151
|
Jung SK, Lee KW, Byun S, Kang NJ, Lim SH, Heo YS, Bode AM, Bowden GT, Lee HJ, Dong Z. Myricetin suppresses UVB-induced skin cancer by targeting Fyn. Cancer Res 2008; 68:6021-9. [PMID: 18632659 DOI: 10.1158/0008-5472.can-08-0899] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Skin cancer is currently the most common type of human cancer in Americans. Myricetin, a naturally occurring phytochemical, has potent anticancer-promoting activity and contributes to the chemopreventive potential of several foods, including red wine. Here, we show that myricetin suppresses UVB-induced cyclooxygenase-2 (COX-2) expression in mouse skin epidermal JB6 P+ cells. The activation of activator protein-1 and nuclear factor-kappaB induced by UVB was dose-dependently inhibited by myricetin treatment. Western blot and kinase assay data revealed that myricetin inhibited Fyn kinase activity and subsequently attenuated UVB-induced phosphorylation of mitogen-activated protein kinases. Pull-down assays revealed that myricetin competitively bound with ATP to suppress Fyn kinase activity. Importantly, myricetin exerted similar inhibitory effects compared with 4-amino-5-(4-chloro-phenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine, a well-known pharmacologic inhibitor of Fyn. In vivo mouse skin data also revealed that myricetin inhibited Fyn kinase activity directly and subsequently attenuated UVB-induced COX-2 expression. Mouse skin tumorigenesis data clearly showed that pretreatment with myricetin significantly suppressed UVB-induced skin tumor incidence in a dose-dependent manner. Docking data suggest that myricetin is easily docked to the ATP-binding site of Fyn, which is located between the N and C lobes of the kinase domain. Overall, these results indicated that myricetin exerts potent chemopreventive activity mainly by targeting Fyn in skin carcinogenesis.
Collapse
Affiliation(s)
- Sung Keun Jung
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Vioque J, Barber X, Bolumar F, Porta M, Santibáñez M, de la Hera MG, Moreno-Osset E. Esophageal cancer risk by type of alcohol drinking and smoking: a case-control study in Spain. BMC Cancer 2008; 8:221. [PMID: 18673563 PMCID: PMC2529333 DOI: 10.1186/1471-2407-8-221] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 08/01/2008] [Indexed: 12/13/2022] Open
Abstract
Background The effect of tobacco smoking and alcohol drinking on esophageal cancer (EC) has never been explored in Spain where black tobacco and wine consumptions are quite prevalent. We estimated the independent effect of different alcoholic beverages and type of tobacco smoking on the risk of EC and its main histological cell type (squamous cell carcinoma) in a hospital-based case-control study in a Mediterranean area of Spain. Methods We only included incident cases with histologically confirmed EC (n = 202). Controls were frequency-matched to cases by age, sex and province (n = 455). Information on risk factors was elicited by trained interviewers using structured questionnaires. Multiple logistic regression was used to estimate adjusted odds ratios and 95% confidence intervals (CI). Results Alcohol drinking and tobacco smoking were strong and independent risk factors for esophageal cancer. Alcohol was a potent risk factor with a clear dose-response relationship, particularly for esophageal squamous-cell cancer. Compared to never-drinkers, the risk for heaviest drinkers (≥ 75 g/day of pure ethanol) was 7.65 (95%CI, 3.16–18.49); and compared with never-smokers, the risk for heaviest smokers (≥ 30 cigarettes/day) was 5.07 (95%CI, 2.06–12.47). A low consumption of only wine and/or beer (1–24 g/d) did not increase the risk whereas a strong positive trend was observed for all types of alcoholic beverages that included any combination of hard liquors with beer and/or wine (p-trend<0.00001). A significant increase in EC risk was only observed for black-tobacco smoking (2.5-fold increase), not for blond tobacco. The effects for alcohol drinking were much stronger when the analysis was limited to the esophageal squamous cell carcinoma (n = 160), whereas a lack of effect for adenocarcinoma was evidenced. Smoking cessation showed a beneficial effect within ten years whereas drinking cessation did not. Conclusion Our study shows that the risk of EC, and particularly the squamous cell type, is strongly associated with alcohol drinking. The consumption of any combination of hard liquors seems to be harmful whereas a low consumption of only wine may not. This may relates to the presence of certain antioxidant compounds found in wine but practically lacking in liquors. Tobacco smoking is also a clear risk factor, black more than blond.
Collapse
Affiliation(s)
- Jesus Vioque
- Departamento Salud Pública, Universidad Miguel Hernández, Elche-Alicante, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
153
|
Bazoti FN, Bergquist J, Markides K, Tsarbopoulos A. Localization of the noncovalent binding site between amyloid-beta-peptide and oleuropein using electrospray ionization FT-ICR mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2008; 19:1078-1085. [PMID: 18448354 DOI: 10.1016/j.jasms.2008.03.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 03/24/2008] [Accepted: 03/24/2008] [Indexed: 05/26/2023]
Abstract
Abnormal accumulation and aggregation of amyloid-beta-peptide (Abeta) eventually lead to the formation and cerebral deposition of amyloid plaques, the major pathological hallmark in Alzheimer's disease (AD). Oleuropein (OE), an Olea europaea L. derived polyphenol, exhibits a broad range of pharmacological properties, such as antioxidant, anti-inflammatory, and antiatherogenic, which could serve as combative mechanisms against several reported pathways involved in the pathophysiology of AD. The reported noncovalent interaction between Abeta and OE could imply a potential antiamyloidogenic role of the latter on the former via stabilization of its structure and prevention of the adaptation of a toxic beta-sheet conformation. The established beta-sheet conformation of the Abeta hydrophobic carboxy-terminal region and the dependence of its toxicity and aggregational propensity on its secondary structure make the determination of the binding site between Abeta and OE highly important for assessing the role of the interaction. In this study, two different proteolytic digestion protocols, in conjunction with high-sensitivity electrospray ionization mass spectrometric analysis of the resulting peptide fragments, were used to determine the noncovalent binding site of OE on Abeta and revealed the critical regions for the interaction.
Collapse
Affiliation(s)
- Fotini N Bazoti
- GAIA Research Center, Bioanalytical Laboratory, The Goulandris Natural History Museum, Kifissia, Greece
| | | | | | | |
Collapse
|
154
|
Lian TW, Wang L, Lo YH, Huang IJ, Wu MJ. Fisetin, morin and myricetin attenuate CD36 expression and oxLDL uptake in U937-derived macrophages. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1781:601-9. [PMID: 18662803 DOI: 10.1016/j.bbalip.2008.06.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 06/21/2008] [Accepted: 06/25/2008] [Indexed: 01/14/2023]
Abstract
Dietary flavonoid intake has been reported to be inversely associated with the incidence of coronary artery disease. To clarify the possible role of flavonoids in the prevention of atherosclerosis, we investigated the effects of some of these compounds, including fisetin, morin and myricetin, on the susceptibility of low-density lipoprotein (LDL) to oxidative modification and on oxLDL uptake in macrophages. The results demonstrated that fisetin had stronger inhibitory activity than the other two on inhibiting Cu(2+)-mediated LDL oxidation measured by thiobarbituric acid-reactive substances assay (TBARS), conjugated diene formation and electrophoretic mobility. The class B scavenger receptor, CD36, to which oxLDL binds, is present in atherosclerotic lesions. Treatment of U937-derived macrophages with myricetin (20 microM) significantly inhibited CD36 cell surface protein and mRNA expression (p<0.01). Fisetin, morin and myricetin (20 microM) also reduced the feed-forward induction of CD36 mRNA and surface protein expression by PPARgamma. The inhibition of CD36 by flavonols was mediated by interference with PPARgamma activation thus counteracting the deleterious autoamplification loop of CD36 expression stimulated by PPARgamma ligand. All three flavonols (10 and 20 microM) markedly decreased the uptake of 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanide perchlorate (DiI)-labeled oxLDL uptake in U937-derived macrophages dose-dependently. Current evidences indicate that fisetin, morin and myricetin not only prevent LDL from oxidation but also block oxLDL uptake by macrophages at least in part through reducing CD36 gene expression on macrophages. In conclusion, flavonols may play a role in ameliorating atherosclerosis.
Collapse
Affiliation(s)
- Tzi-Wei Lian
- Department of Biotechnology, Chia-Nan University of Pharmacy and Science, Tainan 717, Taiwan
| | | | | | | | | |
Collapse
|
155
|
Wang JX, Xiao XH, Li GK. Study of vacuum microwave-assisted extraction of polyphenolic compounds and pigment from Chinese herbs. J Chromatogr A 2008; 1198-1199:45-53. [DOI: 10.1016/j.chroma.2008.05.045] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 05/17/2008] [Accepted: 05/19/2008] [Indexed: 11/25/2022]
|
156
|
Monteiro R, Faria A, Mateus N, Calhau C, Azevedo I. Red wine interferes with oestrogen signalling in rat hippocampus. J Steroid Biochem Mol Biol 2008; 111:74-9. [PMID: 18534843 DOI: 10.1016/j.jsbmb.2008.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Accepted: 02/08/2008] [Indexed: 11/29/2022]
Abstract
Oestrogens have neuroprotective properties, resulting in memory and learning preservation. Red wine (RW) has been linked to neuroprotection, but mechanisms are largely unknown. The aim of this work was to test the effect of RW or 13% ethanol solution consumption on the expression of aromatase and estrogen receptors (ER) in the rat hippocampus. Beverages were supplied to male Wistar rats and after 8 weeks of treatment animals were euthanised, hippocampus was removed, aromatase expression assessed by western blotting and aromatase and ER transcription determined by RT-PCR. The effects of treatments on hippocampal aromatase activity were also determined, as well as the effect of several red wine polyphenols in hippocampal homogenates from untreated animals. Aromatase transcription was increased by ethanol (to 158+/-7%) but only significantly by RW (to 180+/-9%). No difference was found in ERalpha expression among groups, whereas RW significantly decreased ERbeta expression (to 63+/-10%). Resveratrol, quercetin, myricetin and kaempferol had no effect on aromatase activity and catechin (300 microM), epicatechin (200 microM), procyanidin extract (200 mg/L) and fractioned procyanidins (FI and FII; 200 mg/L) significantly decreased aromatase activity. The contribution of procyanidins in wine to the effect observed in aromatase was investigated in animals treated for the same period with these compounds (200 mg/L), although no effect was seen in aromatase activity, mRNA or protein levels, meaning that this group of compounds had little contribution, if any, to the effects observed. Nevertheless, the increase in aromatase expression induced by RW may corroborate the neuroprotective ability attributed to this beverage. Alterations in the relative abundance of ER expression may also play an important role in the protection.
Collapse
Affiliation(s)
- Rosário Monteiro
- Department of Biochemistry (U38-FCT), Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
| | | | | | | | | |
Collapse
|
157
|
Yu BS, Ko WS, Lim DY. Inhibitory Mechanism of Polyphenol Compounds Isolated from Red Wine on Catecholamine Release in the Perfused Rat Adrenal Medulla. Biomol Ther (Seoul) 2008. [DOI: 10.4062/biomolther.2008.16.2.147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
158
|
Ortega T, De La Hera E, Carretero ME, Gómez-Serranillos P, Naval MV, Villar AM, Prodanov M, Vacas V, Arroyo T, Hernández T, Estrella I. Influence of grape variety and their phenolic composition on vasorelaxing activity of young red wines. Eur Food Res Technol 2008. [DOI: 10.1007/s00217-008-0888-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
159
|
Esna-Ashari M, Gholami M, Zolfigol MA, Shiri M, Mahmoodi-Pour A, Hesari M. Analysis of trans-Resveratrol in Iranian Grape Cultivars by LC. Chromatographia 2008. [DOI: 10.1365/s10337-008-0605-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
160
|
Araujo JR, Goncalves P, Martel F. Modulation of Glucose Uptake in a Human Choriocarcinoma Cell Line (BeWo) by Dietary Bioactive Compounds and Drugs of Abuse. J Biochem 2008; 144:177-86. [DOI: 10.1093/jb/mvn054] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
161
|
Lee KW, Kang NJ, Heo YS, Rogozin EA, Pugliese A, Hwang MK, Bowden GT, Bode AM, Lee HJ, Dong Z. Raf and MEK protein kinases are direct molecular targets for the chemopreventive effect of quercetin, a major flavonol in red wine. Cancer Res 2008; 68:946-55. [PMID: 18245498 DOI: 10.1158/0008-5472.can-07-3140] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Considerable attention has focused on the health-promoting effects of red wine and its nonflavonoid polyphenol compound resveratrol. However, the underlying molecular mechanisms and molecular target(s) of red wine or other potentially active ingredients in red wine remain unknown. Here, we report that red wine extract (RWE) or the red wine flavonoid quercetin inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced transformation of JB6 promotion-sensitive mouse skin epidermal (JB6 P+) cells. The activation of activator protein-1 and nuclear factor-kappaB induced by TPA was dose dependently inhibited by RWE or quercetin treatment. Western blot and kinase assay data revealed that RWE or quercetin inhibited mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase (MEK) 1 and Raf1 kinase activities and subsequently attenuated TPA-induced phosphorylation of ERK/p90 ribosomal S6 kinase. Although either RWE or quercetin suppressed Raf1 kinase activity, they were more effective in inhibiting MEK1 activity. Importantly, quercetin exerted stronger inhibitory effects than PD098059, a well-known pharmacologic inhibitor of MEK. Resveratrol did not affect either MEK1 or Raf1 kinase activity. Pull-down assays revealed that RWE or quercetin (but not resveratrol) bound with either MEK1 or Raf1. RWE or quercetin also dose dependently suppressed JB6 P+ cell transformation induced by epidermal growth factor or H-Ras, both of which are involved in the activation of MEK/ERK signaling. Docking data suggested that quercetin, but not resveratrol, formed a hydrogen bond with the backbone amide group of Ser(212), which is the key interaction for stabilizing the inactive conformation of the activation loop of MEK1.
Collapse
Affiliation(s)
- Ki Won Lee
- Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Carneiro A, Assuncao M, Freitas VD, Paula-Barbosa MM, Andrade JP. Red Wine, but not Port Wine, Protects Rat Hippocampal Dentate Gyrus Against Ethanol-Induced Neuronal Damage--Relevance of the Sugar Content. Alcohol Alcohol 2008; 43:408-15. [DOI: 10.1093/alcalc/agn024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
163
|
Suenaga F, Hatsushika K, Takano S, Ando T, Ohnuma Y, Ogawa H, Nakao A. A possible link between resveratrol and TGF-β: Resveratrol induction of TGF-β expression and signaling. FEBS Lett 2008; 582:586-90. [DOI: 10.1016/j.febslet.2008.01.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 01/08/2008] [Accepted: 01/16/2008] [Indexed: 10/22/2022]
|
164
|
|
165
|
Giusti AM, Bignetti E, Cannella C. Exploring New Frontiers in Total Food Quality Definition and Assessment: From Chemical to Neurochemical Properties. FOOD BIOPROCESS TECH 2007. [DOI: 10.1007/s11947-007-0043-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
166
|
Deluc LG, Grimplet J, Wheatley MD, Tillett RL, Quilici DR, Osborne C, Schooley DA, Schlauch KA, Cushman JC, Cramer GR. Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development. BMC Genomics 2007; 8:429. [PMID: 18034876 PMCID: PMC2220006 DOI: 10.1186/1471-2164-8-429] [Citation(s) in RCA: 237] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 11/22/2007] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Grape berry development is a dynamic process that involves a complex series of molecular genetic and biochemical changes divided into three major phases. During initial berry growth (Phase I), berry size increases along a sigmoidal growth curve due to cell division and subsequent cell expansion, and organic acids (mainly malate and tartrate), tannins, and hydroxycinnamates accumulate to peak levels. The second major phase (Phase II) is defined as a lag phase in which cell expansion ceases and sugars begin to accumulate. Véraison (the onset of ripening) marks the beginning of the third major phase (Phase III) in which berries undergo a second period of sigmoidal growth due to additional mesocarp cell expansion, accumulation of anthocyanin pigments for berry color, accumulation of volatile compounds for aroma, softening, peak accumulation of sugars (mainly glucose and fructose), and a decline in organic acid accumulation. In order to understand the transcriptional network responsible for controlling berry development, mRNA expression profiling was conducted on berries of V. vinifera Cabernet Sauvignon using the Affymetrix GeneChip Vitis oligonucleotide microarray ver. 1.0 spanning seven stages of berry development from small pea size berries (E-L stages 31 to 33 as defined by the modified E-L system), through véraison (E-L stages 34 and 35), to mature berries (E-L stages 36 and 38). Selected metabolites were profiled in parallel with mRNA expression profiling to understand the effect of transcriptional regulatory processes on specific metabolite production that ultimately influence the organoleptic properties of wine. RESULTS Over the course of berry development whole fruit tissues were found to express an average of 74.5% of probes represented on the Vitis microarray, which has 14,470 Unigenes. Approximately 60% of the expressed transcripts were differentially expressed between at least two out of the seven stages of berry development (28% of transcripts, 4,151 Unigenes, had pronounced (> or =2 fold) differences in mRNA expression) illustrating the dynamic nature of the developmental process. The subset of 4,151 Unigenes was split into twenty well-correlated expression profiles. Expression profile patterns included those with declining or increasing mRNA expression over the course of berry development as well as transient peak or trough patterns across various developmental stages as defined by the modified E-L system. These detailed surveys revealed the expression patterns for genes that play key functional roles in phytohormone biosynthesis and response, calcium sequestration, transport and signaling, cell wall metabolism mediating expansion, ripening, and softening, flavonoid metabolism and transport, organic and amino acid metabolism, hexose sugar and triose phosphate metabolism and transport, starch metabolism, photosynthesis, circadian cycles and pathogen resistance. In particular, mRNA expression patterns of transcription factors, abscisic acid (ABA) biosynthesis, and calcium signaling genes identified candidate factors likely to participate in the progression of key developmental events such as véraison and potential candidate genes associated with such processes as auxin partitioning within berry cells, aroma compound production, and pathway regulation and sequestration of flavonoid compounds. Finally, analysis of sugar metabolism gene expression patterns indicated the existence of an alternative pathway for glucose and triose phosphate production that is invoked from véraison to mature berries. CONCLUSION These results reveal the first high-resolution picture of the transcriptome dynamics that occur during seven stages of grape berry development. This work also establishes an extensive catalog of gene expression patterns for future investigations aimed at the dissection of the transcriptional regulatory hierarchies that govern berry development in a widely grown cultivar of wine grape. More importantly, this analysis identified a set of previously unknown genes potentially involved in critical steps associated with fruit development that can now be subjected to functional testing.
Collapse
Affiliation(s)
- Laurent G Deluc
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557-0014, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Kleinhenz DJ, Sutliff RL, Polikandriotis JA, Walp ER, Dikalov SI, Guidot DM, Hart CM. Chronic ethanol ingestion increases aortic endothelial nitric oxide synthase expression and nitric oxide production in the rat. Alcohol Clin Exp Res 2007; 32:148-54. [PMID: 18028525 DOI: 10.1111/j.1530-0277.2007.00550.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Chronic alcohol consumption perturbs cellular function in a variety of organ systems. Previous studies have suggested that moderate alcohol consumption reduces vascular disease, whereas heavier alcohol consumption may worsen it. The mechanisms for these vascular effects of chronic alcohol ingestion continue to be defined and constitute the focus of this study. METHODS Male Sprague Dawley rats were fed an isocaloric, Lieber-Decarli liquid diet containing either ethanol (36% calories) or Maltose-Dextrin (substituted for ethanol) for 6 weeks. Telemetric blood pressure measurements were taken before and after ethanol feeding. After the rats were killed, the aortas were analyzed for endothelial nitric oxide (NO) synthase expression and NO production. RESULTS Chronic ethanol ingestion decreased mean arterial pressure and increased aortic NO production as demonstrated by direct ex vivo measurements using iron diethyldithio-carbamic acid as well as analysis of nitrosyl-hemoglobin (NO-Hb) levels. Consistent with these assays of vascular NO production, endothelium-dependent relaxation responses to acetycholine (Ach) were enhanced in ethanol-fed animals. Aortic endothelial nitric oxide synthase expression was also increased by chronic ethanol ingestion. CONCLUSIONS These findings demonstrate that a regimen of chronic alcohol ingestion in the rat produced generally salutary effects in the systemic vasculature following a 6-week treatment regimen. These findings extend previous in vitro studies to demonstrate that alcohol has potent effects on vascular endothelial nitric oxide synthase expression, NO production, and vascular function. Consistent with previous reports, these findings confirm that alcohol-induced alterations in the production of reactive nitrogen species play an important role in the pathogenesis of alcohol-mediated tissue effects.
Collapse
Affiliation(s)
- Dean J Kleinhenz
- Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, Georgia 30033, USA
| | | | | | | | | | | | | |
Collapse
|
168
|
Lee KM, Kang NJ, Han JH, Lee KW, Lee HJ. Myricetin down-regulates phorbol ester-induced cyclooxygenase-2 expression in mouse epidermal cells by blocking activation of nuclear factor kappa B. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:9678-9684. [PMID: 17944529 DOI: 10.1021/jf0717945] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Abnormal expression of cyclooxygenase-2 (COX-2) has been implicated in the development of cancer. There are multiple lines of evidence that red wine exerts chemopreventive effects, and 3,5,4'-trihydroxy- trans-stilbene (resveratrol), which is a non-flavonoid polyphenol found in red wine, has been reported to be a natural chemopreventive agent. However, other phytochemicals might contribute to the cancer-preventive activities of red wine, and the flavonol content of red wines is about 30 times higher than that of resveratrol. Here we report that 3,3',4',5,5',7-hexahydroxyflavone (myricetin), one of the major flavonols in red wine, inhibits 12-O-tetradecanoylphorbol-13-acetate (phorbol ester)-induced COX-2 expression in JB6 P+ mouse epidermal (JB6 P+) cells by suppressing activation of nuclear factor kappa B (NF-kappaB). Myricetin at 10 and 20 microM inhibited phorbol ester-induced upregulation of COX-2 protein, while resveratrol at the same concentration did not exert significant effects. The phorbol ester-induced production of prostaglandin E 2 was also attenuated by myricetin treatment. Myricetin inhibited both COX-2 and NF-kappaB transactivation in phorbol ester-treated JB6 P+ cells, as determined using a luciferase assay. Myricetin blocked the phorbol ester-stimulated DNA binding activity of NF-kappaB, as determined using an electrophoretic mobility shift assay. Moreover, TPCK (N-tosyl-l-phenylalanine chloromethyl ketone), a NF-kappaB inhibitor, significantly attenuated COX-2 expression and NF-kappaB promoter activity in phorbol ester-treated JB6 P+ cells. In addition, red wine extract inhibited phorbol ester-induced COX-2 expression and NF-kappaB transactivation in JB6 P+ cells. Collectively, these data suggest that myricetin contributes to the chemopreventive effects of red wine through inhibition of COX-2 expression by blocking the activation of NF-kappaB.
Collapse
Affiliation(s)
- Kyung Mi Lee
- Department of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University, Seoul 151-921, Republic of Korea
| | | | | | | | | |
Collapse
|
169
|
Influence of polyphenolic compounds isolated fromRubus coreanum on catecholamine release in the rat adrenal medulla. Arch Pharm Res 2007; 30:1240-51. [PMID: 18038903 DOI: 10.1007/bf02980265] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
170
|
Wang Q, Sun AY, Simonyi A, Kalogeris TJ, Miller DK, Sun GY, Korthuis RJ. Ethanol preconditioning protects against ischemia/reperfusion-induced brain damage: role of NADPH oxidase-derived ROS. Free Radic Biol Med 2007; 43:1048-60. [PMID: 17761301 PMCID: PMC2173699 DOI: 10.1016/j.freeradbiomed.2007.06.018] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 05/04/2007] [Accepted: 06/20/2007] [Indexed: 12/21/2022]
Abstract
Ethanol preconditioning (EtOH-PC) refers to a phenomenon in which tissues are protected from the deleterious effects of ischemia/reperfusion (I/R) by prior ingestion of ethanol at low to moderate levels. In this study, we tested whether prior (24 h) administration of ethanol as a single bolus that produced a peak plasma concentration of 42-46 mg/dl in gerbils would offer protective effects against neuronal damage due to cerebral I/R. In addition, we also tested whether reactive oxygen species (ROS) derived from NADPH oxidase played a role as initiators of these putative protective effects. Groups of gerbils were administered either ethanol or the same volume of water by gavage 24 h before transient global cerebral ischemia induced by occlusion of both common carotid arteries for 5 min. In some experiments, apocynin, a specific inhibitor of NADPH oxidase, was administered (5 mg/kg body wt, i.p.) 10 min before ethanol administration. EtOH-PC ameliorated behavioral deficit induced by cerebral I/R and protected the brain against I/R-induced delayed neuronal death, neuronal and dendritic degeneration, oxidative DNA damage, and glial cell activation. These beneficial effects were attenuated by apocynin treatment coincident with ethanol administration. Ethanol ingestion was associated with translocation of the NADPH oxidase subunit p67(phox) from hippocampal cytosol fraction to membrane, increased NADPH oxidase activity in hippocampus within the first hour after gavage, and increased lipid peroxidation (4-hydroxy-2-nonenal) in plasma and hippocampus within the first 2 h after gavage. These effects were also inhibited by concomitant apocynin treatment. Our data are consistent with the hypothesis that antecedent ethanol ingestion at socially relevant levels induces neuroprotective effects in I/R by a mechanism that is triggered by ROS produced through NADPH oxidase. Our results further suggest the possibility that preconditioning with other pharmacological agents that induce a mild oxidative stress may have similar therapeutic value for suppressing stroke-mediated damage in brain.
Collapse
Affiliation(s)
- Qun Wang
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Albert Y. Sun
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Agnes Simonyi
- Department of Biochemistry, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Theodore J. Kalogeris
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Dennis K. Miller
- Department of Psychological Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Grace Y. Sun
- Department of Biochemistry, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Ronald J. Korthuis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Dalton Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Corresponding author: Ronald J. Korthuis, Ph.D., Department of Medical Pharmacology and Physiology, School of Medicine, One Hospital Drive, MA415, University of Missouri-Columbia, Columbia, MO 65212, Phone: (573) 882-8059, Fax: (573) 884-4276, E-mail:
| |
Collapse
|
171
|
Micallef M, Lexis L, Lewandowski P. Red wine consumption increases antioxidant status and decreases oxidative stress in the circulation of both young and old humans. Nutr J 2007; 6:27. [PMID: 17888186 PMCID: PMC2039729 DOI: 10.1186/1475-2891-6-27] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Accepted: 09/24/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Red wine contains a naturally rich source of antioxidants, which may protect the body from oxidative stress, a determinant of age-related disease. The current study set out to determine the in vivo effects of moderate red wine consumption on antioxidant status and oxidative stress in the circulation. METHODS 20 young (18-30 yrs) and 20 older (>or= 50 yrs) volunteers were recruited. Each age group was randomly divided into treatment subjects who consumed 400 mL/day of red wine for two weeks, or control subjects who abstained from alcohol for two weeks, after which they crossed over into the other group. Blood samples were collected before and after red wine consumption and were used for analysis of whole blood glutathione (GSH), plasma malondialdehyde (MDA) and serum total antioxidant status. RESULTS Results from this study show consumption of red wine induced significant increases in plasma total antioxidant status (P < 0.03), and significant decreases in plasma MDA (P < 0.001) and GSH (P < 0.004) in young and old subjects. The results show that the consumption of 400 mL/day of red wine for two weeks, significantly increases antioxidant status and decreases oxidative stress in the circulation CONCLUSION It may be implied from this data that red wine provides general oxidative protection and to lipid systems in circulation via the increase in antioxidant status.
Collapse
Affiliation(s)
- Michelle Micallef
- School of Biomedical Sciences, University of Newcastle, New South Wales, Australia
| | - Louise Lexis
- School of Biomedical Sciences, Victoria University, Victoria, Australia
| | | |
Collapse
|
172
|
Lemos C, Peters GJ, Jansen G, Martel F, Calhau C. Modulation of folate uptake in cultured human colon adenocarcinoma Caco-2 cells by dietary compounds. Eur J Nutr 2007; 46:329-336. [PMID: 17712586 DOI: 10.1007/s00394-007-0670-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 06/28/2007] [Indexed: 01/12/2023]
Abstract
Folate is a water-soluble B vitamin with a crucial role in the synthesis and methylation of DNA and in the metabolism of several amino acids. In the present study we investigated whether beverages like wine, beer and tea, or some of their specific constituents, affect the intestinal uptake of (3)H-folic acid or (3)H-methotrexate (an antifolate). All tested beverages significantly inhibited the uptake of (3)H-folic acid by Caco-2 cells. Most of these beverages, with the exception of wines (not tested), also inhibited (3)H-methotrexate uptake in these cells. Additionally, ethanol, when tested separately, inhibited the uptake of both compounds. Some of the tested phenolic compounds, namely myricetin, epigallocatechin gallate (EGCG) and isoxanthohumol, markedly inhibited (3)H-folic acid uptake. Myricetin and EGCG also had a concentration-dependent inhibitory effect upon the uptake of (3)H-methotrexate by Caco-2 cells. Resveratrol, quercetin and kaempferol were able to inhibit the transport of both compounds, but only in the concentration of 100 microM. In conclusion, dietary constituents may impact on intestinal folate uptake, as here shown for phenolic compounds.
Collapse
Affiliation(s)
- Clara Lemos
- Department of Biochemistry (U38-FCT), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal.
| | | | | | | | | |
Collapse
|
173
|
Esparza I, Santamaría C, García-Mina JM, Fernández JM. Complexing capacity profiles of naturally occurring ligands in Tempranillo wines for Cu and Zn. Anal Chim Acta 2007; 599:67-75. [PMID: 17765065 DOI: 10.1016/j.aca.2007.07.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 07/20/2007] [Accepted: 07/27/2007] [Indexed: 11/16/2022]
Abstract
Complexing capacity of naturally occurring ligands in Vitis vinifera (Tempranillo variety) wines has been studied with respect to two target metals (Cu and Zn) by differential pulse anodic stripping voltammetry (DPASV). Eight commercial wines of two certified brands of origin (CBO) and a young wine along its vinification process were monitored. Conditional stability constants and total complexing ligand(s) concentration(s) have been calculated for both metals. Discussion of the particular electrochemical responses for Cu and Zn for all samples is presented. A follow-up of the Cu stripping response allowed differentiating a commercial wine from one under processing related to the cupric casse phenomenon. Interaction of Cu with two molecular forms of cyanidin has been theoretically modeled at natural wine pH.
Collapse
Affiliation(s)
- I Esparza
- Departamento de Química y Edafología, Universidad de Navarra, c/. Irunlarrea 1, 31080 Pamplona, Navarra, Spain
| | | | | | | |
Collapse
|
174
|
Buluc M, Ayaz M, Turan B, Demirel-Yilmaz E. Resveratrol-induced depression of the mechanical and electrical activities of the rat heart is reversed by glyburide: evidence for possible K(ATP) channels activation. Arch Pharm Res 2007; 30:603-7. [PMID: 17615680 DOI: 10.1007/bf02977655] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Resveratrol, a natural phytoalexin found in wine, has been suggested to have benefits in preventing cardiovascular diseases. However, the direct effects of resveratrol on the activity of cardiac tissues and its mechanism of action have not been determined. This study examined the effects of resveratrol on the right and left atrium and left papillary muscle isolated from the rat heart. The contractile responses of the right atrium and papillary muscle and the action potential from the left atrium were recorded and the effects of resveratrol on these responses were observed. The resting force of the isolated right atrium and the peak developed force of the left papillary muscle were depressed by resveratrol (0.1 nM - 0.1 mM). Exposure to the K(ATP) channel blocker glyburide (3 microM) prevented significantly the resveratrol-induced decrease. Resveratrol (0.1 mM) shortened the repolarization phase of action potential recorded from the left atrium and this effect of resveratrol was reversed by glyburide (3 microM). These results indicated that resveratrol depressed cardiac muscle contraction and shortened action potential duration probably due to the activation of K(ATP) channels in the rat heart.
Collapse
Affiliation(s)
- Mesut Buluc
- Department of Pharmacology and Clinical Pharmacology, Ankara University, Faculty of Medicine, Sihhiye, 06100 Ankara, Turkey
| | | | | | | |
Collapse
|
175
|
Daglia M, Papetti A, Grisoli P, Aceti C, Dacarro C, Gazzani G. Antibacterial activity of red and white wine against oral streptococci. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:5038-42. [PMID: 17547418 DOI: 10.1021/jf070352q] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Wine contains a number of biologically active compounds with beneficial effects on human health. The antibacterial action of commercial red and white wines against oral streptococci responsible for caries development and against S. pyogenes responsible for pharyngitis was studied. Its postcontact effect against S. mutans was also studied. Both wines displayed activity. The compounds responsible for such activities were succinic, malic, lactic, tartaric, citric, and acetic acid. The synthetic mixtures of the organic acids tested at the concentrations found in wine had greater antibacterial activity than the beverages, indicating that in wine they are inhibited by other components. Wine polyphenols displayed no activity against oral streptococci or S. pyogenes. Findings show that wine is active against oral streptococci and S. pyogenes and suggest that it enhances oral health.
Collapse
Affiliation(s)
- Maria Daglia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Pavia, Pavia, Italy
| | | | | | | | | | | |
Collapse
|
176
|
Tissue-specific mRNA expression profiling in grape berry tissues. BMC Genomics 2007; 8:187. [PMID: 17584945 PMCID: PMC1925093 DOI: 10.1186/1471-2164-8-187] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Accepted: 06/21/2007] [Indexed: 01/09/2023] Open
Abstract
Background Berries of grape (Vitis vinifera) contain three major tissue types (skin, pulp and seed) all of which contribute to the aroma, color, and flavor characters of wine. The pericarp, which is composed of the exocarp (skin) and mesocarp (pulp), not only functions to protect and feed the developing seed, but also to assist in the dispersal of the mature seed by avian and mammalian vectors. The skin provides volatile and nonvolatile aroma and color compounds, the pulp contributes organic acids and sugars, and the seeds provide condensed tannins, all of which are important to the formation of organoleptic characteristics of wine. In order to understand the transcriptional network responsible for controlling tissue-specific mRNA expression patterns, mRNA expression profiling was conducted on each tissue of mature berries of V. vinifera Cabernet Sauvignon using the Affymetrix GeneChip® Vitis oligonucleotide microarray ver. 1.0. In order to monitor the influence of water-deficit stress on tissue-specific expression patterns, mRNA expression profiles were also compared from mature berries harvested from vines subjected to well-watered or water-deficit conditions. Results Overall, berry tissues were found to express approximately 76% of genes represented on the Vitis microarray. Approximately 60% of these genes exhibited significant differential expression in one or more of the three major tissue types with more than 28% of genes showing pronounced (2-fold or greater) differences in mRNA expression. The largest difference in tissue-specific expression was observed between the seed and pulp/skin. Exocarp tissue, which is involved in pathogen defense and pigment production, showed higher mRNA abundance relative to other berry tissues for genes involved with flavonoid biosynthesis, pathogen resistance, and cell wall modification. Mesocarp tissue, which is considered a nutritive tissue, exhibited a higher mRNA abundance of genes involved in cell wall function and transport processes. Seeds, which supply essential resources for embryo development, showed higher mRNA abundance of genes encoding phenylpropanoid biosynthetic enzymes, seed storage proteins, and late embryogenesis abundant proteins. Water-deficit stress affected the mRNA abundance of 13% of the genes with differential expression patterns occurring mainly in the pulp and skin. In pulp and seed tissues transcript abundance in most functional categories declined in water-deficit stressed vines relative to well-watered vines with transcripts for storage proteins and novel (no-hit) functional assignments being over represented. In the skin of berries from water-deficit stressed vines, however, transcripts from several functional categories including general phenypropanoid and ethylene metabolism, pathogenesis-related responses, energy, and interaction with the environment were significantly over-represented. Conclusion These results revealed novel insights into the tissue-specific expression mRNA expression patterns of an extensive repertoire of genes expressed in berry tissues. This work also establishes an extensive catalogue of gene expression patterns for future investigations aimed at the dissection of the transcriptional regulatory hierarchies that govern tissue-specific expression patterns associated with tissue differentiation within berries. These results also confirmed that water-deficit stress has a profound effect on mRNA expression patterns particularly associated with the biosynthesis of aroma and color metabolites within skin and pulp tissues that ultimately impact wine quality.
Collapse
|
177
|
Assunção M, Santos-Marques MJ, de Freitas V, Carvalho F, Andrade JP, Lukoyanov NV, Paula-Barbosa MM. Red wine antioxidants protect hippocampal neurons against ethanol-induced damage: A biochemical, morphological and behavioral study. Neuroscience 2007; 146:1581-92. [PMID: 17490820 DOI: 10.1016/j.neuroscience.2007.03.040] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 03/26/2007] [Accepted: 03/28/2007] [Indexed: 12/11/2022]
Abstract
Chronic ethanol consumption increases oxidative stress, which accounts for the striking neurological changes seen in this condition. Notwithstanding, there is well-documented evidence that polyphenols, present in grape skin and seeds, exhibit a strong antioxidant activity. As red wine is rich in polyphenols, the aim of the present work was to evaluate their putative protective effects on the hippocampal formation by applying biochemical, morphological and behavioral approaches. Six-month old male Wistar rats were fed with red wine (ethanol content adjusted to 20%) and the results were compared with those from ethanol-treated (20%) rats and pair-fed controls. Biochemical markers of oxidative stress (lipid peroxidation, glutathione levels and antioxidant enzyme activities) were assessed on hippocampal homogenates. Lipofuscin pigment, an end product of lipid peroxidation, was quantified in hippocampal cornu ammonis 1 and 3 (CA1 and CA3) pyramidal neurons using stereological methods. All animals were behaviorally tested on the Morris water maze in order to assess their spatial learning and memory skills. In red wine-treated rats, lipid peroxidation was the lowest while presenting the highest levels of reduced glutathione and an induction of antioxidant enzyme activities. Morphological findings revealed that, contrary to ethanol, red wine did not increase lipofuscin deposition in CA1 and CA3 pyramidal neurons. Besides, red wine-treated animals learned the water maze task at a higher rate than ethanol group and had better performance scores by the end of the training period and on a probe trial. Actually, no significant differences were found between pair-fed controls and red wine-treated rats in morphological and behavioral data. Thus, our findings demonstrate that chronic consumption of red wine, unlike the ethanol solution alone, does not lead to a decline in hippocampal-dependent spatial memory. This may be due to the ability of red wine polyphenols to improve the antioxidant status in the brain and to prevent free radical-induced neuronal damage.
Collapse
Affiliation(s)
- M Assunção
- Department of Anatomy, Porto Medical School, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | | | | | | | | | | | | |
Collapse
|
178
|
Keating E, Lemos C, Gonçalves P, Martel F. Acute and chronic effects of some dietary bioactive compounds on folic acid uptake and on the expression of folic acid transporters by the human trophoblast cell line BeWo. J Nutr Biochem 2007; 19:91-100. [PMID: 17531458 DOI: 10.1016/j.jnutbio.2007.01.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 01/12/2007] [Accepted: 01/17/2007] [Indexed: 11/27/2022]
Abstract
Folic acid (FA) is a vitamin that acts as a coenzyme in the biosynthesis of purine and pyrimidine precursors of nucleic acids, which are critically important during pregnancy. Our group has previously shown that both reduced folate carrier (RFC1) and folate receptor alpha (FRalpha) seem to be involved in the uptake of [3H]folic acid ([3H]FA) by a human trophoblast cell line (BeWo) and by human primary cultured cytotrophoblasts. Our aim was to study the interaction between FA and some nutrients/bioactive substances. For this, we tested the acute and chronic effects of some dietary compounds on [3H]FA apical uptake and on the expression of both RFC1 and FRalpha mRNA in BeWo cells. Our results show that [3H]FA uptake was significantly reduced by acute exposure to epicatechin, isoxanthohumol (1-400 microM) or theophylline (0.1-100 microM); isoxanthohumol seemed to act as a competitive inhibitor, whereas epicatechin and theophylline caused an increase in both Km and Vmax. On the other hand, [3H]FA uptake was significantly increased by chronic exposure to xanthohumol, quercetin or isoxanthohumol (0.1-10 microM), and this increase does not seem to result from changes in the level of RFC1 or FRalpha gene expression. Moreover, [3H]FA uptake was significantly reduced by chronic exposure to ethanol (0.01%). This reduction seems to be, at least in part, due to a reduction in FRalpha expression. These results are compatible with an association between a deficient FA supply to the placenta/fetus and ethanol toxicity in pregnancy.
Collapse
Affiliation(s)
- Elisa Keating
- Department of Biochemistry (U38-FCT), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal.
| | | | | | | |
Collapse
|
179
|
Bravo L, Goya L, Lecumberri E. LC/MS characterization of phenolic constituents of mate (Ilex paraguariensis, St. Hil.) and its antioxidant activity compared to commonly consumed beverages. Food Res Int 2007. [DOI: 10.1016/j.foodres.2006.10.016] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
180
|
Vanzo A, Cecotti R, Vrhovsek U, Torres AM, Mattivi F, Passamonti S. The fate of trans-caftaric acid administered into the rat stomach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:1604-11. [PMID: 17300159 DOI: 10.1021/jf0626819] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
trans-Caftaric acid is the most abundant nonflavonoid phenolic compound in grapes and wines. It occurs in chicory and is one of the bioactive components of Echinacea purpurea. In order to fill the gap of knowledge about its bioavailability in mammals, we investigated its absorption, tissue distribution, and metabolism in rats. Assuming that the stomach is a relevant site of absorption of dietary polyphenols, a solution of trans-caftaric acid was maintained in the ligated stomach of anaesthetized rats for 20 min. Intact trans-caftaric acid was detected in rat plasma at both 10 and 20 min (293 +/- 45 and 334 +/- 49 ng/mL, respectively), along with its O-methylated derivative trans-fertaric acid, whose concentration rose over time (from 92 +/- 12 to 185 +/- 24 ng/mL). At 20 min, both trans-caftaric acid and trans-fertaric acid were detected in the kidney (443 +/- 78 and 2506 +/- 514 ng/g, respectively) but not in the liver. Only trans-fertaric acid was found in the urine (33.3 +/- 12.8 microg/mL). In some rats, trans-caftaric acid was detected in the brain (180 +/- 20 ng/g).
Collapse
Affiliation(s)
- Andreja Vanzo
- Agricultural Institute of Slovenia, Hacquetova 17, 1001 Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
181
|
Assunção M, de Freitas V, Paula-Barbosa M. Grape seed flavanols, but not Port wine, prevent ethanol-induced neuronal lipofuscin formation. Brain Res 2007; 1129:72-80. [PMID: 17156755 DOI: 10.1016/j.brainres.2006.10.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Revised: 09/07/2006] [Accepted: 10/20/2006] [Indexed: 10/23/2022]
Abstract
Lipofuscin is an end-product of lipid peroxidation which dramatically increases following ethanol consumption, as we have shown in hippocampal and cerebellar neurons. In this work, we corroborated observations indicating that supplementation of ethanol with 200 mg/l of grape seed flavanols prevents increased lipofuscin formation, an action that has been ascribed to the antioxidant properties of the flavanols. Because wine is an alcoholic beverage naturally rich in flavanols, we decided to study the effect of chronic ingestion of Port wine (PW), which also contains 20% ethanol and approximately 200 mg/l of flavanol oligomers, upon lipofuscin accumulation in the hippocampal CA1 and CA3 pyramidal neurons and in the cerebellar Purkinje cells. Six months old rats were fed with PW and results were compared with those obtained in ethanol-treated groups and pair-fed controls. After 6 months of treatment, the volume of lipofuscin per neuron was estimated using unbiased stereological methods. Treatment with PW resulted in an increase of lipofuscin in all neuronal populations studied when compared to controls and to rats treated with ethanol supplemented with flavanols. No differences were observed when comparisons were made with ethanol drinking rats. We conclude that PW, despite containing 20% ethanol and flavanols, does not prevent ethanol-induced lipofuscin formation as previously found in animals drinking ethanol plus flavanols. The reduced antioxidant capacity of PW might depend on the type and amount of flavanols present and on its content in sugars.
Collapse
Affiliation(s)
- Marco Assunção
- Department of Anatomy, Porto Medical School, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | | | | |
Collapse
|
182
|
Cullen JP, Morrow D, Jin Y, Curley B, Robinson A, Sitzmann JV, Cahill PA, Redmond EM. Resveratrol, a Polyphenolic Phytostilbene, Inhibits Endothelial Monocyte Chemotactic Protein-1 Synthesis and Secretion. J Vasc Res 2006; 44:75-84. [PMID: 17191021 DOI: 10.1159/000098155] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Accepted: 10/05/2006] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND/AIMS Resveratrol is a naturally occurring polyphenol phytoestrogen and one of several constituents of red wine thought to be cardioprotective. We investigated the effect of resveratrol on the expression of the atherogenic chemokine, monocyte chemotactic protein-1 (MCP-1). METHODS Human umbilical vein endothelial cells were stimulated with interleukin-1beta (IL-1beta) in the absence or presence of resveratrol. MCP-1 levels were determined by ELISA and MCP-1 mRNA was measured. RESULTS Resveratrol (1-100 microM) dose-dependently inhibited IL-1beta-stimulated MCP-1 secretion, with approximately 45% inhibition at 50 microM resveratrol. This was a Gi-protein- and NO-dependent effect. Resveratrol also significantly inhibited MCP-1 gene expression in a Gi-protein-dependent but NO-independent manner. While resveratrol had no effect on MCP-1 mRNA degradation, it inhibited MCP-1 promoter activity and reduced nuclear factor kappaB and activator protein-1 binding activity induced by IL-1beta. Moreover, while hemoxygenase-1 (HO-1) expression was induced by resveratrol in human umbilical vein endothelial cells, neither treatment with the HO-1 inhibitor tin-protoporphyrin IX nor siRNA-directed knockdown of HO-1 had any effect on the inhibition of MCP-1 mRNA or protein secretion by resveratrol. CONCLUSION These data demonstrate an inhibitory effect of resveratrol on MCP-1 synthesis and secretion, mediated via distinct signaling pathways. The inhibition of MCP-1 may represent a novel cardioprotective mechanism of resveratrol.
Collapse
Affiliation(s)
- John P Cullen
- Department of Surgery, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, N.Y. 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
183
|
Cramer GR, Ergül A, Grimplet J, Tillett RL, Tattersall EAR, Bohlman MC, Vincent D, Sonderegger J, Evans J, Osborne C, Quilici D, Schlauch KA, Schooley DA, Cushman JC. Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Integr Genomics 2006; 7:111-34. [PMID: 17136344 DOI: 10.1007/s10142-006-0039-y] [Citation(s) in RCA: 251] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 09/30/2006] [Accepted: 09/30/2006] [Indexed: 10/23/2022]
Abstract
Grapes are grown in semiarid environments, where drought and salinity are common problems. Microarray transcript profiling, quantitative reverse transcription-PCR, and metabolite profiling were used to define genes and metabolic pathways in Vitis vinifera cv. Cabernet Sauvignon with shared and divergent responses to a gradually applied and long-term (16 days) water-deficit stress and equivalent salinity stress. In this first-of-a-kind study, distinct differences between water deficit and salinity were revealed. Water deficit caused more rapid and greater inhibition of shoot growth than did salinity at equivalent stem water potentials. One of the earliest responses to water deficit was an increase in the transcript abundance of RuBisCo activase (day 4), but this increase occurred much later in salt-stressed plants (day 12). As water deficit progressed, a greater number of affected transcripts were involved in metabolism, transport, and the biogenesis of cellular components than did salinity. Salinity affected a higher percentage of transcripts involved in transcription, protein synthesis, and protein fate than did water deficit. Metabolite profiling revealed that there were higher concentrations of glucose, malate, and proline in water-deficit-treated plants as compared to salinized plants. The metabolite differences were linked to differences in transcript abundance of many genes involved in energy metabolism and nitrogen assimilation, particularly photosynthesis, gluconeogenesis, and photorespiration. Water-deficit-treated plants appear to have a higher demand than salinized plants to adjust osmotically, detoxify free radicals (reactive oxygen species), and cope with photoinhibition.
Collapse
Affiliation(s)
- Grant R Cramer
- Department of Biochemistry and Molecular Biology, MS200, University of Nevada, Reno, NV, 89557-0014, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Yu J, Smith G, Gross HB, Hansen RJ, Levenberg J, Walzem RL. Enzymatic O-methylation of flavanols changes lag time, propagation rate, and total oxidation during in vitro model triacylglycerol-rich lipoprotein oxidation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2006; 54:8403-8. [PMID: 17061813 DOI: 10.1021/jf060690b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
3'-O-Methyl derivatives of flavan-3-ols, (+)-catechin (C), (-)-epicatechin (EC), and (-)-catechin gallate (CG) were prepared enzymatically. Hexanal (EC and CG family, 5 mmol/L) and conjugated diene (C and EC family, 0.25-10 mmol/L) formation following CuSO4-mediated triacylglycerol-rich lipoprotein oxidation was measured. All EC and CG compounds significantly reduced hexanal formation (p < 0.02). O-Methylation improved the ability of CG (more polar) while reducing the ability of EC (less polar) to limit hexanal formation. 3'-O-methyl EC was 18% (p < 0.001) and 4'-O-methyl 65% (p < 0.001) less able than EC to suppress hexanal formation. At >1 micromol/L all EC and C compounds significantly increased lag time. Parent compounds were more effective (> 4-fold increase) than metabolites (1.5-fold increase). Parent compounds did not influence propagation rate (DeltaOD/min). At >1 mmol/L O-methylated EC and C reduced propagation by 20-40% (p < 0.01). Notably, at 0.25 mmol/L O-methylated EC and C increased propagation rates 22% (p < 0.01) despite prolonging lag time.
Collapse
Affiliation(s)
- Jun Yu
- Department of Horticultural Sciences, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | | | | | |
Collapse
|
185
|
Baglietto L, English DR, Hopper JL, Powles J, Giles GG. Average volume of alcohol consumed, type of beverage, drinking pattern and the risk of death from all causes. Alcohol Alcohol 2006; 41:664-71. [PMID: 17050568 DOI: 10.1093/alcalc/agl087] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The objective was to investigate associations between average volume of alcohol consumption, type of beverage and drinking pattern and all-cause mortality in the Melbourne Collaborative Cohort Study. METHODS Average consumption, including type of beverage, was estimated from beverage-specific questions on quantity and frequency of consumption. Pattern of consumption was estimated from a 7-day diary. During an average of 10.5 years of follow-up of 36 984 participants, 1971 deaths occurred. RESULTS For both men and women, mortality curves were J-shaped (nadir at 9-12 g/day of alcohol consumption; upper protective dose of 42-76 g/day). Wine consumption was associated with lower mortality (for men, minimum hazard ratio (HR) at 20-39 g/day of wine consumption: 0.69; 95% confidence interval (CI): 0.54-0.87; for women, minimum HR at 1-19 g/day: 0.82; 95% CI: 0.70-0.98). Beer was associated with an increased risk for men (test for trend, P = 0.05), but not for women. After adjustment for total amount of alcohol consumed, the number of drinking-days was inversely associated with the risk of dying in men (P-trend = 0.04). CONCLUSIONS These results confirm previous findings about the effect of average volume of alcohol and type of beverage and suggest that drinking pattern is an independent risk factor for all-cause mortality.
Collapse
Affiliation(s)
- Laura Baglietto
- Cancer Epidemiology Centre, The Cancer Council of Victoria, Carlton Vic 3053, Melbourne, Australia
| | | | | | | | | |
Collapse
|
186
|
Maier T, Sanzenbacher S, Kammerer DR, Berardini N, Conrad J, Beifuss U, Carle R, Schieber A. Isolation of hydroxycinnamoyltartaric acids from grape pomace by high-speed counter-current chromatography. J Chromatogr A 2006; 1128:61-7. [PMID: 16860334 DOI: 10.1016/j.chroma.2006.06.082] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Revised: 06/07/2006] [Accepted: 06/13/2006] [Indexed: 11/21/2022]
Abstract
A method for the isolation of caftaric, coutaric and fertaric acids from grape pomace by high-speed counter-current chromatography (HSCCC) was developed. Using a system of hexane/ethyl acetate/methanol/water 3:7:3:7 (v/v/v/v) and 0.5% trifluoroacetic acid (TFA) in the head-to-tail elution mode, the target compounds were separated from co-extracted polyphenolics and subsequently isolated in a second run (tert-butyl-methyl ether/acetonitrile/n-butanol/water, 2:2:1:5 (v/v/v/v) and 0.5% TFA; tail-to-head elution mode). The concomitant flavonoid quercetin 3-glucuronide was also isolated with the present method. The compounds were characterized by 1H NMR spectroscopy, by LC/electrospray ionization (ESI)-MS/MS in the negative ionization mode, and by UV spectroscopy. A purity of 97.0% (2.0% Z-isomer) for caftaric acid, 97.2% (4.8% Z-isomer) for coutaric acid, and 90.4% (13% Z-isomer) for fertaric acid was obtained from 10 g of grape pomace with yields of 62, 48 and 23%, respectively. Caftaric and coutaric acids may be used for in vitro and in vivo studies and as reference substances for analytical purposes.
Collapse
Affiliation(s)
- Thorsten Maier
- Institute of Food Technology, Section Plant Foodstuff Technology, Hohenheim University, August-von-Hartmann-Strasse 3, D-70599 Stuttgart, Germany
| | | | | | | | | | | | | | | |
Collapse
|
187
|
Keating E, Lemos C, Azevedo I, Martel F. Characteristics of thiamine uptake by the BeWo human trophoblast cell line. BMB Rep 2006; 39:383-93. [PMID: 16889681 DOI: 10.5483/bmbrep.2006.39.4.383] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Little is known concerning the mechanisms responsible for the transplacental transfer of thiamine. So, the aim of this work was to characterize the placental uptake of thiamine from the maternal circulation, by determining the characteristics of 3H-thiamine uptake by a human trophoblast cell line (BeWo). Uptake of (3)H-thiamine (50-100 nM) by BeWo cells was: 1) temperature-dependent and energy-independent; 2) pH-dependent (uptake increased as the extracellular medium pH decreased); 3) Na(+)-dependent and Cl(-)-independent; 4) not inhibited by the thiamine structural analogs amprolium, oxythiamine and thiamine pyrophosphate; 5) inhibited by the unrelated organic cations guanidine, N-methylnicotinamide, tetraethylammonium, clonidine and cimetidine; 6) inhibited by the organic cation serotonin, and by two selective inhibitors of the serotonin plasmalemmal transporter (hSERT), fluoxetine and desipramine. We conclude that (3)H-thiamine uptake by BeWo cells seems to occur through a process distinct from thiamine transporter-1 (hThTr-1) and thiamine transporter-2 (hThTr-2). Rather, it seems to involve hSERT. Moreover, chronic (48 h) exposure of cells to caffeine (1 microM) stimulated and chronic exposure to xanthohumol and iso-xanthohumol (1 and 0.1 microM, respectively) inhibited (3)H-thiamine uptake, these effects being not mediated through modulation of the expression levels of either hThTr-1 or hSERT mRNA.
Collapse
Affiliation(s)
- Elisa Keating
- Department of Biochemistry (U38-FCT), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | | | | | | |
Collapse
|
188
|
Fumagalli F, Rossoni M, Iriti M, di Gennaro A, Faoro F, Borroni E, Borgo M, Scienza A, Sala A, Folco G. From field to health: a simple way to increase the nutraceutical content of grape as shown by NO-dependent vascular relaxation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2006; 54:5344-9. [PMID: 16848515 DOI: 10.1021/jf0607157] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Polyphenolic grapevine components involved in plant resistance against pathogens possess various pharmacological properties that include nitric oxide (NO)-dependent vasodilation and anti-inflammatory and free radical scavenging activities, which may explain the protective effect of moderate red wine consumption against cardiovascular disease. The aim of this work was (a) to verify the possibility that preharvest treatments of grapevine with a plant activator, benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH), could lead to an enriched nutraceutical potential of wine and (b) to characterize the profile of metabolites responsible for pharmacological activity. Plant spraying at the end of veraison, with a water suspension of BTH (0.3 mM), led to increased whole anthocyanin content as confirmed by HPLC comparative analysis. Extracts from berry skins of BTH-treated grapevines caused NO-dependent vasorelaxation, with a concentration-response curve that was significantly shifted to the left of the control non-BTH-treated curve. Moreover, 1:1000 dilutions of berry extracts from BTH-treated plants significantly increased basal production of guanosine 3',5'-cyclic monophosphate (cGMP) in human vascular endothelial cells when compared to the corresponding extracts of untreated plants. These results show that BTH treatment increases anthocyanin content of grape extracts, as well as their ability to induce NO-mediated vasoprotection. No increase of anthocyanin content was observed in the wine extracts from BTH-treated vines. It is concluded that BTH treatment could be exploited to increase the nutraceutical potential of grapes.
Collapse
Affiliation(s)
- Francesca Fumagalli
- Dipartimento di Scienze Farmacologiche, and Istituto di Patologia Vegetale, Università di Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Negrão MR, Keating E, Faria A, Azevedo I, Martins MJ. Acute effect of tea, wine, beer, and polyphenols on ecto-alkaline phosphatase activity in human vascular smooth muscle cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2006; 54:4982-8. [PMID: 16819906 DOI: 10.1021/jf060505u] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Alkaline phosphatase (ALP) is an ecto-enzyme widely distributed across species. It modulates a series of transmembranar transport systems, has an important role in bone mineralization, and can also be involved in vascular calcification. Polyphenol-rich diets seem to have protective effects on human health, namely, in the prevention of cardiovascular diseases. We aimed to investigate the effects of polyphenols and polyphenol-rich beverages upon membranar alkaline phosphatase (ecto-ALP) activity in intact human vascular smooth muscle cells (AALTR). The ecto-ALP activity was determined at pH 7.8, with p-nitrophenyl phosphate as the substrate, by absorbance spectrophotometry at 410 nm. Cell viability was assessed by the lactate dehydrogenase (LDH) method, and the polyphenol content of beverages was assessed using the Folin-Ciocalteu reagent. All polyphenols tested inhibited ecto-ALP activity, in a concentration-dependent way. Teas, wines, and beers also inhibited ecto-ALP activity, largely according to their polyphenol content. All tested compounds and beverages improved or did not change AALTR cell viability. Stout beer was an exception to the described behavior. Although more studies must be done, the inhibition of AALTR ecto-ALP activity by polyphenolic compounds and polyphenol-containing beverages may contribute to their cardiovascular protective effects.
Collapse
Affiliation(s)
- Maria R Negrão
- Department of Biochemistry, Faculty of Medicine (U38-FCT), University of Porto, 4200-319 Porto, Portugal
| | | | | | | | | |
Collapse
|
190
|
Lazzè MC, Pizzala R, Perucca P, Cazzalini O, Savio M, Forti L, Vannini V, Bianchi L. Anthocyanidins decrease endothelin-1 production and increase endothelial nitric oxide synthase in human endothelial cells. Mol Nutr Food Res 2006; 50:44-51. [PMID: 16288501 DOI: 10.1002/mnfr.200500134] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Epidemiological and intervention studies correlate anthocyanin-rich beverages and a low incidence of coronary heart diseases. Since endothelin-1 (ET-1) and nitric oxide (NO) produced by endothelial NO synthase (eNOS) are vascular tension regulators secreted by endothelial cells, we studied the influence of two anthocyanidins, namely cyanidin (CY) and delphinidin (DP), on the regulation of ET-1 and eNOS in cultured human umbilical vein endothelial cells (HUVECs). Aglycon anthocyanidin forms, such as CY and DP, may be present in vivo after the first deglycosylation step occurring in the jejunum and in the liver. DP showed a major action compared to CY inducing a significant dose-dependent inhibitory effect on both protein and mRNA levels of ET-1. CY and DP both increased the protein level of eNOS, but DP showed the major effect raising eNOS protein in a dose-dependent manner. To correlate the vasoprotective effect of CY and DP with their antioxidant activity, we analysed also the antioxidant effect of anthocyanidins both in vitro and in HUVECs. In particular, we examined the effect of anthocyanidins on endothelial heme oxygenase-1 (HO-1), an inducible stress protein. In all tests, DP showed a higher antioxidant activity than CY. Finally, the antiproliferative effect induced by DP was detected in HUVECs. DP and CY differ in the number and position of hydroxyl groups in their structure; therefore, the greater biological activity by DP, compared with CY, seems to be due to the presence of the three hydroxyl groups on the B ring in the molecular structure of DP.
Collapse
Affiliation(s)
- Maria Claudia Lazzè
- Dipartimento di Medicina Sperimentale, Sez. Patologia Generale, Università di Pavia, Pavia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
191
|
Iriti M, Faoro F. Grape phytochemicals: a bouquet of old and new nutraceuticals for human health. Med Hypotheses 2006; 67:833-8. [PMID: 16759816 DOI: 10.1016/j.mehy.2006.03.049] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Accepted: 03/13/2006] [Indexed: 10/24/2022]
Abstract
Health benefits associated with Mediterranean diets are due to the significantly large intake of functional plant foods and beverages, i.e., fruits, vegetables, cereals, legumes, nuts, wine, beer, and olive oil, containing a great array of bioactive phytochemicals or nutraceutical compounds. Therefore, the low risk of chronic diseases, such as coronary hearth disease and certain cancers, observed in some population groups, results from a diversified eating style, either in term of foods and food components. The paradigm of the relationship between the chemical diversity of a particular food and the array of its biological activities may be symbolized by grape. Despite the extensive knowledge about phenylpropanoids, principally polyphenols (stilbenes and anthocyanins) and condensed tannins (proanthocyanidins), in grape and wine, little it is known about the other compounds, such as tetrahydro-beta-carbolines. Recently, it has been attached importance to the dietary indoleamines, melatonin, and serotonin, in different plant foods, including grape, thus further supporting the hypothesis that health benefits, associated with Mediterranean dietary style, are due to plant food chemical diversity.
Collapse
Affiliation(s)
- Marcello Iriti
- Istituto di Patologia Vegetale Università di Milano and CNR, Dipartimento Agroalimentare, Istituto di Virologia Vegetale, Via Celoria, 2, 20133 Milano, Italy.
| | | |
Collapse
|
192
|
Wang Z, Chen Y, Labinskyy N, Hsieh TC, Ungvari Z, Wu JM. Regulation of proliferation and gene expression in cultured human aortic smooth muscle cells by resveratrol and standardized grape extracts. Biochem Biophys Res Commun 2006; 346:367-76. [PMID: 16759640 DOI: 10.1016/j.bbrc.2006.05.156] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Accepted: 05/24/2006] [Indexed: 11/15/2022]
Abstract
Epidemiologic studies suggest that low to moderate consumption of red wine is inversely associated with the risk of coronary heart disease; the protection is in part attributed to grape-derived polyphenols, notably trans-resveratrol, present in red wine. It is not clear whether the cardioprotective effects of resveratrol can be reproduced by standardized grape extracts (SGE). In the present studies, we determined, using cultured human aortic smooth muscle cells (HASMC), growth and specific gene responses to resveratrol and SGE provided by the California Table Grape Commission. Suppression of HASMC proliferation by resveratrol was accompanied by a dose-dependent increase in the expression of tumor suppressor gene p53 and heat shock protein HSP27. Using resveratrol affinity chromatography and biochemical fractionation procedures, we showed by immunoblot analysis that treatment of HASMC with resveratrol increased the expression of quinone reductase I and II, and also altered their subcellular distribution. Growth of HASMC was significantly inhibited by 70% ethanolic SGE; however, gene expression patterns in various cellular compartments elicited in response to SGE were substantially different from those observed in resveratrol-treated cells. Further, SGE also differed from resveratrol in not being able to induce relaxation of rat carotid arterial rings. These results indicate that distinct mechanisms are involved in the regulation of HASMC growth and gene expression by SGE and resveratrol.
Collapse
Affiliation(s)
- Zhirong Wang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | |
Collapse
|
193
|
Heinrich U, Neukam K, Tronnier H, Sies H, Stahl W. Long-term ingestion of high flavanol cocoa provides photoprotection against UV-induced erythema and improves skin condition in women. J Nutr 2006; 136:1565-9. [PMID: 16702322 DOI: 10.1093/jn/136.6.1565] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dietary antioxidants contribute to endogenous photoprotection and are important for the maintenance of skin health. In the present study, 2 groups of women consumed either a high flavanol (326 mg/d) or low flavanol (27 mg/d) cocoa powder dissolved in 100 mL water for 12 wk. Epicatechin (61 mg/d) and catechin (20 mg/d) were the major flavanol monomers in the high flavanol drink, whereas the low flavanol drink contained 6.6 mg epicatechin and 1.6 mg catechin as the daily dose. Photoprotection and indicators of skin condition were assayed before and during the intervention. Following exposure of selected skin areas to 1.25 x minimal erythemal dose (MED) of radiation from a solar simulator, UV-induced erythema was significantly decreased in the high flavanol group, by 15 and 25%, after 6 and 12 wk of treatment, respectively, whereas no change occurred in the low flavanol group. The ingestion of high flavanol cocoa led to increases in blood flow of cutaneous and subcutaneous tissues, and to increases in skin density and skin hydration. Skin thickness was elevated from 1.11 +/- 0.11 mm at wk 0 to 1.24 +/- 0.13 mm at wk 12; transepidermal water loss was diminished from 8.7 +/- 3.7 to 6.3 +/- 2.2 g/(h x m2) within the same time frame. Neither of these variables was affected in the low flavanol cocoa group. Evaluation of the skin surface showed a significant decrease of skin roughness and scaling in the high flavanol cocoa group compared with those at wk 12. Dietary flavanols from cocoa contribute to endogenous photoprotection, improve dermal blood circulation, and affect cosmetically relevant skin surface and hydration variables.
Collapse
Affiliation(s)
- Ulrike Heinrich
- Institut für Experimentelle Dermatologie, Universität Witten-Herdecke, Germany
| | | | | | | | | |
Collapse
|
194
|
Jiménez JB, Orea JM, Ureña AG, Escribano P, Osa PLDL, Guadarrama A. Short anoxic treatments to enhance trans-resveratrol content in grapes and wine. Eur Food Res Technol 2006. [DOI: 10.1007/s00217-006-0329-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
195
|
Bazoti FN, Bergquist J, Markides KE, Tsarbopoulos A. Noncovalent interaction between amyloid-beta-peptide (1-40) and oleuropein studied by electrospray ionization mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2006; 17:568-75. [PMID: 16503156 DOI: 10.1016/j.jasms.2005.11.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Revised: 11/18/2005] [Accepted: 11/24/2005] [Indexed: 05/06/2023]
Abstract
Beta amyloid peptide (Abeta) is the major proteinaceous component of senile plaques formed in Alzheimer's disease (AD) brain. The aggregation of Abeta is associated with neurodegeneration, loss of cognitive ability, and premature death. It has been suggested that oxidative stress and generation of free radical species have implications in the fibrillation of Abeta and its subsequent neurotoxicity. For this reason, it is proposed that antioxidants may offer a protective or therapeutic alternative against amyloidosis. This study is the first report of the formation of the noncovalent complex between Abeta or its oxidized form and the natural derived antioxidant oleuropein (OE) by electrospray ionization mass spectrometry (ESI MS). ESI MS allowed the real time monitoring of the complex formation between Abeta, OE, and variants thereof. Several experimental conditions, such as elevated orifice potential, low pH values, presence of organic modifier, and ligand concentration were examined, to assess the specificity and the stability of the formed noncovalent complexes.
Collapse
Affiliation(s)
- Fotini N Bazoti
- Department of Pharmacy, Laboratory of Pharmaceutical Analysis, University of Patras, Rio, Greece
| | | | | | | |
Collapse
|
196
|
Buluc M, Demirel-Yilmaz E. Resveratrol decreases calcium sensitivity of vascular smooth muscle and enhances cytosolic calcium increase in endothelium. Vascul Pharmacol 2006; 44:231-7. [PMID: 16473048 DOI: 10.1016/j.vph.2005.12.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 03/29/2005] [Accepted: 12/30/2005] [Indexed: 11/29/2022]
Abstract
Resveratrol causes endothelium dependent and independent relaxation of vascular smooth muscle. This study investigated the mechanisms behind the effect of resveratrol on vascular tone. Resveratrol (0.1 mM) inhibited KCl-stimulated contractions in endothelium-denuded rat aorta and this inhibition was not reversed by tetraethylammonium (TEA) (5 mM), glyburide (3 microM), ouabain (0.1 mM), thapsigargin (1 microM), or indomethacin (10 microM). KCl (90 mM) increased the intracellular free calcium concentration ([Ca2+]i) in the isolated smooth muscle cells from the rat aorta and resveratrol (0.1 mM) did not inhibit the KCl-stimulated [Ca2+]i increase. The CaCl2 (0.1-100 microM) stimulated contractions were inhibited by resveratrol (0.1 mM) in the Triton X-100 skinned smooth muscle of the aorta. In heart valve endothelium, resveratrol (0.1 mM) augmented the acetylcholine (10 microM) stimulated [Ca2+]i increase. Resveratrol-induced augmentation of the acetylcholine-stimulated [Ca2+]i elevation was reversed by glyburide (3 microM), but not by TEA (5 mM). The present study indicated that resveratrol affected vascular smooth muscle and endothelium in different ways. Resveratrol decreased the Ca2+ sensitivity but did not affect the KCl-stimulated [Ca2+]i increase in the vascular smooth muscle. In the endothelial cells, resveratrol enhanced the agonist-stimulated [Ca2+]i increase that might trigger nitric oxide synthesis from endothelial cells.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Animals
- Aorta, Thoracic/cytology
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Calcium/metabolism
- Dose-Response Relationship, Drug
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- In Vitro Techniques
- Mitral Valve/cytology
- Mitral Valve/drug effects
- Mitral Valve/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Potassium Chloride/pharmacology
- Rats
- Rats, Wistar
- Resveratrol
- Stilbenes/pharmacology
- Vasoconstrictor Agents/pharmacology
- Vasodilation
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Mesut Buluc
- Department of Pharmacology and Clinical Pharmacology, Ankara University, School of Medicine, Sihhiye, Ankara 06100, Turkey
| | | |
Collapse
|
197
|
Rodrigo R, Bosco C. Oxidative stress and protective effects of polyphenols: comparative studies in human and rodent kidney. A review. Comp Biochem Physiol C Toxicol Pharmacol 2006; 142:317-327. [PMID: 16380298 DOI: 10.1016/j.cbpc.2005.11.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 11/05/2005] [Accepted: 11/06/2005] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) play a key role in the pathophysiological processes of a wide range of renal diseases. Thus, antioxidants are expected to decrease the vulnerability of the kidney to oxidative challenges. Polyphenols, particularly abundant in red wine, could act as ROS scavengers, iron chelators and enzyme modulators. In addition, chronic exposure to moderate amounts of ethanol results in increased activity of the renal antioxidant enzymes, further supporting a renoprotective effect of red wine based on its antioxidant properties. An enhancement of plasma antioxidant capacity following red wine consumption has been reported both in man and rodents, thereby providing a contributory factor to its renoprotective effect because the kidney is a highly perfused organ. Although phenol concentration of red wine does not influence the activity of antioxidant enzymes of the kidney, the concentration of these compounds is negatively correlated with tissue lipid peroxidation, assessed by thiobarbituric acid reactive substances, and positively correlated with the antioxidant capacity of plasma. Moreover, amelioration of myoglobinuric renal damage was found in rats following chronic exposure to flavonol-rich red wine. Also, pretreatment with resveratrol, or other red wine polyphenols, decreased kidney damage caused by ischaemia-reperfusion. The aim of the present review is to examine the pathophysiological basis of the renoprotective effect of red wine in man and rodents, based on functional, biochemical and ultrastructural evidence.
Collapse
Affiliation(s)
- Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Cleofina Bosco
- Morphology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
198
|
Silva JP, Areias FM, Proença FM, Coutinho OP. Oxidative stress protection by newly synthesized nitrogen compounds with pharmacological potential. Life Sci 2006; 78:1256-67. [PMID: 16253284 DOI: 10.1016/j.lfs.2005.06.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Accepted: 06/27/2005] [Indexed: 01/20/2023]
Abstract
In this study we used new nitrogen compounds obtained by organic synthesis whose structure predicted an antioxidant potential and then an eventual development as molecules of pharmacological interest in diseases involving oxidative stress. The compounds, identified as FMA4, FMA5, FMA7 and FMA8 differ in the presence of hydroxyl groups located in the C-3 and/or C-4 position of a phenolic unit, which is possibly responsible for their free radicals' buffering capacity. Data from the DPPH discoloration method confirm the high antiradical efficiency of the compounds. The results obtained with cellular models (L929 and PC12) show that they are not toxic and really protect from membrane lipid peroxidation induced by the ascorbate-iron oxidant pair. The level of protection correlates with the drug's lipophilic profile and is sometimes superior to trolox and equivalent to that observed for alpha-tocopherol. The compounds FMA4 and FMA7 present also a high protection from cell death evaluated in the presence of a staurosporine apoptotic stimulus. That protection results in a significant reduction of caspase-3 activity induced by staurosporine which by its turn seems to result from a protection observed in the membrane receptor pathway (caspase-8) together with a protection observed in the mitochondrial pathway (caspase-9). Taken together the results obtained with the new compounds, with linear chains, open up perspectives for their use as therapeutical agents, namely as antioxidants and protectors of apoptotic pathways. On the other hand the slight pro-oxidant profile obtained with the cyclic structures suggests a different therapeutic potential that is under current investigation.
Collapse
Affiliation(s)
- João P Silva
- Department of Biology, Center of Biology, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | | | | | | |
Collapse
|
199
|
Rakici O, Kiziltepe U, Coskun B, Aslamaci S, Akar F. Effects of resveratrol on vascular tone and endothelial function of human saphenous vein and internal mammary artery. Int J Cardiol 2006; 105:209-15. [PMID: 16243115 DOI: 10.1016/j.ijcard.2005.01.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Revised: 01/04/2005] [Accepted: 01/06/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND The polyphenolic compound resveratrol presented in red wine has potent cardiovascular effect in animal. Here, we investigated the ability of resveratrol to relax human coronary bypass grafts, saphenous vein and internal mammary artery and also its effect on their endothelial reactivity. METHODS Vascular rings were obtained from 38 male patients undergoing coronary artery bypass operation. The relaxant effects of resveratrol (10-70 microM) and acetylcholine (10(-8)-10(-4) M) were examined on precontracted saphenous vein and internal mammary artery rings. RESULTS Resveratrol, at concentration of 70 microM caused relaxations of 34.2+/-5.7% in saphenous vein and 35.2+/-5.4% in internal mammary artery. Endothelium removal and l-NOARG (nitric oxide synthase inhibitor, 10(-4) M) pretreatment almost completely inhibited the relaxation to resveratrol in internal mammary artery but partially in saphenous vein rings. Indomethacin (cyclooxygenase inhibitor, 10(-5) M) slightly, but not significantly enhanced the relaxation to resveratrol in both vessels. The endothelium-dependent relaxations to acetylcholine were significantly improved in the presence of resveratrol of 20 microM in both grafts (E(max): 33.8+/-3.7% versus 46.8+/-4% in saphenous vein n=9; p<0.05; 54. 4+/-5.3% versus 69.3+/-5.4% in internal mammary artery, n=8, p<0.05). The relaxations to acetylcholine were fully eliminated by combination of resveratrol with l-NOARG (10(-4) M) in both vessels. CONCLUSIONS Resveratrol produced mainly endothelium-dependent and nitric oxide-mediated vasodilation in human internal mammary artery but partially in saphenous vein rings and improved their endothelial reactivity. This may have a therapeutic potential in cardiovascular diseases.
Collapse
Affiliation(s)
- Ozlem Rakici
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | | | | | | | | |
Collapse
|
200
|
Girotti S, Fini F, Bolelli L, Savini L, Sartini E, Arfelli G. Chemiluminescent determination of total antioxidant capacity during winemaking. LUMINESCENCE 2006; 21:233-8. [PMID: 16791820 DOI: 10.1002/bio.912] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The total antioxidant capacity (TAC) of five different wines (four red and one white) was determined in five different steps of winemaking carried out in a commercial wine cellar by a chemiluminescence (CL) assay. The CL method is suitable to determine the antioxidant capacity of beverages, and preliminary trials showed that the TAC immediately after the bottle was opened was greater than the day after (about 25% decrease). Immediate analysis or a correct sample storage is therefore necessary. The wines were characterized by different levels of total phenolics and TAC: these differences were related to grape composition and winemaking technologies. The TAC values were the highest immediately after devatting. The TAC suffered the highest decrease (30-50%) after the clarification procedure, which may be due to the fining agents used and to oxygen contact, then remained more or less constant in the subsequent steps.
Collapse
Affiliation(s)
- Stefano Girotti
- Institute of Chemical Sciences, University of Bologna, via San Donato 15, 40127 Bologna, Italy.
| | | | | | | | | | | |
Collapse
|