151
|
Liu F, Liu M, Liu Y, Guo C, Zhou Y, Li F, Xu R, Liu Z, Deng Q, Li X, Zhang C, Pan Y, Ning T, Dong X, Hu Z, Bao H, Cai H, Silva IDS, He Z, Ke Y. Oral microbiome and risk of malignant esophageal lesions in a high-risk area of China: A nested case-control study. Chin J Cancer Res 2020; 32:742-754. [PMID: 33446997 PMCID: PMC7797237 DOI: 10.21147/j.issn.1000-9604.2020.06.07] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Objective We aimed to prospectively evaluate the association of oral microbiome with malignant esophageal lesions and its predictive potential as a biomarker of risk. Methods We conducted a case-control study nested within a population-based cohort with up to 8 visits of oral swab collection for each subject over an 11-year period in a high-risk area for esophageal cancer in China. The oral microbiome was evaluated with 16S ribosomal RNA (rRNA) gene sequencing in 428 pre-diagnostic oral specimens from 84 cases with esophageal lesions of severe squamous dysplasia and above (SDA) and 168 matched healthy controls. DESeq analysis was performed to identify taxa of differential abundance. Differential oral species together with subject characteristics were evaluated for their potential in predicting SDA risk by constructing conditional logistic regression models. Results A total of 125 taxa including 37 named species showed significantly different abundance between SDA cases and controls (all P<0.05 & false discovery rate-adjusted Q<0.10). A multivariate logistic model including 11 SDA lesion-related species and family history of esophageal cancer provided an area under the receiver operating characteristic curve (AUC) of 0.89 (95% CI, 0.84−0.93). Cross-validation and sensitivity analysis, excluding cases diagnosed within 1 year of collection of the baseline specimen and their matched controls, or restriction to screen-endoscopic-detected or clinically diagnosed case-control triads, or using only bacterial data measured at the baseline, yielded AUCs>0.84. Conclusions The oral microbiome may play an etiological and predictive role in esophageal cancer, and it holds promise as a non-invasive early warning biomarker for risk stratification for esophageal cancer screening programs.
Collapse
Affiliation(s)
- Fangfang Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Mengfei Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Ying Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Chuanhai Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | | | - Fenglei Li
- Hua County People's Hospital, Anyang 456400, China
| | - Ruiping Xu
- Anyang Cancer Hospital, Anyang 455000, China
| | - Zhen Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Qiuju Deng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiang Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Chaoting Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yaqi Pan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Tao Ning
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiao Dong
- Novogene Co., Ltd, Beijing 100080, China
| | - Zhe Hu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Huanyu Bao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Hong Cai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Isabel Dos Santos Silva
- Department of Non-communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| | - Zhonghu He
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yang Ke
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
152
|
Li H, Zang Y, Wang C, Li H, Fan A, Han C, Xue F. The Interaction Between Microorganisms, Metabolites, and Immune System in the Female Genital Tract Microenvironment. Front Cell Infect Microbiol 2020; 10:609488. [PMID: 33425785 PMCID: PMC7785791 DOI: 10.3389/fcimb.2020.609488] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/18/2020] [Indexed: 12/24/2022] Open
Abstract
The female reproductive tract microenvironment includes microorganisms, metabolites, and immune components, and the balance of the interactions among them plays an important role in maintaining female reproductive tract homeostasis and health. When any one of the reproductive tract microorganisms, metabolites, or immunity is out of balance, it will affect the other two, leading to the occurrence and development of diseases and the appearance of corresponding symptoms and signs, such as infertility, miscarriage, premature delivery, and gynecological tumors caused by infectious diseases of the reproductive tract. Nutrients in the female reproductive tract provide symbiotic and pathogenic microorganisms with a source of nutrients for their own reproduction and utilization. At the same time, this interaction with the host forms a variety of metabolites. Changes in metabolites in the host reproductive tract are related not only to the interaction between the host and microbiota under dysbiosis but also to changes in host immunity or the environment, all of which will participate in the pathogenesis of diseases and lead to disease-related phenotypes. Microorganisms and their metabolites can also interact with host immunity, activate host immunity, and change the host immune status and are closely related to persistent genital pathogen infections, aggravation of infectious diseases, severe pregnancy outcomes, and even gynecological cancers. Therefore, studying the interaction between microorganisms, metabolites, and immunity in the reproductive tract cannot only reveal the pathogenic mechanisms that lead to inflammation of the reproductive tract, adverse pregnancy outcomes and tumorigenesis but also provide a basis for further research on the diagnosis and treatment of targets.
Collapse
Affiliation(s)
- Huanrong Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuqin Zang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Chen Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Huiyang Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Aiping Fan
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Cha Han
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
153
|
Gut mycobiome: A promising target for colorectal cancer. Biochim Biophys Acta Rev Cancer 2020; 1875:188489. [PMID: 33278512 DOI: 10.1016/j.bbcan.2020.188489] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/14/2022]
Abstract
The human gut is mainly habited by a staggering amount and abundance of bacteria as well as fungi. Gut dysbiosis is believed as a pivotal factor in colorectal cancer (CRC) development. Lately increasing evidence from animal or clinical studies suggested that fungal disturbance also contributed to CRC development. This review summarized the current status of fungal dysbiosis in CRC and highlighted the potential tumorigenic mechanisms of fungi. Then the fungal markers and some therapeutic strategies for CRC were discussed. It would provide a better understanding of the correlation of mycobiota and CRC, and modulating fungal community would be a promising target against CRC.
Collapse
|
154
|
Sampsell K, Hao D, Reimer RA. The Gut Microbiota: A Potential Gateway to Improved Health Outcomes in Breast Cancer Treatment and Survivorship. Int J Mol Sci 2020; 21:E9239. [PMID: 33287442 PMCID: PMC7731103 DOI: 10.3390/ijms21239239] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most frequently diagnosed cancer in women worldwide. The disease and its treatments exert profound effects on an individual's physical and mental health. There are many factors that impact an individual's risk of developing breast cancer, their response to treatments, and their risk of recurrence. The community of microorganisms inhabiting the gastrointestinal tract, the gut microbiota, affects human health through metabolic, neural, and endocrine signaling, and immune activity. It is through these mechanisms that the gut microbiota appears to influence breast cancer risk, response to treatment, and recurrence. A disrupted gut microbiota or state of 'dysbiosis' can contribute to a biological environment associated with higher risk for cancer development as well as contribute to negative treatment side-effects. Many cancer treatments have been shown to shift the gut microbiota toward dysbiosis; however, the microbiota can also be positively manipulated through diet, prebiotic and probiotic supplementation, and exercise. The objective of this review is to provide an overview of the current understanding of the relationship between the gut microbiota and breast cancer and to highlight potential strategies for modulation of the gut microbiota that could lead to improved clinical outcomes and overall health in this population.
Collapse
Affiliation(s)
- Kara Sampsell
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada;
| | - Desirée Hao
- Department of Medical Oncology, Tom Baker Cancer Centre and Cumming School of Medicine, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada;
| | - Raylene A. Reimer
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada;
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
155
|
Abstract
Within the last decade, our understanding of the role of the intestinal microbiota in health and disease has rapidly increased due to significant advances in next-generation sequencing technologies. Scientists have discovered more and more gut microbes with supposedly "beneficial" roles for human health and are starting to identify the underlying mechanisms. In this review, we summarize the latest knowledge about the human intestinal microbiota, including the intestinal bacteriome, virome and mycobiome. We discuss the function that recent studies attribute to the intestinal microbiota in preventing or controlling selected diseases and present recent research on biotherapeutic approaches to control these diseases.
Collapse
Affiliation(s)
- Pipat Piewngam
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda, Maryland 20814, USA
| | - François De Mets
- Department of Biology, Georgetown University, Washington, DC, 20057, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda, Maryland 20814, USA
| |
Collapse
|
156
|
Jones RM, Neish AS. Gut Microbiota in Intestinal and Liver Disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2020; 16:251-275. [PMID: 33234022 DOI: 10.1146/annurev-pathol-030320-095722] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It is known that the gut microbiota, the numerically vast and taxonomically diverse microbial communities that thrive in a symbiotic fashion within our alimentary tract, can affect the normal physiology of the gastrointestinal tract and liver. Further, disturbances of the microbiota community structure from both endogenous and exogenous influences as well as the failure of host responsive mechanisms have been implicated in a variety of disease processes. Mechanistically, alterations in intestinal permeability and dysbiosis of the microbiota can result in inflammation, immune activation, and exposure to xenobiotic influences. Additionally, the gut and liver are continually exposed to small molecule products of the microbiota with proinflammatory, gene regulatory, and oxidative properties. Long-term coevolution has led to tolerance and incorporation of these influences into normal physiology and homeostasis; conversely, changes in this equilibrium from either the host or the microbial side can result in a wide variety of immune, inflammatory, metabolic, and neoplastic intestinal and hepatic disorders.
Collapse
Affiliation(s)
- Rheinallt M Jones
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, USA;
| | - Andrew S Neish
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA;
| |
Collapse
|
157
|
Araujo DV, Watson GA, Oliva M, Heirali A, Coburn B, Spreafico A, Siu LL. Bugs as drugs: The role of microbiome in cancer focusing on immunotherapeutics. Cancer Treat Rev 2020; 92:102125. [PMID: 33227623 DOI: 10.1016/j.ctrv.2020.102125] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 12/16/2022]
Abstract
The human microbiome comprising microorganisms, their collective genomes and metabolic products has gained tremendous research interest in oncology, as multiple cohorts and case studies have demonstrated discernible interpatient differences in this ecosystem based on clinical variables including disease type, stage, diet, antibiotic usage, cancer treatments, therapeutic responses and toxicities. The modulation of the gut microbiome is the subject of many ongoing preclinical and clinical investigations, through the manipulation of diet, as well as the use of prebiotics, probiotics, specific antibiotics, fecal microbial transplantation, microbial consortia and stool substitutes. Standardization and quality control are needed to maximize the information being generated in this growing field, ranging from technical assays to measure microbiome composition, to methodological aspects in the analysis and reporting of results. Proof-of-mechanism and proof-of-concept clinical trials with appropriate controls are needed to confirm or refute the feasibility, safety and ultimately the clinical utility of human microbiome modulation in cancer patients.
Collapse
Affiliation(s)
- Daniel V Araujo
- Princess Margaret Cancer Centre, Division of Medical Oncology and Hematology, University Health Network, Toronto, Canada
| | - Geoffrey A Watson
- Princess Margaret Cancer Centre, Division of Medical Oncology and Hematology, University Health Network, Toronto, Canada
| | - Marc Oliva
- Catalan Institute of Oncology (Hospital Duran i Reynals), Department of Medical Oncology, IDIBELL, Barcelona, Spain
| | - Alya Heirali
- Toronto General Research Institute, Division of Infectious Diseases, University Health Network, Toronto, Canada
| | - Bryan Coburn
- Toronto General Research Institute, Division of Infectious Diseases, University Health Network, Toronto, Canada
| | - Anna Spreafico
- Princess Margaret Cancer Centre, Division of Medical Oncology and Hematology, University Health Network, Toronto, Canada
| | - Lillian L Siu
- Princess Margaret Cancer Centre, Division of Medical Oncology and Hematology, University Health Network, Toronto, Canada.
| |
Collapse
|
158
|
Lopez LR, Bleich RM, Arthur JC. Microbiota Effects on Carcinogenesis: Initiation, Promotion, and Progression. Annu Rev Med 2020; 72:243-261. [PMID: 33052764 DOI: 10.1146/annurev-med-080719-091604] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Carcinogenesis is a multistep process by which normal cells acquire genetic and epigenetic changes that result in cancer. In combination with host genetic susceptibility and environmental exposures, a prominent procarcinogenic role for the microbiota has recently emerged. In colorectal cancer (CRC), three nefarious microbes have been consistently linked to cancer development: (a) Colibactin-producing Escherichia coli initiates carcinogenic DNA damage, (b) enterotoxigenic Bacteroides fragilis promotes tumorigenesis via toxin-induced cell proliferation and tumor-promoting inflammation, and (c) Fusobacterium nucleatum enhances CRC progression through two adhesins, Fap2 and FadA, that promote proliferation and antitumor immune evasion and may contribute to metastases. Herein, we use these three prominent microbes to discuss the experimental evidence linking microbial activities to carcinogenesis and the specific mechanisms driving this stepwise process. Precisely defining mechanisms by which the microbiota impacts carcinogenesis at each stage is essential for developing microbiota-targeted strategies for the diagnosis, prognosis, and treatment of cancer.
Collapse
Affiliation(s)
- Lacey R Lopez
- Department of Microbiology and Immunology, The University of North Carolina, Chapel Hill, North Carolina 27599, USA; ,
| | - Rachel M Bleich
- Department of Biology, Appalachian State University, Boone, North Carolina 28608, USA;
| | - Janelle C Arthur
- Department of Microbiology and Immunology, The University of North Carolina, Chapel Hill, North Carolina 27599, USA; , .,Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Center for Gastrointestinal Biology and Disease, The University of North Carolina, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
159
|
Cammarota G, Ianiro G, Ahern A, Carbone C, Temko A, Claesson MJ, Gasbarrini A, Tortora G. Gut microbiome, big data and machine learning to promote precision medicine for cancer. Nat Rev Gastroenterol Hepatol 2020; 17:635-648. [PMID: 32647386 DOI: 10.1038/s41575-020-0327-3] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/02/2020] [Indexed: 12/13/2022]
Abstract
The gut microbiome has been implicated in cancer in several ways, as specific microbial signatures are known to promote cancer development and influence safety, tolerability and efficacy of therapies. The 'omics' technologies used for microbiome analysis continuously evolve and, although much of the research is still at an early stage, large-scale datasets of ever increasing size and complexity are being produced. However, there are varying levels of difficulty in realizing the full potential of these new tools, which limit our ability to critically analyse much of the available data. In this Perspective, we provide a brief overview on the role of gut microbiome in cancer and focus on the need, role and limitations of a machine learning-driven approach to analyse large amounts of complex health-care information in the era of big data. We also discuss the potential application of microbiome-based big data aimed at promoting precision medicine in cancer.
Collapse
Affiliation(s)
- Giovanni Cammarota
- Gastroenterology Department, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Gianluca Ianiro
- Gastroenterology Department, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Anna Ahern
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Carmine Carbone
- Oncology Department, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andriy Temko
- School of Engineering, University College Cork, Cork, Ireland.,Qualcomm ML R&D, Cork, Ireland
| | - Marcus J Claesson
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Antonio Gasbarrini
- Gastroenterology Department, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giampaolo Tortora
- Oncology Department, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
160
|
AlHilli MM, Bae-Jump V. Diet and gut microbiome interactions in gynecologic cancer. Gynecol Oncol 2020; 159:299-308. [PMID: 32933758 DOI: 10.1016/j.ygyno.2020.08.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/23/2020] [Indexed: 12/13/2022]
Abstract
Over the last decade, there has been a dramatic surge in research exploring the human gut microbiome and its role in health and disease. It is now widely accepted that commensal microorganisms coexist within the human gastrointestinal tract and other organs, including those of the reproductive tract. These microorganisms, which are collectively known as the "microbiome", contribute to maintaining host physiology and to the development of pathology. Next generation sequencing and multi-'omics' technology has enriched our understanding of the complex and interdependent relationship that exists between the host and microbiome. Global changes in the microbiome are known to be influenced by dietary, genetic, lifestyle, and environmental factors. Accumulating data have shown that alterations in the gut microbiome contribute to the development, prognosis and treatment of many disease states including cancer primarily through interactions with the immune system. However, there are large gaps in knowledge regarding the association between the gut microbiome and gynecologic cancers, and research characterizing the reproductive tract microbiome is insufficient. Herein, we explore the mechanisms by which alterations in the gut and reproductive tract microbiome contribute to carcinogenesis focusing on obesity, hyperestrogenism, inflammation and altered tumor metabolism. The impact of the gut microbiome on response to anti-cancer therapy is highlighted with an emphasis on immune checkpoint inhibitor efficacy in gynecologic cancers. We discuss dietary interventions that are likely to modulate the metabolic and immunologic milieu as well as tumor microenvironment through the gut microbiome including intermittent fasting/ketogenic diet, high fiber diet, use of probiotics and the metabolic management of obesity. We conclude that enhanced understanding of the microbiome in gynecologic cancers coupled with thorough evaluation of metabolic and metagenomic analyses would enable us to integrate novel preventative strategies and adjunctive interventions into the care of women with gynecologic cancers.
Collapse
Affiliation(s)
- Mariam M AlHilli
- Department of Obstetrics and Gynecology, Women's Health Institute, Cleveland Clinic, Cleveland, OH, United States of America.
| | - Victoria Bae-Jump
- Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, NC, United States of America
| |
Collapse
|
161
|
Galan-Ros J, Ramos-Arenas V, Conesa-Zamora P. Predictive values of colon microbiota in the treatment response to colorectal cancer. Pharmacogenomics 2020; 21:1045-1059. [PMID: 32896201 DOI: 10.2217/pgs-2020-0044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The crosstalk between the colon mucosa and the microbiota represents a complex and delicate equilibrium. Gastrointestinal diseases such as inflammatory bowel disease and colorectal cancer (CRC) are associated with a state of altered microbiota composition known as dysbiosis, which seems to play a causative role in some of these illnesses. Recent reports have shown that the colorectal microbiome is responsible for the response and safety to treatments against CRC, especially immunotherapy, hence opening the possibility to use bacteria as a predictive marker and also as a therapeutic agent. The review objective is to summarize updated reports about the the implication of the colorectal microbiome in the development of CRC, in treatment response and its potential as a therapeutic approach.
Collapse
Affiliation(s)
- Jorge Galan-Ros
- Microbiology Department, Santa Lucia University Hospital (HGUSL), Cartagena, 30202, Spain
| | - Verónica Ramos-Arenas
- Clinical Analysis Department, Santa Lucia University Hospital (HGUSL), Cartagena, 30202, Spain
| | - Pablo Conesa-Zamora
- Clinical Analysis Department, Santa Lucia University Hospital (HGUSL), Cartagena, 30202, Spain.,Department of Histology & Pathology, Faculty of Life Sciences, Universidad Católica de Murcia (UCAM), Murcia, 30107, Spain.,Research Group on Molecular Pathology & Pharmacogenetics, Institute for Biomedical Research of Murcia (IMIB), Calle Mezquita sn, Cartagena, 30202, Spain
| |
Collapse
|
162
|
Stakelum A, Zaborowski A, Collins D, Winter DC. The influence of the gastrointestinal microbiome on colorectal metastasis: a narrative review. Colorectal Dis 2020; 22:1101-1107. [PMID: 31869511 DOI: 10.1111/codi.14930] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 11/12/2019] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The gastrointestinal microbiome has been suggested to contribute to the development of both primary and secondary colorectal cancer. Despite advances in understanding the prognostic and predictive value of clinico-pathological parameters, the underlying mechanisms that result in progression to metastatic disease have yet to be defined. The metastatic cascade involves a number of sequential steps, including detachment of tumour cells from the primary site, intravasation and dissemination within the circulatory and lymphatic systems, with extravasation and proliferation at a secondary site. OBJECTIVE An analysis of the literature relating to the gastrointestinal microbiome and its role in colorectal metastasis was conducted. This review aims to examine the current evidence supporting a role for the microbiome in colorectal metastasis and to describe the mechanisms by which it may contribute to metastatic progression. CONCLUSION The invasive pathways utilized by bacteria and how they may be manipulated by tumour cells for migration and metastasis are presented and the potential of the intestinal microbiome as a therapeutic target in colorectal carcinogenesis and metastasis is detailed here.
Collapse
Affiliation(s)
- A Stakelum
- Centre for Colorectal Disease, St Vincent's University Hospital, Dublin 4, Ireland
| | - A Zaborowski
- Centre for Colorectal Disease, St Vincent's University Hospital, Dublin 4, Ireland
| | - D Collins
- Centre for Colorectal Disease, St Vincent's University Hospital, Dublin 4, Ireland
| | - D C Winter
- Centre for Colorectal Disease, St Vincent's University Hospital, Dublin 4, Ireland
| |
Collapse
|
163
|
Katongole P, Sande OJ, Joloba M, Reynolds SJ, Niyonzima N. The human microbiome and its link in prostate cancer risk and pathogenesis. Infect Agent Cancer 2020; 15:53. [PMID: 32884579 PMCID: PMC7460756 DOI: 10.1186/s13027-020-00319-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
There is growing evidence of the microbiome's role in human health and disease since the human microbiome project. The microbiome plays a vital role in influencing cancer risk and pathogenesis. Several studies indicate microbial pathogens to account for over 15-20% of all cancers. Furthermore, the interaction of the microbiota, especially the gut microbiota in influencing response to chemotherapy, immunotherapy, and radiotherapy remains an area of active research. Certain microbial species have been linked to the improved clinical outcome when on different cancer therapies. The recent discovery of the urinary microbiome has enabled the study to understand its connection to genitourinary malignancies, especially prostate cancer. Prostate cancer is the second most common cancer in males worldwide. Therefore research into understanding the factors and mechanisms associated with prostate cancer etiology, pathogenesis, and disease progression is of utmost importance. In this review, we explore the current literature concerning the link between the gut and urinary microbiome and prostate cancer risk and pathogenesis.
Collapse
Affiliation(s)
- Paul Katongole
- Department of Medical Microbiology, College of Health Sciences Makerere University, Kampala, Uganda
- Department of Medical Biochemistry, College of Health Sciences Makerere University, Kampala, Uganda
| | - Obondo J. Sande
- Department of Immunology and Molecular biology, College of Health Sciences Makerere University, Kampala, Uganda
| | - Moses Joloba
- Department of Immunology and Molecular biology, College of Health Sciences Makerere University, Kampala, Uganda
| | - Steven J. Reynolds
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | | |
Collapse
|
164
|
Park R, Umar S, Kasi A. Immunotherapy in Colorectal Cancer: Potential of Fecal Transplant and Microbiota-augmented Clinical Trials. CURRENT COLORECTAL CANCER REPORTS 2020; 16:81-88. [PMID: 32607098 PMCID: PMC7325521 DOI: 10.1007/s11888-020-00456-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW This review summarizes the role of the microbiome in colorectal cancer (CRC) in the setting of immunotherapy and emphasizes the potential of microbiota-influencing strategies with a focus on the use of fecal microbiota transplant (FMT). RECENT FINDINGS Observations from preclinical and clinical studies suggest that the human gut microbiome is implicated in the CRC carcinogenesis and is integral in determining the clinical response and toxicity to immunotherapy. Among the therapeutic methods devised to exploit the microbiome, FMT is the most direct method and is backed by the highest level of evidence of efficacy in nonneoplastic disease settings. Furthermore, a favorable microbiome has the potential to overcome immunotherapy resistance and ameliorate immune-related adverse events (irAEs). To this end, clinical trials are underway to evaluate the potential of FMT and microbiota-augmented methods in the setting of immunotherapy in CRC. SUMMARY Evidence from animal studies, retrospective studies, and smaller-scale prospective human studies have led to initiation of a number of microbiota-augmented clinical trials in CRC. Given the intimate relationship between the gut microbiota and the immune system as well as antitumor immune responses, potentiating immunotherapy and managing its toxicity are major areas of research in microbiota-augmented therapies in cancer. Therefore, evaluation of the patient microbiome as a routine part of clinical outcome analysis is warranted in future clinical trials.
Collapse
Affiliation(s)
- Robin Park
- Department of Medicine, MetroWest Medical Center/Tufts University School of Medicine, Framingham, MA, U.S.A
| | - Shahid Umar
- Department of Medicine, Division of Surgery, Kansas University Medical Center, Kansas City, KS, U.S.A
| | - Anup Kasi
- Department of Medicine, Division of Medical Oncology, Kansas University Medical Center, Kansas City, KS, U.S.A
| |
Collapse
|
165
|
Ledormand P, Desmasures N, Dalmasso M. Phage community involvement in fermented beverages: an open door to technological advances? Crit Rev Food Sci Nutr 2020; 61:2911-2920. [PMID: 32649837 DOI: 10.1080/10408398.2020.1790497] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bacteriophages (phages) are considered the most abundant biological entities on Earth. An increasing interest in understanding phage communities, also called viromes or phageomes, has arisen over the past decade especially thanks to the development and the accessibility of Next Generation Sequencing techniques. Despite the increasing amount of available metagenomic data on microbial communities in various habitats, viromes remain poorly described in the scientific literature particularly when it comes to fermented food and beverages such as wine and cider. In this review, a particular attention is paid to the current knowledge on phage communities, with a special focus on fermented food viromes and the methodological tools available to undertake their study. There is a striking lack of available data on the fermented foods and beverages viromes. As far as we know, and although a number of phages have been isolated from wine, no general study has to date been carried out to assess the diversity of viromes in fermented beverages and their possible interactions with microbiota throughout the fermentation process. With the aim of establishing connections between the currently used technologies to carry out the analysis of viromes, possible applications of current knowledge to fermented beverages are examined.
Collapse
|
166
|
Gut microbiota modulation: a novel strategy for prevention and treatment of colorectal cancer. Oncogene 2020; 39:4925-4943. [PMID: 32514151 PMCID: PMC7314664 DOI: 10.1038/s41388-020-1341-1] [Citation(s) in RCA: 359] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/17/2020] [Accepted: 05/27/2020] [Indexed: 02/08/2023]
Abstract
Research about the role of gut microbiome in colorectal cancer (CRC) is a newly emerging field of study. Gut microbiota modulation, with the aim to reverse established microbial dysbiosis, is a novel strategy for prevention and treatment of CRC. Different strategies including probiotics, prebiotics, postbiotics, antibiotics, and fecal microbiota transplantation (FMT) have been employed. Although these strategies show promising results, mechanistically by correcting microbiota composition, modulating innate immune system, enhancing gut barrier function, preventing pathogen colonization and exerting selective cytotoxicity against tumor cells, it should be noted that they are accompanied by risks and controversies that can potentially introduce clinical complications. During bench-to-bedside translation, evaluation of risk-and-benefit ratio, as well as patient selection, should be carefully performed. In view of the individualized host response to gut microbiome intervention, developing personalized microbiome therapy may be the key to successful clinical treatment.
Collapse
|
167
|
Abstract
Translational microbiome science in humans has not yet fully realized its clinical potentials. The analyses by Poore et al. in Nature offer a strong foundation on which to begin to build microbial diagnostics to detect cancer.
Collapse
Affiliation(s)
- Cynthia L Sears
- Departments of Medicine and Oncology, Johns Hopkins University School of Medicine, Bloomberg-Kimmel Institute of Cancer Immunotherapy, Department of Molecular Microbiology & Immunology, Bloomberg School of Public Health, Baltimore, MD 21231, USA.
| | - Steven L Salzberg
- Departments of Biomedical Engineering, Computer Science, and Biostatistics, Johns Hopkins University, Baltimore, MD 21211, USA.
| |
Collapse
|
168
|
|
169
|
Abdelsalam NA, Ramadan AT, ElRakaiby MT, Aziz RK. Toxicomicrobiomics: The Human Microbiome vs. Pharmaceutical, Dietary, and Environmental Xenobiotics. Front Pharmacol 2020; 11:390. [PMID: 32372951 PMCID: PMC7179069 DOI: 10.3389/fphar.2020.00390] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/16/2020] [Indexed: 12/13/2022] Open
Abstract
The harmful impact of xenobiotics on the environment and human health is being more widely recognized; yet, inter- and intraindividual genetic variations among humans modulate the extent of harm, mostly through modulating the outcome of xenobiotic metabolism and detoxification. As the Human Genome Project revealed that host genetic, epigenetic, and regulatory variations could not sufficiently explain the complexity of interindividual variability in xenobiotics metabolism, its sequel, the Human Microbiome Project, is investigating how this variability may be influenced by human-associated microbial communities. Xenobiotic-microbiome relationships are mutual and dynamic. Not only does the human microbiome have a direct metabolizing potential on xenobiotics, but it can also influence the expression of the host metabolizing genes and the activity of host enzymes. On the other hand, xenobiotics may alter the microbiome composition, leading to a state of dysbiosis, which is linked to multiple diseases and adverse health outcomes, including increased toxicity of some xenobiotics. Toxicomicrobiomics studies these mutual influences between the ever-changing microbiome cloud and xenobiotics of various origins, with emphasis on their fate and toxicity, as well the various classes of microbial xenobiotic-modifying enzymes. This review article discusses classic and recent findings in toxicomicrobiomics, with examples of interactions between gut, skin, urogenital, and oral microbiomes with pharmaceutical, food-derived, and environmental xenobiotics. The current state and future prospects of toxicomicrobiomic research are discussed, and the tools and strategies for performing such studies are thoroughly and critically compared.
Collapse
Affiliation(s)
| | - Ahmed Tarek Ramadan
- The Center for Genome and Microbiome Research, Cairo University, Cairo, Egypt
| | - Marwa Tarek ElRakaiby
- The Center for Genome and Microbiome Research, Cairo University, Cairo, Egypt.,Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ramy Karam Aziz
- The Center for Genome and Microbiome Research, Cairo University, Cairo, Egypt.,Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
170
|
Łaniewski P, Ilhan ZE, Herbst-Kralovetz MM. The microbiome and gynaecological cancer development, prevention and therapy. Nat Rev Urol 2020; 17:232-250. [PMID: 32071434 PMCID: PMC9977514 DOI: 10.1038/s41585-020-0286-z] [Citation(s) in RCA: 217] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2020] [Indexed: 12/16/2022]
Abstract
The female reproductive tract (FRT), similar to other mucosal sites, harbours a site-specific microbiome, which has an essential role in maintaining health and homeostasis. In the majority of women of reproductive age, the microbiota of the lower FRT (vagina and cervix) microenvironment is dominated by Lactobacillus species, which benefit the host through symbiotic relationships. By contrast, the upper FRT (uterus, Fallopian tubes and ovaries) might be sterile in healthy individuals or contain a low-biomass microbiome with a diverse mixture of microorganisms. When dysbiosis occurs, altered immune and metabolic signalling can affect hallmarks of cancer, including chronic inflammation, epithelial barrier breach, changes in cellular proliferation and apoptosis, genome instability, angiogenesis and metabolic dysregulation. These pathophysiological changes might lead to gynaecological cancer. Emerging evidence shows that genital dysbiosis and/or specific bacteria might have an active role in the development and/or progression and metastasis of gynaecological malignancies, such as cervical, endometrial and ovarian cancers, through direct and indirect mechanisms, including modulation of oestrogen metabolism. Cancer therapies might also alter microbiota at sites throughout the body. Reciprocally, microbiota composition can influence the efficacy and toxic effects of cancer therapies, as well as quality of life following cancer treatment. Modulation of the microbiome via probiotics or microbiota transplant might prove useful in improving responsiveness to cancer treatment and quality of life. Elucidating these complex host-microbiome interactions, including the crosstalk between distal and local sites, will translate into interventions for prevention, therapeutic efficacy and toxic effects to enhance health outcomes for women with gynaecological cancers.
Collapse
Affiliation(s)
- Paweł Łaniewski
- Department of Basic Medical Sciences, College of Medicine – Phoenix, University of Arizona, Phoenix, AZ, USA
| | - Zehra Esra Ilhan
- Department of Obstetrics and Gynecology, College of Medicine – Phoenix, University of Arizona, Phoenix, AZ, USA
| | - Melissa M. Herbst-Kralovetz
- Department of Basic Medical Sciences, College of Medicine – Phoenix, University of Arizona, Phoenix, AZ, USA,Department of Obstetrics and Gynecology, College of Medicine – Phoenix, University of Arizona, Phoenix, AZ, USA,UA Cancer Center, University of Arizona, Phoenix/Tucson, AZ, USA,Correspondence:
| |
Collapse
|
171
|
Chen W, Wang S, Wu Y, Shen X, Guo Z, Li Q, Xing D. Immunogenic cell death: A link between gut microbiota and anticancer effects. Microb Pathog 2020; 141:103983. [DOI: 10.1016/j.micpath.2020.103983] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/20/2019] [Accepted: 01/15/2020] [Indexed: 02/06/2023]
|
172
|
El Bairi K, Jabi R, Trapani D, Boutallaka H, Ouled Amar Bencheikh B, Bouziane M, Amrani M, Afqir S, Maleb A. Can the microbiota predict response to systemic cancer therapy, surgical outcomes, and survival? The answer is in the gut. Expert Rev Clin Pharmacol 2020; 13:403-421. [PMID: 32308061 DOI: 10.1080/17512433.2020.1758063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 04/16/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The gut microbiota seems to play a key role in tumorigenesis, across various hallmarks of cancer. Recent evidence suggests its potential use as a biomarker predicting drug response and adding prognostic information, generally in the context of immuno-oncology. AREAS COVERED In this review, we focus on the modulating effects of gut microbiota dysbiosis on various anticancer molecules used in practice, including cytotoxic and immune-modulating agents, primarily immune-checkpoint inhibitors (ICI). Pubmed/Medline-based literature search was conducted to find potential original studies that discuss gut microbiota as a prognostic and predictive biomarker for cancer therapy. We also looked at the US ClinicalTrials.gov website to find additional studies particularly ongoing human clinical trials. EXPERT COMMENTARY Sequencing of stool-derived materials and tissue samples from cancer patients and animal models has shown a significant enrichment of various bacteria such as Fusobacterium nucleatum and Bacteroides fragilis were associated with resistant disease and poorer outcomes. Gut microbiota was also found to be associated with surgical outcomes and seems to play a significant role in anastomotic leak (ATL) after surgery mainly by collagen breakdown. However, this research field is just at the beginning and the current findings are not yet ready to change clinical practice.
Collapse
Affiliation(s)
- Khalid El Bairi
- Cancer Biomarkers Working Group, Mohamed Ist University , Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohamed Ist University , Oujda, Morocco
| | - Rachid Jabi
- Faculty of Medicine and Pharmacy, Mohamed Ist University , Oujda, Morocco
- Department of Visceral Surgery, Mohamed VI University Hospital , Oujda, Morocco
| | - Dario Trapani
- Department of Haematology and Oncology, European Institute of Oncology, IEO, IRCCS, University of Milano , Milan, Italy
| | - Hanae Boutallaka
- Department of Gastroenterology and Digestive Endoscopy, Mohamed V Military Teaching Hospital of Rabat, Mohamed V University , Rabat, Morocco
| | | | - Mohammed Bouziane
- Faculty of Medicine and Pharmacy, Mohamed Ist University , Oujda, Morocco
- Department of Visceral Surgery, Mohamed VI University Hospital , Oujda, Morocco
| | - Mariam Amrani
- Department of Pathology, National Institute of Oncology, Faculty of Medicine and Pharmacy, Mohamed V University , Rabat, Morocco
| | - Said Afqir
- Cancer Biomarkers Working Group, Mohamed Ist University , Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohamed Ist University , Oujda, Morocco
- Department of Medical Oncology, Mohamed VI University Hospital , Oujda, Morocco
| | - Adil Maleb
- Faculty of Medicine and Pharmacy, Mohamed Ist University , Oujda, Morocco
- Department of Microbiology, Mohamed VI University Hospital , Oujda, Morocco
| |
Collapse
|
173
|
Liu X, Cheng Y, Shao L, Ling Z. Alterations of the Predominant Fecal Microbiota and Disruption of the Gut Mucosal Barrier in Patients with Early-Stage Colorectal Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2948282. [PMID: 32280686 PMCID: PMC7114766 DOI: 10.1155/2020/2948282] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/18/2020] [Accepted: 03/09/2020] [Indexed: 12/16/2022]
Abstract
Growing evidence indicated that the gut microbiota was the intrinsic and essential component of the cancer microenvironment, which played vital roles in the development and progression of colorectal cancer (CRC). In our present study, we investigated the alterations of fecal abundant microbiota with real-time quantitative PCR and the changes of indicators of gut mucosal barrier from 53 early-stage CRC patients and 45 matched healthy controls. We found that the traditional beneficial bacteria such as Lactobacillus and Bifidobacterium decreased significantly and the carcinogenic bacteria such as Enterobacteriaceae and Fusobacterium nucleatum were significantly increased in CRC patients. We also found gut mucosal barrier dysfunction in CRC patients with increased levels of endotoxin (LPS), D-lactate, and diamine oxidase (DAO). With Pearson's correlation analysis, D-lactate, LPS, and DAO were correlated negatively with Lactobacillus and Bifidobacterium and positively with Enterobacteriaceae and F. nucleatum. Our present study found dysbiosis of the fecal microbiota and dysfunction of the gut mucosal barrier in patients with early-stage CRC, which implicated that fecal abundant bacteria and gut mucosal barrier indicators could be used as targets to monitor the development and progression of CRC in a noninvasive and dynamic manner.
Collapse
Affiliation(s)
- Xia Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Li Shao
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
174
|
Denost Q. The challenge posed by young-onset rectal cancer. Br J Surg 2020; 107:481-483. [DOI: 10.1002/bjs.11591] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 01/20/2023]
Affiliation(s)
- Q Denost
- Department of Colorectal Surgery, Centre medico-chirurgical Magellan, Centre Hospitalo-universitaire (CHU) de Bordeaux, Ave de Magellan, 33604 Pessac, France
| |
Collapse
|
175
|
Cortés-Martín A, Iglesias-Aguirre CE, Meoro A, Selma MV, Espín JC. There is No Distinctive Gut Microbiota Signature in the Metabolic Syndrome: Contribution of Cardiovascular Disease Risk Factors and Associated Medication. Microorganisms 2020; 8:microorganisms8030416. [PMID: 32183480 PMCID: PMC7143903 DOI: 10.3390/microorganisms8030416] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/09/2020] [Accepted: 03/14/2020] [Indexed: 02/06/2023] Open
Abstract
The gut microbiota (GM) has attracted attention as a new target to combat several diseases, including metabolic syndrome (MetS), a pathological condition with many factors (diabetes, obesity, dyslipidemia, hypertension, etc.) that increase cardiovascular disease (CVD) risk. However, the existence of a characteristic taxonomic signature associated with obesity-related metabolic dysfunctions is under debate. To investigate the contribution of the CVD risk factors and(or) their associated drug treatments in the composition and functionality of GM in MetS patients, we compared the GM of obese individuals (n = 69) vs. MetS patients (n = 50), as well as within patients, depending on their treatments. We also explored associations between medication, GM, clinical variables, endotoxemia, and short-chain fatty acids. Poly-drug treatments, conventional in MetS patients, prevented the accurate association between medication and GM profiles. Our results highlight the heterogeneity of taxonomic signatures in MetS patients, which mainly depend on the CVD risk factors. Hypertension and(or) its associated medication was the primary trait involved in the shaping of GM, with an overabundance of lipopolysaccharide-producing microbial groups from the Proteobacteria phylum. In the context of precision medicine, our results highlight that targeting GM to prevent and(or) treat MetS should consider MetS patients more individually, according to their CVD risk factors and associated medication.
Collapse
Affiliation(s)
- Adrián Cortés-Martín
- Laboratory of Food & Health, Research Group on Quality, Safety, and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, Spain; (A.C.-M.); (C.E.I.-A.); (M.V.S.)
| | - Carlos E. Iglesias-Aguirre
- Laboratory of Food & Health, Research Group on Quality, Safety, and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, Spain; (A.C.-M.); (C.E.I.-A.); (M.V.S.)
| | - Amparo Meoro
- Service of Endocrinology, Reina Sofía University Hospital, Avda. Intendente Jorge Palacios s/n, 30003 Murcia, Spain;
| | - María Victoria Selma
- Laboratory of Food & Health, Research Group on Quality, Safety, and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, Spain; (A.C.-M.); (C.E.I.-A.); (M.V.S.)
| | - Juan Carlos Espín
- Laboratory of Food & Health, Research Group on Quality, Safety, and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, Spain; (A.C.-M.); (C.E.I.-A.); (M.V.S.)
- Correspondence:
| |
Collapse
|
176
|
Abstract
Over the past decade, it has become exceedingly clear that the microbiome is a critical factor in human health and disease and thus should be investigated to develop innovative treatment strategies. The field of metagenomics has come a long way in leveraging the advances of next-generation sequencing technologies resulting in the capability to identify and quantify all microorganisms present in human specimens. However, the field of metagenomics is still in its infancy, specifically in regard to the limitations in computational analysis, statistical assessments, standardization, and validation due to vast variability in the cohorts themselves, experimental design, and bioinformatic workflows. This review summarizes the methods, technologies, computational tools, and model systems for characterizing and studying the microbiome. We also discuss important considerations investigators must make when interrogating the involvement of the microbiome in health and disease in order to establish robust results and mechanistic insights before moving into therapeutic design and intervention.
Collapse
|
177
|
Xavier JB, Young VB, Skufca J, Ginty F, Testerman T, Pearson AT, Macklin P, Mitchell A, Shmulevich I, Xie L, Caporaso JG, Crandall KA, Simone NL, Godoy-Vitorino F, Griffin TJ, Whiteson KL, Gustafson HH, Slade DJ, Schmidt TM, Walther-Antonio MRS, Korem T, Webb-Robertson BJM, Styczynski MP, Johnson WE, Jobin C, Ridlon JM, Koh AY, Yu M, Kelly L, Wargo JA. The Cancer Microbiome: Distinguishing Direct and Indirect Effects Requires a Systemic View. Trends Cancer 2020; 6:192-204. [PMID: 32101723 PMCID: PMC7098063 DOI: 10.1016/j.trecan.2020.01.004] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/29/2019] [Accepted: 01/06/2020] [Indexed: 02/06/2023]
Abstract
The collection of microbes that live in and on the human body - the human microbiome - can impact on cancer initiation, progression, and response to therapy, including cancer immunotherapy. The mechanisms by which microbiomes impact on cancers can yield new diagnostics and treatments, but much remains unknown. The interactions between microbes, diet, host factors, drugs, and cell-cell interactions within the cancer itself likely involve intricate feedbacks, and no single component can explain all the behavior of the system. Understanding the role of host-associated microbial communities in cancer systems will require a multidisciplinary approach combining microbial ecology, immunology, cancer cell biology, and computational biology - a systems biology approach.
Collapse
Affiliation(s)
- Joao B Xavier
- Program for Computational and Systems Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| | - Vincent B Young
- Department of Internal Medicine, Division of Infectious Diseases, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Joseph Skufca
- Department of Mathematics, Clarkson University, Potsdam, NY, USA
| | | | - Traci Testerman
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Alexander T Pearson
- Section of Hematology/Oncology, Department of Medicine, Comprehensive Cancer Center, University of Chicago, Chicago, Illinois, IL, USA
| | - Paul Macklin
- Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | - Amir Mitchell
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Lei Xie
- Hunter College, Department of Computer Science, New York, NY, USA
| | - J Gregory Caporaso
- Center for Applied Microbiome Science, Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Keith A Crandall
- Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| | - Nicole L Simone
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Filipa Godoy-Vitorino
- Department of Microbiology and Medical Zoology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Timothy J Griffin
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Katrine L Whiteson
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| | - Heather H Gustafson
- Seattle Children's Research Institute, Ben Towne Center for Childhood Cancer Research, Seattle, WA, USA
| | - Daniel J Slade
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | | | - Marina R S Walther-Antonio
- Department of Surgery, Department of Obstetrics and Gynecology, and Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Tal Korem
- Department of Systems Biology, Columbia University, New York, NY, USA
| | | | - Mark P Styczynski
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - W Evan Johnson
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - Christian Jobin
- Departments of Medicine, Anatomy, and Cell Biology, and of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, USA
| | - Jason M Ridlon
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Andrew Y Koh
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael Yu
- Toyota Technological Institute at Chicago, Chicago, IL, USA
| | | | - Jennifer A Wargo
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
178
|
Nunes SC, Serpa J. Recycling the Interspecific Relations with Epithelial Cells: Bacteria and Cancer Metabolic Symbiosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:77-91. [PMID: 32130694 DOI: 10.1007/978-3-030-34025-4_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Several aspects of the human physiology are controlled by the microbiota that plays a key role in health and disease. In fact, microbial dysbiosis is associated with numerous diseases, including several types of cancer such as colon, gastric, esophageal, pancreatic, laryngeal, breast and gallbladder carcinomas.Metabolic symbiosis between non-malignant cells and the resident microbita is crucial for the host homeostasis. However, cancer cells are able to repurpose the pre-existing metabolic symbiosis, being able to recycle those relations and also create novel metabolic symbiosis, leading to profound alterations on the local microenvironment.In here we will explore some of these symbiotic metabolic interactions between bacteria and non-malignant cells in two different contexts: colon and uterine cervix. The way malignant cells are able to recycle these normal interactions and also create novel types of symbiotic metabolic relations will also be discussed.The knowledge of these complex interactions and recycling mechanisms is of extreme importance for cancer treatment, as new therapeutic targets could be developed.
Collapse
Affiliation(s)
- Sofia C Nunes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal
| | - Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal.
| |
Collapse
|
179
|
Song M, Chan AT, Sun J. Influence of the Gut Microbiome, Diet, and Environment on Risk of Colorectal Cancer. Gastroenterology 2020; 158:322-340. [PMID: 31586566 PMCID: PMC6957737 DOI: 10.1053/j.gastro.2019.06.048] [Citation(s) in RCA: 484] [Impact Index Per Article: 96.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/11/2019] [Accepted: 06/16/2019] [Indexed: 02/07/2023]
Abstract
Researchers have discovered associations between elements of the intestinal microbiome (including specific microbes, signaling pathways, and microbiota-related metabolites) and risk of colorectal cancer (CRC). However, it is unclear whether changes in the intestinal microbiome contribute to the development of sporadic CRC or result from it. Changes in the intestinal microbiome can mediate or modify the effects of environmental factors on risk of CRC. Factors that affect risk of CRC also affect the intestinal microbiome, including overweight and obesity; physical activity; and dietary intake of fiber, whole grains, and red and processed meat. These factors alter microbiome structure and function, along with the metabolic and immune pathways that mediate CRC development. We review epidemiologic and laboratory evidence for the influence of the microbiome, diet, and environmental factors on CRC incidence and outcomes. Based on these data, features of the intestinal microbiome might be used for CRC screening and modified for chemoprevention and treatment. Integrated prospective studies are urgently needed to investigate these strategies.
Collapse
Affiliation(s)
- Mingyang Song
- Departments of Epidemiology and Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Medicine, Microbiology/Immunology, UIC Cancer Center, University of Illinois at Chicago, Illinois.
| |
Collapse
|
180
|
Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nat Rev Gastroenterol Hepatol 2019; 16:690-704. [PMID: 31554963 DOI: 10.1038/s41575-019-0209-8] [Citation(s) in RCA: 771] [Impact Index Per Article: 128.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/27/2019] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) accounts for about 10% of all new cancer cases globally. Located at close proximity to the colorectal epithelium, the gut microbiota comprises a large population of microorganisms that interact with host cells to regulate many physiological processes, such as energy harvest, metabolism and immune response. Sequencing studies have revealed microbial compositional and ecological changes in patients with CRC, whereas functional studies in animal models have pinpointed the roles of several bacteria in colorectal carcinogenesis, including Fusobacterium nucleatum and certain strains of Escherichia coli and Bacteroides fragilis. These findings give new opportunities to take advantage of our knowledge on the gut microbiota for clinical applications, such as gut microbiota analysis as screening, prognostic or predictive biomarkers, or modulating microorganisms to prevent cancer, augment therapies and reduce adverse effects of treatment. This Review aims to provide an overview and discussion of the gut microbiota in colorectal neoplasia, including relevant mechanisms in microbiota-related carcinogenesis, the potential of utilizing the microbiota as CRC biomarkers, and the prospect for modulating the microbiota for CRC prevention or treatment. These scientific findings will pave the way to clinically translate the use of gut microbiota for CRC in the near future.
Collapse
|
181
|
Shaikh FY, Gills JJ, Sears CL. Impact of the microbiome on checkpoint inhibitor treatment in patients with non-small cell lung cancer and melanoma. EBioMedicine 2019; 48:642-647. [PMID: 31597596 PMCID: PMC6838599 DOI: 10.1016/j.ebiom.2019.08.076] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/22/2019] [Accepted: 08/30/2019] [Indexed: 12/31/2022] Open
Abstract
The microbiome is increasingly recognized for its role in multiple aspects of cancer development and treatment, specifically in response to checkpoint inhibitors. While checkpoint inhibitors have revolutionized cancer treatment by producing durable anti-tumor responses, only a minority of patients respond to the available immunotherapy drugs and accurate, sensitive and specific microbiome predictors of response to treatment remain elusive. Additionally, the specific mechanisms linking the microbiome and host immunological responses remain unclear. In this review, we examine the evidence for the gut microbiome's association with anti-tumor responses to checkpoint inhibitors in the treatment of melanoma, non-small cell lung cancer, and renal cell carcinoma. Furthermore, we discuss the current evidence available from murine models seeking to explain the immunological mechanisms that may drive this process. While this work is promising in defining the impact of gut microbiota in cancer treatment, many unanswered questions indicate the need for additional human and experimental studies.
Collapse
Affiliation(s)
- Fyza Y Shaikh
- The Bloomberg-Kimmel Institute of Cancer Immunotherapy, USA; Departments of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Joell J Gills
- The Bloomberg-Kimmel Institute of Cancer Immunotherapy, USA; Departments of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Cynthia L Sears
- The Bloomberg-Kimmel Institute of Cancer Immunotherapy, USA; Departments of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Departments of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
182
|
Gut microbiota and cancer: How gut microbiota modulates activity, efficacy and toxicity of antitumoral therapy. Crit Rev Oncol Hematol 2019; 143:139-147. [PMID: 31634731 DOI: 10.1016/j.critrevonc.2019.09.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/05/2019] [Accepted: 09/08/2019] [Indexed: 12/13/2022] Open
Abstract
Gut microbiota is involved in gastrointestinal carcinogenesis. Also, it modulates the activity, efficacy and toxicity of several chemotherapy agents, such as gemcitabine, cyclophosphamide, irinotecan, cisplatin and 5-Fluorouracil, and target therapy, such as tyrosine kinase inhibitors. More recently, accumulating data suggest that the composition of gut microbiota may also affect efficacy and toxicity of cancer immunotherapy. Therefore, the manipulation of gut microbiota through antibiotics, probiotics, prebiotics or fecal transplantation has been investigating with the aim to improve efficacy and mitigate toxicity of anticancer drugs.
Collapse
|
183
|
Carson TL, Little RB, Townsend S. Preliminary feasibility for recruiting and retaining black and white females to provide fecal samples for longitudinal research. Gut Pathog 2019; 11:43. [PMID: 31462930 PMCID: PMC6710875 DOI: 10.1186/s13099-019-0324-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/14/2019] [Indexed: 11/24/2022] Open
Abstract
As the associations between the gut microbiota and numerous health outcomes become more evident, it is important to conduct longitudinal microbiome research to advance the field beyond the identification of associations. It is also necessary to include individuals who have historically been underrepresented in biomedical research in longitudinal microbiome studies to better understand and eliminate racial/ethnic health disparities. This paper describes our experiences in recruiting and retaining participants for an ongoing, longitudinal microbiome study for which the main results will be reported at a later time. This article provides preliminary evidence of the feasibility of recruiting and retaining a racially diverse sample of females (97% completion for invited participants) for longitudinal microbiome research.
Collapse
Affiliation(s)
- Tiffany L Carson
- 1Division of Preventive Medicine, Department of Medicine, School of Medicine, University of Alabama at Birmingham, 1720 2nd Avenue South MT 639, Birmingham, AL 35294-4410 USA.,2Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL USA
| | - Rebecca B Little
- 3Division of Preventive Medicine, Department of Medicine, School of Medicine, University of Alabama at Birmingham, 1720 2nd Avenue South MT 518K, Birmingham, AL 35294-4410 USA
| | - Sh'Nese Townsend
- 4Division of Preventive Medicine, Department of Medicine, School of Medicine, University of Alabama at Birmingham, 1720 2nd Avenue South MT 518E, Birmingham, AL 35294-4410 USA
| |
Collapse
|
184
|
Verstraelen H. Of microbes and women: BRCA1, vaginal microbiota, and ovarian cancer. Lancet Oncol 2019; 20:1049-1051. [PMID: 31300206 DOI: 10.1016/s1470-2045(19)30406-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 11/17/2022]
Affiliation(s)
- Hans Verstraelen
- Department of Obstetrics and Gynaecology, Ghent University and Ghent University Hospital, 9000 Ghent, Belgium.
| |
Collapse
|