151
|
Pignatelli P, Iezzi L, Pennese M, Raimondi P, Cichella A, Bondi D, Grande R, Cotellese R, Di Bartolomeo N, Innocenti P, Piattelli A, Curia MC. The Potential of Colonic Tumor Tissue Fusobacterium nucleatum to Predict Staging and Its Interplay with Oral Abundance in Colon Cancer Patients. Cancers (Basel) 2021; 13:1032. [PMID: 33804585 PMCID: PMC7957509 DOI: 10.3390/cancers13051032] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Intestinal microbiota dysbiosis may enhance the carcinogenicity of colon cancer (CC) by the proliferation and differentiation of epithelial cells. Oral Fusobacterium nucleatum (Fn) and Porphyromonas gingivalis (Pg) have the ability to invade the gut epithelium, promoting tumor progression. The aim of the study was to assess whether the abundance of these odontopathogenic bacteria was associated with colon cancer. We also investigated how lifestyle factors could influence the oral Fn and Pg abundance and CC. METHODS Thirty-six CC patients were included in the study to assess the Pg and Fn oral and colon tissue abundance by qPCR. Oral health data, food habits and lifestyles were also recorded. RESULTS Patients had a greater quantity of Fn in the oral cavity than matched CC and adjacent non-neoplastic mucosa (adj t) tissues (p = 0.004 and p < 0.001). Instead, Pg was not significantly detected in colonic tissues. There was an association between the Fn quantity in the oral and CC tissue and a statistically significant relation between the Fn abundance in adenocarcinoma (ADK) and staging (p = 0.016). The statistical analysis revealed a tendency towards a greater Fn quantity in CC (p = 0.073, η2p = 0.12) for high-meat consumers. CONCLUSION In our study, Pg was absent in colon tissues but was correlated with the oral inflammation gingival and plaque indices. For the first time, there was evidence that the Fn oral concentration can influence colon tissue concentrations and predict CC prognosis.
Collapse
Affiliation(s)
- Pamela Pignatelli
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (P.P.); (L.I.); (M.P.); (R.C.); (A.P.)
| | - Lorena Iezzi
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (P.P.); (L.I.); (M.P.); (R.C.); (A.P.)
| | - Martina Pennese
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (P.P.); (L.I.); (M.P.); (R.C.); (A.P.)
| | - Paolo Raimondi
- Department of General Surgery, Private Hospital “Villa Serena”, Città Sant’Angelo, 65013 Pescara, Italy; (P.R.); (A.C.); (N.D.B.); (P.I.)
| | - Anna Cichella
- Department of General Surgery, Private Hospital “Villa Serena”, Città Sant’Angelo, 65013 Pescara, Italy; (P.R.); (A.C.); (N.D.B.); (P.I.)
| | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy;
| | - Rossella Grande
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy;
| | - Roberto Cotellese
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (P.P.); (L.I.); (M.P.); (R.C.); (A.P.)
- Villa Serena Foundation for Research, Città Sant’Angelo, 65013 Pescara, Italy
| | - Nicola Di Bartolomeo
- Department of General Surgery, Private Hospital “Villa Serena”, Città Sant’Angelo, 65013 Pescara, Italy; (P.R.); (A.C.); (N.D.B.); (P.I.)
| | - Paolo Innocenti
- Department of General Surgery, Private Hospital “Villa Serena”, Città Sant’Angelo, 65013 Pescara, Italy; (P.R.); (A.C.); (N.D.B.); (P.I.)
- Villa Serena Foundation for Research, Città Sant’Angelo, 65013 Pescara, Italy
| | - Adriano Piattelli
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (P.P.); (L.I.); (M.P.); (R.C.); (A.P.)
- Villa Serena Foundation for Research, Città Sant’Angelo, 65013 Pescara, Italy
| | - Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (P.P.); (L.I.); (M.P.); (R.C.); (A.P.)
| |
Collapse
|
152
|
Eisele Y, Mallea PM, Gigic B, Stephens WZ, Warby CA, Buhrke K, Lin T, Boehm J, Schrotz-King P, Hardikar S, Huang LC, Pickron TB, Scaife CL, Viskochil R, Koelsch T, Peoples AR, Pletneva MA, Bronner M, Schneider M, Ulrich AB, Swanson EA, Toriola AT, Shibata D, Li CI, Siegel EM, Figueiredo J, Janssen KP, Hauner H, Round J, Ulrich CM, Holowatyj AN, Ose J. Fusobacterium nucleatum and Clinicopathologic Features of Colorectal Cancer: Results From the ColoCare Study. Clin Colorectal Cancer 2021; 20:e165-e172. [PMID: 33935016 DOI: 10.1016/j.clcc.2021.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/08/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Fusobacterium nucleatum (Fn), a bacterium associated with a wide spectrum of infections, has emerged as a key microbe in colorectal carcinogenesis. However, the underlying mechanisms and clinical relevance of Fn in colorectal cancer (CRC) remain incompletely understood. PATIENTS AND METHODS We examined associations between Fn abundance and clinicopathologic characteristics among 105 treatment-naïve CRC patients enrolled in the international, prospective ColoCare Study. Electronic medical charts, including pathological reports, were reviewed to document clinicopathologic features. Quantitative real-time polymerase chain reaction (PCR) was used to amplify/detect Fn DNA in preoperative fecal samples. Multinomial logistic regression was used to analyze associations between Fn abundance and patient sex, age, tumor stage, grade, site, microsatellite instability, body mass index (BMI), alcohol consumption, and smoking history. Cox proportional hazards models were used to investigate associations of Fn abundance with overall survival in adjusted models. RESULTS Compared to patients with undetectable or low Fn abundance, patients with high Fn abundance (n = 22) were 3-fold more likely to be diagnosed with rectal versus colon cancer (odds ratio [OR] = 3.01; 95% confidence interval [CI], 1.06-8.57; P = .04) after adjustment for patient sex, age, BMI, and study site. Patients with high Fn abundance also had a 5-fold increased risk of being diagnosed with rectal cancer versus right-sided colon cancer (OR = 5.32; 95% CI, 1.23-22.98; P = .03). There was no statistically significant association between Fn abundance and overall survival. CONCLUSION Our findings suggest that Fn abundance in fecal samples collected prior to surgery varies by tumor site among treatment-naïve CRC patients. Overall, fecal Fn abundance may have diagnostic and prognostic significance in the clinical management of CRC.
Collapse
Affiliation(s)
- Yannick Eisele
- Huntsman Cancer Institute, Salt Lake City, UT; Department of Population Health Sciences, University of Utah, Salt Lake City, UT; Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany; Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Patrick M Mallea
- Huntsman Cancer Institute, Salt Lake City, UT; Department of Population Health Sciences, University of Utah, Salt Lake City, UT
| | - Biljana Gigic
- Department of General, Visceral and Transplantation Surgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - W Zac Stephens
- Department of Pathology, University of Utah, Salt Lake City, UT
| | - Christy A Warby
- Huntsman Cancer Institute, Salt Lake City, UT; Department of Population Health Sciences, University of Utah, Salt Lake City, UT
| | - Kate Buhrke
- Department of Pathology, University of Utah, Salt Lake City, UT
| | - Tengda Lin
- Huntsman Cancer Institute, Salt Lake City, UT; Department of Population Health Sciences, University of Utah, Salt Lake City, UT
| | - Juergen Boehm
- Huntsman Cancer Institute, Salt Lake City, UT; Department of Population Health Sciences, University of Utah, Salt Lake City, UT
| | - Petra Schrotz-King
- Division of Preventive Oncology, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg, Germany
| | - Sheetal Hardikar
- Huntsman Cancer Institute, Salt Lake City, UT; Department of Population Health Sciences, University of Utah, Salt Lake City, UT
| | - Lyen C Huang
- Division of General Surgery, Department of Surgery, School of Medicine, University of Utah, Salt Lake City, UT
| | - T Bartley Pickron
- Division of General Surgery, Department of Surgery, School of Medicine, University of Utah, Salt Lake City, UT
| | - Courtney L Scaife
- Division of General Surgery, Department of Surgery, School of Medicine, University of Utah, Salt Lake City, UT
| | - Richard Viskochil
- Huntsman Cancer Institute, Salt Lake City, UT; Department of Population Health Sciences, University of Utah, Salt Lake City, UT
| | - Torsten Koelsch
- Department of General, Visceral and Transplantation Surgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - Anita R Peoples
- Huntsman Cancer Institute, Salt Lake City, UT; Department of Population Health Sciences, University of Utah, Salt Lake City, UT
| | - Maria A Pletneva
- Huntsman Cancer Institute, Salt Lake City, UT; Department of Pathology, University of Utah, Salt Lake City, UT
| | - Mary Bronner
- Huntsman Cancer Institute, Salt Lake City, UT; Department of Pathology, University of Utah, Salt Lake City, UT
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - Alexis B Ulrich
- Department of General, Visceral and Transplantation Surgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - Eric A Swanson
- Department of Pathology, University of Utah, Salt Lake City, UT
| | | | - David Shibata
- Department of Surgery, University of Tennessee Health Science Center, Memphis, TN
| | - Christopher I Li
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Erin M Siegel
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Jane Figueiredo
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Klaus-Peter Janssen
- Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany; Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Hans Hauner
- Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany; Else Kröner-Fresenius-Centre for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Munich, Germany
| | - June Round
- Department of Pathology, University of Utah, Salt Lake City, UT
| | - Cornelia M Ulrich
- Huntsman Cancer Institute, Salt Lake City, UT; Department of Population Health Sciences, University of Utah, Salt Lake City, UT
| | - Andreana N Holowatyj
- Huntsman Cancer Institute, Salt Lake City, UT; Department of Population Health Sciences, University of Utah, Salt Lake City, UT; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN; Vanderbilt-Ingram Cancer Center, Nashville, TN.
| | - Jennifer Ose
- Huntsman Cancer Institute, Salt Lake City, UT; Department of Population Health Sciences, University of Utah, Salt Lake City, UT.
| |
Collapse
|
153
|
Khor B, Snow M, Herrman E, Ray N, Mansukhani K, Patel KA, Said-Al-Naief N, Maier T, Machida CA. Interconnections Between the Oral and Gut Microbiomes: Reversal of Microbial Dysbiosis and the Balance Between Systemic Health and Disease. Microorganisms 2021; 9:496. [PMID: 33652903 PMCID: PMC7996936 DOI: 10.3390/microorganisms9030496] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
The human microbiota represents a complex array of microbial species that influence the balance between the health and pathology of their surrounding environment. These microorganisms impart important biological benefits to their host, such as immune regulation and resistance to pathogen colonization. Dysbiosis of microbial communities in the gut and mouth precede many oral and systemic diseases such as cancer, autoimmune-related conditions, and inflammatory states, and can involve the breakdown of innate barriers, immune dysregulation, pro-inflammatory signaling, and molecular mimicry. Emerging evidence suggests that periodontitis-associated pathogens can translocate to distant sites to elicit severe local and systemic pathologies, which necessitates research into future therapies. Fecal microbiota transplantation, probiotics, prebiotics, and synbiotics represent current modes of treatment to reverse microbial dysbiosis through the introduction of health-related bacterial species and substrates. Furthermore, the emerging field of precision medicine has been shown to be an effective method in modulating host immune response through targeting molecular biomarkers and inflammatory mediators. Although connections between the human microbiome, immune system, and systemic disease are becoming more apparent, the complex interplay and future innovations in treatment modalities will become elucidated through continued research and cross-disciplinary collaboration.
Collapse
Affiliation(s)
- Brandon Khor
- Academic DMD Program, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA; (B.K.); (M.S.); (E.H.); (N.R.); (K.M.); (K.A.P.)
| | - Michael Snow
- Academic DMD Program, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA; (B.K.); (M.S.); (E.H.); (N.R.); (K.M.); (K.A.P.)
| | - Elisa Herrman
- Academic DMD Program, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA; (B.K.); (M.S.); (E.H.); (N.R.); (K.M.); (K.A.P.)
| | - Nicholas Ray
- Academic DMD Program, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA; (B.K.); (M.S.); (E.H.); (N.R.); (K.M.); (K.A.P.)
| | - Kunal Mansukhani
- Academic DMD Program, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA; (B.K.); (M.S.); (E.H.); (N.R.); (K.M.); (K.A.P.)
| | - Karan A. Patel
- Academic DMD Program, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA; (B.K.); (M.S.); (E.H.); (N.R.); (K.M.); (K.A.P.)
| | - Nasser Said-Al-Naief
- Department of Integrative Biomedical and Diagnostic Sciences, School of Dentistry, Oregon Health & Science University 2730 SW Moody Avenue, Portland, OR 97201, USA; (N.S.-A.-N.); (T.M.)
| | - Tom Maier
- Department of Integrative Biomedical and Diagnostic Sciences, School of Dentistry, Oregon Health & Science University 2730 SW Moody Avenue, Portland, OR 97201, USA; (N.S.-A.-N.); (T.M.)
| | - Curtis A. Machida
- Department of Integrative Biomedical and Diagnostic Sciences, School of Dentistry, Oregon Health & Science University 2730 SW Moody Avenue, Portland, OR 97201, USA; (N.S.-A.-N.); (T.M.)
| |
Collapse
|
154
|
Sarkar P, Malik S, Laha S, Das S, Bunk S, Ray JG, Chatterjee R, Saha A. Dysbiosis of Oral Microbiota During Oral Squamous Cell Carcinoma Development. Front Oncol 2021; 11:614448. [PMID: 33708627 PMCID: PMC7940518 DOI: 10.3389/fonc.2021.614448] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/05/2021] [Indexed: 12/24/2022] Open
Abstract
Infection with specific pathogens and alterations in tissue commensal microbial composition are intricately associated with the development of many human cancers. Likewise, dysbiosis of oral microbiome was also shown to play critical role in the initiation as well as progression of oral cancer. However, there are no reports portraying changes in oral microbial community in the patients of Indian subcontinent, which has the highest incidence of oral cancer per year, globally. To establish the association of bacterial dysbiosis and oral squamous cell carcinoma (OSCC) among the Indian population, malignant lesions and anatomically matched adjacent normal tissues were obtained from fifty well-differentiated OSCC patients and analyzed using 16S rRNA V3-V4 amplicon based sequencing on the MiSeq platform. Interestingly, in contrast to the previous studies, a significantly lower bacterial diversity was observed in the malignant samples as compared to the normal counterpart. Overall our study identified Prevotella, Corynebacterium, Pseudomonas, Deinococcus and Noviherbaspirillum as significantly enriched genera, whereas genera including Actinomyces, Sutterella, Stenotrophomonas, Anoxybacillus, and Serratia were notably decreased in the OSCC lesions. Moreover, we demonstrated HPV-16 but not HPV-18 was significantly associated with the OSCC development. In future, with additional validation, this panel could directly be applied into clinical diagnostic and prognostic workflows for OSCC in Indian scenario.
Collapse
Affiliation(s)
- Purandar Sarkar
- School of Biotechnology, Presidency University, Kolkata, India
| | - Samaresh Malik
- School of Biotechnology, Presidency University, Kolkata, India
| | - Sayantan Laha
- Human Genetics Unit, Indian Statistical Institute, Kolkata, India
| | - Shantanab Das
- Human Genetics Unit, Indian Statistical Institute, Kolkata, India
| | - Soumya Bunk
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Jay Gopal Ray
- Department of Oral Pathology, Dr. R Ahmed Dental College and Hospital, Kolkata, India
| | | | - Abhik Saha
- School of Biotechnology, Presidency University, Kolkata, India.,Department of Life Sciences, Presidency University, Kolkata, India
| |
Collapse
|
155
|
Villar-Ortega P, Expósito-Ruiz M, Gutiérrez-Soto M, Ruiz-Cabello Jiménez M, Navarro-Marí JM, Gutiérrez-Fernández J. The association between Fusobacterium nucleatum and cancer colorectal: a systematic review and meta-analysis. Enferm Infecc Microbiol Clin 2021; 40:S0213-005X(21)00026-4. [PMID: 33632539 DOI: 10.1016/j.eimc.2021.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The etiological factors of colorectal cancer (CRC) are not precisely known, although genetic and environmental factors have been implicated. A possible association with Fusobacterium nucleatum may provide opportunities for an early diagnosis. OBJECTIVE To review studies that address the association between F. nucleatum and CRC. METHODS The MEDLINE PubMed database was searched using the terms «colorectal cancer» and «Fusobacterium nucleatum», retrieving publications published up to January 1 2020. Stata software was used for a meta-analysis. RESULTS The systematic review included 57 articles. Meta-analysis results indicated a more frequent presence of F. nucleatum in CRC tumor tissue samples in comparison to control samples of healthy tissue, with an odds ratio of 4.558 (95% CI: 3.312-6.272), and in comparison, to control samples of colorectal adenomas, with an odds ratio of 3.244 (95% CI: 2.359-4.462). CONCLUSION There is a more frequent presence of F. nucleatum in the CRC. However, further studies are needed to verify this relationship.
Collapse
Affiliation(s)
- Paola Villar-Ortega
- Departamento de Microbiología, Universidad de Granada-Instituto de Investigación BioSanitaria-ibs-Granada, Granada, España
| | - Manuela Expósito-Ruiz
- Departamento de Bioestadística de FIBAO. Hospital Universitario Virgen de las Nieves-Instituto de Investigación BioSanitaria-ibs-Granada, Granada, España
| | | | - Miguel Ruiz-Cabello Jiménez
- UGC de Digestivo, Hospital Universitario Virgen de las Nieves-Instituto de Investigación BioSanitaria-ibs-Granada, Granada, España
| | - José María Navarro-Marí
- Laboratorio de Microbiología, Hospital Universitario Virgen de las Nieves-Instituto de Investigación BioSanitaria-ibs-Granada, Granada, España
| | - José Gutiérrez-Fernández
- Departamento de Microbiología, Universidad de Granada-Instituto de Investigación BioSanitaria-ibs-Granada, Granada, España; Laboratorio de Microbiología, Hospital Universitario Virgen de las Nieves-Instituto de Investigación BioSanitaria-ibs-Granada, Granada, España.
| |
Collapse
|
156
|
Fukuda S, Ito S, Nishikawa J, Takagi T, Kubota N, Otsuyama KI, Tsuneoka H, Nojima J, Harada K, Mishima K, Suehiro Y, Yamasaki T, Sakaida I. Deep Ultraviolet Light-Emitting Diode Light Therapy for Fusobacterium nucleatum. Microorganisms 2021; 9:microorganisms9020430. [PMID: 33669771 PMCID: PMC7922187 DOI: 10.3390/microorganisms9020430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 11/22/2022] Open
Abstract
Background: Fusobacterium nucleatum, which is associated with periodontitis and gingivitis, has been detected in colorectal cancer (CRC). Methods: We evaluated the bactericidal effect of deep ultraviolet (DUV) light-emitting diode (LED) light therapy on F. nucleatum both qualitatively and quantitatively. Two DUV-LEDs with peak wavelengths of 265 and 280-nm were used. DNA damage to F. nucleatum was evaluated by the production of cyclobutane pyrimidine dimers (CPD) and pyrimidine (6–4) pyrimidone photoproducts (6–4PP). Results: DUV-LEDs showed a bactericidal effect on F. nucleatum. No colony growth was observed after 3 min of either 265 nm or 280 nm DUV-LED irradiation. The survival rates of F. nucleatum under 265 nm DUV-LED light irradiation dropped to 0.0014% for 10 s and to 0% for 20 s irradiation. Similarly, the survival rate of F. nucleatum under 280 nm DUV-LED light irradiation dropped to 0.00044% for 10 s and 0% for 20 s irradiation. The irradiance at the distance of 35 mm from the DUV-LED was 0.265 mW/cm2 for the 265 nm LED and 0.415 mW/cm2 for the 280 nm LED. Thus, the radiant energy for lethality was 5.3 mJ/cm2 for the 265 nm LED and 8.3 mJ/cm2 for the 280 nm LED. Amounts of CPD and 6–4PP in F. nucleatum irradiated with 265 nm DUV-LED light were 6.548 ng/µg and 1.333 ng/µg, respectively. Conclusions: DUV-LED light exerted a bactericidal effect on F. nucleatum by causing the formation of pyrimidine dimers indicative of DNA damage. Thus, DUV-LED light therapy may have the potential to prevent CRC.
Collapse
Affiliation(s)
- Soichiro Fukuda
- Department of Laboratory Science, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan; (S.F.); (T.T.); (N.K.); (K.-i.O.); (H.T.); (J.N.)
| | - Shunsuke Ito
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan; (S.I.); (I.S.)
| | - Jun Nishikawa
- Department of Laboratory Science, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan; (S.F.); (T.T.); (N.K.); (K.-i.O.); (H.T.); (J.N.)
- Correspondence: ; Tel.: +81-836-22-2835
| | - Tatsuya Takagi
- Department of Laboratory Science, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan; (S.F.); (T.T.); (N.K.); (K.-i.O.); (H.T.); (J.N.)
| | - Naoto Kubota
- Department of Laboratory Science, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan; (S.F.); (T.T.); (N.K.); (K.-i.O.); (H.T.); (J.N.)
| | - Ken-ichiro Otsuyama
- Department of Laboratory Science, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan; (S.F.); (T.T.); (N.K.); (K.-i.O.); (H.T.); (J.N.)
| | - Hidehiro Tsuneoka
- Department of Laboratory Science, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan; (S.F.); (T.T.); (N.K.); (K.-i.O.); (H.T.); (J.N.)
| | - Junzo Nojima
- Department of Laboratory Science, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan; (S.F.); (T.T.); (N.K.); (K.-i.O.); (H.T.); (J.N.)
| | - Koji Harada
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan; (K.H.); (K.M.)
| | - Katsuaki Mishima
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan; (K.H.); (K.M.)
| | - Yutaka Suehiro
- Department of Oncology and Laboratory Medicine, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan; (Y.S.); (T.Y.)
| | - Takahiro Yamasaki
- Department of Oncology and Laboratory Medicine, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan; (Y.S.); (T.Y.)
| | - Isao Sakaida
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan; (S.I.); (I.S.)
| |
Collapse
|
157
|
Huang X, She L, Liu H, Liu P, Chen J, Chen Y, Zhou W, Lu Y, Lin J. Study of oral microorganisms contributing to non-carious cervical lesions via bacterial interaction and pH regulation. J Cell Mol Med 2021; 25:3103-3112. [PMID: 33591640 PMCID: PMC7957269 DOI: 10.1111/jcmm.16370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 01/07/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
There is a lack of evidence about the relationship between microorganisms and non‐carious cervical lesions (NCCLs) due to limited technologies. A group of 78 patients was enrolled for microbial 16S rRNA sequencing of dental plaques on normal and defective cervical surfaces. Parallel data from 39 patients were analysed with paired t tests, and Fusobacteriales exhibited significantly less distribution on NCCLs than on normal surfaces. As a result, Fusobacterium nucleatum, the most common oral bacterial strain belonging to the order Fusobacteriales, was selected for further research. From a scanning electron microscopy (SEM) scan, the tooth surface with Fusobacterium nucleatum and Streptococcus mutans culture was more intact than that without Fusobacterium nucleatum. Furthermore, the calcium contents in groups with Fusobacterium nucleatum were significantly higher than that without it. In further mechanistic research, Fusobacterium nucleatum was demonstrated to adhere to and disturb other organisms as well as producing alkaline secretions to neutralize the deleterious acidic environment, protecting the tooth structure. In conclusion, microorganisms and NCCLs were confirmed directly related through adherent bacterial interactions and pH regulation. The research provides a new perspective and experimental evidence for the relation between microorganisms and NCCLs, which guides clinical treatment and preventive dentistry in the future.
Collapse
Affiliation(s)
- Xiaoyu Huang
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Lin She
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Huanhuan Liu
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Pingping Liu
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jue Chen
- Institute of Applied Genomics, Fuzhou University, Fuzhou, China.,College of Biological Science and Engineering, Fuzhou University, Fuzhou, China.,Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou, China
| | - Yingcong Chen
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Wenjie Zhou
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Youguang Lu
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jun Lin
- Institute of Applied Genomics, Fuzhou University, Fuzhou, China.,College of Biological Science and Engineering, Fuzhou University, Fuzhou, China.,Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou, China
| |
Collapse
|
158
|
Chung M, Zhao N, Meier R, Koestler DC, Wu G, del Castillo E, Paster BJ, Charpentier K, Izard J, Kelsey KT, Michaud DS. Comparisons of oral, intestinal, and pancreatic bacterial microbiomes in patients with pancreatic cancer and other gastrointestinal diseases. J Oral Microbiol 2021; 13:1887680. [PMID: 33628398 PMCID: PMC7889162 DOI: 10.1080/20002297.2021.1887680] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 01/14/2021] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Oral microbiota is believed to play important roles in systemic diseases, including cancer. Methods: We collected oral samples (tongue, buccal, supragingival, and saliva) and pancreatic tissue or intestinal samples from 52 subjects, and characterized 16S rRNA genes using high-throughput DNA sequencing. Results: Bray-Curtis plot showed clear separations between bacterial communities in the oral cavity and those in intestinal and pancreatic tissue samples. PERMANOVA tests indicated that bacterial communities from buccal samples were similar to supragingival and saliva samples, and pancreatic duct samples were similar to pancreatic tumor samples, but all other samples were significantly different from each other. A total of 73 unique Amplicon Sequence Variants (ASVs) were shared between oral and pancreatic or intestinal samples. Only four ASVs showed significant concordance, and two specific bacterial species (Gemella morbillorum and Fusobacterium nucleatum subsp. vincentii) showed consistent presence or absence patterns between oral and intestinal or pancreatic samples, after adjusting for within-subject correlation and disease status. Lastly, microbial co-abundance analyses showed distinct strain-level cluster patterns among microbiome members in buccal, saliva, duodenum, jejunum, and pancreatic tumor samples. Conclusions: Our findings indicate that oral, intestinal, and pancreatic bacterial microbiomes overlap but exhibit distinct co-abundance patterns in patients with pancreatic cancer and other gastrointestinal diseases.
Collapse
Affiliation(s)
- Mei Chung
- Department of Public Health and Community Medicine, School of Medicine, Tufts University, Boston, MA, USA
| | - Naisi Zhao
- Department of Public Health and Community Medicine, School of Medicine, Tufts University, Boston, MA, USA
| | - Richard Meier
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Devin C. Koestler
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA
- University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Guojun Wu
- Department of Biochemistry and Microbiology, Center for Nutrition, Microbiome and Health, New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
| | | | - Bruce J. Paster
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA
- Department of Oral Medicine, Infection & Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | | | - Jacques Izard
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Karl T. Kelsey
- Center for Environmental Health and Technology, Brown University, Providence, RI, USA
| | - Dominique S. Michaud
- Department of Public Health and Community Medicine, School of Medicine, Tufts University, Boston, MA, USA
| |
Collapse
|
159
|
Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities. Nat Rev Immunol 2021; 21:426-440. [PMID: 33510490 PMCID: PMC7841384 DOI: 10.1038/s41577-020-00488-6] [Citation(s) in RCA: 779] [Impact Index Per Article: 194.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 12/13/2022]
Abstract
Periodontitis, a major inflammatory disease of the oral mucosa, is epidemiologically associated with other chronic inflammation-driven disorders, including cardio-metabolic, neurodegenerative and autoimmune diseases and cancer. Emerging evidence from interventional studies indicates that local treatment of periodontitis ameliorates surrogate markers of comorbid conditions. The potential causal link between periodontitis and its comorbidities is further strengthened by recent experimental animal studies establishing biologically plausible and clinically consistent mechanisms whereby periodontitis could initiate or aggravate a comorbid condition. This multi-faceted ‘mechanistic causality’ aspect of the link between periodontitis and comorbidities is the focus of this Review. Understanding how certain extra-oral pathologies are affected by disseminated periodontal pathogens and periodontitis-associated systemic inflammation, including adaptation of bone marrow haematopoietic progenitors, may provide new therapeutic options to reduce the risk of periodontitis-associated comorbidities. Periodontitis has been causally linked to the development of other chronic inflammatory diseases outside the oral mucosa. In this Review, George Hajishengallis and Triantafyllos Chavakis consider the molecular basis of these links.
Collapse
|
160
|
Matsuda S, Goi T, Yoshida Y, Yoshimura H. Periodontal disease in preoperative patients with digestive cancer: a retrospective, single-institution experience in Fukui, Japan. BMC Oral Health 2021; 21:3. [PMID: 33407343 PMCID: PMC7789498 DOI: 10.1186/s12903-020-01378-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 12/22/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The careful preoperative oral assessment may be useful for safe surgery under general anesthesia. The purpose of this study was to investigate the presence of periodontitis in patients with malignant digestive disease before surgery under general anesthesia. METHODS Patients with digestive malignant disease who underwent periodontal examination and orthopantomograph examination for preoperative oral health assessment were participated. The authors investigated the patients' general characteristics and clinical oral information, including the presence of periodontitis. RESULTS One hundred twenty patients participated in this study. The mean and standard deviation of the number of teeth was 20.8 ± 8.2, and there was a statistically significant correlation between age and number of teeth. The periodontal pocket depth was 3.0 ± 1.0, and mobile teeth were observed in 62 patients. There was a statistically significant correlation between number of teeth and number of mobile teeth. However, there was no significant difference between the age of patients without mobile teeth and the age of patients with mobile teeth. CONCLUSIONS This retrospective study performed in single-institution clarified the presence of periodontitis in patients with malignant digestive disease before surgery. Regardless of age, it is important to assess the oral health, including periodontitis, for safe surgery under general anesthesia.
Collapse
Affiliation(s)
- Shinpei Matsuda
- Department of Dentistry and Oral Surgery, Unit of Sensory and Locomotor Medicine, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan.
| | - Takanori Goi
- First Department of Surgery, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Yoshio Yoshida
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.,Center for Preoperative Assessment, University of Fukui Hospital, Fukui, Japan
| | - Hitoshi Yoshimura
- Department of Dentistry and Oral Surgery, Unit of Sensory and Locomotor Medicine, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| |
Collapse
|
161
|
DeDecker L, Coppedge B, Avelar-Barragan J, Karnes W, Whiteson K. Microbiome distinctions between the CRC carcinogenic pathways. Gut Microbes 2021; 13:1854641. [PMID: 33446008 PMCID: PMC8288036 DOI: 10.1080/19490976.2020.1854641] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/01/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer, the third leading cause of cancer-related deaths, and has been on the rise among young adults in the United States. Research has established that the colonic microbiome is different in patients with CRC compared to healthy controls, but few studies have investigated if and how the microbiome may relate to CRC progression through the serrated pathway versus the adenoma-carcinoma sequence.Our view is that progress in CRC microbiome research requires consideration of how the microbiome may contribute to CRC carcinogenesis through the distinct pathways that lead to CRC, which could enable the creation of novel and tailored prevention, screening, and therapeutic interventions. We first highlight the limitations in existing CRC microbiome research and offer corresponding solutions for investigating the microbiome's role in the adenoma-carcinoma sequence and serrated pathway. We then summarize the findings in the select human studies that included data points related to the two major carcinogenic pathways. These studies investigate the microbiome in CRC carcinogenesis and 1) utilize mucosal samples and 2) compare polyps or tumors by histopathologic type, molecular/genetic type, or location in the colon.Key findings from these studies include: 1) Fusobacterium is associated with right-sided, more advanced, and serrated lesions; 2) the colons of people with CRC have bacteria typically associated with normal oral flora; and 3) colons from people with CRC have more biofilms, and these biofilms are predominantly located in the proximal colon (single study).
Collapse
Affiliation(s)
- Lauren DeDecker
- School of Medicine, University of California, Irvine, California, USA
| | - Bretton Coppedge
- School of Biological Sciences, University of California, Irvine, California, USA
| | | | - William Karnes
- School of Medicine, University of California, Irvine, California, USA
| | - Katrine Whiteson
- School of Biological Sciences, University of California, Irvine, California, USA
| |
Collapse
|
162
|
Zhao Y, Wang C, Goel A. Role of gut microbiota in epigenetic regulation of colorectal Cancer. Biochim Biophys Acta Rev Cancer 2021; 1875:188490. [PMID: 33321173 PMCID: PMC7856101 DOI: 10.1016/j.bbcan.2020.188490] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 02/08/2023]
Abstract
Colorectal cancer (CRC) remains one of the most commonly diagnosed cancers and a leading cause of cancer-related deaths worldwide. The stepwise accumulation of epigenetic alterations in the normal colorectal epithelium has been reported to act as a driving force for the initiation and promotion of tumorigenesis in CRC. From a mechanistic standpoint, emerging evidence indicates that within the colorectal epithelium, the diverse gut microbiota can interact with host cells to regulate multiple physiological processes. In fact, recent studies have found that the gut microbiota represents a potential cause of carcinogenesis, invasion, and metastasis via DNA methylation, histone modifications, and non-coding RNAs - providing an epigenetic perspective for the connection between the gut microbiota and CRC. Herein, we comprehensively review the recent research that provides a comprehensive yet succinct evidence connecting the gut microbiota to CRC at an epigenetic level, including carcinogenic mechanisms of cancer-related microbiota, and the potential for utilizing the gut microbiota as CRC biomarkers. These scientific findings highlight a promising future for manipulating the gut microbiota to improve clinical outcomes in patients suffering from CRC.
Collapse
Affiliation(s)
- Yinghui Zhao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, China; Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, China
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
| |
Collapse
|
163
|
Yoshida A, Ikegami A. Genetic Transformation of Fusobacterium nucleatum. Methods Mol Biol 2021; 2210:43-50. [PMID: 32815126 DOI: 10.1007/978-1-0716-0939-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fusobacterium nucleatum is a human periodontal pathogen that causes opportunistic infections. It has been implicated in preterm birth and has as a pathogen of colorectal cancer. However, it is a common member of the oral microbiota and can have a symbiotic relationship with its hosts. To date, studies of F. nucleatum have been hindered by a lack of effective genetic tools, and the transformation of F. nucleatum has not been investigated. In this chapter, protocols for the transformation of F. nucleatum strain 12230 using sonoporation are presented. We also include a genetic complementation protocol for a F. nucleatum knockout mutant.
Collapse
Affiliation(s)
- Akihiro Yoshida
- Department of Oral Microbiology, Matsumoto Dental University, Shiojiri, Nagano, Japan.
| | - Akihiko Ikegami
- Department of Environmental and Preventive Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| |
Collapse
|
164
|
Zhang X, Hoffman KL, Wei P, Elhor Gbito KY, Joseph R, Li F, Scheet P, Chang S, Petrosino JF, Daniel CR. Baseline Oral Microbiome and All-cancer Incidence in a Cohort of Nonsmoking Mexican American Women. Cancer Prev Res (Phila) 2020; 14:383-392. [PMID: 33277317 DOI: 10.1158/1940-6207.capr-20-0405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/12/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022]
Abstract
Given the increasing evidence that the oral microbiome is involved in obesity, diabetes, and cancer risk, we investigated baseline oral microbiota profiles in relation to all-cancer incidence among nonsmoking women enrolled in a Texas cohort of first- and second-generation immigrants of Mexican origin. We characterized the 16Sv4 rDNA microbiome in oral mouthwash samples collected at baseline from a representative subset of 305 nonsmoking women, ages 20-75 years. We evaluated within- (alpha) and between-sample (beta) diversity by incident cancer status and applied linear discriminant analysis (LDA) effect size analysis to assess differentially abundant taxa. Diversity and candidate taxa in relation to all-cancer incidence were evaluated in multivariable-adjusted Cox regression models. Over 8.8 median years of follow-up, 31 incident cancer cases were identified and verified. Advanced age, greater acculturation, and cardiometabolic risk factors were associated with all-cancer incidence. Higher alpha diversity (age-adjusted P difference < 0.01) and distinct biological communities (P difference = 0.002) were observed by incident cancer status. Each unit increase in the Shannon diversity index yielded >8-fold increase in all-cancer and obesity-related cancer risk [multivariable-adjusted HR (95% confidence interval), 8.11 (3.14-20.94) and 10.72 (3.30-34.84), respectively] with similar findings for the inverse Simpson index. Streptococcus was enriched among women who did not develop cancer, while Fusobacterium, Prevotella, Mogibacterium, Campylobacter, Lachnoanaerobaculum, Dialister, and Atopobium were higher among women who developed cancer (LDA score ≥ 3; q-value < 0.01). This initial study of oral microbiota and overall cancer risk in nonsmoking Mexican American women suggests the readily accessible oral microbiota as a promising biomarker. PREVENTION RELEVANCE: Mexican American women suffer a disproportionate burden of chronic health conditions that increase cancer risk. Few investigations of the microbiome, a key determinant of host health, have been conducted among this group. Oral microbiota profiles may provide early and accessible cancer biomarker data on invasive bacteria or community disruptions.
Collapse
Affiliation(s)
- Xiaotao Zhang
- Division of Cancer Prevention and Population Sciences, Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Dan L Duncan Comprehensive Cancer Center, Epidemiology & Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Kristi L Hoffman
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Peng Wei
- Division of Cancer Prevention and Population Sciences, Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kplola Y Elhor Gbito
- Division of Cancer Prevention and Population Sciences, Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Reji Joseph
- Division of Cancer Prevention and Population Sciences, Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Fangyu Li
- Division of Cancer Prevention and Population Sciences, Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paul Scheet
- Division of Cancer Prevention and Population Sciences, Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shine Chang
- Division of Cancer Prevention and Population Sciences, Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joseph F Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Carrie R Daniel
- Division of Cancer Prevention and Population Sciences, Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
165
|
Janati AI, Karp I, Laprise C, Sabri H, Emami E. Detection of Fusobaterium nucleatum in feces and colorectal mucosa as a risk factor for colorectal cancer: a systematic review and meta-analysis. Syst Rev 2020; 9:276. [PMID: 33272322 PMCID: PMC7716586 DOI: 10.1186/s13643-020-01526-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a major cause of cancer deaths worldwide. Accumulating evidence suggests a potentially important role of colorectal infection with Fusobacterium nucleatum (F. nucleatum) in colorectal carcinogenesis. We conducted a systematic review, including both a qualitative synthesis and a meta-analysis, to synthesize the evidence from the epidemiological literature on the association between F. nucleatum detection in the colon/rectum and CRC. METHODS A systematic literature search of Ovid MEDLINE(R), Embase, Web of Science Core Collection, EBM Reviews-Cochrane Database of Systematic Reviews, and CINAHL Plus with Full Text was conducted using earliest inclusive dates up to 4 October 2020. Eligible studies were original, comparative observational studies that reported results on colorectal F. nucleatum detection and CRC. Two independent reviewers extracted the relevant information. Odds ratio (OR) estimates were pooled across studies using the random effects model. Newcastle-Ottawa scale was used to critically appraise study quality. RESULTS Twenty-four studies were included in the systematic review, of which 12 were included in the meta-analysis. Studies investigated F. nucleatum in feces, colorectal tissue samples, or both. In most studies included in the systematic review, the load of F. nucleatum was higher, on average, in specimens from CRC patients than in those from CRC-free controls. Meta-analysis showed a positive association between F. nucleatum detection in colorectal specimens and CRC (OR = 8.3; 95% confidence interval (95% CI) 5.2 to 13.0). CONCLUSIONS The results of this systematic review suggest that F. nucleatum in the colon/rectum is associated with CRC. SYSTEMATIC REVIEW REGISTRATION This systematic review protocol has been registered with the International Prospective Register of Systematic Reviews (PROSPERO) on July 10, 2018 (registration number CRD42018095866).
Collapse
Affiliation(s)
| | - Igor Karp
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
- Department of Social and Preventive Medicine, School of Public Health, Université de Montréal, Montreal, Canada
| | - Claudie Laprise
- Faculty of Dentistry, McGill University, 2001 McGill College Avenue, Suite 500, Montreal, QC, H3A 1G1, Canada
| | - Hisham Sabri
- Faculty of Dentistry, McGill University, 2001 McGill College Avenue, Suite 500, Montreal, QC, H3A 1G1, Canada
| | - Elham Emami
- Faculty of Dentistry, McGill University, 2001 McGill College Avenue, Suite 500, Montreal, QC, H3A 1G1, Canada.
| |
Collapse
|
166
|
Șurlin P, Nicolae FM, Șurlin VM, Pătrașcu Ș, Ungureanu BS, Didilescu AC, Gheonea DI. Could Periodontal Disease through Periopathogen Fusobacterium Nucleatum be an Aggravating Factor for Gastric Cancer? J Clin Med 2020; 9:3885. [PMID: 33260439 PMCID: PMC7761398 DOI: 10.3390/jcm9123885] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Periodontal disease affects the supporting tissues of the teeth, being a chronic inflammatory disease caused by specific microorganisms from subgingival biofilm. Fusobacterium nucleatum is a Gram-negative anaerobic bacterium that acts as a periodontal pathogen, being an important factor in linking Gram-positive and Gram-negative bacteria in the periodontal biofilm, but its involvement in systemic diseases has also been found. Several studies regarding the implication of Fusobacterium nucleatum in gastro-enterological cancers have been conducted. The present review aims to update and systematize the latest information about Fusobacterium nucleatum in order to evaluate the possibility of an association between periodontal disease and the evolution of gastroenterological cancers through the action of Fusobacterium nucleatum, highlighting gastric cancer. This would motivate future research on the negative influence of periodontal pathology on the evolution of gastric cancer in patients suffering from both pathologies.
Collapse
Affiliation(s)
- Petra Șurlin
- Department of Periodontology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Flavia Mirela Nicolae
- Department of Periodontology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Valeriu Marin Șurlin
- Department 1st of Surgery, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Ștefan Pătrașcu
- Department 1st of Surgery, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Bogdan Silviu Ungureanu
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (B.S.U.); (D.I.G.)
| | - Andreea Cristiana Didilescu
- Department of Embriology, University of Medicine and Pharmacy Carol Davila of Bucharest, 020021 Bucharest, Romania;
| | - Dan Ionuț Gheonea
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (B.S.U.); (D.I.G.)
| |
Collapse
|
167
|
Handsley-Davis M, Jamieson L, Kapellas K, Hedges J, Weyrich LS. The role of the oral microbiota in chronic non-communicable disease and its relevance to the Indigenous health gap in Australia. BMC Oral Health 2020; 20:327. [PMID: 33198712 PMCID: PMC7670664 DOI: 10.1186/s12903-020-01308-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/31/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Aboriginal Australians and Torres Strait Islanders (hereafter respectfully referred to as Indigenous Australians) experience disproportionately poor health and low life expectancy compared to non-Indigenous Australians. Poor oral health is a critical, but understudied, contributor to this health gap. A considerable body of evidence links poor oral health to increased risks of other chronic non-communicable conditions, such as diabetes, cardiovascular disease, chronic kidney disease, and poor emotional wellbeing. MAIN: The oral microbiota is indisputably associated with several oral diseases that disproportionately affect Indigenous Australians. Furthermore, a growing literature suggests direct and indirect links between the oral microbiota and systemic chronic non-communicable diseases that underpin much of the Indigenous health gap in Australia. Recent research indicates that oral microbial communities are shaped by a combination of cultural and lifestyle factors and are inherited from caregivers to children. Systematic differences in oral microbiota diversity and composition have been identified between Indigenous and non-Indigenous individuals in Australia and elsewhere, suggesting that microbiota-related diseases may be distinct in Indigenous Australians. CONCLUSION: Oral microbiota research involving Indigenous Australians is a promising new area that could benefit Indigenous communities in numerous ways. These potential benefits include: (1) ensuring equity and access for Indigenous Australians in microbiota-related therapies; (2) opportunities for knowledge-sharing and collaborative research between scientists and Indigenous communities; and (3) using knowledge about the oral microbiota and chronic disease to help close the gaps in Indigenous oral and systemic health.
Collapse
Affiliation(s)
- Matilda Handsley-Davis
- Department of Molecular and Cellular Biology, University of Adelaide, Adelaide, SA, Australia.
| | - Lisa Jamieson
- Australian Research Centre for Population Oral Health (ARCPOH), University of Adelaide, Adelaide, SA, Australia
| | - Kostas Kapellas
- Australian Research Centre for Population Oral Health (ARCPOH), University of Adelaide, Adelaide, SA, Australia
| | - Joanne Hedges
- Australian Research Centre for Population Oral Health (ARCPOH), University of Adelaide, Adelaide, SA, Australia
| | - Laura S Weyrich
- Department of Molecular and Cellular Biology, University of Adelaide, Adelaide, SA, Australia.
- Department of Anthropology and Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
168
|
The microbiome, genetics, and gastrointestinal neoplasms: the evolving field of molecular pathological epidemiology to analyze the tumor-immune-microbiome interaction. Hum Genet 2020; 140:725-746. [PMID: 33180176 DOI: 10.1007/s00439-020-02235-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023]
Abstract
Metagenomic studies using next-generation sequencing technologies have revealed rich human intestinal microbiome, which likely influence host immunity and health conditions including cancer. Evidence indicates a biological link between altered microbiome and cancers in the digestive system. Escherichia coli and Bacteroides fragilis have been found to be enriched in colorectal mucosal tissues from patients with familial adenomatous polyposis that is caused by germline APC mutations. In addition, recent studies have found enrichment of certain oral bacteria, viruses, and fungi in tumor tissue and fecal specimens from patients with gastrointestinal cancer. An integrative approach is required to elucidate the role of microorganisms in the pathogenic process of gastrointestinal cancers, which develop through the accumulation of somatic genetic and epigenetic alterations in neoplastic cells, influenced by host genetic variations, immunity, microbiome, and environmental exposures. The transdisciplinary field of molecular pathological epidemiology (MPE) offers research frameworks to link germline genetics and environmental factors (including diet, lifestyle, and pharmacological factors) to pathologic phenotypes. The integration of microbiology into the MPE model (microbiology-MPE) can contribute to better understanding of the interactive role of environment, tumor cells, immune cells, and microbiome in various diseases. We review major clinical and experimental studies on the microbiome, and describe emerging evidence from the microbiology-MPE research in gastrointestinal cancers. Together with basic experimental research, this new research paradigm can help us to develop new prevention and treatment strategies for gastrointestinal cancers through targeting of the microbiome.
Collapse
|
169
|
Richardson M, Ren J, Rubinstein MR, Taylor JA, Friedman RA, Shen B, Han YW. Analysis of 16S rRNA genes reveals reduced Fusobacterial community diversity when translocating from saliva to GI sites. Gut Microbes 2020; 12:1-13. [PMID: 33054632 PMCID: PMC7577115 DOI: 10.1080/19490976.2020.1814120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/22/2020] [Accepted: 08/17/2020] [Indexed: 02/03/2023] Open
Abstract
Fusobacterium nucleatum is a Gram-negative oral commensal anaerobe which has been increasingly implicated in various gastrointestinal (GI) disorders, including inflammatory bowel disease, appendicitis, GI cancers. The oral cavity harbors a diverse group of Fusobacterium, and it is postulated that F. nucleatum in the GI tract originate from the mouth. It is not known, however, if all oral Fusobacterium translocate to the GI sites with equal efficiencies. Therefore, we amplified 16S rRNA genes of F. nucleatum and F. periodonticum, two closely related oral species from matched saliva, gastric aspirates, and colon or ileal pouch aspirates of three patients with inflammatory bowel disease (IBD) and three healthy controls, and saliva alone from seven patients with either active IBD or IBD in remission. The 16S rRNA gene amplicons were cloned, and the DNA sequences determined by Sanger sequencing. The results demonstrate that fusobacterial community composition differs more significantly between the oral and GI sites than between different individuals. The oral communities demonstrate the highest level of variation and have the richest pool of unique sequences, with certain nodes/strains enriched in the GI tract and others diminished during translocation. The gastric and colon/pouch communities exhibit reduced diversity and are more closely related, possibly due to selective pressure in the GI tract. This study elucidates selective translocation of oral fusobacteria to the GI tract. Identification of specific transmissible clones will facilitate risk assessment for developing Fusobacterium-implicated GI disorders.
Collapse
Affiliation(s)
- Miles Richardson
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jihui Ren
- Division of Periodontics, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Mara Roxana Rubinstein
- Division of Periodontics, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Jamila A. Taylor
- Division of Periodontics, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Richard A. Friedman
- Department of Biomedical Informatics, Vagelos College of Physicians & Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center, Vagelos Columbia University Irving Medical Center, New York, NY, USA
| | - Bo Shen
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH, USA
| | - Yiping W. Han
- Division of Periodontics, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Microbiology, Vagelos College of Physicians & Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Department of Microbiology, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Medical Center, Columbia University Irving Medical Center, New York, NY, USA
- Institute of Human Nutrition, Columbia University Irving Medicine Center, New York, NY, USA
| |
Collapse
|
170
|
Irfan M, Delgado RZR, Frias-Lopez J. The Oral Microbiome and Cancer. Front Immunol 2020; 11:591088. [PMID: 33193429 PMCID: PMC7645040 DOI: 10.3389/fimmu.2020.591088] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/29/2020] [Indexed: 12/24/2022] Open
Abstract
There is mounting evidence that members of the human microbiome are highly associated with a wide variety of cancer types. Among oral cancers, oral squamous cell carcinoma (OSCC) is the most prevalent and most commonly studied, and it is the most common malignancy of the head and neck worldwide. However, there is a void regarding the role that the oral microbiome may play in OSCC. Previous studies have not consistently found a characteristic oral microbiome composition associated with OSCC. Although a direct causality has not been proven, individual members of the oral microbiome are capable of promoting various tumorigenic functions related to cancer development. Two prominent oral pathogens, Porphyromonas gingivalis, and Fusobacterium nucleatum can promote tumor progression in mice. P. gingivalis infection has been associated with oro-digestive cancer, increased oral cancer invasion, and proliferation of oral cancer stem cells. The microbiome can influence the evolution of the disease by directly interacting with the human body and significantly altering the response and toxicity to various forms of cancer therapy. Recent studies have shown an association of certain phylogenetic groups with the immunotherapy treatment outcomes of certain tumors. On the other side of the coin, recently it has been a resurgence in interest on the potential use of bacteria to cure cancer. These kinds of treatments were used in the late nineteenth and early twentieth centuries as the first line of defense against cancer in some hospitals but later displaced by other types of treatments such as radiotherapy. Currently, organisms such as Salmonella typhimurium and Clostridium spp. have been used for targeted strategies as potential vectors to treat cancer. In this review, we briefly summarize our current knowledge of the role of the oral microbiome, focusing on its bacterial fraction, in cancer in general and in OSCC more precisely, and a brief description of the potential use of bacteria to target tumors.
Collapse
Affiliation(s)
- Muhammad Irfan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| | | | - Jorge Frias-Lopez
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| |
Collapse
|
171
|
Kamarajan P, Ateia I, Shin JM, Fenno JC, Le C, Zhan L, Chang A, Darveau R, Kapila YL. Periodontal pathogens promote cancer aggressivity via TLR/MyD88 triggered activation of Integrin/FAK signaling that is therapeutically reversible by a probiotic bacteriocin. PLoS Pathog 2020; 16:e1008881. [PMID: 33002094 PMCID: PMC7529280 DOI: 10.1371/journal.ppat.1008881] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
Epidemiological studies reveal significant associations between periodontitis and oral cancer. However, knowledge about the contribution of periodontal pathogens to oral cancer and potential regulatory mechanisms involved is limited. Previously, we showed that nisin, a bacteriocin and commonly used food preservative, reduced oral cancer tumorigenesis and extended the life expectancy in tumor-bearing mice. In addition, nisin has antimicrobial effects on key periodontal pathogens. Thus, the purpose of this study was to test the hypothesis that key periodontal pathogens (Porphyromonas gingivalis, Treponema denticola, and Fusobacterium nucleatum) promote oral cancer via specific host-bacterial interactions, and that bacteriocin/nisin therapy may modulate these responses. All three periodontal pathogens enhanced oral squamous cell carcinoma (OSCC) cell migration, invasion, tumorsphere formation, and tumorigenesis in vivo, without significantly affecting cell proliferation or apoptosis. In contrast, oral commensal bacteria did not affect OSCC cell migration. Pathogen-enhanced OSCC cell migration was mediated via integrin alpha V and FAK activation, since stably blocking alpha V or FAK expression abrogated these effects. Nisin inhibited these pathogen-mediated processes. Further, Treponema denticola induced TLR2 and 4 and MyD88 expression. Stable suppression of MyD88 significantly inhibited Treponema denticola-induced FAK activation and abrogated pathogen-induced migration. Together, these data demonstrate that periodontal pathogens contribute to a highly aggressive cancer phenotype via crosstalk between TLR/MyD88 and integrin/FAK signaling. Nisin can modulate these pathogen-mediated effects, and thus has therapeutic potential as an antimicrobial and anti-tumorigenic agent.
Collapse
Affiliation(s)
- Pachiyappan Kamarajan
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, CA, United States of America
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, United States of America
| | - Islam Ateia
- Department of Oral Medicine and Periodontology, Mansoura University, Mansoura, Egypt
| | - Jae M. Shin
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States of America
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States of America
| | - J. Christopher Fenno
- Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann arbor, MI, United States of America
| | - Charles Le
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, CA, United States of America
| | - Ling Zhan
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, CA, United States of America
| | - Ana Chang
- Department of Periodontics, Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, United States of America
| | - Richard Darveau
- Department of Periodontics, Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, United States of America
| | - Yvonne L. Kapila
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, CA, United States of America
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
172
|
Longhi G, van Sinderen D, Ventura M, Turroni F. Microbiota and Cancer: The Emerging Beneficial Role of Bifidobacteria in Cancer Immunotherapy. Front Microbiol 2020; 11:575072. [PMID: 33013813 PMCID: PMC7507897 DOI: 10.3389/fmicb.2020.575072] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022] Open
Abstract
Many intestinal bacteria are believed to be involved in various inflammatory and immune processes that influence tumor etiology because of their metabolic properties and their ability to alter the microbiota homeostasis. Although many functions of the microbiota are still unclear, there is compelling experimental evidence showing that the intestinal microbiota is able to modulate carcinogenesis and the response to anticancer therapies, both in the intestinal tract and other body sites. Among the wide variety of gut-colonizing microorganisms, various species belonging to the Bifidobacterium genus are believed to elicit beneficial effects on human physiology and on the host-immune system. Recent findings, based on preclinical mouse models and on human clinical trials, have demonstrated the impact of gut commensals including bifidobacteria on the efficacy of tumor-targeting immunotherapy. Although the underlying molecular mechanisms remain obscure, bifidobacteria and other microorganisms have become a promising aid to immunotherapeutic procedures that are currently applied to treat cancer. The present review focuses on strategies to recruit the microbiome in order to enhance anticancer responses and develop therapies aimed at fighting the onset and progression of malignancies.
Collapse
Affiliation(s)
- Giulia Longhi
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- Alimentary Pharmabotic Centre (APC) Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.,Microbiome Research Hub, University of Parma, Parma, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.,Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
173
|
Kleinstein S, Nelson K, Freire M. Inflammatory Networks Linking Oral Microbiome with Systemic Health and Disease. J Dent Res 2020; 99:1131-1139. [PMID: 32459164 PMCID: PMC7443998 DOI: 10.1177/0022034520926126] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The dance between microbes and the immune system takes place in all biological systems, including the human body, but this interaction is especially complex in the primary gateway to the body: the oral cavity. Recent advances in technology have enabled deep sequencing and analysis of members and signals of these communities. In a healthy state, the oral microbiome is composed of commensals, and their genes and phenotypes may be selected by the immune system to survive in symbiosis. These highly regulated signals are modulated by a network of microbial and host metabolites. However, in a diseased state, host-microbial networks lead to dysbiosis and considerable burden to the host prior to systemic impact that extends beyond the oral compartment. Interestingly, we presented data demonstrating similarities between human and mice immune dysbiosis and discussed how this affects the host response to similar pathobionts. The host and microbial signatures of a number of disease states are currently being examined to identify potential correlations. How the oral microbiome interacts with inflammation and the immune system to cause disease remains an area of active research. In this review, we summarize recent advancements in understanding the role of oral microbiota in mediating inflammation and altering systemic health and disease. In line with these findings, it is possible that existing conditions may be resolved by targeting specific immune-microbial markers in a positive way.
Collapse
Affiliation(s)
| | - K.E. Nelson
- J. Craig Venter Institute, La Jolla, CA, USA
| | - M. Freire
- J. Craig Venter Institute, La Jolla, CA, USA
| |
Collapse
|
174
|
Fujiwara N, Kitamura N, Yoshida K, Yamamoto T, Ozaki K, Kudo Y. Involvement of Fusobacterium Species in Oral Cancer Progression: A Literature Review Including Other Types of Cancer. Int J Mol Sci 2020; 21:ijms21176207. [PMID: 32867334 PMCID: PMC7504605 DOI: 10.3390/ijms21176207] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic inflammation caused by infections has been suggested to be one of the most important cause of cancers. It has recently been shown that there is correlation between intestinal bacteria and cancer development including metastasis. As over 700 bacterial species exist in an oral cavity, it has been concerning that bacterial infection may cause oral cancer. However, the role of bacteria regarding tumorigenesis of oral cancer remains unclear. Several papers have shown that Fusobacterium species deriving the oral cavities, especially, play a crucial role for the development of colorectal and esophageal cancer. F. nucleatum is a well-known oral bacterium involved in formation of typical dental plaque on human teeth and causing periodontal diseases. The greatest characteristic of F. nucleatum is its ability to adhere to various bacteria and host cells. Interestingly, F. nucleatum is frequently detected in oral cancer tissues. Moreover, detection of F. nucleatum is correlated with the clinical stage of oral cancer. Although the detailed mechanism is still unclear, Fusobacterium species have been suggested to be associated with cell adhesion, tumorigenesis, epithelial-to-mesenchymal transition, inflammasomes, cell cycle, etc. in oral cancer. In this review, we introduce the reports focused on the association of Fusobacterium species with cancer development and progression including oral, esophageal, and colon cancers.
Collapse
Affiliation(s)
- Natsumi Fujiwara
- Department of Oral Health Care Promotion, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima 770-8504, Japan; (N.F.); (K.O.)
- Department of Oral Biology & Diagnostic Sciences, The Dental College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Naoya Kitamura
- Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku 783-8505, Japan; (N.K.); (T.Y.)
| | - Kaya Yoshida
- Department of Oral Health Care Education, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima 770-8504, Japan;
| | - Tetsuya Yamamoto
- Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku 783-8505, Japan; (N.K.); (T.Y.)
| | - Kazumi Ozaki
- Department of Oral Health Care Promotion, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima 770-8504, Japan; (N.F.); (K.O.)
| | - Yasusei Kudo
- Department of Oral Bioscience, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima 770-8504, Japan
- Correspondence: ; Tel.: +81-88-633-7325
| |
Collapse
|
175
|
Impacts of Habitual Diets Intake on Gut Microbial Counts in Healthy Japanese Adults. Nutrients 2020; 12:nu12082414. [PMID: 32806561 PMCID: PMC7468936 DOI: 10.3390/nu12082414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022] Open
Abstract
Although diet is an important factor influencing gut microbiota, there are very few studies regarding that relationship in Japanese people. Here, we analyzed the relationship between habitual dietary intake surveyed by food frequency questionnaire and the quantitative features of gut bacteria by quantitative PCR and next generation sequencer in 354 healthy Japanese adults. The α-diversity of gut microbiota was positively correlated with the intake of mushrooms and beans and negatively correlated with the intake of grains. The β-diversity was significantly associated with the intake of fruits, mushrooms, seaweeds, seafoods, and alcoholic beverages. Multiple linear regression analysis of the relationship between food groups associated with the diversity of gut microbiota and the number of gut bacteria at the genus level found 24 significant associations, including a positive association between alcoholic beverages and the number of Fusobacterium. These results support that habitual dietary intake influenced the diversity of gut microbiota and was strongly associated with the number of specific gut bacteria. These results will help us to understand the complex relationship between habitual diet and gut microbiota of the Japanese.
Collapse
|
176
|
Abed J, Maalouf N, Manson AL, Earl AM, Parhi L, Emgård JEM, Klutstein M, Tayeb S, Almogy G, Atlan KA, Chaushu S, Israeli E, Mandelboim O, Garrett WS, Bachrach G. Colon Cancer-Associated Fusobacterium nucleatum May Originate From the Oral Cavity and Reach Colon Tumors via the Circulatory System. Front Cell Infect Microbiol 2020; 10:400. [PMID: 32850497 PMCID: PMC7426652 DOI: 10.3389/fcimb.2020.00400] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/29/2020] [Indexed: 12/16/2022] Open
Abstract
Fusobacterium nucleatum is a common oral bacterium that is enriched in colorectal adenomas and adenocarcinomas (CRC). In humans, high fusobacterial CRC abundance is associated with chemoresistance and poor prognosis. In animal models, fusobacteria accelerate CRC progression. Targeting F. nucleatum may reduce fusobacteria cancer progression and therefore determining the origin of CRC F. nucleatum and the route by which it reaches colon tumors is of biologic and therapeutic importance. Arbitrarily primed PCR performed previously on matched same-patients CRC and saliva F. nucleatum isolates, suggested that CRC F. nucleatum may originate from the oral cavity. However, the origin of CRC fusobacteria as well as the route of their arrival to the tumor have not been well-established. Herein, we performed and analyzed whole genome sequencing of paired, same-patient oral, and CRC F. nucleatum isolates and confirmed that CRC-fusobacteria originate from the oral microbial reservoir. Oral fusobacteria may translocate to CRC by descending via the digestive tract or using the hematogenous route during frequent transient bacteremia caused by chewing, daily hygiene activities, or dental procedures. Using the orthotropic CT26 mouse model we previously showed that IV injected F. nucleatum colonize CRC. Here, we compared CRC colonization by gavage vs. intravenous inoculated F. nucleatum in the MC38 and CT26 mouse orthotropic CRC models. Under the tested conditions, hematogenous fusobacteria were more successful in CRC colonization than gavaged ones. Our results therefore provide evidence that the hematogenous route may be the preferred way by which oral fusobacteria reach colon tumors.
Collapse
Affiliation(s)
- Jawad Abed
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel.,Department of Orthodontics, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Naseem Maalouf
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Abigail L Manson
- Infectious Disease & Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Ashlee M Earl
- Infectious Disease & Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Lishay Parhi
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Johanna E M Emgård
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Michael Klutstein
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Shay Tayeb
- Department of Biotechnology, Hadassah Academic College, Jerusalem, Israel
| | - Gideon Almogy
- Department of General Surgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Karine A Atlan
- Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Stella Chaushu
- Department of Orthodontics, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Eran Israeli
- Department of Gastroenterology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ofer Mandelboim
- Department of Immunology and Cancer Research, Institute for Medical Research Israel Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Wendy S Garrett
- Infectious Disease & Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States.,Department of Immunology and Infectious Diseases and Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, United States.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Gilad Bachrach
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| |
Collapse
|
177
|
Kitamoto S, Nagao-Kitamoto H, Hein R, Schmidt T, Kamada N. The Bacterial Connection between the Oral Cavity and the Gut Diseases. J Dent Res 2020; 99:1021-1029. [PMID: 32464078 PMCID: PMC7375741 DOI: 10.1177/0022034520924633] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
More than 100 trillion symbiotic microorganisms constitutively colonize throughout the human body, including the oral cavity, the skin, and the gastrointestinal tract. The oral cavity harbors one of the most diverse and abundant microbial communities within the human body, second to the community that resides in the gastrointestinal tract, and is composed of >770 bacterial species. Advances in sequencing technologies help define the precise microbial landscape in our bodies. Environmental and functional differences render the composition of resident microbiota largely distinct between the mouth and the gut and lead to the development of unique microbial ecosystems in the 2 mucosal sites. However, it is apparent that there may be a microbial connection between these 2 mucosal sites in the context of disease pathogenesis. Accumulating evidence indicates that resident oral bacteria can translocate to the gastrointestinal tract through hematogenous and enteral routes. The dissemination of oral microbes to the gut may exacerbate various gastrointestinal diseases, including irritable bowel syndrome, inflammatory bowel disease, and colorectal cancer. However, the precise role that oral microbes play in the extraoral organs, including the gut, remains elusive. Here, we review the recent findings on the dissemination of oral bacteria to the gastrointestinal tract and their possible contribution to the pathogenesis of gastrointestinal diseases. Although little is known about the mechanisms of ectopic colonization of the gut by oral bacteria, we also discuss the potential factors that allow the oral bacteria to colonize the gut.
Collapse
Affiliation(s)
- S. Kitamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - H. Nagao-Kitamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - R. Hein
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - T.M. Schmidt
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - N. Kamada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
178
|
Sun J, Tang Q, Yu S, Xie M, Xie Y, Chen G, Chen L. Role of the oral microbiota in cancer evolution and progression. Cancer Med 2020; 9:6306-6321. [PMID: 32638533 PMCID: PMC7476822 DOI: 10.1002/cam4.3206] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022] Open
Abstract
Bacteria identified in the oral cavity are highly complicated. They include approximately 1000 species with a diverse variety of commensal microbes that play crucial roles in the health status of individuals. Epidemiological studies related to molecular pathology have revealed that there is a close relationship between oral microbiota and tumor occurrence. Oral microbiota has attracted considerable attention for its role in in‐situ or distant tumor progression. Anaerobic oral bacteria with potential pathogenic abilities, especially Fusobacterium nucleatum and Porphyromonas gingivalis, are well studied and have close relationships with various types of carcinomas. Some aerobic bacteria such as Parvimonas are also linked to tumorigenesis. Moreover, human papillomavirus, oral fungi, and parasites are closely associated with oropharyngeal carcinoma. Microbial dysbiosis, colonization, and translocation of oral microbiota are necessary for implementation of carcinogenic functions. Various underlying mechanisms of oral microbiota‐induced carcinogenesis have been reported including excessive inflammatory reaction, immunosuppression of host, promotion of malignant transformation, antiapoptotic activity, and secretion of carcinogens. In this review, we have systemically described the impact of oral microbial abnormalities on carcinogenesis and the future directions in this field for bringing in new ideas for effective prevention of tumors.
Collapse
Affiliation(s)
- Jiwei Sun
- Department of Stomatology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Qingming Tang
- Department of Stomatology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Shaoling Yu
- Department of Stomatology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Mengru Xie
- Department of Stomatology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yanling Xie
- Department of Stomatology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Guangjin Chen
- Department of Stomatology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Lili Chen
- Department of Stomatology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
179
|
Wang J, Jia Z, Zhang B, Peng L, Zhao F. Tracing the accumulation of in vivo human oral microbiota elucidates microbial community dynamics at the gateway to the GI tract. Gut 2020; 69:1355-1356. [PMID: 31227588 PMCID: PMC7306975 DOI: 10.1136/gutjnl-2019-318977] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/06/2019] [Accepted: 05/30/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Jinfeng Wang
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Zhen Jia
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China,University of Chinese Academy of Sciences, Beijing, China
| | - Bing Zhang
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Lei Peng
- Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Fangqing Zhao
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China,University of Chinese Academy of Sciences, Beijing, China,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
180
|
Wang D, Zhu X, Tang X, Li H, Yizhen X, Chen D. Auxiliary antitumor effects of fungal proteins from Hericium erinaceus by target on the gut microbiota. J Food Sci 2020; 85:1872-1890. [PMID: 32460371 DOI: 10.1111/1750-3841.15134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 12/18/2022]
Abstract
Cancer represents a major disease burden worldwide. Despite continuous advances obtained in medical therapies recently, resistance to standard drugs and adverse effects still represent important causes of therapeutic failure. There is growing evidence that the gut microbiota can affect the response to chemo- and immunotherapeutic drugs by modulating efficacy and/or toxicity, and diet is the most important factor affecting the gut microbiota. In this study, we assessed the auxiliary antitumor effects of immunomodulatory fungal proteins from Hericium erinaceus (HEP) administered with the chemotherapy drug 5-Fluorouracil (5-Fu), and we attempted to identify new potential prebiotic bacteria for auxiliary antitumor treatment. There were 1,455 proteins identified from H. erinaceus. In a xenografted mouse model of cancer, HEP with 5-Fu significantly suppressed tumor growth, inhibited inflammatory markers such as interferon (IFN)-γ, interleukin (IL)-1β, IL-2, IL-6, tumor necrosis factor (TNF)-α, and lipopolysaccharide (LPS), and regulated the expression of Akt, CCDN1, CKD4, FOXM1, MMP7, MYC, PPAR-α, and PPAR-γ. 16S rRNA sequencing showed that HEP ameliorated the dysbacteriosis induced by 5-Fu, as it inhibited certain aerobic and microaerobic bacteria including Parabacteroides, Flavobacteriaceae, Christensenellaceae, Anoxybacillus, Aggregatibacter, Comamonadaceae, Planococcaceae, Desulfovibrionaceae, Sporosarcina, Staphylococcus, Aerococcaceae, and Bilophila in the xenografted mice, and increase some probiotic bacteria such as Bifidobacterium, Gemellales, Blautia, Sutterella, Anaerostipes, Roseburia, Lachnobacterium, Lactobacillus, and Desulfovibrio. This demonstrates that HEP could promote the antitumor efficacy of 5-Fu by improving the microbiota composition, the immune inflammatory response, and homeostasis.
Collapse
Affiliation(s)
- Dongdong Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Xiangxiang Zhu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.,Academy of Life Sciences, Jinan Univ., Guangzhou, Guangdong Province, 510000, China
| | - Xiaocui Tang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Hongye Li
- Academy of Life Sciences, Jinan Univ., Guangzhou, Guangdong Province, 510000, China
| | - Xie Yizhen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Diling Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| |
Collapse
|
181
|
de Leeuw MA, Duval MX. The Presence of Periodontal Pathogens in Gastric Cancer. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2020; 000:1-10. [DOI: 10.14218/erhm.2020.00024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
182
|
Watson KM, Gaulke CA, Tsikitis VL. Understanding the microbiome: a primer on the role of the microbiome in colorectal neoplasia. Ann Gastroenterol 2020; 33:223-236. [PMID: 32382225 PMCID: PMC7196612 DOI: 10.20524/aog.2020.0467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/24/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer is a leading cause of cancer-related death internationally, with mounting evidence pointing to the role of the microbiome in adenoma and cancer development. This article aims to provide clinicians with a foundation for understanding the field of research into the microbiome. We also illustrate the various ways in which the microbiota have been linked to colorectal cancer, with a specific focus on microbiota with identified virulence factors, and also on the ways that byproducts of microbiota metabolism may result in oncogenesis. We also review strategies for manipulating the microbiome for therapeutic effects.
Collapse
Affiliation(s)
- Katherine M. Watson
- Department of Surgery, Oregon Health & Science University, Portland, OR (Katherine M. Watson, Vassiliki Liana Tsikitis)
| | | | - Vassiliki Liana Tsikitis
- Department of Surgery, Oregon Health & Science University, Portland, OR (Katherine M. Watson, Vassiliki Liana Tsikitis)
| |
Collapse
|
183
|
Xiao L, Zhang Q, Peng Y, Wang D, Liu Y. The effect of periodontal bacteria infection on incidence and prognosis of cancer: A systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e19698. [PMID: 32282725 PMCID: PMC7220362 DOI: 10.1097/md.0000000000019698] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Periodontal bacteria is the major pathogens in the oral cavity and the main cause of adult chronic periodontitis, but their association with incidence and prognosis in cancer is controversial. The aim of this study was to evaluate the effect of periodontal bacteria infection on incidence and prognosis of cancer. METHODS A systematic literature search of PubMed, Embase, Web of Science, and Cochrane Library databases was performed to obtain 39 studies comprising 7184 participants. The incidence of cancer was evaluated as odd ratios (OR) with a 95% confidence interval (95% CI) using Review Manager 5.2 software. Overall survival, cancer-specific survival and disease-free survival, which were measured as hazard ratios (HR) with a 95% CI using Review Manager 5.2 software. RESULTS Our results indicated that periodontal bacteria infection increased the incidence of cancer (OR = 1.25; 95%CI: 1.03-1.52) and was associated with poor overall survival (HR = 1.75; 95% CI: 1.40-2.20), disease-free survival (HR = 2.18; 95%CI: 1.24-3.84) and cancer-specific survival (HR = 1.85, 95%CI: 1.44-2.39). Subgroup analysis indicted that the risk of cancer was associated with Porphyromonas gingivalis (Pg) infection (OR = 2.16; 95%CI: 1.34-3.47) and Prevotella intermedia (Pi) infection (OR = 1.28; 95%CI: 1.01-1.63) but not Tannerella forsythia (Tf) (OR = 1.06; 95%CI: 0.8-1.41), Treponema denticola (Td) (OR = 1.30; 95%CI: 0.99-1.72), Aggregatibacter actinomycetemcomitans (Aa) (OR = 1.00; 95%CI: 0.48-2.08) and Fusobacterium nucleatum (Fn) (OR = 0.61; 95%CI: 0.32-1.16). CONCLUSION This meta-analysis revealed periodontal bacteria infection increased the incidence of cancer and predicted poor prognosis of cancer.
Collapse
Affiliation(s)
- Li Xiao
- Department of Stomatology North Sichuan Medical College
| | - Qianyu Zhang
- Department of Stomatology North Sichuan Medical College
| | | | - Daqing Wang
- Department of Ophthalmology North Sichuan Medical College, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Ying Liu
- Department of Stomatology North Sichuan Medical College
| |
Collapse
|
184
|
Gethings-Behncke C, Coleman HG, Jordao HWT, Longley DB, Crawford N, Murray LJ, Kunzmann AT. Fusobacterium nucleatum in the Colorectum and Its Association with Cancer Risk and Survival: A Systematic Review and Meta-analysis. Cancer Epidemiol Biomarkers Prev 2020; 29:539-548. [PMID: 31915144 DOI: 10.1158/1055-9965.epi-18-1295] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 07/16/2019] [Accepted: 12/17/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The gut microbiome, in particular Fusobacterium nucleatum, has been reported to play a role in colorectal cancer development and in patient prognosis. We aimed to perform a systematic review and meta-analysis of published studies to assess the prevalence of F. nucleatum in colorectal tumors and evaluate the association between F. nucleatum and colorectal cancer development and prognosis. METHODS MEDLINE, EMBASE, and Web of Science databases were systematically searched for studies published until January 2019. Random effects meta-analyses were used to assess the prevalence of F. nucleatum in patients with colorectal cancer or tissues relative to controls and survival in F. nucleatum-positive versus -negative patients. RESULTS Forty-five relevant articles were identified. Meta-analyses indicated higher odds of F. nucleatum being present in colorectal tissue samples from patients with colorectal cancer [n = 6 studies, pooled OR = 10.06; 95% confidence intervals (CI), 4.48-22.58] and individuals with colorectal polyps (n = 5 studies, pooled OR = 1.83; 95% CI, 1.07-3.16) compared with healthy controls. Similar results were apparent in fecal samples, and when comparing tumor with adjacent normal tissue. Meta-analyses indicated poorer survival in patients with colorectal cancer with high versus low F. nucleatum abundance (n = 5 studies, pooled HR = 1.87; 95% CI, 1.12-3.11). CONCLUSIONS A consistent increase in the prevalence and/or abundance of F. nucleatum in colorectal cancer tissue and fecal samples compared with controls was apparent. High abundance of F. nucleatum in colorectal tumors was also associated with poorer overall survival. IMPACT F. nucleatum could be useful as a diagnostic and prognostic marker for colorectal cancer or as a treatment target.
Collapse
Affiliation(s)
| | - Helen G Coleman
- Centre for Public Health, Queen's University Belfast, Belfast, United Kingdom
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - Haydee W T Jordao
- Centre for Public Health, Queen's University Belfast, Belfast, United Kingdom
| | - Daniel B Longley
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - Nyree Crawford
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - Liam J Murray
- Centre for Public Health, Queen's University Belfast, Belfast, United Kingdom
| | - Andrew T Kunzmann
- Centre for Public Health, Queen's University Belfast, Belfast, United Kingdom.
| |
Collapse
|
185
|
Cueva C, Silva M, Pinillos I, Bartolomé B, Moreno-Arribas MV. Interplay between Dietary Polyphenols and Oral and Gut Microbiota in the Development of Colorectal Cancer. Nutrients 2020; 12:E625. [PMID: 32120799 PMCID: PMC7146370 DOI: 10.3390/nu12030625] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most diagnosed type of cancer worldwide. Dietary features play an important role in its development, and the involvement of human microbial communities in this pathology has also recently been recognized. Individuals with CRC display alterations in gut bacterial composition and a notably higher abundance of putative oral bacteria in colonic tumors. Many experimental studies and preclinical evidence propose that dietary polyphenols have a relevant role in CRC development and progression, mainly attributed to their immunomodulatory activities. Furthermore, polyphenols can modulate oral and gut microbiota, and in turn, intestinal microbes catabolize polyphenols to release metabolites that are often more active and better absorbed than the original phenolic compounds. The current study aimed to review and summarize current knowledge on the role of microbiota and the interactions between dietary polyphenols and microbiota in relation to CRC development. We have highlighted the mechanisms by which dietary polyphenols and/or their microbial metabolites exert their action on the pathogenesis and prevention of CRC as modulators of the composition and/or activity of oral and intestinal microbiota, including novel screening biomarkers and possible nutritional therapeutic implications.
Collapse
Affiliation(s)
| | | | | | | | - M. Victoria Moreno-Arribas
- Institute of Food Science Research (CIAL), CSIC-UAM, C/Nicolás Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain; (C.C.); (M.S.); (I.P.); (B.B.)
| |
Collapse
|
186
|
Brennan CA, Garrett WS. Fusobacterium nucleatum - symbiont, opportunist and oncobacterium. Nat Rev Microbiol 2020; 17:156-166. [PMID: 30546113 DOI: 10.1038/s41579-018-0129-6] [Citation(s) in RCA: 695] [Impact Index Per Article: 139.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fusobacterium nucleatum has long been found to cause opportunistic infections and has recently been implicated in colorectal cancer; however, it is a common member of the oral microbiota and can have a symbiotic relationship with its hosts. To address this dissonance, we explore the diversity and niches of fusobacteria and reconsider historic fusobacterial taxonomy in the context of current technology. We also undertake a critical reappraisal of fusobacteria with a focus on F. nucleatum as a mutualist, infectious agent and oncogenic microorganism. In this Review, we delve into recent insights and future directions for fusobacterial research, including the current genetic toolkit, our evolving understanding of its mechanistic role in promoting colorectal cancer and the challenges of developing diagnostics and therapeutics for F. nucleatum.
Collapse
Affiliation(s)
| | - Wendy S Garrett
- Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
187
|
Abstract
There is mounting evidence that members of the human microbiome are highly associated with a wide variety of cancer types. Among oral cancers, oral squamous cell carcinoma (OSCC) is the most prevalent and most commonly studied, and it is the most common malignancy of the head and neck worldwide. However, there is a void regarding the role that the oral microbiome may play in OSCC. Previous studies have not consistently found a characteristic oral microbiome composition associated with OSCC. Although a direct causality has not been proven, individual members of the oral microbiome are capable of promoting various tumorigenic functions related to cancer development. Two prominent oral pathogens, Porphyromonas gingivalis, and Fusobacterium nucleatum can promote tumor progression in mice. P. gingivalis infection has been associated with oro-digestive cancer, increased oral cancer invasion, and proliferation of oral cancer stem cells. The microbiome can influence the evolution of the disease by directly interacting with the human body and significantly altering the response and toxicity to various forms of cancer therapy. Recent studies have shown an association of certain phylogenetic groups with the immunotherapy treatment outcomes of certain tumors. On the other side of the coin, recently it has been a resurgence in interest on the potential use of bacteria to cure cancer. These kinds of treatments were used in the late nineteenth and early twentieth centuries as the first line of defense against cancer in some hospitals but later displaced by other types of treatments such as radiotherapy. Currently, organisms such as Salmonella typhimurium and Clostridium spp. have been used for targeted strategies as potential vectors to treat cancer. In this review, we briefly summarize our current knowledge of the role of the oral microbiome, focusing on its bacterial fraction, in cancer in general and in OSCC more precisely, and a brief description of the potential use of bacteria to target tumors.
Collapse
Affiliation(s)
- Muhammad Irfan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| | | | - Jorge Frias-Lopez
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| |
Collapse
|
188
|
Chen Y, Chen X, Yu H, Zhou H, Xu S. Oral Microbiota as Promising Diagnostic Biomarkers for Gastrointestinal Cancer: A Systematic Review. Onco Targets Ther 2019; 12:11131-11144. [PMID: 31908481 PMCID: PMC6927258 DOI: 10.2147/ott.s230262] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 11/21/2019] [Indexed: 01/01/2023] Open
Abstract
Emerging evidence has shown the potential of oral microbiota as a noninvasive diagnostic tool in gastrointestinal (GI) cancer. PubMed, Web of Science, and Embase were systematically searched for eligible studies published until May 31, 2019. Of the 17 included studies published between 2011 and 2019, five kinds of GI cancer, including colorectal cancer (n=6), pancreatic cancer (n=5), gastric cancer (n=4), esophageal cancer (n=2) and liver cancer (n=1), were reported. Generally, the diagnostic performance of the multi-bacteria model for GI cancer was strong with the best area under the receiver operator characteristic curve (AUC) exceeding 0.90, but only one study had a validation phase. Pathogens involved in periodontal disease, such as Porphyromonas gingivalis and Tannerella forsythia, were linked to various kinds of GI cancer. Besides, more oral bacteria significantly differed between cases with upper digestive cancer and healthy controls when compared to colorectal cancer (the most common form of lower digestive cancer), probably indicating a different mechanism due to anatomical and physiological differences in the digestive tract. Oral microbiota changes were associated with risk of various kinds of GI cancer, which could be considered as a potential tool for early prediction and prevention of GI cancer, but validation based on a large population, reproducible protocols for oral microbiota research and oral-gut microbiota transmission patterns are required to be resolved in further studies.
Collapse
Affiliation(s)
- Yanwei Chen
- Infection Control Department of Shenzhen Hospital of University of Chinese Academy of Sciences, Shenzhen, People’s Republic of China
| | - Xuechen Chen
- Medical Faculty Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Haixin Yu
- Medical Faculty Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Haibo Zhou
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, People’s Republic of China
| | - Shu Xu
- Oncology Department of Shenzhen Hospital of University of Chinese Academy of Sciences, Shenzhen, People’s Republic of China
| |
Collapse
|
189
|
Targeting Programmed Fusobacterium nucleatum Fap2 for Colorectal Cancer Therapy. Cancers (Basel) 2019; 11:cancers11101592. [PMID: 31635333 PMCID: PMC6827134 DOI: 10.3390/cancers11101592] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 12/18/2022] Open
Abstract
Colorectal patients generally have the maximum counts of Fusobacterium nucleatum (F. nucleatum) in tumors and elevate colorectal adenomas and carcinomas, which show the lowest rate of human survival. Hence, F. nucleatum is a diagnostic marker of colorectal cancer (CRC). Studies demonstrated that targeting fusobacterial Fap2 or polysaccharide of the host epithelium may decrease fusobacteria count in the CRC. Attenuated F. nucleatum-Fap2 prevents transmembrane signals and inhibits tumorigenesis inducing mechanisms. Hence, in this review, we hypothesized that application of genetically programmed fusobacterium can be skillful and thus reduce fusobacterium in the CRC. Genetically programmed F. nucleatum is a promising antitumor strategy.
Collapse
|
190
|
Li L, Li X, Zhong W, Yang M, Xu M, Sun Y, Ma J, Liu T, Song X, Dong W, Liu X, Chen Y, Liu Y, Abla Z, Liu W, Wang B, Jiang K, Cao H. Gut microbiota from colorectal cancer patients enhances the progression of intestinal adenoma in Apc min/+ mice. EBioMedicine 2019; 48:301-315. [PMID: 31594750 PMCID: PMC6838415 DOI: 10.1016/j.ebiom.2019.09.021] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/05/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023] Open
Abstract
Background Accumulating evidence points to a close relationship between gut dysbiosis and colorectal cancer (CRC). As >90% of CRC develop from adenoma, we aimed to investigate the crucial role of imbalanced gut microbiota on the progression of intestinal adenoma. Methods The Apcmin/+ mice gavage with phosphate-buffered saline (PBS), feces from healthy controls or CRC patients after antibiotic cocktails. The intestinal tissues were isolated for histopathology, western blotting, and RNA-seq. The microbiota of feces and short-chain fatty acids (SCFAs) were analysed by 16S rDNA Amplicon Sequencing and gas chromatography. Findings The Apcmin/+mice gavaged by feces from CRC patients had more intestinal tumours compared with those fed with feces from healthy controls or PBS. Administration of feces from CRC patients increased tumour proliferation and decreased apoptosis in tumour cells, accompanied by impairment of gut barrier function and up-regulation the pro-inflammatory cytokines profile. The up-regulated the expression of β-catenin and cyclinD1 further indicating the activation of Wnt signalling pathway. The abundance of pathogenic bacteria was increased after FMT, while producing SCFAs bacteria and SCFAs production were decreased. Interpretation Gut microbiota of CRC patients disrupted intestinal barrier, induced low-grade inflammation and dysbiosis. The altered gut microbiota enhanced the progression of intestinal adenomas in Apcmin/+mice, suggesting that a new strategy to target gut microbiota against CRC could be noted. Fund The study was supported by the National Natural Science Foundation of China, Tianjin Research Programme of Application Foundation and Advanced Technology of China, and China Postdoctoral Science Foundation.
Collapse
Affiliation(s)
- Lu Li
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Xiaofei Li
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Weilong Zhong
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Min Yang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Mengque Xu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China; Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yue Sun
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Jiaheng Ma
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Xueli Song
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Wenxiao Dong
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Xiang Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Yange Chen
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Yi Liu
- Department of Gastroenterology and Hepatology, Tianjin Third Central Hospital, Tianjin, China; Department of Gastroenterology and Hepatology, Hotan District People's Hospital, Xinjiang Uygur Autonomous Region, Xinjiang, China
| | - Zaripa Abla
- Department of Gastroenterology and Hepatology, Hotan District People's Hospital, Xinjiang Uygur Autonomous Region, Xinjiang, China
| | - Wentian Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China.
| | - Kui Jiang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China.
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China; Department of Gastroenterology and Hepatology, Hotan District People's Hospital, Xinjiang Uygur Autonomous Region, Xinjiang, China.
| |
Collapse
|
191
|
Sun CH, Li BB, Wang B, Zhao J, Zhang XY, Li TT, Li WB, Tang D, Qiu MJ, Wang XC, Zhu CM, Qian ZR. The role of Fusobacterium nucleatum in colorectal cancer: from carcinogenesis to clinical management. Chronic Dis Transl Med 2019; 5:178-187. [PMID: 31891129 PMCID: PMC6926109 DOI: 10.1016/j.cdtm.2019.09.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a common malignant tumor that affects people worldwide. Metagenomic analyses have shown an enrichment of Fusobacterium nucleatum (F. nucleatum) in colorectal carcinoma tissue; many studies have indicated that F. nucleatum is closely related to the colorectal carcinogenesis. In this review, we provide the latest information to reveal the related molecular mechanisms. The known virulence factors of F. nucleatum promote adhesion to intestinal epithelial cells via FadA and Fap2. Besides, Fap2 also binds to immune cells causing immunosuppression. Furthermore, F. nucleatum recruits tumor-infiltrating immune cells, thus yielding a pro-inflammatory microenvironment, which promotes colorectal neoplasia progression. F. nucleatum was also found to potentiate CRC development through toll-like receptor 2 (TLR2)/toll-like receptor 4 (TLR4) signaling and microRNA (miRNA)-21 expression. In addition, F. nucleatum increases CRC recurrence along with chemoresistance by mediating a molecular network of miRNA-18a*, miRNA-4802, and autophagy components. Moreover, viable F. nucleatum was detected in mouse xenografts of human primary colorectal adenocarcinomas through successive passages. These findings indicated that an increased number of F. nucleatum in the tissues is a biomarker for the diagnosis and prognosis of CRC, and the underlying molecular mechanism can probably provide a potential intervention treatment strategy for patients with F. nucleatum-associated CRC.
Collapse
Affiliation(s)
- Chun-Hui Sun
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie (CIRB), Collège de France, Paris 75005, France
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Bin-Bin Li
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Bo Wang
- Department of Oncology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jing Zhao
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xiao-Ying Zhang
- Health Management Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Ting-Ting Li
- Department of Gastroenterology, The Second Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Wen-Bing Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China
| | - Di Tang
- Department of General Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Miao-Juan Qiu
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xin-Cheng Wang
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Cheng-Ming Zhu
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Zhi-Rong Qian
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| |
Collapse
|
192
|
Picardo SL, Coburn B, Hansen AR. The microbiome and cancer for clinicians. Crit Rev Oncol Hematol 2019; 141:1-12. [PMID: 31202124 DOI: 10.1016/j.critrevonc.2019.06.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/23/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023] Open
Abstract
The human microbiome is an emerging target in cancer development and therapeutics. It may be directly oncogenic, through promotion of mucosal inflammation or systemic dysregulation, or may alter anti-cancer immunity/therapy. Microorganisms within, adjacent to and distant from tumors may affect cancer progression, and interactions and differences between these populations can influence the course of disease. Here we review the microbiome as it pertains to cancer for clinicians. The microbiota of cancers including colorectal, pancreas, breast and prostate are discussed. We examine "omics" technologies, microbiota associated with tumor tissue and tumor-site fluids such as feces and urine, as well as indirect effects of the gut microbiome. We describe roles of the microbiome in immunotherapy, and how it can be modulated to improve cancer therapeutics. While research is still at an early stage, there is potential to exploit the microbiome, as modulation may increase efficacy of treatments, reduce toxicities and prevent carcinogenesis.
Collapse
Affiliation(s)
- Sarah L Picardo
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, 700 University Avenue, Toronto, Ontario, M5G 0A1, Canada.
| | - Bryan Coburn
- Division of Infectious Diseases, University Health Network, Toronto, Canada.
| | - Aaron R Hansen
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, 700 University Avenue, Toronto, Ontario, M5G 0A1, Canada.
| |
Collapse
|
193
|
Oral Bacteria and Intestinal Dysbiosis in Colorectal Cancer. Int J Mol Sci 2019; 20:ijms20174146. [PMID: 31450675 PMCID: PMC6747549 DOI: 10.3390/ijms20174146] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/19/2019] [Accepted: 08/23/2019] [Indexed: 02/07/2023] Open
Abstract
The human organism coexists with its microbiota in a symbiotic relationship. These polymicrobial communities are involved in many crucial functions, such as immunity, protection against pathogens, and metabolism of dietary compounds, thus maintaining homeostasis. The oral cavity and the colon, although distant anatomic regions, are both highly colonized by distinct microbiotas. However, studies indicate that oral bacteria are able to disseminate into the colon. This is mostly evident in conditions such as periodontitis, where specific bacteria, namely Fusobacterium nucrelatum and Porphyromonas gingivalis project a pathogenic profile. In the colon these bacteria can alter the composition of the residual microbiota, in the context of complex biofilms, resulting in intestinal dysbiosis. This orally-driven disruption promotes aberrant immune and inflammatory responses, eventually leading to colorectal cancer (CRC) tumorigenesis. Understanding the exact mechanisms of these interactions will yield future opportunities regarding prevention and treatment of CRC.
Collapse
|
194
|
Yang Z, Ji G. Fusobacterium nucleatum-positive colorectal cancer. Oncol Lett 2019; 18:975-982. [PMID: 31423156 PMCID: PMC6607099 DOI: 10.3892/ol.2019.10433] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 05/17/2019] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is an important threat to human health and the fourth leading cause of mortality worldwide. Accumulating evidence indicates that the composition of the intestinal flora is associated with the occurrence of CRC. Fusobacterium nucleatum (Fn), one of the highly enriched bacteria in CRC tissues, invades the mucosa with adhesion factors and virulence proteins, interacts with the host immune system and promotes the occurrence and development of CRC and chemoresistance. Fn infection is prevalent in human colorectal carcinoma, although the infection rate varies in different regions. Fn may be used as a prognostic indicator of CRC. It is important to understand the multi-pathway carcinogenic mechanisms associated with CRC in order to develop novel antibacterial drugs against Fn. The current review summarizes the role of Fn and relevant research concerning CRC published in recent years, focusing on Fn infection in CRC, pathogenesis of Fn, Fn-positive CRC treatment, screening and prevention strategies against Fn-positive CRC.
Collapse
Affiliation(s)
- Zhenhua Yang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
- Department of Digestive Endoscopy, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| |
Collapse
|
195
|
Iwauchi M, Horigome A, Ishikawa K, Mikuni A, Nakano M, Xiao JZ, Odamaki T, Hironaka S. Relationship between oral and gut microbiota in elderly people. IMMUNITY INFLAMMATION AND DISEASE 2019; 7:229-236. [PMID: 31305026 PMCID: PMC6688080 DOI: 10.1002/iid3.266] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/07/2019] [Accepted: 06/05/2019] [Indexed: 12/16/2022]
Abstract
AIM Recent studies have suggested that oral bacteria induce systemic inflammation through the alteration of gut microbiota. We examined the relationship between oral and gut microbiota to evaluate the transition of oral bacteria to the gastrointestinal tract. METHODS Oral samples from subgingival plaque and tongue-coating and fecal samples were collected from 29 elderly subjects (age, 80.2 ± 9.1 years) and 30 adults (age, 35.9 ± 5.0 years). Genomic DNA was extracted from all samples, and DNA sequencing of bacterial 16S rRNA genes was performed for microbiota analysis. UniFrac distances were calculated to evaluate the similarity between microbial communities. RESULTS Unweighted UniFrac distance indicated that the elderly group had a higher similarity between fecal and subgingival plaque microbiota than the adult group. Indeed, some bacterial taxa found in oral samples had a significantly higher prevalence in the feces of the elderly group than in that of the adult group. CONCLUSIONS The prevalence of oral bacterial transition to gut may be higher in the elderly than in adults, expecting that oral health care in the elderly will affect their gut microbiota composition and consequently promote human health.
Collapse
Affiliation(s)
- Megumi Iwauchi
- Department of Special Needs Dentistry, Division of Hygiene and Oral Health, Showa University School of Dentistry, Tokyo, Japan
| | - Ayako Horigome
- R&D Division, Next Generation Science Institute, Morinaga Milk Industry Co, Ltd, Kanagawa, Japan
| | - Kentaro Ishikawa
- Department of Special Needs Dentistry, Division of Hygiene and Oral Health, Showa University School of Dentistry, Tokyo, Japan
| | - Aya Mikuni
- Department of Special Needs Dentistry, Division of Hygiene and Oral Health, Showa University School of Dentistry, Tokyo, Japan
| | - Manabu Nakano
- R&D Division, Food Ingredients & Technology Institute, Morinaga Milk Industry Co, Ltd, Kanagawa, Japan
| | - Jin-Zhong Xiao
- R&D Division, Next Generation Science Institute, Morinaga Milk Industry Co, Ltd, Kanagawa, Japan
| | - Toshitaka Odamaki
- R&D Division, Next Generation Science Institute, Morinaga Milk Industry Co, Ltd, Kanagawa, Japan
| | - Shouji Hironaka
- Department of Special Needs Dentistry, Division of Hygiene and Oral Health, Showa University School of Dentistry, Tokyo, Japan
| |
Collapse
|
196
|
Lee SA, Liu F, Riordan SM, Lee CS, Zhang L. Global Investigations of Fusobacterium nucleatum in Human Colorectal Cancer. Front Oncol 2019; 9:566. [PMID: 31334107 PMCID: PMC6618585 DOI: 10.3389/fonc.2019.00566] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/11/2019] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer and second in terms of mortality. Emerging evidence from recent studies suggests a potential role of Fusobacterium nucleatum in the development of CRC. In this article, we review studies from different geographical regions examining the association between F. nucleatum and CRC, the detection methods and the tumorigenic mechanisms. Furthermore, we discuss the potential clinical impact of F. nucleatum in CRC and suggest future study directions.
Collapse
Affiliation(s)
- Seul A. Lee
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Fang Liu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Stephen M. Riordan
- Gastrointestinal and Liver Unit, Prince of Wales Hospital, University of New South Wales, Sydney, NSW, Australia
| | - Cheok S. Lee
- Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, NSW, Australia
- Faculty of Medicine and Health, Central Clinical School, University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine, South Western Sydney Clinical School, University of New South Wales, Sydney, NSW, Australia
- Department of Anatomical Pathology, Liverpool Hospital, Sydney, NSW, Australia
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
197
|
Study Insights into Gastrointestinal Cancer through the Gut Microbiota. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8721503. [PMID: 31341907 PMCID: PMC6612970 DOI: 10.1155/2019/8721503] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 05/28/2019] [Indexed: 12/16/2022]
Abstract
The gut microbiome in human is recognized as a “microbial organ” for its roles and contributions in regulating the human homeostasis and metabolism. Gastrointestinal (GI) cancers, especially colorectal cancer (CRC), rank as the most common cancer-related deaths worldwide. Evidences have suggested that the disorder of gut microbiota, also named as “dysbiosis,” is related to the development of a variety of diseases such as inflammatory bowel disease (IBD) and the CRC. However, detailed mechanisms between disease and gut microbiota remain largely unknown. This review introduced the correlation between gastrointestinal diseases and the microbiota in human gut from the recent studies, as well as the roles of microbiota in manipulating the CRC and IBDs development, in order to facilitate future studies and to develop novel methods for the precaution, diagnosis, or even cure of gastrointestinal diseases. Additionally, we also elucidated the possibility of probiotics in treatment against CRC.
Collapse
|
198
|
Olsen I, Yamazaki K. Can oral bacteria affect the microbiome of the gut? J Oral Microbiol 2019; 11:1586422. [PMID: 30911359 PMCID: PMC6427756 DOI: 10.1080/20002297.2019.1586422] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 02/04/2019] [Accepted: 02/19/2019] [Indexed: 12/13/2022] Open
Abstract
Oral bacteria spreading through the body have been associated with a number of systemic diseases. The gut is no exception. Studies in animals and man have indicated that oral bacteria can translocate to the gut and change its microbiota and possibly immune defense. The ectopic displacement of oral bacteria particularly occurs in severe systemic diseases, but also in patients with “chronic” periodontitis. Thus, Porphyromonas gingivalis, which creates dysbiosis in the subgingival microbiota and immune defense, may also cause dysregulation in the gut. A dysbiotic gut microbiota may cause diseases elsewhere in the body. The fact that “chronic” periodontitis may affect the gut microbiota could imply that consideration might in the future be given to a coordinated approach to the treatment of periodontitis and gastrointestinal disease. This area of investigation, which is in its infancy, may represent another pathway for oral bacteria to cause systemic diseases and deserves more research.
Collapse
Affiliation(s)
- Ingar Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Kazuhisa Yamazaki
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
199
|
Rhoades N, Mendoza N, Jankeel A, Sureshchandra S, Alvarez AD, Doratt B, Heidari O, Hagan R, Brown B, Scheibel S, Marbley T, Taylor J, Messaoudi I. Altered Immunity and Microbial Dysbiosis in Aged Individuals With Long-Term Controlled HIV Infection. Front Immunol 2019; 10:463. [PMID: 30915086 PMCID: PMC6423162 DOI: 10.3389/fimmu.2019.00463] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/20/2019] [Indexed: 01/22/2023] Open
Abstract
The introduction of highly active antiretroviral therapy (HAART) resulted in a significant increase in life expectancy for HIV patients. Indeed, in 2015, 45% of the HIV+ individuals in the United States were ≥55 years of age. Despite improvements in diagnosis and treatment of HIV infection, geriatric HIV+ patients suffer from higher incidence of comorbidities compared to age-matched HIV- individuals. Both chronic inflammation and dysbiosis of the gut microbiome are believed to be major contributors to this phenomenon, however carefully controlled studies investigating the impact of long-term (>10 years) controlled HIV (LTC-HIV) infection are lacking. To address this question, we profiled circulating immune cells, immune mediators, and the gut microbiome from elderly (≥55 years old) LTC-HIV+ and HIV- gay men living in the Palm Springs area. LTC-HIV+ individuals had lower frequency of circulating monocytes and CD4+ T-cells, and increased frequency CD8+ T-cells. Moreover, levels of systemic INFγ and several growth factors were increased while levels of IL-2 and several chemokines were reduced. Upon stimulation, immune cells from LTC-HIV+ individuals produced higher levels of pro-inflammatory cytokines. Last but not least, the gut microbiome of LTC-HIV+ individuals was enriched in bacterial taxa typically found in the oral cavity suggestive of loss of compartmentalization, while levels of beneficial butyrate producing taxa were reduced. Additionally, prevalence of Prevotella negatively correlated with CD4+ T-cells numbers in LTC-HIV+ individuals. These results indicate that despite long-term adherence and undetectable viral loads, LTC-HIV infection results in significant shifts in immune cell frequencies and gut microbial communities.
Collapse
Affiliation(s)
- Nicholas Rhoades
- Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, United States
| | - Norma Mendoza
- Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, United States
| | - Allen Jankeel
- Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, United States
| | - Suhas Sureshchandra
- Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, United States
| | - Alexander D Alvarez
- Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, United States
| | - Brianna Doratt
- Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, United States
| | - Omeid Heidari
- School of Nursing, John Hopkins University, Baltimore, MD, United States
| | - Rod Hagan
- Stonewall Medical Center, Borrego Health, Cathedral City, CA, United States
| | - Brandon Brown
- School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Steven Scheibel
- Stonewall Medical Center, Borrego Health, Cathedral City, CA, United States
| | - Theodore Marbley
- Stonewall Medical Center, Borrego Health, Cathedral City, CA, United States
| | - Jeff Taylor
- HIV+ Aging-Palm Springs, Palm Springs, CA, United States
| | - Ilhem Messaoudi
- Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, United States
| |
Collapse
|
200
|
Groeger S, Meyle J. Oral Mucosal Epithelial Cells. Front Immunol 2019; 10:208. [PMID: 30837987 PMCID: PMC6383680 DOI: 10.3389/fimmu.2019.00208] [Citation(s) in RCA: 244] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/23/2019] [Indexed: 12/14/2022] Open
Abstract
Cellular Phenotype and Apoptosis: The function of epithelial tissues is the protection of the organism from chemical, microbial, and physical challenges which is indispensable for viability. To fulfill this task, oral epithelial cells follow a strongly regulated scheme of differentiation that results in the formation of structural proteins that manage the integrity of epithelial tissues and operate as a barrier. Oral epithelial cells are connected by various transmembrane proteins with specialized structures and functions. Keratin filaments adhere to the plasma membrane by desmosomes building a three-dimensional matrix. Cell-Cell Contacts and Bacterial Influence: It is known that pathogenic oral bacteria are able to affect the expression and configuration of cell-cell junctions. Human keratinocytes up-regulate immune-modulatory receptors upon stimulation with bacterial components. Periodontal pathogens including P. gingivalis are able to inhibit oral epithelial innate immune responses through various mechanisms and to escape from host immune reaction, which supports the persistence of periodontitis and furthermore is able to affect the epithelial barrier function by altering expression and distribution of cell-cell interactions including tight junctions (TJs) and adherens junctions (AJs). In the pathogenesis of periodontitis a highly organized biofilm community shifts from symbiosis to dysbiosis which results in destructive local inflammatory reactions. Cellular Receptors: Cell-surface located toll like receptors (TLRs) and cytoplasmatic nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) belong to the pattern recognition receptors (PRRs). PRRs recognize microbial parts that represent pathogen-associated molecular patterns (PAMPs). A multimeric complex of proteins known as inflammasome, which is a subset of NLRs, assembles after activation and proceeds to pro-inflammatory cytokine release. Cytokine Production and Release: Cytokines and bacterial products may lead to host cell mediated tissue destruction. Keratinocytes are able to produce diverse pro-inflammatory cytokines and chemokines, including interleukin (IL)-1, IL-6, IL-8 and tumor necrosis factor (TNF)-α. Infection by pathogenic bacteria such as Porphyromonas gingivalis (P. gingivalis) and Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) can induce a differentiated production of these cytokines. Immuno-modulation, Bacterial Infection, and Cancer Cells: There is a known association between bacterial infection and cancer. Bacterial components are able to up-regulate immune-modulatory receptors on cancer cells. Interactions of bacteria with tumor cells could support malignant transformation an environment with deficient immune regulation. The aim of this review is to present a set of molecular mechanisms of oral epithelial cells and their reactions to a number of toxic influences.
Collapse
Affiliation(s)
- Sabine Groeger
- Department of Periodontology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Joerg Meyle
- Department of Periodontology, Justus-Liebig-University of Giessen, Giessen, Germany
| |
Collapse
|