151
|
Niazi V, Parseh B, Ahani M, Karami F, Gilanchi S, Atarodi K, Soufi M, Soleimani M, Ghafouri-Fard S, Taheri M, Zali H. Communication between stromal and hematopoietic stem cell by exosomes in normal and malignant bone marrow niche. Biomed Pharmacother 2020; 132:110854. [PMID: 33059261 DOI: 10.1016/j.biopha.2020.110854] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/26/2020] [Accepted: 10/04/2020] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) have been regarded as important tools for cell-cell communication. They act as carriers for the transfer of various molecules such as genes, proteins and miRNA. EVs shift and transfer their ingredients to target cells in an active form. These particles have prominent roles in modulation of bone marrow (BM) niche; therefore they can regulate proliferation, differentiation, and other properties of hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs). This review discusses the different roles of EVs on BM niche; HPCs fate regulation and downstream effects of them on HSCs. Moreover, cellular and molecular mechanisms of BM microenvironment cross-talking are explained in healthy and malignant settings.
Collapse
Affiliation(s)
- Vahid Niazi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 19857-17443, Iran
| | - Benyamin Parseh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 14177-55469, Iran
| | - Milad Ahani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 19857-17443, Iran
| | - Farshid Karami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 19857-17443, Iran
| | - Samira Gilanchi
- Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, 19716-53313, Iran
| | - Kamran Atarodi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, 14665-1157, Iran
| | - Mina Soufi
- Department of Hematology and Cell Therapy, Faculty of Medical Science, Tarbiat Modares University, Tehran, 14117-13116, Iran
| | - Masoud Soleimani
- Department of Hematology and Cell Therapy, Faculty of Medical Science, Tarbiat Modares University, Tehran, 14117-13116, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 19857-17443, Iran; Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, 19716-53313, Iran.
| |
Collapse
|
152
|
Exosomes in multidrug-resistant cancer. Curr Opin Pharmacol 2020; 54:109-120. [DOI: 10.1016/j.coph.2020.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/10/2020] [Accepted: 08/31/2020] [Indexed: 12/20/2022]
|
153
|
Zhou JH, Yao ZX, Zheng Z, Yang J, Wang R, Fu SJ, Pan XF, Liu ZH, Wu K. G-MDSCs-Derived Exosomal miRNA-143-3p Promotes Proliferation via Targeting of ITM2B in Lung Cancer. Onco Targets Ther 2020; 13:9701-9719. [PMID: 33061450 PMCID: PMC7533249 DOI: 10.2147/ott.s256378] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022] Open
Abstract
Background The immune environment of lung cancer is complex, and the critical immune factors that promote lung cancer progression need to be explored. Granulocytic myeloid-derived suppressor cells (G-MDSCs) are regarded as immune suppressing cells. However, they also promote tumor progression through other ways, which needs to be explored further. Therefore, we sought to study the regulatory mechanisms underlying the cancer promoting function of G-MDSCs in lung cancer. Methods G-MDSCs were isolated from lung cancer tissues using flow cytometry. Exosomes were separated from the G-MDSCs supernatant by ultracentrifugation and verified using flow cytometry, Western blot, and transmission electron microscopy (TEM). RNA sequencing was used to identify the differential miRNAs and genes. Real-time quantitative real-time PCR (RT-qPCR) confirmed these results. The proliferation rate was assessed using the CCK-8 assay. Lentiviral vectors were used to alter the expression of the miRNAs and genes to analyze their effects on lung cancer progression. Results G-MDSCs secreted more exosomes in the lung cancer tissues, which promoted cancer progression by accelerating proliferation. Micro RNA-143-3p (miR-143-3p) increased in G-MDSCs derived exosomes and downregulated integral membrane protein 2B (ITM2B) by targeting the 3ʹ-untranslated region (UTR) region. Overexpression of miR-143-3p enhanced proliferation by inhibiting transcription of ITM2B to activate the PI3K/Akt signaling pathway, which can be blocked by deguelin. This phenomenon was further confirmed by accelerated tumor growth and worse prognosis in mice. Conclusion The key findings of this study highlight the potential of the G-MDSC-derived exosomes and the miR-143-3p/ITM2B axis as therapeutic targets and clinical indicators of lung cancer.
Collapse
Affiliation(s)
- Jian-Hua Zhou
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Zhi-Xian Yao
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, People's Republic of China
| | - Zhong Zheng
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, People's Republic of China
| | - Jun Yang
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Rui Wang
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Shi-Jie Fu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Xu-Feng Pan
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Zhi-Hong Liu
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, People's Republic of China
| | - Ke Wu
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
154
|
Gargiulo E, Morande PE, Largeot A, Moussay E, Paggetti J. Diagnostic and Therapeutic Potential of Extracellular Vesicles in B-Cell Malignancies. Front Oncol 2020; 10:580874. [PMID: 33117718 PMCID: PMC7550802 DOI: 10.3389/fonc.2020.580874] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EV), comprising microvesicles and exosomes, are particles released by every cell of an organism, found in all biological fluids, and commonly involved in cell-to-cell communication through the transfer of cargo materials such as miRNA, proteins, and immune-related ligands (e.g., FasL and PD-L1). An important characteristic of EV is that their composition, abundance, and roles are tightly related to the parental cells. This translates into a higher release of characteristic pro-tumor EV by cancer cells that leads to harming signals toward healthy microenvironment cells. In line with this, the key role of tumor-derived EV in cancer progression was demonstrated in multiple studies and is considered a hot topic in the field of oncology. Given their characteristics, tumor-derived EV carry important information concerning the state of tumor cells. This can be used to follow the outset, development, and progression of the neoplasia and to evaluate the design of appropriate therapeutic strategies. In keeping with this, the present brief review will focus on B-cell malignancies and how EV can be used as potential biomarkers to follow disease progression and stage. Furthermore, we will explore several proposed strategies aimed at using biologically engineered EV for treatment (e.g., drug delivery mechanisms) as well as for impairing the biogenesis, release, and internalization of cancer-derived EV, with the final objective to disrupt tumor–microenvironment communication.
Collapse
Affiliation(s)
- Ernesto Gargiulo
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Pablo Elías Morande
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg.,Instituto de Medicina Experimental (IMEX)-CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Anne Largeot
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Etienne Moussay
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Jérôme Paggetti
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| |
Collapse
|
155
|
Tanasi I, Adamo A, Kamga PT, Bazzoni R, Krampera M. High-throughput analysis and functional interpretation of extracellular vesicle content in hematological malignancies. Comput Struct Biotechnol J 2020; 18:2670-2677. [PMID: 33101605 PMCID: PMC7554250 DOI: 10.1016/j.csbj.2020.09.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane-coated particles secreted by virtually all cell types in response to different stimuli, both in physiological and pathological conditions. Their content generally reflects their biological functions and includes a variety of molecules, such as nucleic acids, proteins and cellular components. The role of EVs as signaling vehicles has been widely demonstrated. In particular, they are actively involved in the pathogenesis of several hematological malignancies (HM), mainly interacting with a number of target cells and inducing functional and epigenetic changes. In this regard, by releasing their cargo, EVs play a pivotal role in the bilateral cross-talk between tumor microenvironment and cancer cells, thus facilitating mechanisms of immune escape and supporting tumor growth and progression. Recent advances in high-throughput technologies have allowed the deep characterization and functional interpretation of EV content. In this review, the current knowledge on the high-throughput technology-based characterization of EV cargo in HM is summarized.
Collapse
Affiliation(s)
- Ilaria Tanasi
- Department of Medicine, Hematology Section, University of Verona, Italy
| | - Annalisa Adamo
- Department of Medicine, Immunology Section, University of Verona, Italy
| | - Paul Takam Kamga
- Department of Medicine, Hematology Section, University of Verona, Italy
| | - Riccardo Bazzoni
- Department of Medicine, Hematology Section, University of Verona, Italy
| | - Mauro Krampera
- Department of Medicine, Hematology Section, University of Verona, Italy
| |
Collapse
|
156
|
Shoucair I, Weber Mello F, Jabalee J, Maleki S, Garnis C. The Role of Cancer-Associated Fibroblasts and Extracellular Vesicles in Tumorigenesis. Int J Mol Sci 2020; 21:ijms21186837. [PMID: 32957712 PMCID: PMC7555043 DOI: 10.3390/ijms21186837] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) play a key role in the communication between cancer cells and stromal components of the tumor microenvironment (TME). In this context, cancer cell-derived EVs can regulate the activation of a CAF phenotype in TME cells, which can be mediated by several EV cargos (e.g., miRNA, proteins, mRNA and lncRNAs). On the other hand, CAF-derived EVs can mediate several processes during tumorigenesis, including tumor growth, invasion, metastasis, and therapy resistance. This review aimed to discuss the molecular aspects of EV-based cross-talk between CAFs and cancer cells during tumorigenesis, in addition to assessing the roles of EV cargo in therapy resistance and pre-metastatic niche formation.
Collapse
Affiliation(s)
- Issraa Shoucair
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (I.S.); (F.W.M.); (J.J.); (S.M.)
| | - Fernanda Weber Mello
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (I.S.); (F.W.M.); (J.J.); (S.M.)
- Postgraduate Program in Dentistry, Federal University of Santa Catarina, Florianópolis 88.040-370, Brazil
| | - James Jabalee
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (I.S.); (F.W.M.); (J.J.); (S.M.)
| | - Saeideh Maleki
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (I.S.); (F.W.M.); (J.J.); (S.M.)
| | - Cathie Garnis
- Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Correspondence:
| |
Collapse
|
157
|
Nisticò N, Maisano D, Iaccino E, Vecchio E, Fiume G, Rotundo S, Quinto I, Mimmi S. Role of Chronic Lymphocytic Leukemia (CLL)-Derived Exosomes in Tumor Progression and Survival. Pharmaceuticals (Basel) 2020; 13:E244. [PMID: 32937811 PMCID: PMC7557731 DOI: 10.3390/ph13090244] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/08/2020] [Accepted: 09/12/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a B-lymphoproliferative disease, which consists of the abnormal proliferation of CD19/CD5/CD20/CD23 positive lymphocytes in blood and lymphoid organs, such as bone marrow, lymph nodes and spleen. The neoplastic transformation and expansion of tumor B cells are commonly recognized as antigen-driven processes, mediated by the interaction of antigens with the B cell receptor (BCR) expressed on the surface of B-lymphocytes. The survival and progression of CLL cells largely depend on the direct interaction of CLL cells with receptors of accessory cells of tumor microenvironment. Recently, much interest has been focused on the role of tumor release of small extracellular vesicles (EVs), named exosomes, which incorporate a wide range of biologically active molecules, particularly microRNAs and proteins, which sustain the tumor growth. Here, we will review the role of CLL-derived exosomes as diagnostic and prognostic biomarkers of the disease.
Collapse
Affiliation(s)
- Nancy Nisticò
- Department of Experimental and Clinical Medicine – University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (N.N.); (D.M.); (E.V.); (G.F.); (I.Q.)
| | - Domenico Maisano
- Department of Experimental and Clinical Medicine – University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (N.N.); (D.M.); (E.V.); (G.F.); (I.Q.)
| | - Enrico Iaccino
- Department of Experimental and Clinical Medicine – University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (N.N.); (D.M.); (E.V.); (G.F.); (I.Q.)
| | - Eleonora Vecchio
- Department of Experimental and Clinical Medicine – University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (N.N.); (D.M.); (E.V.); (G.F.); (I.Q.)
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine – University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (N.N.); (D.M.); (E.V.); (G.F.); (I.Q.)
| | - Salvatore Rotundo
- Department of Health Sciences–University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Ileana Quinto
- Department of Experimental and Clinical Medicine – University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (N.N.); (D.M.); (E.V.); (G.F.); (I.Q.)
| | - Selena Mimmi
- Department of Experimental and Clinical Medicine – University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (N.N.); (D.M.); (E.V.); (G.F.); (I.Q.)
| |
Collapse
|
158
|
Fabris L, Juracek J, Calin G. Non-Coding RNAs as Cancer Hallmarks in Chronic Lymphocytic Leukemia. Int J Mol Sci 2020; 21:E6720. [PMID: 32937758 PMCID: PMC7554994 DOI: 10.3390/ijms21186720] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/23/2020] [Accepted: 09/10/2020] [Indexed: 01/02/2023] Open
Abstract
The discovery of non-coding RNAs (ncRNAs) and their role in tumor onset and progression has revolutionized the way scientists and clinicians study cancers. This discovery opened new layers of complexity in understanding the fine-tuned regulation of cellular processes leading to cancer. NcRNAs represent a heterogeneous group of transcripts, ranging from a few base pairs to several kilobases, that are able to regulate gene networks and intracellular pathways by interacting with DNA, transcripts or proteins. Deregulation of ncRNAs impinge on several cellular responses and can play a major role in each single hallmark of cancer. This review will focus on the most important short and long non-coding RNAs in chronic lymphocytic leukemia (CLL), highlighting their implications as potential biomarkers and therapeutic targets as they relate to the well-established hallmarks of cancer. The key molecular events in the onset of CLL will be contextualized, taking into account the role of the "dark matter" of the genome.
Collapse
Affiliation(s)
- Linda Fabris
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Jaroslav Juracek
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - George Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| |
Collapse
|
159
|
Yu Y, Luo Y, Fang Z, Teng W, Yu Y, Tian J, Guo P, Xu R, Wu J, Li Y. Mechanism of Sanguinarine in Inhibiting Macrophages to Promote Metastasis and Proliferation of Lung Cancer via Modulating the Exosomes in A549 Cells. Onco Targets Ther 2020; 13:8989-9003. [PMID: 32982290 PMCID: PMC7490052 DOI: 10.2147/ott.s261054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/16/2020] [Indexed: 12/12/2022] Open
Abstract
Objective Sanguinarine (SNG) is a benzophenanthridine alkaloid obtained from the roots of Sanguinaria canadensis and has an anticancer effect. The aim of this study was to explore the mechanism of SNG in inhibiting macrophages via regulating the exosomes derived from lung carcinoma cells to reduce metastasis and proliferation of lung carcinoma. Methods Human lung cancer cells (A549 cells) were treated with 4μM of SNG. Exosomes of A549 cells were extracted from A549 cells supernatant, and THP-1 cells were cultured with exosomes. Then, the supernatant of THP-1 cells was collected and cultured with A549 cells. Cell proliferation was measured via plate clone formation and CCK-8 assays. Migration was assessed by using Transwell assay and scratch test. Cellular invasion was detected by Transwell assay. Apoptosis was determined using flow cytometry. Moreover, the protein expressions of GAPDH, P65 and P-P65 in THP-1 cells were measured by Western blot. Levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and chemotactic cytokines ligand 2 (CCL-2) extracted from THP-1 cells were determined by reverse transcription-polymerase chain reaction (RT-PCR). Results Compared to the control group, exosomes could activate THP-1 cells, and the invasion, migration, and proliferation of A549 cells were consequently enhanced. Exosomes could increase the protein expression of p-p65 and the RNA expression levels of TNF-α, IL-6, and CCL-2 in THP-1 cells. Compared with the exosome group, SNG-treated exosomes inhibited THP-1 cells so that the invasion, proliferation, and migration of A549 cells were attenuated and apoptosis was promoted. In THP-1 cells, SNG-treated exosomes inhibited P-P65 expression and the RNA expression levels of TNF-α, IL-6, and CCL-2. Conclusion Exosomes treated by SNG inhibited THP-1 cells so that the invasion, proliferation, and migration of A549 cells were inhibited, and the apoptosis was promoted. The mechanism is possibly associated with the inhibition of NF-κB pathway in THP-1 cells.
Collapse
Affiliation(s)
- Yuanyuan Yu
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, People's Republic of China
| | - Yingbin Luo
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, People's Republic of China
| | - Zhihong Fang
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, People's Republic of China
| | - Wenjing Teng
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, People's Republic of China
| | - Yongchun Yu
- Institute for Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Jianhui Tian
- Institute of Traditional Chinese Medicine in Oncology, Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, People's Republic of China
| | - Peng Guo
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, People's Republic of China
| | - Rongzhong Xu
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, People's Republic of China
| | - Jianchun Wu
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, People's Republic of China
| | - Yan Li
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, People's Republic of China
| |
Collapse
|
160
|
Lopatina T, Favaro E, Danilova L, Fertig EJ, Favorov AV, Kagohara LT, Martone T, Bussolati B, Romagnoli R, Albera R, Pecorari G, Brizzi MF, Camussi G, Gaykalova DA. Extracellular Vesicles Released by Tumor Endothelial Cells Spread Immunosuppressive and Transforming Signals Through Various Recipient Cells. Front Cell Dev Biol 2020; 8:698. [PMID: 33015029 PMCID: PMC7509153 DOI: 10.3389/fcell.2020.00698] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) has a high recurrence and metastatic rate with an unknown mechanism of cancer spread. Tumor inflammation is the most critical processes of cancer onset, growth, and metastasis. We hypothesize that the release of extracellular vesicles (EVs) by tumor endothelial cells (TECs) induce reprogramming of immune cells as well as stromal cells to create an immunosuppressive microenvironment that favor tumor spread. We call this mechanism as non-metastatic contagious carcinogenesis. Extracellular vesicles were collected from primary HNSCC-derived endothelial cells (TEC-EV) and were used for stimulation of peripheral blood mononuclear cells (PBMCs) and primary adipose mesenchymal stem cells (ASCs). Regulation of ASC gene expression was investigated by RNA sequencing and protein array. PBMC, stimulated with TEC-EV, were analyzed by enzyme-linked immunosorbent assay and fluorescence-activated cell sorting. We validated in vitro the effects of TEC-EV on ASCs or PBMC by measuring invasion, adhesion, and proliferation. We found and confirmed that TEC-EV were able to change ASC inflammatory gene expression signature within 24-48 h. TEC-EV were also able to enhance the secretion of TGF-β1 and IL-10 by PBMC and to increase T regulatory cell (Treg) expansion. TEC-EV carry specific proteins and RNAs that are responsible for Treg differentiation and immune suppression. ASCs and PBMC, treated with TEC-EV, enhanced proliferation, adhesion of tumor cells, and their invasion. These data indicate that TEC-EV exhibit a mechanism of non-metastatic contagious carcinogenesis that regulates tumor microenvironment and reprograms immune cells to sustain tumor growth and progression.
Collapse
Affiliation(s)
- Tatiana Lopatina
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Enrica Favaro
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Ludmila Danilova
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Laboratory of System Biology and Computational Genetics, Vavilov Institute of General Genetics, Moscow, Russia
| | - Elana J Fertig
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Alexander V Favorov
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Laboratory of System Biology and Computational Genetics, Vavilov Institute of General Genetics, Moscow, Russia
| | - Luciane T Kagohara
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Tiziana Martone
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Renato Romagnoli
- General Surgery 2U, Liver Transplantation Center, AOU Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Roberto Albera
- Division of Otorhinolaryngology, Department of Surgical Sciences, University of Turin School of Medicine, Turin, Italy
| | - Giancarlo Pecorari
- Division of Otorhinolaryngology, Department of Surgical Sciences, University of Turin School of Medicine, Turin, Italy
| | | | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Daria A Gaykalova
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
161
|
Martellucci S, Orefice NS, Angelucci A, Luce A, Caraglia M, Zappavigna S. Extracellular Vesicles: New Endogenous Shuttles for miRNAs in Cancer Diagnosis and Therapy? Int J Mol Sci 2020; 21:ijms21186486. [PMID: 32899898 PMCID: PMC7555972 DOI: 10.3390/ijms21186486] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/16/2022] Open
Abstract
Extracellular Vesicles (EVs) represent a heterogeneous population of membranous cell-derived structures, including cargo-oriented exosomes and microvesicles. EVs are functionally associated with intercellular communication and play an essential role in multiple physiopathological conditions. Shedding of EVs is frequently increased in malignancies and their content, including proteins and nucleic acids, altered during carcinogenesis and cancer progression. EVs-mediated intercellular communication between tumor cells and between tumor and stromal cells can modulate, through cargo miRNA, the survival, progression, and drug resistance in cancer conditions. These consolidated suggestions and EVs’ stability in bodily fluids have led to extensive investigations on the potential employment of circulating EVs-derived miRNAs as tumor biomarkers and potential therapeutic vehicles. In this review, we highlight the current knowledge about circulating EVs-miRNAs in human cancer and the application limits of these tools, discussing their clinical utility and challenges in functions such as in biomarkers and instruments for diagnosis, prognosis, and therapy.
Collapse
Affiliation(s)
- Stefano Martellucci
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.M.); (A.A.)
| | - Nicola Salvatore Orefice
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Correspondence: or ; Tel.: +1-608-262-21-89
| | - Adriano Angelucci
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.M.); (A.A.)
| | - Amalia Luce
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (A.L.); (M.C.); (S.Z.)
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (A.L.); (M.C.); (S.Z.)
- Biogem Scarl, Institute of Genetic Research, Laboratory of Precision and Molecular Oncology, Ariano Irpino, 83031 Avellino, Italy
| | - Silvia Zappavigna
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (A.L.); (M.C.); (S.Z.)
| |
Collapse
|
162
|
Abstract
PURPOSE OF REVIEW MiRNAs are critical regulators for gene expression. Numerous studies have revealed how miRNAs contribute to the pathogenesis of hematologic malignancies. RECENT FINDINGS The identification of novel miRNA regulatory factors and pathways crucial for miRNA dysregulation has been linked to hematologic malignancies. miRNA expression profiling has shown their potential to predict outcomes and treatment responses. Recently, targeting miRNA biogenesis or pathways has become a promising therapeutic strategy with recent miRNA-therapeutics being developed. SUMMARY We provide a comprehensive overview of the role of miRNAs for diagnosis, prognosis, and therapeutic potential in hematologic malignancies.
Collapse
Affiliation(s)
- Zhen Han
- Division of Dermatology, City of Hope, Duarte, CA, USA
- Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Steven T. Rosen
- Dept of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
- Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Christiane Querfeld
- Division of Dermatology, City of Hope, Duarte, CA, USA
- Department of Pathology, City of Hope, Duarte, CA, USA
- Beckman Research Institute, City of Hope, Duarte, CA, USA
| |
Collapse
|
163
|
Gholipour E, Sarvarian P, Samadi P, Talebi M, Movassaghpour A, Motavalli R, Hojjat-Farsangi M, Yousefi M. Exosome: From leukemia progression to a novel therapeutic approach in leukemia treatment. Biofactors 2020; 46:698-715. [PMID: 32797698 DOI: 10.1002/biof.1669] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022]
Abstract
Exosomes, as small vesicles, are released by tumor cells and tumor microenvironment (cells and function as key intercellular mediators and effects on different processes including tumorigenesis, angiogenesis, drug resistance, and evasion from immune system. These functions are due to exosomes' biomolecules which make them as efficient markers in early diagnosis of the disease. Also, exosomes have been recently applied in vaccination. The potential role of exosomes in immune response toward leukemic cells makes them efficient immunotherapeutic agents treating leukemia. Furthermore, variations in exosomes contents make them beneficial to be used in treating different diseases. This review introduces the role of exosomes in the development of hematological malignancies and evaluates their functional role in the treatment of these malignancies.
Collapse
Affiliation(s)
- Elham Gholipour
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Sarvarian
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Samadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Talebi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aliakbar Movassaghpour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roza Motavalli
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hojjat-Farsangi
- Immune and Gene Therapy Lab, Department of Oncology-Pathology, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Aging Research Institute, Tabriz university of Medical Sciences, Tabriz, Iran
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
164
|
Delgado J, Nadeu F, Colomer D, Campo E. Chronic lymphocytic leukemia: from molecular pathogenesis to novel therapeutic strategies. Haematologica 2020; 105:2205-2217. [PMID: 33054046 PMCID: PMC7556519 DOI: 10.3324/haematol.2019.236000] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/18/2020] [Indexed: 12/31/2022] Open
Abstract
Chronic lymphocytic leukemia is a well-defined lymphoid neoplasm with very heterogeneous biological and clinical behavior. The last decade has been remarkably fruitful in novel findings elucidating multiple aspects of the pathogenesis of the disease including mechanisms of genetic susceptibility, insights into the relevance of immunogenetic factors driving the disease, profiling of genomic alterations, epigenetic subtypes, global epigenomic tumor cell reprogramming, modulation of tumor cell and microenvironment interactions, and dynamics of clonal evolution from early steps in monoclonal B cell lymphocytosis to progression and transformation into diffuse large B-cell lymphoma. All this knowledge has offered new perspectives that are being exploited therapeutically with novel target agents and management strategies. In this review we provide an overview of these novel advances and highlight questions and perspectives that need further progress to translate into the clinics the biological knowledge and improve the outcome of the patients.
Collapse
Affiliation(s)
- Julio Delgado
- Department of Hematology, Hospital Clínic, University of Barcelona, Barcelona
- Centro de Investigación Biomédica en Red en Oncologia (CIBERONC), Madrid
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona
| | - Ferran Nadeu
- Centro de Investigación Biomédica en Red en Oncologia (CIBERONC), Madrid
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona
| | - Dolors Colomer
- Centro de Investigación Biomédica en Red en Oncologia (CIBERONC), Madrid
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona
- Hematopathology Section, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Elias Campo
- Centro de Investigación Biomédica en Red en Oncologia (CIBERONC), Madrid
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona
- Hematopathology Section, Hospital Clínic, University of Barcelona, Barcelona, Spain
| |
Collapse
|
165
|
Elgamal S, Colombo F, Cottini F, Byrd JC, Cocucci E. Imaging intercellular interaction and extracellular vesicle exchange in a co-culture model of chronic lymphocytic leukemia and stromal cells by lattice light-sheet fluorescence microscopy. Methods Enzymol 2020; 645:79-107. [PMID: 33565979 DOI: 10.1016/bs.mie.2020.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent advances in live cell imaging allow investigating processes that take place over the entire cell volume with unprecedented time and spatial resolution. Here we describe a protocol to study intercellular communication, including extracellular vesicle exchange, between cancer cells and their microenvironment, using lattice light sheet fluorescence microscopy. While the described protocol is intended to study the interactions between chronic lymphocytic leukemia cells and bone marrow stromal cells, many components of it can be applied to study other cancers of hematopoietic or solid tumor origin, as well as to characterize other modalities of intercellular communication.
Collapse
Affiliation(s)
- Sara Elgamal
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States; Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Federico Colombo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, United States; Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Francesca Cottini
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - John C Byrd
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States; Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, United States; College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States; Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Emanuele Cocucci
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, United States; Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
166
|
Deng W, Wang L, Pan M, Zheng J. The regulatory role of exosomes in leukemia and their clinical significance. J Int Med Res 2020; 48:300060520950135. [PMID: 32840158 PMCID: PMC7450464 DOI: 10.1177/0300060520950135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Recurrence is a primary cause of death in patients with leukemia. The
interactions of tumor cells with the microenvironment and tumor stem cells
hidden in bone marrow promote the recurrence and metastasis of leukemia to
lymphoid tissue. Exosomes, membrane-coated nanovesicles secreted by living
cells, perform biomaterial transfer and information exchange between cells.
Exosomes contain various other biological components derived from parental
cells, and they remotely regulate the function of target cells through body
fluid flow. Recent studies revealed that exosomes participate in the development
of leukemia and play important roles in its diagnosis and treatment by
influencing cell proliferation and apoptosis, regulating bone marrow
microenvironment, promoting angiogenesis, and inhibiting hematopoiesis. Exosomes
are potential biomarkers and therapeutic targets for leukemia, and they can
influence drug resistance. Leukemia-derived exosomes present leukemia-related
antigens to target cells, promote the proliferation of leukemic cells, help
these cells escape immunity, protect them from the cytotoxic effects of
chemotherapeutics, and promote angiogenesis and tumor migration. Therefore,
exosomes are closely related to the metastasis, treatment, and prognosis of
leukemia, and they can be used to detect and monitor the progression of
leukemia. This paper reviews the regulatory roles of exosomes in leukemia and
their clinical significance.
Collapse
Affiliation(s)
- Wei Deng
- Department of Pediatric General Internal Medicine, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, China
| | - Li Wang
- Department of Pediatric General Internal Medicine, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, China
| | - Ming Pan
- Department of Hematology, Wuwei People's Hospital, Wuwei, Gansu, China
| | - Jianping Zheng
- Department of Orthopedic Surgery, Xiangyang Central Hospital, the Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| |
Collapse
|
167
|
Geng HY, Feng ZJ, Zhang JJ, Li GY. Exosomal CLIC1 released by CLL promotes HUVECs angiogenesis by regulating ITGβ1-MAPK/ERK axis. Kaohsiung J Med Sci 2020; 37:226-235. [PMID: 32841520 DOI: 10.1002/kjm2.12287] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022] Open
Abstract
Accumulating evidences have suggested that exosomes are closely associated with tumor progression by affecting cell-cell communication. Here, we aimed to investigate the roles and regulatory mechanism of exosomes released from chronic lymphocytic leukemia (CLL). The expression levels of genes and proteins in cells and exosomes were examined by quantitative real-time PCR and Western blotting, respectively. MEC-1 cell-derived exosomes were obtained and co-cultured with human umbilical vein endothelial cells (HUVECs), then the capabilities of cell proliferation, metastasis and angiogenesis of HUVECs were measured by CCK-8, wound healing, transwell and tube formation assay, respectively. Chloride intracellular channel 1 (CLIC1) was significantly increased in CLL patients and markedly enriched in exosomes secreted by CLL cells. Exosomal CLIC1 secreted from MEC-1 cells were successfully transferred into HUVECs and significantly promoted the phenotypes of proliferation, metastasis and angiogenesis of HUVECs. Mechanically, exosomal CLIC1 secreted from MEC-1 cells obviously activated MAPK/ERK signaling through upregulating integrin β1 (ITGβ1) expression in HUVECs. Furthermore, rescue experiments revealed that either silencing ITGβ1 or PD98059 treatment obviously reversed the regulatory effects of exosomal CLIC1 secreted from MEC-1 cells in HUVECs. In conclusion, CLL cell-derived exosomes accelerated HUVECs metastasis and angiogenesis through transferring CLIC1 to regulate ITGβ1-MAPK/ERK signaling, indicating that CLIC1 may be a therapeutic target of CLL exosomes in the tumor microenvironment.
Collapse
Affiliation(s)
- Hua-Yun Geng
- Department of Hematology, Liaocheng Dongchangfu People's Hospital, Liaocheng, Shandong Province, P.R. China
| | - Zhen-Jun Feng
- Department of Hematology, Liaocheng People's Hospital, Liaocheng, Shandong Province, P.R. China
| | - Jing-Jing Zhang
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, P.R. China
| | - Guang-Yao Li
- Department of Hematology, Liaocheng People's Hospital, Liaocheng, Shandong Province, P.R. China
| |
Collapse
|
168
|
Xu YF, Xu X, Gin A, Nshimiyimana JD, Mooers BHM, Caputi M, Hannafon BN, Ding WQ. SRSF1 regulates exosome microRNA enrichment in human cancer cells. Cell Commun Signal 2020; 18:130. [PMID: 32819370 PMCID: PMC7439691 DOI: 10.1186/s12964-020-00615-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/27/2020] [Indexed: 12/18/2022] Open
Abstract
Background Exosomes are extracellular vesicles containing a variety of biological molecules including microRNAs (miRNAs). We have recently demonstrated that certain miRNA species are selectively and highly enriched in pancreatic cancer exosomes with miR-1246 being the most abundant. Exosome miRNAs have been shown to mediate intercellular communication in the tumor microenvironment and promote cancer progression. Therefore, understanding how exosomes selectively enrich specific miRNAs to initiate exosome miRNA signaling in cancer cells is critical to advancing cancer exosome biology. Results The aim of this study was to identify RNA binding proteins responsible for selective enrichment of exosome miRNAs in cancer cells. A biotin-labeled miR-1246 probe was used to capture RNA binding proteins (RBPs) from PANC-1 cells. Among the RBPs identified through proteomic analysis, SRSF1, EIF3B and TIA1 were highly associated with the miR-1246 probe. RNA immunoprecipitation (RIP) and electrophoretic mobility shift assay (EMSA) confirmed the binding of SRSF1 to miR-1246. Lentivirus shRNA knockdown of SRSF1 in pancreatic cancer cells selectively reduced exosome miRNA enrichment whereas GFP-SRSF1 overexpression enhanced the enrichment as analyzed by next generation small RNA sequencing and qRT-PCR. miRNA sequence motif analysis identified a common motif shared by 36/45 of SRSF1-associated exosome miRNAs. EMSA confirmed that shared motif decoys inhibit the binding of SRSF1 to the miR-1246 sequence. Conclusions We conclude that SRSF1 mediates selective exosome miRNA enrichment in pancreatic cancer cells by binding to a commonly shared miRNA sequence motif. Video Abstract
Graphical abstract ![]()
Collapse
Affiliation(s)
- Yi-Fan Xu
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, 940 Stanton L. Young Blvd., BMSB 401A, Oklahoma City, OK, 73104, USA
| | - Xiaohui Xu
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, 940 Stanton L. Young Blvd., BMSB 401A, Oklahoma City, OK, 73104, USA.,Department of General Surgery, First People's Hospital of Taicang City, Taicang Affiliated Hospital of Soochow University, Suzhou, 215400, China
| | - Amy Gin
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, 940 Stanton L. Young Blvd., BMSB 401A, Oklahoma City, OK, 73104, USA
| | - Jean D Nshimiyimana
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, 940 Stanton L. Young Blvd., BMSB 401A, Oklahoma City, OK, 73104, USA
| | - Blaine H M Mooers
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Massimo Caputi
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Bethany N Hannafon
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, Stephenson Cancer Center, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73103, USA.,Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Wei-Qun Ding
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, 940 Stanton L. Young Blvd., BMSB 401A, Oklahoma City, OK, 73104, USA. .,Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
169
|
Dubois N, Crompot E, Meuleman N, Bron D, Lagneaux L, Stamatopoulos B. Importance of Crosstalk Between Chronic Lymphocytic Leukemia Cells and the Stromal Microenvironment: Direct Contact, Soluble Factors, and Extracellular Vesicles. Front Oncol 2020; 10:1422. [PMID: 32974152 PMCID: PMC7466743 DOI: 10.3389/fonc.2020.01422] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is caused by the accumulation of malignant B cells due to a defect in apoptosis and the presence of small population of proliferating cells principally in the lymph nodes. The abnormal survival of CLL B cells is explained by a plethora of supportive stimuli produced by the surrounding cells of the microenvironment, including follicular dendritic cells (FDCs), and mesenchymal stromal cells (MSCs). This crosstalk between malignant cells and normal cells can take place directly by cell-to-cell contact (assisted by adhesion molecules such as VLA-4 or CD100), indirectly by soluble factors (chemokines such as CXCL12, CXCL13, or CCL2) interacting with their receptors or by the exchange of material (protein, microRNAs or long non-coding RNAs) via extracellular vesicles. These different communication methods lead to different activation pathways (including BCR and NFκB pathways), gene expression modifications (chemokines, antiapoptotic protein increase, prognostic biomarkers), chemotaxis, homing in lymphoid tissues and survival of leukemic cells. In addition, these interactions are bidirectional, and CLL cells can manipulate the normal surrounding stromal cells in different ways to establish a supportive microenvironment. Here, we review this complex crosstalk between CLL cells and stromal cells, focusing on the different types of interactions, activated pathways, treatment strategies to disrupt this bidirectional communication, and the prognostic impact of these induced modifications.
Collapse
Affiliation(s)
- Nathan Dubois
- Laboratory of Clinical Cell Therapy, ULB-Research Cancer Center (U-CRC), Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Emerence Crompot
- Laboratory of Clinical Cell Therapy, ULB-Research Cancer Center (U-CRC), Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Nathalie Meuleman
- Laboratory of Clinical Cell Therapy, ULB-Research Cancer Center (U-CRC), Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Department of Hematology, Jules Bordet Institute, Brussels, Belgium
| | - Dominique Bron
- Laboratory of Clinical Cell Therapy, ULB-Research Cancer Center (U-CRC), Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Department of Hematology, Jules Bordet Institute, Brussels, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, ULB-Research Cancer Center (U-CRC), Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Basile Stamatopoulos
- Laboratory of Clinical Cell Therapy, ULB-Research Cancer Center (U-CRC), Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
170
|
Kumar A, Kodidela S, Tadrous E, Cory TJ, Walker CM, Smith AM, Mukherjee A, Kumar S. Extracellular Vesicles in Viral Replication and Pathogenesis and Their Potential Role in Therapeutic Intervention. Viruses 2020; 12:E887. [PMID: 32823684 PMCID: PMC7472073 DOI: 10.3390/v12080887] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) have shown their potential as a carrier of molecular information, and they have been involved in physiological functions and diseases caused by viral infections. Virus-infected cells secrete various lipid-bound vesicles, including endosome pathway-derived exosomes and microvesicles/microparticles that are released from the plasma membrane. They are released via a direct outward budding and fission of plasma membrane blebs into the extracellular space to either facilitate virus propagation or regulate the immune responses. Moreover, EVs generated by virus-infected cells can incorporate virulence factors including viral protein and viral genetic material, and thus can resemble noninfectious viruses. Interactions of EVs with recipient cells have been shown to activate signaling pathways that may contribute to a sustained cellular response towards viral infections. EVs, by utilizing a complex set of cargos, can play a regulatory role in viral infection, both by facilitating and suppressing the infection. EV-based antiviral and antiretroviral drug delivery approaches provide an opportunity for targeted drug delivery. In this review, we summarize the literature on EVs, their associated involvement in transmission in viral infections, and potential therapeutic implications.
Collapse
Affiliation(s)
- Asit Kumar
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (E.T.); (A.M.)
| | - Sunitha Kodidela
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (E.T.); (A.M.)
| | - Erene Tadrous
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (E.T.); (A.M.)
| | - Theodore James Cory
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Crystal Martin Walker
- College of Nursing, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Amber Marie Smith
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Ahona Mukherjee
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (E.T.); (A.M.)
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (E.T.); (A.M.)
| |
Collapse
|
171
|
Clara-Trujillo S, Gallego Ferrer G, Gómez Ribelles JL. In Vitro Modeling of Non-Solid Tumors: How Far Can Tissue Engineering Go? Int J Mol Sci 2020; 21:E5747. [PMID: 32796596 PMCID: PMC7460836 DOI: 10.3390/ijms21165747] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022] Open
Abstract
In hematological malignancies, leukemias or myelomas, malignant cells present bone marrow (BM) homing, in which the niche contributes to tumor development and drug resistance. BM architecture, cellular and molecular composition and interactions define differential microenvironments that govern cell fate under physiological and pathological conditions and serve as a reference for the native biological landscape to be replicated in engineered platforms attempting to reproduce blood cancer behavior. This review summarizes the different models used to efficiently reproduce certain aspects of BM in vitro; however, they still lack the complexity of this tissue, which is relevant for fundamental aspects such as drug resistance development in multiple myeloma. Extracellular matrix composition, material topography, vascularization, cellular composition or stemness vs. differentiation balance are discussed as variables that could be rationally defined in tissue engineering approaches for achieving more relevant in vitro models. Fully humanized platforms closely resembling natural interactions still remain challenging and the question of to what extent accurate tissue complexity reproduction is essential to reliably predict drug responses is controversial. However, the contributions of these approaches to the fundamental knowledge of non-solid tumor biology, its regulation by niches, and the advance of personalized medicine are unquestionable.
Collapse
Affiliation(s)
- Sandra Clara-Trujillo
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain; (G.G.F.); (J.L.G.R.)
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 46022 Valencia, Spain
| | - Gloria Gallego Ferrer
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain; (G.G.F.); (J.L.G.R.)
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 46022 Valencia, Spain
| | - José Luis Gómez Ribelles
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain; (G.G.F.); (J.L.G.R.)
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 46022 Valencia, Spain
| |
Collapse
|
172
|
Maisano D, Mimmi S, Russo R, Fioravanti A, Fiume G, Vecchio E, Nisticò N, Quinto I, Iaccino E. Uncovering the Exosomes Diversity: A Window of Opportunity for Tumor Progression Monitoring. Pharmaceuticals (Basel) 2020; 13:ph13080180. [PMID: 32759810 PMCID: PMC7464894 DOI: 10.3390/ph13080180] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/27/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022] Open
Abstract
Cells can communicate through special “messages in the bottle”, which are recorded in the bloodstream inside vesicles, namely exosomes. The exosomes are nanovesicles of 30–100 nm in diameter that carry functionally active biological material, such as proteins, messanger RNA (mRNAs), and micro RNA (miRNAs). Therefore, they are able to transfer specific signals from a parental cell of origin to the surrounding cells in the microenvironment and to distant organs through the circulatory and lymphatic stream. More and more interest is rising for the pathological role of exosomes produced by cancer cells and for their potential use in tumor monitoring and patient follow up. In particular, the exosomes could be an appropriate index of proliferation and cancer cell communication for monitoring the minimal residual disease, which cannot be easily detectable by common diagnostic and monitoring techniques. The lack of unequivocal markers for tumor-derived exosomes calls for new strategies for exosomes profile characterization aimed at the adoption of exosomes as an official tumor biomarker for tumor progression monitoring.
Collapse
Affiliation(s)
- Domenico Maisano
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.M.); (G.F.); (E.V.); (N.N.); (I.Q.)
- Correspondence: (D.M.); (E.I.)
| | - Selena Mimmi
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.M.); (G.F.); (E.V.); (N.N.); (I.Q.)
| | - Rossella Russo
- Department of Pharmacy, Nutritional and Health Sciences, University of Calabria, Arcavacata di Rende, 87100 Cosenza, Italy;
| | - Antonella Fioravanti
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, 1050 Brussels, Belgium;
- Structural Biology Brussels, Vrije Universiteit, 1050 Brussels, Belgium
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.M.); (G.F.); (E.V.); (N.N.); (I.Q.)
| | - Eleonora Vecchio
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.M.); (G.F.); (E.V.); (N.N.); (I.Q.)
| | - Nancy Nisticò
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.M.); (G.F.); (E.V.); (N.N.); (I.Q.)
| | - Ileana Quinto
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.M.); (G.F.); (E.V.); (N.N.); (I.Q.)
| | - Enrico Iaccino
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.M.); (G.F.); (E.V.); (N.N.); (I.Q.)
- Correspondence: (D.M.); (E.I.)
| |
Collapse
|
173
|
Extracellular Vesicles-Based Drug Delivery Systems: A New Challenge and the Exemplum of Malignant Pleural Mesothelioma. Int J Mol Sci 2020; 21:ijms21155432. [PMID: 32751556 PMCID: PMC7432055 DOI: 10.3390/ijms21155432] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Research for the most selective drug delivery to tumors represents a fascinating key target in science. Alongside the artificial delivery systems identified in the last decades (e.g., liposomes), a family of natural extracellular vesicles (EVs) has gained increasing focus for their potential use in delivering anticancer compounds. EVs are released by all cell types to mediate cell-to-cell communication both at the paracrine and the systemic levels, suggesting a role for them as an ideal nano-delivery system. Malignant pleural mesothelioma (MPM) stands out among currently untreatable tumors, also due to the difficulties in achieving an early diagnosis. Thus, early diagnosis and treatment of MPM are both unmet clinical needs. This review looks at indirect and direct evidence that EVs may represent both a new tool for allowing an early diagnosis of MPM and a potential new delivery system for more efficient therapeutic strategies. Since MPM is a relatively rare malignant tumor and preclinical MPM models developed to date are very few and not reliable, this review will report data obtained in other tumor types, suggesting the potential use of EVs in mesothelioma patients as well.
Collapse
|
174
|
Domka K, Goral A, Firczuk M. cROSsing the Line: Between Beneficial and Harmful Effects of Reactive Oxygen Species in B-Cell Malignancies. Front Immunol 2020; 11:1538. [PMID: 32793211 PMCID: PMC7385186 DOI: 10.3389/fimmu.2020.01538] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/11/2020] [Indexed: 01/06/2023] Open
Abstract
B-cell malignancies are a heterogeneous group of hematological neoplasms derived from cells at different stages of B-cell development. Recent studies revealed that dysregulated redox metabolism is one of the factors contributing to the pathogenesis and progression of B-cell malignancies. Elevated levels of oxidative stress markers usually correlate with the advanced stage of various B-cell malignancies. In the complex tumor microenvironment, reactive oxygen species affect not only malignant cells but also bystander cells, including immune cells. Importantly, malignant cells, due to genetic dysregulation, are able to adapt to the increased demands for energy and reducing equivalents via metabolic reprogramming and upregulation of antioxidants. The immune cells, however, are more sensitive to oxidative imbalance. This may cause their dysfunction, leading to immune evasion and tumor progression. On the other hand, the already imbalanced redox homeostasis renders malignant B-cells particularly sensitive to further elevation of reactive oxygen species. Indeed, targeting antioxidant systems has already presented anti-leukemic efficacy in preclinical models. Moreover, the prooxidant treatment that triggers immunogenic cell death has been utilized to generate autologous anti-leukemic vaccines. In this article, we review novel research on the dual role of the reactive oxygen species in B-cell malignancies. We highlight the mechanisms of maintaining redox homeostasis by malignant B-cells along with the antioxidant shield provided by the microenvironment. We summarize current findings regarding therapeutic targeting of redox metabolism in B-cell malignancies. We also discuss how the oxidative stress affects antitumor immune response and how excessive reactive oxygens species influence anticancer prooxidant treatments and immunotherapies.
Collapse
Affiliation(s)
- Krzysztof Domka
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Goral
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
175
|
Longjohn MN, Hudson JABJ, Smith NC, Rise ML, Moorehead PC, Christian SL. Deciphering the messages carried by extracellular vesicles in hematological malignancies. Blood Rev 2020; 46:100734. [PMID: 32736879 DOI: 10.1016/j.blre.2020.100734] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 06/10/2020] [Accepted: 07/08/2020] [Indexed: 12/15/2022]
Abstract
Extracellular vesicles (EVs) are nanosized membrane-bound particles released from all living cells examined thus far. EVs can transfer information in the form of proteins, nucleic acids, and lipids from donor cells to recipient cells. Here we summarize recent advances in understanding the role(s) EVs play in hematological malignancies (HM) and outline potential prognostic and diagnostic strategies using EVs. EVs have been shown to promote proliferation and angiogenesis, and alter the bone marrow microenvironment to favour the growth and survival of diverse HM. They also promote evasion of anti-cancer immune responses and increase multi-drug resistance. Using knowledge of EV biology, including HM-specific packaging of cargo, EV based diagnostics and therapeutic approaches show substantial clinical promise. However, while EVs may represent a new paradigm to solve many of the challenges in treating and/or diagnosing HM, much work is needed before they can be used clinically to improve patient outcomes.
Collapse
Affiliation(s)
| | - Jo-Anna B J Hudson
- Discipline of Pediatrics, Memorial University of Newfoundland, Canada; University of Ottawa, Children's Hospital of Eastern Ontario, Canada
| | - Nicole C Smith
- Department of Ocean Sciences, Memorial University of Newfoundland, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, Canada
| | - Paul C Moorehead
- Discipline of Pediatrics, Memorial University of Newfoundland, Canada
| | - Sherri L Christian
- Department of Biochemistry, Memorial University of Newfoundland, Canada.
| |
Collapse
|
176
|
Kogure A, Yoshioka Y, Ochiya T. Extracellular Vesicles in Cancer Metastasis: Potential as Therapeutic Targets and Materials. Int J Mol Sci 2020; 21:E4463. [PMID: 32585976 PMCID: PMC7352700 DOI: 10.3390/ijms21124463] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022] Open
Abstract
The vast majority of cancer-related deaths are due to metastasis of the primary tumor that develops years to decades after apparent cures. However, it is difficult to effectively prevent or treat cancer metastasis. Recent studies have shown that communication between cancer cells and surrounding cells enables cancer progression and metastasis. The comprehensive term "extracellular vesicles" (EVs) describes lipid bilayer vesicles that are secreted to outside cells; EVs are well-established mediators of cell-to-cell communication. EVs participate in cancer progression and metastasis by transferring bioactive molecules, such as proteins and RNAs, including microRNAs (miRNAs), between cancer and various cells in local and distant microenvironments. Clinically, EVs functioning as diagnostic biomarkers, therapeutic targets, or even as anticancer drug-delivery vehicles have been emphasized as a result of their unique biological and pathophysiological characteristics. The potential therapeutic effects of EVs in cancer treatment are rapidly emerging and represent a new and important area of research. This review focuses on the therapeutic potential of EVs and discusses their utility for the inhibition of cancer progression, including metastasis.
Collapse
Affiliation(s)
| | - Yusuke Yoshioka
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Shinjuku-ku, Tokyo 1600023, Japan; (A.K.); (T.O.)
| | | |
Collapse
|
177
|
Wan X, Chen S, Fang Y, Zuo W, Cui J, Xie S. Mesenchymal stem cell-derived extracellular vesicles suppress the fibroblast proliferation by downregulating FZD6 expression in fibroblasts via micrRNA-29b-3p in idiopathic pulmonary fibrosis. J Cell Physiol 2020; 235:8613-8625. [PMID: 32557673 DOI: 10.1002/jcp.29706] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/04/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF), a progressive and fatal lung disease, usually leads to an irreversible distortion of the pulmonary structure. The functional roles of bone marrow-derived mesenchymal stem cells (BMSC)-secreted extracellular vesicles (EVs) in fibroblasts have been implicated, yet their actions in the treatment of IPF are not fully understood. This study investigated the roles of BMSC-derived EVs expressing miR-29b-3p in fibroblasts in IPF treatment. EVs derived from BMSCs were successfully isolated and could be internalized by pulmonary fibroblasts, and Cell Counting Kit-8 (CCK-8) and Transwell assay results identified that EVs inhibited the activation of fibroblast in IPF. miR-29b-3p, frizzled 6 (FZD6), α-skeletal muscle actin (α-SMA), and Collagen I expressions were examined, which revealed that miR-29b-3p was poorly expressed and FZD6, α-SMA, and Collagen I were overexpressed in pulmonary tissues. Dual-luciferase reporter assay results demonstrated that miR-29b-3p could inversely target FZD6 expression. The gain- and loss-of-function assays were conducted to determine regulatory effects of FZD6 and miR-29b-3p on IPF. CCK-8 and Transwell assays results displayed that BMSCs-derived EVs overexpressing miR-29b-3p contributed to inhibited pulmonary interstitial fibroblast proliferation, migration, invasion, and differentiation. Furthermore, the effects of BMSCs-derived EVs overexpressing miR-29b-3p on IPF progression were assessed in vivo, which confirmed the repressive effects of BMSCs-derived EVs overexpressing miR-29b-3p on IPF progression. Collectively, BMSCs-derived EVs overexpressing miR-29b-3p relieve IPF through FZD6.
Collapse
Affiliation(s)
- Xuan Wan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shuyun Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yan Fang
- Department of Cardiovascular Medicine, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Wei Zuo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jian Cui
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shiguang Xie
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
178
|
Casadei L, Pollock RE. Extracellular vesicle cross-talk in the liposarcoma microenvironment. Cancer Lett 2020; 487:27-33. [PMID: 32470489 DOI: 10.1016/j.canlet.2020.04.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/14/2020] [Accepted: 04/30/2020] [Indexed: 12/19/2022]
Abstract
Liposarcoma (LPS) is the most prevalent soft tissue sarcoma; among the four different LPS subtypes, dedifferentiated liposarcoma (DDLPS) is especially worrisome given its propensity for local and distant recurrence, with an overall survival rate of only 10% at 10 years. Our understanding of the molecular drivers of this disease is rudimentary at best; knowledge about how DDLPS interacts with cells in the tumor microenvironment (TME) is also lacking. Extracellular vesicle (EVs) have been studied in a number of different systems concerning their ability to influence the TME transferring bioactive molecules. In this review, we outline the role of the TME in the DDLPS progression and recurrence, focusing on the interplay between EVs released from the tumor and their target recipient cells in the TME. Success in the understanding of this process will be critical to an enhanced understanding of the underlying biologic drivers at play, potentially leading to new therapeutic strategies of benefit to patients with this disease.
Collapse
Affiliation(s)
- Lucia Casadei
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA; Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| | - Raphael E Pollock
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA; Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
179
|
The Interplay between MicroRNAs and the Components of the Tumor Microenvironment in B-Cell Malignancies. Int J Mol Sci 2020; 21:ijms21093387. [PMID: 32403283 PMCID: PMC7246984 DOI: 10.3390/ijms21093387] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/22/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
An increased focus is being placed on the tumorigenesis and contexture of tumor microenvironment in hematopoietic and solid tumors. Despite recent clinical revolutions in adoptive T-cell transfer approaches and immune checkpoint blockade, tumor microenvironment is a major obstacle to tumor regression in B-cell malignancies. A transcriptional alteration of coding and non-coding RNAs, such as microRNAs (miRNAs), has been widely demonstrated in the tumor microenvironment of B-cell malignancies. MiRNAs have been associated with different clinical-biological forms of B-cell malignancies and involved in the regulation of B lymphocyte development, maturation, and function, including B-cell activation and malignant transformation. Additionally, tumor-secreted extracellular vesicles regulate recipient cell functions in the tumor microenvironment to facilitate metastasis and progression by delivering miRNA contents to neighboring cells. Herein, we focus on the interplay between miRNAs and tumor microenvironment components in the different B-cell malignancies and its impact on diagnosis, proliferation, and involvement in treatment resistance.
Collapse
|
180
|
The Role of Extracellular Vesicles in the Hallmarks of Cancer and Drug Resistance. Cells 2020; 9:cells9051141. [PMID: 32384712 PMCID: PMC7290603 DOI: 10.3390/cells9051141] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs) mediate intercellular signaling and communication, allowing the intercellular exchange of proteins, lipids, and genetic material. Their recognized role in the maintenance of the physiological balance and homeostasis seems to be severely disturbed throughout the carcinogenesis process. Indeed, the modus operandi of cancer implies the highjack of the EV signaling network to support tumor progression in many (if not all) human tumor malignancies. We have reviewed the current evidence for the role of EVs in affecting cancer hallmark traits by: (i) promoting cell proliferation and escape from apoptosis, (ii) sustaining angiogenesis, (iii) contributing to cancer cell invasion and metastasis, (iv) reprogramming energy metabolism, (v) transferring mutations, and (vi) modulating the tumor microenvironment (TME) by evading immune response and promoting inflammation. Special emphasis was given to the role of EVs in the transfer of drug resistant traits and to the EV cargo responsible for this transfer, both between cancer cells or between the microenvironment and tumor cells. Finally, we reviewed evidence for the increased release of EVs by drug resistant cells. A timely and comprehensive understanding of how tumor EVs facilitate tumor initiation, progression, metastasis and drug resistance is instrumental for the development of innovative EV-based therapeutic approaches for cancer.
Collapse
|
181
|
Méndez-Ferrer S, Bonnet D, Steensma DP, Hasserjian RP, Ghobrial IM, Gribben JG, Andreeff M, Krause DS. Bone marrow niches in haematological malignancies. Nat Rev Cancer 2020; 20:285-298. [PMID: 32112045 PMCID: PMC9912977 DOI: 10.1038/s41568-020-0245-2] [Citation(s) in RCA: 296] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/03/2020] [Indexed: 02/06/2023]
Abstract
Haematological malignancies were previously thought to be driven solely by genetic or epigenetic lesions within haematopoietic cells. However, the niches that maintain and regulate daily production of blood and immune cells are now increasingly being recognized as having an important role in the pathogenesis and chemoresistance of haematological malignancies. Within haematopoietic cells, the accumulation of a small number of recurrent mutations initiates malignancy. Concomitantly, specific alterations of the niches, which support haematopoietic stem cells and their progeny, can act as predisposition events, facilitating mutant haematopoietic cell survival and expansion as well as contributing to malignancy progression and providing protection of malignant cells from chemotherapy, ultimately leading to relapse. In this Perspective, we summarize our current understanding of the composition and function of the specialized haematopoietic niches of the bone marrow during health and disease. We discuss disease mechanisms (rather than malignancy subtypes) to provide a comprehensive description of key niche-associated pathways that are shared across multiple haematological malignancies. These mechanisms include primary driver mutations in bone marrow niche cells, changes associated with increased hypoxia, angiogenesis and inflammation as well as metabolic reprogramming by stromal niche cells. Consequently, remodelling of bone marrow niches can facilitate immune evasion and activation of survival pathways favouring malignant haematopoietic cell maintenance, defence against excessive reactive oxygen species and protection from chemotherapy. Lastly, we suggest guidelines for the handling and biobanking of patient samples and analysis of the niche to ensure that basic research identifying therapeutic targets can be more efficiently translated to the clinic. The hope is that integrating knowledge of how bone marrow niches contribute to haematological disease predisposition, initiation, progression and response to therapy into future clinical practice will likely improve the treatment of these disorders.
Collapse
Affiliation(s)
- Simón Méndez-Ferrer
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK.
- National Health Service Blood and Transplant, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, UK
| | - David P Steensma
- Harvard Medical School, Boston, MA, USA
- The Center for Prevention of Progression of Blood Cancers, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Robert P Hasserjian
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Irene M Ghobrial
- Harvard Medical School, Boston, MA, USA
- The Center for Prevention of Progression of Blood Cancers, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - John G Gribben
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniela S Krause
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Medicine, Frankfurt, Germany
- Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
182
|
Extracellular Vesicles as Signaling Mediators and Disease Biomarkers across Biological Barriers. Int J Mol Sci 2020; 21:ijms21072514. [PMID: 32260425 PMCID: PMC7178048 DOI: 10.3390/ijms21072514] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/20/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles act as shuttle vectors or signal transducers that can deliver specific biological information and have progressively emerged as key regulators of organized communities of cells within multicellular organisms in health and disease. Here, we survey the evolutionary origin, general characteristics, and biological significance of extracellular vesicles as mediators of intercellular signaling, discuss the various subtypes of extracellular vesicles thus far described and the principal methodological approaches to their study, and review the role of extracellular vesicles in tumorigenesis, immunity, non-synaptic neural communication, vascular-neural communication through the blood-brain barrier, renal pathophysiology, and embryo-fetal/maternal communication through the placenta.
Collapse
|
183
|
Taghikhani A, Farzaneh F, Sharifzad F, Mardpour S, Ebrahimi M, Hassan ZM. Engineered Tumor-Derived Extracellular Vesicles: Potentials in Cancer Immunotherapy. Front Immunol 2020; 11:221. [PMID: 32210954 PMCID: PMC7069476 DOI: 10.3389/fimmu.2020.00221] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 01/27/2020] [Indexed: 12/18/2022] Open
Abstract
Exosomes are nano vesicles from the larger family named Extracellular Vesicle (EV)s which are released by various cells including tumor cells, mast cells, dendritic cells, B lymphocytes, neurons, adipocytes, endothelial cells, and epithelial cells. They are considerable messengers that can exchange proteins and genetic materials between the cells. Within the past decade, Tumor derived exosomes (TEX) have been emerged as important mediators in cancer initiation, progression and metastasis as well as host immune suppression and drug resistance. Although tumor derived exosomes consist of tumor antigens and several Heat Shock Proteins such as HSP70 and HSP90 to stimulate immune response against tumor cells, they contain inhibitory molecules like Fas ligand (Fas-L), Transforming Growth Factor Beta (TGF-β) and Prostaglandin E2 (PGE2) leading to decrease the cytotoxicity and establish immunosuppressive tumor microenvironment (TME). To bypass this problem and enhance immune response, some macromolecules such as miRNAs, HSPs and activatory ligands have been recognized as potent immune inducers that could be used as anti-tumor agents to construct a nano sized tumor vaccine. Here, we discussed emerging engineered exosomes as a novel therapeutic strategy and considered the associated challenges.
Collapse
Affiliation(s)
- Adeleh Taghikhani
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Farzin Farzaneh
- Division of Cancer Studies, Department of Haematological Medicine, King’s College London, London, United Kingdom
| | - Farzaneh Sharifzad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Applied Cell Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Soura Mardpour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zuhair Mohammad Hassan
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
184
|
Ji Q, Zhou L, Sui H, Yang L, Wu X, Song Q, Jia R, Li R, Sun J, Wang Z, Liu N, Feng Y, Sun X, Cai G, Feng Y, Cai J, Cao Y, Cai G, Wang Y, Li Q. Primary tumors release ITGBL1-rich extracellular vesicles to promote distal metastatic tumor growth through fibroblast-niche formation. Nat Commun 2020; 11:1211. [PMID: 32139701 PMCID: PMC7058049 DOI: 10.1038/s41467-020-14869-x] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
Tumor metastasis is a hallmark of cancer. Metastatic cancer cells often reside in distal tissues and organs in their dormant state. Mechanisms underlying the pre-metastatic niche formation are poorly understood. Here we show that in a colorectal cancer (CRC) model, primary tumors release integrin beta-like 1 (ITGBL1)-rich extracellular vesicles (EVs) to the circulation to activate resident fibroblasts in remote organs. The activated fibroblasts induce the pre-metastatic niche formation and promote metastatic cancer growth by secreting pro-inflammatory cytokine, such as IL-6 and IL-8. Mechanistically, the primary CRC-derived ITGBL1-enriched EVs stimulate the TNFAIP3-mediated NF-κB signaling pathway to activate fibroblasts. Consequently, the activated fibroblasts produce high levels of pro-inflammatory cytokines to promote metastatic cancer growth. These findings uncover a tumor-stromal interaction in the metastatic tumor microenvironment and an intimate signaling communication between primary tumors and metastases through the ITGBL1-loaded EVs. Targeting the EVs-ITGBL1-CAFs-TNFAIP3-NF-κB signaling axis provides an attractive approach for treating metastatic diseases.
Collapse
Affiliation(s)
- Qing Ji
- Department of Medical Oncology and cancer institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Lihong Zhou
- Department of Medical Oncology and cancer institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Hua Sui
- Department of Medical Oncology and cancer institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Liu Yang
- Department of Medical Oncology and cancer institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Xinnan Wu
- Department of Medical Oncology and cancer institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Qing Song
- Department of Medical Oncology and cancer institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Ru Jia
- Department of Medical Oncology and cancer institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Ruixiao Li
- Department of Medical Oncology and cancer institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Jian Sun
- Department of Medical Oncology and cancer institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Ziyuan Wang
- Department of Medical Oncology and cancer institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Ningning Liu
- Department of Medical Oncology and cancer institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Yuanyuan Feng
- Department of Medical Oncology and cancer institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Xiaoting Sun
- Department of Medical Oncology and cancer institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Gang Cai
- Department of Medical Oncology and cancer institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Yu Feng
- Department of Medical Oncology and cancer institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Yihai Cao
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Guoxiang Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 200032, Shanghai, China.
| | - Yan Wang
- Department of Medical Oncology and cancer institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China.
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China.
| | - Qi Li
- Department of Medical Oncology and cancer institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China.
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China.
| |
Collapse
|
185
|
Saitoh Y, Umezu T, Imanishi S, Asano M, Yoshizawa S, Katagiri S, Suguro T, Fujimoto H, Akahane D, Kobayashi-Kawana C, Ohyashiki JH, Ohyashiki K. Downregulation of extracellular vesicle microRNA-101 derived from bone marrow mesenchymal stromal cells in myelodysplastic syndrome with disease progression. Oncol Lett 2020; 19:2053-2061. [PMID: 32194702 PMCID: PMC7038917 DOI: 10.3892/ol.2020.11282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/11/2019] [Indexed: 12/21/2022] Open
Abstract
To evaluate the mechanism underlying the communication between myeloid malignant and bone marrow (BM) microenvironment cells in disease progression, the current study established BM mesenchymal stromal cells (MSCs) and assessed extracellular vesicle (EV) microRNA (miR) expression in 22 patients with myelodysplastic syndrome (MDS) and 7 patients with acute myeloid leukemia and myelodysplasia-related changes (AML/MRC). Patients with MDS were separated into two categories based on the revised International Prognostic Scoring System (IPSS-R), and EV-miR expression in BM-MSCs was evaluated using a TaqMan low-density array. The selected miRs were evaluated using reverse transcription-quantitative PCR. The current study demonstrated that the expression of BM-MSC-derived EV-miR was heterogenous and based on MDS severity, the expression of EV-miR-101 was lower in high-risk group and patients with AML/MRC compared with the control and low-risk groups. This reversibly correlated with BM blast percentage, with which the cellular miR-101 from BM-MSCs or serum EV-miR-101 expression exhibited no association. Database analyses indicated that miR-101 negatively regulated cell proliferation and epigenetic gene expression. The downregulation of BM-MSC-derived EV-miR-101 may be associated with cell-to-cell communication and may accelerate the malignant process in MDS cells.
Collapse
Affiliation(s)
- Yuu Saitoh
- Department of Hematology, Tokyo Medical University, Tokyo 160-8402, Japan
- Department of Hematology, Shizuoka General Hospital, Shizuoka 420-8527, Japan
| | - Tomohiro Umezu
- Department of Hematology, Tokyo Medical University, Tokyo 160-8402, Japan
- Department of Molecular Pathology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Satoshi Imanishi
- Institute of Medical Sciences, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Michiyo Asano
- Department of Hematology, Tokyo Medical University, Tokyo 160-8402, Japan
| | | | - Seiichiro Katagiri
- Department of Hematology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Tamiko Suguro
- Department of Hematology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Hiroaki Fujimoto
- Department of Hematology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Daigo Akahane
- Department of Hematology, Tokyo Medical University, Tokyo 160-8402, Japan
| | | | - Junko H. Ohyashiki
- Institute of Medical Sciences, Tokyo Medical University, Tokyo 160-0023, Japan
- Department of Advanced Cellular Therapy, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Kazuma Ohyashiki
- Department of Hematology, Tokyo Medical University, Tokyo 160-8402, Japan
- Department of Advanced Cellular Therapy, Tokyo Medical University, Tokyo 160-0023, Japan
| |
Collapse
|
186
|
Saber SH, Ali HEA, Gaballa R, Gaballah M, Ali HI, Zerfaoui M, Abd Elmageed ZY. Exosomes are the Driving Force in Preparing the Soil for the Metastatic Seeds: Lessons from the Prostate Cancer. Cells 2020; 9:E564. [PMID: 32121073 PMCID: PMC7140426 DOI: 10.3390/cells9030564] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 12/13/2022] Open
Abstract
Exosomes are nano-membrane vesicles that various cell types secrete during physiological and pathophysiological conditions. By shuttling bioactive molecules such as nucleic acids, proteins, and lipids to target cells, exosomes serve as key regulators for multiple cellular processes, including cancer metastasis. Recently, microvesicles have emerged as a challenge in the treatment of prostate cancer (PCa), encountered either when the number of vesicles increases or when the vesicles move into circulation, potentially with an ability to induce drug resistance, angiogenesis, and metastasis. Notably, the exosomal cargo can induce the desmoplastic response of PCa-associated cells in a tumor microenvironment (TME) to promote PCa metastasis. However, the crosstalk between PCa-derived exosomes and the TME remains only partially understood. In this review, we provide new insights into the metabolic and molecular signatures of PCa-associated exosomes in reprogramming the TME, and the subsequent promotion of aggressive phenotypes of PCa cells. Elucidating the molecular mechanisms of TME reprogramming by exosomes draws more practical and universal conclusions for the development of new therapeutic interventions when considering TME in the treatment of PCa patients.
Collapse
Affiliation(s)
- Saber H. Saber
- Laboratory of Molecular Cell Biology, Department of Zoology, Faculty of Science, Assiut University, Assiut 71515, Egypt;
| | - Hamdy E. A. Ali
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX 77843, USA; (H.E.A.A.); (R.G.); (M.G.); (H.I.A.)
| | - Rofaida Gaballa
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX 77843, USA; (H.E.A.A.); (R.G.); (M.G.); (H.I.A.)
| | - Mohamed Gaballah
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX 77843, USA; (H.E.A.A.); (R.G.); (M.G.); (H.I.A.)
| | - Hamed I. Ali
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX 77843, USA; (H.E.A.A.); (R.G.); (M.G.); (H.I.A.)
| | - Mourad Zerfaoui
- Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Zakaria Y. Abd Elmageed
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX 77843, USA; (H.E.A.A.); (R.G.); (M.G.); (H.I.A.)
| |
Collapse
|
187
|
Jin N, Jin N, Bu W, Li X, Liu L, Wang Z, Tong J, Li D. Long non-coding RNA TIRY promotes tumor metastasis by enhancing epithelial-to-mesenchymal transition in oral cancer. Exp Biol Med (Maywood) 2020; 245:585-596. [PMID: 32102563 DOI: 10.1177/1535370220903673] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) modulate a variety of cancerous biological processes, including the promotion of tumorigenicity in tumor parenchymal cells. However, there is a lack of studies assessing the regulation of lncRNAs in cancer-associated fibroblasts. In the present study, a novel lncRNA, TIRY, was found to act as a miRNA sponge and to downregulate miR-14 expression in oral squamous cell carcinoma (OSCC). Fluorescence in situ hybridization assay was used to evaluate TIRY expression in OSCC tissues. Survival analysis in a prospective cohort revealed a correlation between high TIRY expression and short progression-free survival. Subsequently, TIRY expression in cancer-associated fibroblasts and primary fibroblasts from adjacent normal (para-carcinoma) tissues was assessed using quantitative reverse transcription polymerase chain reaction. TIRY overexpression in cancer-associated fibroblasts isolated from OSCC tissues was induced by overexpressing the TIRY plasmid, and candidate microRNA expressions were assessed using quantitative real-time polymerase chain reaction. Moreover, the expression of proteins related to epithelial-to-mesenchymal transition (EMT) was determined; the proliferation, metastasis, and invasion of cancer cells co-cultured with TIRY-overexpressing cancer-associated fibroblasts were determined. We found significantly decreased miR-14 expression in cancer-associated fibroblast-derived exosomes and increased expression of EMT markers including transcription factors (Snail and FOXC2) and cellular scaffolding proteins (α-SMA, β-catenin, and FSP1). TIRY overexpression in cancer-associated fibroblasts activated the Wnt/β-catenin signaling pathway and promoted the invasion and metastasis of OSCC cells through miR-14 sponging based on cancer-associated exosome secretion. Our findings provide a novel molecular mechanism underlying the role of TIRY in cancer-associated fibroblasts in tumor biology; moreover, TIRY is a potential therapeutic target in OSCC. Impact statement This study demonstrated the novel lncRNA, TIRY, enhances epithelial-to-mesenchymal transition in cancer-associated fibroblasts and promotes the metastasis of tumor via miR-14 sponging in oral squamous cell carcinoma, and thus provide a novel molecular mechanism underlying the role of TIRY in CAFs in tumor biology and a potential target in OSCC. Further, the data showed that TIRY expression was negatively correlated with miR-14 transcription levels and was associated with poor prognosis in OSCC specimens. Therefore, TIRY may be a potential prognostic biomarker of overall survival and progression-free survival in OSCC. Moreover, TIRY adds to the understanding of regulatory mechanisms involved in CAFs and epithelial cancer cells in OSCC and may provide novel insights for further understanding tumor biology.
Collapse
Affiliation(s)
- Nuo Jin
- Qingdao Stomatology Hospital, Qingdao 266001, China
| | - Nianqiang Jin
- Department of Oral Pathology, School and Hospital of Stomatology, China Medical University, Shenyang 110000, China
| | - Wenhuan Bu
- Department of Oral Pathology, School and Hospital of Stomatology, China Medical University, Shenyang 110000, China
| | - Xing Li
- Department of Oral Pathology, School and Hospital of Stomatology, China Medical University, Shenyang 110000, China
| | - Lili Liu
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun 130000, China
| | - Zilin Wang
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun 130000, China
| | - Jin Tong
- International Medical Center, Xian 710000, China
| | - Dechao Li
- Qingdao Stomatology Hospital, Qingdao 266001, China
| |
Collapse
|
188
|
Mangolini M, Ringshausen I. Bone Marrow Stromal Cells Drive Key Hallmarks of B Cell Malignancies. Int J Mol Sci 2020; 21:E1466. [PMID: 32098106 PMCID: PMC7073037 DOI: 10.3390/ijms21041466] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/06/2020] [Accepted: 02/13/2020] [Indexed: 12/11/2022] Open
Abstract
All B cell leukaemias and a substantial fraction of lymphomas display a natural niche residency in the bone marrow. While the bone marrow compartment may only be one of several sites of disease manifestations, the strong clinical significance of minimal residual disease (MRD) in the bone marrow strongly suggests that privileged niches exist in this anatomical site favouring central elements of malignant transformation. Here, the co-existence of two hierarchical systems, originating from haematopoietic and mesenchymal stem cells, has extensively been characterised with regard to regulation of the former (blood production) by the latter. How these two systems cooperate under pathological conditions is far less understood and is the focus of many current investigations. More recent single-cell sequencing techniques have now identified an unappreciated cellular heterogeneity of the bone marrow microenvironment. How each of these cell subtypes interact with each other and regulate normal and malignant haematopoiesis remains to be investigated. Here we review the evidences of how bone marrow stroma cells and malignant B cells reciprocally interact. Evidently from published data, these cell-cell interactions induce profound changes in signalling, gene expression and metabolic adaptations. While the past research has largely focussed on understanding changes imposed by stroma- on tumour cells, it is now clear that tumour-cell contact also has fundamental ramifications for the biology of stroma cells. Their careful characterisations are not only interesting from a scientific biological viewpoint but also relevant to clinical practice: Since tumour cells heavily depend on stroma cells for cell survival, proliferation and dissemination, interference with bone marrow stroma-tumour interactions bear therapeutic potential. The molecular characterisation of tumour-stroma interactions can identify new vulnerabilities, which could be therapeutically exploited.
Collapse
Affiliation(s)
- Maurizio Mangolini
- Wellcome Trust/MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AH, UK;
| | - Ingo Ringshausen
- Wellcome Trust/MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AH, UK;
- Department of Haematology, Addenbrooke’s Hospital, Cambridge University hospital, Cambridge CB2 0AH, UK
| |
Collapse
|
189
|
Role of Non-Coding RNAs in the Development of Targeted Therapy and Immunotherapy Approaches for Chronic Lymphocytic Leukemia. J Clin Med 2020; 9:jcm9020593. [PMID: 32098192 PMCID: PMC7074107 DOI: 10.3390/jcm9020593] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 12/15/2022] Open
Abstract
In the past decade, novel targeted therapy approaches, such as BTK inhibitors and Bcl2 blockers, and innovative treatments that regulate the immune response against cancer cells, such as monoclonal antibodies, CAR-T cell therapy, and immunomodulatory molecules, have been established to provide support for the treatment of patients. However, drug resistance development and relapse are still major challenges in CLL treatment. Several studies revealed that non-coding RNAs have a main role in the development and progression of CLL. Specifically, microRNAs (miRs) and tRNA-derived small-RNAs (tsRNAs) were shown to be outstanding biomarkers that can be used to diagnose and monitor the disease and to possibly anticipate drug resistance and relapse, thus supporting physicians in the selection of treatment regimens tailored to the patient needs. In this review, we will summarize the most recent discoveries in the field of targeted therapy and immunotherapy for CLL and discuss the role of ncRNAs in the development of novel drugs and combination regimens for CLL patients.
Collapse
|
190
|
Nehrbas J, Butler JT, Chen DW, Kurre P. Extracellular Vesicles and Chemotherapy Resistance in the AML Microenvironment. Front Oncol 2020; 10:90. [PMID: 32117744 PMCID: PMC7033644 DOI: 10.3389/fonc.2020.00090] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/17/2020] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicle (EV) trafficking provides for a constitutive mode of cell-cell communication within tissues and between organ systems. Different EV subtypes have been identified that transfer regulatory molecules between cells, influencing gene expression, and altering cellular phenotypes. Evidence from a range of studies suggests that EV trafficking enhances cell survival and resistance to chemotherapy in solid tumors. In acute myeloid leukemia (AML), EVs contribute to the dynamic crosstalk between AML cells, hematopoietic elements and stromal cells and promote adaptation of compartmental bone marrow (BM) function through transport of protein, RNA, and DNA. Careful analysis of leukemia cell EV content and phenotypic outcomes provide evidence that vesicles are implicated in transferring several known key mediators of chemoresistance, including miR-155, IL-8, and BMP-2. Here, we review the current understanding of how EVs exert their influence in the AML niche, and identify research opportunities to improve outcomes for relapsed or refractory AML patients.
Collapse
Affiliation(s)
- Jill Nehrbas
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - John T Butler
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States.,Department of Pediatrics, Oregon Health & Science University, Portland, OR, United States
| | - Ding-Wen Chen
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Peter Kurre
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
191
|
Abstract
Rapidly increasing scientific reports of exosomes and their biological effects have improved our understanding of their cellular sources and their cell-to-cell communication. These nano-sized vesicles act as potent carriers of regulatory bio-macromolecules and can induce regulatory functions by delivering them from its source to recipient cells. The details of their communication network are less understood. Recent studies have shown that apart from delivering its cargo to the cells, it can directly act on extracellular matrix (ECM) proteins and growth factors and can induce various remodeling events. More importantly, exosomes carry many surface-bound proteases, which can cleave different ECM proteins and carbohydrates and can shed cell surface receptors. These local extracellular events can modulate signaling cascades, which consequently influences the whole tissue and organ. This review aims to highlight the critical roles of exosomal proteases and their mechanistic insights within the cellular and extracellular environment.
Collapse
|
192
|
Casadei L, Pollock RE. Cracking the riddle of dedifferentiated liposarcoma: is EV-MDM2 a key? Oncoscience 2020; 7:10-13. [PMID: 32258243 PMCID: PMC7105156 DOI: 10.18632/oncoscience.497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/09/2020] [Indexed: 02/06/2023] Open
Abstract
Dedifferentiated liposarcoma (DDLPS) is molecularly characterized by wt p53 and MDM2 gene amplification causing MDM2 protein over-production, the key oncogenic process in DDLPS. Commonly located in fat-bearing retroperitoneal areas, almost 60% of DDLPS patients undergo multifocal recurrence, typically amenable to palliative treatment only, and occasionally develop distant metastasis. These factors lead to an abysmal 10% 10 year overall survival rate.
Tumor cell-derived extracellular vesicles (EVs) can facilitate loco-regional malignancy dissemination by depositing molecular factors that participate in the development of pre-metastatic niches for tumor cell implantation and growth. High number of MDM2 DNA molecules was identified within EVs from DDLPS patient serum (ROC vs normal; 0.95) as well as from DDLPS cell lines. This MDM2 DNA could be transferred to preadipocytes (P-a), a major and ubiquitous cellular component of the DDLPS tumor microenvironment (TME), with subsequent P-a production of matrix metalloproteinase 2 (MMP2), a critical component in the metastatic cascade. From here the hypothesis that the DDLPS microenvironment (specifically P-a cells) may participate in DDLPS recurrence events.
Since multifocal loco-regional DDLPS spreading is the main cause of the remarkably high lethality of this disease, a better understanding of the underlying oncogenic processes and their regulatory mechanisms is essential to improve the outcome of this devastating disease.
Collapse
Affiliation(s)
- Lucia Casadei
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA.,Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Raphael E Pollock
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA.,Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
193
|
Jurj A, Zanoaga O, Braicu C, Lazar V, Tomuleasa C, Irimie A, Berindan-Neagoe I. A Comprehensive Picture of Extracellular Vesicles and Their Contents. Molecular Transfer to Cancer Cells. Cancers (Basel) 2020; 12:cancers12020298. [PMID: 32012717 PMCID: PMC7072213 DOI: 10.3390/cancers12020298] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/09/2020] [Accepted: 01/15/2020] [Indexed: 12/11/2022] Open
Abstract
Critical processes such as growth, invasion, and metastasis of cancer cells are sustained via bidirectional cell-to-cell communication in tissue complex environments. Such communication involves the secretion of soluble factors by stromal cells and/or cancer cells within the tumor microenvironment (TME). Both stromal and cancer cells have been shown to export bilayer nanoparticles: encapsulated regulatory molecules that contribute to cell-to-cell communication. These nanoparticles are known as extracellular vesicles (EVs) being classified into exosomes, microvesicles, and apoptotic bodies. EVs carry a vast repertoire of molecules such as oncoproteins and oncopeptides, DNA fragments from parental to target cells, RNA species (mRNAs, microRNAs, and long non-coding RNA), and lipids, initiating phenotypic changes in TME. According to their specific cargo, EVs have crucial roles in several early and late processes associated with tumor development and metastasis. Emerging evidence suggests that EVs are being investigated for their implication in early cancer detection, monitoring cancer progression and chemotherapeutic response, and more relevant, the development of novel targeted therapeutics. In this study, we provide a comprehensive understanding of the biophysical properties and physiological functions of EVs, their implications in TME, and highlight the applicability of EVs for the development of cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.J.); (O.Z.); (C.B.); (C.T.)
| | - Oana Zanoaga
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.J.); (O.Z.); (C.B.); (C.T.)
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.J.); (O.Z.); (C.B.); (C.T.)
| | - Vladimir Lazar
- Worldwide Innovative Network for Personalized Cancer Therapy, 94800 Villejuif, France;
| | - Ciprian Tomuleasa
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.J.); (O.Z.); (C.B.); (C.T.)
- Department of Hematology, The Oncology Institute Prof. Dr. Ion Chiricuta, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Alexandru Irimie
- 11th Department of Surgical Oncology and Gynaecological Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania
- Department of Surgery, The Oncology Institute Prof. Dr. Ion Chiricuta, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
- Correspondence: (A.I.); (I.B.-N.)
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.J.); (O.Z.); (C.B.); (C.T.)
- MEDFUTURE—Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute Prof. Dr. Ion Chiricuta, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
- Correspondence: (A.I.); (I.B.-N.)
| |
Collapse
|
194
|
Shimada Y, Kudo Y, Maehara S, Matsubayashi J, Otaki Y, Kajiwara N, Ohira T, Minna JD, Ikeda N. Ubiquitin C-terminal hydrolase-L1 has prognostic relevance and is a therapeutic target for high-grade neuroendocrine lung cancers. Cancer Sci 2020; 111:610-620. [PMID: 31845438 PMCID: PMC7004527 DOI: 10.1111/cas.14284] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/25/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023] Open
Abstract
High-grade neuroendocrine lung cancer (HGNEC), which includes small cell lung cancer (SCLC) and large cell neuroendocrine carcinoma (LCNEC) of the lung is a rapidly proliferating, aggressive form of lung cancer. The initial standard chemotherapeutic regimens of platinum doublets are recommended for SCLC and have been frequently used for LCNEC. However, there are currently no molecularly targeted agents with proven clinical benefit for this disease. The deubiquitinating enzyme ubiquitin C-terminal hydrolase-L1 (UCHL1) is a neuroendocrine cell-specific product that is known as a potential oncogene in several types of cancer, but little is known about the biological function of UCHL1 and its therapeutic potential in HGNEC. In this study, we found that preclinical efficacy evoked by targeting UCHL1 was relevant to prognosis in HGNEC. UCHL1 was found to be expressed in HGNEC, particularly in cell lines and patient samples of SCLC, and the combined use of platinum doublets with selective UCHL1 inhibitors improved its therapeutic response in vitro. Immunohistochemical expression of UCHL1 was significantly associated with postoperative survival in patients with HGNEC and contributed towards distinguishing SCLC from LCNEC. Circulating extracellular vesicles (EV), including exosomes isolated from lung cancer cell lines and serum from early-stage HGNEC, were verified by electron microscopy and nanoparticle tracking analysis. Higher levels of UCHL1 mRNA in EV were found in the samples of patients with early-stage HGNEC than those with early-stage NSCLC and healthy donors' EV. Taken together, UCHL1 may be a potential prognostic marker and a promising druggable target for HGNEC.
Collapse
Affiliation(s)
- Yoshihisa Shimada
- Department of Thoracic Surgery, Tokyo Medical University Hospital, Tokyo, Japan.,Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yujin Kudo
- Department of Thoracic Surgery, Tokyo Medical University Hospital, Tokyo, Japan
| | - Sachio Maehara
- Department of Thoracic Surgery, Tokyo Medical University Hospital, Tokyo, Japan
| | - Jun Matsubayashi
- Department of Anatomical Pathology, Tokyo Medical University Hospital, Tokyo, Japan
| | - Yoichi Otaki
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Naohiro Kajiwara
- Department of Thoracic Surgery, Tokyo Medical University Hospital, Tokyo, Japan
| | - Tatsuo Ohira
- Department of Thoracic Surgery, Tokyo Medical University Hospital, Tokyo, Japan
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Norihiko Ikeda
- Department of Thoracic Surgery, Tokyo Medical University Hospital, Tokyo, Japan
| |
Collapse
|
195
|
Human Papillomavirus and carcinogenesis: Novel mechanisms of cell communication involving extracellular vesicles. Cytokine Growth Factor Rev 2020; 51:92-98. [PMID: 31973992 PMCID: PMC7108386 DOI: 10.1016/j.cytogfr.2019.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/18/2019] [Accepted: 12/30/2019] [Indexed: 12/21/2022]
Abstract
A group of mucosal HPVs are the causative agents of cervical cancer and are associated to other cancers. Certain cutaneous HPVs are involved in the development of cutaneous squamous cell carcinoma. EVs released by HPV+ cells convey a specific cargo of mRNAs and microRNAs. The EV delivery from HPV+ cells to non-infected recipient cells may represent a novel mechanism of tumorigenesis promotion.
A small group of mucosal Human Papillomaviruses are the causative agents of cervical cancer and are also associated with other types of cancers. Certain cutaneous Human Papillomaviruses seem to have a role as co-factors in the UV-induced carcinogenesis of the skin. The main mechanism of the tumorigenesis induced by Human Papillomaviruses is linked to the transforming activity of the viral E6 and E7 oncoproteins. However, other mechanisms, such as the gene expression control by specific microRNAs expression and deregulation of immune inflammatory mediators, may be important in the process of transformation. In this context, the release of Extracellular Vesicles with a specific cargo (microRNAs involved in tumorigenesis, mRNAs of viral oncoproteins, cytokines, chemokines) appears to play a key role.
Collapse
|
196
|
Han T, Zhang Y, Yang X, Han L, Li H, Chen T, Zheng Z. miR-552 Regulates Liver Tumor-Initiating Cell Expansion and Sorafenib Resistance. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 19:1073-1085. [PMID: 32044726 PMCID: PMC7015836 DOI: 10.1016/j.omtn.2019.12.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/24/2019] [Accepted: 12/09/2019] [Indexed: 01/27/2023]
Abstract
MicroRNAs (miRNAs) are involved in tumorigenesis, progression, recurrence, and drug resistance of hepatocellular carcinoma (HCC). However, few miRNAs have been identified and entered clinical practice. Herein, we report that microRNA (miR)-552 is upregulated in HCC tissues and has an important function in liver tumor-initiating cells (T-ICs). Functional studies revealed that a forced expression of miR-552 promotes liver T-IC self-renewal and tumorigenesis. Conversely, miR-552 knockdown inhibits liver T-IC self-renewal and tumorigenesis. Mechanistically, miR-552 downregulates phosphatase and tensin homolog (PTEN) via its mRNA 3' UTR and activates protein kinase B (AKT) phosphorylation. Our clinical investigations elucidated the prognostic value of miR-552 in HCC patients. Furthermore, miR-552 expression determines the responses of hepatoma cells to sorafenib treatment. The analysis of patient cohorts and patient-derived xenografts (PDXs) further demonstrated that miR-552 may predict sorafenib benefits in HCC patients. In conclusion, our findings revealed the crucial role of the miR-552 in liver T-IC expansion and sorafenib response, rendering miR-552 an optimal target for the prevention and intervention in HCC.
Collapse
Affiliation(s)
- Tao Han
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, 110016 Liaoning Province, China; Department of Oncology, Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, Liaoning Province, China
| | - Yue Zhang
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, 110016 Liaoning Province, China; Graduate School, Jinzhou Medical University, Jinzhou, 121000 Liaoning Province, China
| | - Xiaodan Yang
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, 110016 Liaoning Province, China
| | - Lei Han
- Department of Hepatobiliary Surgery, General Hospital of Northern Theater Command, Shenyang, 110016 Liaoning Province, China
| | - Hengyu Li
- Department of Breast and Thyroid Surgery, First Affiliated Hospital of Second Military Medical University, 200433 Shanghai, China.
| | - Tingsong Chen
- Department of Cancer Intervention, Shanghai Seventh People's Hospital, 200001 Shanghai, China.
| | - Zhendong Zheng
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, 110016 Liaoning Province, China.
| |
Collapse
|
197
|
Jiayu H, Hanke Z, Ying G. The Role of Exosomes in Diseases Related to Infertility. Curr Stem Cell Res Ther 2019; 14:437-441. [PMID: 30674267 DOI: 10.2174/1574888x14666190123162842] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/07/2018] [Accepted: 01/09/2019] [Indexed: 12/12/2022]
Abstract
Exosomes, small extracellular vesicles with diameters of 40-100nm, are generated through the fusion of multivessel with plasma membrane and secreted by a variety of living cells. Exosomes contain lipid bilayer membrane and releasable functionally active proteins, mRNA and microRNAs (miRNAs). This article reviews the latest progress of researches on exosomes in diseases that lead to infertility.
Collapse
Affiliation(s)
- Huang Jiayu
- Department of Gynaecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhang Hanke
- Department of Gynaecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gao Ying
- Department of Gynaecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
198
|
Wang J, Ni J, Beretov J, Thompson J, Graham P, Li Y. Exosomal microRNAs as liquid biopsy biomarkers in prostate cancer. Crit Rev Oncol Hematol 2019; 145:102860. [PMID: 31874447 DOI: 10.1016/j.critrevonc.2019.102860] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 12/21/2022] Open
Abstract
Prostate cancer (PCa) is the most commonly diagnosed solid-organ cancer in males. The PSA testing may cause overdiagnosis and overtreatment for PCa patients. There is an urgent need for new biomarkers with greater discriminative precision for diagnosis and risk-stratification, to select for prostate biopsy and treatment of PCa. Liquid biopsy is a promising field with the potential to provide comprehensive information on the genetic landscape at diagnosis and to track genomic evolution over time in order to tailor the therapeutic choices at all stages of PCa. Exosomes, containing RNAs, DNAs and proteins, have been shown to be involved in tumour progression and a rich potential source of tumour biomarkers, especially for profiling analysis of their miRNAs content. In this review, we summarise the exosomal miRNAs in PCa diagnosis, prognosis and management, and further discuss their possible technical challenges associated with isolating PCa-specific exosomes.
Collapse
Affiliation(s)
- Jingpu Wang
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia
| | - Jie Ni
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia
| | - Julia Beretov
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia; Anatomical Pathology, NSW Health Pathology, St. George Hospital, Kogarah, NSW, Australia
| | - James Thompson
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia; Department of Urology, St. George Hospital, Kogarah, NSW, Australia; Prostate Clinical Research Group, Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
| | - Peter Graham
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia
| | - Yong Li
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia; School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
199
|
Zhao W, Han T, Li B, Ma Q, Yang P, Li H. miR-552 promotes ovarian cancer progression by regulating PTEN pathway. J Ovarian Res 2019; 12:121. [PMID: 31815639 PMCID: PMC6900846 DOI: 10.1186/s13048-019-0589-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 11/04/2019] [Indexed: 12/29/2022] Open
Abstract
Background Increasing researches have demonstrated the critical functions of MicroRNAs (miRNAs) in the progression of malignant tumors, including ovarian cancer. It was reported that miR-552 was an important oncogene in both breast cancer and colorectal cancer. However, the role of miR-552 in ovarian cancer (OC) remains to be elucidated. Methods RT-PCR and western blot analysis were used to detect the expression of miR-552 and PTEN. The impact of miR-552 on ovarian cancer proliferation and metastasis was investigated in vitro. The prognostic value of miR-552 was evaluated using the online bioinformatics tool Kaplan-Meier plotter. Results In the present study, we for first found that miR-552 was upregulated in ovarian cancer, especially in metastatic and recurrence ovarian cancer. Forced miR-552 expression promotes the growth and metastasis of ovarian cancer cells. Consistently, miR-552 interference inhibits the proliferation and metastasis of ovarian cancer cells. Mechanically, bioinformatics and luciferase reporter analysis identified Phosphatase and tension homolog (PTEN) as a direct target of miR-552. miR-552 downregulated the PTEN mRNA and protein expression in ovarian cancer cells. Furthermore, the PTEN siRNA abolishes the discrepancy of growth and metastasis capacity between miR-552 mimic ovarian cells and control cells. More importantly, upregulation of miR-552 predicts the poor prognosis of ovarian cancer patients. Conclusion Our findings revealed that miR-552 could promote ovarian cancer cells progression by targeting PTEN signaling and might therefore be useful to predict patient prognosis.
Collapse
Affiliation(s)
- Wenman Zhao
- Department of General surgery, Cao county people's hospital, East of Qinghe Road, Heze, 274400, Shandong province, China.
| | - Tao Han
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, 110016, Liaoning Province, China
| | - Bao Li
- Department of General surgery, Cao county people's hospital, East of Qinghe Road, Heze, 274400, Shandong province, China
| | - Qianyun Ma
- Department of Urology surgery, First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, China
| | - Pinghua Yang
- Department of Biliary Tract Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China.
| | - Hengyu Li
- Department of Breast and Thyroid surgery, First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
200
|
Mudgapalli N, Nallasamy P, Chava H, Chava S, Pathania AS, Gunda V, Gorantla S, Pandey MK, Gupta SC, Challagundla KB. The role of exosomes and MYC in therapy resistance of acute myeloid leukemia: Challenges and opportunities. Mol Aspects Med 2019; 70:21-32. [PMID: 31623866 PMCID: PMC7775410 DOI: 10.1016/j.mam.2019.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/27/2019] [Accepted: 10/06/2019] [Indexed: 12/12/2022]
Abstract
Acute myeloid leukemia (AML) is caused by abnormal production of white blood cells, red blood cells or platelets. The leukemia cells communicate with their microenvironment through nano-vesicle exosomes that are 30-100 nm in diameter. These nano-vesicles are released from body fluids upon fusion of an endocytic compartment with the cell membrane. Exosomes function as cargo to deliver signaling molecules to distant cells. This allows cross-talk between hematopoietic cells and other distant target cell environments. Exosomes support leukemia growth by acting as messengers between tumor cells and the microenvironment as well as inducing oncogenic factors such as c-Myc. Exosomes have also been used as biomarkers in the clinical diagnosis of leukemia. Glycogen synthase kinase-3 (GSK-3) and protein phosphatase 2A (PP2A) are two crucial signaling molecules involved in the AML pathogenesis and MYC stability. GSK-3 is a serine/threonine protein kinase that coordinates with over 40 different proteins during physiological/pathological conditions in blood cells. The dysregulation in GSK-3 has been reported during hematological malignancies. GSK-3 acts as a tumor suppressor by targeting c-MYC, MCL-1 and β-catenin. Conversely, GSK-3 can also act as tumor promoter in some instances. The pharmacological modulators of GSK-3 such as ABT-869, 6-Bromoindirubin-3'-oxime (BIO), GS-87 and LY2090314 have shown promise in the treatment of hematological malignancy. PP2A is a heterotrimeric serine/threonine phosphatase involved in the regulation of hematological malignancy. PP2A-activating drugs (PADs) can effectively antagonize leukemogenesis. The discovery of exosomes, kinase inhibitors and phosphatase activators have provided new hope to the leukemia patients. This review discusses the role of exosomes, GSK-3 and PP2A in the pathogenesis of leukemia. We provide evidence from both preclinical and clinical studies.
Collapse
Affiliation(s)
- Nithya Mudgapalli
- Department of Biochemistry and Molecular Biology, The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
; UNMC Summer Undergraduate Research Program, University of Nebraska Medical Center, Omaha, NE, USA
| | - Palanisamy Nallasamy
- Department of Biochemistry and Molecular Biology, The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Haritha Chava
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Srinivas Chava
- Department of Biochemistry and Molecular Biology, The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Anup S Pathania
- Department of Biochemistry and Molecular Biology, The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Venugopal Gunda
- Pediatric Oncology Laboratory, Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Manoj K Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Subash C Gupta
- Laboratory for Translational Cancer Research, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India
| | - Kishore B Challagundla
- Department of Biochemistry and Molecular Biology, The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
.
| |
Collapse
|