lung, gastrointestinal, genital, blood, and lymph malignancy. We also insight into the molecular mechanisms of triggering, promoting, or inhibiting carcinogenesis and disease progress induced by microbiomes or/and their secretions of bioactive metabolites. And then, the strategies of application of microorganisms in cancer treatment were discussed in detail. However, the mechanisms by which human microbiomes function are still poorly understood. The bidirectional interactions between microbiotas and endocrine systems need to be clarified. Probiotics and prebiotics are believed to benefit human health via a variety of mechanisms, in particular, in tumor inhibition. It is largely unknown how microbial agents cause cancer or how cancer progresses. We expect this review may open new perspectives on possible therapeutic approaches of patients with cancer.
Collapse
Affiliation(s)
- Chenglai Xia
- Affiliated Foshan Maternity and Chlid Healthcare HospitalSouthern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhouChina
| | - Jiyan Su
- Affiliated Foshan Maternity and Chlid Healthcare HospitalSouthern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhouChina
| | - Can Liu
- Affiliated Foshan Maternity and Chlid Healthcare HospitalSouthern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhouChina
| | - Zhikai Mai
- Affiliated Foshan Maternity and Chlid Healthcare HospitalSouthern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhouChina
| | - Shuanghong Yin
- Affiliated Foshan Maternity and Chlid Healthcare HospitalSouthern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhouChina
| | - Chuansheng Yang
- Department of Head‐Neck and Breast SurgeryYuebei People's Hospital of Shantou UniversityShaoguanChina
| | - Liwu Fu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute; Sun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
| |
Collapse
|
182
|
Jin J, Zhang C, Ren X, Tai B, Xing F. Metagenome Analysis Identifies Microbial Shifts upon Deoxynivalenol Exposure and Post-Exposure Recovery in the Mouse Gut. Toxins (Basel) 2023; 15:243. [PMID: 37104181 PMCID: PMC10142982 DOI: 10.3390/toxins15040243] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Deoxynivalenol (DON) is one of the most prevalent food-associated mycotoxins, and is known to cause a variety of adverse health effects on human and animals. Upon oral exposure, the intestine is the main target organ of DON. The current study unraveled that DON exposure (2 mg/kg bw/day or 5 mg/kg bw/day) can significantly reshape the gut microbiota in a mouse model. The study characterized the specific gut microbial strains and genes changed after DON exposure and also investigated the recovery of the microbiota upon either 2 weeks daily prebiotic inulin administration or 2 weeks recovery without intervention after termination of DON exposure (spontaneous recovery). The results obtained reveal that DON exposure causes a shift in gut microorganisms, increasing the relative abundance of Akkermansia muciniphila, Bacteroides vulgatus, Hungatella hathewayi, and Lachnospiraceae bacterium 28-4, while the relative abundance of Mucispirillum schaedleri, Pseudoflavonifractor sp. An85, Faecalibacterium prausnitzii, Firmicutes bacterium ASF500, Flavonifractor plautii, Oscillibacter sp. 1-3, and uncultured Flavonifractor sp. decreased. Notably, DON exposure enhanced the prevalence of A. muciniphila, a species considered as a potential prebiotic in previous studies. Most of the gut microbiome altered by DON in the low- and high-dose exposure groups recovered after 2 weeks of spontaneous recovery. Inulin administration appeared to promote the recovery of the gut microbiome and functional genes after low-dose DON exposure, but not after high-dose exposure, at which changes were exacerbated by inulin-supplemented recovery. The results obtained help to better understand the effect of DON on the gut microbiome, and the gut microbiota's recovery upon termination of DON exposure.
Collapse
Affiliation(s)
- Jing Jin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs of China, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Chen Zhang
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Xiaoxu Ren
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs of China, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Bowen Tai
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs of China, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Fuguo Xing
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs of China, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| |
Collapse
|
183
|
Zhang H, Wu J, Liu Y, Zeng Y, Jiang Z, Yan H, Lin J, Zhou W, Ou Q, Ao L. Identification reproducible microbiota biomarkers for the diagnosis of cirrhosis and hepatocellular carcinoma. AMB Express 2023; 13:35. [PMID: 36943499 PMCID: PMC10030758 DOI: 10.1186/s13568-023-01539-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor with high incidence in China, which is mainly related to chronic hepatitis B (CHB) and liver cirrhosis (LC) caused by hepatitis B virus (HBV) infection. This study aimed to identify reproducible gut microbial biomarkers across Chinese population for LC and HCC diagnosis. In this study, a group of 21 CHB, 25 LC, 21 HCC and 15 healthy control (HC) were examined, and used as the training data. Four published faecal datasets from different regions of China were collected, totally including 121 CHB, 33 LC, 70 HCC and 96 HC. Beta diversity showed that the distribution of community structure in CHB, LC, HCC was significantly different from HC. Correspondingly, 14 and 10 reproducible differential genera across datasets were identified in LC and HCC, respectively, defined as LC-associated and HCC-associated genera. Two random forest (RF) models based on these reproducible genera distinguished LC or HCC from HC with an area under the curve (AUC) of 0.824 and 0.902 in the training dataset, respectively, and achieved cross-region validations. Moreover, AUCs were greatly improved when clinical factors were added. A reconstructed random forest model on eight genera with significant changes between HCC and non-HCC can accurately distinguished HCC from LC. Conclusively, two RF models based on 14 reproducible LC-associated and 10 reproducible HCC-associated genera were constructed for LC and HCC diagnosis, which is of great significance to assist clinical early diagnosis.
Collapse
Affiliation(s)
- Huarong Zhang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Junling Wu
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, 350122, China
| | - Yijuan Liu
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, 350122, China
- Department of Gastroenterology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Yongbin Zeng
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Zhiyu Jiang
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, 350122, China
| | - Haidan Yan
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, 350122, China
| | - Jie Lin
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, 350122, China
| | - Weixin Zhou
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, 350122, China
| | - Qishui Ou
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
| | - Lu Ao
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China.
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, 350122, China.
- Department of Gastroenterology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
184
|
Kirundi J, Moghadamrad S, Urbaniak C. Microbiome-liver crosstalk: A multihit therapeutic target for liver disease. World J Gastroenterol 2023; 29:1651-1668. [PMID: 37077519 PMCID: PMC10107210 DOI: 10.3748/wjg.v29.i11.1651] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/05/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
Liver disease has become a leading cause of death, particularly in the West, where it is attributed to more than two million deaths annually. The correlation between gut microbiota and liver disease is still not fully understood. However, it is well known that gut dysbiosis accompanied by a leaky gut causes an increase in lipopolysaccharides in circulation, which in turn evoke massive hepatic inflammation promoting liver cirrhosis. Microbial dysbiosis also leads to poor bile acid metabolism and low short-chain fatty acids, all of which exacerbate the inflammatory response of liver cells. Gut microbial homeostasis is maintained through intricate processes that ensure that commensal microbes adapt to the low oxygen potential of the gut and that they rapidly occupy all the intestinal niches, thus outcompeting any potential pathogens for available nutrients. The crosstalk between the gut microbiota and its metabolites also guarantee an intact gut barrier. These processes that protect against destabilization of gut microbes by potential entry of pathogenic bacteria are collectively called colonization resistance and are equally essential for liver health. In this review, we shall investigate how the mechanisms of colonization resistance influence the liver in health and disease and the microbial-liver crosstalk potential as therapeutic target areas.
Collapse
Affiliation(s)
- Jorum Kirundi
- Department of Biomedical Research, University of Bern, Bern 3014, Switzerland
| | - Sheida Moghadamrad
- Department of Gastroenterology/Hepatology, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona and Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano 6900, Switzerland
| | | |
Collapse
|
185
|
Huang YF, Zhang WM, Wei ZS, Huang H, Mo QY, Shi DL, Han L, Han YY, Nong SK, Lin GX. Causal relationships between gut microbiota and programmed cell death protein 1/programmed cell death-ligand 1: A bidirectional Mendelian randomization study. Front Immunol 2023; 14:1136169. [PMID: 36969249 PMCID: PMC10034163 DOI: 10.3389/fimmu.2023.1136169] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
BackgroundMultiple clinical studies have indicated that the gut microbiota influences the effects of immune checkpoint blockade (ICB) therapy comprising PD-1/PD-L1 inhibitors, but the causal relationship is unclear. Because of numerous confounders, many microbes related to PD-1/PD-L1 have not been identified. This study aimed to determine the causal relationship between the microbiota and PD-1/PD-L1 and identify possible biomarkers for ICB therapy.MethodWe used bidirectional two-sample Mendelian randomization with two different thresholds to explore the potential causal relationship between the microbiota and PD-1/PD-L1 and species-level microbiota GWAS to verify the result.ResultIn the primary forward analysis, genus_Holdemanella showed a negative correlation with PD-1 [βIVW = -0.25; 95% CI (-0.43 to -0.07); PFDR = 0.028] and genus_Prevotella9 showed a positive correlation with PD-1 [βIVW = 0.2; 95% CI (0.1 to 0.4); PFDR = 0.027]; order_Rhodospirillales [βIVW = 0.2; 95% CI (0.1 to 0.4); PFDR = 0.044], family_Rhodospirillaceae [βIVW = 0.2; 95% CI (0 to 0.4); PFDR = 0.032], genus_Ruminococcaceae_UCG005 [βIVW = 0.29; 95% CI (0.08 to 0.5); PFDR = 0.028], genus_Ruminococcus_gnavus_group [βIVW = 0.22; 95% CI (0.05 to 0.4); PFDR = 0.029], and genus_Coprococcus_2 [βIVW = 0.4; 95% CI (0.1 to 0.6); PFDR = 0.018] were positively correlated with PD-L1; and phylum_Firmicutes [βIVW = -0.3; 95% CI (-0.4 to -0.1); PFDR = 0.031], family_ClostridialesvadinBB60group [βIVW = -0.31; 95% CI (-0.5 to -0.11), PFDR = 0.008], family_Ruminococcaceae [βIVW = -0.33; 95% CI (-0.58 to -0.07); PFDR = 0.049], and genus_Ruminococcaceae_UCG014 [βIVW = -0.35; 95% CI (-0.57 to -0.13); PFDR = 0.006] were negatively correlated with PD-L1. The one significant species in further analysis was species_Parabacteroides_unclassified [βIVW = 0.2; 95% CI (0-0.4); PFDR = 0.029]. Heterogeneity (P > 0.05) and pleiotropy (P > 0.05) analyses confirmed the robustness of the MR results.
Collapse
Affiliation(s)
- Yu-Feng Huang
- The First Clinical College, Shanxi Medical University, Jinzhong, China
| | - Wei-Ming Zhang
- Department of Oncology, Wuming Hospital of Guangxi Medical University, Nanning, China
| | - Zhi-Song Wei
- Department of Oncology, Wuming Hospital of Guangxi Medical University, Nanning, China
| | - Huan Huang
- Department of Oncology, Wuming Hospital of Guangxi Medical University, Nanning, China
| | - Qi-Yan Mo
- Department of Oncology, Wuming Hospital of Guangxi Medical University, Nanning, China
| | - Dan-Li Shi
- Department of Oncology, Wuming Hospital of Guangxi Medical University, Nanning, China
| | - Lu Han
- Department of Oncology, Wuming Hospital of Guangxi Medical University, Nanning, China
| | - Yu-Yuan Han
- Department of Oncology, Wuming Hospital of Guangxi Medical University, Nanning, China
| | - Si-Kai Nong
- Department of Oncology, Wuming Hospital of Guangxi Medical University, Nanning, China
| | - Guo-Xiang Lin
- Department of Oncology, Wuming Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Guo-Xiang Lin,
| |
Collapse
|
186
|
Spontaneously Ruptured Hepatocellular Carcinoma: Computed Tomography-Based Assessment. Diagnostics (Basel) 2023; 13:diagnostics13061021. [PMID: 36980330 PMCID: PMC10047024 DOI: 10.3390/diagnostics13061021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/10/2023] Open
Abstract
Spontaneously ruptured hepatocellular carcinoma (SRHCC) is an uncommon and life-threatening complication in patients with hepatocellular carcinoma (HCC). It is usually associated with chronic liver disease and has a poor prognosis with a high mortality rate during the acute phase. SRHCC can cause a severe and urgent condition of acute abdomen disease and requires a correct diagnosis to achieve adequate treatment. Clinical presentation is related to the presence of hemoperitoneum, and abdominal pain is the most common symptom (66–100% of cases). Although the treatment approach is not unique, trans-arterial (chemo)embolization (TAE/TACE) followed by staged hepatectomy has shown better results in long-term survival. A multi-phase contrast-enhanced CT (CECT) scan is a pivotal technique in the diagnosis of SRHCC due to its diagnostic accuracy and optimal temporal resolution. The correct interpretation of the main CT findings in SRHCC, such as active contrast extravasation and the sentinel clot sign, is fundamental for a prompt and correct diagnosis. Furthermore, CT also plays a role as a post-operative control procedure, especially in patients treated with TAE/TACE. Therefore, a multi-phase CECT scan should be the diagnostic tool of choice in SRHCC since it suggests an immediate need for treatment with a consequent improvement in prognosis.
Collapse
|
187
|
Cramer T. Impact of dietary carbohydrate restriction on the pathobiology of Hepatocellular Carcinoma: The gut-liver axis and beyond. Semin Immunol 2023; 66:101736. [PMID: 36857893 DOI: 10.1016/j.smim.2023.101736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 03/01/2023]
Abstract
Despite decades of fiercely competitive research and colossal financial investments, the majority of patients with advanced solid cancers cannot be treated with curative intent. To improve this situation, conceptually novel treatment approaches are urgently needed. Cancer is increasingly appreciated as a systemic disease and numerous organismal factors are functionally linked to neoplastic growth, e.g. systemic metabolic dysregulation, chronic inflammation, intestinal dysbiosis and disrupted circadian rhythms. It is tempting to hypothesize that interventions targeting these processes could be of significant account for cancer patients. One important driver of tumor-supporting systemic derangements is inordinate consumption of simple and highly processed carbohydrates. This dietary pattern is causally linked to hyperinsulinemia, insulin resistance, chronic inflammation and intestinal dysbiosis, begging the pertinent question whether the adoption of dietary carbohydrate restriction can be beneficial for patients with cancer. This review summarizes the published data on the role of dietary carbohydrate restriction in the pathogenesis of Hepatocellular Carcinoma (HCC), the most frequent type of primary liver cancer. In addition to outlining the functional interplay between diet, the intestinal microbiome and immunity, the review underscores the importance of bile acids as interconnectors between the intestinal microbiota and immune cells.
Collapse
Affiliation(s)
- Thorsten Cramer
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital, 52074 Aachen, Germany; Department of Surgery, Maastricht University Medical Center, Maastricht, The Netherlands; NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
188
|
Ji J, Wu L, Wei J, Wu J, Guo C. The Gut Microbiome and Ferroptosis in MAFLD. J Clin Transl Hepatol 2023; 11:174-187. [PMID: 36406312 PMCID: PMC9647110 DOI: 10.14218/jcth.2022.00136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/22/2022] [Accepted: 06/12/2022] [Indexed: 12/04/2022] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a new disease definition, and is proposed to replace the previous name, nonalcoholic fatty liver disease (NAFLD). Globally, MAFLD/NAFLD is the most common liver disease, with an incidence rate ranging from 6% to 35% in adult populations. The pathogenesis of MAFLD/NAFLD is closely related to insulin resistance (IR), and the genetic susceptibility to acquired metabolic stress-associated liver injury. Similarly, the gut microbiota in MAFLD/NAFLD is being revaluated by scientists, as the gut and liver influence each other via the gut-liver axis. Ferroptosis is a novel form of programmed cell death caused by iron-dependent lipid peroxidation. Emerging evidence suggests that ferroptosis has a key role in the pathological progression of MAFLD/NAFLD, and inhibition of ferroptosis may become a novel therapeutic strategy for the treatment of NAFLD. This review focuses on the main mechanisms behind the promotion of MAFLD/NAFLD occurrence and development by the intestinal microbiota and ferroptosis. It outlines new strategies to target the intestinal microbiota and ferroptosis to facilitate future MAFLD/NAFLD therapies.
Collapse
Affiliation(s)
- Jie Ji
- Department of Gastroenterology, Putuo People’s Hospital, Tongji University, Shanghai, China
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liwei Wu
- Department of Gastroenterology, Putuo People’s Hospital, Tongji University, Shanghai, China
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jue Wei
- Department of Gastroenterology Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People’s Hospital, Tongji University, Shanghai, China
- Correspondence to: Chuanyong Guo, Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing’an District, Shanghai 200072, China. ORCID: https://orcid.org/0000-0002-6527-4673. E-mail: ; Jianye Wu: Department of Gastroenterology, Putuo People’s Hospital, NO. 1291, Jiangning road, Putuo, Shanghai 200060, China. ORCID: https://orcid.org/0000-0003-2675-4241. E-mail:
| | - Chuanyong Guo
- Department of Gastroenterology, Putuo People’s Hospital, Tongji University, Shanghai, China
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Correspondence to: Chuanyong Guo, Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing’an District, Shanghai 200072, China. ORCID: https://orcid.org/0000-0002-6527-4673. E-mail: ; Jianye Wu: Department of Gastroenterology, Putuo People’s Hospital, NO. 1291, Jiangning road, Putuo, Shanghai 200060, China. ORCID: https://orcid.org/0000-0003-2675-4241. E-mail:
| |
Collapse
|
189
|
Li G, Wang B, Li L, Li X, Yan R, Liang J, Zhou X, Li L, Zhou Z. H-rGO-Pd NPs Nanozyme Enhanced Silver Deposition Strategy for Electrochemical Detection of Glypican-3. Molecules 2023; 28:molecules28052271. [PMID: 36903516 PMCID: PMC10004744 DOI: 10.3390/molecules28052271] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 03/05/2023] Open
Abstract
Glypican-3 (GPC3), as an emerging biomarker, has been shown to be beneficial for the early diagnosis and treatment of hepatocellular carcinoma (HCC). In this study, an ultrasensitive electrochemical biosensor for GPC3 detection has been constructed based on the hemin-reduced graphene oxide-palladium nanoparticles (H-rGO-Pd NPs) nanozyme-enhanced silver deposition signal amplification strategy. When GPC3 specifically interacted with GPC3 antibody (GPC3Ab) and GPC3 aptamer (GPC3Apt), an "H-rGO-Pd NPs-GPC3Apt/GPC3/GPC3Ab" sandwich complex was formed with peroxidase-like properties which enhanced H2O2 to reduce the silver (Ag) ions in solution to metallic Ag, resulting in the deposition of silver nanoparticles (Ag NPs) on the surface of the biosensor. The amount of deposited Ag, which was derived from the amount of GPC3, was quantified by the differential pulse voltammetry (DPV) method. Under ideal circumstances, the response value was linearly correlated with GPC3 concentration at 10.0-100.0 μg/mL with R2 of 0.9715. When the GPC3 concentration was in the range from 0.01 to 10.0 μg/mL, the response value was logarithmically linear with the GPC3 concentration with R2 of 0.9941. The limit of detection was 3.30 ng/mL at a signal-to-noise ratio of three and the sensitivity was 1.535 μAμM-1cm-2. Furthermore, the electrochemical biosensor detected the GPC3 level in actual serum samples with good recoveries (103.78-106.52%) and satisfactory relative standard deviations (RSDs) (1.89-8.81%), which confirmed the applicability of the sensor in practical applications. This study provides a new analytical method for measuring the level of GPC3 in the early diagnosis of HCC.
Collapse
Affiliation(s)
- Guiyin Li
- Guangxi Key Laboratory of Information Materials, School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming 525000, China
| | - Bo Wang
- Guangxi Key Laboratory of Information Materials, School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| | - Ling Li
- Guangxi Key Laboratory of Information Materials, School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| | - Xinhao Li
- Guangxi Key Laboratory of Information Materials, School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| | - Ruijie Yan
- Guangxi Key Laboratory of Information Materials, School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| | - Jintao Liang
- Guangxi Key Laboratory of Information Materials, School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| | - Xinchun Zhou
- Guangdi Maoming Chemical Co., Ltd., Maoming High-Tech Industrial Development Zone, Maoming 525000, China
- Correspondence: (X.Z.); (L.L.); (Z.Z.)
| | - Liuxun Li
- Solid Tumour Target Discovery Laboratory, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Correspondence: (X.Z.); (L.L.); (Z.Z.)
| | - Zhide Zhou
- Guangxi Key Laboratory of Information Materials, School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
- Correspondence: (X.Z.); (L.L.); (Z.Z.)
| |
Collapse
|
190
|
Zhang L, Chen C, Chai D, Li C, Qiu Z, Kuang T, Liu L, Deng W, Wang W. Characterization of the intestinal fungal microbiome in patients with hepatocellular carcinoma. J Transl Med 2023; 21:126. [PMID: 36793057 PMCID: PMC9933289 DOI: 10.1186/s12967-023-03940-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
OBJECTIVE Gut mycobiota plays a crucial role in benign liver diseases; however, its correlation with hepatocellular carcinoma (HCC) remains elusive. This study aimed to elucidate fungal differences in patients with HCC-associated cirrhosis compared to cirrhotic patients without HCC and healthy controls. METHODS The 72 fecal samples from 34 HCC patients, 20 cirrhotic patients, and 18 healthy controls were collected and analyzed using ITS2 rDNA sequencing. RESULTS Our results revealed the presence of intestinal fungal dysbiosis with significant enrichment of opportunistic pathogenic fungi such as Malassezia, Malassezia sp., Candida, and C. albicans in HCC patients compared with healthy controls and cirrhosis patients. Alpha-diversity analysis demonstrated that patients with HCC and cirrhosis showed decreased fungal diversity compared to healthy controls. Beta diversity analysis indicated that the three groups exhibited significant segregated clustering. Besides, C. albicans was found to be significantly more abundant in the HCC patients with TNM stage III-IV than those with stage I-II, in contrast to the commensal organism S. cerevisiae. We also confirmed that the HCC patients were successfully classified with an area under the curve value of 0.906 based on the fecal fungal signature. Finally, our animal experiments confirm that aberrant colonization of the intestine by C. albicans and M. furfur can promote the development of HCC. CONCLUSIONS This study indicates that dysbiosis of the gut mycobiome might be involved in HCC development. TRIAL REGISTRATION ChiCTR, ChiCTR2100054537. Registered 19 December 2021, http://www.chictr.org.cn/edit.aspx?pid=144550&htm=4.
Collapse
Affiliation(s)
- Lilong Zhang
- grid.412632.00000 0004 1758 2270Department of General Surgery, Renmin Hospital of Wuhan University, No.238, Jiefang Road, Wuchang District, Wuhan, 430060 Hubei China ,Hubei Key Laboratory of Digestive System Disease, No.238, Jiefang Road, Wuchang District, Wuhan, 430060 Hubei China ,grid.412632.00000 0004 1758 2270Central Laboratory, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuchang District, Wuhan, 430060 Hubei China
| | - Chen Chen
- grid.412632.00000 0004 1758 2270Department of General Surgery, Renmin Hospital of Wuhan University, No.238, Jiefang Road, Wuchang District, Wuhan, 430060 Hubei China ,grid.412632.00000 0004 1758 2270Central Laboratory, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuchang District, Wuhan, 430060 Hubei China
| | - Dongqi Chai
- grid.412632.00000 0004 1758 2270Department of General Surgery, Renmin Hospital of Wuhan University, No.238, Jiefang Road, Wuchang District, Wuhan, 430060 Hubei China ,Hubei Key Laboratory of Digestive System Disease, No.238, Jiefang Road, Wuchang District, Wuhan, 430060 Hubei China ,grid.412632.00000 0004 1758 2270Central Laboratory, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuchang District, Wuhan, 430060 Hubei China
| | - Chunlei Li
- grid.412632.00000 0004 1758 2270Department of General Surgery, Renmin Hospital of Wuhan University, No.238, Jiefang Road, Wuchang District, Wuhan, 430060 Hubei China ,Hubei Key Laboratory of Digestive System Disease, No.238, Jiefang Road, Wuchang District, Wuhan, 430060 Hubei China ,grid.412632.00000 0004 1758 2270Central Laboratory, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuchang District, Wuhan, 430060 Hubei China
| | - Zhendong Qiu
- grid.412632.00000 0004 1758 2270Department of General Surgery, Renmin Hospital of Wuhan University, No.238, Jiefang Road, Wuchang District, Wuhan, 430060 Hubei China ,Hubei Key Laboratory of Digestive System Disease, No.238, Jiefang Road, Wuchang District, Wuhan, 430060 Hubei China ,grid.412632.00000 0004 1758 2270Central Laboratory, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuchang District, Wuhan, 430060 Hubei China
| | - Tianrui Kuang
- grid.412632.00000 0004 1758 2270Department of General Surgery, Renmin Hospital of Wuhan University, No.238, Jiefang Road, Wuchang District, Wuhan, 430060 Hubei China ,Hubei Key Laboratory of Digestive System Disease, No.238, Jiefang Road, Wuchang District, Wuhan, 430060 Hubei China ,grid.412632.00000 0004 1758 2270Central Laboratory, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuchang District, Wuhan, 430060 Hubei China
| | - Li Liu
- grid.412632.00000 0004 1758 2270Department of General Surgery, Renmin Hospital of Wuhan University, No.238, Jiefang Road, Wuchang District, Wuhan, 430060 Hubei China ,Hubei Key Laboratory of Digestive System Disease, No.238, Jiefang Road, Wuchang District, Wuhan, 430060 Hubei China ,grid.412632.00000 0004 1758 2270Central Laboratory, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuchang District, Wuhan, 430060 Hubei China
| | - Wenhong Deng
- Department of General Surgery, Renmin Hospital of Wuhan University, No.238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China. .,Central Laboratory, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China.
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, No.238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China. .,Central Laboratory, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China.
| |
Collapse
|
191
|
Guan H, Zhong M, Ma K, Tang C, Wang X, Ouyang M, Qin R, Chen J, Zhu E, Zhu T, Lu Y, Liu Y, Tian C, Zheng Z. The Comprehensive Role of High Mobility Group Box 1 (HMGB1) Protein in Different Tumors: A Pan-Cancer Analysis. J Inflamm Res 2023; 16:617-637. [PMID: 36820147 PMCID: PMC9938709 DOI: 10.2147/jir.s386898] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/24/2022] [Indexed: 02/16/2023] Open
Abstract
Background HMGB1 is a highly conserved nuclear protein widely expressed in mammalian cells. This study aimed to comprehensively investigate the roles and mechanisms of HMGB1 in different tumors. Methods Original data on HMGB1 expression, localization, potential interacting proteins, genetics were obtained from The Cancer Genome Atlas, Genotype-Tissue Expression, Cancer Cell Line Encyclopedia, Human Protein Atlas, Compartmentalized Protein-Protein Interaction and cBioPortal databases. Then, correlation between HMGB1 expression levels and tumor stage, prognosis, potential pathways, tumor microenvironment, ESTIMATE score, immune-related genes, immune cell infiltration, microsatellite instability, tumor mutation burden, or anti-tumor drug resistance was investigated. The above results consistently indicated that high expression of HMGB1 protein may be related to clinical prognosis of HCC patients. Therefore, clinical tissues of HCC patients were selected to verify the differential expression of HMGB1 protein in HCC. The sensitivity of HMGB1-siRNA transfected HepG2 cells to sorafenib was assessed. Results HMGB1 was found to be differentially expressed in many tumors and normal tissues. HMGB1 was mainly located in the nucleus and might interact with proteins such as TLR2 and TLR4. Furthermore, HMGB1 expression was closely related to tumor stage, prognosis, tumor microenvironment, immune-related genes, immune cell infiltration, microsatellite instability, tumor mutation burden, and anti-tumor drug resistance and might be involved in different pathways of various tumors. Immunohistochemistry results further verified the differential expression of HMGB1 in HCC and paracancerous tissues. HMGB1-siRNA transfected HepG2 cells had a tendency to be more insensitive to sorafenib treatment compared to the control group. Conclusions HMGB1 was differentially expressed in most tumors and normal tissues, and was closely related to the clinical stage, prognosis, immune infiltration, tumor microenvironment, and drug resistance of tumors. Therefore, HMGB1 may serve as a novel biomarker for predicting tumor prognosis, efficacy of immune checkpoint inhibitors, and a potential target for anti-tumor therapy.
Collapse
Affiliation(s)
- Hui Guan
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, People’s Republic of China
| | - Ming Zhong
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, People’s Republic of China
| | - Kongyang Ma
- Centre of Infection and Immunity Studies, School of Medicine, Sun Yat-Sen University, Shenzhen, People’s Republic of China
| | - Chun Tang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, People’s Republic of China
| | - Xiaohua Wang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, People’s Republic of China
| | - Muzi Ouyang
- Department of Pharmacology, School of Medicine, Sun Yat-Sen University, Shenzhen, People’s Republic of China
| | - Rencai Qin
- Centre of Infection and Immunity Studies, School of Medicine, Sun Yat-Sen University, Shenzhen, People’s Republic of China
| | - Jiasi Chen
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, People’s Republic of China
| | - Enyi Zhu
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, People’s Republic of China
| | - Ting Zhu
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, People’s Republic of China
| | - Yongping Lu
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, People’s Republic of China
| | - Yu Liu
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, People’s Republic of China
| | - Chengzi Tian
- Center of Reproductive Medical, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, People’s Republic of China
| | - Zhihua Zheng
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, People’s Republic of China,Correspondence: Zhihua Zheng, Email
| |
Collapse
|
192
|
Guo J, Cui G, Huang W, Zheng Z, Li T, Gao G, Huang Z, Zhan Y, Ding S, Liu S, Yu Z, Ren Z. Alterations in the human oral microbiota in systemic lupus erythematosus. J Transl Med 2023; 21:95. [PMID: 36755319 PMCID: PMC9905765 DOI: 10.1186/s12967-023-03892-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/17/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Alterations in oral microbiota in patients with systemic lupus erythematosus (SLE) is less evaluated. The aim of this study was to compare the characteristics of the oral microbiome in SLE patients and healthy controls, and construct an SLE classifier based on the oral microbiota. METHODS We sequenced tongue-coating samples of individuals in treatment-naïve SLE (n = 182) and matched healthy controls (n = 280). We characterized the oral microbiome and constructed a microbial classifier in the derivation cohort and validated the results in the validation cohorts. Furthermore, the oral microbiome of posttreatment SLE (n = 73) was characterized. RESULTS The oral microbial diversity of SLE was increased, and the microbial community was different between SLE and healthy controls. The genera Prevotella and Veillonella were enriched, while Streptococcus and Porphyromonas were reduced in SLE. In addition, an increase was noted in 27 predicted microbial functions, while a decrease was noted in 34 other functions. Thirty-nine operational taxonomy units (OTUs) were identified to be related with seven clinical indicators. Two OTUs were identified to construct a classifier, which yielded area under the curve values of 0.9166 (95% CI 0.8848-0.9483, p < 0.0001), 0.8422 (95% CI 0.7687-0.9157, p < 0.0001), and 0.8406 (95% CI 0.7677-0.9135, p < 0.0001) in the derivation, validation, and cross-regional validation groups, respectively. Moreover, as disease activity increased, Abiotrophia and Lactobacillales increased, while Phyllobacterium and unclassified Micrococcusaceae decreased. Finally, nine OTUs were selected to construct a classifier distinguishing posttreatment SLE patients from healthy controls, which achieved a diagnostic efficacy of 0.9942 (95% CI 0.9884-1, p < 0.0001). CONCLUSIONS Our study comprehensively characterizes the oral microbiome of SLE and shows the potential of the oral microbiota as a non-invasive diagnostic biomarker in SLE.
Collapse
Affiliation(s)
- Jinyan Guo
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhengzhou University, #1 Jianshe East Road, Zhengzhou, 450052, China
| | - Guangying Cui
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, #1 Jianshe East Road, Zhengzhou, 450052, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Wei Huang
- Department of Rheumatology and Immunology, Hainan General Hospital, Haikou, 570100, China
| | - Zhaohui Zheng
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhengzhou University, #1 Jianshe East Road, Zhengzhou, 450052, China
| | - Tianfang Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhengzhou University, #1 Jianshe East Road, Zhengzhou, 450052, China
| | - Guanmin Gao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhengzhou University, #1 Jianshe East Road, Zhengzhou, 450052, China
| | - Zhen Huang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yuwei Zhan
- Department of Rheumatology and Immunology, Hainan General Hospital, Haikou, 570100, China
| | - Suying Ding
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shengyun Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhengzhou University, #1 Jianshe East Road, Zhengzhou, 450052, China.
| | - Zujiang Yu
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, #1 Jianshe East Road, Zhengzhou, 450052, China.
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Zhigang Ren
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, #1 Jianshe East Road, Zhengzhou, 450052, China.
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250000, China.
| |
Collapse
|
193
|
Huo R, Chen Y, Li J, Xu Q, Guo J, Xu H, You Y, Zheng C, Chen Y. Altered Gut Microbiota Composition and Its Potential Association in Patients with Advanced Hepatocellular Carcinoma. Curr Oncol 2023; 30:1818-1830. [PMID: 36826102 PMCID: PMC9955867 DOI: 10.3390/curroncol30020141] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second-most-common cause of cancer death. In recent years, studies have suggested that intestinal microbiota dysregulation is closely related to HCC and can affect the therapeutic efficacy of immune checkpoint inhibitors. However, there are few data on the relationship between altered gut microbiota composition and its potential association in patients with advanced hepatocellular carcinoma. Hence, in this study, we aimed to investigate the gut microbiota profile associated with advanced hepatocarcinoma. In total, 20 patients with advanced hepatocarcinoma and 20 matched healthy participants were recruited. Stool samples were collected for 16S rRNA sequencing to confirm intestinal microbiota dysbiosis. The results showed that the Nseqs index in advanced hepatocarcinoma patients was significantly different compared with that in healthy individuals, while the butyrate-producing bacteria decreased and LPS-producing bacteria increased. Meanwhile, Lactobacillus, Anaerostipes, Fusicatenibacter, Bifidobacterium, and Faecalibacterium were significantly correlated with AFP, ALT, AST, and PIVKA. Our findings characterized the gut microbiota composition of advanced hepatocarcinoma, providing an experimental basis and theoretical support for using microbiota to regulate immunotherapy, achieve potential biomarkers for diagnosis, and improve the effect of clinical treatment for patients with advanced hepatocarcinoma.
Collapse
Affiliation(s)
- Ran Huo
- Department of Clinical Laboratory, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
- Correspondence: (R.H.); (Y.C.)
| | - Yanlin Chen
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Jie Li
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou 635000, China
| | - Quanguo Xu
- School of Pharmacy and Medical Technology, Putian University, Putian 351100, China
| | - Junying Guo
- Department of Clinical Laboratory, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Haiyan Xu
- Department of Clinical Laboratory, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Yiqing You
- Department of Clinical Laboratory, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Chaoqiang Zheng
- Department of Clinical Laboratory, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Yan Chen
- Department of Clinical Laboratory, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
- Correspondence: (R.H.); (Y.C.)
| |
Collapse
|
194
|
Shehab-Eldeen S, Metwaly MF, Saber SM, El-Kousy SM, Badr EAE, Essa A. MicroRNA-29a and MicroRNA-124 as novel biomarkers for hepatocellular carcinoma. Dig Liver Dis 2023; 55:283-290. [PMID: 35525722 DOI: 10.1016/j.dld.2022.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Numerous microRNAs (miRNAs) have been observed to be abnormally expressed in cancer. Therefore, miRNA signatures could be potential noninvasive diagnostic and prognostic biomarkers for hepatocellular carcinoma (HCC). AIMS To correlate miRNA-29a and miRNA-124 expression levels with the clinical features and survival rates of HCC patients. METHODS Serum miRNA expression in 150 samples (50 patients with HCC, 50 patients with liver cirrhosis, and 50 healthy controls) were quantified using real-time qRT-PCR. RESULTS The expression levels of serum miRNA-29a were higher and the levels of miRNA-124 were lower in patients with HCC than in patients with liver cirrhosis and controls. ROC curve analysis showed promising accuracy for both miRNAs in distinguishing patients with HCC from those with liver cirrhosis. Levels of miRNA-29a were related to tumor number, size, stage, and outcome, whereas levels of miRNA-124 were related to vascular invasion. The overall survival rate of patients with low miRNA-29a expression was significantly higher than that of patients with high expression. Additionally, the multivariate analysis identified miRNA-29a as an independent prognostic variable. CONCLUSIONS The investigated miRNAs showed acceptable accuracy in the diagnosis of HCC; therefore, both could be utilized as diagnostic biomarkers. Additionally, miRNA-29a could be used as a prognostic biomarker.
Collapse
Affiliation(s)
- Somaia Shehab-Eldeen
- Tropical Medicine Department, Faculty of Medicine, Menoufia University, Shebin El-Kom 32511, Egypt; Internal Medicine Department, College of Medicine, King Faisal University, Al-Ahsaa 31982, Saudi Arabia.
| | - Mohamed F Metwaly
- Chemist at Faculty of Science, Menoufia University, Shebin El-Kom 32511, Egypt
| | - Safa M Saber
- Chemist at Clinical Laboratory Department, Student hospital, Menoufia University, Shebin El-Kom 32511, Egypt
| | - Salah M El-Kousy
- Organic Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom 32511, Egypt
| | - Eman A E Badr
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Shebin El-Kom 32511, Egypt
| | - Abdallah Essa
- Tropical Medicine Department, Faculty of Medicine, Menoufia University, Shebin El-Kom 32511, Egypt; Internal Medicine Department, College of Medicine, King Faisal University, Al-Ahsaa 31982, Saudi Arabia
| |
Collapse
|
195
|
Campbell C, Kandalgaonkar MR, Golonka RM, Yeoh BS, Vijay-Kumar M, Saha P. Crosstalk between Gut Microbiota and Host Immunity: Impact on Inflammation and Immunotherapy. Biomedicines 2023; 11:294. [PMID: 36830830 PMCID: PMC9953403 DOI: 10.3390/biomedicines11020294] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Gut microbes and their metabolites are actively involved in the development and regulation of host immunity, which can influence disease susceptibility. Herein, we review the most recent research advancements in the gut microbiota-immune axis. We discuss in detail how the gut microbiota is a tipping point for neonatal immune development as indicated by newly uncovered phenomenon, such as maternal imprinting, in utero intestinal metabolome, and weaning reaction. We describe how the gut microbiota shapes both innate and adaptive immunity with emphasis on the metabolites short-chain fatty acids and secondary bile acids. We also comprehensively delineate how disruption in the microbiota-immune axis results in immune-mediated diseases, such as gastrointestinal infections, inflammatory bowel diseases, cardiometabolic disorders (e.g., cardiovascular diseases, diabetes, and hypertension), autoimmunity (e.g., rheumatoid arthritis), hypersensitivity (e.g., asthma and allergies), psychological disorders (e.g., anxiety), and cancer (e.g., colorectal and hepatic). We further encompass the role of fecal microbiota transplantation, probiotics, prebiotics, and dietary polyphenols in reshaping the gut microbiota and their therapeutic potential. Continuing, we examine how the gut microbiota modulates immune therapies, including immune checkpoint inhibitors, JAK inhibitors, and anti-TNF therapies. We lastly mention the current challenges in metagenomics, germ-free models, and microbiota recapitulation to a achieve fundamental understanding for how gut microbiota regulates immunity. Altogether, this review proposes improving immunotherapy efficacy from the perspective of microbiome-targeted interventions.
Collapse
Affiliation(s)
- Connor Campbell
- Department of Physiology & Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Mrunmayee R. Kandalgaonkar
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Rachel M. Golonka
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Beng San Yeoh
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Matam Vijay-Kumar
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Piu Saha
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| |
Collapse
|
196
|
Zhang T, Pang A, Lyu J, Ren H, Song J, Zhu F, Liu J, Cui Y, Ling C, Tian Y. Application of Nonlinear Models Combined with Conventional Laboratory Indicators for the Diagnosis and Differential Diagnosis of Ovarian Cancer. J Clin Med 2023; 12:jcm12030844. [PMID: 36769493 PMCID: PMC9917843 DOI: 10.3390/jcm12030844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Existing biomarkers for ovarian cancer lack sensitivity and specificity. We compared the diagnostic efficacy of nonlinear machine learning and linear statistical models for diagnosing ovarian cancer using a combination of conventional laboratory indicators. We divided 901 retrospective samples into an ovarian cancer group and a control group, comprising non-ovarian malignant gynecological tumor (NOMGT), benign gynecological disease (BGD), and healthy control subgroups. Cases were randomly assigned to training and internal validation sets. Two linear (logistic regression (LR) and Fisher's linear discriminant (FLD)) and three nonlinear models (support vector machine (SVM), random forest (RF), and artificial neural network (ANN)) were constructed using 22 conventional laboratory indicators and three demographic characteristics. Model performance was compared. In an independent prospectively recruited validation set, the order of diagnostic efficiency was RF, SVM, ANN, FLD, LR, and carbohydrate antigen 125 (CA125)-only (AUC, accuracy: 0.989, 95.6%; 0.985, 94.4%; 0.974, 93.4%; 0.915, 82.1%; 0.859, 80.1%; and 0.732, 73.0%, respectively). RF maintained satisfactory classification performance for identifying different ovarian cancer stages and for discriminating it from NOMGT-, BGD-, or CA125-positive control. Nonlinear models outperformed linear models, indicating that nonlinear machine learning models can efficiently use conventional laboratory indicators for ovarian cancer diagnosis.
Collapse
Affiliation(s)
- Tongshuo Zhang
- Department of Laboratory Medicine and Pathology, Jiangsu Provincial Corps Hospital of Chinese People’s Armed Police Force (PAP), Yangzhou 225003, China
| | - Aibo Pang
- Center for Birth Defects Prevention and Control Technology Research, Chinese PLA General Hospital, Beijing 100853, China
| | - Jungang Lyu
- Third Department of Internal Medicine, Beijing Corps Hospital of PAP, Beijing 100027, China
| | - Hefei Ren
- Department of Laboratory Medicine, The Second Affiliated Hospital, Naval Medical University, Shanghai 200003, China
| | - Jiangnan Song
- Department of Obstetrics and Gynecology, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Feng Zhu
- Department of Laboratory Medicine and Pathology, Jiangsu Provincial Corps Hospital of Chinese People’s Armed Police Force (PAP), Yangzhou 225003, China
| | - Jinlong Liu
- Department of Obstetrics and Gynecology, The 79th Group Army Hospital of PLA, Liaoyang 111000, China
| | - Yuntao Cui
- Department of Laboratory Medicine, Characteristic Medical Center of PAP, Tianjin 300162, China
| | - Cunbao Ling
- Center for Birth Defects Prevention and Control Technology Research, Chinese PLA General Hospital, Beijing 100853, China
| | - Yaping Tian
- Center for Birth Defects Prevention and Control Technology Research, Chinese PLA General Hospital, Beijing 100853, China
- Correspondence:
| |
Collapse
|
197
|
Tovo CV, de Mattos AZ, Coral GP, Sartori GDP, Nogueira LV, Both GT, Villela-Nogueira CA, de Mattos AA. Hepatocellular carcinoma in non-alcoholic steatohepatitis without cirrhosis. World J Gastroenterol 2023; 29:343-356. [PMID: 36687125 PMCID: PMC9846942 DOI: 10.3748/wjg.v29.i2.343] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/07/2022] [Accepted: 11/18/2022] [Indexed: 01/06/2023] Open
Abstract
Cirrhosis is an emerging major cause of the development of hepatocellular carcinoma (HCC), but in non-alcoholic fatty liver disease (NAFLD), up to 50% of patients with HCC had no clinical or histological evidence of cirrhosis. It is currently challenging to propose general recommendations for screening patients with NAFLD without cirrhosis, and each patient should be evaluated on a case-by-case basis based on the profile of specific risk factors identified. For HCC screening in NAFLD, a valid precision-based screening is needed. Currently, when evaluating this population of patients, the use of non-invasive methods can guide the selection of those who should undergo a screening and surveillance program. Hence, the objective of the present study is to review the epidemiology, the pathophysiology, the histopathological aspects, the current recommendations, and novel perspectives in the surveillance of non-cirrhotic NAFLD-related HCC.
Collapse
Affiliation(s)
- Cristiane Valle Tovo
- Department of Internal Medicine, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre 90050170, RS, Brazil
| | - Angelo Zambam de Mattos
- Department of Internal Medicine, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre 90050170, RS, Brazil
| | - Gabriela Perdomo Coral
- Department of Internal Medicine, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre 90050170, RS, Brazil
| | - Giovana D P Sartori
- Department of Internal Medicine, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre 90050170, RS, Brazil
| | - Livia Villela Nogueira
- Department of Internal Medicine, Fundação Técnico Educacional Souza Marques, RJ 21491-630, RJ, Brazil
| | - Gustavo Tovo Both
- Department of Internal Medicine, Universidade Luterana do Brasil, Canoas 92425-350, RS, Brazil
| | | | - Angelo A de Mattos
- Department of Internal Medicine, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre 90050170, RS, Brazil
| |
Collapse
|
198
|
Teng H, Wang Y, Sui X, Fan J, Li S, Lei X, Shi C, Sun W, Song M, Wang H, Dong D, Geng J, Zhang Y, Zhu X, Cai Y, Li Y, Li B, Min Q, Wang W, Zhan Q. Gut microbiota-mediated nucleotide synthesis attenuates the response to neoadjuvant chemoradiotherapy in rectal cancer. Cancer Cell 2023; 41:124-138.e6. [PMID: 36563680 DOI: 10.1016/j.ccell.2022.11.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 07/04/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
Preoperative neoadjuvant chemoradiotherapy (nCRT) is a standard treatment for locally advanced rectal cancer (LARC) patients, yet little is known about the mediators underlying the heterogeneous patient response. In this longitudinal study, we performed 16S rRNA sequencing on 353 fecal specimens and find reduced microbial diversity after nCRT. Multi-omics data integration reveals that Bacteroides vulgatus-mediated nucleotide biosynthesis associates with nCRT resistance in LARC patients, and nonresponsive tumors are characterized by the upregulation of genes related to DNA repair and nucleoside transport. Nucleosides supplementation or B. vulgatus gavage protects cancer cells from the 5-fluorouracil or irradiation treatment. An analysis of 2,205 serum samples from 735 patients suggests that uric acid is a potential prognosis marker for LARC patients receiving nCRT. Our data unravel the role of intestinal microbiota-mediated nucleotide biosynthesis in the response of rectal tumors to nCRT, and highlight the importance of deciphering the cross-talk between cancer cells and gut microorganisms during cancer therapies.
Collapse
Affiliation(s)
- Huajing Teng
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Yan Wang
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Xin Sui
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Jiawen Fan
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Shuai Li
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Xiao Lei
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Chen Shi
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Wei Sun
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Maxiaowei Song
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Hongzhi Wang
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Dezuo Dong
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Jianhao Geng
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Yangzi Zhang
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Xianggao Zhu
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Yong Cai
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Yongheng Li
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Bo Li
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Qingjie Min
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Weihu Wang
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China.
| | - Qimin Zhan
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China; Peking University International Cancer Institute, Peking University, Beijing 100191, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
199
|
Olianas A, Guadalupi G, Cabras T, Contini C, Serrao S, Iavarone F, Castagnola M, Messana I, Onali S, Chessa L, Diaz G, Manconi B. Top-Down Proteomics Detection of Potential Salivary Biomarkers for Autoimmune Liver Diseases Classification. Int J Mol Sci 2023; 24:959. [PMID: 36674470 PMCID: PMC9866740 DOI: 10.3390/ijms24020959] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
(1) Autoimmune hepatitis (AIH) and primary biliary cholangitis (PBC) are autoimmune liver diseases characterized by chronic hepatic inflammation and progressive liver fibrosis. The possible use of saliva as a diagnostic tool has been explored in several oral and systemic diseases. The use of proteomics for personalized medicine is a rapidly emerging field. (2) Salivary proteomic data of 36 healthy controls (HCs), 36 AIH and 36 PBC patients, obtained by liquid chromatography/mass spectrometry top-down pipeline, were analyzed by multiple Mann-Whitney test, Kendall correlation, Random Forest (RF) analysis and Linear Discriminant Analysis (LDA); (3) Mann-Whitney tests provided indications on the panel of differentially expressed salivary proteins and peptides, namely cystatin A, statherin, histatin 3, histatin 5 and histatin 6, which were elevated in AIH patients with respect to both HCs and PBC patients, while S100A12, S100A9 short, cystatin S1, S2, SN and C showed varied levels in PBC with respect to HCs and/or AIH patients. RF analysis evidenced a panel of salivary proteins/peptides able to classify with good accuracy PBC vs. HCs (83.3%), AIH vs. HCs (79.9%) and PBC vs. AIH (80.2%); (4) RF appears to be an attractive machine-learning tool suited for classification of AIH and PBC based on their different salivary proteomic profiles.
Collapse
Affiliation(s)
- Alessandra Olianas
- Dipartimento di Scienze della Vita e dell’Ambiente, Università di Cagliari, 09042 Cagliari, Italy
| | - Giulia Guadalupi
- Dipartimento di Scienze della Vita e dell’Ambiente, Università di Cagliari, 09042 Cagliari, Italy
| | - Tiziana Cabras
- Dipartimento di Scienze della Vita e dell’Ambiente, Università di Cagliari, 09042 Cagliari, Italy
| | - Cristina Contini
- Dipartimento di Scienze della Vita e dell’Ambiente, Università di Cagliari, 09042 Cagliari, Italy
| | - Simone Serrao
- Dipartimento di Scienze della Vita e dell’Ambiente, Università di Cagliari, 09042 Cagliari, Italy
| | - Federica Iavarone
- Fondazione Policlinico Universitario “A. Gemelli”—IRCCS, 00168 Rome, Italy
| | - Massimo Castagnola
- Laboratorio di Proteomica, Centro Europeo di Ricerca sul Cervello, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Irene Messana
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche, 00168 Rome, Italy
| | - Simona Onali
- Liver Unit, University Hospital of Cagliari, 09042 Cagliari, Italy
| | - Luchino Chessa
- Liver Unit, University Hospital of Cagliari, 09042 Cagliari, Italy
- Dipartimento di Scienze Mediche e Sanità Pubblica, Università di Cagliari, 09042 Cagliari, Italy
| | - Giacomo Diaz
- Dipartimento di Scienze Biomediche, Università di Cagliari, 09042 Cagliari, Italy
| | - Barbara Manconi
- Dipartimento di Scienze della Vita e dell’Ambiente, Università di Cagliari, 09042 Cagliari, Italy
| |
Collapse
|
200
|
Yang J, He Q, Lu F, Chen K, Ni Z, Wang H, Zhou C, Zhang Y, Chen B, Bo Z, Li J, Yu H, Wang Y, Chen G. A distinct microbiota signature precedes the clinical diagnosis of hepatocellular carcinoma. Gut Microbes 2023; 15:2201159. [PMID: 37089022 PMCID: PMC10128432 DOI: 10.1080/19490976.2023.2201159] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 04/05/2023] [Indexed: 04/25/2023] Open
Abstract
Oral, gut, and tumor microbiota have been implicated as important regulators in the carcinogenesis and progression of gastrointestinal malignancies. However, few studies focused on the existence and association of resident microbes within different body regions. Herein, we aim to reveal the durability of the oral-gut-tumor microbiome and its diagnostic performance in hepatocellular carcinoma (HCC). Our study included two cohorts: a retrospective discovery cohort of 364 HBV-HCC patients and 160 controls with oral or fecal samples, a prospective validation cohort of 91 cases, and 124 controls for matching samples, as well as 48 HBV, and 39 HBV-cirrhosis patients for gut microbial patterns examined by 16S rRNA gene sequencing. With the random forest analysis, 10 oral and 9 gut genera that could distinguish HCC from controls in the retrospective cohort were validated among the prospective matching participants, with area under the curve (AUC) values of 0.7971 and 0.8084, respectively. When influential taxa were merged, the AUC of the consistent classifier increased to 0.9405. The performance continued to improve to 0.9811 when combined with serum levels of alpha-fetoprotein (AFP). Specifically, microbial biomarkers represented by Streptococcus displayed a constantly increasing trend during the disease transition. Furthermore, the presence of several dominant microbiota species was confirmed in hepatic tumor and non-tumor tissues with fluorescence in situ hybridization (FISH) and 5 R 16S rRNA gene sequencing. Overall, our findings based on the oral-gut-tumor microbiota provide a reliable approach for the early detection of HCC.
Collapse
Affiliation(s)
- Jinhuan Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qikuan He
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fei Lu
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Kaiwen Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - ZhiHao Ni
- School of Nursing, Wenzhou Medical University, Wenzhou, China
| | - Haoyue Wang
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Chen Zhou
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Yaosheng Zhang
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Bo Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhiyuan Bo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jialiang Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haitao Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi Wang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University; Chashan High Education Zone, Wenzhou, China
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|