151
|
Bedard M, Salio M, Cerundolo V. Harnessing the Power of Invariant Natural Killer T Cells in Cancer Immunotherapy. Front Immunol 2017; 8:1829. [PMID: 29326711 PMCID: PMC5741693 DOI: 10.3389/fimmu.2017.01829] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/04/2017] [Indexed: 12/19/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are a distinct subset of innate-like lymphocytes bearing an invariant T-cell receptor, through which they recognize lipid antigens presented by monomorphic CD1d molecules. Upon activation, iNKT cells are capable of not only having a direct effector function but also transactivating NK cells, maturing dendritic cells, and activating B cells, through secretion of several cytokines and cognate TCR-CD1d interaction. Endowed with the ability to orchestrate an all-encompassing immune response, iNKT cells are critical in shaping immune responses against pathogens and cancer cells. In this review, we examine the critical role of iNKT cells in antitumor responses from two perspectives: (i) how iNKT cells potentiate antitumor immunity and (ii) how CD1d+ tumor cells may modulate their own expression of CD1d molecules. We further explore hypotheses to explain iNKT cell activation in the context of cancer and how the antitumor effects of iNKT cells can be exploited in different forms of cancer immunotherapy, including their role in the development of cancer vaccines.
Collapse
Affiliation(s)
- Melissa Bedard
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Mariolina Salio
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
152
|
Bonvini SJ, Belvisi MG. Cough and airway disease: The role of ion channels. Pulm Pharmacol Ther 2017; 47:21-28. [PMID: 28669932 DOI: 10.1016/j.pupt.2017.06.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 01/07/2023]
Abstract
Cough is the most common reason for patients to visit a primary care physician, yet it remains an unmet medical need. It can be idiopathic in nature but can also be a troublesome symptom across chronic lung diseases such as asthma, COPD and idiopathic pulmonary fibrosis (IPF). Chronic cough affects up to 12% of the population and yet there are no safe and effective therapies. The cough reflex is regulated by vagal, sensory afferent nerves which innervate the airway. The Transient Receptor Potential (TRP) family of ion channels are expressed on sensory nerve terminals, and when activated can evoke cough. This review focuses on the role of 4 TRP channels; TRP Vannilloid 1 (TRPV1), TRP Ankyrin 1 (TRPA1), TRP Vannilloid 4 (TRPV4) and TRP Melastatin 8 (TRPM8) and the purinergic P2X3 receptor and their possible role in chronic cough. We conclude that these ion channels, given their expression profile and their role in the activation of sensory afferents and the cough reflex, may represent excellent therapeutic targets for the treatment of respiratory symptoms in chronic lung disease.
Collapse
Affiliation(s)
- Sara J Bonvini
- Respiratory Pharmacology Group, Airway Disease Section, National Heart & Lung Institute, Imperial College, Exhibition Road, London SW7 2AZ, UK
| | - Maria G Belvisi
- Respiratory Pharmacology Group, Airway Disease Section, National Heart & Lung Institute, Imperial College, Exhibition Road, London SW7 2AZ, UK.
| |
Collapse
|
153
|
Potential contribution of alveolar epithelial type I cells to pulmonary fibrosis. Biosci Rep 2017; 37:BSR20171301. [PMID: 29026006 PMCID: PMC5696455 DOI: 10.1042/bsr20171301] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 12/13/2022] Open
Abstract
Pulmonary fibrosis (PF) is characterized by inflammation and fibrosis of the interstitium and destruction of alveolar histoarchitecture ultimately leading to a fatal impairment of lung function. Different concepts describe either a dominant role of inflammatory pathways or a disturbed remodeling of resident cells of the lung parenchyma during fibrogenesis. Further, a combination of both the mechanisms has been postulated. The present review emphasizes the particular involvement of alveolar epithelial type I cells in all these processes, their contribution to innate immune/inflammatory functions and maintenance of proper alveolar barrier functions. Amongst the different inflammatory and repair events the purinergic receptor P2X7, an ATP-gated cationic channel that regulates not only apoptosis, necrosis, autophagy, and NLPR3 inflammosome activation, but also the turnover of diverse tight junction (TJ) and water channel proteins, seems to be essential for the stability of alveolar barrier integrity and for the interaction with protective factors during lung injury.
Collapse
|
154
|
Basova LV, Tang X, Umasume T, Gromova A, Zyrianova T, Shmushkovich T, Wolfson A, Hawley D, Zoukhri D, Shestopalov VI, Makarenkova HP. Manipulation of Panx1 Activity Increases the Engraftment of Transplanted Lacrimal Gland Epithelial Progenitor Cells. Invest Ophthalmol Vis Sci 2017; 58:5654-5665. [PMID: 29098296 PMCID: PMC5678547 DOI: 10.1167/iovs.17-22071] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose Sjögren's syndrome is a systemic chronic autoimmune inflammatory disease that primarily targets the salivary and lacrimal glands (LGs). Currently there is no cure; therefore, cell-based regenerative therapy may be a viable option. LG inflammation is facilitated by extracellular ATP and mediated by the Pannexin-1 (Panx1) membrane channel glycoprotein. We propose that suppression of inflammation through manipulation of Panx1 activity can stimulate epithelial cell progenitor (EPCP) engraftment. Methods The expression of pannexins in the mouse and human LG was assayed by qRT-PCR and immunostaining. Acute LG inflammation was induced by interleukin-1α (IL1α) injection. Prior to EPCP transplantation, IL1α-injured or chronically inflamed LGs of thrombospondin-1–null mice (TSP-1−/−) were treated with the Panx1-specific blocking peptide (10panx) or the self-deliverable RNAi (sdRNAi). The efficacy of cell engraftment and the area of inflammation were analyzed by microscopy. Results Panx1 and Panx2 were detected in the mouse and human LGs. Panx1 and proinflammatory factors were upregulated during acute inflammation at days 1 to 3 after the IL1α injection. The analysis of EPCP engraftment demonstrated a significant and reproducible positive correlation between the 10panx peptide or Panx1 sdRNAi treatment and the number of engrafted cells. Similarly, treatment of the LG of the TSP-1−/− mouse (mouse model of chronic LG inflammation) by either Panx1 or Caspase-4 (also known as Casp11) sdRNAi showed a significant decrease in expression of proinflammatory markers and the lymphocyte infiltration. Conclusions Our results suggest that blocking Panx1 and/or Casp4 activities is a beneficial strategy to enhance donor cell engraftment and LG regeneration through the reduction of inflammation.
Collapse
Affiliation(s)
- Liana V Basova
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States
| | - Xin Tang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States
| | - Takeshi Umasume
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States
| | - Anastasia Gromova
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States
| | - Tatiana Zyrianova
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States
| | | | | | - Dillon Hawley
- Department of Comprehensive Care, Tufts University School of Dental Medicine, Boston, Massachusetts, United States
| | - Driss Zoukhri
- Department of Comprehensive Care, Tufts University School of Dental Medicine, Boston, Massachusetts, United States.,Department of Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Valery I Shestopalov
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami School of Medicine, Miami, Florida, United States.,Department of Cell Biology, University of Miami School of Medicine, Miami, Florida, United States
| | - Helen P Makarenkova
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States
| |
Collapse
|
155
|
Komalavilas P, Luo W, Guth CM, Jolayemi O, Bartelson RI, Cheung-Flynn J, Brophy CM. Vascular surgical stretch injury leads to activation of P2X7 receptors and impaired endothelial function. PLoS One 2017; 12:e0188069. [PMID: 29136654 PMCID: PMC5685620 DOI: 10.1371/journal.pone.0188069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 10/31/2017] [Indexed: 12/17/2022] Open
Abstract
A viable vascular endothelial layer prevents vasomotor dysfunction, thrombosis, inflammation, and intimal hyperplasia. Injury to the endothelium occurs during harvest and “back table” preparation of human saphenous vein prior to implantation as an arterial bypass conduit. A subfailure overstretch model of rat aorta was used to show that subfailure stretch injury of vascular tissue leads to impaired endothelial-dependent relaxation. Stretch-induced impaired relaxation was mitigated by treatment with purinergic P2X7 receptor (P2X7R) inhibitors, brilliant blue FCF (FCF) and A740003, or apyrase, an enzyme that catalyzes the hydrolysis of ATP. Alternatively, treatment of rat aorta with exogenous ATP or 2’(3’)-O-(4-Benzoyl benzoyl)-ATP (BzATP) also impaired endothelial-dependent relaxation. Treatment of human saphenous vein endothelial cells (HSVEC) with exogenous ATP led to reduced nitric oxide production which was associated with increased phosphorylation of the stress activated protein kinase, p38 MAPK. ATP- stimulated p38 MAPK phosphorylation of HSVEC was inhibited by FCF and SB203580. Moreover, ATP inhibition of nitric oxide production in HSVEC was prevented by FCF, SB203580, L-arginine supplementation and arginase inhibition. Finally, L-arginine supplementation and arginase inhibition restored endothelial dependent relaxation after stretch injury of rat aorta. These results suggest that vascular stretch injury leads to ATP release, activation of P2X7R and p38 MAPK resulting in endothelial dysfunction due to arginase activation. Endothelial function can be restored in both ATP treated HSVEC and intact stretch injured rat aorta by P2X7 receptor inhibition with FCF or L-arginine supplementation, implicating straightforward therapeutic options for treatment of surgical vascular injury.
Collapse
Affiliation(s)
- Padmini Komalavilas
- Vanderbilt University Medical Center, Department of Surgery, Nashville, TN, United States of America
- VA Tennessee Valley Healthcare System, Nashville, TN, United States of America
- * E-mail:
| | - Weifeng Luo
- Vanderbilt University Medical Center, Department of Surgery, Nashville, TN, United States of America
| | - Christy M. Guth
- Vanderbilt University Medical Center, Department of Surgery, Nashville, TN, United States of America
| | - Olukemi Jolayemi
- Vanderbilt University Medical Center, Department of Surgery, Nashville, TN, United States of America
| | - Rachel I. Bartelson
- Vanderbilt University Medical Center, Department of Surgery, Nashville, TN, United States of America
| | - Joyce Cheung-Flynn
- Vanderbilt University Medical Center, Department of Surgery, Nashville, TN, United States of America
| | - Colleen M. Brophy
- Vanderbilt University Medical Center, Department of Surgery, Nashville, TN, United States of America
- VA Tennessee Valley Healthcare System, Nashville, TN, United States of America
| |
Collapse
|
156
|
Feldbrügge L, Jiang ZG, Csizmadia E, Mitsuhashi S, Tran S, Yee EU, Rothweiler S, Vaid KA, Sévigny J, Schmelzle M, Popov YV, Robson SC. Distinct roles of ecto-nucleoside triphosphate diphosphohydrolase-2 (NTPDase2) in liver regeneration and fibrosis. Purinergic Signal 2017; 14:37-46. [PMID: 29134411 DOI: 10.1007/s11302-017-9590-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 10/11/2017] [Indexed: 12/16/2022] Open
Abstract
Ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) are cell surface-located transmembrane ecto-enzymes of the CD39 superfamily which regulate inflammation and tissue repair by catalyzing the phosphohydrolysis of extracellular nucleotides and modulating purinergic signaling. In the liver, NTPDase2 is reportedly expressed on portal fibroblasts, but its functional role in regulating tissue regeneration and fibrosis is incompletely understood. Here, we studied the role of NTPDase2 in several models of liver injury using global knockout mice. Liver regeneration and severity of fibrosis were analyzed at different time points after exposure to carbon tetrachloride (CCl4) or 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) or partial hepatectomy in C57BL/6 wild-type and globally NTPDase2-deficient (Entpd2 null) mice. After chronic CCl4 intoxication, Entpd2 null mice exhibit significantly more severe liver fibrosis, as assessed by collagen content and histology. In contrast, deletion of NTPDase2 does not have a substantial effect on biliary-type fibrosis in the setting of DDC feeding. In injured livers, NTPDase2 expression extends from the portal areas to fibrotic septae in pan-lobular (CCl4-induced) liver fibrosis; the same pattern was observed, albeit to a lesser extent in biliary-type (DDC-induced) fibrosis. Liver regeneration after partial hepatectomy is not substantively impaired in global Entpd2 null mice. NTPDase2 protects from liver fibrosis resulting from hepatocellular injury induced by CCl4. In contrast, Entpd2 deletion does not significantly impact fibrosis secondary to DDC injury or liver regeneration after partial hepatectomy. Our observations highlight mechanisms relating to purinergic signaling in the liver and indicate possible therapeutic avenues and new cellular targets to test in the management of hepatic fibrosis.
Collapse
Affiliation(s)
- Linda Feldbrügge
- Department of Surgery, Charité Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 13353, Berlin, Germany. .,Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA.
| | - Z Gordon Jiang
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Eva Csizmadia
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Shuji Mitsuhashi
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Stephanie Tran
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Eric U Yee
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Sonja Rothweiler
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Kahini A Vaid
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Jean Sévigny
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, QC, Québec, G1V 0A6, Canada.,Centre de Recherche du CHU de Québec, Université Laval, QC, Québec, G1V 4G2, Canada
| | - Moritz Schmelzle
- Department of Surgery, Charité Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 13353, Berlin, Germany
| | - Yury V Popov
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Simon C Robson
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
157
|
P2X7R Blockade Prevents NLRP3 Inflammasome Activation and Pancreatic Fibrosis in a Mouse Model of Chronic Pancreatitis. Pancreas 2017; 46:1327-1335. [PMID: 28930866 DOI: 10.1097/mpa.0000000000000928] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the role of P2X7R (purinergic 2X7 receptor) and NLRP3 (NACHT, LRR, and PYD domains-containing protein 3) inflammasome activation in the process of pancreatic fibrosis in a mouse model of chronic pancreatitis (CP). METHODS Chronic pancreatitis was induced by repeated intraperitoneal injections of 50 μg/kg cerulein for 6 weeks in mice. P2X7R antagonist oxidized ATP (OxATP) or brilliant blue G (BBG) was administered after the last cerulein injection for 2 weeks. Pancreatic chronic inflammation and fibrosis were evaluated by histological score, Sirius red staining, and alpha-smooth muscle actin immunohistochemical staining. We further determined pancreatic P2X7R, NLRP3, and caspase-1 expressions in gene and protein levels and the pancreatic concentrations of caspase-1, interleukin 1β (IL-1β), and IL-18. RESULTS The pancreatic P2X7R, NLRP3, and caspase-1 expressions in gene and protein levels and the pancreatic concentrations of caspase-1, IL-1β, and IL-18 were all reduced significantly in both the OxATP and BBG groups (P < 0.05). The pancreatic chronic inflammation and the fibrosis indices were all remarkably attenuated (P < 0.05). CONCLUSIONS P2X7R antagonist OxATP and BBG significantly decreased pancreatic chronic inflammation and fibrosis in a mouse CP model and suggested that blockade of P2X7R-NLRP3 inflammasome signaling pathway may represent a novel therapeutic strategy for CP and its fibrotic process.
Collapse
|
158
|
Gal Y, Mazor O, Falach R, Sapoznikov A, Kronman C, Sabo T. Treatments for Pulmonary Ricin Intoxication: Current Aspects and Future Prospects. Toxins (Basel) 2017; 9:E311. [PMID: 28972558 PMCID: PMC5666358 DOI: 10.3390/toxins9100311] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 09/26/2017] [Accepted: 09/29/2017] [Indexed: 12/13/2022] Open
Abstract
Ricin, a plant-derived toxin originating from the seeds of Ricinus communis (castor beans), is one of the most lethal toxins known, particularly if inhaled. Ricin is considered a potential biological threat agent due to its high availability and ease of production. The clinical manifestation of pulmonary ricin intoxication in animal models is closely related to acute respiratory distress syndrome (ARDS), which involves pulmonary proinflammatory cytokine upregulation, massive neutrophil infiltration and severe edema. Currently, the only post-exposure measure that is effective against pulmonary ricinosis at clinically relevant time-points following intoxication in pre-clinical studies is passive immunization with anti-ricin neutralizing antibodies. The efficacy of this antitoxin treatment depends on antibody affinity and the time of treatment initiation within a limited therapeutic time window. Small-molecule compounds that interfere directly with the toxin or inhibit its intracellular trafficking may also be beneficial against ricinosis. Another approach relies on the co-administration of antitoxin antibodies with immunomodulatory drugs, thereby neutralizing the toxin while attenuating lung injury. Immunomodulators and other pharmacological-based treatment options should be tailored according to the particular pathogenesis pathways of pulmonary ricinosis. This review focuses on the current treatment options for pulmonary ricin intoxication using anti-ricin antibodies, disease-modifying countermeasures, anti-ricin small molecules and their various combinations.
Collapse
Affiliation(s)
- Yoav Gal
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Ohad Mazor
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Reut Falach
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Anita Sapoznikov
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Chanoch Kronman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Tamar Sabo
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| |
Collapse
|
159
|
Gentile D, Lazzerini PE, Gamberucci A, Natale M, Selvi E, Vanni F, Alì A, Taddeucci P, Del-Ry S, Cabiati M, Della-Latta V, Abraham DJ, Morales MA, Fulceri R, Laghi-Pasini F, Capecchi PL. Searching Novel Therapeutic Targets for Scleroderma: P2X7-Receptor Is Up-regulated and Promotes a Fibrogenic Phenotype in Systemic Sclerosis Fibroblasts. Front Pharmacol 2017; 8:638. [PMID: 28955239 PMCID: PMC5602350 DOI: 10.3389/fphar.2017.00638] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/29/2017] [Indexed: 11/13/2022] Open
Abstract
Objectives: Systemic sclerosis (SSc) is a connective tissue disorder presenting fibrosis of the skin and internal organs, for which no effective treatments are currently available. Increasing evidence indicates that the P2X7 receptor (P2X7R), a nucleotide-gated ionotropic channel primarily involved in the inflammatory response, may also have a key role in the development of tissue fibrosis in different body districts. This study was aimed at investigating P2X7R expression and function in promoting a fibrogenic phenotype in dermal fibroblasts from SSc patients, also analyzing putative underlying mechanistic pathways. Methods: Fibroblasts were isolated by skin biopsy from 9 SSc patients and 8 healthy controls. P2X7R expression, and function (cytosolic free Ca2+ fluxes, α-smooth muscle actin [α-SMA] expression, cell migration, and collagen release) were studied. Moreover, the role of cytokine (interleukin-1β, interleukin-6) and connective tissue growth factor (CTGF) production, and extracellular signal-regulated kinases (ERK) activation in mediating P2X7R-dependent pro-fibrotic effects in SSc fibroblasts was evaluated. Results: P2X7R expression and Ca2+ permeability induced by the selective P2X7R agonist 2'-3'-O-(4-benzoylbenzoyl)ATP (BzATP) were markedly higher in SSc than control fibroblasts. Moreover, increased αSMA expression, cell migration, CTGF, and collagen release were observed in lipopolysaccharides-primed SSc fibroblasts after BzATP stimulation. While P2X7-induced cytokine changes did not affect collagen production, it was completely abrogated by inhibition of the ERK pathway. Conclusion: In SSc fibroblasts, P2X7R is overexpressed and its stimulation induces Ca2+-signaling activation and a fibrogenic phenotype characterized by increased migration and collagen production. These data point to the P2X7R as a potential, novel therapeutic target for controlling exaggerated collagen deposition and tissue fibrosis in patients with SSc.
Collapse
Affiliation(s)
- Daniela Gentile
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Pietro E Lazzerini
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Alessandra Gamberucci
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Mariarita Natale
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Enrico Selvi
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Francesca Vanni
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Alessandra Alì
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Paolo Taddeucci
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | | | | | | | - David J Abraham
- Division of Medicine, Department of Inflammation, Centre for Rheumatology and Connective Tissue Diseases, University College London, London, United Kingdom
| | | | - Rosella Fulceri
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Franco Laghi-Pasini
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Pier L Capecchi
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| |
Collapse
|
160
|
Abstract
Chronic obstructive pulmonary disease (COPD) and asthma are both common respiratory diseases that are associated with airflow reduction/obstruction and pulmonary inflammation. Whilst drug therapies offer adequate symptom control for many mild to moderate asthmatic patients, severe asthmatics and COPD patients symptoms are often not controlled, and in these cases, irreversible structural damage occurs with disease progression over time. Transient receptor potential (TRP) channels, in particular TRPV1, TRPA1, TRPV4 and TRPM8, have been implicated with roles in the regulation of inflammation and autonomic nervous control of the lungs. Evidence suggests that inflammation elevates levels of activators and sensitisers of TRP channels and additionally that TRP channel expression may be increased, resulting in excessive channel activation. The enhanced activity of these channels is thought to then play a key role in the propagation and maintenance of the inflammatory disease state and neuronal symptoms such as bronchoconstriction and cough. For TRPM8 the evidence is less clear, but as with TRPV1, TRPA1 and TRPV4, antagonists are being developed by multiple companies for indications including asthma and COPD, which will help in elucidating their role in respiratory disease.
Collapse
|
161
|
Müller T, Fay S, Vieira RP, Karmouty-Quintana H, Cicko S, Ayata CK, Zissel G, Goldmann T, Lungarella G, Ferrari D, Di Virgilio F, Robaye B, Boeynaems JM, Lazarowski ER, Blackburn MR, Idzko M. P2Y 6 Receptor Activation Promotes Inflammation and Tissue Remodeling in Pulmonary Fibrosis. Front Immunol 2017; 8:1028. [PMID: 28878780 PMCID: PMC5572280 DOI: 10.3389/fimmu.2017.01028] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/09/2017] [Indexed: 01/27/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a disease with a poor prognosis and very few available treatment options. The involvement of the purinergic receptor subtypes P2Y2 and P2X7 in fibrotic lung disease has been demonstrated recently. In this study, we investigated the role of P2Y6 receptors in the pathogenesis of IPF in humans and in the animal model of bleomycin-induced lung injury. P2Y6R expression was upregulated in lung structural cells but not in bronchoalveolar lavage (BAL) cells derived from IPF patients as well as in animals following bleomycin administration. Furthermore, BAL fluid levels of the P2Y6R agonist uridine-5'-diphosphate were elevated in animals with bleomycin-induced pulmonary fibrosis. Inflammation and fibrosis following bleomycin administration were reduced in P2Y6R-deficient compared to wild-type animals confirming the pathophysiological relevance of P2Y6R subtypes for fibrotic lung diseases. Experiments with bone marrow chimeras revealed the importance of P2Y6R expression on lung structural cells for pulmonary inflammation and fibrosis. Similar effects were obtained when animals were treated with the P2Y6R antagonist MRS2578. In vitro studies demonstrated that proliferation and secretion of the pro-inflammatory/pro-fibrotic cytokine IL-6 by lung fibroblasts are P2Y6R-mediated processes. In summary, our results clearly demonstrate the involvement of P2Y6R subtypes in the pathogenesis of pulmonary fibrosis. Thus, blocking pulmonary P2Y6 receptors might be a new target for the treatment of IPF.
Collapse
Affiliation(s)
- Tobias Müller
- Department of Pneumology, University Medical Center Freiburg, Freiburg, Germany
- Division of Pneumology, University Hospital RWTH Aachen, Aachen, Germany
| | - Susanne Fay
- Department of Pneumology, University Medical Center Freiburg, Freiburg, Germany
| | | | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, University of Texas, Houston, TX, United States
| | - Sanja Cicko
- Department of Pneumology, University Medical Center Freiburg, Freiburg, Germany
| | - Cemil Korcan Ayata
- Department of Pneumology, University Medical Center Freiburg, Freiburg, Germany
| | - Gernot Zissel
- Department of Pneumology, University Medical Center Freiburg, Freiburg, Germany
| | - Torsten Goldmann
- Clinical and Experimental Pathology, Research Center Borstel, Borstel, Germany
| | - Giuseppe Lungarella
- Department of Physiopathology and Experimental Medicine, University of Siena, Siena, Italy
| | - Davide Ferrari
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Bernard Robaye
- IRIBHM and Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Eduardo R. Lazarowski
- Cystic Fibrosis Research Center, Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, United States
| | - Michael R. Blackburn
- Department of Biochemistry and Molecular Biology, University of Texas, Houston, TX, United States
| | - Marco Idzko
- Department of Pneumology, University Medical Center Freiburg, Freiburg, Germany
| |
Collapse
|
162
|
Khalafalla MG, Woods LT, Camden JM, Khan AA, Limesand KH, Petris MJ, Erb L, Weisman GA. P2X7 receptor antagonism prevents IL-1β release from salivary epithelial cells and reduces inflammation in a mouse model of autoimmune exocrinopathy. J Biol Chem 2017; 292:16626-16637. [PMID: 28798231 DOI: 10.1074/jbc.m117.790741] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/03/2017] [Indexed: 01/06/2023] Open
Abstract
Salivary gland inflammation is a hallmark of Sjögren's syndrome (SS), a common autoimmune disease characterized by lymphocytic infiltration of the salivary gland and loss of saliva secretion, predominantly in women. The P2X7 receptor (P2X7R) is an ATP-gated nonselective cation channel that induces inflammatory responses in cells and tissues, including salivary gland epithelium. In immune cells, P2X7R activation induces the production of proinflammatory cytokines, including IL-1β and IL-18, by inducing the oligomerization of the multiprotein complex NLRP3-type inflammasome. Here, our results show that in primary mouse submandibular gland (SMG) epithelial cells, P2X7R activation also induces the assembly of the NLRP3 inflammasome and the maturation and release of IL-1β, a response that is absent in SMG cells isolated from mice deficient in P2X7Rs (P2X7R-/-). P2X7R-mediated IL-1β release in SMG epithelial cells is dependent on transmembrane Na+ and/or K+ flux and the activation of heat shock protein 90 (HSP90), a protein required for the activation and stabilization of the NLRP3 inflammasome. Also, using the reactive oxygen species (ROS) scavengers N-acetyl cysteine and Mito-TEMPO, we determined that mitochondrial reactive oxygen species are required for P2X7R-mediated IL-1β release. Lastly, in vivo administration of the P2X7R antagonist A438079 in the CD28-/-, IFNγ-/-, NOD.H-2h4 mouse model of salivary gland exocrinopathy ameliorated salivary gland inflammation and enhanced carbachol-induced saliva secretion. These findings demonstrate that P2X7R antagonism in vivo represents a promising therapeutic strategy to limit salivary gland inflammation and improve secretory function.
Collapse
Affiliation(s)
- Mahmoud G Khalafalla
- From the Department of Biochemistry.,Christopher S. Bond Life Sciences Center, and
| | - Lucas T Woods
- From the Department of Biochemistry.,Christopher S. Bond Life Sciences Center, and
| | - Jean M Camden
- From the Department of Biochemistry.,Christopher S. Bond Life Sciences Center, and
| | - Aslam A Khan
- From the Department of Biochemistry.,Christopher S. Bond Life Sciences Center, and
| | - Kirsten H Limesand
- the Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, 85721
| | - Michael J Petris
- From the Department of Biochemistry.,Christopher S. Bond Life Sciences Center, and.,Department of Nutrition and Exercise Physiology,University of Missouri, Columbia, Missouri, 65211-7310 and
| | - Laurie Erb
- From the Department of Biochemistry.,Christopher S. Bond Life Sciences Center, and
| | - Gary A Weisman
- From the Department of Biochemistry, .,Christopher S. Bond Life Sciences Center, and
| |
Collapse
|
163
|
Fusco R, Gugliandolo E, Biundo F, Campolo M, Di Paola R, Cuzzocrea S. Inhibition of inflammasome activation improves lung acute injury induced by carrageenan in a mouse model of pleurisy. FASEB J 2017; 31:3497-3511. [PMID: 28461340 DOI: 10.1096/fj.201601349r] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/11/2017] [Indexed: 12/25/2022]
Abstract
The inflammasome NLRP3 is a molecular pathway activated by a wide range of cellular insults to elicit innate immune defenses through the activation of caspase-1 and the maturation of proinflammatory cytokines, such as IL-1β and IL-18. The expression of NRLP3 is abnormally elevated in numerous human inflammatory diseases, including pulmonary diseases. An injection of carrageenan (CAR) into the pleural cavity triggered an acute inflammatory response, leading to tissue damage, inflammatory exudates, leukocyte infiltration, and increased myeloperoxidase activity. The aim of this study was to assess the effect of the inflammasome blocking agents BAY 11-7082 (30 mg/kg, i.p.) and Brilliant Blue G (BBG) (45.5 mg/kg, i.p.) in a mouse model of CAR-induced pleurisy. Treatment with BAY 11-7082 or BBG 1 h after CAR injection attenuated pulmonary membrane thickening and polymorphonuclear leukocyte infiltration, reduced NF-κB translocation in the nucleus, and inhibited the assembly of the NRLP3/ASC/caspase-1 complex. Treatment with BAY 11-7082 or BBG also down-regulated iNOS, nitrotyrosine, and poly-ADP-ribosyl polymerase expression and inhibited CAR-induced apoptosis. Our results demonstrate that treatment with inflammasome-blocking agents can significantly reduce the development of acute CAR-induced lung injury.-Fusco, R. Gugliandolo, E., Biundo, F., Campolo, M., Di Paola, R., Cuzzocrea, S. Inhibition of inflammasome activation improves lung acute injury induced by carrageenan in a mouse model of pleurisy.
Collapse
Affiliation(s)
- Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Messina, Italy
| | - Enrico Gugliandolo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Messina, Italy
| | - Flavia Biundo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Messina, Italy
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Messina, Italy
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Messina, Italy;
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Messina, Italy;
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
164
|
Misharin AV, Morales-Nebreda L, Reyfman PA, Cuda CM, Walter JM, McQuattie-Pimentel AC, Chen CI, Anekalla KR, Joshi N, Williams KJN, Abdala-Valencia H, Yacoub TJ, Chi M, Chiu S, Gonzalez-Gonzalez FJ, Gates K, Lam AP, Nicholson TT, Homan PJ, Soberanes S, Dominguez S, Morgan VK, Saber R, Shaffer A, Hinchcliff M, Marshall SA, Bharat A, Berdnikovs S, Bhorade SM, Bartom ET, Morimoto RI, Balch WE, Sznajder JI, Chandel NS, Mutlu GM, Jain M, Gottardi CJ, Singer BD, Ridge KM, Bagheri N, Shilatifard A, Budinger GRS, Perlman H. Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. J Exp Med 2017; 214:2387-2404. [PMID: 28694385 PMCID: PMC5551573 DOI: 10.1084/jem.20162152] [Citation(s) in RCA: 793] [Impact Index Per Article: 99.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/02/2017] [Accepted: 05/25/2017] [Indexed: 01/06/2023] Open
Abstract
Misharin et al. elucidate the fate and function of monocyte-derived alveolar macrophages during the course of pulmonary fibrosis. These cells persisted throughout the life span, were enriched for the expression of profibrotic genes, and their genetic ablation ameliorated development of pulmonary fibrosis. Little is known about the relative importance of monocyte and tissue-resident macrophages in the development of lung fibrosis. We show that specific genetic deletion of monocyte-derived alveolar macrophages after their recruitment to the lung ameliorated lung fibrosis, whereas tissue-resident alveolar macrophages did not contribute to fibrosis. Using transcriptomic profiling of flow-sorted cells, we found that monocyte to alveolar macrophage differentiation unfolds continuously over the course of fibrosis and its resolution. During the fibrotic phase, monocyte-derived alveolar macrophages differ significantly from tissue-resident alveolar macrophages in their expression of profibrotic genes. A population of monocyte-derived alveolar macrophages persisted in the lung for one year after the resolution of fibrosis, where they became increasingly similar to tissue-resident alveolar macrophages. Human homologues of profibrotic genes expressed by mouse monocyte-derived alveolar macrophages during fibrosis were up-regulated in human alveolar macrophages from fibrotic compared with normal lungs. Our findings suggest that selectively targeting alveolar macrophage differentiation within the lung may ameliorate fibrosis without the adverse consequences associated with global monocyte or tissue-resident alveolar macrophage depletion.
Collapse
Affiliation(s)
- Alexander V Misharin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Luisa Morales-Nebreda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Paul A Reyfman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Carla M Cuda
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - James M Walter
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Alexandra C McQuattie-Pimentel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Ching-I Chen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Kishore R Anekalla
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Nikita Joshi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Kinola J N Williams
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Hiam Abdala-Valencia
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Tyrone J Yacoub
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL
| | - Monica Chi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Stephen Chiu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL.,Division of Thoracic Surgery, Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Francisco J Gonzalez-Gonzalez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Khalilah Gates
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Anna P Lam
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Trevor T Nicholson
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Philip J Homan
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Saul Soberanes
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Salina Dominguez
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Vince K Morgan
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Rana Saber
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Alexander Shaffer
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Monique Hinchcliff
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Stacy A Marshall
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Ankit Bharat
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL.,Division of Thoracic Surgery, Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Sergejs Berdnikovs
- Division of Allergy and Immunology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Sangeeta M Bhorade
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Elizabeth T Bartom
- Division of Thoracic Surgery, Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Richard I Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL
| | - William E Balch
- Department of Molecular Medicine, The Scripps Research Institutes, La Jolla, CA
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Navdeep S Chandel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Gökhan M Mutlu
- Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL
| | - Manu Jain
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Cara J Gottardi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Benjamin D Singer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Karen M Ridge
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Neda Bagheri
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Ali Shilatifard
- Division of Thoracic Surgery, Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - G R Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Harris Perlman
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL
| |
Collapse
|
165
|
Wu LY, Ye ZN, Zhou CH, Wang CX, Xie GB, Zhang XS, Gao YY, Zhang ZH, Zhou ML, Zhuang Z, Liu JP, Hang CH, Shi JX. Roles of Pannexin-1 Channels in Inflammatory Response through the TLRs/NF-Kappa B Signaling Pathway Following Experimental Subarachnoid Hemorrhage in Rats. Front Mol Neurosci 2017. [PMID: 28634441 PMCID: PMC5459922 DOI: 10.3389/fnmol.2017.00175] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: Accumulating evidence suggests that neuroinflammation plays a critical role in early brain injury after subarachnoid hemorrhage (SAH). Pannexin-1 channels, as a member of gap junction proteins located on the plasma membrane, releases ATP, ions, second messengers, neurotransmitters, and molecules up to 1 kD into the extracellular space, when activated. Previous studies identified that the opening of Pannexin-1 channels is essential for cellular migration, apoptosis and especially inflammation, but its effects on inflammatory response in SAH model have not been explored yet. Methods: Adult male Sprague-Dawley rats were divided into six groups: sham group (n = 20), SAH group (n = 20), SAH + LV-Scramble-ShRNA group (n = 20), SAH + LV-ShRNA-Panx1 group (n = 20), SAH + LV-NC group (n = 20), and SAH + LV-Panx1-EGFP group (n = 20). The rat SAH model was induced by injection of 0.3 ml fresh arterial, non-heparinized blood into the prechiasmatic cistern in 20 s. In SAH + LV-ShRNA-Panx1 group and SAH + LV-Panx1-EGFP group, lentivirus was administered via intracerebroventricular injection (i.c.v.) at 72 h before the induction of SAH. The Quantitative real-time polymerase chain reaction, electrophoretic mobility shift assay, enzyme-linked immunosorbent assay, immunofluorescence staining, and western blotting were performed to explore the potential interactive mechanism between Pannexin-1 channels and TLR2/TLR4/NF-κB-mediated signaling pathway. Cognitive and memory changes were investigated by the Morris water maze test. Results: Administration with LV-ShRNA-Panx1 markedly decreased the expression levels of TLR2/4/NF-κB pathway-related agents in the brain cortex and significantly ameliorated neurological cognitive and memory deficits in this SAH model. On the contrary, administration of LV-Panx1-EGFP elevated the expressions of TLR2/4/NF-κB pathway-related agents, which correlated with augmented neuronal apoptosis. Conclusion: Pannexin-1 channels may contribute to inflammatory response and neurobehavioral dysfunction through the TLR2/TLR4/NF-κB-mediated pathway signaling after SAH, suggesting a potential role of Pannexin-1 channels could be a potential therapeutic target for the treatment of SAH.
Collapse
Affiliation(s)
- Ling-Yun Wu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing, China
| | - Zhen-Nan Ye
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, China
| | - Chen-Hui Zhou
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing, China
| | - Chun-Xi Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing, China
| | - Guang-Bin Xie
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing, China
| | - Xiang-Sheng Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing, China
| | - Yong-Yue Gao
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing, China
| | - Zi-Huan Zhang
- Department of Neurosurgery, Zhongdu HospitalBengbu, China
| | - Meng-Liang Zhou
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing, China
| | - Zong Zhuang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing, China
| | - Jing-Peng Liu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Southern Medical UniversityNanjing, China
| | - Chun-Hua Hang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing, China.,Department of Neurosurgery, Jinling Hospital, School of Medicine, Southern Medical UniversityNanjing, China
| | - Ji-Xin Shi
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing, China
| |
Collapse
|
166
|
Farris BY, Antonini JM, Fedan JS, Mercer RR, Roach KA, Chen BT, Schwegler-Berry D, Kashon ML, Barger MW, Roberts JR. Pulmonary toxicity following acute coexposures to diesel particulate matter and α-quartz crystalline silica in the Sprague-Dawley rat. Inhal Toxicol 2017; 29:322-339. [PMID: 28967277 PMCID: PMC6545482 DOI: 10.1080/08958378.2017.1361487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effects of acute pulmonary coexposures to silica and diesel particulate matter (DPM), which may occur in various mining operations, were investigated in vivo. Rats were exposed by intratracheal instillation (IT) to silica (50 or 233 µg), DPM (7.89 or 50 µg) or silica and DPM combined in phosphate-buffered saline (PBS) or to PBS alone (control). At one day, one week, one month, two months and three months postexposure bronchoalveolar lavage and histopathology were performed to assess lung injury, inflammation and immune response. While higher doses of silica caused inflammation and injury at all time points, DPM exposure alone did not. DPM (50 µg) combined with silica (233 µg) increased inflammation at one week and one-month postexposure and caused an increase in the incidence of fibrosis at one month compared with exposure to silica alone. To assess susceptibility to lung infection following coexposure, rats were exposed by IT to 233 µg silica, 50 µg DPM, a combination of the two or PBS control one week before intratracheal inoculation with 5 × 105 Listeria monocytogenes. At 1, 3, 5, 7 and 14 days following infection, pulmonary immune response and bacterial clearance from the lung were evaluated. Coexposure to DPM and silica did not alter bacterial clearance from the lung compared to control. Although DPM and silica coexposure did not alter pulmonary susceptibility to infection in this model, the study showed that noninflammatory doses of DPM had the capacity to increase silica-induced lung injury, inflammation and onset/incidence of fibrosis.
Collapse
Affiliation(s)
- Breanne Y. Farris
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
- School of Medicine, West Virginia University, Morgantown, WV, USA
| | - James M. Antonini
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
- School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Jeffrey S. Fedan
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
- School of Medicine, West Virginia University, Morgantown, WV, USA
- School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Robert R. Mercer
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Katherine A. Roach
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
- School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Bean T. Chen
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | | | - Michael L. Kashon
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Mark W. Barger
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Jenny R. Roberts
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
- School of Medicine, West Virginia University, Morgantown, WV, USA
- School of Pharmacy, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
167
|
Müller T, Fay S, Vieira RP, Karmouty-Quintana H, Cicko S, Ayata K, Zissel G, Goldmann T, Lungarella G, Ferrari D, Di Virgilio F, Robaye B, Boeynaems JM, Blackburn MR, Idzko M. The purinergic receptor subtype P2Y2 mediates chemotaxis of neutrophils and fibroblasts in fibrotic lung disease. Oncotarget 2017; 8:35962-35972. [PMID: 28415591 PMCID: PMC5482630 DOI: 10.18632/oncotarget.16414] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/10/2017] [Indexed: 12/14/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating disease with few available treatment options. Recently, the involvement of purinergic receptor subtypes in the pathogenesis of different lung diseases has been demonstrated. Here we investigated the role of the purinergic receptor subtype P2Y2 in the context of fibrotic lung diseases.The concentration of different nucleotides was measured in the broncho-alveolar lavage (BAL) fluid derived from IPF patients and animals with bleomycin-induced pulmonary fibrosis. In addition expression of P2Y2 receptors by different cell types was determined. To investigate the functional relevance of P2Y2 receptors for the pathogenesis of the disease the bleomycin model of pulmonary fibrosis was used. Finally, experiments were performed in pursuit of the involved mechanisms.Compared to healthy individuals or vehicle treated animals, extracellular nucleotide levels in the BAL fluid were increased in patients with IPF and in mice after bleomycin administration, paralleled by a functional up-regulation of P2Y2R expression. Both bleomycin-induced inflammation and fibrosis were reduced in P2Y2R-deficient compared to wild type animals. Mechanistic studies demonstrated that recruitment of neutrophils into the lungs, proliferation and migration of lung fibroblasts as well as IL6 production are key P2Y2R mediated processes.Our results clearly demonstrate the involvement of P2Y2R subtypes in the pathogenesis of fibrotic lung diseases in humans and mice and hence support the development of selective P2Y2R antagonists for the treatment of IPF.
Collapse
Affiliation(s)
- Tobias Müller
- University Hospital Freiburg, Department of Pneumology, Freiburg, Germany
- University Hospital RWTH Aachen, Division of Pneumology, Aachen, Germany
| | - Susanne Fay
- University Hospital Freiburg, Department of Pneumology, Freiburg, Germany
| | | | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, Houston Medical School, University of Texas, Houston, USA
| | - Sanja Cicko
- University Hospital Freiburg, Department of Pneumology, Freiburg, Germany
| | - Korcan Ayata
- University Hospital Freiburg, Department of Pneumology, Freiburg, Germany
| | - Gernot Zissel
- University Hospital Freiburg, Department of Pneumology, Freiburg, Germany
| | - Torsten Goldmann
- Research Center Borstel, Clinical and Experimental Pathology, Borstel, Germany
| | - Giuseppe Lungarella
- Department of Physiopathology and Experimental Medicine, University of Siena, Siena, Italy
| | - Davide Ferrari
- Department of Experimental and Diagnostic Medicine, Section of General Pathology and Interdisciplinary Center for the Study of Inflammation (ICSI), University of Ferrara, Ferrara, Italy
| | - Francesco Di Virgilio
- Department of Experimental and Diagnostic Medicine, Section of General Pathology and Interdisciplinary Center for the Study of Inflammation (ICSI), University of Ferrara, Ferrara, Italy
| | - Bernard Robaye
- IRIBHM and Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Michael R. Blackburn
- Department of Biochemistry and Molecular Biology, Houston Medical School, University of Texas, Houston, USA
| | - Marco Idzko
- University Hospital Freiburg, Department of Pneumology, Freiburg, Germany
| |
Collapse
|
168
|
Bergenfelz C, Hakansson AP. Streptococcus pneumoniae Otitis Media Pathogenesis and How It Informs Our Understanding of Vaccine Strategies. CURRENT OTORHINOLARYNGOLOGY REPORTS 2017; 5:115-124. [PMID: 28616365 PMCID: PMC5446555 DOI: 10.1007/s40136-017-0152-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE OF REVIEW This study aimed to review the literature regarding the mechanisms of transition from asymptomatic colonization to induction of otitis media and how the insight into the pathogenesis of otitis media has the potential to help design future otitis media-directed vaccines. RECENT FINDINGS Respiratory viruses have long been shown to predispose individuals to bacterial respiratory infections, such as otitis media. Recent information suggests that Streptococcus pneumoniae, which colonize the nasopharynx asymptomatically, can sense potentially "threatening" changes in the nasopharyngeal environment caused by virus infection by upregulating specific sets of genes involved in biofilm release, dissemination from the nasopharynx to other sites, and protection against the host immune system. Furthermore, an understanding of the transcriptional and proteomic changes occurring in bacteria during transition to infection has led to identification of novel vaccine targets that are disease-specific and will not affect asymptomatic colonization. This approach will avoid major changes in the delicate balance of microorganisms in the respiratory tract microbiome due to elimination of S. pneumoniae. SUMMARY Our recent findings are reviewed in the context of the current literature on the epidemiology and pathogenesis of otitis media. We also discuss how other otopathogens, such as Haemophilus influenzae and Moraxella catarrhalis, as well as the normal respiratory microbiome, can modulate the ability of pneumococci to cause infection. Furthermore, the unsatisfactory protection offered by the pneumococcal conjugate vaccines is highlighted and we review potential future strategies emerging to confer a more specific protection against otitis media.
Collapse
Affiliation(s)
- Caroline Bergenfelz
- Division of Experimental Infection Medicine, Department of Translational Medicine, Wallenberg Laboratory, Lund University, Inga Marie Nilsson's Street 53, 20502 Malmö, SE Sweden
| | - Anders P Hakansson
- Division of Experimental Infection Medicine, Department of Translational Medicine, Wallenberg Laboratory, Lund University, Inga Marie Nilsson's Street 53, 20502 Malmö, SE Sweden
| |
Collapse
|
169
|
Xu J, Chen L, Li L. Pannexin hemichannels: A novel promising therapy target for oxidative stress related diseases. J Cell Physiol 2017; 233:2075-2090. [PMID: 28295275 DOI: 10.1002/jcp.25906] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 03/09/2017] [Indexed: 12/16/2022]
Abstract
Pannexins, which contain three subtypes: pannexin-1, -2, and -3, are vertebrate glycoproteins that form non-junctional plasma membrane intracellular hemichannels via oligomerization. Oxidative stress refers to an imbalance of the generation and elimination of reactive oxygen species (ROS). Studies have shown that elevated ROS levels are pivotal in the development of a variety of diseases. Recent studies indicate that the occurrence of these oxidative stress related diseases is associated with pannexin hemichannels. It is also reported that pannexins regulate the production of ROS which in turn may increase the opening of pannexin hemichannels. In this paper, we review recent researches about the important role of pannexin hemichannels in oxidative stress related diseases. Thus, pannexin hemichannels, novel therapeutic targets, hold promise in managing oxidative stress related diseases such as the tumor, inflammatory bowel diseases (IBD), pulmonary fibrosis, chronic obstructive pulmonary disease (COPD), cardiovascular disease, insulin resistance (IR), and neural degeneration diseases.
Collapse
Affiliation(s)
- Jin Xu
- Learning Key Laboratory for Pharmacoproteomics, Institute of Pharmacy and Pharmacology, University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, P. R. China
| | - Linxi Chen
- Learning Key Laboratory for Pharmacoproteomics, Institute of Pharmacy and Pharmacology, University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, P. R. China
| | - Lanfang Li
- Learning Key Laboratory for Pharmacoproteomics, Institute of Pharmacy and Pharmacology, University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, P. R. China
| |
Collapse
|
170
|
Dietrich A, Steinritz D, Gudermann T. Transient receptor potential (TRP) channels as molecular targets in lung toxicology and associated diseases. Cell Calcium 2017; 67:123-137. [PMID: 28499580 DOI: 10.1016/j.ceca.2017.04.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 12/24/2022]
Abstract
The lungs as the gateways of our body to the external environment are essential for gas exchange. They are also exposed to toxicants from two sides, the airways and the vasculature. Apart from naturally produced toxic agents, millions of human made chemicals were produced since the beginning of the industrial revolution whose toxicity still needs to be determined. While the knowledge about toxic substances is increasing only slowly, a paradigm shift regarding the proposed mechanisms of toxicity at the plasma membrane emerged. According to their broad-range chemical reactivity, the mechanism of lung injury evoked by these agents has long been described as rather unspecific. Consequently, therapeutic options are still restricted to symptomatic treatment. The identification of molecular down-stream effectors in cells was a major step forward in the mechanistic understanding of the action of toxic chemicals and will pave the way for more causal and specific toxicity testing as well as therapeutic options. In this context, the involvement of Transient Receptor Potential (TRP) channels as chemosensors involved in the detection and effectors of toxicant action is an attractive concept intensively discussed in the scientific community. In this review we will summarize recent evidence for an involvement of TRP channels (TRPA1, TRPC4, TRPC6, TRPV1, TRPV4, TRPM2 and TRPM8) expressed in the lung in pathways of toxin sensing and as mediators of lung inflammation and associated diseases like asthma, COPD, lung fibrosis and edema formation. Specific modulators of these channels may offer new therapeutic options in the future and will endorse strategies for a causal, specifically tailored treatment based on the mechanistic understanding of molecular events induced by lung-toxic agents.
Collapse
Affiliation(s)
- Alexander Dietrich
- Walther-Straub-Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), LMU Munich, Germany.
| | - Dirk Steinritz
- Walther-Straub-Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), LMU Munich, Germany; Bundeswehr-Institute of Pharmacology and Toxicology, Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), LMU Munich, Germany
| |
Collapse
|
171
|
Wilkins HM, Weidling IW, Ji Y, Swerdlow RH. Mitochondria-Derived Damage-Associated Molecular Patterns in Neurodegeneration. Front Immunol 2017; 8:508. [PMID: 28491064 PMCID: PMC5405073 DOI: 10.3389/fimmu.2017.00508] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 04/12/2017] [Indexed: 12/21/2022] Open
Abstract
Inflammation is increasingly implicated in neurodegenerative disease pathology. As no acquired pathogen appears to drive this inflammation, the question of what does remains. Recent advances indicate damage-associated molecular pattern (DAMP) molecules, which are released by injured and dying cells, can cause specific inflammatory cascades. Inflammation, therefore, can be endogenously induced. Mitochondrial components induce inflammatory responses in several pathological conditions. Due to evidence such as this, a number of mitochondrial components, including mitochondrial DNA, have been labeled as DAMP molecules. In this review, we consider the contributions of mitochondrial-derived DAMPs to inflammation observed in neurodegenerative diseases.
Collapse
Affiliation(s)
- Heather M Wilkins
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA.,University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA
| | - Ian W Weidling
- University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Yan Ji
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA.,University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA
| | - Russell H Swerdlow
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA.,University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA.,Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
172
|
Takahashi K, Ito S, Furuya K, Asano S, Sokabe M, Hasegawa Y. Real-time imaging of mechanically and chemically induced ATP release in human lung fibroblasts. Respir Physiol Neurobiol 2017; 242:96-101. [PMID: 28442443 DOI: 10.1016/j.resp.2017.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 12/26/2022]
Abstract
Extracellular adenosine 5'-triphosphate (ATP) acts as an inflammatory mediator of pulmonary fibrosis. We investigated the effects of mechanical and chemical stimuli on ATP release from primary normal human lung fibroblasts. We visualized the ATP release from fibroblasts in real time using a luminescence imaging system while acquiring differential interference contrast cell images with infrared optics. Immediately following a single uniaxial stretch for 1s, ATP was released from a certain population of cells and spread to surrounding spaces. Hypotonic stress, which causes plasma membrane stretching, also induced the ATP release. Compared with the effects of mechanical stretch, ATP-induced release sites were homogeneously distributed. In contrast to the effects of mechanical stimuli, application of platelet-derived growth factor caused ATP release from small numbers of the cells. Our real-time ATP imaging demonstrates that there is a heterogeneous nature of ATP release from lung fibroblasts in response to mechanical and chemical stimuli.
Collapse
Affiliation(s)
- Kota Takahashi
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Satoru Ito
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Department of Respiratory Medicine and Allergology, Aichi Medical University, Nagakute 480-1195, Japan.
| | - Kishio Furuya
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shuichi Asano
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Masahiro Sokabe
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yoshinori Hasegawa
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
173
|
Qian F, Xiao J, Hu B, Sun N, Yin W, Zhu J. High expression of P2X7R is an independent postoperative indicator of poor prognosis in colorectal cancer. Hum Pathol 2017; 64:61-68. [PMID: 28412208 DOI: 10.1016/j.humpath.2017.03.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/14/2017] [Accepted: 03/30/2017] [Indexed: 11/25/2022]
Abstract
The purinergic P2X7 receptor (P2X7R) is a master regulator of inflammation and inflammation-related diseases. Recently, P2X7R has been reportedly involved in carcinogenesis and tumor progression. In this study, we investigated the expression pattern and prognostic merit of P2X7R in human colorectal cancer (CRC). The expression profile of P2X7R in 12 pairs of CRC and non-tumorous specimens was evaluated using Western blotting analysis. Additionally, we performed immunohistochemistry (IHC) on 116 paraffin-embedded CRC specimens, and evaluated the correlation between P2X7R expression and clinicopathological factors. P2X7R was overexpressed in CRC samples, compared with adjacent non-tumorous ones. High P2X7R expression significantly correlated with tumor size (P = .0177), Lymph node metastasis (P = .0128), and TNM stage (P = .0081). Furthermore, univariate and multivariate Cox regression analyses revealed that P2X7R expression could serve as an independent prognostic factor for poor overall survival (P = .0197). Treatment with P2X7R agonist BzATP led to the activation of Akt and NF-κB pathways. Consequently, we revealed that BzATP accelerated the proliferation of CRC cells, whereas co-incubation with PI3K/Akt inhibitor LY294002 significantly impaired BzATP-induced proliferation of CRC cells. Our findings implied that P2X7R may serve as a valuable prognostic indicator and promising therapeutic target of CRC.
Collapse
Affiliation(s)
- Fei Qian
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Jianjia Xiao
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Baoying Hu
- Basic Medical Research Centre, Medical College, Nantong University, Nantong, 226001, China
| | - Naizhi Sun
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Wei Yin
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Jianwei Zhu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
174
|
Guth CM, Luo W, Jolayemi O, Chadalavada KS, Komalavilas P, Cheung-Flynn J, Brophy CM. Adenosine triphosphate as a molecular mediator of the vascular response to injury. J Surg Res 2017; 216:80-86. [PMID: 28807217 DOI: 10.1016/j.jss.2017.03.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/03/2017] [Accepted: 03/23/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND Human saphenous veins used for arterial bypass undergo stretch injury at the time of harvest and preimplant preparation. Vascular injury promotes intimal hyperplasia, the leading cause of graft failure, but the molecular events leading to this response are largely unknown. This study investigated adenosine triphosphate (ATP) as a potential molecular mediator in the vascular response to stretch injury, and the downstream effects of the purinergic receptor, P2X7R, and p38 MAPK activation. MATERIALS AND METHODS A subfailure stretch rat aorta model was used to determine the effect of stretch injury on release of ATP and vasomotor responses. Stretch-injured tissues were treated with apyrase, the P2X7R antagonist, A438079, or the p38 MAPK inhibitor, SB203580, and subsequent contractile forces were measured using a muscle bath. An exogenous ATP (eATP) injury model was developed and the experiment repeated. Change in p38 MAPK phosphorylation after stretch and eATP tissue injury was determined using Western blotting. Noninjured tissue was incubated in the p38 MAPK activator, anisomycin, and subsequent contractile function and p38 MAPK phosphorylation were analyzed. RESULTS Stretch injury was associated with release of ATP. Contractile function was decreased in tissue subjected to subfailure stretch, eATP, and anisomycin. Contractile function was restored by apyrase, P2X7R antagonism, and p38-MAPK inhibition. Stretch, eATP, and anisomycin-injured tissue demonstrated increased phosphorylation of p38 MAPK. CONCLUSIONS Taken together, these data suggest that the vascular response to stretch injury is associated with release of ATP and activation of the P2X7R/P38 MAPK pathway, resulting in contractile dysfunction. Modulation of this pathway in vein grafts after harvest and before implantation may reduce the vascular response to injury.
Collapse
Affiliation(s)
- Christy M Guth
- Department of Surgery, Vanderbilt University, Nashville, Tennessee.
| | - Weifung Luo
- Department of Surgery, Vanderbilt University, Nashville, Tennessee
| | - Olukemi Jolayemi
- Department of Surgery, Vanderbilt University, Nashville, Tennessee
| | | | | | | | - Colleen M Brophy
- Department of Surgery, Vanderbilt University, Nashville, Tennessee; VA Tennessee Valley Healthcare System, Nashville, Tennessee
| |
Collapse
|
175
|
Gu L, Larson-Casey JL, Carter AB. Macrophages utilize the mitochondrial calcium uniporter for profibrotic polarization. FASEB J 2017; 31:3072-3083. [PMID: 28351840 DOI: 10.1096/fj.201601371r] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/13/2017] [Indexed: 11/11/2022]
Abstract
Fibrosis in multiple organs, including the liver, kidney, and lung, often occurs secondary to environmental exposure. Asbestos exposure is one important environmental cause of lung fibrosis. The mechanisms that mediate fibrosis is not fully understood, although mitochondrial oxidative stress in alveolar macrophages is critical for fibrosis development. Mitochondrial Ca2+ levels can be associated with production of reactive oxygen species. Here, we show that patients with asbestosis have higher levels of mitochondrial Ca2+ compared with normal patients. The mitochondrial calcium uniporter (MCU) is a highly selective ion channel that transports Ca2+ into the mitochondrial matrix to modulate metabolism. Asbestos exposure increased mitochondrial Ca2+ influx in alveolar macrophages from wild-type, but not MCU+/-, mice. MCU expression polarized macrophages to a profibrotic phenotype after exposure to asbestos, and the profibrotic polarization was regulated by MCU-mediated ATP production. Profibrotic polarization was abrogated when MCU was absent or its activity was blocked. Of more importance, mice that were deficient in MCU were protected from pulmonary fibrosis. Regulation of mitochondrial Ca2+ suggests that MCU may play a pivotal role in the development of fibrosis and could potentially be a therapeutic target for pulmonary fibrosis.-Gu, L., Larson-Casey, J. L., Carter, A. B. Macrophages utilize the mitochondrial calcium uniporter for profibrotic polarization.
Collapse
Affiliation(s)
- Linlin Gu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jennifer L Larson-Casey
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - A Brent Carter
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; .,Birmingham Veterans Affairs Medical Center, Birmingham, Alabama, USA
| |
Collapse
|
176
|
Wu X, Wang Y, Wang S, Xu R, Lv X. Purinergic P2X7 receptor mediates acetaldehyde-induced hepatic stellate cells activation via PKC-dependent GSK3β pathway. Int Immunopharmacol 2017; 43:164-171. [PMID: 28061416 DOI: 10.1016/j.intimp.2016.12.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 11/22/2016] [Accepted: 12/12/2016] [Indexed: 12/31/2022]
Abstract
The activation of hepatic stellate cells (HSCs) is an essential part in the development of alcoholic liver fibrosis (ALF). In this study, stimulated HSCs with 200μM acetaldehyde for 48h was used to imitate alcoholic liver fibrosis in vitro. The western blot and qRT-PCR results showed that P2X7R expression was significantly increased in the activation of HSCs after acetaldehyde treatment. Interestingly, activation of P2X7R by stimulating with P2X7R agonist BzATP significantly promoted acetaldehyde-induced CyclinD1 expression, cell proportion in S phase, inflammatory response, and the protein and mRNA levels of α-SMA, collagen I. In contrast, blockage of P2X7R by stimulating with the inhibitor A438079 or transfecting with specific siRNA dramatically suppressed acetaldehyde-induced HSCs activation. Furthermore, PKC activation treated with PMA could obviously up-regulate the expression of α-SMA and collagen I and the phosphorylation of GSK3β, while inhibition of PKC significantly reduced GSK3β activation. Moreover, GSK3β inhibition harvested a dramatic decrease of the mRNA and protein levels of α-SMA and collagen I by suppressing GSK3β phosphorylation. Taken together, these results suggested that purinergic P2X7R mediated acetaldehyde-induced activation of HSCs via PKC-dependent GSK3β pathway, which maybe a novel target for limiting HSCs activation.
Collapse
Affiliation(s)
- Xiaojuan Wu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Disease of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Yuhui Wang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Disease of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Sheng Wang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Disease of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Rixiang Xu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Disease of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Xiongwen Lv
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Disease of Anhui Medical University, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
177
|
Gicquel T, Le Daré B, Boichot E, Lagente V. Purinergic receptors: new targets for the treatment of gout and fibrosis. Fundam Clin Pharmacol 2016; 31:136-146. [PMID: 27885718 DOI: 10.1111/fcp.12256] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/02/2016] [Accepted: 11/18/2016] [Indexed: 12/11/2022]
Abstract
Adenosine triphosphate is involved in many metabolic reactions, but it has also a role as a cellular danger signal transmitted through purinergic receptors (PRs). Indeed, adenosine 5'-triphosphate (ATP) can bind to PRs which are found in the membrane of many cell types, although the relative proportions of the receptor subtypes differ. PRs are classified according to genetic and pharmacological criteria and especially their affinities for agonists and their transduction mechanism (i.e. as metabotropic P2YRs or ionotropic P2XRs). Extracellular ATP release by activated or necrotic cells may activate various PRs and especially P2X7R, the best-characterized PR, on immune cells. P2X7R is known to regulate the activation of the Nod-like receptor (NLR)-family protein, NLRP3 inflammasome, which permit the release of IL-1β, a potent pro-inflammatory cytokine. The P2X7R/NLRP3 pathway is involved in many inflammatory diseases, such as gout, and in fibrosis diseases associated with inflammatory process, liver or lung fibrosis. Some authors imaging also a real promising therapeutic potential of P2X7R blockage. Thus, several pharmaceutical companies have developed P2X7R antagonists as novel anti-inflammatory drug candidates. Clinical trials of the efficacy of these antagonists are now underway. A better understanding of the P2X7R/NLRP3 signalling pathways permits the identification of targets and the development of a new class of drugs able to inhibit the fibrogenesis process and collagen deposition.
Collapse
Affiliation(s)
- Thomas Gicquel
- Laboratoire de toxicologie biologique et médico-légale, CHU Rennes, F-35033, Rennes, France.,UMR991 INSERM, Faculté de Pharmacie, Université Rennes 1, F-35043, Rennes, France
| | - Brendan Le Daré
- UMR991 INSERM, Faculté de Pharmacie, Université Rennes 1, F-35043, Rennes, France.,CHU Rennes, Pôle Pharmacie, F-35033, Rennes, France
| | - Elisabeth Boichot
- UMR991 INSERM, Faculté de Pharmacie, Université Rennes 1, F-35043, Rennes, France
| | - Vincent Lagente
- UMR991 INSERM, Faculté de Pharmacie, Université Rennes 1, F-35043, Rennes, France
| |
Collapse
|
178
|
Kida T, Ayabe S, Omori K, Nakamura T, Maehara T, Aritake K, Urade Y, Murata T. Prostaglandin D2 Attenuates Bleomycin-Induced Lung Inflammation and Pulmonary Fibrosis. PLoS One 2016; 11:e0167729. [PMID: 27992456 PMCID: PMC5167321 DOI: 10.1371/journal.pone.0167729] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/19/2016] [Indexed: 01/08/2023] Open
Abstract
Pulmonary fibrosis is a progressive and fatal lung disease with limited therapeutic options. Although it is well known that lipid mediator prostaglandins are involved in the development of pulmonary fibrosis, the role of prostaglandin D2 (PGD2) remains unknown. Here, we investigated whether genetic disruption of hematopoietic PGD synthase (H-PGDS) affects the bleomycin-induced lung inflammation and pulmonary fibrosis in mouse. Compared with H-PGDS naïve (WT) mice, H-PGDS-deficient mice (H-PGDS-/-) represented increased collagen deposition in lungs 14 days after the bleomycin injection. The enhanced fibrotic response was accompanied by an increased mRNA expression of inflammatory mediators, including tumor necrosis factor-α, monocyte chemoattractant protein-1, and cyclooxygenase-2 on day 3. H-PGDS deficiency also increased vascular permeability on day 3 and infiltration of neutrophils and macrophages in lungs on day 3 and 7. Immunostaining showed that the neutrophils and macrophages expressed H-PGDS, and its mRNA expression was increased on day 3and 7 in WT lungs. These observations suggest that H-PGDS-derived PGD2 plays a protective role in bleomycin-induced lung inflammation and pulmonary fibrosis.
Collapse
Affiliation(s)
- Taiki Kida
- Department of Animal Radiology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shinya Ayabe
- Department of Animal Radiology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Keisuke Omori
- Department of Animal Radiology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tatsuro Nakamura
- Department of Animal Radiology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Toko Maehara
- Department of Animal Radiology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kosuke Aritake
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yoshihiro Urade
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Ibaraki, Japan
| | - Takahisa Murata
- Department of Animal Radiology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
179
|
Kellner M, Heidrich M, Lorbeer RA, Antonopoulos GC, Knudsen L, Wrede C, Izykowski N, Grothausmann R, Jonigk D, Ochs M, Ripken T, Kühnel MP, Meyer H. A combined method for correlative 3D imaging of biological samples from macro to nano scale. Sci Rep 2016; 6:35606. [PMID: 27759114 PMCID: PMC5069670 DOI: 10.1038/srep35606] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 09/28/2016] [Indexed: 01/24/2023] Open
Abstract
Correlative analysis requires examination of a specimen from macro to nano scale as well as applicability of analytical methods ranging from morphological to molecular. Accomplishing this with one and the same sample is laborious at best, due to deformation and biodegradation during measurements or intermediary preparation steps. Furthermore, data alignment using differing imaging techniques turns out to be a complex task, which considerably complicates the interconnection of results. We present correlative imaging of the accessory rat lung lobe by combining a modified Scanning Laser Optical Tomography (SLOT) setup with a specially developed sample preparation method (CRISTAL). CRISTAL is a resin-based embedding method that optically clears the specimen while allowing sectioning and preventing degradation. We applied and correlated SLOT with Multi Photon Microscopy, histological and immunofluorescence analysis as well as Transmission Electron Microscopy, all in the same sample. Thus, combining CRISTAL with SLOT enables the correlative utilization of a vast variety of imaging techniques.
Collapse
Affiliation(s)
- Manuela Kellner
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Marko Heidrich
- Biomedical Optics Department, Laser Zentrum Hannover e.V., Hannover, Germany
| | | | | | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Nicole Izykowski
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,Institute for Pathology, Hannover Medical School, Hannover, Germany
| | - Roman Grothausmann
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Danny Jonigk
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,Institute for Pathology, Hannover Medical School, Hannover, Germany
| | - Matthias Ochs
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Tammo Ripken
- Biomedical Optics Department, Laser Zentrum Hannover e.V., Hannover, Germany
| | - Mark P Kühnel
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Heiko Meyer
- Biomedical Optics Department, Laser Zentrum Hannover e.V., Hannover, Germany.,Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, Hannover, Germany
| |
Collapse
|
180
|
Zhang W, Chen L, Shen Y, Xu J. Rifampicin-induced injury in L02 cells is alleviated by 4-PBA via inhibition of the PERK-ATF4-CHOP pathway. Toxicol In Vitro 2016; 36:186-196. [DOI: 10.1016/j.tiv.2016.07.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/16/2016] [Accepted: 07/24/2016] [Indexed: 02/07/2023]
|
181
|
Luo W, Guth CM, Jolayemi O, Duvall CL, Brophy CM, Cheung-Flynn J. Subfailure Overstretch Injury Leads to Reversible Functional Impairment and Purinergic P2X7 Receptor Activation in Intact Vascular Tissue. Front Bioeng Biotechnol 2016; 4:75. [PMID: 27747211 PMCID: PMC5040722 DOI: 10.3389/fbioe.2016.00075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/13/2016] [Indexed: 11/30/2022] Open
Abstract
Vascular stretch injury is associated with blunt trauma, vascular surgical procedures, and harvest of human saphenous vein for use in vascular bypass grafting. A model of subfailure overstretch in rat abdominal aorta was developed to characterize surgical vascular stretch injury. Longitudinal stretch of rat aorta was characterized ex vivo. Stretch to the haptic endpoint, where the tissues would no longer lengthen, occurred at twice the resting length. The stress produced at this length was greater than physiologic mechanical forces but well below the level of mechanical disruption. Functional responses were determined in a muscle bath, and this subfailure overstretch injury led to impaired smooth muscle function that was partially reversed by treatment with purinergic receptor (P2X7R) antagonists. These data suggest that vasomotor dysfunction caused by subfailure overstretch injury may be due to the activation of P2X7R. These studies have implications for our understanding of mechanical stretch injury of blood vessels and offer novel therapeutic opportunities.
Collapse
Affiliation(s)
- Weifeng Luo
- Department of Surgery, Vanderbilt University, Nashville, TN, USA
| | - Christy M. Guth
- Department of Surgery, Vanderbilt University, Nashville, TN, USA
| | - Olukemi Jolayemi
- Department of Surgery, Vanderbilt University, Nashville, TN, USA
| | - Craig L. Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Colleen Marie Brophy
- Department of Surgery, Vanderbilt University, Nashville, TN, USA
- VA Tennessee Valley Healthcare System, Nashville, TN, USA
| | | |
Collapse
|
182
|
P2X7R-dependent regulation of glycogen synthase kinase 3β and claudin-18 in alveolar epithelial type I cells of mice lung. Histochem Cell Biol 2016; 146:757-768. [DOI: 10.1007/s00418-016-1499-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2016] [Indexed: 10/21/2022]
|
183
|
Kolahian S, Fernandez IE, Eickelberg O, Hartl D. Immune Mechanisms in Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2016; 55:309-22. [DOI: 10.1165/rcmb.2016-0121tr] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
184
|
Abstract
OBJECTIVES Ischemic tissue injury contributes to significant morbidity and mortality and is implicated in a range of pathologic conditions, including but not limited to myocardial infarction, ischemic stroke, and acute kidney injury. The associated reperfusion phase is responsible for the activation of the innate and adaptive immune system, further accentuating inflammation. Adenosine triphosphate molecule has been implicated in various ischemic conditions, including stroke and myocardial infarction. STUDY SELECTION Adenosine triphosphate is a well-defined intracellular energy transfer and is commonly referred to as the body's "energy currency." However, Laboratory studies have demonstrated that extracellular adenosine triphosphate has the ability to initiate inflammation and is therefore referred to as a damage-associated molecular pattern. Purinergic receptors-dependent signaling, proinflammatory cytokine release, increased Ca influx into cells, and subsequent apoptosis have been shown to form a common underlying extracellular adenosine triphosphate molecular mechanism in ischemic organ injury. CONCLUSIONS In this review, we aim to discuss the molecular mechanisms behind adenosine triphosphate-mediated ischemic tissue injury and evaluate the role of extracellular adenosine triphosphate in ischemic injury in specific organs, in order to provide a greater understanding of the pathophysiology of this complex process. We also appraise potential future therapeutic strategies to limit damage in various organs, including the heart, brain, kidneys, and lungs.
Collapse
|
185
|
Mishra A, Guo Y, Zhang L, More S, Weng T, Chintagari NR, Huang C, Liang Y, Pushparaj S, Gou D, Breshears M, Liu L. A Critical Role for P2X7 Receptor-Induced VCAM-1 Shedding and Neutrophil Infiltration during Acute Lung Injury. THE JOURNAL OF IMMUNOLOGY 2016; 197:2828-37. [PMID: 27559050 DOI: 10.4049/jimmunol.1501041] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/25/2016] [Indexed: 01/23/2023]
Abstract
Pulmonary neutrophils are the initial inflammatory cells that are recruited during lung injury and are crucial for innate immunity. However, pathological recruitment of neutrophils results in lung injury. The objective of this study is to determine whether the novel neutrophil chemoattractant, soluble VCAM-1 (sVCAM-1), recruits pathological levels of neutrophils to injury sites and amplifies lung inflammation during acute lung injury. The mice with P2X7 receptor deficiency, or treated with a P2X7 receptor inhibitor or anti-VCAM-1 Abs, were subjected to a clinically relevant two-hit LPS and mechanical ventilation-induced acute lung injury. Neutrophil infiltration and lung inflammation were measured. Neutrophil chemotactic activities were determined by a chemotaxis assay. VCAM-1 shedding and signaling pathways were assessed in isolated lung epithelial cells. Ab neutralization of sVCAM-1 or deficiency or antagonism of P2X7R reduced neutrophil infiltration and proinflammatory cytokine levels. The ligands for sVCAM-1 were increased during acute lung injury. sVCAM-1 had neutrophil chemotactic activities and activated alveolar macrophages. VCAM-1 is released into the alveolar airspace from alveolar epithelial type I cells through P2X7 receptor-mediated activation of the metalloproteinase ADAM-17. In conclusion, sVCAM-1 is a novel chemoattractant for neutrophils and an activator for alveolar macrophages. Targeting sVCAM-1 provides a therapeutic intervention that could block pathological neutrophil recruitment, without interfering with the physiological recruitment of neutrophils, thus avoiding the impairment of host defenses.
Collapse
Affiliation(s)
- Amarjit Mishra
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078
| | - Yujie Guo
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078; Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078
| | - Li Zhang
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078
| | - Sunil More
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078; Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078
| | - Tingting Weng
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078
| | - Narendranath Reddy Chintagari
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078
| | - Chaoqun Huang
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078; Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078
| | - Yurong Liang
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078; Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078
| | - Samuel Pushparaj
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078; Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078
| | - Deming Gou
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen, Guangdong 518060, China; and
| | - Melanie Breshears
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078; Department of Pathobiology, Oklahoma State University, Stillwater, OK 74078
| | - Lin Liu
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078; Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078;
| |
Collapse
|
186
|
Involvement of matrix metalloproteinases (MMPs) and inflammasome pathway in molecular mechanisms of fibrosis. Biosci Rep 2016; 36:BSR20160107. [PMID: 27247426 PMCID: PMC4945993 DOI: 10.1042/bsr20160107] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 05/31/2016] [Indexed: 12/18/2022] Open
Abstract
Fibrosis is a basic connective tissue lesion defined by the increase in the fibrillar extracellular matrix (ECM) components in tissue or organ. Matrix metalloproteinases (MMPs) are a major group of proteases known to regulate the turn-over of ECM and so they are suggested to be important in tissue remodelling observed during fibrogenic process associated with chronic inflammation. Tissue remodelling is the result of an imbalance in the equilibrium of the normal processes of synthesis and degradation of ECM components markedly controlled by the MMPs/TIMP imbalance. We previously showed an association of the differences in collagen deposition in the lungs of bleomycin-treated mice with a reduced molar pro-MMP-9/TIMP-1 ratio. Using the carbon tetrachloride (CCl4) preclinical model of liver fibrosis in mice, we observed a significant increase in collagen deposition with increased expression and release of tissue inhibitors of metalloproteinase (TIMP)-1 both at 24 h and 3 weeks later. This suggests an early altered regulation of matrix turnover involved in the development of fibrosis. We also demonstrated an activation of NLRP3-inflammasome pathway associated with the IL-1R/MyD88 signalling in the development of experimental fibrosis both in lung and liver. This was also associated with an increased expression of purinergic receptors mainly P2X7. Finally, these observations emphasize those effective therapies for these disorders must be given early in the natural history of the disease, prior to the development of tissue remodelling and fibrosis.
Collapse
|
187
|
Faner R, Sobradillo P, Noguera A, Gomez C, Cruz T, López-Giraldo A, Ballester E, Soler N, Arostegui JI, Pelegrín P, Rodriguez-Roisin R, Yagüe J, Cosio BG, Juan M, Agustí A. The inflammasome pathway in stable COPD and acute exacerbations. ERJ Open Res 2016; 2:00002-2016. [PMID: 27730204 PMCID: PMC5034597 DOI: 10.1183/23120541.00002-2016] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 05/17/2016] [Indexed: 01/06/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterised by pulmonary and systemic inflammation that bursts during exacerbations of the disease (ECOPD). The NLRP3 inflammasome is a key regulatory molecule of the inflammatory response. Its role in COPD is unclear. We investigated the NLRP3 inflammasome status in: 1) lung tissue samples from 38 patients with stable COPD, 15 smokers with normal spirometry and 14 never-smokers; and 2) sputum and plasma samples from 56 ECOPD patients, of whom 41 could be reassessed at clinical recovery. We observed that: 1) in lung tissue samples of stable COPD patients, NLRP3 and interleukin (IL)-1β mRNA were upregulated, but both caspase-1 and ASC were mostly in inactive form, and 2) during infectious ECOPD, caspase-1, oligomeric ASC and associated cytokines (IL-1β, IL-18) were significantly increased in sputum compared with clinical recovery. The NLRP3 inflammasome is primed, but not activated, in the lungs of clinically stable COPD patients. Inflammasome activation occurs during infectious ECOPD. The results of this study suggest that the inflammasome participates in the inflammatory burst of infectious ECOPD. The NLRP3 inflammasome is primed in stable COPD lungs, then activated during infectious exacerbationhttp://ow.ly/Wopi300DXcT
Collapse
Affiliation(s)
- Rosa Faner
- Fundació Clinic per a la Recerca Biomèdica, Barcelona, Spain; CIBER Respiratory Diseases (CIBERES), Barcelona, Spain; These authors contributed equally to this work
| | - Patricia Sobradillo
- CIBER Respiratory Diseases (CIBERES), Barcelona, Spain; Pulmonary Service, Hospital Txagorritxu, Vitoria, Spain; These authors contributed equally to this work
| | - Aina Noguera
- CIBER Respiratory Diseases (CIBERES), Barcelona, Spain; University Hospital Son Espases-IdISPa, Palma de Mallorca, Spain
| | - Cristina Gomez
- University Hospital Son Espases-IdISPa, Palma de Mallorca, Spain
| | - Tamara Cruz
- Fundació Clinic per a la Recerca Biomèdica, Barcelona, Spain; CIBER Respiratory Diseases (CIBERES), Barcelona, Spain
| | - Alejandra López-Giraldo
- Fundació Clinic per a la Recerca Biomèdica, Barcelona, Spain; CIBER Respiratory Diseases (CIBERES), Barcelona, Spain
| | - Eugeni Ballester
- Institut Respiratori, Hospital Clinic, Barcelona, Spain; Biomedic Research Institute August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Nestor Soler
- Institut Respiratori, Hospital Clinic, Barcelona, Spain; Biomedic Research Institute August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Juan I Arostegui
- Biomedic Research Institute August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Immunology Dept, Hospital Clinic, Barcelona, Spain
| | - Pablo Pelegrín
- Inflammation and Experimental Surgery Unit, CIBERHED, Murcia's BioHealth, Research Institute IMIB-Arrixaca, University Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Roberto Rodriguez-Roisin
- CIBER Respiratory Diseases (CIBERES), Barcelona, Spain; Institut Respiratori, Hospital Clinic, Barcelona, Spain; Biomedic Research Institute August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Jordi Yagüe
- Biomedic Research Institute August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Immunology Dept, Hospital Clinic, Barcelona, Spain
| | - Borja G Cosio
- CIBER Respiratory Diseases (CIBERES), Barcelona, Spain; University Hospital Son Espases-IdISPa, Palma de Mallorca, Spain
| | - Manel Juan
- Biomedic Research Institute August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Immunology Dept, Hospital Clinic, Barcelona, Spain
| | - Alvar Agustí
- Fundació Clinic per a la Recerca Biomèdica, Barcelona, Spain; CIBER Respiratory Diseases (CIBERES), Barcelona, Spain; Institut Respiratori, Hospital Clinic, Barcelona, Spain; Biomedic Research Institute August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
188
|
Borthwick LA. The IL-1 cytokine family and its role in inflammation and fibrosis in the lung. Semin Immunopathol 2016; 38:517-34. [PMID: 27001429 PMCID: PMC4896974 DOI: 10.1007/s00281-016-0559-z] [Citation(s) in RCA: 219] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/25/2016] [Indexed: 12/24/2022]
Abstract
The IL-1 cytokine family comprises 11 members (7 ligands with agonist activity, 3 receptor antagonists and 1 anti-inflammatory cytokine) and is recognised as a key mediator of inflammation and fibrosis in multiple tissues including the lung. IL-1 targeted therapies have been successfully employed to treat a range of inflammatory conditions such as rheumatoid arthritis and gouty arthritis. This review will introduce the members of the IL-1 cytokine family, briefly discuss the cellular origins and cellular targets and provide an overview of the role of these molecules in inflammation and fibrosis in the lung.
Collapse
Affiliation(s)
- L A Borthwick
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, 4th Floor, William Leech Building, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
189
|
Diezmos EF, Bertrand PP, Liu L. Purinergic Signaling in Gut Inflammation: The Role of Connexins and Pannexins. Front Neurosci 2016; 10:311. [PMID: 27445679 PMCID: PMC4925662 DOI: 10.3389/fnins.2016.00311] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/20/2016] [Indexed: 12/13/2022] Open
Abstract
Purinergic receptors play an important role in inflammation, and can be activated by ATP released via pannexin channels and/or connexin hemichannels. The purinergic P2X7 receptor (P2X7R) is of interest since it is involved in apoptosis when activated. Most studies focus on the influence of pannexin-1 (Panx1) and connexin 43 (Cx43) on ATP release and how it affects P2X7R function during inflammation. Inflammatory bowel disease (IBD) is characterized by uncontrolled inflammation within the gastrointestinal system. At present, the pathophysiology of this disease remains largely unknown but it may involve the interplay between P2X7R, Panx1, and Cx43. There are two main types of IBD, ulcerative colitis and Crohn's disease, that are classified by their location and frequency of inflammation. Current research suggests that alterations to normal functioning of innate and adaptive immunity may be a factor in disease progression. The involvement of purinergic receptors, connexins, and pannexins in IBD is a relatively novel notion in the context of gastrointestinal inflammation, and has been explored by various research groups. Thus, the present review focuses on the current research involving connexins, pannexins, and purinergic receptors within the gut and enteric nervous system, and will examine their involvement in inflammation and the pathophysiology of IBD.
Collapse
Affiliation(s)
- Erica F Diezmos
- School of Medical Sciences, University of New South Wales Sydney, NSW, Australia
| | - Paul P Bertrand
- School of Medical Sciences, University of New South WalesSydney, NSW, Australia; School of Medical Sciences, RMIT UniversityBundoora, VIC, Australia
| | - Lu Liu
- School of Medical Sciences, University of New South Wales Sydney, NSW, Australia
| |
Collapse
|
190
|
Stachon P, Geis S, Peikert A, Heidenreich A, Michel NA, Ünal F, Hoppe N, Dufner B, Schulte L, Marchini T, Cicko S, Ayata K, Zech A, Wolf D, Hilgendorf I, Willecke F, Reinöhl J, von Zur Mühlen C, Bode C, Idzko M, Zirlik A. Extracellular ATP Induces Vascular Inflammation and Atherosclerosis via Purinergic Receptor Y2 in Mice. Arterioscler Thromb Vasc Biol 2016; 36:1577-86. [PMID: 27339459 DOI: 10.1161/atvbaha.115.307397] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 06/02/2016] [Indexed: 12/14/2022]
Abstract
OBJECTIVE A solid body of evidence supports a role of extracellular ATP and its P2 receptors in innate and adaptive immunity. It promotes inflammation as a danger signal in various chronic inflammatory diseases. Thus, we hypothesize contribution of extracellular ATP and its receptor P2Y2 in vascular inflammation and atherosclerosis. APPROACH AND RESULTS Extracellular ATP induced leukocyte rolling, adhesion, and migration in vivo as assessed by intravital microscopy and in sterile peritonitis. To test the role of extracellular ATP in atherosclerosis, ATP or saline as control was injected intraperitoneally 3× a week in low-density lipoprotein receptor(-/-) mice consuming high cholesterol diet. Atherosclerosis significantly increased after 16 weeks in ATP-treated mice (n=13; control group, 0.26 mm2; ATP group, 0.33 mm2; P=0.01). To gain into the role of ATP-receptor P2Y2 in ATP-induced leukocyte recruitment, ATP was administered systemically in P2Y2-deficient or P2Y2-competent mice. In P2Y2-deficient mice, the ATP-induced leukocyte adhesion was significantly reduced as assessed by intravital microscopy. P2Y2 expression in atherosclerosis was measured by real-time polymerase chain reaction and immunohistochemistry and demonstrates an increased expression mainly caused by influx of P2Y2-expressing macrophages. To investigate the functional role of P2Y2 in atherogenesis, P2Y2-deficient low-density lipoprotein receptor(-/-) mice consumed high cholesterol diet. After 16 weeks, P2Y2-deficient mice showed significantly reduced atherosclerotic lesions with decreased macrophages compared with P2Y2-competent mice (n=11; aortic arch: control group, 0.25 mm(2); P2Y2-deficient, 0.14 mm2; P=0.04). Mechanistically, atherosclerotic lesions from P2Y2-deficient mice expressed less vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 RNA. CONCLUSIONS We show that extracellular ATP induces vascular inflammation and atherosclerosis via activation of P2Y2.
Collapse
Affiliation(s)
- Peter Stachon
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Serjosha Geis
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Alexander Peikert
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Adrian Heidenreich
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Nathaly Anto Michel
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Fatih Ünal
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Natalie Hoppe
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Bianca Dufner
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Lisa Schulte
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Timoteo Marchini
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Sanja Cicko
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Korcan Ayata
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Andreas Zech
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Dennis Wolf
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Ingo Hilgendorf
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Florian Willecke
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Jochen Reinöhl
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Constantin von Zur Mühlen
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Christoph Bode
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Marco Idzko
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Andreas Zirlik
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
191
|
Yue L, Yao H. Mitochondrial dysfunction in inflammatory responses and cellular senescence: pathogenesis and pharmacological targets for chronic lung diseases. Br J Pharmacol 2016; 173:2305-18. [PMID: 27189175 DOI: 10.1111/bph.13518] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/04/2016] [Accepted: 05/05/2016] [Indexed: 12/16/2022] Open
Abstract
Mitochondria are dynamic organelles, which couple the various cellular processes that regulate metabolism, cell proliferation and survival. Environmental stress can cause mitochondrial dysfunction and dynamic changes including reduced mitochondrial biogenesis, oxidative phosphorylation and ATP production, as well as mitophagy impairment, which leads to increased ROS, inflammatory responses and cellular senescence. Oxidative stress, inflammation and cellular senescence all have important roles in the pathogenesis of chronic lung diseases, such as chronic obstructive pulmonary disease, pulmonary fibrosis and bronchopulmonary dysplasia. In this review, we discuss the current state on how mitochondrial dysfunction affects inflammatory responses and cellular senescence, the mechanisms of mitochondrial dysfunction underlying the pathogenesis of chronic lung diseases and the potential of mitochondrial transfer and replacement as treatments for these diseases.
Collapse
Affiliation(s)
- Li Yue
- Department of Orthopaedics and Rehabilitation, University of Rochester, Rochester, NY, USA
| | - Hongwei Yao
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Alpert Medical School, Providence, RI, USA
| |
Collapse
|
192
|
Song C, He L, Zhang J, Ma H, Yuan X, Hu G, Tao L, Zhang J, Meng J. Fluorofenidone attenuates pulmonary inflammation and fibrosis via inhibiting the activation of NALP3 inflammasome and IL-1β/IL-1R1/MyD88/NF-κB pathway. J Cell Mol Med 2016; 20:2064-2077. [PMID: 27306439 PMCID: PMC5082399 DOI: 10.1111/jcmm.12898] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 05/09/2016] [Indexed: 12/12/2022] Open
Abstract
Interleukin (IL)‐1β plays an important role in the pathogenesis of idiopathic pulmonary fibrosis. The production of IL‐1β is dependent upon caspase‐1‐containing multiprotein complexes called inflammasomes and IL‐1R1/MyD88/NF‐κB pathway. In this study, we explored whether a potential anti‐fibrotic agent fluorofenidone (FD) exerts its anti‐inflammatory and anti‐fibrotic effects through suppressing activation of NACHT, LRR and PYD domains‐containing protein 3 (NALP3) inflammasome and the IL‐1β/IL‐1R1/MyD88/NF‐κB pathway in vivo and in vitro. Male C57BL/6J mice were intratracheally injected with Bleomycin (BLM) or saline. Fluorofenidone was administered throughout the course of the experiment. Lung tissue sections were stained with haemotoxylin and eosin and Masson's trichrome. Cytokines were measured by ELISA, and α‐smooth muscle actin (α‐SMA), fibronectin, collagen I, caspase‐1, IL‐1R1, MyD88 were measured by Western blot and/or RT‐PCR. The human actue monocytic leukaemia cell line (THP‐1) were incubated with monosodium urate (MSU), with or without FD pre‐treatment. The expression of caspase‐1, IL‐1β, NALP3, apoptosis‐associated speck‐like protein containing (ASC) and pro‐caspase‐1 were measured by Western blot, the reactive oxygen species (ROS) generation was detected using the Flow Cytometry, and the interaction of NALP3 inflammasome‐associated molecules were measured by Co‐immunoprecipitation. RLE‐6TN (rat lung epithelial‐T‐antigen negative) cells were incubated with IL‐1β, with or without FD pre‐treatment. The expression of nuclear protein p65 was measured by Western blot. Results showed that FD markedly reduced the expressions of IL‐1β, IL‐6, monocyte chemotactic protein‐1 (MCP‐1), myeloperoxidase (MPO), α‐SMA, fibronectin, collagen I, caspase‐1, IL‐1R1 and MyD88 in mice lung tissues. And FD inhibited MSU‐induced the accumulation of ROS, blocked the interaction of NALP3 inflammasome‐associated molecules, decreased the level of caspase‐1 and IL‐1β in THP‐1 cells. Besides, FD inhibited IL‐1β‐induced the expression of nuclear protein p65. This study demonstrated that FD, attenuates BLM‐induced pulmonary inflammation and fibrosis in mice via inhibiting the activation of NALP3 inflammasome and the IL‐1β/IL‐1R1/MyD88/ NF‐κB pathway.
Collapse
Affiliation(s)
- Cheng Song
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China.,Department of Respiratory Medicine, Central Hospital of Wuhan, Tongji Medical College Huazhong University of Science & Technology, Wuhan, China
| | - Lujuan He
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Jin Zhang
- Department of Nephrology Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Ma
- Department of Nephrology Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Xiangning Yuan
- Department of Nephrology Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Gaoyun Hu
- Pharmaceutical School, Central South University, Changsha, China
| | - Lijian Tao
- Department of Nephrology Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Zhang
- Department of Microbial Infection & Immunity, The Ohio State University, Columbus, OH, USA
| | - Jie Meng
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
193
|
Lee S, Suh GY, Ryter SW, Choi AMK. Regulation and Function of the Nucleotide Binding Domain Leucine-Rich Repeat-Containing Receptor, Pyrin Domain-Containing-3 Inflammasome in Lung Disease. Am J Respir Cell Mol Biol 2016; 54:151-60. [PMID: 26418144 DOI: 10.1165/rcmb.2015-0231tr] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Inflammasomes are specialized inflammatory signaling platforms that govern the maturation and secretion of proinflammatory cytokines, such as IL-1β and IL-18, through the regulation of caspase-1-dependent proteolytic processing. Several nucleotide binding domain leucine-rich repeat-containing receptor (NLR) family members (i.e., NLR family, pyrin domain containing [NLRP] 1, NLRP3, and NLR family, caspase recruitment domain containing-4 [NLRC4]) as well as the pyrin and hemopoietic expression, interferon-inducibility, nuclear localization domain-containing family member, absent in melanoma 2, can form inflammasome complexes in human cells. In particular, the NLRP3 inflammasome is activated in response to cellular stresses through a two-component pathway, involving Toll-like receptor 4-ligand interaction (priming) followed by a second signal, such as ATP-dependent P2X purinoreceptor 7 receptor activation. Emerging studies suggest that the NLRP3 inflammasome can exert pleiotropic effects in human diseases with potentially both pro- and antipathogenic sequelae. Whereas NLRP3 inflammasome activation can serve as a vital component of host defense against invading bacteria and pathogens, excessive activation of the inflammasome can lead to inflammation-associated tissue injury in the setting of chronic disease. In addition, pyroptosis, an inflammasome-associated mode of cell death, contributes to host defense. Recent research has described the regulation and function of the NLRP3 inflammasome in various pulmonary diseases, including acute lung injury and acute respiratory distress syndrome, sepsis, respiratory infections, chronic obstructive pulmonary disease, asthma, pulmonary hypertension, cystic fibrosis, and idiopathic pulmonary fibrosis. The NLRP3 and related inflammasomes, and their regulated cytokines or receptors, may represent novel diagnostic or therapeutic targets in pulmonary diseases and other diseases in which inflammation contributes to pathogenesis.
Collapse
Affiliation(s)
- Seonmin Lee
- 1 Department of Critical Care Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Gee-Young Suh
- 1 Department of Critical Care Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Stefan W Ryter
- 2 Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, New York, New York; and.,3 Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical Center, New York, New York
| | - Augustine M K Choi
- 2 Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, New York, New York; and.,3 Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical Center, New York, New York
| |
Collapse
|
194
|
Endocytosis of indium-tin-oxide nanoparticles by macrophages provokes pyroptosis requiring NLRP3-ASC-Caspase1 axis that can be prevented by mesenchymal stem cells. Sci Rep 2016; 6:26162. [PMID: 27194621 PMCID: PMC4872131 DOI: 10.1038/srep26162] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/27/2016] [Indexed: 12/30/2022] Open
Abstract
The biological effects of indium-tin-oxide (ITO) are of considerable importance because workers exposed to indium compounds have been diagnosed with interstitial lung disease or pulmonary alveolar proteinosis; however, the pathophysiology of these diseases is undefined. Here, mice intraperitoneally inoculated with ITO-nanoparticles (ITO-NPs) resulted in peritonitis dependent in NLRP3 inflammasome, with neutrophils recruitment and interleukin-1β (IL-1β) production. Withal peritoneal macrophages exposed ex vivo to ITO-NPs caused IL-1β secretion and cytolysis. Further, alveolar macrophages exposed to ITO-NPs in vitro showed ITO-NP endocytosis and production of tumor necrosis factor-α (TNF-α) and IL-1β, ensued cell death by cytolysis. This cell death was RIPK1-independent but caspase1-dependent, and thus identified as pyroptosis. Endocytosis of ITO-NPs by activated THP-1 cells induced pyroptosis with IL-1β/TNF-α production and cytolysis, but not in activated THP-1 cells with knockdown of NLRP3, ASC, or caspase1. However, exposing activated THP-1 cells with NLRP3 or ASC knockdown to ITO-NPs resulted in cell death but without cytolysis, with deficiency in IL-1β/TNF-α, and revealing features of apoptosis. While, mesenchymal stem cells (MSCs) co-cultured with macrophages impaired both inflammation and cell death induced by ITO-NPs. Together, our findings provide crucial insights to the pathophysiology of respiratory diseases caused by ITO particles, and identify MSCs as a potent therapeutic.
Collapse
|
195
|
Wright A, Mahaut-Smith M, Symon F, Sylvius N, Ran S, Bafadhel M, Muessel M, Bradding P, Wardlaw A, Vial C. Impaired P2X1 Receptor-Mediated Adhesion in Eosinophils from Asthmatic Patients. THE JOURNAL OF IMMUNOLOGY 2016; 196:4877-84. [PMID: 27183585 DOI: 10.4049/jimmunol.1501585] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 04/08/2016] [Indexed: 12/13/2022]
Abstract
Eosinophils play an important role in the pathogenesis of asthma and can be activated by extracellular nucleotides released following cell damage or inflammation. For example, increased ATP concentrations were reported in bronchoalveolar lavage fluids of asthmatic patients. Although eosinophils are known to express several subtypes of P2 receptors for extracellular nucleotides, their function and contribution to asthma remain unclear. In this article, we show that transcripts for P2X1, P2X4, and P2X5 receptors were expressed in healthy and asthmatic eosinophils. The P2X receptor agonist α,β-methylene ATP (α,β-meATP; 10 μM) evoked rapidly activating and desensitizing inward currents (peak 18 ± 3 pA/pF at -60 mV) in healthy eosinophils, typical of P2X1 homomeric receptors, which were abolished by the selective P2X1 antagonist NF449 (1 μM) (3 ± 2 pA/pF). α,β-meATP-evoked currents were smaller in eosinophils from asthmatic patients (8 ± 2 versus 27 ± 5 pA/pF for healthy) but were enhanced following treatment with a high concentration of the nucleotidase apyrase (17 ± 5 pA/pF for 10 IU/ml and 11 ± 3 pA/pF for 0.32 IU/ml), indicating that the channels are partially desensitized by extracellular nucleotides. α,β-meATP (10 μM) increased the expression of CD11b activated form in eosinophils from healthy, but not asthmatic, donors (143 ± 21% and 108 ± 11% of control response, respectively). Furthermore, α,β-meATP increased healthy (18 ± 2% compared with control 10 ± 1%) but not asthmatic (13 ± 1% versus 10 ± 0% for control) eosinophil adhesion. Healthy human eosinophils express functional P2X1 receptors whose activation leads to eosinophil αMβ2 integrin-dependent adhesion. P2X1 responses are constitutively reduced in asthmatic compared with healthy eosinophils, probably as the result of an increase in extracellular nucleotide concentration.
Collapse
Affiliation(s)
- Adam Wright
- Institute for Lung Health, National Institute for Health Research Respiratory Biomedical Research Unit, University Hospitals of Leicester National Health Service Trust, Leicester LE3 9QP, United Kingdom
| | - Martyn Mahaut-Smith
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Fiona Symon
- Institute for Lung Health, National Institute for Health Research Respiratory Biomedical Research Unit, University Hospitals of Leicester National Health Service Trust, Leicester LE3 9QP, United Kingdom; Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Nicolas Sylvius
- Core Biotechnology Services, University of Leicester, Leicester LE1 9HN, United Kingdom; and
| | - Shaun Ran
- Institute for Lung Health, National Institute for Health Research Respiratory Biomedical Research Unit, University Hospitals of Leicester National Health Service Trust, Leicester LE3 9QP, United Kingdom; Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Mona Bafadhel
- Respiratory Medicine Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom
| | - Michelle Muessel
- Institute for Lung Health, National Institute for Health Research Respiratory Biomedical Research Unit, University Hospitals of Leicester National Health Service Trust, Leicester LE3 9QP, United Kingdom; Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Peter Bradding
- Institute for Lung Health, National Institute for Health Research Respiratory Biomedical Research Unit, University Hospitals of Leicester National Health Service Trust, Leicester LE3 9QP, United Kingdom; Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Andrew Wardlaw
- Institute for Lung Health, National Institute for Health Research Respiratory Biomedical Research Unit, University Hospitals of Leicester National Health Service Trust, Leicester LE3 9QP, United Kingdom; Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Catherine Vial
- Institute for Lung Health, National Institute for Health Research Respiratory Biomedical Research Unit, University Hospitals of Leicester National Health Service Trust, Leicester LE3 9QP, United Kingdom; Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 9HN, United Kingdom;
| |
Collapse
|
196
|
Expression and role of connexin-based gap junctions in pulmonary inflammatory diseases. Pharmacol Ther 2016; 164:105-19. [PMID: 27126473 DOI: 10.1016/j.pharmthera.2016.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 04/07/2016] [Indexed: 01/03/2023]
Abstract
Connexins are transmembrane proteins that can generate intercellular communication channels known as gap junctions. They contribute to the direct movement of ions and larger cytoplasmic solutes between various cell types. In the lung, connexins participate in a variety of physiological functions, such as tissue homeostasis and host defence. In addition, emerging evidence supports a role for connexins in various pulmonary inflammatory diseases, such as asthma, pulmonary hypertension, acute lung injury, lung fibrosis or cystic fibrosis. In these diseases, the altered expression of connexins leads to disruption of normal intercellular communication pathways, thus contributing to various pathophysiological aspects, such as inflammation or tissue altered reactivity and remodeling. The present review describes connexin structure and organization in gap junctions. It focuses on connexins in the lung, including pulmonary bronchial and arterial beds, by looking at their expression, regulation and physiological functions. This work also addresses the issue of connexin expression alteration in various pulmonary inflammatory diseases and describes how targeting connexin-based gap junctions with pharmacological tools, synthetic blocking peptides or genetic approaches, may open new therapeutic perspectives in the treatment of these diseases.
Collapse
|
197
|
Zhou Y, Lu M, Du RH, Qiao C, Jiang CY, Zhang KZ, Ding JH, Hu G. MicroRNA-7 targets Nod-like receptor protein 3 inflammasome to modulate neuroinflammation in the pathogenesis of Parkinson's disease. Mol Neurodegener 2016; 11:28. [PMID: 27084336 PMCID: PMC4833896 DOI: 10.1186/s13024-016-0094-3] [Citation(s) in RCA: 369] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 04/08/2016] [Indexed: 12/12/2022] Open
Abstract
Background α-Synuclein (α-Syn), a pathological hallmark of Parkinson’s disease (PD), has been recognized to induce the production of interleukin-1β in a process that depends, at least in vitro, on nod-like receptor protein 3 (NLRP3) inflammasome in monocytes. However, the role of NLRP3 inflammasome activation in the onset of PD has not yet been fully established. Results In this study, we showed that NLRP3 inflammasomes were activated in the serum of PD patients and the midbrain of PD model mice. We further clarified that α-syn activated the NLRP3 inflammasome through microglial endocytosis and subsequent lysosomal cathepsin B release. Deficiency of caspase-1, an important component of NLRP3 inflammasome, significantly inhibited α-syn-induced microglia activation and interleukin-1β production, which in turn alleviated the reduction of mesencephalic dopaminergic neurons treated by microglia medium. Specifically, we demonstrated for the first time that Nlrp3 is a target gene of microRNA-7 (miR-7). Transfection of miR-7 inhibited microglial NLRP3 inflammasome activation whereas anti-miR-7 aggravated inflammasome activation in vitro. Notably, stereotactical injection of miR-7 mimics into mouse striatum attenuated dopaminergic neuron degeneration accompanied by the amelioration of microglial activation in MPTP-induced PD model mice. Conclusions Our study provides a direct link between miR-7 and NLRP3 inflammasome-mediated neuroinflammation in the pathogenesis of PD. These findings will give us an insight into the potential of miR-7 and NLRP3 inflammasome in terms of opening up novel therapeutic avenues for PD. Electronic supplementary material The online version of this article (doi:10.1186/s13024-016-0094-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Zhou
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Ren-Hong Du
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Chen Qiao
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Chun-Yi Jiang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Ke-Zhong Zhang
- Nanjing Medical University Hospital, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Jian-Hua Ding
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China. .,Biomedical Functional Materials Collaborative Innovation Center, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, China. .,Department of Pharmacology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
198
|
Jahng JWS, Song E, Sweeney G. Crosstalk between the heart and peripheral organs in heart failure. Exp Mol Med 2016; 48:e217. [PMID: 26964833 PMCID: PMC4892881 DOI: 10.1038/emm.2016.20] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 12/10/2015] [Accepted: 12/11/2015] [Indexed: 12/31/2022] Open
Abstract
Mediators from peripheral tissues can influence the development and progression of heart failure (HF). For example, in obesity, an altered profile of adipokines secreted from adipose tissue increases the incidence of myocardial infarction (MI). Less appreciated is that heart remodeling releases cardiokines, which can strongly impact various peripheral tissues. Inflammation, and, in particular, activation of the nucleotide-binding oligomerization domain-like receptors with pyrin domain (NLRP3) inflammasome are likely to have a central role in cardiac remodeling and mediating crosstalk with other organs. Activation of the NLRP3 inflammasome in response to cardiac injury induces the production and secretion of the inflammatory cytokines interleukin (IL)-1β and IL-18. In addition to having local effects in the myocardium, these pro-inflammatory cytokines are released into circulation and cause remodeling in the spleen, kidney, skeletal muscle and adipose tissue. The collective effects of various cardiokines on peripheral organs depend on the degree and duration of myocardial injury, with systematic inflammation and peripheral tissue damage observed as HF progresses. In this article, we review mechanisms regulating myocardial inflammation in HF and the role of factors secreted by the heart in communication with peripheral tissues.
Collapse
Affiliation(s)
| | - Erfei Song
- Department of Biology, York University, Toronto, ON, Canada
| | - Gary Sweeney
- Department of Biology, York University, Toronto, ON, Canada
| |
Collapse
|
199
|
Abstract
Mitochondria are a distinguishing feature of eukaryotic cells. Best known for their critical function in energy production via oxidative phosphorylation (OXPHOS), mitochondria are essential for nutrient and oxygen sensing and for the regulation of critical cellular processes, including cell death and inflammation. Such diverse functional roles for organelles that were once thought to be simple may be attributed to their distinct heteroplasmic genome, exclusive maternal lineage of inheritance, and ability to generate signals to communicate with other cellular organelles. Mitochondria are now thought of as one of the cell's most sophisticated and dynamic responsive sensing systems. Specific signatures of mitochondrial dysfunction that are associated with disease pathogenesis and/or progression are becoming increasingly important. In particular, the centrality of mitochondria in the pathological processes and clinical phenotypes associated with a range of lung diseases is emerging. Understanding the molecular mechanisms regulating the mitochondrial processes of lung cells will help to better define phenotypes and clinical manifestations associated with respiratory disease and to identify potential diagnostic and therapeutic targets.
Collapse
|
200
|
Wilkins HM, Carl SM, Weber SG, Ramanujan SA, Festoff BW, Linseman DA, Swerdlow RH. Mitochondrial lysates induce inflammation and Alzheimer's disease-relevant changes in microglial and neuronal cells. J Alzheimers Dis 2016; 45:305-18. [PMID: 25537010 DOI: 10.3233/jad-142334] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neuroinflammation occurs in Alzheimer's disease (AD). While AD genetic studies implicate inflammation-relevant genes and fibrillar amyloid-β protein promotes inflammation, our understanding of AD neuroinflammation nevertheless remains incomplete. In this study we hypothesized damage-associated molecular pattern (DAMP) molecules arising from mitochondria, intracellular organelles that resemble bacteria, could contribute to AD neuroinflammation. To preliminarily test this possibility, we exposed neuronal and microglial cell lines to enriched mitochondrial lysates. BV2 microglial cells treated with mitochondrial lysates showed decreased TREM2 mRNA, increased TNFα mRNA, increased MMP-8 mRNA, increased IL-8 mRNA, redistribution of NFκB to the nucleus, and increased p38 MAPK phosphorylation. SH-SY5Y neuronal cells treated with mitochondrial lysates showed increased TNFα mRNA, increased NFκB protein, decreased IκBα protein, increased AβPP mRNA, and increased AβPP protein. Enriched mitochondrial lysates from SH-SY5Y cells lacking detectable mitochondrial DNA (ρ0 cells) failed to induce any of these changes, while mtDNA obtained directly from mitochondria (but not PCR-amplified mtDNA) increased BV2 cell TNFα mRNA. These results indicate at least one mitochondrial-derived DAMP molecule, mtDNA, can induce inflammatory changes in microglial and neuronal cell lines. Our data are consistent with the hypothesis that a mitochondrial-derived DAMP molecule or molecules could contribute to AD neuroinflammation.
Collapse
Affiliation(s)
- Heather M Wilkins
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA University of Kansas Alzheimer's Disease Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Steven M Carl
- University of Kansas Alzheimer's Disease Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Sam G Weber
- University of Kansas Alzheimer's Disease Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Suruchi A Ramanujan
- University of Kansas Alzheimer's Disease Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Barry W Festoff
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA Department of Pharmacology, University of Kansas Medical Center, Kansas City, KS, USA Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA PHLOGISTIX Neurodiagnostics, Lenexa, KS, USA
| | | | - Russell H Swerdlow
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA University of Kansas Alzheimer's Disease Center, University of Kansas Medical Center, Kansas City, KS, USA Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|