151
|
Du Y, Cao L, Li X, Zhu T, Yan R, Dong WF, Li L. Preparation and application of high-brightness red carbon quantum dots for pH and oxidized L-glutathione dual response. Analyst 2023; 148:2375-2386. [PMID: 37129055 DOI: 10.1039/d3an00383c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Carbon dots (CDs) with red fluorescence emission are highly desirable for use in bioimaging and trace- substance detection, with potential applications in biotherapy, photothermal therapy, and tumor visualization. Most CDs emit green or blue fluorescence, thus limiting their applicability. We report a novel fluorescent detection platform based on high-brightness red fluorescence emission carbon dots (R-CDs) co-doped with nitrogen and bromine, which exhibit pH and oxidized L-glutathione (GSSG) dual-responsive characteristics. The absolute quantum yield of the R-CDs was as high as 11.93%. We discovered that the R-CDs were able to detect acidic pH in live cells and zebrafish owing to protonation and deprotonation. In addition, GSSG was detected in vitro over a broad linear range (8-200 μM) using the R-CDs with excitation-independent emission. Furthermore, cell imaging and bioimaging experiments demonstrated that the R-CDs were highly cytocompatible and could be used as fluorescent probes to target lysosomes and nucleolus. These studies highlight the promising prospects of R-CDs as biosensing tools for bioimaging and trace-substance detection applications.
Collapse
Affiliation(s)
- Yuwei Du
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China.
| | - Lei Cao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China.
| | - Xinlu Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China.
| | - Tongtong Zhu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China.
| | - Ruhong Yan
- Department of Clinical Laboratory, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, China.
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China.
| | - Wen-Fei Dong
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China.
| | - Li Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China.
- Jinan Guokeyigong Science and Technology Development Co., Ltd, Jinan, 250104, China.
| |
Collapse
|
152
|
Audero MM, Carvalho TMA, Ruffinatti FA, Loeck T, Yassine M, Chinigò G, Folcher A, Farfariello V, Amadori S, Vaghi C, Schwab A, Reshkin SJ, Cardone RA, Prevarskaya N, Fiorio Pla A. Acidic Growth Conditions Promote Epithelial-to-Mesenchymal Transition to Select More Aggressive PDAC Cell Phenotypes In Vitro. Cancers (Basel) 2023; 15:cancers15092572. [PMID: 37174038 PMCID: PMC10177299 DOI: 10.3390/cancers15092572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/28/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is characterized by an acidic microenvironment, which contributes to therapeutic failure. So far there is a lack of knowledge with respect to the role of the acidic microenvironment in the invasive process. This work aimed to study the phenotypic and genetic response of PDAC cells to acidic stress along the different stages of selection. To this end, we subjected the cells to short- and long-term acidic pressure and recovery to pHe 7.4. This treatment aimed at mimicking PDAC edges and consequent cancer cell escape from the tumor. The impact of acidosis was assessed for cell morphology, proliferation, adhesion, migration, invasion, and epithelial-mesenchymal transition (EMT) via functional in vitro assays and RNA sequencing. Our results indicate that short acidic treatment limits growth, adhesion, invasion, and viability of PDAC cells. As the acid treatment progresses, it selects cancer cells with enhanced migration and invasion abilities induced by EMT, potentiating their metastatic potential when re-exposed to pHe 7.4. The RNA-seq analysis of PANC-1 cells exposed to short-term acidosis and pHe-selected recovered to pHe 7.4 revealed distinct transcriptome rewiring. We describe an enrichment of genes relevant to proliferation, migration, EMT, and invasion in acid-selected cells. Our work clearly demonstrates that upon acidosis stress, PDAC cells acquire more invasive cell phenotypes by promoting EMT and thus paving the way for more aggressive cell phenotypes.
Collapse
Affiliation(s)
- Madelaine Magalì Audero
- U1003-PHYCELL-Laboratoire de Physiologie Cellulaire, Inserm, University of Lille, Villeneuve d'Ascq, 59000 Lille, France
- Laboratory of Cellular and Molecular Angiogenesis, Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| | | | - Federico Alessandro Ruffinatti
- Laboratory of Cellular and Molecular Angiogenesis, Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| | - Thorsten Loeck
- Institute of Physiology II, University of Münster, 48149 Münster, Germany
| | - Maya Yassine
- U1003-PHYCELL-Laboratoire de Physiologie Cellulaire, Inserm, University of Lille, Villeneuve d'Ascq, 59000 Lille, France
| | - Giorgia Chinigò
- Laboratory of Cellular and Molecular Angiogenesis, Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| | - Antoine Folcher
- U1003-PHYCELL-Laboratoire de Physiologie Cellulaire, Inserm, University of Lille, Villeneuve d'Ascq, 59000 Lille, France
| | - Valerio Farfariello
- U1003-PHYCELL-Laboratoire de Physiologie Cellulaire, Inserm, University of Lille, Villeneuve d'Ascq, 59000 Lille, France
| | - Samuele Amadori
- Laboratory of Cellular and Molecular Angiogenesis, Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| | - Chiara Vaghi
- Laboratory of Cellular and Molecular Angiogenesis, Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| | - Albrecht Schwab
- Institute of Physiology II, University of Münster, 48149 Münster, Germany
| | - Stephan J Reshkin
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70126 Bari, Italy
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70126 Bari, Italy
| | - Natalia Prevarskaya
- U1003-PHYCELL-Laboratoire de Physiologie Cellulaire, Inserm, University of Lille, Villeneuve d'Ascq, 59000 Lille, France
| | - Alessandra Fiorio Pla
- U1003-PHYCELL-Laboratoire de Physiologie Cellulaire, Inserm, University of Lille, Villeneuve d'Ascq, 59000 Lille, France
- Laboratory of Cellular and Molecular Angiogenesis, Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| |
Collapse
|
153
|
Podyacheva E, Toropova Y. The Role of NAD+, SIRTs Interactions in Stimulating and Counteracting Carcinogenesis. Int J Mol Sci 2023; 24:ijms24097925. [PMID: 37175631 PMCID: PMC10178434 DOI: 10.3390/ijms24097925] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
The World Health Organization has identified oncological diseases as one of the most serious health concerns of the current century. Current research on oncogenesis is focused on the molecular mechanisms of energy-biochemical reprogramming in cancer cell metabolism, including processes contributing to the Warburg effect and the pro-oncogenic and anti-oncogenic roles of sirtuins (SIRTs) and poly-(ADP-ribose) polymerases (PARPs). However, a clear understanding of the interaction between NAD+, SIRTs in cancer development, as well as their effects on carcinogenesis, has not been established, and literature data vary greatly. This work aims to provide a summary and structure of the available information on NAD+, SIRTs interactions in both stimulating and countering carcinogenesis, and to discuss potential approaches for pharmacological modulation of these interactions to achieve an anticancer effect.
Collapse
Affiliation(s)
- Ekaterina Podyacheva
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341 Saint-Petersburg, Russia
| | - Yana Toropova
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341 Saint-Petersburg, Russia
| |
Collapse
|
154
|
Ganjoo S, Gupta P, Corbali HI, Nanez S, Riad TS, Duong LK, Barsoumian HB, Masrorpour F, Jiang H, Welsh JW, Cortez MA. The role of tumor metabolism in modulating T-Cell activity and in optimizing immunotherapy. Front Immunol 2023; 14:1172931. [PMID: 37180129 PMCID: PMC10169689 DOI: 10.3389/fimmu.2023.1172931] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
Immunotherapy has revolutionized cancer treatment and revitalized efforts to harness the power of the immune system to combat a variety of cancer types more effectively. However, low clinical response rates and differences in outcomes due to variations in the immune landscape among patients with cancer continue to be major limitations to immunotherapy. Recent efforts to improve responses to immunotherapy have focused on targeting cellular metabolism, as the metabolic characteristics of cancer cells can directly influence the activity and metabolism of immune cells, particularly T cells. Although the metabolic pathways of various cancer cells and T cells have been extensively reviewed, the intersections among these pathways, and their potential use as targets for improving responses to immune-checkpoint blockade therapies, are not completely understood. This review focuses on the interplay between tumor metabolites and T-cell dysfunction as well as the relationship between several T-cell metabolic patterns and T-cell activity/function in tumor immunology. Understanding these relationships could offer new avenues for improving responses to immunotherapy on a metabolic basis.
Collapse
Affiliation(s)
- Shonik Ganjoo
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Priti Gupta
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Halil Ibrahim Corbali
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Medical Pharmacology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| | - Selene Nanez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Thomas S. Riad
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Lisa K. Duong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hampartsoum B. Barsoumian
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Fatemeh Masrorpour
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hong Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - James W. Welsh
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Maria Angelica Cortez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
155
|
Jiang Y, Wu Q, Hou M, Hai W, Zhang M, Li B, Zhang C. pH-sensitive gold nanoclusters labeling with radiometallic nuclides for diagnosis and treatment of tumor. Mater Today Bio 2023; 19:100578. [PMID: 36880082 PMCID: PMC9984684 DOI: 10.1016/j.mtbio.2023.100578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
The acidic microenvironment is one of the remarkable features of tumor and is also a reliable target for tumor theranostics. Ultrasmall gold nanoclusters (AuNCs) have good in vivo behaviors, such as non-retention in liver and spleen, renal clearance, and high tumor permeability, and held great potential for developing novel radiopharmaceuticals. Herein, we developed pH-sensitive ultrasmall gold nanoclusters by introducing quaternary ammonium group (TMA) or tertiary amine motifs (C6A) onto glutathione-coated AuNCs (TMA/GSH@AuNCs, C6A-GSH@AuNCs). Density functional theory simulation revealed that radiometal 89Sr, 223Ra, 44Sc, 90Y, 177Lu, 89Zr, 99mTc, 188Re, 106Rh, 64Cu, 68Ga, and 113Sn could stably dope into AuNCs. Both TMA/GSH@AuNCs and C6A-GSH@AuNCs could assemble into large clusters responding to mild acid condition, with C6A-GSH@AuNCs being more effective. To assess their performance for tumor detection and therapy, TMA/GSH@AuNCs and C6A-GSH@AuNCs were labeled with 68Ga, 64Cu, 89Zr and 89Sr, respectively. PET imaging of 4T1 tumor-bearing mice revealed TMA/GSH@AuNCs and C6A-GSH@AuNCs were mainly cleared through kidney, and C6A-GSH@AuNCs accumulated in tumors more efficiently. As a result, 89Sr-labeled C6A-GSH@AuNCs eradicated both the primary tumors and their lung metastases. Therefore, our study suggested that GSH-coated AuNCs held great promise for developing novel radiopharmaceuticals that specifically target the tumor acidic microenvironment for tumor diagnosis and treatments.
Collapse
|
156
|
Qi Q, Fox MS, Lim H, Sullivan R, Li A, Bellyou M, Desjardins L, McClennan A, Bartha R, Hoffman L, Scholl TJ, Lee TY, Thiessen JD. Glucose Infusion Induced Change in Intracellular pH and Its Relationship with Tumor Glycolysis in a C6 Rat Model of Glioblastoma. Mol Imaging Biol 2023; 25:271-282. [PMID: 36418769 DOI: 10.1007/s11307-022-01726-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/12/2022] [Accepted: 03/25/2022] [Indexed: 11/26/2022]
Abstract
INTRODUCTION The reliance on glycolytic metabolism is a hallmark of tumor metabolism. Excess acid and protons are produced, leading to an acidic tumor environment. Therefore, we explored the relationship between the tumor glycolytic metabolism and tissue pH by comparing 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) and hyperpolarized [1-13C]pyruvate MR spectroscopy imaging (MRSI) to chemical exchange saturation transfer (CEST) MRI measurements of tumor pH. METHODS 106 C6 glioma cells were implanted in the brains of male Wistar rats (N = 11) using stereotactic surgery. A 60-min PET acquisition after a bolus of FDG was performed at 11-13 days post implantation, and standardized uptake value (SUV) was calculated. CEST measurements were acquired the following day before and during constant infusion of glucose solution. Tumor intracellular pH (pHi) was evaluated using amine and amide concentration-independent detection (AACID) CEST MRI. The change of pHi (∆pHi) was calculated as the difference between pHi pre- and during glucose infusion. Rats were imaged immediately with hyperpolarized [1-13C]pyruvate MRSI. Regional maps of the ratio of Lac:Pyr were acquired. The correlations between SUV, Lac:Pyr ratio, and ∆pHi were evaluated using Pearson's correlation. RESULTS A decrease of 0.14 in pHi was found after glucose infusion in tumor region. Significant correlations between tumor glycolysis measurements of Lac:Pyr and ∆pHi within the tumor (ρ = 0.83, P = 0.01) and peritumoral region (ρ = 0.76, P = 0.028) were observed. No significant correlations were found between tumor SUV and ∆pHi within the tumor (ρ = - 0.45, P = 0.17) and peritumor regions (ρ = - 0.6, P = 0.051). CONCLUSION AACID detected the changes in pHi induced by glucose infusion. Significant correlations between tumor glycolytic measurement of Lac:Pyr and tumoral and peritumoral pHi and ∆pHi suggest the intrinsic relationship between tumor glycolytic metabolism and the tumor pH environment as well as the peritumor pH environment.
Collapse
Affiliation(s)
- Qi Qi
- Department of Medical Biophysics, The University of Western Ontario, London, ON, N6A 3K7, Canada.,Molecular Imaging Program, The University of Western Ontario, London, ON, N6A 3K7, Canada.,Department of Physics and Astronomy, The University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Matthew S Fox
- Department of Physics and Astronomy, The University of Western Ontario, London, ON, N6A 3K7, Canada.,Imaging Program, Lawson Health Research Institute, London, ON, N6A 4V2, Canada
| | - Heeseung Lim
- Department of Medical Biophysics, The University of Western Ontario, London, ON, N6A 3K7, Canada.,Robarts Research Institute, The University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Rebecca Sullivan
- Molecular Imaging Program, The University of Western Ontario, London, ON, N6A 3K7, Canada.,Imaging Program, Lawson Health Research Institute, London, ON, N6A 4V2, Canada.,Department of Pathology, The University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Alex Li
- Robarts Research Institute, The University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Miranda Bellyou
- Robarts Research Institute, The University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Lise Desjardins
- Imaging Program, Lawson Health Research Institute, London, ON, N6A 4V2, Canada
| | - Andrew McClennan
- Department of Medical Biophysics, The University of Western Ontario, London, ON, N6A 3K7, Canada.,Imaging Program, Lawson Health Research Institute, London, ON, N6A 4V2, Canada
| | - Robert Bartha
- Department of Medical Biophysics, The University of Western Ontario, London, ON, N6A 3K7, Canada.,Molecular Imaging Program, The University of Western Ontario, London, ON, N6A 3K7, Canada.,Robarts Research Institute, The University of Western Ontario, London, ON, N6A 3K7, Canada.,Department of Medical Imaging, The University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Lisa Hoffman
- Department of Medical Biophysics, The University of Western Ontario, London, ON, N6A 3K7, Canada.,Molecular Imaging Program, The University of Western Ontario, London, ON, N6A 3K7, Canada.,Imaging Program, Lawson Health Research Institute, London, ON, N6A 4V2, Canada.,Department of Pathology, The University of Western Ontario, London, ON, N6A 3K7, Canada.,Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Timothy J Scholl
- Department of Medical Biophysics, The University of Western Ontario, London, ON, N6A 3K7, Canada.,Molecular Imaging Program, The University of Western Ontario, London, ON, N6A 3K7, Canada.,Imaging Program, Lawson Health Research Institute, London, ON, N6A 4V2, Canada.,Ontario Institute for Cancer Research, Toronto, ON, M5G 0A3, Canada
| | - Ting-Yim Lee
- Department of Medical Biophysics, The University of Western Ontario, London, ON, N6A 3K7, Canada.,Molecular Imaging Program, The University of Western Ontario, London, ON, N6A 3K7, Canada.,Imaging Program, Lawson Health Research Institute, London, ON, N6A 4V2, Canada.,Robarts Research Institute, The University of Western Ontario, London, ON, N6A 3K7, Canada.,Department of Medical Imaging, The University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Jonathan D Thiessen
- Department of Medical Biophysics, The University of Western Ontario, London, ON, N6A 3K7, Canada. .,Molecular Imaging Program, The University of Western Ontario, London, ON, N6A 3K7, Canada. .,Imaging Program, Lawson Health Research Institute, London, ON, N6A 4V2, Canada. .,Department of Medical Imaging, The University of Western Ontario, London, ON, N6A 3K7, Canada.
| |
Collapse
|
157
|
West J, Robertson-Tessi M, Anderson ARA. Agent-based methods facilitate integrative science in cancer. Trends Cell Biol 2023; 33:300-311. [PMID: 36404257 PMCID: PMC10918696 DOI: 10.1016/j.tcb.2022.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022]
Abstract
In this opinion, we highlight agent-based modeling as a key tool for exploration of cell-cell and cell-environment interactions that drive cancer progression, therapeutic resistance, and metastasis. These biological phenomena are particularly suited to be captured at the cell-scale resolution possible only within agent-based or individual-based mathematical models. These modeling approaches complement experimental work (in vitro and in vivo systems) through parameterization and data extrapolation but also feed forward to drive new experiments that test model-generated predictions.
Collapse
Affiliation(s)
- Jeffrey West
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Mark Robertson-Tessi
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Alexander R A Anderson
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.
| |
Collapse
|
158
|
Czaplinska D, Ialchina R, Andersen HB, Yao J, Stigliani A, Dannesboe J, Flinck M, Chen X, Mitrega J, Gnosa SP, Dmytriyeva O, Alves F, Napp J, Sandelin A, Pedersen SF. Crosstalk between tumor acidosis, p53 and extracellular matrix regulates pancreatic cancer aggressiveness. Int J Cancer 2023; 152:1210-1225. [PMID: 36408933 PMCID: PMC10108304 DOI: 10.1002/ijc.34367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/14/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive malignancy with minimal treatment options and a global rise in prevalence. PDAC is characterized by frequent driver mutations including KRAS and TP53 (p53), and a dense, acidic tumor microenvironment (TME). The relation between genotype and TME in PDAC development is unknown. Strikingly, when wild type (WT) Panc02 PDAC cells were adapted to growth in an acidic TME and returned to normal pH to mimic invasive cells escaping acidic regions, they displayed a strong increase of aggressive traits such as increased growth in 3-dimensional (3D) culture, adhesion-independent colony formation and invasive outgrowth. This pattern of acidosis-induced aggressiveness was observed in 3D spheroid culture as well as upon organotypic growth in matrigel, collagen-I and combination thereof, mimicking early and later stages of PDAC development. Acid-adaptation-induced gain of cancerous traits was further increased by p53 knockout (KO), but only in specific extracellular matrix (ECM) compositions. Akt- and Transforming growth factor-β (TGFβ) signaling, as well as expression of the Na+ /H+ exchanger NHE1, were increased by acid adaptation. Whereas Akt inhibition decreased spheroid growth regardless of treatment and genotype, stimulation with TGFβI increased growth of WT control spheroids, and inhibition of TGFβ signaling tended to limit growth under acidic conditions only. Our results indicate that a complex crosstalk between tumor acidosis, ECM composition and genotype contributes to PDAC development. The findings may guide future strategies for acidosis-targeted therapies.
Collapse
Affiliation(s)
- Dominika Czaplinska
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Renata Ialchina
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Henriette Berg Andersen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jiayi Yao
- Section for Computational and RNA Biology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Arnaud Stigliani
- Section for Computational and RNA Biology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Johs Dannesboe
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Mette Flinck
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Xiaoming Chen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jakub Mitrega
- Max-Planck-Institute for Multidisciplinary Sciences, Goettingen, Germany.,Institute for Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany
| | - Sebastian Peter Gnosa
- Biotech Research and Innovation Centre (BRIC), Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Oksana Dmytriyeva
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Frauke Alves
- Max-Planck-Institute for Multidisciplinary Sciences, Goettingen, Germany.,Institute for Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany.,Clinic of Haematology and Medical Oncology, University Medical Center Goettingen, Goettingen, Germany
| | - Joanna Napp
- Max-Planck-Institute for Multidisciplinary Sciences, Goettingen, Germany.,Institute for Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany.,Clinic of Haematology and Medical Oncology, University Medical Center Goettingen, Goettingen, Germany
| | - Albin Sandelin
- Section for Computational and RNA Biology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Stine Falsig Pedersen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
159
|
Bashiri G, Padilla MS, Swingle KL, Shepherd SJ, Mitchell MJ, Wang K. Nanoparticle protein corona: from structure and function to therapeutic targeting. LAB ON A CHIP 2023; 23:1432-1466. [PMID: 36655824 PMCID: PMC10013352 DOI: 10.1039/d2lc00799a] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/29/2022] [Indexed: 05/31/2023]
Abstract
Nanoparticle (NP)-based therapeutics have ushered in a new era in translational medicine. However, despite the clinical success of NP technology, it is not well-understood how NPs fundamentally change in biological environments. When introduced into physiological fluids, NPs are coated by proteins, forming a protein corona (PC). The PC has the potential to endow NPs with a new identity and alter their bioactivity, stability, and destination. Additionally, the conformation of proteins is sensitive to their physical and chemical surroundings. Therefore, biological factors and protein-NP-interactions can induce changes in the conformation and orientation of proteins in vivo. Since the function of a protein is closely connected to its folded structure, slight differences in the surrounding environment as well as the surface characteristics of the NP materials may cause proteins to lose or gain a function. As a result, this can alter the downstream functionality of the NPs. This review introduces the main biological factors affecting the conformation of proteins associated with the PC. Then, four types of NPs with extensive utility in biomedical applications are described in greater detail, focusing on the conformation and orientation of adsorbed proteins. This is followed by a discussion on the instances in which the conformation of adsorbed proteins can be leveraged for therapeutic purposes, such as controlling protein conformation in assembled matrices in tissue, as well as controlling the PC conformation for modulating immune responses. The review concludes with a perspective on the remaining challenges and unexplored areas at the interface of PC and NP research.
Collapse
Affiliation(s)
- Ghazal Bashiri
- Department of Bioengineering, Temple University, Philadelphia, PA 19122, USA.
| | - Marshall S Padilla
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kelsey L Swingle
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah J Shepherd
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karin Wang
- Department of Bioengineering, Temple University, Philadelphia, PA 19122, USA.
| |
Collapse
|
160
|
Frost CJ, Ramirez-Mata A, Khattri RB, Merritt ME, Frost SC. Effects of β-caryophyllene and oxygen availability on cholesterol and fatty acids in breast cancer cells. PLoS One 2023; 18:e0281396. [PMID: 36893152 PMCID: PMC9997903 DOI: 10.1371/journal.pone.0281396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/21/2023] [Indexed: 03/10/2023] Open
Abstract
Hypoxia is a common feature of most solid tumors, one that favors tumor progression and limits treatment effectiveness. Targeting hypoxia has long been a goal in cancer therapy, by identifying factors that reverse or ameliorate the effects of hypoxia on cancer cells. We, and others, have shown that β-caryophyllene (BCP) exhibits anti-proliferative properties in cancer cells. We have further shown that non-cytotoxic concentrations of BCP affect cholesterol and lipid biosynthesis in hypoxic hBrC cells at both transcriptional and translational levels. This led us to hypothesize that BCP may reverse the hypoxic phenotype in hBrC cells. To test this, we determined the effect of BCP on hypoxic sensitive pathways, including oxygen consumption, glycolysis, oxidative stress, cholesterol and fatty acid biosynthesis, and ERK activation. While each of these studies revealed new information on the regulation by hypoxia and BCP, only the lipidomic studies showed reversal of hypoxic-dependent effects by BCP. These later studies showed that hypoxia-treated samples lowered monounsaturated fatty acid levels, shifting the saturation ratios of the fatty acid pools. This signature was ameliorated by sub-lethal concentrations of BCP, possibly through an effect on the C:16 fatty acid saturation ratios. This is consistent with BCP-induced upregulation of the stearoyl-CoA desaturase (SCD) gene, observed previously. This suggests that BCP may interfere with the lipid signature modulated by hypoxia which could have consequences for membrane biosynthesis or composition, both of which are important for cell replication.
Collapse
Affiliation(s)
- Christopher J. Frost
- BIO5 Institute, University of Arizona, Tucson, AZ, United States of America
- Department of Biology, University of Louisville, Louisville, KY, United States of America
| | - Andrea Ramirez-Mata
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States of America
| | - Ram B. Khattri
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States of America
| | - Matthew E. Merritt
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States of America
| | - Susan C. Frost
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
161
|
Li Q, Huo H, Wu Y, Chen L, Su L, Zhang X, Song J, Yang H. Design and Synthesis of SERS Materials for In Vivo Molecular Imaging and Biosensing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2202051. [PMID: 36683237 PMCID: PMC10015885 DOI: 10.1002/advs.202202051] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is a feasible and ultra-sensitive method for biomedical imaging and disease diagnosis. SERS is widely applied to in vivo imaging due to the development of functional nanoparticles encoded by Raman active molecules (SERS nanoprobes) and improvements in instruments. Herein, the recent developments in SERS active materials and their in vivo imaging and biosensing applications are overviewed. Various SERS substrates that have been successfully used for in vivo imaging are described. Then, the applications of SERS imaging in cancer detection and in vivo intraoperative guidance are summarized. The role of highly sensitive SERS biosensors in guiding the detection and prevention of diseases is discussed in detail. Moreover, its role in the identification and resection of microtumors and as a diagnostic and therapeutic platform is also reviewed. Finally, the progress and challenges associated with SERS active materials, equipment, and clinical translation are described. The present evidence suggests that SERS could be applied in clinical practice in the future.
Collapse
Affiliation(s)
- Qingqing Li
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhou350108P. R. China
| | - Hongqi Huo
- Department of Nuclear MedicineHan Dan Central HospitalHandanHebei056001P. R. China
| | - Ying Wu
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhou350108P. R. China
| | - Lanlan Chen
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhou350108P. R. China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhou350108P. R. China
| | - Xuan Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhou350108P. R. China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhou350108P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhou350108P. R. China
| |
Collapse
|
162
|
Liang J, Liu Q, Xia L, Lin J, Oyang L, Tan S, Peng Q, Jiang X, Xu X, Wu N, Tang Y, Su M, Luo X, Yang Y, Liao Q, Zhou Y. Rac1 promotes the reprogramming of glucose metabolism and the growth of colon cancer cells through upregulating SOX9. Cancer Sci 2023; 114:822-836. [PMID: 36369902 PMCID: PMC9986058 DOI: 10.1111/cas.15652] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/28/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
Metabolic reprogramming is the survival rule of tumor cells, and tumor cells can meet their high metabolic requirements by changing the energy metabolism mode. Metabolic reprogramming of tumor cells is an important biochemical basis of tumor malignant phenotypes. Ras-related C3 botulinum toxin substrate 1 (Rac1) is abnormally expressed in a variety of tumors and plays an important role in the proliferation, invasion, and migration of tumor cells. However, the role of Rac1 in tumor metabolic reprogramming is still unclear. Herein, we revealed that Rac1 was highly expressed in colon cancer tissues and cell lines. Rac1 promotes the proliferation, migration, and invasion of colon cancer cells by upregulating SOX9, which as a transcription factor can directly bind to the promoters of HK2 and G6PD genes and regulate their transcriptional activity. Rac1 upregulates the expression of SOX9 through the PI3K/AKT signaling pathway. Moreover, Rac1 can promote glycolysis and the activation of the pentose phosphate pathway in colon cancer cells by mediating the axis of SOX9/HK2/G6PD. These findings reveal novel regulatory axes involving Rac1/SOX9/HK2/G6PD in the development and progression of colon cancer, providing novel promising therapeutic targets.
Collapse
Affiliation(s)
- Jiaxin Liang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Qiang Liu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xuemeng Xu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Min Su
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xia Luo
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yiqing Yang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Hunan Key Laboratory of Translational Radiation Oncology, Changsha, China
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Hunan Key Laboratory of Translational Radiation Oncology, Changsha, China
| |
Collapse
|
163
|
Xu L, Liu Y, Chen X, Zhong H, Wang Y. Ferroptosis in life: To be or not to be. Biomed Pharmacother 2023; 159:114241. [PMID: 36634587 DOI: 10.1016/j.biopha.2023.114241] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Ferroptosis is a novel type of programmed cell death, characterized by a dysregulated iron metabolism and accumulation of lipid peroxides. It features the alteration of mitochondria and aberrant accumulation of excessive iron as well as loss of the cysteine-glutathione-GPX4 axis. Eventually, the accumulated lipid peroxides result in lethal damage to the cells. Ferroptosis is induced by the overloading of iron and the accumulation of ROS and can be inhibited by the activation of the GPX4 pathway, FS1-CoQ10 pathway, GCH1-BH4 pathway, and the DHODH pathway, it is also regulated by the oncogenes and tumor suppressors. Ferroptosis involves various physiological and pathological processes, and increasing evidence indicates that ferroptosis play a critical role in cancers and other diseases. It inhibits the proliferation of malignant cells in various types of cancers and inducing ferroptosis may become a new method of cancer treatment. Many inhibitors targeting the key factors of ferroptosis such as SLC7A11, GPX4, and iron overload have been developed. The application of ferroptosis is mainly divided into two directions, i.e. to avoid ferroptosis in healthy cells and selectively induce ferroptosis in cancers. In this review, we provide a critical analysis of the concept, and regulation pathways of ferroptosis and explored its roles in various diseases, we also summarized the compounds targeting ferroptosis, aiming to promote the speed of clinical use of ferroptosis induction in cancer treatment.
Collapse
Affiliation(s)
- Ling Xu
- Department of Internal Medicine of Traditional Chinese Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China.
| | - Yu'e Liu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Xi Chen
- Xi Chen, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hua Zhong
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA 96813
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
164
|
The development of multifunctional sulfated polyguluronic acid-based polymeric micelles for anticancer drug delivery. Carbohydr Polym 2023; 303:120451. [PMID: 36657841 DOI: 10.1016/j.carbpol.2022.120451] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/26/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Numerous disseminated tumor cells specifically overexpress P-selectin. Therefore, it was thought to be a potential target for tumor therapy. Herein, we described a novel P-selectin-targeted glycosyl ligand-sulfated polyguluronic acid (PGS), as an oriented carrier of P-selectin-targeted drug delivery system. Specifically, the PGS-SS-DOX polymeric micelles were constructed to confirm the practicability of the PGS carrier as a new P-selectin-targeted ligand. PGS-SS-DOX micelles comprised P-selectin-targeted PGS, doxorubicin (DOX) as an anticarcinogen, and pH/redox dual-sensitive bio-linker facilitating drug release in tumor tissues. In vitro and in vivo data showed that PGS-SS-DOX micelles significantly increased tumor cell killing capacity and exhibited a favorable biocompatibility comparison with Free-DOX. This work proved that PGS was an ideal low immunogenic, biodegradable drug carrier for the delivery of anti-cancer drugs. The facile PGS-SS-drug micelle system provided enormous opportunities for treating disseminated tumors utilizing many irreplaceable anticarcinogens.
Collapse
|
165
|
Liu YC, Wang ZX, Pan JY, Wang LQ, Dai XY, Wu KF, Ye XW, Xu XL. Recent Advances in Imaging Agents Anchored with pH (Low) Insertion Peptides for Cancer Theranostics. Molecules 2023; 28:molecules28052175. [PMID: 36903419 PMCID: PMC10004179 DOI: 10.3390/molecules28052175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
The acidic extracellular microenvironment has become an effective target for diagnosing and treating tumors. A pH (low) insertion peptide (pHLIP) is a kind of peptide that can spontaneously fold into a transmembrane helix in an acidic microenvironment, and then insert into and cross the cell membrane for material transfer. The characteristics of the acidic tumor microenvironment provide a new method for pH-targeted molecular imaging and tumor-targeted therapy. As research has increased, the role of pHLIP as an imaging agent carrier in the field of tumor theranostics has become increasingly prominent. In this paper, we describe the current applications of pHLIP-anchored imaging agents for tumor diagnosis and treatment in terms of different molecular imaging methods, including magnetic resonance T1 imaging, magnetic resonance T2 imaging, SPECT/PET, fluorescence imaging, and photoacoustic imaging. Additionally, we discuss relevant challenges and future development prospects.
Collapse
Affiliation(s)
- Yu-Cheng Liu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China
| | - Zhi-Xian Wang
- First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jing-Yi Pan
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China
| | - Ling-Qi Wang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China
| | - Xin-Yi Dai
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China
| | - Ke-Fei Wu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China
| | - Xue-Wei Ye
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China
| | - Xiao-Ling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China
- Correspondence:
| |
Collapse
|
166
|
Kunitake JA, Sudilovsky D, Johnson LM, Loh HC, Choi S, Morris PG, Jochelson MS, Iyengar NM, Morrow M, Masic A, Fischbach C, Estroff LA. Biomineralogical signatures of breast microcalcifications. SCIENCE ADVANCES 2023; 9:eade3152. [PMID: 36812311 PMCID: PMC9946357 DOI: 10.1126/sciadv.ade3152] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Microcalcifications, primarily biogenic apatite, occur in cancerous and benign breast pathologies and are key mammographic indicators. Outside the clinic, numerous microcalcification compositional metrics (e.g., carbonate and metal content) are linked to malignancy, yet microcalcification formation is dependent on microenvironmental conditions, which are notoriously heterogeneous in breast cancer. We interrogate multiscale heterogeneity in 93 calcifications from 21 breast cancer patients using an omics-inspired approach: For each microcalcification, we define a "biomineralogical signature" combining metrics derived from Raman microscopy and energy-dispersive spectroscopy. We observe that (i) calcifications cluster into physiologically relevant groups reflecting tissue type and local malignancy; (ii) carbonate content exhibits substantial intratumor heterogeneity; (iii) trace metals including zinc, iron, and aluminum are enhanced in malignant-localized calcifications; and (iv) the lipid-to-protein ratio within calcifications is lower in patients with poor composite outcome, suggesting that there is potential clinical value in expanding research on calcification diagnostic metrics to include "mineral-entrapped" organic matrix.
Collapse
Affiliation(s)
| | - Daniel Sudilovsky
- Department of Pathology and Laboratory Medicine, Cayuga Medical Center at Ithaca, Ithaca, NY 14850, USA
- Pathology Department, Kingman Regional Medical Center, Kingman, AZ 86409, USA
- Pathology Department, Western Arizona Medical Center, Bullhead City, AZ 86442, USA
- Pathology Department, Yuma Regional Medical Center, Yuma, AZ 85364, USA
| | - Lynn M. Johnson
- Cornell Statistical Consulting Unit, Cornell University, Ithaca, NY 14850, USA
| | - Hyun-Chae Loh
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Siyoung Choi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Patrick G. Morris
- Medical Oncology Service, Beaumont Hospital, Dublin, Ireland
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center/Evelyn H. Lauder Breast and Imaging Center, New York, NY 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Maxine S. Jochelson
- Department of Radiology, Memorial Sloan Kettering Cancer Center/Evelyn H. Lauder Breast and Imaging Center, New York, NY 10065, USA
| | - Neil M. Iyengar
- Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Monica Morrow
- Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Admir Masic
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Corresponding author. (L.A.E.); (C.F.); (A.M.)
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14850, USA
- Corresponding author. (L.A.E.); (C.F.); (A.M.)
| | - Lara A. Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14850, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14850, USA
- Corresponding author. (L.A.E.); (C.F.); (A.M.)
| |
Collapse
|
167
|
Chen J, Zhu Y, Wu C, Shi J. Engineering lactate-modulating nanomedicines for cancer therapy. Chem Soc Rev 2023; 52:973-1000. [PMID: 36597879 DOI: 10.1039/d2cs00479h] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Lactate in tumors has long been considered "metabolic junk" derived from the glycolysis of cancer cells and utilized only as a biomarker of malignancy, but is presently believed to be a pivotal regulator of tumor development, maintenance and metastasis. Indeed, tumor lactate can be a "fuel" for energy supply and functions as a signaling molecule, which actively contributes to tumor progression, angiogenesis, immunosuppression, therapeutic resistance, etc., thus providing promising opportunities for cancer treatment. However, the current approaches for regulating lactate homeostasis with available agents are still challenging, which is mainly due to the short half-life, low bioavailability and poor specificity of these agents and their unsatisfactory therapeutic outcomes. In recent years, lactate modulation nanomedicines have emerged as a charming and efficient strategy for fighting cancer, which play important roles in optimizing the delivery of lactate-modulating agents for more precise and effective modulation and treatment. Integrating specific lactate-modulating functions in diverse therapeutic nanomedicines may overcome the intrinsic restrictions of different therapeutic modalities by remodeling the pathological microenvironment for achieving enhanced cancer therapy. In this review, the most recent advances in the engineering of functional nanomedicines that can modulate tumor lactate for cancer therapy are summarized and discussed, and the fundamental mechanisms by which lactate modulation benefits various therapeutics are elucidated. Finally, the challenges and perspectives of this emerging strategy in the anti-tumor field are highlighted.
Collapse
Affiliation(s)
- Jiajie Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yufang Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200331, P. R. China
| |
Collapse
|
168
|
Campanile M, Oliva R, D'Errico G, Del Vecchio P, Petraccone L. The anticancer peptide LL-III alters the physico-chemical properties of a model tumor membrane promoting lipid bilayer permeabilization. Phys Chem Chem Phys 2023; 25:3639-3650. [PMID: 36541682 DOI: 10.1039/d2cp03528f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
LL-III is an anticancer peptide and has the ability to translocate across tumor cell membranes, which indicates that its action mechanism could be non-membranolytic. However, the exact mechanism through which the peptide gains access into the cell cytoplasm is still unknown. Here, we use a plethora of physico-chemical techniques to characterize the interaction of LL-III with liposomes mimicking the lipid matrix of the tumor cell membrane and its effect on the microstructure and thermotropic properties of the membrane. Furthermore, the effect of the presence of Ca2+ cations at physiological concentration was also investigated. For comparison, the interaction of LL-III with liposomes mimicking the normal cell membrane was also studied. Our results show that the peptide selectively interacts with the model tumor cell membrane. This interaction does not disrupt the lipid bilayer but deeply alters its properties by promoting lipid lateral reorganization and increasing membrane permeability. Overall, our data provide a molecular level description of the interaction of the peptide with the model tumor membrane and are fully consistent with the non-membranolytic action mechanism.
Collapse
Affiliation(s)
- Marco Campanile
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy.
| | - Rosario Oliva
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy.
| | - Gerardino D'Errico
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy.
| | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy.
| | - Luigi Petraccone
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy.
| |
Collapse
|
169
|
Tumor lactic acid: a potential target for cancer therapy. Arch Pharm Res 2023; 46:90-110. [PMID: 36729274 DOI: 10.1007/s12272-023-01431-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/27/2023] [Indexed: 02/03/2023]
Abstract
Tumor development is influenced by circulating metabolites and most tumors are exposed to substantially elevated levels of lactic acid and low levels of nutrients, such as glucose and glutamine. Tumor-derived lactic acid, the major circulating carbon metabolite, regulates energy metabolism and cancer cell signaling pathways, while also acting as an energy source and signaling molecule. Recent studies have yielded new insights into the pro-tumorigenic action of lactic acid and its metabolism. These insights suggest an anti-tumor therapeutic strategy targeting the oncometabolite lactic acid, with the aim of improving the efficacy and clinical safety of tumor metabolism inhibitors. This review describes the current understanding of the multifunctional roles of tumor lactic acid, as well as therapeutic approaches targeting lactic acid metabolism, including lactate dehydrogenase and monocarboxylate transporters, for anti-cancer therapy.
Collapse
|
170
|
Altinbasak I, Kocak S, Colby AH, Alp Y, Sanyal R, Grinstaff MW, Sanyal A. pH-Responsive nanofiber buttresses as local drug delivery devices. Biomater Sci 2023; 11:813-821. [PMID: 36408890 PMCID: PMC9930888 DOI: 10.1039/d2bm01199a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Electrospun nanofibers are a 3D scaffold of choice for many drug delivery devices due to their high surface area, significant capacity for drug payload, ease of in situ placement, and scalable manufacture. Herein, we report the synthesis of polymeric, pH-responsive nanofiber buttresses via electrospinning. The homopolymer is comprised of an acrylic backbone with acid-sensitive, hydrolyzable, trimethoxybenzaldehyde-protected side chains that lead to buttress transformation from a hydrophobic to a hydrophilic state under physiologically relevant pH conditions (e.g., extracellular tumor environment with pH = 6.5). Hydrolysis of the side chains leads to an increase in fiber diameter from approximately 350 to 900 nm and the release of the encapsulated drug cargo. In vitro drug release profiles demonstrate that significantly more drug is released at pH 5.5 compared to pH 7.4, thereby limiting the release to the target site, with docetaxel releasing over 20 days and doxorubicin over 7 days. Drug burst release, defined as >50% within 24 hours, does not occur at either pH or with either drug. Drug-loaded buttresses preserve drug activity and are cytotoxic to multiple human cancer lines, including breast and lung. Important to their potential application in surgical applications, the tensile strength of the buttresses is 6.3 kPa and, though weaker than commercially available buttresses, they provide sufficient flexibility and mechanical integrity to serve as buttressing materials via the application with a conventional surgical cutting stapler.
Collapse
Affiliation(s)
- Ismail Altinbasak
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey.
| | - Salli Kocak
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey.
| | - Aaron H Colby
- Boston University, Department of Biomedical Engineering, Boston, MA, USA.
| | - Yasin Alp
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey.
| | - Rana Sanyal
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey.
- Center for Life Sciences and Technologies, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Mark W Grinstaff
- Boston University, Department of Biomedical Engineering, Boston, MA, USA.
- Boston University, Department of Chemistry, Boston, MA, USA
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey.
- Center for Life Sciences and Technologies, Bogazici University, Bebek, Istanbul 34342, Turkey
| |
Collapse
|
171
|
Chen L, Kong Q, Tian M, Zhang Q, Xia C, Deng C. Zn 0.4Mg 0.6Fe 2O 4 nanoenzyme: a novel chemo-sensitizer for the chemotherapy treatment of oral squamous cell carcinoma. NANOSCALE ADVANCES 2023; 5:851-860. [PMID: 36756528 PMCID: PMC9890649 DOI: 10.1039/d2na00750a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/21/2022] [Indexed: 06/10/2023]
Abstract
Hypoxic and acidic environments are the two main components of the microenvironment contributing to the poor efficacy of chemotherapy drugs in the treatment of oral squamous cell carcinoma (OSCC). In this study, we synthesized a series of Zn1-x Mg x Fe2O4 nanomaterials with enzyme-like properties, including catalase (CAT)-like, peroxidase (POD)-like, and glutathione (GSH)-like activity in an acidic environment. Among them, Zn0.4Mg0.6Fe2O4 performed the best and effectively increased the efficacy of doxorubicin (DOX) chemotherapy for the treatment of OSCC with reduced cardiotoxicity. Therefore, Zn0.4Mg0.6Fe2O4 could serve as a novel chemosensitizer in the treatment of OSCC.
Collapse
Affiliation(s)
- Liang Chen
- Department of Oral and Maxillofacial Surgery, Yi Ji Shan Hospital of Wannan Medical College Wuhu Anhui China
| | - Qingmei Kong
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatology Hospital, Medical School of Nanjing University Nanjing China
| | - Mingxing Tian
- Department of Oral and Maxillofacial Surgery, Yi Ji Shan Hospital of Wannan Medical College Wuhu Anhui China
| | - Qian Zhang
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatology Hospital, Medical School of Nanjing University Nanjing China
| | - Chengwan Xia
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatology Hospital, Medical School of Nanjing University Nanjing China
| | - Chao Deng
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education, School of Stomatology, Wannan Medical College Anhui China
| |
Collapse
|
172
|
Ion Channels in Gliomas-From Molecular Basis to Treatment. Int J Mol Sci 2023; 24:ijms24032530. [PMID: 36768856 PMCID: PMC9916861 DOI: 10.3390/ijms24032530] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
Ion channels provide the basis for the nervous system's intrinsic electrical activity. Neuronal excitability is a characteristic property of neurons and is critical for all functions of the nervous system. Glia cells fulfill essential supportive roles, but unlike neurons, they also retain the ability to divide. This can lead to uncontrolled growth and the formation of gliomas. Ion channels are involved in the unique biology of gliomas pertaining to peritumoral pathology and seizures, diffuse invasion, and treatment resistance. The emerging picture shows ion channels in the brain at the crossroads of neurophysiology and fundamental pathophysiological processes of specific cancer behaviors as reflected by uncontrolled proliferation, infiltration, resistance to apoptosis, metabolism, and angiogenesis. Ion channels are highly druggable, making them an enticing therapeutic target. Targeting ion channels in difficult-to-treat brain tumors such as gliomas requires an understanding of their extremely heterogenous tumor microenvironment and highly diverse molecular profiles, both representing major causes of recurrence and treatment resistance. In this review, we survey the current knowledge on ion channels with oncogenic behavior within the heterogeneous group of gliomas, review ion channel gene expression as genomic biomarkers for glioma prognosis and provide an update on therapeutic perspectives for repurposed and novel ion channel inhibitors and electrotherapy.
Collapse
|
173
|
Sun X, Zhao Y, Zhao J, Xie Z, Lei X, Liu X, Li Y, Huang S, Wang Z, Tang G. Design, synthesis, and antitumor evaluation of trimethoxyflavonoid with arylurea structure against hepatocellular carcinoma. Drug Dev Res 2023; 84:406-422. [PMID: 36694269 DOI: 10.1002/ddr.22035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023]
Abstract
Simultaneous targeting of tumor vasculature and inhibitors of tumor cell glycolysis may be a promising antitumor strategy. Here, we reported the total synthesis and biological evaluation of A-ring arylurea flavonoid derivatives with B-ring trimethoxy group, which exhibited potent antitumor activity against a variety of tumor cells in vitro. Most of the derivatives showed in vitro antitumor activity on HepG-2, HGC-27, MDA-MB-231, and A549 cells. Among them, compounds 8e, 8f, 8g, 8h, 8j, and 8l also exhibited significant anti-proliferation effects on liver tumor cell subtypes BEL-7402 and SMMC-7721. Compound 8l had the lowest IC50 value (5.61 ± 0.39 μM) on HepG-2 cells, and showed the effects of inhibiting colony formation, arresting the cell cycle in G0 /G1 phase, and inducing apoptosis in a concentration-dependent manner. In addition, the toxicity of compound 8l on human normal cells LO2 and GES-1 was lower than that of sorafenib. The inhibitory effects of compound 8l on the expression of glycolytic rate-limiting enzymes HKII, PFK-1, PKM2 and vascular endothelial growth factor were further evaluated. Corresponding reduction in intracellular lactate was also detected after compound 8 treatment. Our results support an antitumor strategy targeting tumor vasculature and glycolysis to discover and develop a new generation of antitumor drugs.
Collapse
Affiliation(s)
- Xueyan Sun
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, HengYang Medicial School, Hengyang, Hunan, China
| | - Yin Zhao
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, HengYang Medicial School, Hengyang, Hunan, China
| | - Jingduo Zhao
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, HengYang Medicial School, Hengyang, Hunan, China
| | - Zhizhong Xie
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, HengYang Medicial School, Hengyang, Hunan, China
| | - Xiaoyong Lei
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, HengYang Medicial School, Hengyang, Hunan, China
| | - Xingyun Liu
- The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yong Li
- The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | | | - Zhe Wang
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, HengYang Medicial School, Hengyang, Hunan, China
| |
Collapse
|
174
|
Li Y, Liu J, Chen W, Wang W, Yang F, Liu X, Sheng Y, Du K, He M, Lyu X, Li H, Zhao L, Wei Z, Wang F, Zheng S, Sui J. A pH-dependent anti-CD47 antibody that selectively targets solid tumors and improves therapeutic efficacy and safety. J Hematol Oncol 2023; 16:2. [PMID: 36650558 PMCID: PMC9844003 DOI: 10.1186/s13045-023-01399-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 01/02/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The antiphagocytic molecule CD47 is overexpressed in a wide variety of cancer cells, and antibodies targeting CD47 for cancer therapies are currently under intensive investigation. However, owing to the ubiquitous expression of CD47 on healthy cells, anti-CD47 therapies often achieve only weak therapeutic benefits and can induce severe side effects. Here, we report the generation of a pH-dependent anti-CD47 antibody (BC31M4) which selectively binds to tumors under the acidic solid tumor microenvironment. METHODS BC31M4 was generated using antibody phage display and a pH-dependent selection strategy. The pH-dependent binding and blocking activities of BC31M4 were verified using in vitro assays, and the structural basis of the pH-dependent binding property was characterized. BC31M4's antitumor effect was confirmed by both phagocytosis assays and studies in xenograft models. The tumor selectivity, mechanism of action, PK properties, side effects, and therapeutic efficacy were further evaluated in humanized (hCD47 and its receptor hSIRPα) immunocompetent syngeneic mouse models. RESULTS The crystal structure reveals that two histidines locate within the CDRs of the light chain directly contribute to the pH-dependent binding of BC31M4. BC31M4 promotes macrophage phagocytosis of tumor cells more potently at acidic-pH than at physiological-pH. Our hCD47/hSIRPα humanized syngeneic mouse model results demonstrated that BC31M4 selectively accumulates in tumors but not in normal tissues. BC31M4 causes minimal side effects and exhibits superior PK properties as compared to the other examined anti-CD47 antibodies. When combined with adoptive T cell transfer, BC31M4 efficiently promotes adaptive immune responses against tumors and also induces immune memory. Moreover, we show that BC31M4's antitumor effects rely on an Fc that mediates strong effector functions. CONCLUSIONS Our study illustrates that the development of a tumor-selective, pH-dependent anti-CD47 antibody safely confers strong therapeutic effects against solid tumors, thus providing a promising therapeutic strategy to overcome the challenges of anti-CD47 therapy.
Collapse
Affiliation(s)
- Yulu Li
- Peking University-Tsinghua University-National Institute of Biological Sciences (PTN) Joint Graduate Program, School of Life Sciences, Peking University, Beijing, China.,National Institute of Biological Sciences (NIBS), Beijing, China
| | - Juan Liu
- National Institute of Biological Sciences (NIBS), Beijing, China
| | - Wei Chen
- National Institute of Biological Sciences (NIBS), Beijing, China
| | - Wei Wang
- National Institute of Biological Sciences (NIBS), Beijing, China
| | - Fang Yang
- National Institute of Biological Sciences (NIBS), Beijing, China
| | - Ximing Liu
- Peking University-Tsinghua University-National Institute of Biological Sciences (PTN) Joint Graduate Program, School of Life Sciences, Peking University, Beijing, China.,National Institute of Biological Sciences (NIBS), Beijing, China
| | - Yao Sheng
- National Institute of Biological Sciences (NIBS), Beijing, China
| | - Kaixin Du
- National Institute of Biological Sciences (NIBS), Beijing, China
| | - Miaomiao He
- National Institute of Biological Sciences (NIBS), Beijing, China.,Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xueyuan Lyu
- National Institute of Biological Sciences (NIBS), Beijing, China.,PTN Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing, China
| | - Huiyu Li
- National Institute of Biological Sciences (NIBS), Beijing, China.,PTN Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing, China
| | - Linlin Zhao
- National Institute of Biological Sciences (NIBS), Beijing, China.,PTN Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhizhong Wei
- National Institute of Biological Sciences (NIBS), Beijing, China.,PTN Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing, China
| | - Fengchao Wang
- National Institute of Biological Sciences (NIBS), Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Sanduo Zheng
- National Institute of Biological Sciences (NIBS), Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Jianhua Sui
- National Institute of Biological Sciences (NIBS), Beijing, China. .,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
175
|
Vidoni C, Ferraresi A, Vallino L, Salwa A, Ha JH, Seca C, Garavaglia B, Dhanasekaran DN, Isidoro C. Glycolysis Inhibition of Autophagy Drives Malignancy in Ovarian Cancer: Exacerbation by IL-6 and Attenuation by Resveratrol. Int J Mol Sci 2023; 24:ijms24021723. [PMID: 36675246 PMCID: PMC9866176 DOI: 10.3390/ijms24021723] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Cancer cells drive the glycolytic process towards the fermentation of pyruvate into lactate even in the presence of oxygen and functioning mitochondria, a phenomenon known as the "Warburg effect". Although not energetically efficient, glycolysis allows the cancer cell to synthesize the metabolites needed for cell duplication. Autophagy, a macromolecular degradation process, limits cell mass accumulation and opposes to cell proliferation as well as to cell migration. Cancer cells corrupt cancer-associated fibroblasts to release pro-inflammatory cytokines, which in turn promote glycolysis and support the metastatic dissemination of cancer cells. In mimicking in vitro this condition, we show that IL-6 promotes ovarian cancer cell migration only in the presence of glycolysis. The nutraceutical resveratrol (RV) counteracts glucose uptake and metabolism, reduces the production of reactive oxygen species consequent to excessive glycolysis, rescues the mitochondrial functional activity, and stimulates autophagy. Consistently, the lack of glucose as well as its metabolically inert analogue 2-deoxy-D-glucose (2-DG), which inhibits hexokinase 2 (HK2), trigger autophagy through mTOR inhibition, and prevents IL-6-induced cell migration. Of clinical relevance, bioinformatic analysis of The Cancer Genome Atlas dataset revealed that ovarian cancer patients bearing mutated TP53 with low expression of glycolytic markers and IL-6 receptor, together with markers of active autophagy, display a longer overall survival and are more responsive to platinum therapy. Taken together, our findings demonstrate that RV can counteract IL-6-promoted ovarian cancer progression by rescuing glycolysis-mediated inhibition of autophagy and support the view that targeting Warburg metabolism can be an effective strategy to limit the risk for cancer metastasis.
Collapse
Affiliation(s)
- Chiara Vidoni
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy
| | - Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy
| | - Letizia Vallino
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy
| | - Amreen Salwa
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy
| | - Ji Hee Ha
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Christian Seca
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy
| | - Beatrice Garavaglia
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy
| | - Danny N. Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy
- Correspondence: ; Tel.: +39-0321-660-507; Fax: +39-0321-620-421
| |
Collapse
|
176
|
The Tumor Microenvironment in Tumorigenesis and Therapy Resistance Revisited. Cancers (Basel) 2023; 15:cancers15020376. [PMID: 36672326 PMCID: PMC9856874 DOI: 10.3390/cancers15020376] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Tumorigenesis is a complex and dynamic process involving cell-cell and cell-extracellular matrix (ECM) interactions that allow tumor cell growth, drug resistance and metastasis. This review provides an updated summary of the role played by the tumor microenvironment (TME) components and hypoxia in tumorigenesis, and highlight various ways through which tumor cells reprogram normal cells into phenotypes that are pro-tumorigenic, including cancer associated- fibroblasts, -macrophages and -endothelial cells. Tumor cells secrete numerous factors leading to the transformation of a previously anti-tumorigenic environment into a pro-tumorigenic environment. Once formed, solid tumors continue to interact with various stromal cells, including local and infiltrating fibroblasts, macrophages, mesenchymal stem cells, endothelial cells, pericytes, and secreted factors and the ECM within the tumor microenvironment (TME). The TME is key to tumorigenesis, drug response and treatment outcome. Importantly, stromal cells and secreted factors can initially be anti-tumorigenic, but over time promote tumorigenesis and induce therapy resistance. To counter hypoxia, increased angiogenesis leads to the formation of new vascular networks in order to actively promote and sustain tumor growth via the supply of oxygen and nutrients, whilst removing metabolic waste. Angiogenic vascular network formation aid in tumor cell metastatic dissemination. Successful tumor treatment and novel drug development require the identification and therapeutic targeting of pro-tumorigenic components of the TME including cancer-associated- fibroblasts (CAFs) and -macrophages (CAMs), hypoxia, blocking ECM-receptor interactions, in addition to the targeting of tumor cells. The reprogramming of stromal cells and the immune response to be anti-tumorigenic is key to therapeutic success. Lastly, this review highlights potential TME- and hypoxia-centered therapies under investigation.
Collapse
|
177
|
Longo DL, Pirotta E, Gambino R, Romdhane F, Carella A, Corrado A. Tumor pH Imaging Using Chemical Exchange Saturation Transfer (CEST)-MRI. Methods Mol Biol 2023; 2614:287-311. [PMID: 36587132 DOI: 10.1007/978-1-0716-2914-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Magnetic resonance imaging (MRI) is a noninvasive imaging technique that allows for physiological and functional studies of the tumor microenvironment. Within MRI, the emerging field of chemical exchange saturation transfer (CEST) has been largely exploited for assessing a salient feature of all solid tumors, extracellular acidosis. Iopamidol-based tumor pH imaging has been demonstrated to provide accurate and high spatial resolution extracellular tumor pH maps to elucidate tumor aggressiveness and for assessing response to therapy, with a high potential for clinical translation. Here, we describe the overall setup and steps for measuring tumor extracellular pH of tumor models in mice by exploiting MRI-CEST pH imaging with a preclinical MRI scanner following the administration of iopamidol. We address issues of pH calibration curve setup, animal handling, pH-responsive contrast agent injection, acquisition protocol, and image processing for accurate quantification and visualization of tumor acidosis.
Collapse
Affiliation(s)
- Dario Livio Longo
- Institute of Biostructures and Bioimaging (IBB), Italian National Research Council (CNR), Torino, Italy.
| | - Elisa Pirotta
- Institute of Biostructures and Bioimaging (IBB), Italian National Research Council (CNR), Torino, Italy
| | - Riccardo Gambino
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Feriel Romdhane
- Institute of Biostructures and Bioimaging (IBB), Italian National Research Council (CNR), Torino, Italy
| | - Antonella Carella
- Institute of Biostructures and Bioimaging (IBB), Italian National Research Council (CNR), Torino, Italy
| | - Alessia Corrado
- Institute of Biostructures and Bioimaging (IBB), Italian National Research Council (CNR), Torino, Italy
| |
Collapse
|
178
|
Tan B, Zhao C, Wang J, Tiemuer A, Zhang Y, Yu H, Liu Y. Rational design of pH-activated upconversion luminescent nanoprobes for bioimaging of tumor acidic microenvironment and the enhancement of photothermal therapy. Acta Biomater 2023; 155:554-563. [PMID: 36087865 DOI: 10.1016/j.actbio.2022.08.078] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/15/2022] [Accepted: 08/31/2022] [Indexed: 02/02/2023]
Abstract
The development of effective and safe tumor photothermal therapeutic strategies has attracted considerable attention. Herein, we synthesized tumor microenvironment (TME)-activatable self-assembling organic nanotheranostics (NRhD-PEG-X NPs (X = 1, 2, 3, and 4)) for precise tumor targeting and upconversion image-guided photothermal therapy (PTT). The amphiphilic polymer NRhD-PEG-X consisted of upconversion luminescent probes (NRhD) modified with polyethylene glycol (PEG) of various lengths. The continuous external irradiation-free photothermal NRhD-PEG-4 NPs with pKa 6.70 displayed high sensitivity and selectivity to protons, resulting in the turn-on upconversion luminescence and enhanced photothermal properties in the acidic TME without asynchronous therapy and side effects. This nanotheranostic offers acidic activatability, tumor targetability, and PTT enhancement, thus allowing autofluorescence-free upconversion luminescent imaging-guided precision PTT. Our strategy affords a paradigm to develop activatable theranostic nanoplatforms for precision medicine. STATEMENT OF SIGNIFICANCE: As a hyperthermia-based treatment, activatable photothermal therapy (PTT) is highly significant in tumor treatment. Herein, we develop acidic tumor microenvironment-activatable nanotheranostics for upconversion luminescent imaging-guided diagnosis and precision tumor-targeted PTT. PEGylation of upconversion dyes not only could self-assemble to yield organic nanoparticles in water, but it could also significantly improve biocompatibility, stability, and circulation time and tune significantly the pKa value of nanoparticles. In an acidic tumor microenvironment, NRhD-PEG-4 NPs with pKa 6.70 show high sensitivity to release NRhDH+-PEG-4 NPs, which exhibit good upconversion luminescence and enhanced photothermal effect. Therefore, upconversion luminescence imaging-guided precision PTT has high potential to enhance cancer diagnostic and therapeutic efficiency.
Collapse
Affiliation(s)
- Baojin Tan
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, PR China
| | - Chao Zhao
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jing Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, PR China
| | - Aliya Tiemuer
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yuanyuan Zhang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, PR China
| | - Hui Yu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yi Liu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
179
|
Pourmadadi M, Farokh A, Rahmani E, Eshaghi MM, Aslani A, Rahdar A, Ferreira LFR. Polyacrylic acid mediated targeted drug delivery nano-systems: A review. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
180
|
Globig P, Madurawala R, Willumeit-Römer R, Martini F, Mazzoni E, Luthringer-Feyerabend BJ. Mg-based materials diminish tumor spreading and cancer metastases. Bioact Mater 2023; 19:594-610. [PMID: 35600975 PMCID: PMC9108521 DOI: 10.1016/j.bioactmat.2022.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/03/2022] [Accepted: 05/03/2022] [Indexed: 11/26/2022] Open
Abstract
Cancer metastases are the most common causes of cancer-related deaths. The formation of secondary tumors at different sites in the human body can impair multiple organ function and dramatically decrease the survival of the patients. In this stage, it is difficulty to treat tumor growth and spreading due to arising therapy resistances. Therefore, it is important to prevent cancer metastases and to increase subsequent cancer therapy success. Cancer metastases are conventionally treated with radiation or chemotherapy. However, these treatments elicit lots of side effects, wherefore novel local treatment approaches are currently discussed. Recent studies already showed anticancer activity of specially designed degradable magnesium (Mg) alloys by reducing the cancer cell proliferation. In this work, we investigated the impact of these Mg-based materials on different steps of the metastatic cascade including cancer cell migration, invasion, and cancer-induced angiogenesis. Both, Mg and Mg–6Ag reduced cell migration and invasion of osteosarcoma cells in coculture with fibroblasts. Furthermore, the Mg-based materials used in this study diminished the cancer-induced angiogenesis. Endothelial cells incubated with conditioned media obtained from these Mg and Mg–6Ag showed a reduced cell layer permeability, a reduced proliferation and inhibited cell migration. The tube formation as a last step of angiogenesis was stimulated with the presence of Mg under normoxia and diminished under hypoxia. Magnesium (Mg)-based material degradation decrease cell migration and invasion of an osteosarcoma coculture. Mg-based material degradation products reduce cancer-induced angiogenesis at an early stage. These materials may reduce secondary tumor formation and metastases.
Collapse
|
181
|
Sharma P, Aaroe A, Liang J, Puduvalli VK. Tumor microenvironment in glioblastoma: Current and emerging concepts. Neurooncol Adv 2023; 5:vdad009. [PMID: 36968288 PMCID: PMC10034917 DOI: 10.1093/noajnl/vdad009] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Glioblastoma (GBM) tumor microenvironment (TME) is a highly heterogeneous and complex system, which in addition to cancer cells, consists of various resident brain and immune cells as well as cells in transit through the tumor such as marrow-derived immune cells. The TME is a dynamic environment which is heavily influenced by alterations in cellular composition, cell-to-cell contact and cellular metabolic products as well as other chemical factors, such as pH and oxygen levels. Emerging evidence suggests that GBM cells appear to reprogram their the TME, and hijack microenvironmental elements to facilitate rapid proliferation, invasion, migration, and survival thus generating treatment resistance. GBM cells interact with their microenvironment directly through cell-to-cell by interaction mediated by cell-surface molecules, or indirectly through apocrine or paracrine signaling via cytokines, growth factors, and extracellular vehicles. The recent discovery of neuron-glioma interfaces and neurotransmitter-based interactions has uncovered novel mechanisms that favor tumor cell survival and growth. Here, we review the known and emerging evidence related to the communication between GBM cells and various components of its TME, discuss models for studying the TME and outline current studies targeting components of the TME for therapeutic purposes.
Collapse
Affiliation(s)
- Pratibha Sharma
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ashley Aaroe
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jiyong Liang
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Vinay K Puduvalli
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
182
|
Menchikov LG, Shestov AA, Popov AV. Warburg Effect Revisited: Embodiment of Classical Biochemistry and Organic Chemistry. Current State and Prospects. BIOCHEMISTRY (MOSCOW) 2023; 88:S1-S20. [PMID: 37069111 DOI: 10.1134/s0006297923140018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The Nobel Prize Winner (1931) Dr. Otto H. Warburg had established that the primary energy source of the cancer cell is aerobic glycolysis (the Warburg effect). He also postulated the hypothesis about "the prime cause of cancer", which is a matter of debate nowadays. Contrary to the hypothesis, his discovery was recognized entirely. However, the discovery had almost vanished in the heat of battle about the hypothesis. The prime cause of cancer is essential for the prevention and diagnosis, yet the effects that influence tumor growth are more important for cancer treatment. Due to the Warburg effect, a large amount of data has been accumulated on biochemical changes in the cell and the organism as a whole. Due to the Warburg effect, the recovery of normal biochemistry and oxygen respiration and the restoration of the work of mitochondria of cancer cells can inhibit tumor growth and lead to remission. Here, we review the current knowledge on the inhibition of abnormal glycolysis, neutralization of its consequences, and normalization of biochemical parameters, as well as recovery of oxygen respiration of a cancer cell and mitochondrial function from the point of view of classical biochemistry and organic chemistry.
Collapse
Affiliation(s)
- Leonid G Menchikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russian Federation
| | - Alexander A Shestov
- University of Pennsylvania, Department of Pathology and Laboratory Medicine, Perelman Center for Advanced Medicine, Philadelphia, PA 19104, USA
| | - Anatoliy V Popov
- University of Pennsylvania, Department of Radiology, Philadelphia, PA 19104, USA.
| |
Collapse
|
183
|
Increasing Dosage of Leucovorin Results in Pharmacokinetic and Gene Expression Differences When Administered as Two-Hour Infusion or Bolus Injection to Patients with Colon Cancer. Cancers (Basel) 2022; 15:cancers15010258. [PMID: 36612253 PMCID: PMC9818718 DOI: 10.3390/cancers15010258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
The combination of 5-fluorouracil (5-FU) and leucovorin (LV) forms the chemotherapy backbone for patients with colorectal cancer. However, the LV administration is often standardized and not based on robust scientific data. To address these issues, a randomized pharmacokinetics study was performed in patients with colon cancer. Thirty patients were enrolled, receiving 60, 200 or 500 mg/m2 LV as a single two-hour infusion. Blood, tumor, mucosa, and resection margin biopsies were collected. Folate concentrations were analyzed with LC-MS/MS and gene expression with qPCR. Data from a previous study where patients received LV as bolus injections were used as comparison. Saturation of methylenetetrahydrofolate (MeTHF) and tetrahydrofolate (THF) levels was seen after two-hour infusion and polyglutamated MeTHF + THF levels in tumors decreased with increasing LV dosage. The decrease was associated with decreased FPGS and increased GGH expression, which was not observed after LV bolus injection. In the bolus group, results indicate activation of a metabolic switch possibly promoting TYMS inhibition in response to 5-FU. Different metabolic mechanisms appear to be induced when LV is administered as infusion and bolus injection. Since maximal inhibition of TYMS by the 5-FU metabolite 5-fluoro-2'-deoxyuridine 5'-monophosphate (FdUMP) requires excess polyglutamated MeTHF, the results point in favor of the bolus regimen.
Collapse
|
184
|
Foreman M, Patel A, Sheth S, Reddy A, Lucke-Wold B. Diabetes Mellitus Management in the Context of Cranial Tumors. BOHR INTERNATIONAL JOURNAL OF NEUROLOGY AND NEUROSCIENCE 2022; 1:29-39. [PMID: 36700856 PMCID: PMC9872258 DOI: 10.54646/bijnn.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The study of the relationship between cancer and diabetes mellitus (DM) has been under investigation for many decades. Particularly in the field of neurology and neurosurgery, increasing emphasis has been put on the examination of comorbid DM in patients with cranial tumors. Namely, as the most common and invasive type of malignant adult brain tumor, glioblastoma (GBS) has been the focus of said research. Several mechanisms have been described in the attempt to elucidate the underlying association between DM and GBS, with the metabolic phenomenon known as the Warburg effect and its consequential downstream effects serving as the resounding culprits in recent literature. Since the effect seen in cancers like GBS exploits an upregulated form of aerobic glycolysis, the role of a sequela of DM, known as hyperglycemia, will be investigated. In particular, in the treatment of GBS, surgical resection and subsequent chemotherapy and/or radiotherapy are used in conjunction with corticosteroid therapy, the latter of which has been linked to hyperglycemia. Unsurprisingly, comorbid DM patients are significantly susceptible to this disposition. Further, this fact is reflected in recent literature that demonstrates the impact of hyperglycemia on cancer advancement and patient outcomes in several preclinical and clinical studies. Thus, this review will aim to underline the significance of diabetes and glycemic control via standard-of-care treatments such as metformin administration, as well as to describe emerging treatments such as the signaling modulation of insulin-like growth factor and the employment of the ketogenic diet.
Collapse
Affiliation(s)
- Marco Foreman
- Department of Neurosurgery, University of Florida, Gainesville, Florida, United States
| | - Aashay Patel
- Department of Neurosurgery, University of Florida, Gainesville, Florida, United States
| | - Sohum Sheth
- Department of Neurosurgery, University of Florida, Gainesville, Florida, United States
| | - Akshay Reddy
- Department of Neurosurgery, University of Florida, Gainesville, Florida, United States
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
185
|
Irrera P, Roberto M, Consolino L, Anemone A, Villano D, Navarro-Tableros V, Carella A, Dastrù W, Aime S, Longo DL. Effect of Esomeprazole Treatment on Extracellular Tumor pH in a Preclinical Model of Prostate Cancer by MRI-CEST Tumor pH Imaging. Metabolites 2022; 13:metabo13010048. [PMID: 36676972 PMCID: PMC9866131 DOI: 10.3390/metabo13010048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Novel anticancer treatments target the pH regulating system that plays a major role in tumor progression by creating an acidic microenvironment, although few studies have addressed their effect on tumor acidosis. In this study, we investigated in vivo several proton pump inhibitors (PPIs) targeting NHE-1 (Amiloride and Cariporide) and V-ATPase (Esomeprazole and Lansoprazole) proton transporters in the DU145 androgen-insensitive human prostate cancer model. In cellulo results showed that DU145 are sensitive, with decreasing efficacy, to Amiloride, Esomeprazole and Lansoprazole, with marked cell toxicity both in normoxia and in hypoxia, with almost any change in pH. In vivo studies were performed upon administration of Esomeprazole to assess both the acute and chronic effects, and Iopamidol-based tumor pH imaging was performed to evaluate tumor acidosis. Although statistically significant tumor pH changes were observed a few hours after Esomeprazole administration in both the acute study and up to one week of treatment in the chronic study, longer treatment resulted in a lack of changes in tumor acidosis, which was associated to similar tumor growth curves between treated and control groups in both the subcutaneous and orthotopic models. Overall, this study highlights MRI-CEST tumor pH imaging as a valid approach to monitoring treatment response to PPIs.
Collapse
Affiliation(s)
- Pietro Irrera
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), 10126 Turin, Italy
| | - Miriam Roberto
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Lorena Consolino
- Department of Nanomedicines and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University, 52074 Aachen, Germany
| | - Annasofia Anemone
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Daisy Villano
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Victor Navarro-Tableros
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Antonella Carella
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), 10126 Turin, Italy
| | - Walter Dastrù
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | | | - Dario Livio Longo
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), 10126 Turin, Italy
- Correspondence:
| |
Collapse
|
186
|
Xia Y, Duan S, Han C, Jing C, Xiao Z, Li C. Hypoxia-responsive nanomaterials for tumor imaging and therapy. Front Oncol 2022; 12:1089446. [PMID: 36591450 PMCID: PMC9798000 DOI: 10.3389/fonc.2022.1089446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Hypoxia is an important component of tumor microenvironment and plays a pivotal role in cancer progression. With the distinctive physiochemical properties and biological effects, various nanoparticles targeting hypoxia had raised great interest in cancer imaging, drug delivery, and gene therapy during the last decade. In the current review, we provided a comprehensive view on the latest progress of novel stimuli-responsive nanomaterials targeting hypoxia-tumor microenvironment (TME), and their applications in cancer diagnosis and therapy. Future prospect and challenges of nanomaterials are also discussed.
Collapse
Affiliation(s)
- Yifei Xia
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shao Duan
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chaozhe Han
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chengwei Jing
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zunyu Xiao
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China,*Correspondence: Chao Li, ; Zunyu Xiao,
| | - Chao Li
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China,*Correspondence: Chao Li, ; Zunyu Xiao,
| |
Collapse
|
187
|
Xiao P, Huang J, Han X, Cheu JWS, Liu Y, Law LH, Lai JHC, Li J, Park SW, Wong CCL, Lam RHW, Chan KWY. Monitor Tumor pHe and Response Longitudinally during Treatment Using CEST MRI-Detectable Alginate Microbeads. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54401-54410. [PMID: 36448714 PMCID: PMC9756293 DOI: 10.1021/acsami.2c10493] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/05/2022] [Indexed: 06/17/2023]
Abstract
Imaging pHe of the tumor microenvironment has paramount importance for characterizing aggressive, invasive tumors, as well as therapeutic responses. Here, a robust approach to image pH changes in the tumor microenvironment longitudinally and during sodium bicarbonate treatment was reported. The pH-sensing microbeads were designed and prepared based on materials approved for clinical use, i.e., alginate microbead-containing computed tomography (CT) contrast-agent (iopamidol)-loaded liposomes (Iop-lipobeads). This Iop-lipobead prepared using a customized microfluidic device generated a CEST contrast of 10.6% at 4.2 ppm at pH 7.0, which was stable for 20 days in vitro. The CEST contrast decreased by 11.8% when the pH decreased from 7.0 to 6.5 in vitro. Optimized Iop-lipobeads next to tumors showed a significant increase of 19.7 ± 6.1% (p < 0.01) in CEST contrast at 4.2 ppm during the first 3 days of treatment and decreased to 15.2 ± 4.8% when treatment stopped. Notably, percentage changes in Iop-lipobeads were higher than that of amide CEST (11.7% and 9.1%) in tumors during and after treatment. These findings demonstrated that the Iop-lipobead could provide an independent and sensitive assessment of the pHe changes for a noninvasive and longitudinal monitoring of the treatment effects using multiple CEST contrast.
Collapse
Affiliation(s)
- Peng Xiao
- Department
of Biomedical Engineering, City University
of Hong Kong, Hong Kong, China
| | - Jianpan Huang
- Department
of Biomedical Engineering, City University
of Hong Kong, Hong Kong, China
| | - Xiongqi Han
- Department
of Biomedical Engineering, City University
of Hong Kong, Hong Kong, China
| | - Jacinth W. S. Cheu
- Department
of Pathology, Li Ka Shing Faculty of Medicine,
The University of Hong Kong, Hong Kong, China
| | - Yang Liu
- Department
of Biomedical Engineering, City University
of Hong Kong, Hong Kong, China
| | - Lok Hin Law
- Department
of Biomedical Engineering, City University
of Hong Kong, Hong Kong, China
| | - Joseph H. C. Lai
- Department
of Biomedical Engineering, City University
of Hong Kong, Hong Kong, China
| | - Jiyu Li
- Department
of Biomedical Engineering, City University
of Hong Kong, Hong Kong, China
| | - Se Weon Park
- Department
of Biomedical Engineering, City University
of Hong Kong, Hong Kong, China
| | - Carmen C. L. Wong
- Department
of Pathology, Li Ka Shing Faculty of Medicine,
The University of Hong Kong, Hong Kong, China
- State
Key Laboratory of Liver Research, The University
of Hong Kong, Hong Kong, China
| | - Raymond H. W. Lam
- Department
of Biomedical Engineering, City University
of Hong Kong, Hong Kong, China
| | - Kannie W. Y. Chan
- Department
of Biomedical Engineering, City University
of Hong Kong, Hong Kong, China
- City
University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Russell
H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Tung
Biomedical
Sciences Centre, City University of Hong
Kong, Hong Kong, China
- Hong
Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong, China
| |
Collapse
|
188
|
Lee D, Hong JH. Activated PyK2 and Its Associated Molecules Transduce Cellular Signaling from the Cancerous Milieu for Cancer Metastasis. Int J Mol Sci 2022; 23:ijms232415475. [PMID: 36555115 PMCID: PMC9779422 DOI: 10.3390/ijms232415475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
PyK2 is a member of the proline-rich tyrosine kinase and focal adhesion kinase families and is ubiquitously expressed. PyK2 is mainly activated by stimuli, such as activated Src kinases and intracellular acidic pH. The mechanism of PyK2 activation in cancer cells has been addressed extensively. The up-regulation of PyK2 through overexpression and enhanced phosphorylation is a key feature of tumorigenesis and cancer migration. In this review, we summarized the cancer milieu, including acidification and cancer-associated molecules, such as chemical reagents, interactive proteins, chemokine-related molecules, calcium channels/transporters, and oxidative molecules that affect the fate of PyK2. The inhibition of PyK2 leads to a beneficial strategy to attenuate cancer cell development, including metastasis. Thus, we highlighted the effect of PyK2 on various cancer cell types and the distribution of molecules that affect PyK2 activation. In particular, we underlined the relationship between PyK2 and cancer metastasis and its potential to treat cancer cells.
Collapse
|
189
|
Kocianova E, Piatrikova V, Golias T. Revisiting the Warburg Effect with Focus on Lactate. Cancers (Basel) 2022; 14:cancers14246028. [PMID: 36551514 PMCID: PMC9776395 DOI: 10.3390/cancers14246028] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Rewired metabolism is acknowledged as one of the drivers of tumor growth. As a result, aerobic glycolysis, or the Warburg effect, is a feature of many cancers. Increased glucose uptake and glycolysis provide intermediates for anabolic reactions necessary for cancer cell proliferation while contributing sufficient energy. However, the accompanying increased lactate production, seemingly wasting glucose carbon, was originally explained only by the need to regenerate NAD+ for successive rounds of glycolysis by the lactate dehydrogenase (LDH) reaction in the cytosol. After the discovery of a mitochondrial LDH isoform, lactate oxidation entered the picture, and lactate was recognized as an important oxidative fuel. It has also been revealed that lactate serves a variety of signaling functions and helps cells adapt to the new environment. Here, we discuss recent findings on lactate metabolism and signaling in cancer while attempting to explain why the Warburg effect is adopted by cancer cells.
Collapse
Affiliation(s)
- Eva Kocianova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
| | - Viktoria Piatrikova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 84215 Bratislava, Slovakia
| | - Tereza Golias
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
- Correspondence:
| |
Collapse
|
190
|
Ratiometric pH-responsive SERS strategy for glioma boundary determination. Talanta 2022; 250:123750. [DOI: 10.1016/j.talanta.2022.123750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/24/2022] [Accepted: 07/15/2022] [Indexed: 11/19/2022]
|
191
|
Abstract
Significance: Cancer-associated tissue-specific lactic acidosis stimulates and mediates tumor invasion and metastasis and is druggable. Rarely, malignancy causes systemic lactic acidosis, the role of which is poorly understood. Recent Advances: The understanding of the role of lactate has shifted dramatically since its discovery. Long recognized as only a waste product, lactate has become known as an alternative metabolism substrate and a secreted nutrient that is exchanged between the tumor and the microenvironment. Tissue-specific lactic acidosis is targeted to improve the host body's anticancer defense and serves as a tool that allows the targeting of anticancer compounds. Systemic lactic acidosis is associated with poor survival. In patients with solid cancer, systemic lactic acidosis is associated with an extremely poor prognosis, as revealed by the analysis of 57 published cases in this study. Although it is considered a pathology worth treating, targeting systemic lactic acidosis in patients with solid cancer is usually inefficient. Critical Issues: Research gaps include simple questions, such as the unknown nuclear pH of the cancer cells and its effects on chemotherapy outcomes, pH sensitivity of glycosylation in cancer cells, in vivo mechanisms of response to acidosis in the absence of lactate, and overinterpretation of in vitro results that were obtained by using cells that were not preadapted to acidic environments. Future Directions: Numerous metabolism-targeting anticancer compounds induce lactatemia, lactic acidosis, or other types of acidosis. Their potential to induce acidic environments is largely overlooked, although the acidosis might contribute to a substantial portion of the observed clinical effects. Antioxid. Redox Signal. 37, 1130-1152.
Collapse
Affiliation(s)
- Petr Heneberg
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
192
|
Peritumoral scaffold neutralizes tumor pH for chemotherapy sensitization and metastasis inhibition. J Control Release 2022; 352:747-758. [PMID: 36356942 DOI: 10.1016/j.jconrel.2022.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/10/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
Abstract
The abnormal metabolism of rapidly growing tumors can create an acidic tumor microenvironment (TME) that renders cancer cells resistant to chemotherapy and further facilitates endothelial-to-mesenchymal transition (EMT) progress to promote metastasis. Here, we developed a combination strategy consisting of (1) peritumorally injected scaffold that alleviates TME acidosis, and (2) intravenously injected nanoparticles that delivers anti-cancer agents to tumor. Concurrent treatment with these two drug delivery systems profoundly delayed the growth of primary tumor and reduced the spontaneous metastasis to lung in an orthotopic breast cancer mouse model. Mechanism studies both in vitro and in vivo further revealed that neutralization of TME pH by the hydrogel scaffold sensitized cancer cells to nanoparticle-based chemotherapy, thereby strengthening the cytotoxicity against tumor growth; In parallel, reversal of tumor acidity downregulated various pro-metastatic proteins intratumorally to block the EMT progress, thereby reducing the metastatic potential of cancer cells. This work provided proof-of-concept demonstration that chemotherapy sensitization and EMT suppression could be synchronized by the modulation of TME pH, which may be potentially beneficial for simultaneous inhibition of tumor growth and cancer metastasis.
Collapse
|
193
|
Kilanowska A, Ziółkowska A, Stasiak P, Gibas-Dorna M. cAMP-Dependent Signaling and Ovarian Cancer. Cells 2022; 11:cells11233835. [PMID: 36497095 PMCID: PMC9738761 DOI: 10.3390/cells11233835] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
cAMP-dependent pathway is one of the most significant signaling cascades in healthy and neoplastic ovarian cells. Working through its major effector proteins-PKA and EPAC-it regulates gene expression and many cellular functions. PKA promotes the phosphorylation of cAMP response element-binding protein (CREB) which mediates gene transcription, cell migration, mitochondrial homeostasis, cell proliferation, and death. EPAC, on the other hand, is involved in cell adhesion, binding, differentiation, and interaction between cell junctions. Ovarian cancer growth and metabolism largely depend on changes in the signal processing of the cAMP-PKA-CREB axis, often associated with neoplastic transformation, metastasis, proliferation, and inhibition of apoptosis. In addition, the intracellular level of cAMP also determines the course of other pathways including AKT, ERK, MAPK, and mTOR, that are hypo- or hyperactivated among patients with ovarian neoplasm. With this review, we summarize the current findings on cAMP signaling in the ovary and its association with carcinogenesis, multiplication, metastasis, and survival of cancer cells. Additionally, we indicate that targeting particular stages of cAMP-dependent processes might provide promising therapeutic opportunities for the effective management of patients with ovarian cancer.
Collapse
Affiliation(s)
- Agnieszka Kilanowska
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, 65-046 Zielona Gora, Poland
- Correspondence: ; Tel.: +48-683-283-148
| | - Agnieszka Ziółkowska
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, 65-046 Zielona Gora, Poland
| | - Piotr Stasiak
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, 65-046 Zielona Gora, Poland
| | - Magdalena Gibas-Dorna
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, 65-046 Zielona Gora, Poland
| |
Collapse
|
194
|
Krymov SK, Scherbakov AM, Dezhenkova LG, Salnikova DI, Solov’eva SE, Sorokin DV, Vullo D, De Luca V, Capasso C, Supuran CT, Shchekotikhin AE. Indoline-5-Sulfonamides: A Role of the Core in Inhibition of Cancer-Related Carbonic Anhydrases, Antiproliferative Activity and Circumventing of Multidrug Resistance. Pharmaceuticals (Basel) 2022; 15:ph15121453. [PMID: 36558903 PMCID: PMC9783868 DOI: 10.3390/ph15121453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
The overexpression and activity of carbonic anhydrase (CA, EC 4.2.1.1) isoforms CA IX and CA XII promote the accumulation of exceeding protons and acidosis in the extracellular tumor environment. Sulfonamides are effective inhibitors of most families of CAs. In this study, using scaffold-hopping, indoline-5-sulfonamide analogs 4a-u of the CA IX-selective inhibitor 3 were designed and synthesized to evaluate their biological properties. 1-Acylated indoline-5-sulfonamides demonstrated inhibitory activity against tumor-associated CA IX and XII with KI values up to 132.8 nM and 41.3 nM. Compound 4f, as one of the most potent inhibitors of CA IX and XII, exhibits hypoxic selectivity, suppressing the growth of MCF7 cells at 12.9 µM, and causes partial inhibition of hypoxia-induced CA IX expression in A431 skin cancer cells. 4e and 4f reverse chemoresistance to doxorubicin of K562/4 with overexpression of P-gp.
Collapse
Affiliation(s)
- Stepan K. Krymov
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia
| | - Alexander M. Scherbakov
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, 115522 Moscow, Russia
| | - Lyubov G. Dezhenkova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia
| | - Diana I. Salnikova
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, 115522 Moscow, Russia
| | - Svetlana E. Solov’eva
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia
| | - Danila V. Sorokin
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, 115522 Moscow, Russia
| | - Daniela Vullo
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, 50122 Florence, Italy
| | - Viviana De Luca
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Clemente Capasso
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Claudiu T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, 50122 Florence, Italy
- Correspondence: (C.T.S.); (A.E.S.)
| | - Andrey E. Shchekotikhin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia
- Correspondence: (C.T.S.); (A.E.S.)
| |
Collapse
|
195
|
Li Y, Gao R, Zhao B, Zhang Y. Low Serum Bicarbonate Levels Increase the Risk of All-Cause, Cardiovascular Disease, and Cancer Mortality in Type 2 Diabetes. J Clin Endocrinol Metab 2022; 107:3055-3065. [PMID: 36066477 PMCID: PMC9681608 DOI: 10.1210/clinem/dgac504] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT The evidence regarding bicarbonate status and mortality among diabetes is scarce. OBJECTIVE The purpose of this study was to investigate the associations of bicarbonate concentrations with risk of all-cause, cardiovascular disease (CVD), and cancer mortality among patients with type 2 diabetes (T2D). METHODS This study included 8163 adult diabetic patients from the National Health and Nutrition Examination Survey (NHANES), 1999 to 2018. Death outcomes were ascertained by linkage to National Death Index records through 31 December 2019. The Cox proportional-risk model was used to estimate hazard ratios (HR) and 95% CIs for mortality from all causes, CVD, and cancer. The mediating effects of 11 metabolic, cardiovascular, and renal biomarkers were evaluated using a logistic regression model within a counterfactual framework. RESULTS During 8163 person-years of follow-up, 2310 deaths were documented, including 659 CVD deaths and 399 cancer deaths. After multivariate adjustment, lower serum bicarbonate levels were significantly linearly correlated with higher all-cause, CVD, and cancer mortality: The risk of all-cause death increased by 40%, the risk of CVD death increased by 48%, and the risk of cancer death increased by 84% compared with the normal group (all P < .05). Altered levels of estimated glomerular filtration rate explained 12.10% and 16.94% of the relation between serum bicarbonate with all-cause and CVD mortality, respectively. Total cholesterol mediated 4.70% and 10.51% of the associations of all-cause and CVD mortality, respectively. CONCLUSION Lower serum bicarbonate concentrations were significantly associated with higher all-cause, CVD, and cancer mortality. These findings suggest that maintaining adequate bicarbonate status may lower mortality risk in individuals with T2D.
Collapse
Affiliation(s)
- Yilan Li
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Nangang, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, Nangang, China
| | - Rong Gao
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Nangang, China
| | - Bing Zhao
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Nangang, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, Nangang, China
| | - Yao Zhang
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Nangang, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, Nangang, China
| |
Collapse
|
196
|
Zhan Q, Han X, Mu J, Shi X, Zheng Y, Wang T, Cao T, Xi Y, Weng Z, Wang X, Cao P. Oxygen-evolving hollow polydopamine alleviates tumour hypoxia for enhancing photodynamic therapy in cancer treatment. NANOSCALE ADVANCES 2022; 4:5021-5026. [PMID: 36504744 PMCID: PMC9680955 DOI: 10.1039/d2na00549b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/03/2022] [Indexed: 06/17/2023]
Abstract
Hypoxia, a characteristic hallmark of solid tumours, restricts the therapeutic effect of photodynamic therapy (PDT) for cancer treatment. To address this issue, a facile and nanosized oxygen (O2) bubble template is established by mixing oxygenated water and water-soluble solvents for guiding hollow polydopamine (HPDA) synthesis, and O2 is encapsulated in the cavity of HPDA. HPDA with abundant catechol is designed as a carrier for zinc phthalocyanine (ZnPc, a boronic acid modified photosensitizer) via borate ester bonds to fabricate nanomedicine (denoted as HZNPs). The in vitro and in vivo results indicate that O2-evolving HZNPs could alleviate tumour hypoxia and enhance PDT-anticancer efficiency. Melanin-like HPDA with a photothermal conversion rate (η) of 38.2% shows excellent synergistic photothermal therapy (PTT) efficiency in cancer treatment.
Collapse
Affiliation(s)
- Qichen Zhan
- School of Pharmacy, Nanjing University of Chinese Medicine Nanjing Jiangsu 210023 China
| | - Xuan Han
- School of Chinese Medicine, Nanjing University of Chinese Medicine Nanjing Jiangsu 210023 China
| | - Jiankang Mu
- School of Pharmacy, Nanjing University of Chinese Medicine Nanjing Jiangsu 210023 China
| | - Xianqing Shi
- Department of Public Experimental Teaching, Nanjing University of Aeronautics and Astronautics Nanjing Jiangsu 211106 China
| | - Yuhan Zheng
- School of Pharmacy, Nanjing University of Chinese Medicine Nanjing Jiangsu 210023 China
| | - Ting Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry Nanjing Jiangsu 210042 China
| | - Tao Cao
- School of Pharmacy, Nanjing University of Chinese Medicine Nanjing Jiangsu 210023 China
| | - Yulu Xi
- School of Pharmacy, Nanjing University of Chinese Medicine Nanjing Jiangsu 210023 China
| | - Zhongpei Weng
- Gaoyou Hospital of Traditional Chinese Medicine Yangzhou Jiangsu 225600 China
| | - Xiaoqing Wang
- Gaoyou Hospital of Traditional Chinese Medicine Yangzhou Jiangsu 225600 China
| | - Peng Cao
- School of Pharmacy, Nanjing University of Chinese Medicine Nanjing Jiangsu 210023 China
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing Jiangsu 210028 China
- Zhenjiang Hospital of Chinese Traditional and Western Medicine Zhenjiang Jiangsu 212002 China
| |
Collapse
|
197
|
Development of Chitosan/Gelatin-Based Hydrogels Incorporated with Albumin Particles. Int J Mol Sci 2022; 23:ijms232214136. [PMID: 36430612 PMCID: PMC9694906 DOI: 10.3390/ijms232214136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
The research subject of this paper are natural polymer-based hydrogels modified with albumin particles. The proteins were obtained via the salt-induced precipitation method, and next characterized using dynamic light scattering (DLS), UV-Vis spectroscopy and FT-IR spectroscopy. The most favorable composition showing monodispersity and particles with a size lower than 40 nm was selected for modification of hydrogels. Such systems were obtained via the photopolymerization performed under the influence of UV radiation using diacrylate poly(ethylene glycol) as a crosslinking agent and 2-hydroxy-2-methylpropiophenone as a photoinitiator. Next, the hydrogels' swelling ability, mechanical properties, wettability and surface morphology were characterized. Moreover, FT-IR spectroscopy, incubation studies in simulated physiological liquids, pro-inflammatory activity analysis and MTT reduction assay with L929 murine fibroblasts were performed. The release profiles of proteins from hydrogels were also verified. Materials modified with proteins showed higher swelling ability, increased flexibility even by 50% and increased surface hydrophilicity. Hydrogels' contact angles were within the range 62-69° while the tensile strength of albumin-containing hydrogels was approx. 0.11 MPa. Furthermore, the possibility of the effective release of protein particles from hydrogels in acidic environment (approximately 70%) was determined. Incubation studies showed hydrogels' stability and lack of their degradation in tested media. The viability of fibroblasts was 89.54% for unmodified hydrogel, and approx. 92.73% for albumin-modified hydrogel, and such an increase indicated the positive impact of the albumin on murine fibroblast proliferation.
Collapse
|
198
|
Hao Y, Yi Q, XiaoWu X, WeiBo C, GuangChen Z, XueMin C. Acetyl-CoA: An interplay between metabolism and epigenetics in cancer. FRONTIERS IN MOLECULAR MEDICINE 2022; 2:1044585. [PMID: 39086974 PMCID: PMC11285595 DOI: 10.3389/fmmed.2022.1044585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/02/2022] [Indexed: 08/02/2024]
Abstract
Due to its high mortality and severe economic burden, cancer has become one of the most difficult medical problems to solve today. As a key node in metabolism and the main producer of energy, acetyl-coenzyme A (acetyl-CoA) plays an important role in the invasion and migration of cancer. In this review, we discuss metabolic pathways involving acetyl-CoA, the targeted therapy of cancer through acetyl-CoA metabolic pathways and the roles of epigenetic modifications in cancer. In particular, we emphasize that the metabolic pathway of acetyl-CoA exerts a great impact in cancer; this process is very different from normal cells due to the "Warburg effect". The concentration of acetyl-CoA is increased in the mitochondria of cancer cells to provide ATP for survival, hindering the growth of normal cells. Therefore, it may be possible to explore new feasible and more effective treatments through the acetyl-CoA metabolic pathway. In addition, a growing number of studies have shown that abnormal epigenetic modifications have been shown to play contributing roles in cancer formation and development. In most cancers, acetyl-CoA mediated acetylation promotes the growth of cancer cells. Thus, acetylation biomarkers can also be detected and serve as potential cancer prediction and prognostic markers.
Collapse
Affiliation(s)
- Yang Hao
- Changzhou First People’s Hospital, The Third Affiliated Hospital of Suzhou University, Changzhou, China
| | - Qin Yi
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xu XiaoWu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Chen WeiBo
- Changzhou First People’s Hospital, The Third Affiliated Hospital of Suzhou University, Changzhou, China
| | - Zu GuangChen
- Changzhou First People’s Hospital, The Third Affiliated Hospital of Suzhou University, Changzhou, China
| | - Chen XueMin
- Changzhou First People’s Hospital, The Third Affiliated Hospital of Suzhou University, Changzhou, China
| |
Collapse
|
199
|
Sahkulubey Kahveci EL, Kahveci MU, Celebi A, Avsar T, Derman S. Glycopolymer and Poly(β-amino ester)-Based Amphiphilic Block Copolymer as a Drug Carrier. Biomacromolecules 2022; 23:4896-4908. [PMID: 36317475 PMCID: PMC9667500 DOI: 10.1021/acs.biomac.2c01076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/20/2022] [Indexed: 11/16/2022]
Abstract
Glycopolymers are synthetic macromolecules having pendant sugar moieties and widely utilized to target cancer cells. They are usually considered as a hydrophilic segment of amphiphilic block copolymers to fabricate micelles as drug carriers. A novel amphiphilic block copolymer, namely, poly(2-deoxy-2-methacrylamido-d-glucose-co-2-hydroxyethyl methacrylate)-b-poly(β-amino ester) [P(MAG-co-HEMA)-b-PBAE], with active cancer cell targeting potential and pH responsivity was prepared. Tetrazine end functional P(MAG-co-HEMA) and norbornene end functional PBAE blocks were separately synthesized through reversible addition fragmentation chain transfer polymerization and Michael addition-based poly-condensation, respectively, and followed by end-group transformation. Then, inverse electron demand Diels Alder reaction between the tetrazine and the norbornene groups was performed by simply mixing to obtain the amphiphilic block copolymer. After characterization of the block copolymer in terms of chemical structure, pH responsivity, and drug loading/releasing, pH-responsive micelles were obtained with or without doxorubicin (DOX), a model anticancer drug. The micelles exhibited a sharp protonated/deprotonated transition on tertiary amine groups around pH 6.75 and the pH-specific release of DOX below this value. Eventually, the drug delivery potential was evaluated by cytotoxicity assays on both the noncancerous human umbilical vein endothelial cell (HUVEC) cell line and glioblastoma cell line, U87-MG. While the DOX-loaded polymeric micelles were not toxic in noncancerous HUVEC cells, being toxic only to the cancer cells indicates that it is a potential specific cell targeting strategy in the treatment of cancer.
Collapse
Affiliation(s)
- Elif L. Sahkulubey Kahveci
- Faculty
of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Davutpasa Campus, Esenler, 34210Istanbul, Turkey
| | - Muhammet U. Kahveci
- Faculty
of Science and Letters, Department of Chemistry, Istanbul Technical University, Maslak, Sariyer, 34467Istanbul, Turkey
| | - Asuman Celebi
- Department
of Medical Biology, School of Medicine, Bahcesehir University, Goztepe, 34734Istanbul, Turkey
| | - Timucin Avsar
- Department
of Medical Biology, School of Medicine, Bahcesehir University, Goztepe, 34734Istanbul, Turkey
| | - Serap Derman
- Faculty
of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Davutpasa Campus, Esenler, 34210Istanbul, Turkey
| |
Collapse
|
200
|
Gillies RJ, Ibrahim-Hashim A, Ordway B, Gatenby RA. Back to basic: Trials and tribulations of alkalizing agents in cancer. Front Oncol 2022; 12:981718. [PMID: 36452492 PMCID: PMC9702334 DOI: 10.3389/fonc.2022.981718] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/25/2022] [Indexed: 09/12/2023] Open
Abstract
UNLABELLED "Dysregulated" metabolism is a characteristic of the cancer cell phenotype. This includes persistent use of glycolytic metabolism in normoxic environments (Warburg effect) leading to increased acid production and accumulation of protons in the interstitial space. Although often thought to be disordered, altered cancer metabolism is the outcome of intense Darwinian selection and, thus, must have evolved to maximize cancer cell fitness. In an evolutionary context, cancer-induced acidification of the microenvironment represents a niche construction strategy to promote proliferation. Ecological advantages conferred on the cancer population included remodeling of the extracellular matrix to promote local invasion, suppression of potential competitive proliferation of fibroblasts, and suppression of host immune response. Preclinical data demonstrates that increasing the serum buffering capacity (through, for example, oral sodium bicarbonate and TRIS) can neutralize the acidic tumor microenvironment with inhibition local invasion and proliferation which can be synergistic with the effects of chemotherapy and immunotherapy agents. Here, we describe the proton dynamics in cancer and their influence on tumor progression and metastasis. Additionally, we will discuss targeting the tumor acidosis with alkalizing agents including our bicarbonate clinical trial results. CLINICAL TRIAL REGISTRATION clinicaltrials.gov, identifier NCT01350583, NCT01198821 and NCT01846429.
Collapse
Affiliation(s)
- Robert J. Gillies
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center, Tampa, FL, United States
- Department of Radiology, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Arig Ibrahim-Hashim
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Bryce Ordway
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Robert A. Gatenby
- Department of Radiology, H. Lee Moffitt Cancer Center, Tampa, FL, United States
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| |
Collapse
|