151
|
The selective NLRP3 inhibitor MCC950 hinders atherosclerosis development by attenuating inflammation and pyroptosis in macrophages. Sci Rep 2021; 11:19305. [PMID: 34588488 PMCID: PMC8481539 DOI: 10.1038/s41598-021-98437-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
NLRP3 inflammasome is a vital player in macrophages pyroptosis, which is a type of proinflammatory cell-death and takes part in the pathogenesis of atherosclerosis. In this study, we used apoE−/− mice and ox-LDL induced THP-1 derived macrophages to explore the mechanisms of MCC950, a selective NLRP3 inhibitor in treating atherosclerosis. For the in vivo study, MCC950 was intraperitoneal injected to 8-week-old apoE−/− mice fed with high-fat diet for 12 weeks. For the in vitro study, THP-1 derived macrophages were treated with ox-LDL and MCC950 for 48 h. MCC950 administration reduced plaque areas and macrophages contents, but did not improve the serum lipid profiles in aortic root of apoE−/− mice. MCC950 inhibited the activation of NLRP3/ASC/Caspase-1/GSDMD-N axis, and alleviated macrophages pyroptosis and the production of IL-1β and IL-18 both in aorta and in cell lysates. However, MCC950 did not affect the expression of TLR4 or the mRNA levels of NLRP3 inflammasome and its downstream proteins, suggesting that MCC950 had no effects on the priming of NLRP3 inflammasome activation in macrophages. The anti-atherosclerotic mechanisms of MCC950 on attenuating macrophages inflammation and pyroptosis involved in inhibiting the assembly and activation of NLRP3 inflammasome, rather than interrupting its priming.
Collapse
|
152
|
Chen X, Zhang D, Li Y, Wang W, Bei W, Guo J. NLRP3 inflammasome and IL-1β pathway in type 2 diabetes and atherosclerosis: Friend or foe? Pharmacol Res 2021; 173:105885. [PMID: 34536551 DOI: 10.1016/j.phrs.2021.105885] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/23/2021] [Accepted: 09/09/2021] [Indexed: 12/28/2022]
Abstract
Type 2 diabetes and atherosclerosis have gradually garnered great attention as inflammatory diseases. Previously, the fact that Interleukin-1β (IL-1β) accelerates the development of type 2 diabetes and atherosclerosis has been proved in animal experiments and clinical trials. However, the continued studies found that the effect of IL-1β on type 2 diabetes and atherosclerosis is much more complicated than the negative impact. Nucleotide-binding oligomerization domain and leucine-rich repeat pyrin 3 domain (NLRP3) inflammasome, whose activation and assembly significantly affect the release of IL-1β, is a crucial effector activated by a variety of metabolites. The diversity of NLRP3 activation mode is one of the fundamental reasons for the intricate effects on the progression of type 2 diabetes and atherosclerosis, providing many new insights for us to intervene in metabolic diseases. This review focuses on how NLRP3 inflammasome affects the progression of type 2 diabetes and atherosclerosis and what opportunities and challenges it can bring us.
Collapse
Affiliation(s)
- Xu Chen
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Dongxing Zhang
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Yuping Li
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Weixuan Wang
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Weijian Bei
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China.
| | - Jiao Guo
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China.
| |
Collapse
|
153
|
Igel E, Haller A, Wolfkiel PR, Orr-Asman M, Jaeschke A, Hui DY. Distinct pro-inflammatory properties of myeloid cell-derived apolipoprotein E2 and E4 in atherosclerosis promotion. J Biol Chem 2021; 297:101106. [PMID: 34425108 PMCID: PMC8437825 DOI: 10.1016/j.jbc.2021.101106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 11/25/2022] Open
Abstract
Polymorphisms in the apolipoprotein E (apoE) gene are risk factors for chronic inflammatory diseases including atherosclerosis. The gene product apoE is synthesized in many cell types and has both lipid transport–dependent and lipid transport–independent functions. Previous studies have shown that apoE expression in myeloid cells protects against atherogenesis in hypercholesterolemic ApoE−/− mice. However, the mechanism of this protection is still unclear. Using human APOE gene replacement mice as models, this study showed that apoE2 and apoE4 expressed endogenously in myeloid cells enhanced the inflammatory response via mechanisms independent of plasma lipoprotein transport. The data revealed that apoE2-expressing myeloid cells contained higher intracellular cholesterol levels because of impaired efflux, causing increasing inflammasome activation and myelopoiesis. In contrast, intracellular cholesterol levels were not elevated in apoE4-expressing myeloid cells, and its proinflammatory property was found to be independent of inflammasome signaling and related to enhanced oxidative stress. When ApoE−/− mice were reconstituted with bone marrow from various human APOE gene replacement mice, effective reduction of atherosclerosis was observed with marrow cells obtained from APOE3 but not APOE2 and APOE4 gene replacement mice. Taken together, these results documented that apoE2 and apoE4 expression in myeloid cells promotes inflammation via distinct mechanisms and promotes atherosclerosis in a plasma lipoprotein transport–independent manner.
Collapse
Affiliation(s)
- Emily Igel
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - April Haller
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Patrick R Wolfkiel
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Melissa Orr-Asman
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Anja Jaeschke
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - David Y Hui
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
| |
Collapse
|
154
|
Vedder D, Gerritsen M, Nurmohamed MT, van Vollenhoven RF, Lood C. A neutrophil signature is strongly associated with increased cardiovascular risk in gout. Rheumatology (Oxford) 2021; 60:2783-2790. [PMID: 33188698 PMCID: PMC8213432 DOI: 10.1093/rheumatology/keaa712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 10/07/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE To investigate the association between neutrophil activation and cardiovascular risk in gout patients. We hypothesize that neutrophil activation mediates inflammation and therefore takes part in atherogenesis in gout patients. METHOD Patient data were collected from 75 consecutive gout patients participating in the Reade gout cohort Amsterdam. Levels of neutrophil extracellular traps (NETs) and neutrophil activation (calprotectin and peroxidase activity) were analysed by ELISA and fluorimetry in plasma and compared with healthy controls. Markers of neutrophil activation were related to clinical markers of cardiovascular risk, including BMI, smoking, blood pressure, lipid profile and 10 year risk of cardiovascular mortality (EU-SCORE). RESULTS Increased levels of NETs were found in gout patients, although increased levels were not associated with cardiovascular risk. However, markers of neutrophil activation, including peroxidase activity correlated with waist:hip ratio (β = 0.33, P < 0.001), cholesterol ratio (β = 0.46, P < 0.005) and triglycerides (β = 0.60, P < 0.001) as well as the 10 year risk of cardiovascular mortality (β = 0.44, P = 0.001). Calprotectin levels were elevated in hypertension (P = 0.005) and diabetes (P = 0.02). Finally, gout patients with high levels of both peroxidase and calprotectin ('neutrophil activation signature') had a markedly elevated cardiovascular risk score (P = 0.001), with 68% of the patients having high cardiovascular risk (odds ratio 2.9, P = 0.03). CONCLUSION We demonstrated elevated levels of neutrophil activation markers, MPO and calprotectin in gout patients as compared with healthy controls. Of note, neutrophil activation markers were associated with several risk factors for cardiovascular disease, including hyperlipidaemia, hypertension and diabetes. Finally, the presence of a neutrophil activation signature was strongly associated with an increased 10 year risk of cardiovascular mortality. Further studies are needed to determine whether gout-specific factors and/or cardiovascular risk factors contribute to the elevated neutrophil activation observed in these patients.
Collapse
Affiliation(s)
- Daisy Vedder
- Amsterdam Rheumatology and Immunology Center Reade, Amsterdam, The Netherlands.,Vrije Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Martijn Gerritsen
- Amsterdam Rheumatology and Immunology Center Reade, Amsterdam, The Netherlands
| | - Michael T Nurmohamed
- Amsterdam Rheumatology and Immunology Center Reade, Amsterdam, The Netherlands.,Vrije Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.,Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Ronald F van Vollenhoven
- Amsterdam Rheumatology and Immunology Center Reade, Amsterdam, The Netherlands.,Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Christian Lood
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, USA
| |
Collapse
|
155
|
Pérez-Olivares L, Soehnlein O. Contemporary Lifestyle and Neutrophil Extracellular Traps: An Emerging Link in Atherosclerosis Disease. Cells 2021; 10:1985. [PMID: 34440753 PMCID: PMC8394440 DOI: 10.3390/cells10081985] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/15/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are networks of extracellular genetic material decorated with proteins of nuclear, granular and cytosolic origin that activated neutrophils expel under pathogenic inflammatory conditions. NETs are part of the host's innate immune defense system against invading pathogens. Interestingly, these extracellular structures can also be released in response to sterile inflammatory stimuli (e.g., shear stress, lipidic molecules, pro-thrombotic factors, aggregated platelets, or pro-inflammatory cytokines), as in atherosclerosis disease. Indeed, NETs have been identified in the intimal surface of diseased arteries under cardiovascular disease conditions, where they sustain inflammation via NET-mediated cell-adhesion mechanisms and promote cellular dysfunction and tissue damage via NET-associated cytotoxicity. This review will focus on (1) the active role of neutrophils and NETs as underestimated players of the inflammatory process during atherogenesis and lesion progression; (2) how these extracellular structures communicate with the main cell types present in the atherosclerotic lesion in the arterial wall; and (3) how these neutrophil effector functions interplay with lifestyle-derived risk factors such as an unbalanced diet, physical inactivity, smoking or lack of sleep quality, which represent major elements in the development of cardiovascular disease.
Collapse
Affiliation(s)
- Laura Pérez-Olivares
- Center for Molecular Biology of Inflammation (ZMBE), Institute for Experimental Pathology (ExPat), Westfälische Wilhelms-Universität (WWU), 48149 Münster, Germany;
| | - Oliver Soehnlein
- Center for Molecular Biology of Inflammation (ZMBE), Institute for Experimental Pathology (ExPat), Westfälische Wilhelms-Universität (WWU), 48149 Münster, Germany;
- Department of Physiology and Pharmacology (FyFa), Karolinska Institute, 17165 Stockholm, Sweden
| |
Collapse
|
156
|
Groenen AG, Halmos B, Tall AR, Westerterp M. Cholesterol efflux pathways, inflammation, and atherosclerosis. Crit Rev Biochem Mol Biol 2021; 56:426-439. [PMID: 34182846 PMCID: PMC9007272 DOI: 10.1080/10409238.2021.1925217] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/30/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022]
Abstract
Plasma levels of high-density lipoprotein (HDL) inversely correlate with the incidence of cardiovascular diseases (CVD). The causal relationship between plasma HDL-cholesterol levels and CVD has been called into question by Mendelian randomization studies and the majority of clinical trials not showing any benefit of plasma HDL-cholesterol raising drugs on CVD. Nonetheless, recent Mendelian randomization studies including an increased number of CVD cases compared to earlier studies have confirmed that HDL-cholesterol levels and CVD are causally linked. Moreover, several studies in large population cohorts have shown that the cholesterol efflux capacity of HDL inversely correlates with CVD. Cholesterol efflux pathways exert anti-inflammatory and anti-atherogenic effects by suppressing proliferation of hematopoietic stem and progenitor cells, and inflammation and inflammasome activation in macrophages. Cholesterol efflux pathways also suppress the accumulation of cholesteryl esters in macrophages, i.e. macrophage foam cell formation. Recent single-cell RNASeq studies on atherosclerotic plaques have suggested that macrophage foam cells have lower expression of inflammatory genes than non-foam cells, probably reflecting liver X receptor activation, upregulation of ATP Binding Cassette A1 and G1 cholesterol transporters and suppression of inflammation. However, when these pathways are defective lesional foam cells may become pro-inflammatory.
Collapse
Affiliation(s)
- Anouk G. Groenen
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Benedek Halmos
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Alan R. Tall
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY, USA
| | - Marit Westerterp
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
157
|
Zhang S, Yang F, Shi R, Liu C, Zhao L, Gu X, Liu Y, Fu F, Feng N, Liu Y, Jia M, Fan R, Yang L, Li J, Li J, Pei J. Activation of κ-opioid receptor inhibits inflammatory response induced by sodium palmitate in human umbilical vein endothelial cells. Cytokine 2021; 146:155659. [PMID: 34332276 DOI: 10.1016/j.cyto.2021.155659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/11/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The current study aims to investigate the effect of κ-opioid receptor (κ-OR) activation on sodium palmitate (SP)-induced human umbilical vein endothelial cells (HUVECs) inflammatory response and elucidate the underlying mechanisms. METHODS A hyperlipidemic cell model was established and treated with κ-OR agonist (U50,488H), and antagonist (norbinaltorphimine, nor-BNI), or inhibitors targeting PI3K, Akt or eNOS (LY294002, MK2206-2HCl or L-NAME, respectively). Furthermore, the expression levels of NLRP3, caspase-1, p-Akt, Akt, p-eNOS, and total eNOS were evaluated. Additionally, the production of reactive oxygen species, and levels of inflammatory factors, such as TNF-α, IL-1β, IL-6, IL-1 and adhesion molecules, such as ICAM-1, VCAM-1, P-selectin, and E-selectin were determined. The adherence rates of the neutrophils and monocytes were assessed as well. RESULTS The SP-induced hyperlipidemic cell model demonstrated increased expression of NLRP3 and caspase-1 proteins (P < 0.05) and elevated ROS levels (P < 0.01), and decreased phosphorylated-Akt and phosphorylated-eNOS expression (P < 0.05). In addition, SP significantly increased TNF-α, IL-1β, IL-6, ICAM-1, VCAM-1, P-selectin, and E-selectin levels (P < 0.01), decreased IL-10 levels (P < 0.01), and increased the adhesion rates of monocytes and neutrophils (P < 0.01). The SP-induced inflammatory response in HUVECs was ameliorated by κ-OR agonist, U50,488H. However, the protective effect of U50,488H was abolished by κ-OR antagonist, nor-BNI, and inhibitors of PI3K, Akt and eNOS. CONCLUSION Our findings suggest that κ-OR activation inhibits SP-induced inflammation by activating the PI3K/Akt/eNOS signaling pathway.
Collapse
Affiliation(s)
- Shumiao Zhang
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Air Force Medical University, No. 169 West Changle Road, Xi'an 710032, Shaanxi Province, People's Republic of China
| | - Fan Yang
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Air Force Medical University, No. 169 West Changle Road, Xi'an 710032, Shaanxi Province, People's Republic of China
| | - Rui Shi
- School of Life Sciences, Northwest University, No.1 North Taibai Road, Xi'an 710069, Shaanxi Province, People's Republic of China
| | - Chaoyang Liu
- School of Life Sciences, Northwest University, No.1 North Taibai Road, Xi'an 710069, Shaanxi Province, People's Republic of China
| | - Lei Zhao
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an 710033, Shaanxi Province, China
| | - Xiaoming Gu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Air Force Medical University, No. 169 West Changle Road, Xi'an 710032, Shaanxi Province, People's Republic of China
| | - Yinji Liu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Air Force Medical University, No. 169 West Changle Road, Xi'an 710032, Shaanxi Province, People's Republic of China
| | - Feng Fu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Air Force Medical University, No. 169 West Changle Road, Xi'an 710032, Shaanxi Province, People's Republic of China
| | - Na Feng
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Air Force Medical University, No. 169 West Changle Road, Xi'an 710032, Shaanxi Province, People's Republic of China
| | - Yali Liu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Air Force Medical University, No. 169 West Changle Road, Xi'an 710032, Shaanxi Province, People's Republic of China
| | - Min Jia
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Air Force Medical University, No. 169 West Changle Road, Xi'an 710032, Shaanxi Province, People's Republic of China
| | - Rong Fan
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Air Force Medical University, No. 169 West Changle Road, Xi'an 710032, Shaanxi Province, People's Republic of China
| | - Lu Yang
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Air Force Medical University, No. 169 West Changle Road, Xi'an 710032, Shaanxi Province, People's Republic of China
| | - Jun Li
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Air Force Medical University, No. 169 West Changle Road, Xi'an 710032, Shaanxi Province, People's Republic of China
| | - Juan Li
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Air Force Medical University, No. 169 West Changle Road, Xi'an 710032, Shaanxi Province, People's Republic of China.
| | - Jianming Pei
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Air Force Medical University, No. 169 West Changle Road, Xi'an 710032, Shaanxi Province, People's Republic of China; School of Life Sciences, Northwest University, No.1 North Taibai Road, Xi'an 710069, Shaanxi Province, People's Republic of China.
| |
Collapse
|
158
|
Li Y, Zhang Y, Lu J, Yin Y, Xie J, Xu B. Anti-inflammatory mechanisms and research progress of colchicine in atherosclerotic therapy. J Cell Mol Med 2021; 25:8087-8094. [PMID: 34312998 PMCID: PMC8419170 DOI: 10.1111/jcmm.16798] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/17/2021] [Accepted: 07/10/2021] [Indexed: 12/13/2022] Open
Abstract
Inflammatory responses play a vital role in the onset and development of atherosclerosis, and throughout the entire process of the chronic disease. The inflammatory responses in atherosclerosis are mainly mediated by the NLRP3 inflammasome and its downstream inflammatory factors. As a powerful anti‐inflammatory medicine, colchicine has a history of more than 200 years in clinical application and is the first‐choice treatment for immune diseases such as gout and familial Mediterranean fever. In atherosclerosis, colchicine can inhibit the assembly and activation of NLRP3 inflammasome via various mechanisms to effectively reduce the expression of inflammatory factors, thereby reducing the inflammation. Recent clinical trials show that a low dose of colchicine (0.5 mg per day) has a certain protective effect in stable angina patients or those with acute myocardial infarction after PCI. This article summarizes and discusses the mechanisms of colchicine in the treatment of atherosclerosis and the latest research progress.
Collapse
Affiliation(s)
- Yuyu Li
- Department of Cardiology, Nanjing Drum Tower Hospital, MOE Key Laboratory of Model Animal for Disease Study, School of Medicine, Nanjing University, Nanjing, China
| | - Yuxin Zhang
- Institution of Translational Medicine, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jianrong Lu
- Department of Cardiology, Nanjing Drum Tower Hospital, MOE Key Laboratory of Model Animal for Disease Study, School of Medicine, Nanjing University, Nanjing, China
| | - Yong Yin
- Department of Cardiology, Nanjing Drum Tower Hospital, MOE Key Laboratory of Model Animal for Disease Study, School of Medicine, Nanjing University, Nanjing, China
| | - Jun Xie
- Department of Cardiology, Nanjing Drum Tower Hospital, MOE Key Laboratory of Model Animal for Disease Study, School of Medicine, Nanjing University, Nanjing, China
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, MOE Key Laboratory of Model Animal for Disease Study, School of Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
159
|
Chen R, Zhang X, Gu L, Zhu H, Zhong Y, Ye Y, Xiong X, Jian Z. New Insight Into Neutrophils: A Potential Therapeutic Target for Cerebral Ischemia. Front Immunol 2021; 12:692061. [PMID: 34335600 PMCID: PMC8317226 DOI: 10.3389/fimmu.2021.692061] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/16/2021] [Indexed: 12/25/2022] Open
Abstract
Ischemic stroke is one of the main issues threatening human health worldwide, and it is also the main cause of permanent disability in adults. Energy consumption and hypoxia after ischemic stroke leads to the death of nerve cells, activate resident glial cells, and promote the infiltration of peripheral immune cells into the brain, resulting in various immune-mediated effects and even contradictory effects. Immune cell infiltration can mediate neuronal apoptosis and aggravate ischemic injury, but it can also promote neuronal repair, differentiation and regeneration. The central nervous system (CNS), which is one of the most important immune privileged parts of the human body, is separated from the peripheral immune system by the blood-brain barrier (BBB). Under physiological conditions, the infiltration of peripheral immune cells into the CNS is controlled by the BBB and regulated by the interaction between immune cells and vascular endothelial cells. As the immune response plays a key role in regulating the development of ischemic injury, neutrophils have been proven to be involved in many inflammatory diseases, especially acute ischemic stroke (AIS). However, neutrophils may play a dual role in the CNS. Neutrophils are the first group of immune cells to enter the brain from the periphery after ischemic stroke, and their exact role in cerebral ischemia remains to be further explored. Elucidating the characteristics of immune cells and their role in the regulation of the inflammatory response may lead to the identification of new potential therapeutic strategies. Thus, this review will specifically discuss the role of neutrophils in ischemic stroke from production to functional differentiation, emphasizing promising targeted interventions, which may promote the development of ischemic stroke treatments in the future.
Collapse
Affiliation(s)
- Ran Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xu Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Zhong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yingze Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
160
|
Cross-Talk of Atherosclerosis and Ischemic Stroke: Dramatic Role of Neutrophils. ARCHIVES OF NEUROSCIENCE 2021. [DOI: 10.5812/ans.104433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Context: Current investigations illustrate the increasing prevalence of atherosclerosis (AS) through the aggravating role of inappropriate lifestyle patterns. Atherosclerosis is the cause of important vascular-related diseases such as ischemic stroke (IS). Understanding AS pathophysiology can help reduce the incidence of AS-mediated diseases like ischemic stroke. Evidence Acquisition: For this narrative review article, we used the five mega databases of PubMed, Google Scholar, Scopus, Springer, and Science Direct. We searched from 2010 Jan to 2020 Dec and based on keywords and inclusion criteria, 77 articles were enrolled. Results: Based on prior articles on atherosclerosis and ischemic stroke pathophysiology, local and systemic inflammation is a vigorous factor in both diseasesIndeed, the fundamental inflammatory pathway involved atherosclerosis, and ischemic stroke is associated with the toll-like receptor 4/myeloid differentiation primary response 88/nuclear factor-kappa B (TLR4/ Myd88/ NF-κB) cascade. The functional paw of these intricate mechanisms are pro-inflammatory mediators, such as interleukin-1 beta (IL-1β), tumor necrosis factor (TNF-α), and interleukin-18 (IL-18) incite inflammation. Besides, the essential structures termed inflammasomes (multi proteins components), and multiplicity of immune and non-immune cells (i.e., neutrophils, monocytes, platelets, and macrophages) are beneficial in the induction of inflammatory microenvironment. Conclusions: Neutrophils could be the most effective cells in the inflammation-based mechanism in IS and AS. It is clarified that neutrophils with the recruitment of own vesicles and granules can afford to amplify inflammatory conditions and be a key cell in AS and IS cross-talk. Therefore, utilizing methods to control neutrophils-mediated mechanisms could be an effective method for the prevention of AS and IS.
Collapse
|
161
|
Tall AR. HDL in Morbidity and Mortality: A 40+ Year Perspective. Clin Chem 2021; 67:19-23. [PMID: 33221872 DOI: 10.1093/clinchem/hvaa148] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 04/30/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Alan R Tall
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York City, NY
| |
Collapse
|
162
|
Thakur M, Evans B, Schindewolf M, Baumgartner I, Döring Y. Neutrophil Extracellular Traps Affecting Cardiovascular Health in Infectious and Inflammatory Diseases. Cells 2021; 10:1689. [PMID: 34359859 PMCID: PMC8305819 DOI: 10.3390/cells10071689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are web-like structures of decondensed extracellular chromatin fibers and neutrophil granule proteins released by neutrophils. NETs participate in host immune defense by entrapping pathogens. They are pro-inflammatory in function, and they act as an initiator of vascular coagulopathies by providing a platform for the attachment of various coagulatory proteins. NETs are diverse in their ability to alter physiological and pathological processes including infection and inflammation. In this review, we will summarize recent findings on the role of NETs in bacterial/viral infections associated with vascular inflammation, thrombosis, atherosclerosis and autoimmune disorders. Understanding the complex role of NETs in bridging infection and chronic inflammation as well as discussing important questions related to their contribution to pathologies outlined above may pave the way for future research on therapeutic targeting of NETs applicable to specific infections and inflammatory disorders.
Collapse
Affiliation(s)
- Manovriti Thakur
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (M.T.); (B.E.); (M.S.); (I.B.)
| | - Bryce Evans
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (M.T.); (B.E.); (M.S.); (I.B.)
| | - Marc Schindewolf
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (M.T.); (B.E.); (M.S.); (I.B.)
| | - Iris Baumgartner
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (M.T.); (B.E.); (M.S.); (I.B.)
| | - Yvonne Döring
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (M.T.); (B.E.); (M.S.); (I.B.)
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), 80336 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| |
Collapse
|
163
|
Inflammasomes as therapeutic targets in human diseases. Signal Transduct Target Ther 2021; 6:247. [PMID: 34210954 PMCID: PMC8249422 DOI: 10.1038/s41392-021-00650-z] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/27/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammasomes are protein complexes of the innate immune system that initiate inflammation in response to either exogenous pathogens or endogenous danger signals. Inflammasome multiprotein complexes are composed of three parts: a sensor protein, an adaptor, and pro-caspase-1. Activation of the inflammasome leads to the activation of caspase-1, which cleaves pro-inflammatory cytokines such as IL-1β and IL-18, leading to pyroptosis. Effectors of the inflammasome not only provide protection against infectious pathogens, but also mediate control over sterile insults. Aberrant inflammasome signaling has been implicated in the development of cardiovascular and metabolic diseases, cancer, and neurodegenerative disorders. Here, we review the role of the inflammasome as a double-edged sword in various diseases, and the outcomes can be either good or bad depending on the disease, as well as the genetic background. We highlight inflammasome memory and the two-shot activation process. We also propose the M- and N-type inflammation model, and discuss how the inflammasome pathway may be targeted for the development of novel therapy.
Collapse
|
164
|
Speer T, Ridker PM, von Eckardstein A, Schunk SJ, Fliser D. Lipoproteins in chronic kidney disease: from bench to bedside. Eur Heart J 2021; 42:2170-2185. [PMID: 33393990 DOI: 10.1093/eurheartj/ehaa1050] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/16/2020] [Accepted: 12/08/2020] [Indexed: 12/24/2022] Open
Abstract
Chronic kidney disease (CKD) is associated with high cardiovascular risk. CKD patients exhibit a specific lipoprotein pattern termed 'uraemic dyslipidaemia', which is characterized by rather normal low-density lipoprotein cholesterol, low high-density lipoprotein cholesterol, and high triglyceride plasma levels. All three lipoprotein classes are involved in the pathogenesis of CKD-associated cardiovascular diseases (CVDs). Uraemia leads to several modifications of the structure of lipoproteins such as changes of the proteome and the lipidome, post-translational protein modifications (e.g. carbamylation) and accumulation of small-molecular substances within the lipoprotein moieties, which affect their functionality. Lipoproteins from CKD patients interfere with lipid transport and promote inflammation, oxidative stress, endothelial dysfunction as well as other features of atherogenesis, thus contributing to the development of CKD-associated CVD. While, lipid-modifying therapies play an important role in the management of CKD patients, their efficacy is modulated by kidney function. Novel therapeutic agents to prevent the adverse remodelling of lipoproteins in CKD and to improve their functional properties are highly desirable and partially under development.
Collapse
Affiliation(s)
- Thimoteus Speer
- Translational Cardio-Renal Medicine, Saarland University, Kirrberger Strasse, Building 41, D-66421 Homburg/Saar, Germany.,Department of Internal Medicine IV, Saarland University Hospital, Nephrology and Hypertension, Kirrberger Strasse, Building 41, D-66421 Homburg/Saar, Germany
| | - Paul M Ridker
- Center for Cardiovascular Disease Prevention, Brigham and Women's Hospital, Harvard Medical School, 900 Commonwealth Avenue, Boston, MA 02215, USA
| | - Arnold von Eckardstein
- Institute of Clinical Chemistry, University Hospital Zurich, Rämistrasse 100, CH-8091 Zurich, Switzerland
| | - Stefan J Schunk
- Translational Cardio-Renal Medicine, Saarland University, Kirrberger Strasse, Building 41, D-66421 Homburg/Saar, Germany
| | - Danilo Fliser
- Translational Cardio-Renal Medicine, Saarland University, Kirrberger Strasse, Building 41, D-66421 Homburg/Saar, Germany
| |
Collapse
|
165
|
Rohatgi A, Westerterp M, von Eckardstein A, Remaley A, Rye KA. HDL in the 21st Century: A Multifunctional Roadmap for Future HDL Research. Circulation 2021; 143:2293-2309. [PMID: 34097448 PMCID: PMC8189312 DOI: 10.1161/circulationaha.120.044221] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Low high-density lipoprotein cholesterol (HDL-C) characterizes an atherogenic dyslipidemia that reflects adverse lifestyle choices, impaired metabolism, and increased cardiovascular risk. Low HDL-C is also associated with increased risk of inflammatory disorders, malignancy, diabetes, and other diseases. This epidemiologic evidence has not translated to raising HDL-C as a viable therapeutic target, partly because HDL-C does not reflect high-density lipoprotein (HDL) function. Mendelian randomization analyses that have found no evidence of a causal relationship between HDL-C levels and cardiovascular risk have decreased interest in increasing HDL-C levels as a therapeutic target. HDLs comprise distinct subpopulations of particles of varying size, charge, and composition that have several dynamic and context-dependent functions, especially with respect to acute and chronic inflammatory states. These functions include reverse cholesterol transport, inhibition of inflammation and oxidation, and antidiabetic properties. HDLs can be anti-inflammatory (which may protect against atherosclerosis and diabetes) and proinflammatory (which may help clear pathogens in sepsis). The molecular regulation of HDLs is complex, as evidenced by their association with multiple proteins, as well as bioactive lipids and noncoding RNAs. Clinical investigations of HDL biomarkers (HDL-C, HDL particle number, and apolipoprotein A through I) have revealed nonlinear relationships with cardiovascular outcomes, differential relationships by sex and ethnicity, and differential patterns with coronary versus noncoronary events. Novel HDL markers may also have relevance for heart failure, cancer, and diabetes. HDL function markers (namely, cholesterol efflux capacity) are associated with coronary disease, but they remain research tools. Therapeutics that manipulate aspects of HDL metabolism remain the holy grail. None has proven to be successful, but most have targeted HDL-C, not metrics of HDL function. Future therapeutic strategies should focus on optimizing HDL function in the right patients at the optimal time in their disease course. We provide a framework to help the research and clinical communities, as well as funding agencies and stakeholders, obtain insights into current thinking on these topics, and what we predict will be an exciting future for research and development on HDLs.
Collapse
Affiliation(s)
- Anand Rohatgi
- Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Marit Westerterp
- Department of Pediatrics, Section Molecular Genetics, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Arnold von Eckardstein
- Institute of Clinical Chemistry, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Alan Remaley
- Section Chief of Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch; National Heart, Lung and Blood Institute, National Institutes of Health; Bethesda, MD
| | - Kerry-Anne Rye
- School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, Australia, 2052
| |
Collapse
|
166
|
Yin Q, Chang H, Shen Q, Xing D. Photobiomodulation therapy promotes the ATP-binding cassette transporter A1-dependent cholesterol efflux in macrophage to ameliorate atherosclerosis. J Cell Mol Med 2021; 25:5238-5249. [PMID: 33951300 PMCID: PMC8178257 DOI: 10.1111/jcmm.16531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 02/15/2021] [Accepted: 03/05/2021] [Indexed: 01/21/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease related to a massive accumulation of cholesterol in the artery wall. Photobiomodulation therapy (PBMT) has been reported to possess cardioprotective effects but has no consensus on the underlying mechanisms. Here, we aimed to investigate whether PBMT could ameliorate atherosclerosis and explore the potential molecular mechanisms. The Apolipoprotein E (ApoE)-/- mice were fed with western diet (WD) for 18 weeks and treated with PBMT once a day in the last 10 weeks. Quantification based on Oil red O-stained aortas showed that the average plaque area decreased 8.306 ± 2.012% after PBMT (P < .05). Meanwhile, we observed that high-density lipoprotein cholesterol level in WD + PBMT mice increased from 0.309 ± 0.037 to 0.472 ± 0.038 nmol/L (P < .05) compared with WD mice. The further results suggested that PBMT could promote cholesterol efflux from lipid-loaded primary peritoneal macrophages and inhibit foam cells formation via up-regulating the ATP-binding cassette transporters A1 expression. A contributing mechanism involved in activating the phosphatidylinositol 3-kinases/protein kinase C zeta/specificity protein 1 signalling cascade. Our study outlines that PBMT has a protective role on atherosclerosis by promoting macrophages cholesterol efflux and provides a new strategy for treating atherosclerosis.
Collapse
Affiliation(s)
- Qianxia Yin
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life ScienceCollege of BiophotonicsSouth China Normal UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Laser Life ScienceCollege of BiophotonicsSouth China Normal UniversityGuangzhouChina
| | - Haocai Chang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life ScienceCollege of BiophotonicsSouth China Normal UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Laser Life ScienceCollege of BiophotonicsSouth China Normal UniversityGuangzhouChina
| | - Qi Shen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life ScienceCollege of BiophotonicsSouth China Normal UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Laser Life ScienceCollege of BiophotonicsSouth China Normal UniversityGuangzhouChina
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life ScienceCollege of BiophotonicsSouth China Normal UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Laser Life ScienceCollege of BiophotonicsSouth China Normal UniversityGuangzhouChina
| |
Collapse
|
167
|
Bai R, Lang Y, Shao J, Deng Y, Refuhati R, Cui L. The Role of NLRP3 Inflammasome in Cerebrovascular Diseases Pathology and Possible Therapeutic Targets. ASN Neuro 2021; 13:17590914211018100. [PMID: 34053242 PMCID: PMC8168029 DOI: 10.1177/17590914211018100] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cerebrovascular diseases are pathological conditions involving impaired blood flow in the brain, primarily including ischaemic stroke, intracranial haemorrhage, and subarachnoid haemorrhage. The nucleotide-binding and oligomerisation (NOD) domain-like receptor (NLR) family pyrin domain (PYD)-containing 3 (NLRP3) inflammasome is a protein complex and a vital component of the immune system. Emerging evidence has indicated that the NLRP3 inflammasome plays an important role in cerebrovascular diseases. The function of the NLRP3 inflammasome in the pathogenesis of cerebrovascular diseases remains an interesting field of research. In this review, we first summarised the pathological mechanism of cerebrovascular diseases and the pathological mechanism of the NLRP3 inflammasome in aggravating atherosclerosis and cerebrovascular diseases. Second, we outlined signalling pathways through which the NLRP3 inflammasome participates in aggravating or mitigating cerebrovascular diseases. Reactive oxygen species (ROS)/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), ROS/thioredoxin-interacting protein (TXNIP) and purinergic receptor-7 (P2X7R) signalling pathways can activate the NLRP3 inflammasome; activation of the NLRP3 inflammasome can aggravate cerebrovascular diseases by mediating apoptosis and pyroptosis. Autophagy/mitochondrial autophagy, nuclear factor E2-related factor-2 (Nrf2), interferon (IFN)-β, sirtuin (SIRT), and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) reportedly alleviate cerebrovascular diseases by inhibiting NLRP3 inflammasome activation. Finally, we explored specific inhibitors of the NLRP3 inflammasome based on the two-step activation of the NLRP3 inflammasome, which can be developed as new drugs to treat cerebrovascular diseases.
Collapse
Affiliation(s)
- Rongrong Bai
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yue Lang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jie Shao
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yu Deng
- Department of Hepatopancreatobiliary Surgery, The First Hospital of Jilin University, Changchun, China
| | - Reyisha Refuhati
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Li Cui
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
168
|
Demandt JAF, van Kuijk K, Theelen TL, Marsch E, Heffron SP, Fisher EA, Carmeliet P, Biessen EAL, Sluimer JC. Whole-Body Prolyl Hydroxylase Domain (PHD) 3 Deficiency Increased Plasma Lipids and Hematocrit Without Impacting Plaque Size in Low-Density Lipoprotein Receptor Knockout Mice. Front Cell Dev Biol 2021; 9:664258. [PMID: 34055796 PMCID: PMC8160238 DOI: 10.3389/fcell.2021.664258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/23/2021] [Indexed: 12/19/2022] Open
Abstract
Background and aims: Atherosclerosis is an important cause of clinical cardiovascular events. Atherosclerotic plaques are hypoxic, and reoxygenation improves plaque phenotype. Central players in hypoxia are hypoxia inducible factors (HIF) and their regulators, HIF-prolyl hydroxylase (PHD) isoforms 1, 2, and 3. PHD inhibitors, targeting all three isoforms, are used to alleviate anemia in chronic kidney disease. Likewise, whole-body PHD1 and PHD2ko ameliorate hypercholesterolemia and atherogenesis. As the effect of whole-body PHD3 is unknown, we investigated the effects of germline whole-body PHD3ko on atherosclerosis. Approach and Results: To initiate hypercholesterolemia and atherosclerosis low-density lipoprotein receptor knockout (LDLrko) and PHD3/LDLr double knockout (PHD3dko), mice were fed a high-cholesterol diet. Atherosclerosis and hypoxia marker pimonidazole were analyzed in aortic roots and brachiocephalic arteries. In contrast to earlier reports on PHD1- and PHD2-deficient mice, a small elevation in the body weight and an increase in the plasma cholesterol and triglyceride levels were observed after 10 weeks of diet. Dyslipidemia might be explained by an increase in hepatic mRNA expression of Cyp7a1 and fatty acid synthase, while lipid efflux of PHD3dko macrophages was comparable to controls. Despite dyslipidemia, plaque size, hypoxia, and phenotype were not altered in the aortic root or in the brachiocephalic artery of PHD3dko mice. Additionally, PHD3dko mice showed enhanced blood hematocrit levels, but no changes in circulating, splenic or lymphoid immune cell subsets. Conclusion: Here, we report that whole-body PHD3dko instigated an unfavorable lipid profile and increased hematocrit, in contrast to other PHD isoforms, yet without altering atherosclerotic plaque development.
Collapse
Affiliation(s)
- Jasper A. F. Demandt
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, Netherlands
| | - Kim van Kuijk
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, Netherlands
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Thomas L. Theelen
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, Netherlands
| | - Elke Marsch
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, Netherlands
| | - Sean P. Heffron
- Center for the Prevention of Cardiovascular Disease, Department of Medicine, Grossman School of Medicine, New York University, New York, NY, United States
| | - Edward A. Fisher
- Center for the Prevention of Cardiovascular Disease, Department of Medicine, Grossman School of Medicine, New York University, New York, NY, United States
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology, Leuven, Belgium
| | - Erik A. L. Biessen
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, Netherlands
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
| | - Judith C. Sluimer
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, Netherlands
- BHF Centre for Cardiovascular Sciences (CVS), University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
169
|
Song X, Yan G, Wang H, Lou D. Septin 4 activates PPARγ/LXRα signaling by upregulating ABCA1 and ABCG1 expression to inhibit the formation of THP-1 macrophage-derived foam cells. Exp Ther Med 2021; 22:763. [PMID: 34035860 PMCID: PMC8135116 DOI: 10.3892/etm.2021.10195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/08/2021] [Indexed: 11/30/2022] Open
Abstract
Septin 4 is a member of a family of GTP-binding proteins that has been previously reported regulate cytoskeletal organization. In addition, it has been suggested to serve a role in atherosclerosis. Therefore, the present study aimed to investigate the effects of Septin 4 on foam cell formation. THP-1 cells were first exposed to phorbol-12-myristate-13-acetate for differentiation into macrophages before being transformed into foam cells by treatment with oxidized low-density lipoprotein (ox-LDL). Septin 4 expression was then knocked down or overexpressed in THP-1 cells using transfection, whilst peroxisome proliferator activated receptor γ (PPARγ) was also inhibited using its selective antagonist (T0070907) in the presence of Septin 4 overexpression. Oil red staining was used to detect lipid uptake, and total cholesterol (TC), free cholesterol (FC) and ATP binding cassette subfamily A/G member 1 (ABCA1/G1) protein expression were also measured. The results demonstrated that upon ox-LDL stimulation, macrophages that were derived from THP-1 cells transformed into foam cells, where Septin 4 was highly expressed in ox-LDL-induced foam cells. Septin 4 knockdown promoted TC and FC levels, but reduced ABCA1/G1 protein expression. The protein expression levels of PPARγ and liver X receptor α (LXRα) were also decreased after Septin 4 knockdown. However, Septin 4 overexpression resulted in the opposite results being observed. Additionally, blocking PPARγ activity using its inhibitor T0070907 or knocking down LXRα expression using short hairpin RNA reversed the effects of Septin 4 overexpression on foam cell formation and cholesterol handling. In conclusion, Septin 4 may serve an important role in preventing foam cell formation by activating PPARγ/LXRα signaling and subsequently enhancing ABCA1/G1 expression.
Collapse
Affiliation(s)
- Xiaoying Song
- Department of Geriatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Guoliang Yan
- Department of Emergency, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Haihui Wang
- Department of Emergency, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Danfei Lou
- Department of Geriatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| |
Collapse
|
170
|
Khan F, Radovanovic A, Gojobori T, Kaur M. IBDDB: a manually curated and text-mining-enhanced database of genes involved in inflammatory bowel disease. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2021:6260885. [PMID: 33929018 PMCID: PMC8086236 DOI: 10.1093/database/baab022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/19/2021] [Accepted: 04/17/2021] [Indexed: 12/25/2022]
Abstract
To date, research on inflammatory bowel disease (IBD, encompassing Crohn's disease and ulcerative colitis), a chronic complex disorder, has generated a large amount of data scattered across published literature (1 06 333) listed in PubMed on 14 October 2020, and no dedicated database currently exists that catalogues information on genes associated with IBD. We aimed to manually curate 289 genes that are experimentally validated to be linked with IBD and its known phenotypes. Furthermore, we have developed an integrated platform providing information about different aspects of these genes by incorporating several resources and an extensive text-mined knowledgebase. The curated IBD database (IBDDB) allows the selective display of collated 34 subject-specific concepts (listed as columns) exportable through a user-friendly IBDDB portal. The information embedded in concepts was acquired via text-mining of PubMed (manually cleaned and curated), accompanied by data-mining from varied resources. The user can also explore different biomedical entities and their co-occurrence with other entities (about one million) from 11 curated dictionaries in the indexed PubMed records. This functionality permits the user to generate and cross-examine a new hypothesis that is otherwise not easy to comprehend by just reading the published abstracts and papers. Users can download required information using various file formats and can display information in the form of networks. To our knowledge, no curated database of IBD-related genes is available so far. IBDDB is free for academic users and can be accessed at https://www.cbrc.kaust.edu.sa/ibd/.
Collapse
Affiliation(s)
- Farhat Khan
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Johannesburg, Gauteng WITS-2050, South Africa
| | - Aleksandar Radovanovic
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah 23955-6900, Kingdom of Saudi Arabia
| | - Takashi Gojobori
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah 23955-6900, Kingdom of Saudi Arabia
| | - Mandeep Kaur
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Johannesburg, Gauteng WITS-2050, South Africa
| |
Collapse
|
171
|
Bonacina F, Pirillo A, Catapano AL, Norata GD. HDL in Immune-Inflammatory Responses: Implications beyond Cardiovascular Diseases. Cells 2021; 10:cells10051061. [PMID: 33947039 PMCID: PMC8146776 DOI: 10.3390/cells10051061] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022] Open
Abstract
High density lipoproteins (HDL) are heterogeneous particles composed by a vast array of proteins and lipids, mostly recognized for their cardiovascular (CV) protective effects. However, evidences from basic to clinical research have contributed to depict a role of HDL in the modulation of immune-inflammatory response thus paving the road to investigate their involvement in other diseases beyond those related to the CV system. HDL-C levels and HDL composition are indeed altered in patients with autoimmune diseases and usually associated to disease severity. At molecular levels, HDL have been shown to modulate the anti-inflammatory potential of endothelial cells and, by controlling the amount of cellular cholesterol, to interfere with the signaling through plasma membrane lipid rafts in immune cells. These findings, coupled to observations acquired from subjects carrying mutations in genes related to HDL system, have helped to elucidate the contribution of HDL beyond cholesterol efflux thus posing HDL-based therapies as a compelling interventional approach to limit the inflammatory burden of immune-inflammatory diseases.
Collapse
Affiliation(s)
- Fabrizia Bonacina
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Angela Pirillo
- Center for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo, 20092 Milan, Italy;
- IRCCS MultiMedica, Sesto S. Giovanni, 20099 Milan, Italy
| | - Alberico L. Catapano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
- IRCCS MultiMedica, Sesto S. Giovanni, 20099 Milan, Italy
- Correspondence: (A.L.C.); (G.D.N.)
| | - Giuseppe D. Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
- Center for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo, 20092 Milan, Italy;
- Correspondence: (A.L.C.); (G.D.N.)
| |
Collapse
|
172
|
Blanch-Ruiz MA, Ortega-Luna R, Martínez-Cuesta MÁ, Álvarez Á. The Neutrophil Secretome as a Crucial Link between Inflammation and Thrombosis. Int J Mol Sci 2021; 22:4170. [PMID: 33920656 PMCID: PMC8073391 DOI: 10.3390/ijms22084170] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 12/24/2022] Open
Abstract
Cardiovascular diseases are a leading cause of death. Blood-cell interactions and endothelial dysfunction are fundamental in thrombus formation, and so further knowledge of the pathways involved in such cellular crosstalk could lead to new therapeutical approaches. Neutrophils are secretory cells that release well-known soluble inflammatory signaling mediators and other complex cellular structures whose role is not fully understood. Studies have reported that neutrophil extracellular vesicles (EVs) and neutrophil extracellular traps (NETs) contribute to thrombosis. The objective of this review is to study the role of EVs and NETs as key factors in the transition from inflammation to thrombosis. The neutrophil secretome can promote thrombosis due to the presence of different factors in the EVs bilayer that can trigger blood clotting, and to the release of soluble mediators that induce platelet activation or aggregation. On the other hand, one of the main pathways by which NETs induce thrombosis is through the creation of a scaffold to which platelets and other blood cells adhere. In this context, platelet activation has been associated with the induction of NETs release. Hence, the structure and composition of EVs and NETs, as well as the feedback mechanism between the two processes that causes pathological thrombus formation, require exhaustive analysis to clarify their role in thrombosis.
Collapse
Affiliation(s)
- María Amparo Blanch-Ruiz
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (M.A.B.-R.); (R.O.-L.)
| | - Raquel Ortega-Luna
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (M.A.B.-R.); (R.O.-L.)
| | - María Ángeles Martínez-Cuesta
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (M.A.B.-R.); (R.O.-L.)
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), 46010 Valencia, Spain
| | - Ángeles Álvarez
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (M.A.B.-R.); (R.O.-L.)
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), 46010 Valencia, Spain
| |
Collapse
|
173
|
Groenen AG, Westerterp M. A New Small Molecule Increases Cholesterol Efflux. Arterioscler Thromb Vasc Biol 2021; 41:1851-1853. [PMID: 33853353 DOI: 10.1161/atvbaha.121.315930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Anouk G Groenen
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Marit Westerterp
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, The Netherlands
| |
Collapse
|
174
|
Xia XD, Yu XH, Chen LY, Xie SL, Feng YG, Yang RZ, Zhao ZW, Li H, Wang G, Tang CK. Myocardin suppression increases lipid retention and atherosclerosis via downregulation of ABCA1 in vascular smooth muscle cells. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158824. [PMID: 33035679 DOI: 10.1016/j.bbalip.2020.158824] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/16/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022]
Abstract
Myocardin (MYOCD) plays an important role in cardiovascular disease. However, its underlying impact on atherosclerosis remains to be elucidated. ATP binding cassette transporter A1 (ABCA1), a key membrane-associated lipid transporter which maintains intracellular lipid homeostasis, has a protective function in atherosclerosis progress. The purpose of this study was to investigate whether and how the effect of MYOCD on atherosclerosis is associated with ABCA1 in vascular smooth muscle cells (VSMCs). We found both MYOCD and ABCA1 expression were dramatically decreased in atherosclerotic patient aortas compared to control. MYOCD knockdown inhibited ABCA1 expression in human aortic vascular smooth muscle cells (HAVSMCs), leading to reduced cholesterol efflux and increased intracellular cholesterol contents. MYOCD overexpression exerted the opposite effect. Mechanistically, MYOCD regulates ABCA1 expression in an SRF-dependent manner. Consistently, apolipoprotein E-deficient mice treated with MYOCD shRNA developed more plaques in the aortic sinus, which is associated with reduced ABCA1 expression, increased cholesterol retention in the aorta, and decreased high-density lipoprotein cholesterol levels in the plasma. Our data suggest that MYOCD deficiency exacerbates atherosclerosis by downregulating ABCA1 dependent cholesterol efflux from VSMCs, thereby providing a novel strategy for the therapeutic treatment of atherosclerotic cardiovascular disease.
Collapse
MESH Headings
- ATP Binding Cassette Transporter 1/genetics
- ATP Binding Cassette Transporter 1/metabolism
- Aged
- Aged, 80 and over
- Animals
- Aorta/cytology
- Aorta/metabolism
- Aorta/pathology
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Cells, Cultured
- Down-Regulation
- Female
- Humans
- Lipid Metabolism
- Male
- Mice, Knockout, ApoE
- Middle Aged
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Mice
Collapse
Affiliation(s)
- Xiao-Dan Xia
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangdong Province, Qingyuan 511518, China; Department of Microsurgery, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Hua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 460106, China
| | - Ling-Yan Chen
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Song-Lin Xie
- Department of Microsurgery, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yao-Guang Feng
- Department of Cardiothoracic Surgery, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Rui-Zhe Yang
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, Alberta, Canada
| | - Zhen-Wang Zhao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Heng Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Gang Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
175
|
Fidler TP, Xue C, Yalcinkaya M, Hardaway B, Abramowicz S, Xiao T, Liu W, Thomas DG, Hajebrahimi MA, Pircher J, Silvestre-Roig C, Kotini AG, Luchsinger LL, Wei Y, Westerterp M, Snoeck HW, Papapetrou EP, Schulz C, Massberg S, Soehnlein O, Ebert B, Levine RL, Reilly MP, Libby P, Wang N, Tall AR. The AIM2 inflammasome exacerbates atherosclerosis in clonal haematopoiesis. Nature 2021; 592:296-301. [PMID: 33731931 PMCID: PMC8038646 DOI: 10.1038/s41586-021-03341-5] [Citation(s) in RCA: 297] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
Clonal haematopoiesis, which is highly prevalent in older individuals, arises from somatic mutations that endow a proliferative advantage to haematopoietic cells. Clonal haematopoiesis increases the risk of myocardial infarction and stroke independently of traditional risk factors1. Among the common genetic variants that give rise to clonal haematopoiesis, the JAK2V617F (JAK2VF) mutation, which increases JAK-STAT signalling, occurs at a younger age and imparts the strongest risk of premature coronary heart disease1,2. Here we show increased proliferation of macrophages and prominent formation of necrotic cores in atherosclerotic lesions in mice that express Jak2VF selectively in macrophages, and in chimeric mice that model clonal haematopoiesis. Deletion of the essential inflammasome components caspase 1 and 11, or of the pyroptosis executioner gasdermin D, reversed these adverse changes. Jak2VF lesions showed increased expression of AIM2, oxidative DNA damage and DNA replication stress, and Aim2 deficiency reduced atherosclerosis. Single-cell RNA sequencing analysis of Jak2VF lesions revealed a landscape that was enriched for inflammatory myeloid cells, which were suppressed by deletion of Gsdmd. Inhibition of the inflammasome product interleukin-1β reduced macrophage proliferation and necrotic formation while increasing the thickness of fibrous caps, indicating that it stabilized plaques. Our findings suggest that increased proliferation and glycolytic metabolism in Jak2VF macrophages lead to DNA replication stress and activation of the AIM2 inflammasome, thereby aggravating atherosclerosis. Precise application of therapies that target interleukin-1β or specific inflammasomes according to clonal haematopoiesis status could substantially reduce cardiovascular risk.
Collapse
Affiliation(s)
- Trevor P. Fidler
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.,Correspondence and requests for materials should be addressed to T.P.F., N.W. or A.R.T. ; ;
| | - Chenyi Xue
- Cardiometabolic Precision Medicine Program, Cardiology Division, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.,Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, NY, USA
| | - Mustafa Yalcinkaya
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Brian Hardaway
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Sandra Abramowicz
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Tong Xiao
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Wenli Liu
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - David G. Thomas
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Mohammad Ali Hajebrahimi
- Medical Clinic I., Department of Cardiology, LMU Klinikum, Ludwig Maximilian University, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Joachim Pircher
- Medical Clinic I., Department of Cardiology, LMU Klinikum, Ludwig Maximilian University, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Carlos Silvestre-Roig
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany.,Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
| | - Andriana G. Kotini
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Larry L. Luchsinger
- Department of Medicine, Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Ying Wei
- Columbia University, New York, NY, USA
| | - Marit Westerterp
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.,Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hans-Willem Snoeck
- Department of Medicine, Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Eirini P. Papapetrou
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christian Schulz
- Medical Clinic I., Department of Cardiology, LMU Klinikum, Ludwig Maximilian University, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Steffen Massberg
- Medical Clinic I., Department of Cardiology, LMU Klinikum, Ludwig Maximilian University, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Oliver Soehnlein
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany.,Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany.,Department of Physiology and Pharmacology (FyFa), Karolinska Institute, Stockholm, Sweden
| | - Benjamin Ebert
- Department of Medical Oncology, Dana-Faber Cancer Institute, Boston, MA, USA.,Howard Hughes Medical Institute, Dana-Faber Cancer Institute, Boston, MA, USA
| | - Ross L. Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Muredach P. Reilly
- Cardiometabolic Precision Medicine Program, Cardiology Division, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.,Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, NY, USA
| | - Peter Libby
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Nan Wang
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.,These authors jointly supervised this work: Nan Wang, Alan R. Tall.,Correspondence and requests for materials should be addressed to T.P.F., N.W. or A.R.T. ; ;
| | - Alan R. Tall
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.,These authors jointly supervised this work: Nan Wang, Alan R. Tall.,Correspondence and requests for materials should be addressed to T.P.F., N.W. or A.R.T. ; ;
| |
Collapse
|
176
|
Kotlyarov S. Participation of ABCA1 Transporter in Pathogenesis of Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2021; 22:3334. [PMID: 33805156 PMCID: PMC8037621 DOI: 10.3390/ijms22073334] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the important medical and social problem. According to modern concepts, COPD is a chronic inflammatory disease, macrophages play a key role in its pathogenesis. Macrophages are heterogeneous in their functions, which is largely determined by their immunometabolic profile, as well as the features of lipid homeostasis, in which the ATP binding cassette transporter A1 (ABCA1) plays an essential role. The objective of this work is the analysis of the ABCA1 protein participation and the function of reverse cholesterol transport in the pathogenesis of COPD. The expression of the ABCA1 gene in lung tissues takes the second place after the liver, which indicates the important role of the carrier in lung function. The participation of the transporter in the development of COPD consists in provision of lipid metabolism, regulation of inflammation, phagocytosis, and apoptosis. Violation of the processes in which ABCA1 is involved may be a part of the pathophysiological mechanisms, leading to the formation of a heterogeneous clinical course of the disease.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
177
|
From Mitochondria to Atherosclerosis: The Inflammation Path. Biomedicines 2021; 9:biomedicines9030258. [PMID: 33807807 PMCID: PMC8000234 DOI: 10.3390/biomedicines9030258] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 12/11/2022] Open
Abstract
Inflammation is a key process in metazoan organisms due to its relevance for innate defense against infections and tissue damage. However, inflammation is also implicated in pathological processes such as atherosclerosis. Atherosclerosis is a chronic inflammatory disease of the arterial wall where unstable atherosclerotic plaque rupture causing platelet aggregation and thrombosis may compromise the arterial lumen, leading to acute or chronic ischemic syndromes. In this review, we will focus on the role of mitochondria in atherosclerosis while keeping inflammation as a link. Mitochondria are the main source of cellular energy. Under stress, mitochondria are also capable of controlling inflammation through the production of reactive oxygen species (ROS) and the release of mitochondrial components, such as mitochondrial DNA (mtDNA), into the cytoplasm or into the extracellular matrix, where they act as danger signals when recognized by innate immune receptors. Primary or secondary mitochondrial dysfunctions are associated with the initiation and progression of atherosclerosis by elevating the production of ROS, altering mitochondrial dynamics and energy supply, as well as promoting inflammation. Knowing and understanding the pathways behind mitochondrial-based inflammation in atheroma progression is essential to discovering alternative or complementary treatments.
Collapse
|
178
|
Alatshan A, Benkő S. Nuclear Receptors as Multiple Regulators of NLRP3 Inflammasome Function. Front Immunol 2021; 12:630569. [PMID: 33717162 PMCID: PMC7952630 DOI: 10.3389/fimmu.2021.630569] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Nuclear receptors are important bridges between lipid signaling molecules and transcription responses. Beside their role in several developmental and physiological processes, many of these receptors have been shown to regulate and determine the fate of immune cells, and the outcome of immune responses under physiological and pathological conditions. While NLRP3 inflammasome is assumed as key regulator for innate and adaptive immune responses, and has been associated with various pathological events, the precise impact of the nuclear receptors on the function of inflammasome is hardly investigated. A wide variety of factors and conditions have been identified as modulators of NLRP3 inflammasome activation, and at the same time, many of the nuclear receptors are known to regulate, and interact with these factors, including cellular metabolism and various signaling pathways. Nuclear receptors are in the focus of many researches, as these receptors are easy to manipulate by lipid soluble molecules. Importantly, nuclear receptors mediate regulatory mechanisms at multiple levels: not only at transcription level, but also in the cytosol via non-genomic effects. Their importance is also reflected by the numerous approved drugs that have been developed in the past decade to specifically target nuclear receptors subtypes. Researches aiming to delineate mechanisms that regulate NLRP3 inflammasome activation draw a wide range of attention due to their unquestionable importance in infectious and sterile inflammatory conditions. In this review, we provide an overview of current reports and knowledge about NLRP3 inflammasome regulation from the perspective of nuclear receptors, in order to bring new insight to the potentially therapeutic aspect in targeting NLRP3 inflammasome and NLRP3 inflammasome-associated diseases.
Collapse
Affiliation(s)
- Ahmad Alatshan
- Departments of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cellular and Immune Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szilvia Benkő
- Departments of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cellular and Immune Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
179
|
An F, Liu C, Wang X, Li T, Fu H, Bao B, Cong H, Zhao J. Effect of ABCA1 promoter methylation on premature coronary artery disease and its relationship with inflammation. BMC Cardiovasc Disord 2021; 21:78. [PMID: 33557767 PMCID: PMC7869242 DOI: 10.1186/s12872-021-01894-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/22/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND ATP-binding cassette transporter A1 (ABCA1) plays a major role in high-density lipoprotein (HDL) metabolism and reverse cholesterol transport (RCT) and exerts anti-inflammatory effects. Increased ABCA1 promoter methylation level may result in the progression of coronary artery disease. Thus, the present study investigated the association between promoter methylation status of ABCA1 and inflammation in the development of premature coronary artery disease (pCAD). METHODS PCAD patients and healthy individuals (n = 90 each) were recruited from the Characteristic Medical Center of the Chinese People's Armed Police Force from June to December 2019. Using pyrosequencing, the levels of ABCA1 promoter methylation in their blood samples were evaluated. Serum concentrations of lipids, interleukin 1β (IL-1β), C-reactive protein (CRP), and circulating free DNA/Neutrophil extracellular traps (cfDNA/NETs) were also routinely measured and compared between the two groups. P values < 0.05 were considered statistically significant. RESULTS The mean ABCA1 promoter methylation levels were significantly higher in the pCAD group than in the control group (44.24% ± 3.66 vs. 36.05% ± 2.99, P < 0.001). Based on binary logistic regression analysis, ABCA1 promoter methylation level was identified as an independent risk factor for pCAD development (odds ratio = 2.878, 95% confidence interval: 1.802-4.594, P < 0.001). Furthermore, ABCA1 promoter methylation levels were negatively correlated with HDL levels (r = - 0.488, P < 0.001) and positively correlated with the levels of CRP, cfDNA/NETs, and IL-1β (r = 0.389, 0.404, 0.385, respectively; P < 0.001). Multiple regression analysis showed that the serum levels of CRP, IL-1β, and cfDNA/NETs independently affect ABCA1 promoter methylation. CONCLUSIONS Our findings indicate that high methylation levels at the ABCA1 promoter are associated with low HDL cholesterol levels and an increased risk of pCAD. Inflammatory factors and NETs may be involved in the progression of pCAD by affecting ABCA1 promoter methylation levels.
Collapse
Affiliation(s)
- Fang An
- Graduate School, Tianjin Medical University, Tianjin, 300070, China.,Department of Military General Medicine, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, 300162, China
| | - Chao Liu
- Institute of Cardiovascular disease, Tianjin Chest Hospital, Tianjin, 300222, China
| | - Xiujuan Wang
- Institute of Cardiovascular Disease, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, 300162, China
| | - Tan Li
- Department of Pathogen Biology, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, China
| | - Hao Fu
- Department of Military General Medicine, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, 300162, China
| | - Buhe Bao
- Department of Clinical Laboratory, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, 300162, China
| | - Hongliang Cong
- Institute of Cardiovascular disease, Tianjin Chest Hospital, Tianjin, 300222, China. .,Department of Cardiology, Tianjin Chest Hospital, Tianjin, 300222, China.
| | - Jihong Zhao
- Department of Military General Medicine, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, 300162, China.
| |
Collapse
|
180
|
Citrin KM, Fernández-Hernando C, Suárez Y. MicroRNA regulation of cholesterol metabolism. Ann N Y Acad Sci 2021; 1495:55-77. [PMID: 33521946 DOI: 10.1111/nyas.14566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/27/2020] [Accepted: 01/09/2021] [Indexed: 12/17/2022]
Abstract
MicroRNAs are small noncoding RNAs that regulate gene expression at the posttranscriptional level. Since many microRNAs have multiple mRNA targets, they are uniquely positioned to regulate the expression of several molecules and pathways simultaneously. For example, the multiple stages of cholesterol metabolism are heavily influenced by microRNA activity. Understanding the scope of microRNAs that control this pathway is highly relevant to diseases of perturbed cholesterol metabolism, most notably cardiovascular disease (CVD). Atherosclerosis is a common cause of CVD that involves inflammation and the accumulation of cholesterol-laden cells in the arterial wall. However, several different cell types participate in atherosclerosis, and perturbations in cholesterol homeostasis may have unique effects on the specialized functions of these various cell types. Therefore, our review discusses the current knowledge of microRNA-mediated control of cholesterol homeostasis, followed by speculation as to how these microRNA-mRNA target interactions might have distinctive effects on different cell types that participate in atherosclerosis.
Collapse
Affiliation(s)
- Kathryn M Citrin
- Department of Comparative Medicine and Department of Pathology, Integrative Cell Signaling and Neurobiology of Metabolism Program, and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut.,Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| | - Carlos Fernández-Hernando
- Department of Comparative Medicine and Department of Pathology, Integrative Cell Signaling and Neurobiology of Metabolism Program, and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut
| | - Yajaira Suárez
- Department of Comparative Medicine and Department of Pathology, Integrative Cell Signaling and Neurobiology of Metabolism Program, and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
181
|
He X, Fan X, Bai B, Lu N, Zhang S, Zhang L. Pyroptosis is a critical immune-inflammatory response involved in atherosclerosis. Pharmacol Res 2021; 165:105447. [PMID: 33516832 DOI: 10.1016/j.phrs.2021.105447] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/28/2020] [Accepted: 01/17/2021] [Indexed: 02/07/2023]
Abstract
Pyroptosis is a form of programmed cell death activated by various stimuli and is characterized by inflammasome assembly, membrane pore formation, and the secretion of inflammatory cytokines (IL-1β and IL-18). Atherosclerosis-related risk factors, including oxidized low-density lipoprotein (ox-LDL) and cholesterol crystals, have been shown to promote pyroptosis through several mechanisms that involve ion flux, ROS, endoplasmic reticulum stress, mitochondrial dysfunction, lysosomal rupture, Golgi function, autophagy, noncoding RNAs, post-translational modifications, and the expression of related molecules. Pyroptosis of endothelial cells, macrophages, and smooth muscle cells in the vascular wall can induce plaque instability and accelerate atherosclerosis progression. In this review, we focus on the pathogenesis, influence, and therapy of pyroptosis in atherosclerosis and provide novel ideas for suppressing pyroptosis and the progression of atherosclerosis.
Collapse
Affiliation(s)
- Xiao He
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin 150001, Heilongjiang Province, China.
| | - Xuehui Fan
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin 150001, Heilongjiang Province, China.
| | - Bing Bai
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin 150001, Heilongjiang Province, China.
| | - Nanjuan Lu
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin 150001, Heilongjiang Province, China.
| | - Shuang Zhang
- General Surgery, Harbin Changzheng Hospital, 363 Xuan Hua Street, Harbin 150001, Heilongjiang Province, China.
| | - Liming Zhang
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin 150001, Heilongjiang Province, China.
| |
Collapse
|
182
|
Chen SH, Scott XO, Ferrer Marcelo Y, Almeida VW, Blackwelder PL, Yavagal DR, Peterson EC, Starke RM, Dietrich WD, Keane RW, de Rivero Vaccari JP. Netosis and Inflammasomes in Large Vessel Occlusion Thrombi. Front Pharmacol 2021; 11:607287. [PMID: 33569001 PMCID: PMC7868597 DOI: 10.3389/fphar.2020.607287] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/18/2020] [Indexed: 12/20/2022] Open
Abstract
The inflammatory response appears to play a critical role in clotting in which neutrophil extracellular traps (NETs) are the major drivers of thrombosis in acute ischemic stroke (AIS). The inflammasome is an innate immune complex involved in the activation of interleukin (IL)-18 and IL-1β through caspase-1, but whether the inflammasome plays a role in NETosis in AIS remains poorly understood. Here we assessed the levels of inflammasome signaling proteins in NETs and their association with clinical and procedural outcomes of mechanical thrombectomy for AIS. Electron microscopy and immunofluorescence indicate the presence of NETs in thrombi of patients with AIS. Moreover, the inflammasome signaling proteins caspase-1 and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) were also present in clots associated with the marker of NETosis citrullinated histone 3H (CitH3). Analysis of protein levels by a simple plex assay show that caspase-1, ASC and interleukin (IL)-1β were significantly elevated in clots when compared to plasma of AIS patients and healthy controls, while IL-18 levels were lower. Moreover, multivariate analyses show that IL-1β levels in clots contribute to the number of passes to achieve complete recanalization, and that ASC, caspase-1 and IL-18 are significant contributors to time to recanalization. Thus, inflammasome proteins are elevated in NETs present in thrombi of patients with AIS that contribute to poor outcomes following stroke.
Collapse
Affiliation(s)
- Stephanie H Chen
- Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Xavier O Scott
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Yoandy Ferrer Marcelo
- Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Vania W Almeida
- Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Patricia L Blackwelder
- University of Miami Center for Advanced Microscopy (UMCAM) and Department of Chemistry, University of Miami, Coral Gables, FL, United States
| | - Dileep R Yavagal
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Eric C Peterson
- Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Robert M Starke
- Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - W Dalton Dietrich
- Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Robert W Keane
- Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States.,Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States.,Center for Cognitive Neuroscience and Aging University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
183
|
Targeting inflammation in atherosclerosis - from experimental insights to the clinic. Nat Rev Drug Discov 2021; 20:589-610. [PMID: 33976384 PMCID: PMC8112476 DOI: 10.1038/s41573-021-00198-1] [Citation(s) in RCA: 613] [Impact Index Per Article: 153.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2021] [Indexed: 02/03/2023]
Abstract
Atherosclerosis, a dominant and growing cause of death and disability worldwide, involves inflammation from its inception to the emergence of complications. Targeting inflammatory pathways could therefore provide a promising new avenue to prevent and treat atherosclerosis. Indeed, clinical studies have now demonstrated unequivocally that modulation of inflammation can forestall the clinical complications of atherosclerosis. This progress pinpoints the need for preclinical investigations to refine strategies for combatting inflammation in the human disease. In this Review, we consider a gamut of attractive possibilities for modifying inflammation in atherosclerosis, including targeting pivotal inflammatory pathways such as the inflammasomes, inhibiting cytokines, manipulating adaptive immunity and promoting pro-resolution mechanisms. Along with lifestyle measures, pharmacological interventions to mute inflammation could complement traditional targets, such as lipids and hypertension, to make new inroads into the management of atherosclerotic risk.
Collapse
|
184
|
Mohmmad‐Rezaei M, Arefnezhad R, Ahmadi R, Abdollahpour‐Alitappeh M, Mirzaei Y, Arjmand M, Ferns GA, Bashash D, Bagheri N. An overview of the innate and adaptive immune system in atherosclerosis. IUBMB Life 2021; 73:64-91. [DOI: 10.1002/iub.2425] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022]
Abstract
AbstractCardiovascular disease is the leading cause of death globally. Coronary artery disease (CAD) is a chronic inflammatory disease usually caused by atherosclerosis, in which the coronary arteries become narrowed by atheromatous plaque. Plaques in atherosclerosis are formed through the accumulation of lipids and various immune cells. Both adaptive and innate immune systems are involved in the pathogenesis of atherosclerosis and facilitate plaque formation and disease progression. Almost all immune system cells, including neutrophils, B cells, T cells monocytes, macrophages, foam cells, and dendritic cells (DCs), play a vital role in atherosclerotic plaque. Atherogenesis, the normal function of the endothelium, is initially disrupted and, then, cells of the immune system are recruited to the endothelium following increased expression of cell adhesion molecules. Accumulation of immune cells and lipids leads to the formation of a necrotic nucleus. As the disease progresses, smooth muscle cells form fibrous layers, whose rupture results in exposing the necrotic nucleus and thrombosis. Accordingly, the present review was conducted to determine the role of different cells in innate and adaptive immune systems in inhibition and progression of atherosclerosis.
Collapse
Affiliation(s)
- Mina Mohmmad‐Rezaei
- Cellular and Molecular Research Center, Basic Health Sciences Institute Shahrekord University of Medical Sciences Shahrekord Iran
| | - Reza Arefnezhad
- Halal Research Center of IRI, FDA Tehran Iran
- Department of Anatomy, School of Medicine Shiraz University of Medical Sciences Shiraz Iran
| | - Reza Ahmadi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute Shahrekord University of Medical Sciences Shahrekord Iran
| | | | - Yousef Mirzaei
- Department of Biogeosciences, Scientific Research Center Soran University Soran Iraq
| | - Mohammad‐Hassan Arjmand
- Cellular and Molecular Research Center, Basic Health Sciences Institute Shahrekord University of Medical Sciences Shahrekord Iran
- Cancer Research Center Shahrekord University of Medical Sciences Shahrekord Iran
| | - Gordon A. Ferns
- Brighton & Sussex Medical School, Division of Medical Education Sussex United Kingdom
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute Shahrekord University of Medical Sciences Shahrekord Iran
| |
Collapse
|
185
|
Pyrillou K, Burzynski LC, Clarke MCH. Alternative Pathways of IL-1 Activation, and Its Role in Health and Disease. Front Immunol 2020; 11:613170. [PMID: 33391283 PMCID: PMC7775495 DOI: 10.3389/fimmu.2020.613170] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
Cytokines activate or inhibit immune cell behavior and are thus integral to all immune responses. IL-1α and IL-1β are powerful apical cytokines that instigate multiple downstream processes to affect both innate and adaptive immunity. Multiple studies show that IL-1β is typically activated in macrophages after inflammasome sensing of infection or danger, leading to caspase-1 processing of IL-1β and its release. However, many alternative mechanisms activate IL-1α and IL-1β in atypical cell types, and IL-1 function is also important for homeostatic processes that maintain a physiological state. This review focuses on the less studied, yet arguably more interesting biology of IL-1. We detail the production by, and effects of IL-1 on specific innate and adaptive immune cells, report how IL-1 is required for barrier function at multiple sites, and discuss how perturbation of IL-1 pathways can drive disease. Thus, although IL-1 is primarily studied for driving inflammation after release from macrophages, it is clear that it has a multifaceted role that extends far beyond this, with various unconventional effects of IL-1 vital for health. However, much is still unknown, and a detailed understanding of cell-type and context-dependent actions of IL-1 is required to truly understand this enigmatic cytokine, and safely deploy therapeutics for the betterment of human health.
Collapse
Affiliation(s)
| | | | - Murray C. H. Clarke
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| |
Collapse
|
186
|
Yu XH, Deng WY, Chen JJ, Xu XD, Liu XX, Chen L, Shi MW, Liu QX, Tao M, Ren K. LncRNA kcnq1ot1 promotes lipid accumulation and accelerates atherosclerosis via functioning as a ceRNA through the miR-452-3p/HDAC3/ABCA1 axis. Cell Death Dis 2020; 11:1043. [PMID: 33293505 PMCID: PMC7723992 DOI: 10.1038/s41419-020-03263-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022]
Abstract
Kcnq1 overlapping transcript 1 (kcnq1ot1), an imprinted antisense lncRNA in the kcnq1 locus, acts as a potential contributor to cardiovascular disease, but its role in atherosclerosis remains unknown. The aim of this study was to explore the effects of kcnq1ot1 on atherogenesis and the underlying mechanism. Our results showed that kcnq1ot1 expression was significantly increased in mouse aorta with atherosclerosis and lipid-loaded macrophages. Lentivirus-mediated kcnq1ot1 overexpression markedly increased atherosclerotic plaque area and decreased plasma HDL-C levels and RCT efficiency in apoE-/- mice fed a Western diet. Upregulation of kcnq1ot1 also reduced the expression of miR-452-3p and ABCA1 but increased HDAC3 levels in mouse aorta and THP-1 macrophages. Accordingly, kcnq1ot1 overexpression inhibited cholesterol efflux and promoted lipid accumulation in THP-1 macrophages. In contrast, kcnq1ot1 knockdown protected against atherosclerosis in apoE-/- mice and suppressed lipid accumulation in THP-1 macrophages. Mechanistically, kcnq1ot1 enhanced HDAC3 expression by competitively binding to miR-452-3p, thereby inhibiting ABCA1 expression and subsequent cholesterol efflux. Taken together, these findings suggest that kcnq1ot1 promotes macrophage lipid accumulation and accelerates the development of atherosclerosis through the miR-452-3p/HDAC3/ABCA1 pathway.
Collapse
Affiliation(s)
- Xiao-Hua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan, PR China
| | - Wen-Yi Deng
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan, PR China
| | - Jiao-Jiao Chen
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan, PR China
| | - Xiao-Dan Xu
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Xian-Xia Liu
- Department of Cardiology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan, PR China
| | - Lei Chen
- Department of Cardiology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan, PR China
| | - Meng-Wen Shi
- The First School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Qi-Xian Liu
- The First School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Min Tao
- The First School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Kun Ren
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan, PR China. .,Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, PR China.
| |
Collapse
|
187
|
Mutual Interplay of Host Immune System and Gut Microbiota in the Immunopathology of Atherosclerosis. Int J Mol Sci 2020; 21:ijms21228729. [PMID: 33227973 PMCID: PMC7699263 DOI: 10.3390/ijms21228729] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammation is the key for the initiation and progression of atherosclerosis. Accumulating evidence has revealed that an altered gut microbiome (dysbiosis) triggers both local and systemic inflammation to cause chronic inflammatory diseases, including atherosclerosis. There have been some microbiome-relevant pro-inflammatory mechanisms proposed to link the relationships between dysbiosis and atherosclerosis such as gut permeability disruption, trigger of innate immunity from lipopolysaccharide (LPS), and generation of proatherogenic metabolites, such as trimethylamine N-oxide (TMAO). Meanwhile, immune responses, such as inflammasome activation and cytokine production, could reshape both composition and function of the microbiota. In fact, the immune system delicately modulates the interplay between microbiota and atherogenesis. Recent clinical trials have suggested the potential of immunomodulation as a treatment strategy of atherosclerosis. Here in this review, we present current knowledge regarding to the roles of microbiota in contributing atherosclerotic pathogenesis and highlight translational perspectives by discussing the mutual interplay between microbiota and immune system on atherogenesis.
Collapse
|
188
|
Biochanin A Mitigates Atherosclerosis by Inhibiting Lipid Accumulation and Inflammatory Response. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8965047. [PMID: 33959213 PMCID: PMC8074550 DOI: 10.1155/2020/8965047] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/13/2020] [Accepted: 10/16/2020] [Indexed: 12/19/2022]
Abstract
Biochanin A (BCA), a dietary isoflavone extracted from red clover and cabbage, has been shown to antagonize hypertension and myocardial ischemia/reperfusion injury. However, very little is known about its role in atherogenesis. The aim of this study was to observe the effects of BCA on atherosclerosis and explore the underlying mechanisms. Our results showed that administration of BCA promoted reverse cholesterol transport (RCT), improved plasma lipid profile, and decreased serum proinflammatory cytokine levels and atherosclerotic lesion area in apoE-/- mice fed a Western diet. In THP-1 macrophage-derived foam cells, treatment with BCA upregulated ATP-binding cassette (ABC) transporter A1 (ABCA1) and ABCG1 expression and facilitated subsequent cholesterol efflux and diminished intracellular cholesterol contents by activating the peroxisome proliferator-activated receptor γ (PPARγ)/liver X receptor α (LXRα) and PPARγ/heme oxygenase 1 (HO-1) pathways. BCA also activated these two signaling pathways to inhibit the secretion of proinflammatory cytokines. Taken together, these findings suggest that BCA is protective against atherosclerosis by inhibiting lipid accumulation and inflammatory response through the PPARγ/LXRα and PPARγ/HO-1 pathways. BCA may be an attractive drug for the prevention and treatment of atherosclerotic cardiovascular disease.
Collapse
|
189
|
Zhang H, Liu B, Shi X, Sun X. Long noncoding RNAs: Potential therapeutic targets in cardiocerebrovascular diseases. Pharmacol Ther 2020; 221:107744. [PMID: 33181193 DOI: 10.1016/j.pharmthera.2020.107744] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2020] [Indexed: 02/07/2023]
Abstract
Cardiocerebrovascular disease is a collective term for cardiovascular and cerebrovascular diseases. Because of the complex mechanisms involved in cardiocerebrovascular diseases, limited effective treatments have been developed. With advancements in precision medicine, studies have focused on long noncoding RNAs (lncRNAs) in cerebrovascular diseases. LncRNAs, which are over 200 nucleotides long, regulate gene expression at epigenetic, transcriptional, and post-transcriptional levels. Moreover, lncRNAs play pivotal roles in the progression of cardiocerebrovascular diseases. For example, recent studies suggested that abnormal expression of lncRNAs are closely related to the occurrence and progression of these diseases. LncRNAs regulate gene expression by specifically binding to mRNA to modulate disease progression, serving as biomarkers for the diagnosis and prognosis of cardiocerebrovascular diseases. In this review, we discuss the roles, mechanisms, and clinical value of lncRNAs in cardiocerebrovascular diseases, providing a new perspective for the diagnosis and treatment of the diseases.
Collapse
Affiliation(s)
- Hao Zhang
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Bo Liu
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Xingjuan Shi
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China.
| | - Xiaoou Sun
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| |
Collapse
|
190
|
Rashidi M, Wicks IP, Vince JE. Inflammasomes and Cell Death: Common Pathways in Microparticle Diseases. Trends Mol Med 2020; 26:1003-1020. [DOI: 10.1016/j.molmed.2020.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022]
|
191
|
Shokoples BG, Paradis P, Schiffrin EL. P2X7 Receptors: An Untapped Target for the Management of Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2020; 41:186-199. [PMID: 32998520 PMCID: PMC7752223 DOI: 10.1161/atvbaha.120.315116] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic low-grade inflammation contributes to the development of several diseases, including cardiovascular disease. Adequate strategies to target inflammation in cardiovascular disease are in their infancy and remain an avenue of great interest. The purinergic receptor P2X7 is a ubiquitously expressed receptor that predominately mediates inflammation and cellular death. P2X7 is a ligand-gated cation channel that is activated in response to high concentrations of extracellular ATP, triggering the assembly and activation of the NLRP3 (nuclear oligomerization domain like receptor family pyrin domain containing 3) inflammasome and subsequent release of proinflammatory cytokines IL (interleukin)-1β and IL-18. Increased P2X7 activation and IL-1β and IL-18 concentrations have been implicated in the development of many cardiovascular conditions including hypertension, atherosclerosis, ischemia/reperfusion injury, and heart failure. P2X7 receptor KO (knockout) mice exhibit a significant attenuation of the inflammatory response, which corresponds with reduced disease severity. P2X7 antagonism blunts blood pressure elevation in hypertension and progression of atherosclerosis in animal models. IL-1β and IL-18 inhibition has shown efficacy in clinical trials reducing major adverse cardiac events, including myocardial infarction, and heart failure. With several P2X7 antagonists available with proven safety margins, P2X7 antagonism could represent an untapped potential for therapeutic intervention in cardiovascular disorders.
Collapse
Affiliation(s)
- Brandon G. Shokoples
- Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research (B.G.S., P.P., E.L.S.), Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Pierre Paradis
- Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research (B.G.S., P.P., E.L.S.), Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Ernesto L. Schiffrin
- Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research (B.G.S., P.P., E.L.S.), Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, Quebec, Canada
- Department of Medicine (E.L.S.), Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
192
|
Gallerand A, Stunault MI, Merlin J, Guinamard RR, Yvan-Charvet L, Ivanov S. Myeloid Cell Diversity and Impact of Metabolic Cues during Atherosclerosis. IMMUNOMETABOLISM 2020; 2:immunometab20200028. [PMID: 39649554 PMCID: PMC7617020 DOI: 10.20900/immunometab20200028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Myeloid cells are key contributors to tissue, immune and metabolic homeostasis and their alteration fuels inflammation and associated disorders such as atherosclerosis. Conversely, in a classical chicken-and-egg situation, systemic and local metabolism, together with receptor-mediated activation, regulate intracellular metabolism and reprogram myeloid cell functions. Those regulatory loops are notable during the development of atherosclerotic lesions. Therefore, understanding the intricate metabolic mechanisms regulating myeloid cell biology could lead to innovative approaches to prevent and treat cardiovascular diseases. In this review, we will attempt to summarize the different metabolic factors regulating myeloid cell homeostasis and contribution to atherosclerosis, the most frequent cardiovascular disease.
Collapse
Affiliation(s)
- Alexandre Gallerand
- Mediterranean center of molecular medicine (C3M)-Université Côte d’Azur–INSERM U1065, Team 13, Nice, 06200, France
| | - Marion I. Stunault
- Mediterranean center of molecular medicine (C3M)-Université Côte d’Azur–INSERM U1065, Team 13, Nice, 06200, France
| | - Johanna Merlin
- Mediterranean center of molecular medicine (C3M)-Université Côte d’Azur–INSERM U1065, Team 13, Nice, 06200, France
| | - Rodolphe R. Guinamard
- Mediterranean center of molecular medicine (C3M)-Université Côte d’Azur–INSERM U1065, Team 13, Nice, 06200, France
| | - Laurent Yvan-Charvet
- Mediterranean center of molecular medicine (C3M)-Université Côte d’Azur–INSERM U1065, Team 13, Nice, 06200, France
| | - Stoyan Ivanov
- Mediterranean center of molecular medicine (C3M)-Université Côte d’Azur–INSERM U1065, Team 13, Nice, 06200, France
| |
Collapse
|
193
|
Han CY, Kang I, Omer M, Wang S, Wietecha T, Wight TN, Chait A. Serum amyloid A-containing HDL binds adipocyte-derived versican and macrophage-derived biglycan, reducing its antiinflammatory properties. JCI Insight 2020; 5:142635. [PMID: 32970631 PMCID: PMC7605543 DOI: 10.1172/jci.insight.142635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/16/2020] [Indexed: 12/25/2022] Open
Abstract
The ability of HDL to inhibit inflammation in adipocytes and adipose tissue is reduced when HDL contains serum amyloid A (SAA) that is trapped by proteoglycans at the adipocyte surface. Because we recently found that the major extracellular matrix proteoglycan produced by hypertrophic adipocytes is versican, whereas activated adipose tissue macrophages produce mainly biglycan, we further investigated the role of proteoglycans in determining the antiinflammatory properties of HDL. The distributions of versican, biglycan, apolipoprotein A1 (the major apolipoprotein of HDL), and SAA were similar in adipose tissue from obese mice and obese human subjects. Colocalization of SAA-enriched HDL with versican and biglycan at the cell surface of adipocyte and peritoneal macrophages, respectively, was blocked by silencing these proteoglycans, which also restored the antiinflammatory property of SAA-enriched HDL despite the presence of SAA. Similar to adipocytes, normal HDL exerted its antiinflammatory function in macrophages by reducing lipid rafts, reactive oxygen species generation, and translocation of Toll-like receptor 4 and NADPH oxidase 2 into lipid rafts, effects that were not observed with SAA-enriched HDL. These findings imply that SAA present in HDL can be trapped by adipocyte-derived versican and macrophage-derived biglycan, thereby blunting HDL’s antiinflammatory properties. Versican in adiopcytes and biglycan in macrophages trap serum amyloid A-containing HDL, thereby blocking HDL’s anti-inflammatory properties.
Collapse
Affiliation(s)
- Chang Yeop Han
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Inkyung Kang
- Matrix Biology Program, Benaroya Research Institute, Seattle, Washington, USA
| | - Mohamed Omer
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Shari Wang
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Tomasz Wietecha
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute, Seattle, Washington, USA
| | - Alan Chait
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
194
|
Tang Y, Liu W, Wang W, Fidler T, Woods B, Levine RL, Tall AR, Wang N. Inhibition of JAK2 Suppresses Myelopoiesis and Atherosclerosis in Apoe -/- Mice. Cardiovasc Drugs Ther 2020; 34:145-152. [PMID: 32086626 PMCID: PMC7125070 DOI: 10.1007/s10557-020-06943-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Increased myelopoiesis has been linked to risk of atherosclerotic cardiovascular disease (ACD). Excessive myelopoiesis can be driven by dyslipidemia and cholesterol accumulation in hematopoietic stem and progenitor cells (HSPC) and may involve increased signaling via Janus kinase 2 (JAK2). Constitutively activating JAK2 mutants drive biased myelopoiesis and promote development of myeloproliferative neoplasms (MPN) or clonal hematopoiesis, conditions associated with increased risk of ACD. JAK2 inhibitors have been developed as a therapy for MPNs. The potential for JAK2 inhibitors to protect against atherosclerosis has not been tested. We therefore assessed the impact of JAK2 inhibition on atherogenesis. METHODS A selective JAK2 inhibitor TG101348 (fedratinib) or vehicle was given to high-fat high-cholesterol Western diet (WD)-fed wild-type (WT) or Apoe-/- mice. Hematopoietic cell profiles, cell proliferation, and atherosclerosis in WT or Apoe-/- mice were assessed. RESULTS TG101348 selectively reversed neutrophilia, monocytosis, HSPC, and granulocyte-macrophage progenitor (GMP) expansion in Apoe-/- mice with decreased cellular phosphorylated STAT5 and ERK1/2 and reduced cell cycling and BrdU incorporation in HSPCs, indicating inhibition of JAK/STAT signaling and cell proliferation. Ten-week WD feeding allowed the development of marked aortic atherosclerosis in Apoe-/- mice which was substantially reduced by TG101348. CONCLUSIONS Selective JAK2 inhibition reduces atherogenesis by suppressing excessive myelopoiesis in hypercholesterolemic Apoe-/- mice. These findings suggest selective JAK2 inhibition as a potential therapeutic approach to decrease ACD risk in patients with increased myelopoiesis and leukocytosis.
Collapse
Affiliation(s)
- Yang Tang
- Division of Molecular Medicine, Department of Medicine, Columbia University Medical Center, 630 W. 168th Street, New York, NY, 10032, USA.,Department of Hematology, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Wenli Liu
- Division of Molecular Medicine, Department of Medicine, Columbia University Medical Center, 630 W. 168th Street, New York, NY, 10032, USA
| | - Wei Wang
- Division of Molecular Medicine, Department of Medicine, Columbia University Medical Center, 630 W. 168th Street, New York, NY, 10032, USA
| | - Trevor Fidler
- Division of Molecular Medicine, Department of Medicine, Columbia University Medical Center, 630 W. 168th Street, New York, NY, 10032, USA
| | - Britany Woods
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alan R Tall
- Division of Molecular Medicine, Department of Medicine, Columbia University Medical Center, 630 W. 168th Street, New York, NY, 10032, USA
| | - Nan Wang
- Division of Molecular Medicine, Department of Medicine, Columbia University Medical Center, 630 W. 168th Street, New York, NY, 10032, USA.
| |
Collapse
|
195
|
Israelov H, Ravid O, Atrakchi D, Rand D, Elhaik S, Bresler Y, Twitto-Greenberg R, Omesi L, Liraz-Zaltsman S, Gosselet F, Schnaider Beeri M, Cooper I. Caspase-1 has a critical role in blood-brain barrier injury and its inhibition contributes to multifaceted repair. J Neuroinflammation 2020; 17:267. [PMID: 32907600 PMCID: PMC7488082 DOI: 10.1186/s12974-020-01927-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 08/13/2020] [Indexed: 12/23/2022] Open
Abstract
Background Excessive inflammation might activate and injure the blood-brain barrier (BBB), a common feature of many central nervous system (CNS) disorders. We previously developed an in vitro BBB injury model in which the organophosphate paraoxon (PX) affects the BBB endothelium by attenuating junctional protein expression leading to weakened barrier integrity. The objective of this study was to investigate the inflammatory cellular response at the BBB to elucidate critical pathways that might lead to effective treatment in CNS pathologies in which the BBB is compromised. We hypothesized that caspase-1, a core component of the inflammasome complex, might have important role in BBB function since accumulating evidence indicates its involvement in brain inflammation and pathophysiology. Methods An in vitro human BBB model was employed to investigate BBB functions related to inflammation, primarily adhesion and transmigration of peripheral blood mononuclear cells (PBMCs). Caspase-1 pathway was studied by measurements of its activation state and its role in PBMCs adhesion, transmigration, and BBB permeability were investigated using the specific caspase-1 inhibitor, VX-765. Expression level of adhesion and junctional molecules and the secretion of pro-inflammatory cytokines were measured in vitro and in vivo at the BBB endothelium after exposure to PX. The potential repair effect of blocking caspase-1 and downstream molecules was evaluated by immunocytochemistry, ELISA, and Nanostring technology. Results PX affected the BBB in vitro by elevating the expression of the adhesion molecules E-selectin and ICAM-1 leading to increased adhesion of PBMCs to endothelial monolayer, followed by elevated transendothelial-migration which was ICAM-1 and LFA-1 dependent. Blocking caspase-8 and 9 rescued the viability of the endothelial cells but not the elevated transmigration of PBMCs. Inhibition of caspase-1, on the other hand, robustly restored all of barrier insults tested including PBMCs adhesion and transmigration, permeability, and VE-cadherin protein levels. The in vitro inflammatory response induced by PX and the role of caspase-1 in BBB injury were corroborated in vivo in isolated blood vessels from hippocampi of mice exposed to PX and treated with VX-765. Conclusions These results shed light on the important role of caspase-1 in BBB insult in general and specifically in the inflamed endothelium, and suggest therapeutic potential for various CNS disorders, by targeting caspase-1 in the injured BBB.
Collapse
Affiliation(s)
- Hila Israelov
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, 52621, Tel Hashomer, Ramat Gan, Israel
| | - Orly Ravid
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, 52621, Tel Hashomer, Ramat Gan, Israel
| | - Dana Atrakchi
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, 52621, Tel Hashomer, Ramat Gan, Israel
| | - Daniel Rand
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, 52621, Tel Hashomer, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Shirin Elhaik
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, 52621, Tel Hashomer, Ramat Gan, Israel
| | - Yael Bresler
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, 52621, Tel Hashomer, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Rachel Twitto-Greenberg
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, 52621, Tel Hashomer, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Liora Omesi
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, 52621, Tel Hashomer, Ramat Gan, Israel
| | - Sigal Liraz-Zaltsman
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, 52621, Tel Hashomer, Ramat Gan, Israel.,Department of Pharmacology, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel.,Institute for Health and Medical Professions, Department of Sports Therapy, Ono Academic College, Kiryat Ono, Israel
| | - Fabien Gosselet
- UR 2465, Blood-brain barrier Laboratory (LBHE), Artois University, F-62300, Lens, France
| | - Michal Schnaider Beeri
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, 52621, Tel Hashomer, Ramat Gan, Israel.,School of Psychology, Interdisciplinary Center (IDC), Herzliya, Israel.,Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Itzik Cooper
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, 52621, Tel Hashomer, Ramat Gan, Israel. .,School of Psychology, Interdisciplinary Center (IDC), Herzliya, Israel. .,The Nehemia Rubin Excellence in Biomedical Research - The TELEM Program, Sheba Medical Center, Tel-Hashomer, Israel.
| |
Collapse
|
196
|
Pourcet B, Duez H. Circadian Control of Inflammasome Pathways: Implications for Circadian Medicine. Front Immunol 2020; 11:1630. [PMID: 32849554 PMCID: PMC7410924 DOI: 10.3389/fimmu.2020.01630] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/18/2020] [Indexed: 12/25/2022] Open
Abstract
The innate immune system senses “non-self” molecules derived from pathogens (PAMPs) as well as endogenous damage-associated molecular patterns (DAMPs) and promotes sterile inflammation that is necessary for injury resolution, tissue repair/regeneration, and homeostasis. The NOD-, LRR- and pyrin domain containing protein 3 (NLRP3) is an innate immune signaling complex whose assembly and activation can be triggered by various signals ranging from microbial molecules to ATP or the abnormal accumulation of crystals, thus leading to IL-1β and IL-18 maturation and secretion. Deregulation of the NLRP3 signaling cascade is associated with numerous inflammatory and metabolic diseases including rheumatoid arthritis, gout, atherosclerosis or type 2 diabetes. Interestingly, the circadian clock controls numerous inflammatory processes while clock disruption leads to or exacerbates inflammation. Recently, the biological clock was demonstrated to control NLRP3 expression and activation, thereby controlling IL-1β and IL-18 secretion in diverse tissues and immune cells, particularly macrophages. Circadian oscillations of NLRP3 signaling is lost in models of clock disruption, contributing to the development of peritonitis, hepatitis, or colitis. Sterile inflammation is also an important driver of atherosclerosis, and targeting the production of IL-1β has proven to be a promising approach for atherosclerosis management in humans. Interestingly, the extent of injury after fulminant hepatitis or myocardial infarction is time-of-day dependent under the control of the clock, and chronotherapy represents a promising approach for the management of pathologies involving deregulation of NLRP3 signaling.
Collapse
Affiliation(s)
- Benoit Pourcet
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Hélène Duez
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| |
Collapse
|
197
|
Meyers AK, Zhu X. The NLRP3 Inflammasome: Metabolic Regulation and Contribution to Inflammaging. Cells 2020; 9:cells9081808. [PMID: 32751530 PMCID: PMC7463618 DOI: 10.3390/cells9081808] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
In response to inflammatory stimuli, immune cells reconfigure their metabolism and bioenergetics to generate energy and substrates for cell survival and to launch immune effector functions. As a critical component of the innate immune system, the nucleotide-binding and oligomerization domain, leucine-rich repeat, and pyrin domain-containing 3 (NLRP3) inflammasome can be activated by various endogenous and exogenous danger signals. Activation of this cytosolic multiprotein complex triggers the release of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 and initiates pyroptosis, an inflammatory form of programmed cell death. The NLRP3 inflammasome fuels both chronic and acute inflammatory conditions and is critical in the emergence of inflammaging. Recent advances have highlighted that various metabolic pathways converge as potent regulators of the NLRP3 inflammasome. This review focuses on our current understanding of the metabolic regulation of the NLRP3 inflammasome activation, and the contribution of the NLRP3 inflammasome to inflammaging.
Collapse
Affiliation(s)
- Allison K. Meyers
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
| | - Xuewei Zhu
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
- Correspondence: ; Tel.: +1-336-713-1445
| |
Collapse
|
198
|
Aguilar-Ballester M, Herrero-Cervera A, Vinué Á, Martínez-Hervás S, González-Navarro H. Impact of Cholesterol Metabolism in Immune Cell Function and Atherosclerosis. Nutrients 2020; 12:nu12072021. [PMID: 32645995 PMCID: PMC7400846 DOI: 10.3390/nu12072021] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 12/24/2022] Open
Abstract
Cholesterol, the most important sterol in mammals, helps maintain plasma membrane fluidity and is a precursor of bile acids, oxysterols, and steroid hormones. Cholesterol in the body is obtained from the diet or can be de novo synthetized. Cholesterol homeostasis is mainly regulated by the liver, where cholesterol is packed in lipoproteins for transport through a tightly regulated process. Changes in circulating lipoprotein cholesterol levels lead to atherosclerosis development, which is initiated by an accumulation of modified lipoproteins in the subendothelial space; this induces significant changes in immune cell differentiation and function. Beyond lesions, cholesterol levels also play important roles in immune cells such as monocyte priming, neutrophil activation, hematopoietic stem cell mobilization, and enhanced T cell production. In addition, changes in cholesterol intracellular metabolic enzymes or transporters in immune cells affect their signaling and phenotype differentiation, which can impact on atherosclerosis development. In this review, we describe the main regulatory pathways and mechanisms of cholesterol metabolism and how these affect immune cell generation, proliferation, activation, and signaling in the context of atherosclerosis.
Collapse
Affiliation(s)
- María Aguilar-Ballester
- INCLIVA Institute of Health Research, 46010 Valencia, Spain; (M.A.-B.); (A.H.-C.); (Á.V.); (S.M.-H.)
| | - Andrea Herrero-Cervera
- INCLIVA Institute of Health Research, 46010 Valencia, Spain; (M.A.-B.); (A.H.-C.); (Á.V.); (S.M.-H.)
| | - Ángela Vinué
- INCLIVA Institute of Health Research, 46010 Valencia, Spain; (M.A.-B.); (A.H.-C.); (Á.V.); (S.M.-H.)
| | - Sergio Martínez-Hervás
- INCLIVA Institute of Health Research, 46010 Valencia, Spain; (M.A.-B.); (A.H.-C.); (Á.V.); (S.M.-H.)
- Endocrinology and Nutrition Department Clinic Hospital and Department of Medicine, University of Valencia, 46010 Valencia, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Herminia González-Navarro
- INCLIVA Institute of Health Research, 46010 Valencia, Spain; (M.A.-B.); (A.H.-C.); (Á.V.); (S.M.-H.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Department of Didactics of Experimental and Social Sciences, University of Valencia, 46010 Valencia, Spain
- Correspondence: ; Tel.: +34-963864403; Fax: +34-963987860
| |
Collapse
|
199
|
Abstract
Cardiovascular disease and infections are major causes for the high incidence of morbidity and mortality of patients with chronic kidney disease. Both complications are directly or indirectly associated with disturbed functions or altered apoptotic rates of polymorphonuclear leukocytes, monocytes, lymphocytes, and dendritic cells. Normal responses of immune cells can be reduced, leading to infectious diseases or pre-activated/primed, giving rise to inflammation and subsequently to cardiovascular disease. This review summarizes the impact of kidney dysfunction on the immune system. Renal failure results in disturbed renal metabolic activities with reduced renin, erythropoietin, and vitamin D production, which adversely affects the immune system. Decreased kidney function also leads to reduced glomerular filtration and the retention of uremic toxins. A large number of uremic toxins with detrimental effects on immune cells have been identified. Besides small water-soluble and protein-bound compounds originating from the intestinal microbiome, several molecules in the middle molecular range, e.g., immunoglobulin light chains, retinol-binding protein, the neuropeptides Met-enkephalin and neuropeptide Y, endothelin-1, and the adipokines leptin and resistin, adversely affect immune cells. Posttranslational modifications such as carbamoylation, advanced glycation products, and oxidative modifications contribute to uremic toxicity. Furthermore, high-density lipoprotein from uremic patients has an altered protein profile and thereby loses its anti-inflammatory properties.
Collapse
Affiliation(s)
- Gerald Cohen
- Department of Nephrology and Dialysis, Medical University of Vienna, Vienna A-1090, Austria
| |
Collapse
|
200
|
Yvan-Charvet L, Bonacina F, Guinamard RR, Norata GD. Immunometabolic function of cholesterol in cardiovascular disease and beyond. Cardiovasc Res 2020; 115:1393-1407. [PMID: 31095280 DOI: 10.1093/cvr/cvz127] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/20/2019] [Accepted: 05/07/2019] [Indexed: 12/16/2022] Open
Abstract
Inflammation represents the driving feature of many diseases, including atherosclerosis, cancer, autoimmunity and infections. It is now established that metabolic processes shape a proper immune response and within this context the alteration in cellular cholesterol homeostasis has emerged as a culprit of many metabolic abnormalities observed in chronic inflammatory diseases. Cholesterol accumulation supports the inflammatory response of myeloid cells (i.e. augmentation of toll-like receptor signalling, inflammasome activation, and production of monocytes and neutrophils) which is beneficial in the response to infections, but worsens diseases associated with chronic metabolic inflammation including atherosclerosis. In addition to the innate immune system, cells of adaptive immunity, upon activation, have also been shown to undergo a reprogramming of cellular cholesterol metabolism, which results in the amplification of inflammatory responses. Aim of this review is to discuss (i) the molecular mechanisms linking cellular cholesterol metabolism to specific immune functions; (ii) how cellular cholesterol accumulation sustains chronic inflammatory diseases such as atherosclerosis; (iii) the immunometabolic profile of patients with defects of genes affecting cholesterol metabolism including familial hypercholesterolaemia, cholesteryl ester storage disease, Niemann-Pick type C, and immunoglobulin D syndrome/mevalonate kinase deficiency. Available data indicate that cholesterol immunometabolism plays a key role in directing immune cells function and set the stage for investigating the repurposing of existing 'metabolic' drugs to modulate the immune response.
Collapse
Affiliation(s)
- Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France
| | - Fabrizia Bonacina
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Rodolphe Renè Guinamard
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France
| | - Giuseppe Danilo Norata
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France.,Center for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo, Milan, Italy
| |
Collapse
|