151
|
Xu-Chen X, Weinstock J, Rastogi D, Koumbourlis A, Nino G. The airway epithelium during infancy and childhood: A complex multicellular immune barrier. Basic review for clinicians. Paediatr Respir Rev 2021; 38:9-15. [PMID: 34030977 PMCID: PMC8859843 DOI: 10.1016/j.prrv.2021.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/13/2021] [Indexed: 12/13/2022]
Abstract
The airway epithelium is a complex multicellular layer that extends from the nasopharynx to the small airways. It functions as an immune respiratory barrier during early life that develops, matures, and regenerates to adapt to the changes in the environment. While airway epithelial abnormalities have been identified in several clinical disorders, there is increasing interest in understanding its basic regulation and structure in humans. Indeed, recent advances in technology (e.g. single-cell analysis and new human airway epithelial cell models) have allowed us to identify additional cellular subtypes and functions that overall have greatly improved our understanding of the airway epithelium during health and disease. In this review we summarize key features of the airway epithelium including: 1) multilayer structure and cell heterogeneity; 2) adaptability to different environmental and developmental stimuli; 3) innate recognition; and 4) orchestration of immune responses. We discuss these features with a translational and clinical prospective focusing on the development of human respiratory immunity, particularly during early life.
Collapse
Affiliation(s)
| | | | | | | | - Gustavo Nino
- Division of Pediatric Pulmonary and Sleep Medicine, Children's National Hospital, George Washington University, Washington, D.C, USA.
| |
Collapse
|
152
|
Zhang X, Xie J, Sun H, Wei Q, Nong G. sRAGE Inhibits the Mucus Hypersecretion in a Mouse Model with Neutrophilic Asthma. Immunol Invest 2021; 51:1243-1256. [PMID: 34018452 DOI: 10.1080/08820139.2021.1928183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Background: Neutrophilic asthma (NA) may result in irreversible airflow limitations. Soluble advanced glycosylation receptor (sRAGE) has been shown to be associated with neutrophilic airway inflammation. However, the association between sRAGE and mucus hypersecretion in NA remains unknown. This study aims to assess the function of sRAGE on mucus hypersecretion.Methods: A NA mouse model was established and treated with adeno-associated virus 9 (AAV9)-sRAGE and inhibitors. Collagen deposition and goblet cell hyperplasia in the lungs were evaluated by periodic acid-Schiff (PAS) and Masson staining. sRAGE and mucin levels in bronchoalveolar lavage fluid were measured by ELISA. Pathway molecule expression levels were determined by RT-qPCR and western blotting.Results: The results showed that the NA mouse model exhibited airway mucus hypersecretion. Mice can be effectively transfected by AAV9-sRAGE via tail-vein injection and intranasal drip. AAV9-sRAGE increased the sRAGE levels but it inhibited the collagen deposition, the PAS score, as well as the expression of MUC5AC and MUC5B. Inhibitors of high-mobility group protein 1 (HMGB1), receptor for advanced glycation end product (RAGE) and phosphatidylinositol 3-kinase (PI3K) suppressed the MUC5AC levels in NA mice as well as in cultured HMGB1-induced human bronchial epithelial cells. Furthermore, the phospho- extracellular signal-regulated kinase (ERK) protein in NA was increased while the sRAGE intervention inhibited this elevation.Conclusions: These results suggest that sRAGE may be a potential target for the treatment of mucus hypersecretion in NA.
Collapse
Affiliation(s)
- Xiaobo Zhang
- Pediatric Department, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Jun Xie
- Pediatric Department, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Hongmei Sun
- Pediatric Department, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Qin Wei
- Pediatric Department, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Guangmin Nong
- Pediatric Department, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China
| |
Collapse
|
153
|
Rimsa R, Galvanovskis A, Plume J, Rumnieks F, Grindulis K, Paidere G, Erentraute S, Mozolevskis G, Abols A. Lung on a Chip Development from Off-Stoichiometry Thiol-Ene Polymer. MICROMACHINES 2021; 12:546. [PMID: 34064627 PMCID: PMC8151799 DOI: 10.3390/mi12050546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/14/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023]
Abstract
Current in vitro models have significant limitations for new respiratory disease research and rapid drug repurposing. Lung on a chip (LOAC) technology offers a potential solution to these problems. However, these devices typically are fabricated from polydimethylsiloxane (PDMS), which has small hydrophobic molecule absorption, which hinders the application of this technology in drug repurposing for respiratory diseases. Off-stoichiometry thiol-ene (OSTE) is a promising alternative material class to PDMS. Therefore, this study aimed to test OSTE as an alternative material for LOAC prototype development and compare it to PDMS. We tested OSTE material for light transmission, small molecule absorption, inhibition of enzymatic reactions, membrane particle, and fluorescent dye absorption. Next, we microfabricated LOAC devices from PDMS and OSTE, functionalized with human umbilical vein endothelial cell (HUVEC) and A549 cell lines, and analyzed them with immunofluorescence. We demonstrated that compared to PDMS, OSTE has similar absorption of membrane particles and effect on enzymatic reactions, significantly lower small molecule absorption, and lower light transmission. Consequently, the immunofluorescence of OSTE LOAC was significantly impaired by OSTE optical properties. In conclusion, OSTE is a promising material for LOAC, but optical issues should be addressed in future LOAC prototypes to benefit from the material properties.
Collapse
Affiliation(s)
- Roberts Rimsa
- Institute of Solid-State Physics, University of Latvia, 8 Kengaraga Str., LV-1063 Riga, Latvia; (R.R.); (K.G.); (G.P.); (G.M.)
| | - Artis Galvanovskis
- Latvian Biomedical Research and Study Centre, Ratsupites Str 1, k-1, LV-1067 Riga, Latvia; (A.G.); (J.P.); (F.R.); (S.E.)
| | - Janis Plume
- Latvian Biomedical Research and Study Centre, Ratsupites Str 1, k-1, LV-1067 Riga, Latvia; (A.G.); (J.P.); (F.R.); (S.E.)
| | - Felikss Rumnieks
- Latvian Biomedical Research and Study Centre, Ratsupites Str 1, k-1, LV-1067 Riga, Latvia; (A.G.); (J.P.); (F.R.); (S.E.)
| | - Karlis Grindulis
- Institute of Solid-State Physics, University of Latvia, 8 Kengaraga Str., LV-1063 Riga, Latvia; (R.R.); (K.G.); (G.P.); (G.M.)
| | - Gunita Paidere
- Institute of Solid-State Physics, University of Latvia, 8 Kengaraga Str., LV-1063 Riga, Latvia; (R.R.); (K.G.); (G.P.); (G.M.)
| | - Sintija Erentraute
- Latvian Biomedical Research and Study Centre, Ratsupites Str 1, k-1, LV-1067 Riga, Latvia; (A.G.); (J.P.); (F.R.); (S.E.)
| | - Gatis Mozolevskis
- Institute of Solid-State Physics, University of Latvia, 8 Kengaraga Str., LV-1063 Riga, Latvia; (R.R.); (K.G.); (G.P.); (G.M.)
| | - Arturs Abols
- Latvian Biomedical Research and Study Centre, Ratsupites Str 1, k-1, LV-1067 Riga, Latvia; (A.G.); (J.P.); (F.R.); (S.E.)
| |
Collapse
|
154
|
Cho HY, Park S, Miller L, Lee HC, Langenbach R, Kleeberger SR. Role for Mucin-5AC in Upper and Lower Airway Pathogenesis in Mice. Toxicol Pathol 2021; 49:1077-1099. [PMID: 33938323 DOI: 10.1177/01926233211004433] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mucin-5AC (MUC5AC) is a major secreted mucin in pathogenic airways. To determine its role in mucus-related airway disorders, Muc5ac-deficient (Muc5ac-/-) and wild-type (Muc5ac+/+) mice were compared in bleomycin-induced pulmonary fibrosis, respiratory syncytial virus (RSV) disease, and ozone toxicity. Significantly greater inflammation and fibrosis by bleomycin were developed in Muc5ac-/- lungs compared to Muc5ac+/+ lungs. More severe mucous cell metaplasia in fibrotic Muc5ac-/- lungs coincided with bronchial Muc2, Muc4, and Muc5b overexpression. Airway RSV replication was higher in Muc5ac-/- than in Muc5ac+/+ during early infection. RSV-caused pulmonary epithelial death, bronchial smooth muscle thickening, and syncytia formation were more severe in Muc5ac-/- compared to Muc5ac+/+. Nasal septal damage and subepithelial mucoserous gland enrichment by RSV were greater in Muc5ac-/- than in Muc5ac+/+. Ozone exposure developed more severe nasal airway injury accompanying submucosal gland hyperplasia and pulmonary proliferation in Muc5ac-/- than in Muc5ac+/+. Ozone caused periodic acid-Schiff-positive secretion only in Muc5ac-/- nasal airways. Lung E-cadherin level was relatively lower in Muc5ac-/- than in Muc5ac+/+ basally and after bleomycin, RSV, and ozone exposure. Results indicate that MUC5AC is an essential mucosal component in acute phase airway injury protection. Subepithelial gland hyperplasia and adaptive increase of other epithelial mucins may compensate airway defense in Muc5ac-/- mice.
Collapse
Affiliation(s)
- Hye-Youn Cho
- Immunity, Inflammation and Disease Laboratory, 6857National Institute of Environmental Health Sciences, National Institutes of Health, NC, USA
| | - Soojung Park
- Signal Transduction Laboratory, 6857National Institute of Environmental Health Sciences, National Institutes of Health, NC, USA
| | - Laura Miller
- Immunity, Inflammation and Disease Laboratory, 6857National Institute of Environmental Health Sciences, National Institutes of Health, NC, USA
| | - Huei-Chen Lee
- Signal Transduction Laboratory, 6857National Institute of Environmental Health Sciences, National Institutes of Health, NC, USA
| | - Robert Langenbach
- Signal Transduction Laboratory, 6857National Institute of Environmental Health Sciences, National Institutes of Health, NC, USA
| | - Steven R Kleeberger
- Immunity, Inflammation and Disease Laboratory, 6857National Institute of Environmental Health Sciences, National Institutes of Health, NC, USA
| |
Collapse
|
155
|
Chen OG, Mather SE, Brommel CM, Hamilton BA, Ehler A, Villacreses R, Girgis RE, Abou Alaiwa M, Stoltz DA, Zabner J, Li X. Transduction of Pig Small Airway Epithelial Cells and Distal Lung Progenitor Cells by AAV4. Cells 2021; 10:cells10051014. [PMID: 33923029 PMCID: PMC8145967 DOI: 10.3390/cells10051014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/15/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
Cystic fibrosis (CF) is caused by genetic mutations of the CF transmembrane conductance regulator (CFTR), leading to disrupted transport of Cl− and bicarbonate and CF lung disease featuring bacterial colonization and chronic infection in conducting airways. CF pigs engineered by mutating CFTR develop lung disease that mimics human CF, and are well-suited for investigating CF lung disease therapeutics. Clinical data suggest small airways play a key role in the early pathogenesis of CF lung disease, but few preclinical studies have focused on small airways. Efficient targeted delivery of CFTR cDNA to small airway epithelium may correct the CFTR defect and prevent lung infections. Adeno-associated virus 4 (AAV4) is a natural AAV serotype and a safe vector with lower immunogenicity than other gene therapy vectors such as adenovirus. Our analysis of AAV natural serotypes using cultured primary pig airway epithelia showed that AAV4 has high tropism for airway epithelia and higher transduction efficiency for small airways compared with large airways. AAV4 mediated the delivery of CFTR, and corrected Cl− transport in cultured primary small airway epithelia from CF pigs. Moreover, AAV4 was superior to all other natural AAV serotypes in transducing ITGα6β4+ pig distal lung progenitor cells. In addition, AAV4 encoding eGFP can infect pig distal lung epithelia in vivo. This study demonstrates AAV4 tropism in small airway progenitor cells, which it efficiently transduces. AAV4 offers a novel tool for mechanistical study of the role of small airway in CF lung pathogenesis in a preclinical large animal model.
Collapse
Affiliation(s)
- Oliver G Chen
- Department of Pediatrics & Human Development, Michigan State University, Grand Rapids, MI 49503, USA
| | - Steven E Mather
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Christian M Brommel
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Bradley A Hamilton
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Annie Ehler
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Raul Villacreses
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Reda E Girgis
- Pulmonary Medicine, Spectrum Health, Grand Rapids, MI 49503, USA
| | - Mahmoud Abou Alaiwa
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - David A Stoltz
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Joseph Zabner
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Xiaopeng Li
- Department of Pediatrics & Human Development, Michigan State University, Grand Rapids, MI 49503, USA
| |
Collapse
|
156
|
Okuda K, Randell SH, Birket SE. The Big Impact of Small Airway pH. Am J Respir Cell Mol Biol 2021; 65:123-125. [PMID: 33831321 PMCID: PMC8399579 DOI: 10.1165/rcmb.2021-0070ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Kenichi Okuda
- Marsico Lung Institute/Cystic Fibrosis Research Center The University of North Carolina Chapel Hill, North Carolina
| | - Scott H Randell
- Marsico Lung Institute/Cystic Fibrosis Research Center The University of North Carolina Chapel Hill, North Carolina.,Department of Cell Biology and Physiology The University of North Carolina Chapel Hill, North Carolina
| | - Susan E Birket
- Department of Medicine The University of Alabama Birmingham, Alabama
| |
Collapse
|
157
|
Yin W, Cao W, Zhou G, Wang L, Sun J, Zhu A, Wang Z, Zhou Y, Liu X, Li Y, Zhong N, Zhao J, Liu L, Ran P. Analysis of pathological changes in the epithelium in COVID-19 patient airways. ERJ Open Res 2021; 7:00690-2020. [PMID: 33829055 PMCID: PMC7898030 DOI: 10.1183/23120541.00690-2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022] Open
Abstract
Severe COVID-19 patient airways plugged by MUC5AC-containing mucus exhibit hyperplasia of goblet cells, and hypoplasia of multiciliated cells and club cells, as well as significantly reduced CC16 and MUC5B levels, and increased IL-13 levels https://bit.ly/2M2NcdO.
Collapse
Affiliation(s)
- Wenguang Yin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,These authors contributed equally
| | - Weitao Cao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,These authors contributed equally
| | - Guangde Zhou
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China.,These authors contributed equally
| | - Lifei Wang
- Dept of Radiology, National Clinical Research Center for Infectious Disease, Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China.,These authors contributed equally
| | - Jing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,These authors contributed equally
| | - Airu Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhongfang Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yumin Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoqing Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yimin Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lei Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Pixin Ran
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
158
|
Liu Q, Wang Z, Zhang W. The Multifunctional Roles of Short Palate, Lung, and Nasal Epithelium Clone 1 in Regulating Airway Surface Liquid and Participating in Airway Host Defense. J Interferon Cytokine Res 2021; 41:139-148. [PMID: 33885339 DOI: 10.1089/jir.2020.0141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Short palate, lung, and nasal epithelium clone 1 (SPLUNC1) is a kind of secretory protein, and gets expressed abundantly in normal respiratory epithelium of humans. As a natural immune molecule, SPLUNC1 is proved to be involved in inflammatory response and airway host defense. This review focuses on summarizing and discussing the role of SPLUNC1 in regulating airway surface liquid (ASL) and participating in airway host defense. PubMed and MEDLINE were used for searching and identifying the data in this review. The domain of bactericidal/permeability-increasing protein in SPLUNC1 and the α-helix, α4, are essential for SPLUNC1 to exert biological activities. As a natural innate immune molecule, SPLUNC1 plays a significant role in inflammatory response and airway host defense. Its special expression patterns are not only observed in physiological conditions, but also in some respiratory diseases. The mechanisms of SPLUNC1 in airway host defense include modulating ASL volume, acting as a surfactant protein, inhibiting biofilm formation, as well as regulating ASL compositions, such as LL-37, mucins, Neutrophil elastase, and inflammatory cytokines. Besides, potential correlations are found among these different mechanisms, especially among different ASL compositions, which should be further explored in more systematical frameworks. In this review, we summarize the structural characteristics and expression patterns of SPLUNC1 briefly, and mainly discuss the mechanisms of SPLUNC1 exerted in host defense, aiming to provide a theoretical basis and a novel target for future studies and clinical treatments.
Collapse
Affiliation(s)
- Qingluan Liu
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhicheng Wang
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenling Zhang
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
159
|
van den Bosch WB, James AL, Tiddens HA. Structure and function of small airways in asthma patients revisited. Eur Respir Rev 2021; 30:200186. [PMID: 33472958 PMCID: PMC9488985 DOI: 10.1183/16000617.0186-2020] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/27/2020] [Indexed: 12/21/2022] Open
Abstract
Small airways (<2 mm in diameter) are probably involved across almost all asthma severities and they show proportionally more structural and functional abnormalities with increasing asthma severity. The structural and functional alterations of the epithelium, extracellular matrix and airway smooth muscle in small airways of people with asthma have been described over many years using in vitro studies, animal models or imaging and modelling methods. The purpose of this review was to provide an overview of these observations and to outline several potential pathophysiological mechanisms regarding the role of small airways in asthma.
Collapse
Affiliation(s)
- Wytse B. van den Bosch
- Dept of Paediatric Pulmonology and Allergology, Erasmus MC – Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Dept of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Alan L. James
- Dept of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Perth, Australia
| | - Harm A.W.M. Tiddens
- Dept of Paediatric Pulmonology and Allergology, Erasmus MC – Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Dept of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
160
|
Ernst K, Mittler AK, Winkelmann V, Kling C, Eberhardt N, Anastasia A, Sonnabend M, Lochbaum R, Wirsching J, Sakari M, Pulliainen AT, Skerry C, Carbonetti NH, Frick M, Barth H. Pharmacological targeting of host chaperones protects from pertussis toxin in vitro and in vivo. Sci Rep 2021; 11:5429. [PMID: 33686161 PMCID: PMC7940712 DOI: 10.1038/s41598-021-84817-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 02/16/2021] [Indexed: 01/05/2023] Open
Abstract
Whooping cough is caused by Bordetella pertussis that releases pertussis toxin (PT) which comprises enzyme A-subunit PTS1 and binding/transport B-subunit. After receptor-mediated endocytosis, PT reaches the endoplasmic reticulum from where unfolded PTS1 is transported to the cytosol. PTS1 ADP-ribosylates G-protein α-subunits resulting in increased cAMP signaling. Here, a role of target cell chaperones Hsp90, Hsp70, cyclophilins and FK506-binding proteins for cytosolic PTS1-uptake is demonstrated. PTS1 specifically and directly interacts with chaperones in vitro and in cells. Specific pharmacological chaperone inhibition protects CHO-K1, human primary airway basal cells and a fully differentiated airway epithelium from PT-intoxication by reducing intracellular PTS1-amounts without affecting cell binding or enzyme activity. PT is internalized by human airway epithelium secretory but not ciliated cells and leads to increase of apical surface liquid. Cyclophilin-inhibitors reduced leukocytosis in infant mouse model of pertussis, indicating their promising potential for developing novel therapeutic strategies against whooping cough.
Collapse
Affiliation(s)
- Katharina Ernst
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany.
| | - Ann-Katrin Mittler
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | | | - Carolin Kling
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | - Nina Eberhardt
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | - Anna Anastasia
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | - Michael Sonnabend
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | - Robin Lochbaum
- Institute of General Physiology, University of Ulm, Ulm, Germany
| | - Jan Wirsching
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | - Moona Sakari
- Institute of Biomedicine, Research Unit for Infection and Immunity, University of Turku, Turku, Finland
| | - Arto T Pulliainen
- Institute of Biomedicine, Research Unit for Infection and Immunity, University of Turku, Turku, Finland
| | - Ciaran Skerry
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nicholas H Carbonetti
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Manfred Frick
- Institute of General Physiology, University of Ulm, Ulm, Germany
| | - Holger Barth
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany.
| |
Collapse
|
161
|
Alemao CA, Budden KF, Gomez HM, Rehman SF, Marshall JE, Shukla SD, Donovan C, Forster SC, Yang IA, Keely S, Mann ER, El Omar EM, Belz GT, Hansbro PM. Impact of diet and the bacterial microbiome on the mucous barrier and immune disorders. Allergy 2021; 76:714-734. [PMID: 32762040 DOI: 10.1111/all.14548] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/10/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022]
Abstract
The prevalence of chronic immune and metabolic disorders is increasing rapidly. In particular, inflammatory bowel diseases, obesity, diabetes, asthma and chronic obstructive pulmonary disease have become major healthcare and economic burdens worldwide. Recent advances in microbiome research have led to significant discoveries of associative links between alterations in the microbiome and health, as well as these chronic supposedly noncommunicable, immune/metabolic disorders. Importantly, the interplay between diet, microbiome and the mucous barrier in these diseases has gained significant attention. Diet modulates the mucous barrier via alterations in gut microbiota, resulting in either disease onset/exacerbation due to a "poor" diet or protection against disease with a "healthy" diet. In addition, many mucosa-associated disorders possess a specific gut microbiome fingerprint associated with the composition of the mucous barrier, which is further influenced by host-microbiome and inter-microbial interactions, dietary choices, microbe immigration and antimicrobials. Our review focuses on the interactions of diet (macronutrients and micronutrients), gut microbiota and mucous barriers (gastrointestinal and respiratory tract) and their importance in the onset and/or progression of major immune/metabolic disorders. We also highlight the key mechanisms that could be targeted therapeutically to prevent and/or treat these disorders.
Collapse
Affiliation(s)
- Charlotte A. Alemao
- Priority Research Centre for Healthy Lungs Hunter Medical Research Institute New Lambton, Newcastle NSW Australia
- The University of Newcastle Newcastle NSW Australia
| | - Kurtis F. Budden
- Priority Research Centre for Healthy Lungs Hunter Medical Research Institute New Lambton, Newcastle NSW Australia
- The University of Newcastle Newcastle NSW Australia
| | - Henry M. Gomez
- Priority Research Centre for Healthy Lungs Hunter Medical Research Institute New Lambton, Newcastle NSW Australia
- The University of Newcastle Newcastle NSW Australia
| | - Saima F. Rehman
- Priority Research Centre for Healthy Lungs Hunter Medical Research Institute New Lambton, Newcastle NSW Australia
- The University of Newcastle Newcastle NSW Australia
| | - Jacqueline E. Marshall
- Faculty of Science Centre for Inflammation Centenary Institute University of Technology Sydney Sydney NSW Australia
| | - Shakti D. Shukla
- Priority Research Centre for Healthy Lungs Hunter Medical Research Institute New Lambton, Newcastle NSW Australia
- The University of Newcastle Newcastle NSW Australia
| | - Chantal Donovan
- Faculty of Science Centre for Inflammation Centenary Institute University of Technology Sydney Sydney NSW Australia
| | - Samuel C. Forster
- Department of Molecular and Translational Sciences Hudson Institute of Medical Research Centre for Innate Immunity and Infectious Diseases Monash University Clayton VIC Australia
| | - Ian A. Yang
- Thoracic Program The Prince Charles Hospital Metro North Hospital and Health Service Brisbane QLD Australia
- Faculty of Medicine UQ Thoracic Research Centre The University of Queensland Brisbane QLD Australia
| | - Simon Keely
- Hunter Medical Research Institute Priority Research Centre for Digestive Health and Neurogastroenterology University of Newcastle New Lambton Heights NSW Australia
| | - Elizabeth R. Mann
- Lydia Becker Institute of Immunology and Inflammation University of Manchester Manchester UK
- Faculty of Biology Medicine and Health Manchester Collaborative Centre for Inflammation Research Manchester Academic Health Science Centre University of Manchester Manchester UK
| | - Emad M. El Omar
- St George & Sutherland Clinical School Microbiome Research Centre University of New South Wales Sydney NSW Australia
| | - Gabrielle T. Belz
- Diamantina Institute University of Queensland Woolloongabba QLD Australia
- Department of Medical Biology Walter and Eliza Hall Institute of Medical Research University of Melbourne Parkville VIC Australia
| | - Philip M. Hansbro
- Priority Research Centre for Healthy Lungs Hunter Medical Research Institute New Lambton, Newcastle NSW Australia
- The University of Newcastle Newcastle NSW Australia
- Faculty of Science Centre for Inflammation Centenary Institute University of Technology Sydney Sydney NSW Australia
| |
Collapse
|
162
|
The Japanese respiratory society guidelines for the management of cough and sputum (digest edition). Respir Investig 2021; 59:270-290. [PMID: 33642231 DOI: 10.1016/j.resinv.2021.01.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 12/14/2022]
Abstract
Cough and sputum are common complaints at outpatient visits. In this digest version, we provide a general overview of these two symptoms and discuss the management of acute (up to three weeks) and prolonged/chronic cough (longer than three weeks). Flowcharts are provided, along with a step-by-step explanation of their diagnosis and management. Most cases of acute cough are due to an infection. In chronic respiratory illness, a cough could be a symptom of a respiratory infection such as pulmonary tuberculosis, malignancy such as a pulmonary tumor, asthma, chronic obstructive pulmonary disease, chronic bronchitis, bronchiectasis, drug-induced lung injury, heart failure, nasal sinus disease, sinobronchial syndrome, eosinophilic sinusitis, cough variant asthma (CVA), atopic cough, chronic laryngeal allergy, gastroesophageal reflux (GER), and post-infectious cough. Antibiotics should not be prescribed for over-peak cough but can be considered for atypical infections. The exploration of a single/major cause is recommended for persistent/chronic cough. When sputum is present, a sputum smear/culture (general bacteria, mycobacteria), cytology, cell differentiation, chest computed tomography (CT), and sinus X-ray or CT should be performed. There are two types of rhinosinusitis. Conventional sinusitis and eosinophilic rhinosinusitis present primarily with neutrophilic inflammation and eosinophilic inflammation, respectively. The most common causes of dry cough include CVA, atopic cough/laryngeal allergy (chronic), GER, and post-infectious cough. In the last chapter, future challenges and perspectives are discussed. We hope that the clarification of the pathology of cough hypersensitivity syndrome will lead to further development of "pathology-specific non-specific therapeutic drugs" and provide benefits to patients with chronic refractory cough.
Collapse
|
163
|
Wang Y, Wu Q, Muskhelishvili L, Davis K, Wynne R, Tripathi P, Bryant MS, Rua D, Cao X. Toxicity of Ortho-phthalaldehyde Aerosols in a Human In Vitro Airway Tissue Model. Chem Res Toxicol 2021; 34:754-766. [PMID: 33556243 DOI: 10.1021/acs.chemrestox.0c00379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Ortho-phthalaldehyde (OPA) is a chemical disinfectant used for the high-level sterilization of heat-sensitive medical instruments. Although OPA is considered a safer alternative to glutaraldehyde, no exposure limits have been established for respiratory exposures to ensure the safety of OPA sterilization and the safe use of OPA-treated medical instruments. In order to address data gaps in the toxicological profile of OPA, we treated human in vitro air-liquid-interface (ALI) airway cultures at the air interface with various concentrations of OPA aerosols for 10 consecutive days. Temporal tissue responses were evaluated at multiple time points during the treatment phase as well as 10 days following the last exposure. The disturbance of glutathione (GSH) homeostasis occurred as early as 20 min following the first exposure, while oxidative stress persisted throughout the treatment phase, as indicated by the sustained induction of heme oxygenase-1 (HMOX-1) expression. Repeated exposures to OPA aerosols resulted in both functional and structural changes, including the inhibition of ciliary beating frequency, aberrant mucin production, decreases in airway secretory cells, and tissue morphological changes. While OPA-induced oxidative stress recovered to control levels after a 10 day recovery period, functional and structural alterations caused by the high concentration of OPA aerosols failed to fully recover over the observation period. These findings indicate that aerosolized OPA induces both transient and relatively persistent functional and structural abnormalities in ALI cultures under the conditions of the current study.
Collapse
Affiliation(s)
| | | | - Levan Muskhelishvili
- Toxicologic Pathology Associates, Jefferson, Arkansas 72079, United States of America
| | - Kelly Davis
- Toxicologic Pathology Associates, Jefferson, Arkansas 72079, United States of America
| | | | | | | | - Diego Rua
- Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States of America
| | | |
Collapse
|
164
|
Gally F, Sasse SK, Kurche JS, Gruca MA, Cardwell JH, Okamoto T, Chu HW, Hou X, Poirion OB, Buchanan J, Preissl S, Ren B, Colgan SP, Dowell RD, Yang IV, Schwartz DA, Gerber AN. The MUC5B-associated variant rs35705950 resides within an enhancer subject to lineage- and disease-dependent epigenetic remodeling. JCI Insight 2021; 6:144294. [PMID: 33320836 PMCID: PMC7934873 DOI: 10.1172/jci.insight.144294] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022] Open
Abstract
The G/T transversion rs35705950, located approximately 3 kb upstream of the MUC5B start site, is the cardinal risk factor for idiopathic pulmonary fibrosis (IPF). Here, we investigate the function and chromatin structure of this –3 kb region and provide evidence that it functions as a classically defined enhancer subject to epigenetic programming. We use nascent transcript analysis to show that RNA polymerase II loads within 10 bp of the G/T transversion site, definitively establishing enhancer function for the region. By integrating Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) analysis of fresh and cultured human airway epithelial cells with nuclease sensitivity data, we demonstrate that this region is in accessible chromatin that affects the expression of MUC5B. Through applying paired single-nucleus RNA- and ATAC-seq to frozen tissue from IPF lungs, we extend these findings directly to disease, with results indicating that epigenetic programming of the –3 kb enhancer in IPF occurs in both MUC5B-expressing and nonexpressing lineages. In aggregate, our results indicate that the MUC5B-associated variant rs35705950 resides within an enhancer that is subject to epigenetic remodeling and contributes to pathologic misexpression in IPF.
Collapse
Affiliation(s)
- Fabienne Gally
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, USA.,Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Sarah K Sasse
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Jonathan S Kurche
- Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Margaret A Gruca
- BioFrontiers Institute, University of Colorado-Boulder (CU Boulder), Boulder, Colorado, USA
| | | | - Tsukasa Okamoto
- Department of Medicine, University of Colorado, Aurora, Colorado, USA.,Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hong W Chu
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Xiaomeng Hou
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, California, USA
| | - Olivier B Poirion
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, California, USA
| | - Justin Buchanan
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, California, USA
| | - Sebastian Preissl
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, California, USA
| | - Bing Ren
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, California, USA.,Ludwig Institute for Cancer Research, La Jolla, California, USA
| | - Sean P Colgan
- Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Robin D Dowell
- BioFrontiers Institute, University of Colorado-Boulder (CU Boulder), Boulder, Colorado, USA.,Molecular, Cellular and Developmental Biology, and.,Computer Science, CU Boulder, Boulder, Colorado, USA
| | - Ivana V Yang
- Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - David A Schwartz
- Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Anthony N Gerber
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, USA.,Department of Medicine, University of Colorado, Aurora, Colorado, USA.,Department of Medicine, National Jewish Health, Denver, Colorado, USA
| |
Collapse
|
165
|
Gbian DL, Omri A. Current and novel therapeutic strategies for the management of cystic fibrosis. Expert Opin Drug Deliv 2021; 18:535-552. [PMID: 33426936 DOI: 10.1080/17425247.2021.1874343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Cystic fibrosis (CF), is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene and affects thousands of people throughout the world. Lung disease is the leading cause of death in CF patients. Despite the advances in treatments, the management of CF mainly targets symptoms. Recent CFTR modulators however target common mutations in patients, alleviating symptoms of CF. Unfortunately, there is still no approved treatments for patients with rare mutations to date.Areas covered: This paper reviews current treatments of CF that mitigate symptoms and target genetic defects. The use of gene and drug delivery systems such as viral or non-viral vectors and nano-compounds to enhance CFTR expression and the activity of antimicrobials against chronic pulmonary infections respectively, will also be discussed.Expert opinion: Nano-compounds tackle biological barriers to drug delivery and revitalize antimicrobials, anti-inflammatory drugs and even genes delivery to CF patients. Gene therapy and gene editing are of particular interest because they have the potential to directly target genetic defects. Nanoparticles should be formulated to more specifically target epithelial cells, and biofilms. Finally, the development of more potent gene vectors to increase the duration of gene expression and reduce inflammation is a promising strategy to eventually cure CF.
Collapse
Affiliation(s)
- Douweh Leyla Gbian
- The Novel Drug and Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | - Abdelwahab Omri
- The Novel Drug and Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| |
Collapse
|
166
|
Xu J, Livraghi-Butrico A, Hou X, Rajagopalan C, Zhang J, Song J, Jiang H, Wei HG, Wang H, Bouhamdan M, Ruan J, Yang D, Qiu Y, Xie Y, Barrett R, McClellan S, Mou H, Wu Q, Chen X, Rogers TD, Wilkinson KJ, Gilmore RC, Esther CR, Zaman K, Liang X, Sobolic M, Hazlett L, Zhang K, Frizzell RA, Gentzsch M, O'Neal WK, Grubb BR, Chen YE, Boucher RC, Sun F. Phenotypes of CF rabbits generated by CRISPR/Cas9-mediated disruption of the CFTR gene. JCI Insight 2021; 6:139813. [PMID: 33232302 PMCID: PMC7821608 DOI: 10.1172/jci.insight.139813] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 11/18/2020] [Indexed: 12/20/2022] Open
Abstract
Existing animal models of cystic fibrosis (CF) have provided key insights into CF pathogenesis but have been limited by short lifespans, absence of key phenotypes, and/or high maintenance costs. Here, we report the CRISPR/Cas9-mediated generation of CF rabbits, a model with a relatively long lifespan and affordable maintenance and care costs. CF rabbits supplemented solely with oral osmotic laxative had a median survival of approximately 40 days and died of gastrointestinal disease, but therapeutic regimens directed toward restoring gastrointestinal transit extended median survival to approximately 80 days. Surrogate markers of exocrine pancreas disorders were found in CF rabbits with declining health. CFTR expression patterns in WT rabbit airways mimicked humans, with widespread distribution in nasal respiratory and olfactory epithelia, as well as proximal and distal lower airways. CF rabbits exhibited human CF–like abnormalities in the bioelectric properties of the nasal and tracheal epithelia. No spontaneous respiratory disease was detected in young CF rabbits. However, abnormal phenotypes were observed in surviving 1-year-old CF rabbits as compared with WT littermates, and these were especially evident in the nasal respiratory and olfactory epithelium. The CF rabbit model may serve as a useful tool for understanding gut and lung CF pathogenesis and for the practical development of CF therapeutics.
Collapse
Affiliation(s)
- Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan (UM) Medical Center, Ann Arbor, Michigan, USA
| | | | | | | | - Jifeng Zhang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan (UM) Medical Center, Ann Arbor, Michigan, USA
| | - Jun Song
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan (UM) Medical Center, Ann Arbor, Michigan, USA
| | | | | | - Hui Wang
- Department of Oncology, Karmanos Cancer Institute
| | | | - Jinxue Ruan
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan (UM) Medical Center, Ann Arbor, Michigan, USA
| | - Dongshan Yang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan (UM) Medical Center, Ann Arbor, Michigan, USA
| | - Yining Qiu
- Center for Molecular Medicine and Genetics, and
| | - Youming Xie
- Department of Oncology, Karmanos Cancer Institute
| | - Ronald Barrett
- Department of Anatomy and Cell Biology, Wayne State University (WSU) School of Medicine, Detroit, Michigan, USA
| | - Sharon McClellan
- Department of Anatomy and Cell Biology, Wayne State University (WSU) School of Medicine, Detroit, Michigan, USA
| | - Hongmei Mou
- Mucosal Immunology & Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | | | - Troy D Rogers
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Kristen J Wilkinson
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Rodney C Gilmore
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Charles R Esther
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Khalequz Zaman
- Department of Pediatrics, Case Western Research University School of Medicine, Cleveland, Ohio, USA
| | - Xiubin Liang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan (UM) Medical Center, Ann Arbor, Michigan, USA
| | | | - Linda Hazlett
- Department of Anatomy and Cell Biology, Wayne State University (WSU) School of Medicine, Detroit, Michigan, USA
| | | | - Raymond A Frizzell
- Department of Pediatrics and Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvnia, USA
| | - Martina Gentzsch
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Wanda K O'Neal
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Barbara R Grubb
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan (UM) Medical Center, Ann Arbor, Michigan, USA
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
167
|
Miyashita N, Horie M, Suzuki HI, Saito M, Mikami Y, Okuda K, Boucher RC, Suzukawa M, Hebisawa A, Saito A, Nagase T. FOXL1 Regulates Lung Fibroblast Function via Multiple Mechanisms. Am J Respir Cell Mol Biol 2021; 63:831-842. [PMID: 32946266 DOI: 10.1165/rcmb.2019-0396oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Fibroblasts provide a structural framework for multiple organs and are essential for wound repair and fibrotic processes. Here, we demonstrate functional roles of FOXL1 (forkhead box L1), a transcription factor that characterizes the pulmonary origin of lung fibroblasts. We detected high FOXL1 transcripts associated with DNA hypomethylation and super-enhancer formation in lung fibroblasts, which is in contrast with fibroblasts derived from other organs. RNA in situ hybridization and immunohistochemistry in normal lung tissue indicated that FOXL1 mRNA and protein are expressed in submucosal interstitial cells together with airway epithelial cells. Transcriptome analysis revealed that FOXL1 could control a broad array of genes that potentiate fibroblast function, including TAZ (transcriptional coactivator with PDZ-binding motif)/YAP (Yes-associated protein) signature genes and PDGFRα (platelet-derived growth factor receptor-α). FOXL1 silencing in lung fibroblasts attenuated cell growth and collagen gel contraction capacity, underscoring the functional importance of FOXL1 in fibroproliferative reactions. Of clinical importance, increased FOXL1 mRNA expression was found in fibroblasts of idiopathic pulmonary fibrosis lung tissue. Our observations suggest that FOXL1 regulates multiple functional aspects of lung fibroblasts as a key transcription factor and is involved in idiopathic pulmonary fibrosis pathogenesis.
Collapse
Affiliation(s)
- Naoya Miyashita
- Department of Respiratory Medicine, Graduate School of Medicine, and
| | - Masafumi Horie
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hiroshi I Suzuki
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Minako Saito
- Department of Respiratory Medicine, Graduate School of Medicine, and
| | - Yu Mikami
- Department of Respiratory Medicine, Graduate School of Medicine, and.,Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and
| | - Kenichi Okuda
- Department of Respiratory Medicine, Graduate School of Medicine, and.,Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and
| | - Richard C Boucher
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and
| | - Maho Suzukawa
- National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Akira Hebisawa
- National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Akira Saito
- Department of Respiratory Medicine, Graduate School of Medicine, and.,Division for Health Service Promotion, The University of Tokyo, Tokyo, Japan
| | - Takahide Nagase
- Department of Respiratory Medicine, Graduate School of Medicine, and
| |
Collapse
|
168
|
Michalski JE, Schwartz DA. Genetic Risk Factors for Idiopathic Pulmonary Fibrosis: Insights into Immunopathogenesis. J Inflamm Res 2021; 13:1305-1318. [PMID: 33447070 PMCID: PMC7801923 DOI: 10.2147/jir.s280958] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
Idiopathic pulmonary fibrosis is an etiologically complex interstitial lung disease characterized by progressive scarring of the lungs with a subsequent decline in lung function. While much of the pathogenesis of IPF still remains unclear, it is now understood that genetic variation accounts for at least one-third of the risk of developing the disease. The single-most validated and most significant risk factor, genetic or otherwise, is a gain-of-function promoter variant in the MUC5B gene. While the functional impact of these IPF risk variants at the cellular and tissue levels are areas of active investigation, there is a growing body of evidence that these genetic variants may influence disease pathogenesis through modulation of innate immune processes.
Collapse
Affiliation(s)
- Jacob E Michalski
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - David A Schwartz
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
169
|
Hu Y, Ciminieri C, Hu Q, Lehmann M, Königshoff M, Gosens R. WNT Signalling in Lung Physiology and Pathology. Handb Exp Pharmacol 2021; 269:305-336. [PMID: 34463851 DOI: 10.1007/164_2021_521] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The main physiological function of the lung is gas exchange, mediated at the interface between the alveoli and the pulmonary microcapillary network and facilitated by conducting airway structures that regulate the transport of these gases from and to the alveoli. Exposure to microbial and environmental factors such as allergens, viruses, air pollution, and smoke contributes to the development of chronic lung diseases such as asthma, chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and lung cancer. Respiratory diseases as a cluster are the commonest cause of chronic disease and of hospitalization in children and are among the three most common causes of morbidity and mortality in the adult population worldwide. Many of these chronic respiratory diseases are associated with inflammation and structural remodelling of the airways and/or alveolar tissues. They can often only be treated symptomatically with no disease-modifying therapies that normalize the pathological tissue destruction driven by inflammation and remodelling. In search for novel therapeutic strategies for these diseases, several lines of evidence revealed the WNT pathway as an emerging target for regenerative strategies in the lung. WNT proteins, their receptors, and signalling effectors have central regulatory roles under (patho)physiological conditions underpinning lung function and (chronic) lung diseases and we summarize these roles and discuss how pharmacological targeting of the WNT pathway may be utilized for the treatment of chronic lung diseases.
Collapse
Affiliation(s)
- Yan Hu
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Chiara Ciminieri
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Aurora, CO, USA.,Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
| | - Qianjiang Hu
- Lung Repair and Regeneration Unit, Helmholtz-Zentrum Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, Munich, Germany
| | - Mareike Lehmann
- Lung Repair and Regeneration Unit, Helmholtz-Zentrum Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, Munich, Germany
| | - Melanie Königshoff
- Lung Repair and Regeneration Unit, Helmholtz-Zentrum Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, Munich, Germany. .,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Reinoud Gosens
- Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
170
|
Iverson E, Kaler L, Agostino EL, Song D, Duncan GA, Scull MA. Leveraging 3D Model Systems to Understand Viral Interactions with the Respiratory Mucosa. Viruses 2020; 12:E1425. [PMID: 33322395 PMCID: PMC7763686 DOI: 10.3390/v12121425] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
Respiratory viruses remain a significant cause of morbidity and mortality in the human population, underscoring the importance of ongoing basic research into virus-host interactions. However, many critical aspects of infection are difficult, if not impossible, to probe using standard cell lines, 2D culture formats, or even animal models. In vitro systems such as airway epithelial cultures at air-liquid interface, organoids, or 'on-chip' technologies allow interrogation in human cells and recapitulate emergent properties of the airway epithelium-the primary target for respiratory virus infection. While some of these models have been used for over thirty years, ongoing advancements in both culture techniques and analytical tools continue to provide new opportunities to investigate airway epithelial biology and viral infection phenotypes in both normal and diseased host backgrounds. Here we review these models and their application to studying respiratory viruses. Furthermore, given the ability of these systems to recapitulate the extracellular microenvironment, we evaluate their potential to serve as a platform for studies specifically addressing viral interactions at the mucosal surface and detail techniques that can be employed to expand our understanding.
Collapse
Affiliation(s)
- Ethan Iverson
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA; (E.I.); (E.L.A.)
| | - Logan Kaler
- Biophysics Program, University of Maryland, College Park, MD 20742, USA; (L.K.); (G.A.D.)
| | - Eva L. Agostino
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA; (E.I.); (E.L.A.)
| | - Daniel Song
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA;
| | - Gregg A. Duncan
- Biophysics Program, University of Maryland, College Park, MD 20742, USA; (L.K.); (G.A.D.)
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA;
| | - Margaret A. Scull
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA; (E.I.); (E.L.A.)
| |
Collapse
|
171
|
Leist SR, Dinnon KH, Schäfer A, Tse LV, Okuda K, Hou YJ, West A, Edwards CE, Sanders W, Fritch EJ, Gully KL, Scobey T, Brown AJ, Sheahan TP, Moorman NJ, Boucher RC, Gralinski LE, Montgomery SA, Baric RS. A Mouse-Adapted SARS-CoV-2 Induces Acute Lung Injury and Mortality in Standard Laboratory Mice. Cell 2020; 183:1070-1085.e12. [PMID: 33031744 PMCID: PMC7510428 DOI: 10.1016/j.cell.2020.09.050] [Citation(s) in RCA: 498] [Impact Index Per Article: 99.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/04/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023]
Abstract
The SARS-CoV-2 pandemic has caused extreme human suffering and economic harm. We generated and characterized a new mouse-adapted SARS-CoV-2 virus that captures multiple aspects of severe COVID-19 disease in standard laboratory mice. This SARS-CoV-2 model exhibits the spectrum of morbidity and mortality of COVID-19 disease as well as aspects of host genetics, age, cellular tropisms, elevated Th1 cytokines, and loss of surfactant expression and pulmonary function linked to pathological features of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). This model can rapidly access existing mouse resources to elucidate the role of host genetics, underlying molecular mechanisms governing SARS-CoV-2 pathogenesis, and the protective or pathogenic immune responses related to disease severity. The model promises to provide a robust platform for studies of ALI and ARDS to evaluate vaccine and antiviral drug performance, including in the most vulnerable populations (i.e., the aged) using standard laboratory mice.
Collapse
Affiliation(s)
- Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth H Dinnon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Longping V Tse
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenichi Okuda
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yixuan J Hou
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ande West
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Caitlin E Edwards
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wes Sanders
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ethan J Fritch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kendra L Gully
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Trevor Scobey
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ariane J Brown
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Timothy P Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nathaniel J Moorman
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Rapidly Emerging Antiviral Drug Discovery Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lisa E Gralinski
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephanie A Montgomery
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Rapidly Emerging Antiviral Drug Discovery Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
172
|
Osan JK, Talukdar SN, Feldmann F, DeMontigny BA, Jerome K, Bailey KL, Feldmann H, Mehedi M. Goblet Cell Hyperplasia Increases SARS-CoV-2 Infection in COPD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.11.11.379099. [PMID: 33200131 PMCID: PMC7668735 DOI: 10.1101/2020.11.11.379099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
SARS-CoV-2 has become a major problem across the globe, with approximately 50 million cases and more than 1 million deaths and currently no approved treatment or vaccine. Chronic obstructive pulmonary disease (COPD) is one of the underlying conditions in adults of any age that place them at risk for developing severe illness associated with COVID-19. We established an airway epithelium model to study SARS-CoV-2 infection in healthy and COPD lung cells. We found that both the entry receptor ACE2 and the co-factor transmembrane protease TMPRSS2 are expressed at higher levels on nonciliated goblet cell, a novel target for SARS-CoV-2 infection. We observed that SARS-CoV-2 infected goblet cells and induced syncytium formation and cell sloughing. We also found that SARS-CoV-2 replication was increased in the COPD airway epithelium likely due to COPD associated goblet cell hyperplasia. Our results reveal goblet cells play a critical role in SARS-CoV-2 infection in the lung.
Collapse
Affiliation(s)
- Jaspreet K. Osan
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND 58202, USA
- Contributed equally to this study
| | - Sattya N. Talukdar
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND 58202, USA
- Contributed equally to this study
| | - Friederike Feldmann
- Divison of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Beth Ann DeMontigny
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND 58202, USA
| | - Kailey Jerome
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND 58202, USA
| | - Kristina L. Bailey
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep and Allergy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Heinz Feldmann
- Divison of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Masfique Mehedi
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND 58202, USA
- Lead contact
| |
Collapse
|
173
|
Song D, Cahn D, Duncan GA. Mucin Biopolymers and Their Barrier Function at Airway Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12773-12783. [PMID: 33094612 DOI: 10.1021/acs.langmuir.0c02410] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the lung, the airway epithelium produces secreted and tethered mucin biopolymers to form a mucus hydrogel layer and a surface-attached polymer brush layer. These layers work in concert to facilitate the cilia-mediated transport of mucus for the capture and clearance of inhaled materials to prevent lung damage. The mechanisms by which mucin biopolymers protect the lung from injury have been an intense area of study in airway biology for the past several decades. In this feature article, we will discuss how airway mucins achieve these protective barrier functions. We will present the key findings, rooted in polymer and surface science, that have aided in understanding mucin barrier function. In addition, we will describe how this work may influence the design of nanoparticles to overcome the mucus barrier to effective drug delivery.
Collapse
Affiliation(s)
- Daniel Song
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Devorah Cahn
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Gregg A Duncan
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
- Biophysics Program, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
174
|
Ostedgaard LS, Price MP, Whitworth KM, Abou Alaiwa MH, Fischer AJ, Warrier A, Samuel M, Spate LD, Allen PD, Hilkin BM, Romano Ibarra GS, Ortiz Bezara ME, Goodell BJ, Mather SE, Powers LS, Stroik MR, Gansemer ND, Hippee CE, Zarei K, Goeken JA, Businga TR, Hoffman EA, Meyerholz DK, Prather RS, Stoltz DA, Welsh MJ. Lack of airway submucosal glands impairs respiratory host defenses. eLife 2020; 9:59653. [PMID: 33026343 PMCID: PMC7541087 DOI: 10.7554/elife.59653] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
Submucosal glands (SMGs) are a prominent structure that lines human cartilaginous airways. Although it has been assumed that SMGs contribute to respiratory defense, that hypothesis has gone without a direct test. Therefore, we studied pigs, which have lungs like humans, and disrupted the gene for ectodysplasin (EDA-KO), which initiates SMG development. EDA-KO pigs lacked SMGs throughout the airways. Their airway surface liquid had a reduced ability to kill bacteria, consistent with SMG production of antimicrobials. In wild-type pigs, SMGs secrete mucus that emerges onto the airway surface as strands. Lack of SMGs and mucus strands disrupted mucociliary transport in EDA-KO pigs. Consequently, EDA-KO pigs failed to eradicate a bacterial challenge in lung regions normally populated by SMGs. These in vivo and ex vivo results indicate that SMGs are required for normal antimicrobial activity and mucociliary transport, two key host defenses that protect the lung.
Collapse
Affiliation(s)
- Lynda S Ostedgaard
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Margaret P Price
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | | | - Mahmoud H Abou Alaiwa
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Anthony J Fischer
- Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Akshaya Warrier
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Melissa Samuel
- Division of Animal Science, University of Missouri, Columbia, United States
| | - Lee D Spate
- Division of Animal Science, University of Missouri, Columbia, United States
| | - Patrick D Allen
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Brieanna M Hilkin
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Guillermo S Romano Ibarra
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Miguel E Ortiz Bezara
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Brian J Goodell
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Steven E Mather
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Linda S Powers
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Mallory R Stroik
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Nicholas D Gansemer
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Camilla E Hippee
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Keyan Zarei
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States.,Department of Biomedical Engineering, University of Iowa, Iowa City, United States
| | - J Adam Goeken
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Thomas R Businga
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Eric A Hoffman
- Department of Biomedical Engineering, University of Iowa, Iowa City, United States.,Department of Radiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - David K Meyerholz
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Randall S Prather
- Division of Animal Science, University of Missouri, Columbia, United States
| | - David A Stoltz
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States.,Department of Biomedical Engineering, University of Iowa, Iowa City, United States.,Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Michael J Welsh
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States.,Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States.,Howard Hughes Medical Institute, University of Iowa, Iowa City, United States
| |
Collapse
|
175
|
Increased MUC1 plus a larger quantity and complex size for MUC5AC in the peripheral airway lumen of long-term tobacco smokers. Clin Sci (Lond) 2020; 134:1107-1125. [PMID: 32400877 DOI: 10.1042/cs20191085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/16/2020] [Accepted: 05/13/2020] [Indexed: 11/17/2022]
Abstract
There is little information on mucins versus potential regulatory factors in the peripheral airway lumen of long-term smokers with (LTS+) and without (LTS-) chronic obstructive pulmonary disease (COPD). We explored these matters in bronchoalveolar lavage (BAL) samples from two study materials, both including LTS+ and LTS- with a very similar historic exposure to tobacco smoke, and healthy non-smokers (HNSs; n=4-20/group). Utilizing slot blot and immunodetection of processed (filtered and centrifuged), as well as unprocessed BAL samples from one of the materials, we compared the quantity and fraction of large complexes of mucins. All LTS displayed an enhanced (median) level of MUC5AC compared with HNS. LTS- displayed a higher level of large MUC5AC complexes than HNS while LTS+ displayed a similar trend. In all LTS, total MUC5AC correlated with blood leukocytes, BAL neutrophil elastase and net gelatinase activity. Large mucin complexes accounted for most MUC5B, without clear group differences. In all LTS, total MUC5B correlated with total MUC5AC and local bacteria. In the same groups, large MUC5B complexes correlated with serum cotinine. MUC1 was increased and correlated with BAL leukocytes in all LTS whereas MUC2 was very low and without clear group differences. Thus, the main part of MUC5AC and MUC5B is present as large complexes in the peripheral airway lumen and historic as well as current exposure to tobacco smoke emerge as potential regulatory factors, regardless of COPD per se. Bacteria, leukocytes and proteinases also constitute potential regulatory factors, of interest for future therapeutic strategies.
Collapse
|
176
|
Stambas J, Lu C, Tripp RA. Innate and adaptive immune responses in respiratory virus infection: implications for the clinic. Expert Rev Respir Med 2020; 14:1141-1147. [PMID: 32762572 DOI: 10.1080/17476348.2020.1807945] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The innate immune response is the first line of defense and consists of physical, chemical and cellular defenses. The adaptive immune response is the second line of defense and is pathogen-specific. Innate immunity occurs immediately while adaptive immunity develops upon pathogen exposure, and is long-lasting, highly specific, and sustained by memory T cells. Respiratory virus infection typically induces effective immunity but over-exuberant responses are associated with pathophysiology. Cytokines expressed in response to viral infection can enhance biological responses, activate, and trigger signaling pathways leading to adaptive immunity Vaccines induce immunity, specifically B and T cell responses. Vaccination is generally efficacious, but for many viruses, our understanding of vaccination strategies and immunity is incomplete or in its infancy. Studies that examine innate and adaptive immune responses to respiratory virus infection will aid vaccine development and may reduce the burden of respiratory viral disease. AREAS COVERED A literature search was performed using PubMed. The search covered: innate, adaptive, respiratory virus, vaccine development, B cell, and T cell. EXPERT OPINION Immunity rests on two pillars, i.e. the innate and adaptive immune system, which function together on different tasks to maintain homeostasis. a better understanding of immunity is necessary for disease prevention and intervention.
Collapse
Affiliation(s)
- John Stambas
- School of Medicine, Deakin University , Melbourne, Australia
| | - Chunni Lu
- School of Medicine, Deakin University , Melbourne, Australia
| | - Ralph A Tripp
- Department of Infectious Diseases, University of Georgia , Athens, GA, USA
| |
Collapse
|
177
|
Laube BL, Carson KA, Evans CM, Richardson VL, Sharpless G, Zeitlin PL, Mogayzel PJ. Changes in mucociliary clearance over time in children with cystic fibrosis. Pediatr Pulmonol 2020; 55:2307-2314. [PMID: 32427408 PMCID: PMC7674244 DOI: 10.1002/ppul.24858] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 05/17/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVES (a) To quantify changes in mucociliary clearance (MCC) over time in children with cystic fibrosis (CF) and the relationship between MCC and rate of infection with Pseudomonas aeruginosa (PA); (b) to determine the impact of MCC on the evolution of CF lung disease; and (c) to explore the role of mucus composition as a determinant of MCC. METHODS Children with CF, who had previously undergone an MCC measurement (visit 1), underwent the following tests 3 to 10 years later: (a) second MCC measurement (visit 2); (b) multiple breath washout to assess ventilation inhomogeneity, expressed as lung clearance index (LCI); (c) high resolution computed tomography lung scan (HRCT); and (d) induced sputum test. Number of PA + cultures/year between visits was documented and mucus dry weight was quantified in the children and adult controls. RESULTS Nineteen children completed both visits. Median time between visits was 4.6 years. Clearance declined 30% between visits. Lower MCC on visit 2 was associated with more PA+ cultures/year between visits. Lower MCC values on visit 1 were associated with higher LCI values and higher HRCT scores on visit 2. Mucus dry weight was significantly higher in children with CF compared with controls. Higher dry weights were associated with lower MCC. CONCLUSIONS Mucociliary clearance declines significantly over time in children with CF. The decline is associated with PA infection rate and is affected by mucus composition. Children with early slowing of MCC appear to be at risk for developing ventilation inhomogeneity and parenchymal lung damage when they are older.
Collapse
Affiliation(s)
- Beth L. Laube
- Department of Pediatrics, Johns Hopkins Medical Institutions, Baltimore, Maryland 21287
| | - Kathryn A. Carson
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Christopher M. Evans
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, 80045
| | - Vanessa L. Richardson
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, 80045
| | - Gail Sharpless
- Department of Pediatrics, Johns Hopkins Medical Institutions, Baltimore, Maryland 21287
| | - Pamela L. Zeitlin
- Department of Pediatrics, National Jewish Health, Denver, Colorado 80206
| | - Peter J. Mogayzel
- Department of Pediatrics, Johns Hopkins Medical Institutions, Baltimore, Maryland 21287
| |
Collapse
|
178
|
Montgomery MT, Sajuthi SP, Cho SH, Everman JL, Rios CL, Goldfarbmuren KC, Jackson ND, Saef B, Cromie M, Eng C, Medina V, Elhawary JR, Oh SS, Rodriguez-Santana J, Vladar EK, Burchard EG, Seibold MA. Genome-Wide Analysis Reveals Mucociliary Remodeling of the Nasal Airway Epithelium Induced by Urban PM 2.5. Am J Respir Cell Mol Biol 2020; 63:172-184. [PMID: 32275839 PMCID: PMC7397762 DOI: 10.1165/rcmb.2019-0454oc] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/09/2020] [Indexed: 01/01/2023] Open
Abstract
Air pollution particulate matter <2.5 μm (PM2.5) exposure is associated with poor respiratory outcomes. Mechanisms underlying PM2.5-induced lung pathobiology are poorly understood but likely involve cellular and molecular changes to the airway epithelium. We extracted and chemically characterized the organic and water-soluble components of air pollution PM2.5 samples, then determined the whole transcriptome response of human nasal mucociliary airway epithelial cultures to a dose series of PM2.5 extracts. We found that PM2.5 organic extract (OE), but not water-soluble extract, elicited a potent, dose-dependent transcriptomic response from the mucociliary epithelium. Exposure to a moderate OE dose modified the expression of 424 genes, including activation of aryl hydrocarbon receptor signaling and an IL-1 inflammatory program. We generated an OE-response gene network defined by eight functional enrichment groups, which exhibited high connectivity through CYP1A1, IL1A, and IL1B. This OE exposure also robustly activated a mucus secretory expression program (>100 genes), which included transcriptional drivers of mucus metaplasia (SPDEF and FOXA3). Exposure to a higher OE dose modified the expression of 1,240 genes and further exacerbated expression responses observed at the moderate dose, including the mucus secretory program. Moreover, the higher OE dose significantly increased the MUC5AC/MUC5B gel-forming mucin expression ratio and strongly downregulated ciliated cell expression programs, including key ciliating cell transcription factors (e.g., FOXJ1 and MCIDAS). Chronic OE stimulation induced mucus metaplasia-like remodeling characterized by increases in MUC5AC+ secretory cells and MUC5AC mucus secretions. This epithelial remodeling may underlie poor respiratory outcomes associated with high PM2.5 exposure.
Collapse
Affiliation(s)
| | | | - Seung-Hyun Cho
- RTI International, Research Triangle Park, North Carolina
| | | | | | | | | | | | | | | | - Vivian Medina
- Centro de Neumología Pediátrica, San Juan, Puerto Rico; and
| | | | | | | | - Eszter K. Vladar
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine and
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | - Esteban G. Burchard
- Department of Medicine and
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California
| | - Max A. Seibold
- Center for Genes, Environment, and Health, and
- Department of Pediatrics, National Jewish Health, Denver, Colorado
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine and
| |
Collapse
|
179
|
Hou YJ, Okuda K, Edwards CE, Martinez DR, Asakura T, Dinnon KH, Kato T, Lee RE, Yount BL, Mascenik TM, Chen G, Olivier KN, Ghio A, Tse LV, Leist SR, Gralinski LE, Schäfer A, Dang H, Gilmore R, Nakano S, Sun L, Fulcher ML, Livraghi-Butrico A, Nicely NI, Cameron M, Cameron C, Kelvin DJ, de Silva A, Margolis DM, Markmann A, Bartelt L, Zumwalt R, Martinez FJ, Salvatore SP, Borczuk A, Tata PR, Sontake V, Kimple A, Jaspers I, O'Neal WK, Randell SH, Boucher RC, Baric RS. SARS-CoV-2 Reverse Genetics Reveals a Variable Infection Gradient in the Respiratory Tract. Cell 2020; 182:429-446.e14. [PMID: 32526206 DOI: 10.1016/j.cell.2020.05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/11/2020] [Accepted: 05/20/2020] [Indexed: 05/26/2023]
Abstract
The mode of acquisition and causes for the variable clinical spectrum of coronavirus disease 2019 (COVID-19) remain unknown. We utilized a reverse genetics system to generate a GFP reporter virus to explore severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogenesis and a luciferase reporter virus to demonstrate sera collected from SARS and COVID-19 patients exhibited limited cross-CoV neutralization. High-sensitivity RNA in situ mapping revealed the highest angiotensin-converting enzyme 2 (ACE2) expression in the nose with decreasing expression throughout the lower respiratory tract, paralleled by a striking gradient of SARS-CoV-2 infection in proximal (high) versus distal (low) pulmonary epithelial cultures. COVID-19 autopsied lung studies identified focal disease and, congruent with culture data, SARS-CoV-2-infected ciliated and type 2 pneumocyte cells in airway and alveolar regions, respectively. These findings highlight the nasal susceptibility to SARS-CoV-2 with likely subsequent aspiration-mediated virus seeding to the lung in SARS-CoV-2 pathogenesis. These reagents provide a foundation for investigations into virus-host interactions in protective immunity, host susceptibility, and virus pathogenesis.
Collapse
Affiliation(s)
- Yixuan J Hou
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenichi Okuda
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Caitlin E Edwards
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David R Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Takanori Asakura
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth H Dinnon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Takafumi Kato
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rhianna E Lee
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Boyd L Yount
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Teresa M Mascenik
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gang Chen
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth N Olivier
- Laboratory of Chronic Airway Infection, Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrew Ghio
- National Health and Environmental Effects Research Laboratory, Environmental Protection Agency, Chapel Hill, NC, USA
| | - Longping V Tse
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lisa E Gralinski
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hong Dang
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rodney Gilmore
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Satoko Nakano
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ling Sun
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - M Leslie Fulcher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Nathan I Nicely
- Protein Expression and Purification Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mark Cameron
- Department of Population and Quantitative Health Science, Case Western Reserve University, Cleveland, OH, USA
| | - Cheryl Cameron
- Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA
| | - David J Kelvin
- Department of Microbiology and Immunology, Canadian Center for Vaccinology, Dalhousie University, Halifax, NS, Canada; Laboratory of Immunology, Shantou University Medical College, Shantou, Guangdong, China
| | - Aravinda de Silva
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David M Margolis
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alena Markmann
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Luther Bartelt
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ross Zumwalt
- Department of Pathology, University of New Mexico, Albuquerque, NM, USA
| | - Fernando J Martinez
- Division of Pulmonary and Critical Care Medicine, Joan & Sanford I. Weill Medical College of Cornell University, New York, NY, USA
| | - Steven P Salvatore
- Department of Pathology, Joan & Sanford I. Weill Medical College of Cornell University, New York, NY, USA
| | - Alain Borczuk
- Department of Pathology, Joan & Sanford I. Weill Medical College of Cornell University, New York, NY, USA
| | - Purushothama R Tata
- Department of Cell Biology, Regeneration Next Initiative, Duke University Medical Center, Durham, NC, USA
| | - Vishwaraj Sontake
- Department of Cell Biology, Regeneration Next Initiative, Duke University Medical Center, Durham, NC, USA
| | - Adam Kimple
- Department of Otolaryngology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ilona Jaspers
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wanda K O'Neal
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott H Randell
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
180
|
Hou YJ, Okuda K, Edwards CE, Martinez DR, Asakura T, Dinnon KH, Kato T, Lee RE, Yount BL, Mascenik TM, Chen G, Olivier KN, Ghio A, Tse LV, Leist SR, Gralinski LE, Schäfer A, Dang H, Gilmore R, Nakano S, Sun L, Fulcher ML, Livraghi-Butrico A, Nicely NI, Cameron M, Cameron C, Kelvin DJ, de Silva A, Margolis DM, Markmann A, Bartelt L, Zumwalt R, Martinez FJ, Salvatore SP, Borczuk A, Tata PR, Sontake V, Kimple A, Jaspers I, O'Neal WK, Randell SH, Boucher RC, Baric RS. SARS-CoV-2 Reverse Genetics Reveals a Variable Infection Gradient in the Respiratory Tract. Cell 2020; 182:429-446.e14. [PMID: 32526206 PMCID: PMC7250779 DOI: 10.1016/j.cell.2020.05.042] [Citation(s) in RCA: 1145] [Impact Index Per Article: 229.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/11/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023]
Abstract
The mode of acquisition and causes for the variable clinical spectrum of coronavirus disease 2019 (COVID-19) remain unknown. We utilized a reverse genetics system to generate a GFP reporter virus to explore severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogenesis and a luciferase reporter virus to demonstrate sera collected from SARS and COVID-19 patients exhibited limited cross-CoV neutralization. High-sensitivity RNA in situ mapping revealed the highest angiotensin-converting enzyme 2 (ACE2) expression in the nose with decreasing expression throughout the lower respiratory tract, paralleled by a striking gradient of SARS-CoV-2 infection in proximal (high) versus distal (low) pulmonary epithelial cultures. COVID-19 autopsied lung studies identified focal disease and, congruent with culture data, SARS-CoV-2-infected ciliated and type 2 pneumocyte cells in airway and alveolar regions, respectively. These findings highlight the nasal susceptibility to SARS-CoV-2 with likely subsequent aspiration-mediated virus seeding to the lung in SARS-CoV-2 pathogenesis. These reagents provide a foundation for investigations into virus-host interactions in protective immunity, host susceptibility, and virus pathogenesis.
Collapse
Affiliation(s)
- Yixuan J Hou
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenichi Okuda
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Caitlin E Edwards
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David R Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Takanori Asakura
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth H Dinnon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Takafumi Kato
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rhianna E Lee
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Boyd L Yount
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Teresa M Mascenik
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gang Chen
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth N Olivier
- Laboratory of Chronic Airway Infection, Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrew Ghio
- National Health and Environmental Effects Research Laboratory, Environmental Protection Agency, Chapel Hill, NC, USA
| | - Longping V Tse
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lisa E Gralinski
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hong Dang
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rodney Gilmore
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Satoko Nakano
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ling Sun
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - M Leslie Fulcher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Nathan I Nicely
- Protein Expression and Purification Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mark Cameron
- Department of Population and Quantitative Health Science, Case Western Reserve University, Cleveland, OH, USA
| | - Cheryl Cameron
- Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA
| | - David J Kelvin
- Department of Microbiology and Immunology, Canadian Center for Vaccinology, Dalhousie University, Halifax, NS, Canada; Laboratory of Immunology, Shantou University Medical College, Shantou, Guangdong, China
| | - Aravinda de Silva
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David M Margolis
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alena Markmann
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Luther Bartelt
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ross Zumwalt
- Department of Pathology, University of New Mexico, Albuquerque, NM, USA
| | - Fernando J Martinez
- Division of Pulmonary and Critical Care Medicine, Joan & Sanford I. Weill Medical College of Cornell University, New York, NY, USA
| | - Steven P Salvatore
- Department of Pathology, Joan & Sanford I. Weill Medical College of Cornell University, New York, NY, USA
| | - Alain Borczuk
- Department of Pathology, Joan & Sanford I. Weill Medical College of Cornell University, New York, NY, USA
| | - Purushothama R Tata
- Department of Cell Biology, Regeneration Next Initiative, Duke University Medical Center, Durham, NC, USA
| | - Vishwaraj Sontake
- Department of Cell Biology, Regeneration Next Initiative, Duke University Medical Center, Durham, NC, USA
| | - Adam Kimple
- Department of Otolaryngology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ilona Jaspers
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wanda K O'Neal
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott H Randell
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
181
|
Reid AT, Nichol KS, Chander Veerati P, Moheimani F, Kicic A, Stick SM, Bartlett NW, Grainge CL, Wark PAB, Hansbro PM, Knight DA. Blocking Notch3 Signaling Abolishes MUC5AC Production in Airway Epithelial Cells from Individuals with Asthma. Am J Respir Cell Mol Biol 2020; 62:513-523. [PMID: 31922915 DOI: 10.1165/rcmb.2019-0069oc] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In asthma, goblet cell numbers are increased within the airway epithelium, perpetuating the production of mucus that is more difficult to clear and results in airway mucus plugging. Notch1, Notch2, or Notch3, or a combination of these has been shown to influence the differentiation of airway epithelial cells. How the expression of specific Notch isoforms differs in fully differentiated adult asthmatic epithelium and whether Notch influences mucin production after differentiation is currently unknown. We aimed to quantify different Notch isoforms in the airway epithelium of individuals with severe asthma and to examine the impact of Notch signaling on mucin MUC5AC. Human lung sections and primary bronchial epithelial cells from individuals with and without asthma were used in this study. Primary bronchial epithelial cells were differentiated at the air-liquid interface for 28 days. Notch isoform expression was analyzed by Taqman quantitative PCR. Immunohistochemistry was used to localize and quantify Notch isoforms in human airway sections. Notch signaling was inhibited in vitro using dibenzazepine or Notch3-specific siRNA, followed by analysis of MUC5AC. NOTCH3 was highly expressed in asthmatic airway epithelium compared with nonasthmatic epithelium. Dibenzazepine significantly reduced MUC5AC production in air-liquid interface cultures of primary bronchial epithelial cells concomitantly with suppression of NOTCH3 intracellular domain protein. Specific knockdown using NOTCH3 siRNA recapitulated the dibenzazepine-induced reduction in MUC5AC. We demonstrate that NOTCH3 is a regulator of MUC5AC production. Increased NOTCH3 signaling in the asthmatic airway epithelium may therefore be an underlying driver of excess MUC5AC production.
Collapse
Affiliation(s)
- Andrew T Reid
- School of Biomedical Sciences and Pharmacy.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and
| | - Kristy S Nichol
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and.,School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Punnam Chander Veerati
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and.,School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Fatemeh Moheimani
- School of Biomedical Sciences and Pharmacy.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and
| | - Anthony Kicic
- School of Paediatrics and Child Health.,Telethon Kids Institute, and.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia, Nedlands, Western Australia, Australia.,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia.,Occupation and Environment, School of Public Health, Curtin University, Bentley, Western Australia, Australia
| | - Stephen M Stick
- School of Paediatrics and Child Health.,Telethon Kids Institute, and.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia, Nedlands, Western Australia, Australia.,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia
| | - Nathan W Bartlett
- School of Biomedical Sciences and Pharmacy.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and
| | - Chris L Grainge
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and.,School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia.,Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, New South Wales, Australia; and
| | - Peter A B Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and.,School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia.,Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, New South Wales, Australia; and
| | - Philip M Hansbro
- School of Biomedical Sciences and Pharmacy.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and.,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
182
|
Li J, Ma J, Tian Y, Zhao P, Liu X, Dong H, Zheng W, Feng S, Zhang L, Wu M, Zhu L, Liu S, Zhao D. Effective-component compatibility of Bufei Yishen formula II inhibits mucus hypersecretion of chronic obstructive pulmonary disease rats by regulating EGFR/PI3K/mTOR signaling. JOURNAL OF ETHNOPHARMACOLOGY 2020; 257:112796. [PMID: 32344236 DOI: 10.1016/j.jep.2020.112796] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/07/2020] [Accepted: 03/23/2020] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The effective-component compatibility of Bufei Yishen formula I (ECC-BYF I), a combination of 10 compounds, including total ginsenosides, astragaloside IV, icariin, and paeonol, etc., is derived from Bufei Yishen formula (BYF). The efficacy and safety of ECC-BYF I is equal to BYF. However, the composition of ECC-BYF I needs to be further optimized. Based on the beneficial effects of BYF and ECC-BYF I on chronic obstructive pulmonary disease (COPD), this study aimed to optimize the composition of ECC-BYF I and to explore the effects and mechanisms of optimized ECC-BYF I (ECC-BYF II) on mucus hypersecretion in COPD rats. MATERIALS AND METHODS ECC-BYF I was initially optimized to six groups: optimized ECC-BYF I (OECC-BYF I)-A~F. Based on a COPD rat model, the effects of OECC-BYF I-A~F on COPD rats were evaluated. R-value comprehensive evaluation was used to evaluate the optimal formula, which was named ECC-BYF II. The changes in goblet cells and expression of mucins and the mRNA and proteins involved in the epidermal growth factor receptor/phosphoinositide-3-kinase/mammalian target of rapamycin (EGFR/PI3K/mTOR) pathway were evaluated to explore the effects and mechanisms of ECC-BYF II on mucus hypersecretion. RESULTS ECC-BYF I and its six optimized groups, OECC-BYF I-A~F, had beneficial effects on COPD rats in improving pulmonary function and lung tissue pathology, reducing inflammation and oxidative stress, and improving the protease/anti-protease imbalance and collagen deposition. R-value comprehensive evaluation found that OECC-BYF I-E (paeonol, icariin, nobiletin, total ginsenoside, astragaloside IV) was the optimal formula for improving the comprehensive effects (lung function: VT, MV, PEF, EF50, FVC, FEV 0.1, FEV 0.1/FVC; histological changes: MLI, MAN; IL-1β, IL-6, TNF-α, MMP-9, TIMP-1, T-AOC, LPO, MUC5AC, Collagen I and Collagen III). OECC-BYF I-E was named ECC-BYF II. Importantly, the effect of ECC-BYF II showed no significant difference from BYF and ECC-BYF I. ECC-BYF II inhibited mucus hypersecretion in COPD rats, which manifested as reducing the expression of MUC5AC and MUC5B and the hyperplasia rate of goblet cells. The mRNA and protein expression levels of EGFR, PI3K, Akt, and mTOR were increased in COPD rats and were obviously downregulated after ECC-BYF II administration. CONCLUSION ECC-BYF II, which consists of paeonol, icariin, nobiletin, total ginsenoside and astragaloside IV, has beneficial effects equivalent to BYF and ECC-BYF I on COPD rats. ECC-BYF II significantly inhibited mucus hypersecretion, which may be related to the regulation of the EGFR/PI3K/mTOR pathway.
Collapse
Affiliation(s)
- Jiansheng Li
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R., 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| | - Jindi Ma
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R., 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| | - Yange Tian
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R., 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| | - Peng Zhao
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R., 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| | - Xuefang Liu
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R., 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| | - Haoran Dong
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R., 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| | - Wanchun Zheng
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R., 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| | - Suxiang Feng
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R., 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| | - Lanxi Zhang
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R., 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| | - Mingming Wu
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R., 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| | - Lihua Zhu
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R., 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| | - Shuai Liu
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R., 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| | - Di Zhao
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R., 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| |
Collapse
|
183
|
Ramsey KA, Chen ACH, Radicioni G, Lourie R, Martin M, Broomfield A, Sheng YH, Hasnain SZ, Radford-Smith G, Simms LA, Burr L, Thornton DJ, Bowler SD, Livengood S, Ceppe A, Knowles MR, Noone PG, Donaldson SH, Hill DB, Ehre C, Button B, Alexis NE, Kesimer M, Boucher RC, McGuckin MA. Airway Mucus Hyperconcentration in Non-Cystic Fibrosis Bronchiectasis. Am J Respir Crit Care Med 2020; 201:661-670. [PMID: 31765597 DOI: 10.1164/rccm.201906-1219oc] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Rationale: Non-cystic fibrosis bronchiectasis is characterized by airway mucus accumulation and sputum production, but the role of mucus concentration in the pathogenesis of these abnormalities has not been characterized.Objectives: This study was designed to: 1) measure mucus concentration and biophysical properties of bronchiectasis mucus; 2) identify the secreted mucins contained in bronchiectasis mucus; 3) relate mucus properties to airway epithelial mucin RNA/protein expression; and 4) explore relationships between mucus hyperconcentration and disease severity.Methods: Sputum samples were collected from subjects with bronchiectasis, with and without chronic erythromycin administration, and healthy control subjects. Sputum percent solid concentrations, total and individual mucin concentrations, osmotic pressures, rheological properties, and inflammatory mediators were measured. Intracellular mucins were measured in endobronchial biopsies by immunohistochemistry and gene expression. MUC5B (mucin 5B) polymorphisms were identified by quantitative PCR. In a replication bronchiectasis cohort, spontaneously expectorated and hypertonic saline-induced sputa were collected, and mucus/mucin concentrations were measured.Measurements and Main Results: Bronchiectasis sputum exhibited increased percent solids, total and individual (MUC5B and MUC5AC) mucin concentrations, osmotic pressure, and elastic and viscous moduli compared with healthy sputum. Within subjects with bronchiectasis, sputum percent solids correlated inversely with FEV1 and positively with bronchiectasis extent, as measured by high-resolution computed tomography, and inflammatory mediators. No difference was detected in MUC5B rs35705950 SNP allele frequency between bronchiectasis and healthy individuals. Hypertonic saline inhalation acutely reduced non-cystic fibrosis bronchiectasis mucus concentration by 5%.Conclusions: Hyperconcentrated airway mucus is characteristic of subjects with bronchiectasis, likely contributes to disease pathophysiology, and may be a target for pharmacotherapy.
Collapse
Affiliation(s)
- Kathryn A Ramsey
- Marsico Lung Institute.,Department of Pediatrics, Pediatric Respiratory Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Alice C H Chen
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute, Translational Research Institute, and.,School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | | | - Rohan Lourie
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute, Translational Research Institute, and.,Department of Anatomical Pathology, Mater Misericordiae Limited, South Brisbane, Queensland, Australia
| | - Megan Martin
- Department of Respiratory Medicine, Mater Adult Hospital, South Brisbane, Queensland, Australia
| | - Amy Broomfield
- Department of Anatomical Pathology, Mater Misericordiae Limited, South Brisbane, Queensland, Australia
| | - Yong H Sheng
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute, Translational Research Institute, and
| | - Sumaira Z Hasnain
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute, Translational Research Institute, and
| | - Graham Radford-Smith
- Inflammatory Bowel Diseases Research Laboratory, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Lisa A Simms
- Inflammatory Bowel Diseases Research Laboratory, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Lucy Burr
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute, Translational Research Institute, and.,Department of Respiratory Medicine, Mater Adult Hospital, South Brisbane, Queensland, Australia
| | - David J Thornton
- Wellcome Trust Centre for Cell-Matrix Research, Lydia Becker Institute for Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; and
| | - Simon D Bowler
- Department of Respiratory Medicine, Mater Adult Hospital, South Brisbane, Queensland, Australia
| | | | | | | | | | | | - David B Hill
- Marsico Lung Institute.,Department of Physics and Astronomy, and
| | | | | | - Neil E Alexis
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | | - Michael A McGuckin
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute, Translational Research Institute, and.,Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
184
|
Ganjian H, Rajput C, Elzoheiry M, Sajjan U. Rhinovirus and Innate Immune Function of Airway Epithelium. Front Cell Infect Microbiol 2020; 10:277. [PMID: 32637363 PMCID: PMC7316886 DOI: 10.3389/fcimb.2020.00277] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
Airway epithelial cells, which lines the respiratory mucosa is in direct contact with the environment. Airway epithelial cells are the primary target for rhinovirus and other inhaled pathogens. In response to rhinovirus infection, airway epithelial cells mount both pro-inflammatory responses and antiviral innate immune responses to clear the virus efficiently. Some of the antiviral responses include the expression of IFNs, endoplasmic reticulum stress induced unfolded protein response and autophagy. Airway epithelial cells also recruits other innate immune cells to establish antiviral state and resolve the inflammation in the lungs. In patients with chronic lung disease, these responses may be either defective or induced in excess leading to deficient clearing of virus and sustained inflammation. In this review, we will discuss the mechanisms underlying antiviral innate immunity and the dysregulation of some of these mechanisms in patients with chronic lung diseases.
Collapse
Affiliation(s)
- Haleh Ganjian
- Department of Thoracic Medicine and Surgery, Lewis Katz Medical School, Temple University, Philadelphia, PA, United States
| | - Charu Rajput
- Department of Thoracic Medicine and Surgery, Lewis Katz Medical School, Temple University, Philadelphia, PA, United States
| | - Manal Elzoheiry
- Department of Thoracic Medicine and Surgery, Lewis Katz Medical School, Temple University, Philadelphia, PA, United States
| | - Umadevi Sajjan
- Department of Thoracic Medicine and Surgery, Lewis Katz Medical School, Temple University, Philadelphia, PA, United States
- Department of Physiology, Lewis Katz Medical School, Temple University, Philadelphia, PA, United States
| |
Collapse
|
185
|
Chen G, Sun L, Kato T, Okuda K, Martino MB, Abzhanova A, Lin JM, Gilmore RC, Batson BD, O'Neal YK, Volmer AS, Dang H, Deng Y, Randell SH, Button B, Livraghi-Butrico A, Kesimer M, Ribeiro CM, O'Neal WK, Boucher RC. IL-1β dominates the promucin secretory cytokine profile in cystic fibrosis. J Clin Invest 2020; 129:4433-4450. [PMID: 31524632 DOI: 10.1172/jci125669] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 07/18/2019] [Indexed: 02/06/2023] Open
Abstract
Cystic fibrosis (CF) lung disease is characterized by early and persistent mucus accumulation and neutrophilic inflammation in the distal airways. Identification of the factors in CF mucopurulent secretions that perpetuate CF mucoinflammation may provide strategies for novel CF pharmacotherapies. We show that IL-1β, with IL-1α, dominated the mucin prosecretory activities of supernatants of airway mucopurulent secretions (SAMS). Like SAMS, IL-1β alone induced MUC5B and MUC5AC protein secretion and mucus hyperconcentration in CF human bronchial epithelial (HBE) cells. Mechanistically, IL-1β induced the sterile α motif-pointed domain containing ETS transcription factor (SPDEF) and downstream endoplasmic reticulum to nucleus signaling 2 (ERN2) to upregulate mucin gene expression. Increased mRNA levels of IL1B, SPDEF, and ERN2 were associated with increased MUC5B and MUC5AC expression in the distal airways of excised CF lungs. Administration of an IL-1 receptor antagonist (IL-1Ra) blocked SAMS-induced expression of mucins and proinflammatory mediators in CF HBE cells. In conclusion, IL-1α and IL-1β are upstream components of a signaling pathway, including IL-1R1 and downstream SPDEF and ERN2, that generate a positive feedback cycle capable of producing persistent mucus hyperconcentration and IL-1α and/or IL-1β-mediated neutrophilic inflammation in the absence of infection in CF airways. Targeting this pathway therapeutically may ameliorate mucus obstruction and inflammation-induced structural damage in young CF children.
Collapse
Affiliation(s)
- Gang Chen
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ling Sun
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Research Center of Regeneration Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Takafumi Kato
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kenichi Okuda
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mary B Martino
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Aiman Abzhanova
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jennifer M Lin
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rodney C Gilmore
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Bethany D Batson
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yvonne K O'Neal
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Allison S Volmer
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Hong Dang
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yangmei Deng
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Scott H Randell
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Brian Button
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alessandra Livraghi-Butrico
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mehmet Kesimer
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Carla Mp Ribeiro
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Wanda K O'Neal
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Richard C Boucher
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
186
|
Invernizzi R, Lloyd CM, Molyneaux PL. Respiratory microbiome and epithelial interactions shape immunity in the lungs. Immunology 2020; 160:171-182. [PMID: 32196653 PMCID: PMC7218407 DOI: 10.1111/imm.13195] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 12/11/2022] Open
Abstract
The airway epithelium represents a physical barrier to the external environment acting as the first line of defence against potentially harmful environmental stimuli including microbes and allergens. However, lung epithelial cells are increasingly recognized as active effectors of microbial defence, contributing to both innate and adaptive immune function in the lower respiratory tract. These cells express an ample repertoire of pattern recognition receptors with specificity for conserved microbial and host motifs. Modern molecular techniques have uncovered the complexity of the lower respiratory tract microbiome. The interaction between the microbiota and the airway epithelium is key to understanding how stable immune homeostasis is maintained. Loss of epithelial integrity following exposure to infection can result in the onset of inflammation in susceptible individuals and may culminate in lung disease. Here we discuss the current knowledge regarding the molecular and cellular mechanisms by which the pulmonary epithelium interacts with the lung microbiome in shaping immunity in the lung. Specifically, we focus on the interactions between the lung microbiome and the cells of the conducting airways in modulating immune cell regulation, and how defects in barrier structure and function may culminate in lung disease. Understanding these interactions is fundamental in the search for more effective therapies for respiratory diseases.
Collapse
Affiliation(s)
- Rachele Invernizzi
- Inflammation, Repair and Development SectionNational Heart and Lung InstituteImperial CollegeLondonUK
| | - Clare M. Lloyd
- Inflammation, Repair and Development SectionNational Heart and Lung InstituteImperial CollegeLondonUK
| | - Philip L. Molyneaux
- Inflammation, Repair and Development SectionNational Heart and Lung InstituteImperial CollegeLondonUK
- Department of Respiratory MedicineInterstitial Lung Disease UnitRoyal Brompton HospitalLondonUK
| |
Collapse
|
187
|
Stuart WD, Guo M, Fink-Baldauf IM, Coleman AM, Clancy JP, Mall MA, Lim FY, Brewington JJ, Maeda Y. CRISPRi-mediated functional analysis of lung disease-associated loci at non-coding regions. NAR Genom Bioinform 2020; 2:lqaa036. [PMID: 32500120 PMCID: PMC7252574 DOI: 10.1093/nargab/lqaa036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 04/24/2020] [Accepted: 05/08/2020] [Indexed: 02/07/2023] Open
Abstract
Genome-wide association studies have identified lung disease-associated loci; however, the functions of such loci are not well understood in part because the majority of such loci are located at non-coding regions. Hi-C, ChIP-seq and eQTL data predict potential roles (e.g. enhancer) of such loci; however, they do not elucidate the molecular function. To determine whether these loci function as gene-regulatory regions, CRISPR interference (CRISPRi; CRISPR/dCas9-KRAB) has been recently used. Here, we applied CRISPRi along with Hi-C, ChIP-seq and eQTL to determine the functional roles of loci established as highly associated with asthma, cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Notably, Hi-C, ChIP-seq and eQTL predicted that non-coding regions located at chromosome 19q13 or chromosome 17q21 harboring single-nucleotide polymorphisms (SNPs) linked to asthma/CF/COPD and chromosome 11p15 harboring an SNP linked to IPF interact with nearby genes and function as enhancers; however, CRISPRi indicated that the regions with rs1800469, rs2241712, rs12603332 and rs35705950, but not others, regulate the expression of nearby genes (single or multiple genes). These data indicate that CRISPRi is useful to precisely determine the roles of non-coding regions harboring lung disease-associated loci as to whether they function as gene-regulatory regions at a genomic level.
Collapse
Affiliation(s)
- William D Stuart
- Division of Neonatology, Perinatal and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Minzhe Guo
- Division of Neonatology, Perinatal and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Iris M Fink-Baldauf
- Division of Neonatology, Perinatal and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Alan M Coleman
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.,Cincinnati Fetal Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - John P Clancy
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.,Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Marcus A Mall
- Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany.,Berlin Institute of Health, Berlin, 10178, Germany.,German Center for Lung Research, Berlin, 13353, Germany
| | - Foong-Yen Lim
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.,Cincinnati Fetal Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - John J Brewington
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.,Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yutaka Maeda
- Division of Neonatology, Perinatal and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
188
|
Dissecting the cellular specificity of smoking effects and reconstructing lineages in the human airway epithelium. Nat Commun 2020; 11:2485. [PMID: 32427931 PMCID: PMC7237663 DOI: 10.1038/s41467-020-16239-z] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 04/08/2020] [Indexed: 12/19/2022] Open
Abstract
Cigarette smoke first interacts with the lung through the cellularly diverse airway epithelium and goes on to drive development of most chronic lung diseases. Here, through single cell RNA-sequencing analysis of the tracheal epithelium from smokers and non-smokers, we generate a comprehensive atlas of epithelial cell types and states, connect these into lineages, and define cell-specific responses to smoking. Our analysis infers multi-state lineages that develop into surface mucus secretory and ciliated cells and then contrasts these to the unique specification of submucosal gland (SMG) cells. Accompanying knockout studies reveal that tuft-like cells are the likely progenitor of both pulmonary neuroendocrine cells and CFTR-rich ionocytes. Our smoking analysis finds that all cell types, including protected stem and SMG populations, are affected by smoking through both pan-epithelial smoking response networks and hundreds of cell-specific response genes, redefining the penetrance and cellular specificity of smoking effects on the human airway epithelium.
Collapse
|
189
|
Rao W, Wang S, Duleba M, Niroula S, Goller K, Xie J, Mahalingam R, Neupane R, Liew AA, Vincent M, Okuda K, O'Neal WK, Boucher RC, Dickey BF, Wechsler ME, Ibrahim O, Engelhardt JF, Mertens TCJ, Wang W, Jyothula SSK, Crum CP, Karmouty-Quintana H, Parekh KR, Metersky ML, McKeon FD, Xian W. Regenerative Metaplastic Clones in COPD Lung Drive Inflammation and Fibrosis. Cell 2020; 181:848-864.e18. [PMID: 32298651 PMCID: PMC7294989 DOI: 10.1016/j.cell.2020.03.047] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/26/2019] [Accepted: 03/20/2020] [Indexed: 12/30/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive condition of chronic bronchitis, small airway obstruction, and emphysema that represents a leading cause of death worldwide. While inflammation, fibrosis, mucus hypersecretion, and metaplastic epithelial lesions are hallmarks of this disease, their origins and dependent relationships remain unclear. Here we apply single-cell cloning technologies to lung tissue of patients with and without COPD. Unlike control lungs, which were dominated by normal distal airway progenitor cells, COPD lungs were inundated by three variant progenitors epigenetically committed to distinct metaplastic lesions. When transplanted to immunodeficient mice, these variant clones induced pathology akin to the mucous and squamous metaplasia, neutrophilic inflammation, and fibrosis seen in COPD. Remarkably, similar variants pre-exist as minor constituents of control and fetal lung and conceivably act in normal processes of immune surveillance. However, these same variants likely catalyze the pathologic and progressive features of COPD when expanded to high numbers.
Collapse
Affiliation(s)
- Wei Rao
- Stem Cell Center, Department of Biology and Biochemistry, University of Houston, Houston, TX 77003, USA
| | - Shan Wang
- Stem Cell Center, Department of Biology and Biochemistry, University of Houston, Houston, TX 77003, USA
| | - Marcin Duleba
- Stem Cell Center, Department of Biology and Biochemistry, University of Houston, Houston, TX 77003, USA
| | - Suchan Niroula
- Stem Cell Center, Department of Biology and Biochemistry, University of Houston, Houston, TX 77003, USA
| | - Kristina Goller
- Stem Cell Center, Department of Biology and Biochemistry, University of Houston, Houston, TX 77003, USA
| | - Jingzhong Xie
- Stem Cell Center, Department of Biology and Biochemistry, University of Houston, Houston, TX 77003, USA
| | - Rajasekaran Mahalingam
- Stem Cell Center, Department of Biology and Biochemistry, University of Houston, Houston, TX 77003, USA
| | - Rahul Neupane
- Stem Cell Center, Department of Biology and Biochemistry, University of Houston, Houston, TX 77003, USA
| | - Audrey-Ann Liew
- Stem Cell Center, Department of Biology and Biochemistry, University of Houston, Houston, TX 77003, USA
| | | | - Kenichi Okuda
- Marsico Lung Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Wanda K O'Neal
- Marsico Lung Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Richard C Boucher
- Marsico Lung Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Burton F Dickey
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Omar Ibrahim
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - John F Engelhardt
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Tinne C J Mertens
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Wei Wang
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Soma S K Jyothula
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Christopher P Crum
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02215, USA
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kalpaj R Parekh
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Department of Surgery, Division of Cardiothoracic Surgery, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Mark L Metersky
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Frank D McKeon
- Stem Cell Center, Department of Biology and Biochemistry, University of Houston, Houston, TX 77003, USA.
| | - Wa Xian
- Stem Cell Center, Department of Biology and Biochemistry, University of Houston, Houston, TX 77003, USA.
| |
Collapse
|
190
|
Kato K, Chang EH, Chen Y, Lu W, Kim MM, Niihori M, Hecker L, Kim KC. MUC1 contributes to goblet cell metaplasia and MUC5AC expression in response to cigarette smoke in vivo. Am J Physiol Lung Cell Mol Physiol 2020; 319:L82-L90. [PMID: 32401676 DOI: 10.1152/ajplung.00049.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Goblet cell metaplasia (GCM) and mucin overproduction are a hallmark of chronic rhinosinusitis (CRS) and chronic obstructive pulmonary disease (COPD). In the airways, cigarette smoke (CS) induces activation of the epidermal growth factor receptor (EGFR) leading to GCM and overexpression of the gel-forming mucin MUC5AC. Although previous studies have demonstrated that a membrane-bound mucin, MUC1, modulates the activation of CS-induced EGFR, the role of MUC1 in CS-induced GCM and mucin overproduction has not been explored. In response to CS exposure, wild-type (WT) rats displayed Muc1 translocation from the apical surface of airway epithelium to the intracellular compartment of hyperplastic intermediate cells, EGFR phosphorylation, GCM, and Muc5ac overproduction. Similarly, human CRS sinonasal tissues demonstrated hyperplasia of intermediate cells enriched with MUC1 in the intracellular compartment, which was accompanied by GCM and increased MUC5AC expression. To further evaluate the role of Muc1 in vivo, a Muc1 knockout (KO) rat (MUC in humans and Muc in animals) was developed. In contrast to WT littermates, Muc1-KO rats exhibited no activation of EGFR, and were protected from GCM and Muc5ac overproduction. Genetic knockdown of MUC1 in human lung or Muc1 knockout in primary rat airway epithelial cells led to significantly diminished EGF-induced MUC5AC production. Together, these findings suggest that MUC1-dependent EGFR activation mediates CS-induced GCM and mucin overproduction. Strategies designed to suppress MUC1-dependent EGFR activation may provide a novel therapeutic approach for treating mucin hypersecretion in CRS and COPD.
Collapse
Affiliation(s)
- Kosuke Kato
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Eugene H Chang
- Department of Otolaryngology, University of Arizona College of Medicine, Tucson, Arizona
| | - Yin Chen
- Department of Pharmacology and Toxicology, University of Arizona College of Pharmacy, Tucson, Arizona
| | - Wenju Lu
- Department of Medicine, National Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Marianne M Kim
- Department of Otolaryngology, University of Arizona College of Medicine, Tucson, Arizona
| | - Maki Niihori
- Department of Otolaryngology, University of Arizona College of Medicine, Tucson, Arizona
| | - Louise Hecker
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Arizona College of Medicine, Tucson, Arizona.,Southern Arizona Veterans Affairs Health Care System, Tucson, Arizona
| | - Kwang Chul Kim
- Department of Otolaryngology, University of Arizona College of Medicine, Tucson, Arizona
| |
Collapse
|
191
|
Fakih D, Rodriguez-Piñeiro AM, Trillo-Muyo S, Evans CM, Ermund A, Hansson GC. Normal murine respiratory tract has its mucus concentrated in clouds based on the Muc5b mucin. Am J Physiol Lung Cell Mol Physiol 2020; 318:L1270-L1279. [PMID: 32348677 DOI: 10.1152/ajplung.00485.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The organization of the normal airway mucus system differs in small experimental animals from that in humans and large mammals. To address normal murine airway mucociliary clearance, Alcian blue-stained mucus transport was measured ex vivo on tracheal tissues of naïve C57BL/6, Muc5b-/-, Muc5ac-/-, and EGFP-tagged Muc5b reporter mice. Close to the larynx with a few submucosal glands, the mucus appeared as thick bundles. More distally in the trachea and in large bronchi, Alcian blue-stained mucus was organized in cloud-like formations based on the Muc5b mucin. On tilted tissue, the mucus clouds moved upward toward the larynx with an average velocity of 12 µm/s compared with 20 µm/s for beads not associated with clouds. In Muc5ac-/- mice, Muc5b formed mucus strands attached to the tissue surface, while in Muc5b-/- mice, Muc5ac had a more variable appearance. The normal mouse lung mucus thus appears as discontinuous clouds, clearly different from the stagnant mucus layer in diseased lungs.
Collapse
Affiliation(s)
- Dalia Fakih
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | | | - Sergio Trillo-Muyo
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | | | - Anna Ermund
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Gunnar C Hansson
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
192
|
Denneny E, Sahota J, Beatson R, Thornton D, Burchell J, Porter J. Mucins and their receptors in chronic lung disease. Clin Transl Immunology 2020; 9:e01120. [PMID: 32194962 PMCID: PMC7077995 DOI: 10.1002/cti2.1120] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 02/12/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022] Open
Abstract
There is growing recognition that mucus and mucin biology have a considerable impact on respiratory health, and subsequent global morbidity and mortality. Mucins play a critical role in chronic lung disease, not only by providing a physical barrier and clearing pathogens, but also in immune homeostasis. The aim of this review is to familiarise the reader with the role of mucins in both lung health and disease, with particular focus on function in immunity, infection and inflammation. We will also discuss their receptors, termed glycan-binding proteins, and how they provide an attractive prospect for therapeutic intervention.
Collapse
Affiliation(s)
- Emma Denneny
- Leukocyte Trafficking Laboratory Centre for Inflammation and Tissue Repair UCL Respiratory Rayne Institute University College London London UK
| | - Jagdeep Sahota
- Leukocyte Trafficking Laboratory Centre for Inflammation and Tissue Repair UCL Respiratory Rayne Institute University College London London UK
| | - Richard Beatson
- Breast Cancer Biology Group Division of Cancer Studies King's College London Guy's Hospital London UK
| | - David Thornton
- Wellcome Trust Centre for Cell-Matrix Research School of Biological Sciences Faculty of Biology, Medicine and Health Manchester Academic Health Sciences Centre University of Manchester Manchester UK
| | - Joy Burchell
- Breast Cancer Biology Group Division of Cancer Studies King's College London Guy's Hospital London UK
| | - Joanna Porter
- Leukocyte Trafficking Laboratory Centre for Inflammation and Tissue Repair UCL Respiratory Rayne Institute University College London London UK
| |
Collapse
|
193
|
Peng Y, Xu AR, Chen SY, Huang Y, Han XR, Guan WJ, Wang DY, Zhong NS. Aberrant Epithelial Cell Proliferation in Peripheral Airways in Bronchiectasis. Front Cell Dev Biol 2020; 8:88. [PMID: 32154248 PMCID: PMC7044270 DOI: 10.3389/fcell.2020.00088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/31/2020] [Indexed: 12/13/2022] Open
Abstract
Dilation of bronchi and bronchioles caused by destruction and excessive epithelial remodeling is a characteristic feature of bronchiectasis. It is not known how epithelial progenitor cells contribute to these pathologic conditions in peripheral airways (bronchioles) in bronchiectasis. We aimed to explore the expression levels of signature airway progenitor cells in the dilated bronchioles in patients with bronchiectasis. We obtained the surgically resected peripheral lung tissues from 43 patients with bronchiectasis and 33 control subjects. Immunostaining was performed to determine the expression patterns of thyroid transcription factor-1 (TTF-1, for labeling progenitor cells in distal airways), P63 (basal cells), club cell 10 kDa protein (CC10, club cells), and surfactant protein C (SPC, alveolar type II epithelial cells) in epithelium or sub-epithelium. Here, we reported significantly lower percentage of TTF-1+ cells and CC10+ cells, and higher percentage of P63+ cells within the epithelium of dilated bronchioles compared with control bronchioles. In airway sub-epithelium of the dilated bronchioles, epithelial hyperplasia with disarrangement of TTF-1+ cells yielded cuboidal (100%) and columnar (93.0%) type among bronchiectasis patients. Most progenitor cell markers co-localized with TTF-1. The median (the 1st, 3rd quartile) percentage of P63+TTF-1+, CC10+TTF-1+, and SPC+TTF-1+ cells was 16.0% (8.9, 24.0%), 14.5% (7.1, 20.8%), and 52% (40.3, 64.4%), respectively. For cuboidal epithelial hyperplasia, 91.0% (86.5, 94.0%) of areas co-stained with SPC and TTF-1. Columnar epithelial hyperplasia was characterized by TTF-1 co-staining with P63+TTF-1+ and CC10+TTF-1+ cells. Taken together, aberrant proliferation of airway progenitor cells in both epithelium and sub-epithelium are implicated in bronchiectasis.
Collapse
Affiliation(s)
- Yang Peng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.,Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ai-Ru Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Shi-Ying Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yan Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Xiao-Rong Han
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Wei-Jie Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - De-Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nan-Shan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
194
|
Ehre C. [Mucus buildup: the starting point of cystic fibrosis lung disease pathogenesis]. Med Sci (Paris) 2020; 35:1217-1220. [PMID: 31903945 DOI: 10.1051/medsci/2019234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Camille Ehre
- Marsico Lung Institute, University of North Carolina at Chapel Hill, États-Unis - Division of Pediatric Pulmonology, University of North Carolina at Chapel Hill, États-Unis
| |
Collapse
|
195
|
Atanasova KR, Reznikov LR. Strategies for measuring airway mucus and mucins. Respir Res 2019; 20:261. [PMID: 31752894 PMCID: PMC6873701 DOI: 10.1186/s12931-019-1239-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 11/11/2019] [Indexed: 12/17/2022] Open
Abstract
Mucus secretion and mucociliary transport are essential defense mechanisms of the airways. Deviations in mucus composition and secretion can impede mucociliary transport and elicit airway obstruction. As such, mucus abnormalities are hallmark features of many respiratory diseases, including asthma, cystic fibrosis and chronic obstructive pulmonary disease (COPD). Studying mucus composition and its physical properties has therefore been of significant interest both clinically and scientifically. Yet, measuring mucus production, output, composition and transport presents several challenges. Here we summarize and discuss the advantages and limitations of several techniques from five broadly characterized strategies used to measure mucus secretion, composition and mucociliary transport, with an emphasis on the gel-forming mucins. Further, we summarize advances in the field, as well as suggest potential areas of improvement moving forward.
Collapse
Affiliation(s)
- Kalina R Atanasova
- Department of Physiological Sciences, University of Florida, 1333 Center Drive, PO Box 100144, Gainesville, FL, 32610, USA
| | - Leah R Reznikov
- Department of Physiological Sciences, University of Florida, 1333 Center Drive, PO Box 100144, Gainesville, FL, 32610, USA.
| |
Collapse
|
196
|
Morrison CB, Markovetz MR, Ehre C. Mucus, mucins, and cystic fibrosis. Pediatr Pulmonol 2019; 54 Suppl 3:S84-S96. [PMID: 31715083 PMCID: PMC6853602 DOI: 10.1002/ppul.24530] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023]
Abstract
Cystic fibrosis (CF) is both the most common and most lethal genetic disease in the Caucasian population. CF is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene and is characterized by the accumulation of thick, adherent mucus plaques in multiple organs, of which the lungs, gastrointestinal tract and pancreatic ducts are the most commonly affected. A similar pathogenesis cascade is observed in all of these organs: loss of CFTR function leads to altered ion transport, consisting of decreased chloride and bicarbonate secretion via the CFTR channel and increased sodium absorption via epithelial sodium channel upregulation. Mucosa exposed to changes in ionic concentrations sustain severe pathophysiological consequences. Altered mucus biophysical properties and weakened innate defense mechanisms ensue, furthering the progression of the disease. Mucins, the high-molecular-weight glycoproteins responsible for the viscoelastic properties of the mucus, play a key role in the disease but the actual mechanism of mucus accumulation is still undetermined. Multiple hypotheses regarding the impact of CFTR malfunction on mucus have been proposed and are reviewed here. (a) Dehydration increases mucin monomer entanglement, (b) defective Ca2+ chelation compromises mucin expansion, (c) ionic changes alter mucin interactions, and (d) reactive oxygen species increase mucin crosslinking. Although one biochemical change may dominate, it is likely that all of these mechanisms play some role in the progression of CF disease. This article discusses recent findings on the initial cause(s) of aberrant mucus properties in CF and examines therapeutic approaches aimed at correcting mucus properties.
Collapse
Affiliation(s)
- Cameron Bradley Morrison
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Matthew Raymond Markovetz
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Camille Ehre
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Division of Pediatric Pulmonology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
197
|
Liu Z, Mackay S, Gordon DM, Anderson JD, Haithcock DW, Garson CJ, Tearney GJ, Solomon GM, Pant K, Prabhakarpandian B, Rowe SM, Guimbellot JS. Co-cultured microfluidic model of the airway optimized for microscopy and micro-optical coherence tomography imaging. BIOMEDICAL OPTICS EXPRESS 2019; 10:5414-5430. [PMID: 31646055 PMCID: PMC6788592 DOI: 10.1364/boe.10.005414] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/12/2019] [Accepted: 09/20/2019] [Indexed: 05/12/2023]
Abstract
We have developed a human bronchial epithelial (HBE) cell and endothelial cell co-cultured microfluidic model to mimic the in vivo human airway. This airway-on-a-chip was designed with a central epithelial channel and two flanking endothelial channels, with a three-dimensional monolayers of cells growing along the four walls of the channel, forming central clear lumens. These cultures mimic airways and microvasculature in vivo. The central channel cells are grown at air-liquid interface and show features of airway differentiation including tight-junction formation, mucus production, and ciliated cells. Combined with novel micro-optical coherence tomography, this chip enables functional imaging of the interior of the lumen, which includes quantitation of cilia motion including beat frequency and mucociliary transport. This airway-on-a chip is a significant step forward in the development of microfluidics models for functional imaging.
Collapse
Affiliation(s)
- Zhongyu Liu
- Department of Pediatrics, University of Alabama at Birmingham, Lowder Building Suite 620, 1600 7th Avenue South, Birmingham, AL 35233, USA
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, MCLM 706, 1918 University Blvd, Birmingham, AL 35294, USA
| | - Stephen Mackay
- Department of Pediatrics, University of Alabama at Birmingham, Lowder Building Suite 620, 1600 7th Avenue South, Birmingham, AL 35233, USA
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, MCLM 706, 1918 University Blvd, Birmingham, AL 35294, USA
| | - Dylan M. Gordon
- Biomedical Technology, CFD Research Corporation, 701 McMillian Way NW, Huntsville, AL 35806, USA
| | - Justin D. Anderson
- Department of Pediatrics, University of Alabama at Birmingham, Lowder Building Suite 620, 1600 7th Avenue South, Birmingham, AL 35233, USA
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, MCLM 706, 1918 University Blvd, Birmingham, AL 35294, USA
| | - Dustin W. Haithcock
- Biomedical Technology, CFD Research Corporation, 701 McMillian Way NW, Huntsville, AL 35806, USA
| | - Charles J. Garson
- Biomedical Technology, CFD Research Corporation, 701 McMillian Way NW, Huntsville, AL 35806, USA
| | - Guillermo J. Tearney
- Department of Pathology, Wellman Center for Photomedicine, Massachusetts General Hospital, & Harvard Medical School, 55 Fruit St., Boston, MA 02114, USA
| | - George M. Solomon
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, MCLM 706, 1918 University Blvd, Birmingham, AL 35294, USA
- Department of Medicine, University of Alabama at Birmingham, THT 422, 1900 University Blvd, Birmingham, AL 35294, USA
| | - Kapil Pant
- Biomedical Technology, CFD Research Corporation, 701 McMillian Way NW, Huntsville, AL 35806, USA
| | | | - Steven M. Rowe
- Department of Pediatrics, University of Alabama at Birmingham, Lowder Building Suite 620, 1600 7th Avenue South, Birmingham, AL 35233, USA
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, MCLM 706, 1918 University Blvd, Birmingham, AL 35294, USA
- Department of Medicine, University of Alabama at Birmingham, THT 422, 1900 University Blvd, Birmingham, AL 35294, USA
| | - Jennifer S. Guimbellot
- Department of Pediatrics, University of Alabama at Birmingham, Lowder Building Suite 620, 1600 7th Avenue South, Birmingham, AL 35233, USA
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, MCLM 706, 1918 University Blvd, Birmingham, AL 35294, USA
| |
Collapse
|
198
|
Wang G, Lou HH, Salit J, Leopold PL, Driscoll S, Schymeinsky J, Quast K, Visvanathan S, Fine JS, Thomas MJ, Crystal RG. Characterization of an immortalized human small airway basal stem/progenitor cell line with airway region-specific differentiation capacity. Respir Res 2019; 20:196. [PMID: 31443657 PMCID: PMC6708250 DOI: 10.1186/s12931-019-1140-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/22/2019] [Indexed: 12/22/2022] Open
Abstract
Background The pathology of chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF) and most lung cancers involves the small airway epithelium (SAE), the single continuous layer of cells lining the airways ≥ 6th generations. The basal cells (BC) are the stem/progenitor cells of the SAE, responsible for the differentiation into intermediate cells and ciliated, club and mucous cells. To facilitate the study of the biology of the human SAE in health and disease, we immortalized and characterized a normal human SAE basal cell line. Methods Small airway basal cells were purified from brushed SAE of a healthy nonsmoker donor with a characteristic normal SAE transcriptome. The BC were immortalized by retrovirus-mediated telomerase reverse transcriptase (TERT) transduction and single cell drug selection. The resulting cell line (hSABCi-NS1.1) was characterized by RNAseq, TaqMan PCR, protein immunofluorescence, differentiation capacity on an air-liquid interface (ALI) culture, transepithelial electrical resistance (TEER), airway region-associated features and response to genetic modification with SPDEF. Results The hSABCi-NS1.1 single-clone-derived cell line continued to proliferate for > 200 doubling levels and > 70 passages, continuing to maintain basal cell features (TP63+, KRT5+). When cultured on ALI, hSABCi-NS1.1 cells consistently formed tight junctions and differentiated into ciliated, club (SCGB1A1+), mucous (MUC5AC+, MUC5B+), neuroendocrine (CHGA+), ionocyte (FOXI1+) and surfactant protein positive cells (SFTPA+, SFTPB+, SFTPD+), observations confirmed by RNAseq and TaqMan PCR. Annotation enrichment analysis showed that “cilium” and “immunity” were enriched in functions of the top-1500 up-regulated genes. RNAseq reads alignment corroborated expression of CD4, CD74 and MHC-II. Compared to the large airway cell line BCi-NS1.1, differentiated of hSABCi-NS1.1 cells on ALI were enriched with small airway epithelial genes, including surfactant protein genes, LTF and small airway development relevant transcription factors NKX2–1, GATA6, SOX9, HOPX, ID2 and ETV5. Lentivirus-mediated expression of SPDEF in hSABCi-NS1.1 cells induced secretory cell metaplasia, accompanied with characteristic COPD-associated SAE secretory cell changes, including up-regulation of MSMB, CEACAM5 and down-regulation of LTF. Conclusions The immortalized hSABCi-NS1.1 cell line has diverse differentiation capacities and retains SAE features, which will be useful for understanding the biology of SAE, the pathogenesis of SAE-related diseases, and testing new pharmacologic agents. Electronic supplementary material The online version of this article (10.1186/s12931-019-1140-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guoqing Wang
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
| | - Howard H Lou
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
| | - Jacqueline Salit
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
| | - Philip L Leopold
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
| | - Sharon Driscoll
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
| | | | - Karsten Quast
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | | | - Jay S Fine
- Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | - Matthew J Thomas
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA.
| |
Collapse
|
199
|
Chen G, Ribeiro CMP, Sun L, Okuda K, Kato T, Gilmore RC, Martino MB, Dang H, Abzhanova A, Lin JM, Hull-Ryde EA, Volmer AS, Randell SH, Livraghi-Butrico A, Deng Y, Scherer PE, Stripp BR, O’Neal WK, Boucher RC. XBP1S Regulates MUC5B in a Promoter Variant-Dependent Pathway in Idiopathic Pulmonary Fibrosis Airway Epithelia. Am J Respir Crit Care Med 2019; 200:220-234. [PMID: 30973754 PMCID: PMC6635783 DOI: 10.1164/rccm.201810-1972oc] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 04/11/2019] [Indexed: 02/05/2023] Open
Abstract
Rationale: The goal was to connect elements of idiopathic pulmonary fibrosis (IPF) pathogenesis, including chronic endoplasmic reticulum stress in respiratory epithelia associated with injury/inflammation and remodeling, distal airway mucus obstruction and honeycomb cyst formation with accumulation of MUC5B (mucin 5B), and associations between IPF risk and polymorphisms in the MUC5B promoter. Objectives: To test whether the endoplasmic reticulum (ER) stress sensor protein ERN2 (ER-to-nucleus signaling 2) and its downstream effector, the spliced form of XBP1S (X-box-binding protein 1), regulate MUC5B expression and differentially activate the MUC5B promoter variant in respiratory epithelia. Methods: Primary human airway epithelial (HAE) cells, transgenic mouse models, human IPF lung tissues, and cell lines expressing XBP1S and MUC5B promoters were used to explore relationships between the ERN2/XBP1S pathway and MUC5B. An inhibitor of the pathway, KIRA6, and XBP1 CRISPR-Cas9 were used in HAE cells to explore therapeutic potential. Measurements and Main Results: ERN2 regulated MUC5B and MUC5AC mRNAs. Downstream XBP1S selectively promoted MUC5B expression in vitro and in distal murine airway epithelia in vivo. XBP1S bound to the proximal region of the MUC5B promoter and differentially upregulated MUC5B expression in the context of the MUC5B promoter rs35705950 variant. High levels of ERN2 and XBP1S were associated with excessive MUC5B mRNAs in distal airways of human IPF lungs. Cytokine-induced MUC5B expression in HAE cells was inhibited by KIRA6 and XBP1 CRISPR-Cas9. Conclusions: A positive feedback bistable ERN2-XBP1S pathway regulates MUC5B-dominated mucus obstruction in IPF, providing an unfolded protein response-dependent mechanism linking the MUC5B promoter rs35705950 polymorphism with IPF pathogenesis. Inhibiting ERN2-dependent pathways/elements may provide a therapeutic option for IPF.
Collapse
Affiliation(s)
- Gang Chen
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Carla M. P. Ribeiro
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ling Sun
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Research Center of Regeneration Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Kenichi Okuda
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Takafumi Kato
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Rodney C. Gilmore
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Mary B. Martino
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Hong Dang
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Aiman Abzhanova
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jennifer M. Lin
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Emily A. Hull-Ryde
- Center of Integrative Chemical Biology and Drug Discovery, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina
| | - Allison S. Volmer
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Scott H. Randell
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alessandra Livraghi-Butrico
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Yingfeng Deng
- Department of Internal Medicine, Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Philipp E. Scherer
- Department of Internal Medicine, Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Barry R. Stripp
- Pulmonary Research, Cedars Sinai Medical Center, Los Angeles, California
| | - Wanda K. O’Neal
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Richard C. Boucher
- Marsico Lung Institute and Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
200
|
Capron T, Bourdin A, Perez T, Chanez P. COPD beyond proximal bronchial obstruction: phenotyping and related tools at the bedside. Eur Respir Rev 2019; 28:28/152/190010. [PMID: 31285287 DOI: 10.1183/16000617.0010-2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 05/04/2019] [Indexed: 11/05/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterised by nonreversible proximal bronchial obstruction leading to major respiratory disability. However, patient phenotypes better capture the heterogeneously reported complaints and symptoms of COPD. Recent studies provided evidence that classical bronchial obstruction does not properly reflect respiratory disability, and symptoms now form the new paradigm for assessment of disease severity and guidance of therapeutic strategies. The aim of this review was to explore pathways addressing COPD pathogenesis beyond proximal bronchial obstruction and to highlight innovative and promising tools for phenotyping and bedside assessment. Distal small airways imaging allows quantitative characterisation of emphysema and functional air trapping. Micro-computed tomography and parametric response mapping suggest small airways disease precedes emphysema destruction. Small airways can be assessed functionally using nitrogen washout, probing ventilation at conductive or acinar levels, and forced oscillation technique. These tests may better correlate with respiratory symptoms and may well capture bronchodilation effects beyond proximal obstruction.Knowledge of inflammation-based processes has not provided well-identified targets so far, and eosinophils probably play a minor role. Adaptative immunity or specific small airways secretory protein may provide new therapeutic targets. Pulmonary vasculature is involved in emphysema through capillary loss, microvascular lesions or hypoxia-induced remodelling, thereby impacting respiratory disability.
Collapse
Affiliation(s)
- Thibaut Capron
- Clinique des Bronches, Allergies et Sommeil, Hôpital Nord, Assistance Publique des Hôpitaux de Marseille, Aix Marseille Université, Marseille, France
| | - Arnaud Bourdin
- Université de Montpellier, PhyMedExp, INSERM, CNRS, CHU de Montpellier, Dept of Respiratory Diseases, Montpellier, France
| | - Thierry Perez
- Dept of Respiratory Diseases, CHU Lille, Center for Infection and Immunity of Lille, INSERM U1019 - CNRS UMR 8204, Université Lille Nord de France, Lille, France
| | - Pascal Chanez
- Clinique des Bronches, Allergies et Sommeil, Hôpital Nord, Assistance Publique des Hôpitaux de Marseille, Aix Marseille Université, Marseille, France .,Aix Marseille Université, INSERM, INRA, CV2N, Marseille, France
| |
Collapse
|