151
|
A comparative proteomic study of plasma in Colombian childhood acute lymphoblastic leukemia. PLoS One 2019; 14:e0221509. [PMID: 31437251 PMCID: PMC6705836 DOI: 10.1371/journal.pone.0221509] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 08/08/2019] [Indexed: 01/24/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. Owing to the incorporation of risk-adapted therapy and the arrival of new directed agents, the cure rate and survival of patients with ALL have improved dramatically, get near to 90%. In Latin American countries, the mortality rates of ALL are high, for example in Colombia, during the last decade, ALL has been the most prevalent cancer among children between 0–14 years of age. In the face of this public health problem and coupled with the fact that the knowledge of the proteome of the child population is little, our investigation proposes the study of the plasma proteome of Colombian children diagnosed with B-cell ALL (B-ALL) to determine potential disease markers that could reflect processes altered by the presence of the disease or in response to it. A proteomic study by LC-MS/MS and quantification by label-free methods were performed in search of proteins differentially expressed between healthy children and those diagnosed with B-ALL. We quantified a total of 472 proteins in depleted blood plasma, and 25 of these proteins were differentially expressed (fold change >2, Bonferroni-adjusted P-values <0.05). Plasma Aggrecan core protein, alpha-2-HS-glycoprotein, coagulation factor XIII A chain and gelsolin protein were examined by ELISA assay and compared to shotgun proteomics results. Our data provide new information on the plasma proteome of Colombian children. Additionally, these proteins may also have certain potential as illness markers or as therapeutic targets in subsequent investigations.
Collapse
|
152
|
Harris MH, Czuchlewski DR, Arber DA, Czader M. Genetic Testing in the Diagnosis and Biology of Acute Leukemia. Am J Clin Pathol 2019; 152:322-346. [PMID: 31367767 DOI: 10.1093/ajcp/aqz093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES The 2017 Workshop of the Society for Hematopathology/European Association for Haematopathology examined the role of molecular genetics in the diagnosis and biology of acute leukemia. METHODS Acute leukemias were reviewed in two sessions: "Genetic Testing in Diagnosis of Acute Leukemias" (53 cases) and "Genetics Revealing the Biology of Acute Leukemias" (41 cases). RESULTS Cases included acute lymphoblastic leukemia, acute myeloid leukemia, and acute leukemia of ambiguous lineage. Many cases demonstrated genetic alterations of known diagnostic, prognostic, and/or therapeutic significance, while others exhibited alterations that illuminated disease biology. The workshop highlighted the complexity of acute leukemia diagnosis and follow-up, while illustrating advantages and pitfalls of molecular genetic testing. CONCLUSIONS Our understanding of the molecular genetics of acute leukemias continues to grow rapidly. Awareness of the potential complexity of genetic architecture and environment is critical and emphasizes the importance of integrating clinical information with morphologic, immunophenotypic, and molecular genetic evaluation.
Collapse
Affiliation(s)
- Marian H Harris
- Department of Pathology, Boston Children’s Hospital, Boston, MA
| | - David R Czuchlewski
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque
| | - Daniel A Arber
- Department of Pathology, University of Chicago, Chicago, IL
| | - Magdalena Czader
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis
| |
Collapse
|
153
|
Berry NK, Scott RJ, Rowlings P, Enjeti AK. Clinical use of SNP-microarrays for the detection of genome-wide changes in haematological malignancies. Crit Rev Oncol Hematol 2019; 142:58-67. [PMID: 31377433 DOI: 10.1016/j.critrevonc.2019.07.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 12/17/2022] Open
Abstract
Single nucleotide polymorphism (SNP) microarrays are commonly used for the clinical investigation of constitutional genomic disorders; however, their adoption for investigating somatic changes is being recognised. With increasing importance being placed on defining the cancer genome, a shift in technology is imperative at a clinical level. Microarray platforms have the potential to become frontline testing, replacing or complementing standard investigations such as FISH or karyotype. This 'molecular karyotype approach' exemplified by SNP-microarrays has distinct advantages in the investigation of several haematological malignancies. A growing body of literature, including guidelines, has shown support for the use of SNP-microarrays in the clinical laboratory to aid in a more accurate definition of the cancer genome. Understanding the benefits of this technology along with discussing the barriers to its implementation is necessary for the development and incorporation of SNP-microarrays in a clinical laboratory for the investigation of haematological malignancies.
Collapse
Affiliation(s)
- Nadine K Berry
- Department of Haematology, Calvary Mater Hospital, Newcastle, New South Wales, Australia; School of Biomedical Sciences and Pharmacy, University of Newcastle, New South Wales, Australia; Department of Molecular Medicine, NSW Health Pathology, Newcastle, New South Wales, Australia.
| | - Rodney J Scott
- School of Biomedical Sciences and Pharmacy, University of Newcastle, New South Wales, Australia; Department of Molecular Medicine, NSW Health Pathology, Newcastle, New South Wales, Australia
| | - Philip Rowlings
- Department of Haematology, Calvary Mater Hospital, Newcastle, New South Wales, Australia; School of Medicine and Public Health, University Newcastle, New South Wales, Australia
| | - Anoop K Enjeti
- Department of Haematology, Calvary Mater Hospital, Newcastle, New South Wales, Australia; School of Medicine and Public Health, University Newcastle, New South Wales, Australia
| |
Collapse
|
154
|
Peterson JF, Blackburn PR, Webley MR, Pearce KE, Williamson CM, Vasmatzis G, Smadbeck JB, Bieliauskas SL, Reichard KK, Ketterling RP, Baughn LB, Greipp PT. Identification of a Novel ZBTB20-JAK2 Fusion by Mate-Pair Sequencing in a Young Adult With B-Lymphoblastic Leukemia/Lymphoma. Mayo Clin Proc 2019; 94:1381-1384. [PMID: 31272582 DOI: 10.1016/j.mayocp.2019.04.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 12/26/2022]
|
155
|
Milan T, Canaj H, Villeneuve C, Ghosh A, Barabé F, Cellot S, Wilhelm BT. Pediatric leukemia: Moving toward more accurate models. Exp Hematol 2019; 74:1-12. [PMID: 31154068 DOI: 10.1016/j.exphem.2019.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/19/2019] [Accepted: 05/22/2019] [Indexed: 02/07/2023]
Abstract
Leukemia is a complex genetic disease caused by errors in differentiation, growth, and apoptosis of hematopoietic cells in either lymphoid or myeloid lineages. Large-scale genomic characterization of thousands of leukemia patients has produced a tremendous amount of data that have enabled a better understanding of the differences between adult and pediatric patients. For instance, although phenotypically similar, pediatric and adult myeloid leukemia patients differ in their mutational profiles, typically involving either chromosomal translocations or recurrent single-base-pair mutations, respectively. To elucidate the molecular mechanisms underlying the biology of this cancer, continual efforts have been made to develop more contextually and biologically relevant experimental models. Leukemic cell lines, for example, provide an inexpensive and tractable model but often fail to recapitulate critical aspects of tumor biology. Likewise, murine leukemia models of leukemia have been highly informative but also do not entirely reproduce the human disease. More recent advances in the development of patient-derived xenografts (PDXs) or human models of leukemias are poised to provide a more comprehensive, and biologically relevant, approach to directly assess the impact of the in vivo environment on human samples. In this review, the advantages and limitations of the various current models used to functionally define the genetic requirements of leukemogenesis are discussed.
Collapse
MESH Headings
- Adolescent
- Animals
- Cell Differentiation
- Child
- Child, Preschool
- Female
- Heterografts
- Humans
- Infant
- Infant, Newborn
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/pathology
- Leukemia, Myeloid/therapy
- Male
- Mice
- Neoplasm Transplantation
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/therapy
- Translocation, Genetic
Collapse
Affiliation(s)
- Thomas Milan
- Laboratory for High Throughput Biology, Institute for Research in Immunology and Cancer, Montréal, QC, Canada
| | - Hera Canaj
- Laboratory for High Throughput Biology, Institute for Research in Immunology and Cancer, Montréal, QC, Canada
| | - Chloe Villeneuve
- Laboratory for High Throughput Biology, Institute for Research in Immunology and Cancer, Montréal, QC, Canada
| | - Aditi Ghosh
- Laboratory for High Throughput Biology, Institute for Research in Immunology and Cancer, Montréal, QC, Canada
| | - Frédéric Barabé
- Centre de recherche en infectiologie du CHUL, Centre de recherche du CHU de Québec, Quebec City, QC, Canada; CHU de Québec Hôpital Enfant-Jésus, Quebec City, QC, Canada; Department of Medicine, Université Laval, Quebec City, QC, Canada
| | - Sonia Cellot
- Division of Hematology, Department of Pediatrics, Ste-Justine Hospital, Montréal, Université de Montréal, Montréal, QC, Canada
| | - Brian T Wilhelm
- Laboratory for High Throughput Biology, Institute for Research in Immunology and Cancer, Montréal, QC, Canada; Department of Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
156
|
Conant JL, Czuchlewski DR. BCR-ABL1-like B-lymphoblastic leukemia/lymphoma: Review of the entity and detection methodologies. Int J Lab Hematol 2019; 41 Suppl 1:126-130. [PMID: 31069976 DOI: 10.1111/ijlh.13012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/14/2019] [Accepted: 02/27/2019] [Indexed: 12/30/2022]
Abstract
BCR-ABL1-like B-lymphoblastic leukemia/lymphoma (BCR-ABL1-like ALL or Ph-like ALL) is a neoplastic proliferation of lymphoblasts that has a gene expression profile similar to that of B-ALL with t(9;22)(q34.1;q11.2) BCR-ABL1, but lacks that gene fusion. It is associated with poor prognosis and is seen in 10%-20% of pediatric cases and 20%-30% of adult cases of ALL. It is included as a provisional entity in the revised 4th edition of the WHO Classification. A variety of different genetic abnormalities are identified in this entity, but they all converge on pathways that are potentially responsive to the addition of targeted therapy to conventional chemotherapy. Thus, it is important to screen for BCR-ABL1-like ALL, particularly in adults and pediatric patients with high-risk clinical features. Here, we provide a brief overview of the genetic profile and clinical features of BCR-ABL1-like ALL and review laboratory methodologies for routine identification of this genetically heterogeneous entity.
Collapse
Affiliation(s)
- Joanna L Conant
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico
| | | |
Collapse
|
157
|
Liu K, Wu Z, Chu J, Yang L, Wang N. Promoter methylation and expression of SOCS3 affect the clinical outcome of pediatric acute lymphoblastic leukemia by JAK/STAT pathway. Biomed Pharmacother 2019; 115:108913. [PMID: 31054507 DOI: 10.1016/j.biopha.2019.108913] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
Abstract
Suppressor of cytokine signaling 3 (SOCS3) has been characterized as one of the most crucial negative regulator in the JAK2/STAT3 signaling pathway. However, there are few studies on the relationship between SOCS3 and pediatric acute lymphoblastic leukemia (ALL). This study analyzes the influence of SOCS3 expression on the risk and the progression of pediatric ALL and the underlying mechanism. The levels of SOCS3, p-JAK2, p-STAT3, SOCS3 methylation, CD4+CD25+CD127lowTreg were detected by PCR, laser confocal microscopy, western blot, bisulfite sequencing and flow cytometry at different progression of ALL. We found that the SOCS3 expression level at initial diagnosis (DG) of ALL patients was significantly lower than that of healthy controls (HC), while the expression of SOCS3 methylation was opposite. The expression of SOCS3 and SOCS3 methylation were returned to normal in the complete remission (CR) stage, and there were no difference between resistance, relapse and initial diagnosis. The expression of SOCS3 decreased and weakened the inhibition of pSTAT3 expression in DG, resistance and relapse groups. The levels of Treg cells in ALL children were significantly higher than those in the HC children. There was a positive correlation between the expression level of STAT3 and the expression level of Treg cells in children with ALL, while that was negatively correlated with the expression levels of Treg cells. Compared with high-level of SOCS3, the low-level of SOCS3 patients had more high risk factors, as higher WBC counts, LDH level and much more poor prognostic genes. SOCS3 methylation leads to low-expression of SOCS3, which can lead to continuous activation of JAK/STAT3 and increased expression of Treg cells, which in turn affects the anti-tumor immunological effect of the body. Taken together, our data show that monitoring the level of SOCS3 can contribute to the understanding of the state of illness and evaluate the risk of progression of ALL.
Collapse
Affiliation(s)
- Kangkang Liu
- Pediatrics, the Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Zhengyu Wu
- Pediatrics, the Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jinhua Chu
- Pediatrics, the Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Linhai Yang
- Pediatrics, the Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Ningling Wang
- Pediatrics, the Second Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
158
|
Kim H. Advances in the Treatment of Childhood Acute Lymphoblastic Leukemia. CLINICAL PEDIATRIC HEMATOLOGY-ONCOLOGY 2019. [DOI: 10.15264/cpho.2019.26.1.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Hyery Kim
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
159
|
Refining risk classification in childhood B acute lymphoblastic leukemia: results of DFCI ALL Consortium Protocol 05-001. Blood Adv 2019; 2:1449-1458. [PMID: 29941458 DOI: 10.1182/bloodadvances.2018016584] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/19/2018] [Indexed: 01/11/2023] Open
Abstract
Dana-Farber Cancer Institute (DFCI) ALL Consortium Protocol 05-001 tested a new risk stratification system in children and adolescents with newly diagnosed acute lymphoblastic leukemia (ALL). At study entry, B-ALL patients were classified as standard risk (SR) or high risk (HR) based on age, white blood cell (WBC) count, and central nervous system status. After achieving complete remission (CR), patients with high end-induction minimal residual disease (MRD) (≥10-3 by polymerase chain reaction analysis of patient-specific antigen receptor rearrangements) and/or adverse cytogenetics (KMT2A rearrangement or hypodiploidy) were reclassified as very high risk (VHR) and received intensified therapy. IKZF1 deletion status was retrospectively evaluated by multiplex ligation-dependent probe amplification. Between 2005 and 2011, 678 Philadelphia chromosome-negative B-ALL patients aged 1 to 18 years enrolled; 651 achieved CR and 648 received a final risk group. Among all 678 patients, 5-year event-free survival (EFS) was 87% (95% confidence interval [CI], 84-89) and overall survival 93% (95% CI, 90-94). Five-year disease-free survival of SR patients (N = 407) was 94% (95% CI, 91-96), HR (N = 176) was 84% (95% CI, 77-88), and VHR (N = 65) was 79% (95% CI, 67-87). IKZF1 deletion was present in 62 of 385 (16%) assessed patients and was associated with inferior 5-year EFS (63%; 95% CI, 49%-74% vs 88%; 95% CI, 84%-91%; P < .001), and higher 5-year cumulative incidence of relapse, including among those with low MRD (24% vs 8%, P = .001). In multivariable analysis, age ≥15 years, WBC ≥50 × 109/L, IKZF1 deletion, and MRD ≥10-4 was each associated with inferior outcome. In conclusion, risk-stratified therapy on DFCI 05-001 resulted in favorable outcomes for B-ALL patients, including those with VHR features. IKZF1 deletion was an independent predictor of inferior outcome. This trial was registered at www.clinicaltrials.gov as #NCT00400946.
Collapse
|
160
|
Stock W, Luger SM, Advani AS, Yin J, Harvey RC, Mullighan CG, Willman CL, Fulton N, Laumann KM, Malnassy G, Paietta E, Parker E, Geyer S, Mrózek K, Bloomfield CD, Sanford B, Marcucci G, Liedtke M, Claxton DF, Foster MC, Bogart JA, Grecula JC, Appelbaum FR, Erba H, Litzow MR, Tallman MS, Stone RM, Larson RA. A pediatric regimen for older adolescents and young adults with acute lymphoblastic leukemia: results of CALGB 10403. Blood 2019; 133:1548-1559. [PMID: 30658992 PMCID: PMC6450431 DOI: 10.1182/blood-2018-10-881961] [Citation(s) in RCA: 316] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/04/2019] [Indexed: 12/13/2022] Open
Abstract
Retrospective studies have suggested that older adolescents and young adults (AYAs) with acute lymphoblastic leukemia (ALL) have better survival rates when treated using a pediatric ALL regimen administered by pediatric treatment teams. To address the feasibility and efficacy of using a pediatric treatment regimen for AYA patients with newly diagnosed ALL administered by adult treatment teams, we performed a prospective study, CALGB 10403, with doses and schedule identical to those in the Children's Oncology Group study AALL0232. From 2007 to 2012, 318 patients were enrolled; 295 were eligible and evaluable for response. Median age was 24 years (range, 17-39 years). Use of the pediatric regimen was safe; overall treatment-related mortality was 3%, and there were only 2 postremission deaths. Median event-free survival (EFS) was 78.1 months (95% confidence interval [CI], 41.8 to not reached), more than double the historical control of 30 months (95% CI, 22-38 months); 3-year EFS was 59% (95% CI, 54%-65%). Median overall survival (OS) was not reached. Estimated 3-year OS was 73% (95% CI, 68%-78%). Pretreatment risk factors associated with worse treatment outcomes included obesity and presence of the Philadelphia-like gene expression signature. Use of a pediatric regimen for AYAs with ALL up to age 40 years was feasible and effective, resulting in improved survival rates compared with historical controls. CALGB 10403 can be considered a new treatment standard upon which to build for improving survival for AYAs with ALL. This trial was registered at www.clinicaltrials.gov as #NCT00558519.
Collapse
Affiliation(s)
- Wendy Stock
- University of Chicago Comprehensive Cancer Center, Chicago, IL
| | - Selina M Luger
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Jun Yin
- Alliance Statistical Center, Rochester, MN
| | - Richard C Harvey
- University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM
| | | | - Cheryl L Willman
- University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM
| | - Noreen Fulton
- University of Chicago Comprehensive Cancer Center, Chicago, IL
| | | | - Greg Malnassy
- University of Chicago Comprehensive Cancer Center, Chicago, IL
| | | | - Edy Parker
- Statistical Center, Cancer and Leukemia Group B, Duke University, Durham, NC
| | - Susan Geyer
- Health Informatics Institute, University of Southern Florida, Tampa, FL
| | - Krzysztof Mrózek
- James Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Clara D Bloomfield
- James Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Ben Sanford
- Statistical Center, Cancer and Leukemia Group B, Duke University, Durham, NC
| | | | | | - David F Claxton
- Department of Medicine, Penn State University, State College, PA
| | - Matthew C Foster
- Department of Medicine, University of North Carolina, Chapel Hill, NC
| | - Jeffrey A Bogart
- Department of Radiation Oncology, SUNY Upstate Medical University, Syracuse, NY
| | - John C Grecula
- James Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | | | - Harry Erba
- Department of Medicine, Duke University, Durham, NC
| | | | | | | | | |
Collapse
|
161
|
Tang G, Sydney Sir Philip JK, Weinberg O, Tam W, Sadigh S, Lake JI, Margolskee EM, Rogers HJ, Miranda RN, Bueso-Ramos C C, Hsi ED, Orazi A, Hasserjian RP, Arber DA, Bagg A, Wang SA. Hematopoietic neoplasms with 9p24/JAK2 rearrangement: a multicenter study. Mod Pathol 2019; 32:490-498. [PMID: 30401948 DOI: 10.1038/s41379-018-0165-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/28/2018] [Accepted: 10/09/2018] [Indexed: 12/19/2022]
Abstract
The purpose of this study is to examine hematopoietic neoplasms with 9p24/JAK2 rearrangement including neoplasms associated with t(8;9)(p22;p24)/PCM1-JAK2 fusion neoplasm as well as cases with translocations involving 9p24/JAK2 and other partner genes. From seven large medical centers, we identified ten patients with t(8;9)(p22;p24) /PCM1-JAK2 and 3 with t(9p24;v)/JAK2 at diagnosis. Majority of the cases showed myeloproliferative neoplasm (MPN) associated features (n = 7) characterized by variable degrees of eosinophilia, myelofibrosis, frequent proliferations of early erythroblasts in bone marrow and extramedullary sites, and infrequent/absent somatic mutations. Other less common presentations included myelodysplastic syndromes (MDS) or MDS/MPN (one each). Four patients presented with B-lymphoblastic leukemia (B-ALL), and of them, two patients with t(8;9)(p22;p24.1) were proven to be B-lymphoblastic crisis of MPN; and the other two cases with t(9p24;v) both were de novo B-ALL, BCR-ABL1-like (Ph-like). We show that the hematopoietic neoplasms with 9p24/JAK2 rearrangement are extremely rare, and most of them are associated with t(8;9)(p22;p24)/PCM1-JAK2, a recent provisional World Health Organization entity under "myeloid/lymphoid neoplasm with a specific gene rearrangement". Cases of t(8;9)(p22;p24)/PCM1-JAK2, though heterogeneous, do exhibit some common clinicopathological characteristic features. Cases with t(9p24;v)/JAK2 are extremely rare; while such cases with a MPN presentation may resemble t(8;9)(p22;p24.1)/PCM1-JAK2, B-ALL cases presenting de novo B-ALL might belong to Ph-like B-ALL.
Collapse
Affiliation(s)
- Guilin Tang
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | | | - Olga Weinberg
- Department of Pathology, Boston Children Hospital, Boston, MA, USA
| | - Wayne Tam
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Sam Sadigh
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan I Lake
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth M Margolskee
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Heesun J Rogers
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Roberto N Miranda
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Carlos Bueso-Ramos C
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Eric D Hsi
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Attilio Orazi
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | | | - Daniel A Arber
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Adam Bagg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sa A Wang
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
162
|
Johansson B, Mertens F, Schyman T, Björk J, Mandahl N, Mitelman F. Most gene fusions in cancer are stochastic events. Genes Chromosomes Cancer 2019; 58:607-611. [PMID: 30807681 DOI: 10.1002/gcc.22745] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 12/28/2022] Open
Abstract
Cancer-associated gene fusions resulting in chimeric proteins or aberrant expression of one or both partner genes are pathogenetically and clinically important in several hematologic malignancies and solid tumors. Since the advent of different types of massively parallel sequencing (MPS), the number of identified gene fusions has increased dramatically, prompting the question whether they all have a biologic impact. By ascertaining the chromosomal locations of 8934 genes involved in 10 861 gene fusions reported in the literature, we here show that there is a highly significant association between gene content of chromosomes and chromosome bands and number of genes involved in fusions. This strongly suggests that a clear majority of gene fusions detected by MPS are stochastic events associated with the number of genes available to participate in fusions and that most reported gene fusions are passengers without any pathogenetic importance.
Collapse
Affiliation(s)
- Bertil Johansson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Department of Clinical Genetics and Pathology, Division of Laboratory Medicine, Lund, Sweden
| | - Fredrik Mertens
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Department of Clinical Genetics and Pathology, Division of Laboratory Medicine, Lund, Sweden
| | - Tommy Schyman
- Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Jonas Björk
- Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Nils Mandahl
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Felix Mitelman
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
163
|
Integrated analysis of relapsed B-cell precursor Acute Lymphoblastic Leukemia identifies subtype-specific cytokine and metabolic signatures. Sci Rep 2019; 9:4188. [PMID: 30862934 PMCID: PMC6414622 DOI: 10.1038/s41598-019-40786-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 02/22/2019] [Indexed: 12/20/2022] Open
Abstract
Recent efforts reclassified B-Cell Precursor Acute Lymphoblastic Leukemia (BCP-ALL) into more refined subtypes. Nevertheless, outcomes of relapsed BCP-ALL remain unsatisfactory, particularly in adult patients where the molecular basis of relapse is still poorly understood. To elucidate the evolution of relapse in BCP-ALL, we established a comprehensive multi-omics dataset including DNA-sequencing, RNA-sequencing, DNA methylation array and proteome MASS-spec data from matched diagnosis and relapse samples of BCP-ALL patients (n = 50) including the subtypes DUX4, Ph-like and two aneuploid subtypes. Relapse-specific alterations were enriched for chromatin modifiers, nucleotide and steroid metabolism including the novel candidates FPGS, AGBL and ZNF483. The proteome expression analysis unraveled deregulation of metabolic pathways at relapse including the key proteins G6PD, TKT, GPI and PGD. Moreover, we identified a novel relapse-specific gene signature specific for DUX4 BCP-ALL patients highlighting chemotaxis and cytokine environment as a possible driver event at relapse. This study presents novel insights at distinct molecular levels of relapsed BCP-ALL based on a comprehensive multi-omics integrated data set including a valuable proteomics data set. The relapse specific aberrations reveal metabolic signatures on genomic and proteomic levels in BCP-ALL relapse. Furthermore, the chemokine expression signature in DUX4 relapse underscores the distinct status of DUX4-fusion BCP-ALL.
Collapse
|
164
|
Sinclair PB, Ryan S, Bashton M, Hollern S, Hanna R, Case M, Schwalbe EC, Schwab CJ, Cranston RE, Young BD, Irving JAE, Vora AJ, Moorman AV, Harrison CJ. SH2B3 inactivation through CN-LOH 12q is uniquely associated with B-cell precursor ALL with iAMP21 or other chromosome 21 gain. Leukemia 2019; 33:1881-1894. [PMID: 30816328 PMCID: PMC6756024 DOI: 10.1038/s41375-019-0412-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/24/2019] [Indexed: 12/17/2022]
Abstract
In more than 30% of B-cell precursor acute lymphoblastic leukaemia (B-ALL), chromosome 21 sequence is overrepresented through aneuploidy or structural rearrangements, exemplified by intrachromosomal amplification of chromosome 21 (iAMP21). Although frequent, the mechanisms by which these abnormalities promote B-ALL remain obscure. Intriguingly, we found copy number neutral loss of heterozygosity (CN-LOH) of 12q was recurrent in iAMP21-ALL, but never observed in B-ALL without some form of chromosome 21 gain. As a consequence of CN-LOH 12q, mutations or deletions of the adaptor protein, SH2B3, were converted to homozygosity. In patients without CN-LOH 12q, bi-allelic abnormalities of SH2B3 occurred, but only in iAMP21-ALL, giving an overall incidence of 18% in this sub-type. Review of published data confirmed a tight association between overrepresentation of chromosome 21 and both CN-LOH 12q and SH2B3 abnormalities in B-ALL. Despite relatively small patient numbers, preliminary analysis linked 12q abnormalities to poor outcome in iAMP21-ALL (p = 0.03). Homology modelling of a leukaemia-associated SH2 domain mutation and in vitro analysis of patient-derived xenograft cells implicated the JAK/STAT pathway as one likely target for SH2B3 tumour suppressor activity in iAMP21-ALL.
Collapse
Affiliation(s)
- Paul B Sinclair
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK.
| | - Sarra Ryan
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Matthew Bashton
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Shaun Hollern
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Rebecca Hanna
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Marian Case
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Edward C Schwalbe
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Claire J Schwab
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Ruth E Cranston
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Brian D Young
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Julie A E Irving
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Ajay J Vora
- Great Ormond Street Hospital for Children NHS trust, London, UK
| | - Anthony V Moorman
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Christine J Harrison
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK.
| |
Collapse
|
165
|
Albert CM, Davis JL, Federman N, Casanova M, Laetsch TW. TRK Fusion Cancers in Children: A Clinical Review and Recommendations for Screening. J Clin Oncol 2019; 37:513-524. [DOI: 10.1200/jco.18.00573] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chromosomal translocations involving the NTRK1, NTRK2, and NTRK3 genes (TRK fusions), which encode the neurotrophin tyrosine kinase receptors TRKA, TRKB, and TRKC, can result in constitutive activation and aberrant expression of TRK kinase. Certain cancers almost universally harbor TRK fusions, including infantile fibrosarcoma, cellular congenital mesoblastic nephroma, secretory breast cancer, and mammary analog secretory carcinoma of the salivary gland. TRK fusions have also been identified at lower frequencies across a broad range of other pediatric cancers, including undifferentiated sarcomas, gliomas, papillary thyroid cancers, spitzoid neoplasms, inflammatory myofibroblastic tumors, and acute leukemias. Here we review the prevalence and diseases associated with TRK fusions and methods of detection of these fusions in light of the recent development of selective TRK inhibitors, such as larotrectinib, which demonstrated a 75% response rate across children and adults with TRK fusion cancers. We provide recommendations for screening pediatric tumors for the presence of TRK fusions, including the use of immunohistochemistry or fluorescence in situ hybridization for patients with tumors likely to harbor TRK fusions. Further, we recommend next-generation sequencing for tumors that have a relatively low prevalence of TRK fusions, both to identify patients who may benefit from TRK inhibition and to identify other targetable oncogenic drivers that exist in the same tumor types.
Collapse
|
166
|
Prognostic impact of kinase-activating fusions and IKZF1 deletions in pediatric high-risk B-lineage acute lymphoblastic leukemia. Blood Adv 2019; 2:529-533. [PMID: 29507076 DOI: 10.1182/bloodadvances.2017014704] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/09/2018] [Indexed: 11/20/2022] Open
Abstract
Recurrent chromosomal rearrangements carry prognostic significance in pediatric B-lineage acute lymphoblastic leukemia (B-ALL). Recent genome-wide analyses identified a high-risk B-ALL subtype characterized by a diverse spectrum of genetic alterations activating kinases and cytokine receptor genes. This subtype is associated with a poor prognosis when treated with conventional chemotherapy but has demonstrated sensitivity to the relevant tyrosine kinase inhibitors. We sought to determine the frequency of kinase-activating fusions among National Cancer Institute (NCI) high-risk, Ph-negative, B-ALL patients enrolled on Dana-Farber Cancer Institute ALL Consortium Protocol 05-001 and to describe their associated clinical characteristics and outcomes. Among the 105 patients screened, 16 (15%) harbored an ABL-class fusion (ETV6-ABL1: n = 1; FOXP1-ABL1: n = 1; SFPQ-ABL1: n = 1; ZC3HAV1-ABL2: n = 1) or a fusion activating the JAK-STAT pathway (P2RY8-CRLF2: n = 8; PAX5-JAK2: n = 4). Sixty-nine percent of patients with an identified fusion had a concomitant IKZF1 deletion (n = 11). In univariate analysis, fusion-positivity and IKZF1 deletion were each associated with inferior event-free survival; IKZF1 deletion retained statistical significance in multivariable analysis (hazard ratio, 2.64; P = .019). Our findings support therapy intensification for IKZF1-altered patients, irrespective of the presence of a kinase-activating fusion.
Collapse
|
167
|
Zaliova M, Stuchly J, Winkowska L, Musilova A, Fiser K, Slamova M, Starkova J, Vaskova M, Hrusak O, Sramkova L, Stary J, Zuna J, Trka J. Genomic landscape of pediatric B-other acute lymphoblastic leukemia in a consecutive European cohort. Haematologica 2019; 104:1396-1406. [PMID: 30630978 PMCID: PMC6601078 DOI: 10.3324/haematol.2018.204974] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/20/2018] [Indexed: 01/21/2023] Open
Abstract
Novel biological subtypes and clinically important genetic aberrations (druggable lesions, prognostic factors) have been described in B-other acute lymphoblastic leukemia (ALL) during the last decade; however, due to a lack of studies on unselected cohorts, their population frequency and mutual associations still have to be established. We studied 110 consecutively diagnosed and uniformly treated childhood B-other patients using single nucleotide polymorphism arrays and whole exome/transcriptome sequencing. The frequency of DUX4-rearranged, BCR-ABL1-like, ZNF384-rearranged, ETV6-RUNX1-like, iAMP21 and MEF2D-rearranged subtypes was 27%, 15%, 5%, 5%, 4%, and 2%, respectively; 43% of cases were not classified into any of these subtypes (B-rest). We found worse early response to treatment in DUX4-rearranged leukemia and a strong association of ZNF384-rearranged leukemia with B-myeloid immunophenotype. Of the druggable lesions, JAK/STAT-class and RAS/RAF/MAPK-class aberrations were found in 21% and 43% of patients, respectively; an ABL-class aberration was found in one patient. A recently described negative prognostic factor, IKZF1plus, was found in 14% of patients and was enriched in (but not exclusive for) BCR-ABL1-like subtype. PAX5 fusions (including 4 novel), intragenic amplifications and P80R mutations were mutually exclusive and only occurred in the B-rest subset, altogether accounting for 20% of the B-other group. PAX5 P80R was associated with a specific gene expression signature, potentially defining a novel leukemia subtype. Our study shows unbiased European population-based frequencies of novel ALL subtypes, recurrent (cyto)genetic aberrations and their mutual associations. This study also strengthens and widens the current knowledge of B-other ALL and provides an objective basis for optimization of current genetic diagnostics.
Collapse
Affiliation(s)
- Marketa Zaliova
- CLIP - Childhood Leukaemia Investigation Prague .,Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University.,University Hospital Motol, Prague, Czech Republic
| | - Jan Stuchly
- CLIP - Childhood Leukaemia Investigation Prague.,Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University
| | - Lucie Winkowska
- CLIP - Childhood Leukaemia Investigation Prague.,Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University
| | - Alena Musilova
- CLIP - Childhood Leukaemia Investigation Prague.,Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University
| | - Karel Fiser
- CLIP - Childhood Leukaemia Investigation Prague.,Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University
| | - Martina Slamova
- CLIP - Childhood Leukaemia Investigation Prague.,Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University
| | - Julia Starkova
- CLIP - Childhood Leukaemia Investigation Prague.,Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University
| | - Martina Vaskova
- CLIP - Childhood Leukaemia Investigation Prague.,Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University
| | - Ondrej Hrusak
- CLIP - Childhood Leukaemia Investigation Prague.,Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University.,University Hospital Motol, Prague, Czech Republic
| | - Lucie Sramkova
- CLIP - Childhood Leukaemia Investigation Prague.,Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University.,University Hospital Motol, Prague, Czech Republic
| | - Jan Stary
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University.,University Hospital Motol, Prague, Czech Republic
| | - Jan Zuna
- CLIP - Childhood Leukaemia Investigation Prague.,Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University.,University Hospital Motol, Prague, Czech Republic
| | - Jan Trka
- CLIP - Childhood Leukaemia Investigation Prague .,Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University.,University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
168
|
Wenzinger C, Williams E, Gru AA. Updates in the Pathology of Precursor Lymphoid Neoplasms in the Revised Fourth Edition of the WHO Classification of Tumors of Hematopoietic and Lymphoid Tissues. Curr Hematol Malig Rep 2018; 13:275-288. [PMID: 29951888 DOI: 10.1007/s11899-018-0456-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Acute lymphoblastic leukemias (ALL) are malignant disorders of immature B or T cells that occur characteristically in children, usually under the age of 6 (75%). Approximately 6000 new cases of ALL are diagnosed each year in the USA, 80-85% of which represent B-ALL forms. Most presentations of B-ALL are leukemic, whereas T-ALL presents with a mediastinal mass, with or without leukemic involvement. The revised fourth edition of the World Health Organization (WHO) classification (2017) has introduced some changes in both B and T-ALL. Here, we summarize the categories of lymphoblastic leukemia/lymphomas as defined by the WHO and recent developments in the understanding of this group of hematologic malignancy. RECENT FINDINGS Two provisional categories of B-ALL have now been identified including B-ALL, BCR-ABL1-like, and B-ALL with iAMP21. The Philadelphia chromosome-like B-ALL includes forms of the disease that shares the expression profiling of B-ALL with t(9;22) but lack such rearrangement. The second one shows amplification of part of the chromosome 21. Both entities are associated with worse prognosis. Within the T-ALL group, an early precursor T cell form has now been introduced as a provisional category. Such group demonstrates expression of stem cell and myeloid markers in conjunction with the T cell antigens. The current review summarizes the recent updates to the WHO classification.
Collapse
MESH Headings
- Child, Preschool
- Chromosomes, Human, Pair 21/genetics
- Chromosomes, Human, Pair 21/metabolism
- Chromosomes, Human, Pair 9/genetics
- Chromosomes, Human, Pair 9/metabolism
- Female
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Hematopoiesis
- Humans
- Infant
- Lymphoid Tissue/metabolism
- Lymphoid Tissue/pathology
- Male
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/classification
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/classification
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Translocation, Genetic
- World Health Organization
Collapse
Affiliation(s)
| | - Eli Williams
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - Alejandro A Gru
- Departments of Pathology & Dermatology, University of Virginia, 415 Lane Road, Hospital Expansion Bldg Room 3024, Charlottesville, VA, 22908, USA.
| |
Collapse
|
169
|
Abstract
PURPOSE OF REVIEW Treatment options for patients with acute lymphoblastic leukemia (ALL) beyond standard chemotherapy have grown significantly in recent years. In this review, we highlight new targeted therapies in ALL, with an emphasis on immunotherapy. RECENT FINDINGS Major advances include antibody-based therapies, such as naked monoclonal antibodies, antibody-drug conjugates and bispecific T cell engaging (BiTE) antibodies, as well as adoptive cellular therapies such as chimeric antigen receptor (CAR) T cells. Apart from the above immunotherapeutic approaches, other targeted therapies are being employed in Philadelphia chromosome-positive (Ph+) ALL, Philadelphia-like (Ph-like) ALL, and T cell ALL. These new treatment strategies are changing the treatment landscape of ALL and challenging the current standard of care. Clinical trials will hopefully help determine how to best incorporate these novel therapies into existing treatment algorithms.
Collapse
Affiliation(s)
- Kathleen W Phelan
- Cardinal Bernardin Cancer Center, Loyola University Medical Center, 2160 S. First Avenue, Maywood, IL, 60153, USA
| | - Anjali S Advani
- Taussig Cancer Center, Cleveland Clinic, 10201 Carnegie Avenue, Desk CA60, Cleveland, OH, 44195, USA.
| |
Collapse
|
170
|
Chiaretti S, Messina M, Foà R. BCR/ABL1-like acute lymphoblastic leukemia: How to diagnose and treat? Cancer 2018; 125:194-204. [PMID: 30561755 DOI: 10.1002/cncr.31848] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/24/2018] [Accepted: 09/28/2018] [Indexed: 12/23/2022]
Abstract
BCR/ABL1-like acute lymphoblastic leukemia (ALL) accounts for 15% to 30% of B-lineage ALL, with a peak of incidence occurring in adolescence. This subgroup of patients is characterized by a peculiar transcriptional profile that resembles that of true BCR/ABL1-positive cases, and have a heterogeneous genetic background and a poor outcome. Next-generation sequencing studies have demonstrated that the majority of patients carry rearrangements of tyrosine kinases or cytokine receptors and mutations of janus kinase (JAK)/signal transducer and activator of transcription (STAT), thus opening the way to the possible use of targeted therapeutic approaches. However, several issues remain unresolved at both the diagnostic and therapeutic level, such as the definition of a standardized method to identify BCR/ABL1-like ALL and the design of ad hoc clinical trials examining tyrosine kinase inhibitors or other tailored treatments. These aspects are discussed in this review.
Collapse
Affiliation(s)
- Sabina Chiaretti
- Hematology, Department of Translational and Precision Medicine, "Sapienza" University, Rome, Italy
| | - Monica Messina
- Hematology, Department of Translational and Precision Medicine, "Sapienza" University, Rome, Italy
| | - Robin Foà
- Hematology, Department of Translational and Precision Medicine, "Sapienza" University, Rome, Italy
| |
Collapse
|
171
|
Mohseni M, Uludag H, Brandwein JM. Advances in biology of acute lymphoblastic leukemia (ALL) and therapeutic implications. AMERICAN JOURNAL OF BLOOD RESEARCH 2018; 8:29-56. [PMID: 30697448 PMCID: PMC6334189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/06/2018] [Indexed: 06/09/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer and also occurs in adults. Although the outcomes of multi-agent chemotherapy regimens have greatly improved, high toxicity and relapses in many patients necessitate the development of novel therapeutic approaches. Advances in molecular profiling and cytogenetics have identified a broad range of genetic abnormalities, including gene mutations, chromosome translocations and aneuploidy, which has provided a more comprehensive understanding of the biology and pathogenesis of ALL. This understanding has also led to new targeted therapeutic approaches, including the use of selective small molecule inhibitors, nucleic acid-based therapies and immune-based therapies mediated by specific monoclonal antibodies and cellular immunotherapy, which are poised to revolutionize the treatment of various ALL subtypes. The main focus of this review is to highlight the latest advances in ALL biology, including the identification of prognostic factors and putative therapeutic targets. We also review the current status of, and ongoing progress in, the development of targeted therapies for ALL.
Collapse
Affiliation(s)
- Mahsa Mohseni
- Department of Medicine, University of Alberta Edmonton, Alberta, Canada
| | - Hasan Uludag
- Department of Chemical and Materials Engineering, University of Alberta Edmonton, Alberta, Canada
| | | |
Collapse
|
172
|
Roberts KG. Genetics and prognosis of ALL in children vs adults. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2018; 2018:137-145. [PMID: 30504302 PMCID: PMC6245970 DOI: 10.1182/asheducation-2018.1.137] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is characterized by genetic alterations that block differentiation, promote proliferation of lymphoid precursor cells, and are important for risk stratification. Although ALL is less common in adolescents and young adults (AYAs) and adults than children, survival rates are inferior, and long-term prognosis for adults is poor. Thus, ALL remains a challenging disease to treat in the AYA and adult populations. A major contributing factor that influences prognosis in this population is the reduced prevalence of genetic subtypes associated with favorable outcome and a concomitant increase in subtypes associated with poor outcome. Recent advances in genomic profiling across the age spectrum continue to enhance our knowledge of the differences in disease biology between children and adults and are providing important insights into novel therapeutic targets. Philadelphia chromosome-like (Ph-like) ALL is one such subtype characterized by alterations that deregulate cytokine receptor or tyrosine kinase signaling and are amenable to inhibition with approved tyrosine kinase inhibitors. One of the greatest challenges now remaining is determining how to implement this breadth of genomic information into rapid and accurate diagnostic testing to facilitate the development of novel clinical trials that improve the outcome of AYAs and adults with ALL.
Collapse
Affiliation(s)
- Kathryn G Roberts
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
173
|
Rau RE, Loh ML. Using genomics to define pediatric blood cancers and inform practice. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2018; 2018:286-300. [PMID: 30504323 PMCID: PMC6245969 DOI: 10.1182/asheducation-2018.1.286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Over the past decade, there has been exponential growth in the number of genome sequencing studies performed across a spectrum of human diseases as sequencing technologies and analytic pipelines improve and costs decline. Pediatric hematologic malignancies have been no exception, with a multitude of next generation sequencing studies conducted on large cohorts of patients in recent years. These efforts have defined the mutational landscape of a number of leukemia subtypes and also identified germ-line genetic variants biologically and clinically relevant to pediatric leukemias. The findings have deepened our understanding of the biology of many childhood leukemias. Additionally, a number of recent discoveries may positively impact the care of pediatric leukemia patients through refinement of risk stratification, identification of targetable genetic lesions, and determination of risk for therapy-related toxicity. Although incredibly promising, many questions remain, including the biologic significance of identified genetic lesions and their clinical implications in the context of contemporary therapy. Importantly, the identification of germ-line mutations and variants with possible implications for members of the patient's family raises challenging ethical questions. Here, we review emerging genomic data germane to pediatric hematologic malignancies.
Collapse
Affiliation(s)
- Rachel E. Rau
- Department of Pediatrics, Baylor College of Medicine, Houston, TX; and
| | - Mignon L. Loh
- Department of Pediatrics, Benioff Children’s Hospital and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA
| |
Collapse
|
174
|
Mallory N, Pierro J, Raetz E, Carroll WL. The potential of precision medicine for childhood acute lymphoblastic leukemia: opportunities and challenges. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2018. [DOI: 10.1080/23808993.2018.1547108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Nicole Mallory
- Perlmutter Cancer Center and Division of Pediatric Hematology/Oncology, Department of Pediatrics, NYU Langone Health, New York, NY, USA
| | - Joanna Pierro
- Perlmutter Cancer Center and Division of Pediatric Hematology/Oncology, Department of Pediatrics, NYU Langone Health, New York, NY, USA
| | - Elizabeth Raetz
- Perlmutter Cancer Center and Division of Pediatric Hematology/Oncology, Department of Pediatrics, NYU Langone Health, New York, NY, USA
| | - William L. Carroll
- Perlmutter Cancer Center and Division of Pediatric Hematology/Oncology, Department of Pediatrics, NYU Langone Health, New York, NY, USA
| |
Collapse
|
175
|
Cheung LC, Tickner J, Hughes AM, Skut P, Howlett M, Foley B, Oommen J, Wells JE, He B, Singh S, Chua GA, Ford J, Mullighan CG, Kotecha RS, Kees UR. New therapeutic opportunities from dissecting the pre-B leukemia bone marrow microenvironment. Leukemia 2018; 32:2326-2338. [PMID: 29740160 PMCID: PMC6224400 DOI: 10.1038/s41375-018-0144-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 04/03/2018] [Accepted: 04/13/2018] [Indexed: 12/23/2022]
Abstract
The microenvironments of leukemia and cancer are critical for multiple stages of malignancies, and they are an attractive therapeutic target. While skeletal abnormalities are commonly seen in children with acute lymphoblastic leukemia (ALL) prior to initiating osteotoxic therapy, little is known about the alterations to the bone marrow microenvironment during leukemogenesis. Therefore, in this study, we focused on the development of precursor-B cell ALL (pre-B ALL) in an immunocompetent BCR-ABL1+ model. Here we show that hematopoiesis was perturbed, B lymphopoiesis was impaired, collagen production was reduced, and the number of osteoblastic cells was decreased in the bone marrow microenvironment. As previously found in children with ALL, the leukemia-bearing mice exhibited severe bone loss during leukemogenesis. Leukemia cells produced high levels of receptor activator of nuclear factor κB ligand (RANKL), sufficient to cause osteoclast-mediated bone resorption. In vivo administration of zoledronic acid rescued leukemia-induced bone loss, reduced disease burden and prolonged survival in leukemia-bearing mice. Taken together, we provide evidence that targeting leukemia-induced bone loss is a therapeutic strategy for pre-B ALL.
Collapse
Affiliation(s)
- Laurence C Cheung
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia.
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA, Australia.
| | - Jennifer Tickner
- School of Pathology and Laboratory Medicine, University of Western Australia, Perth, WA, Australia
| | - Anastasia M Hughes
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Patrycja Skut
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Meegan Howlett
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Bree Foley
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Joyce Oommen
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Julia E Wells
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Bo He
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Perth, WA, Australia
| | - Sajla Singh
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Grace-Alyssa Chua
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Jette Ford
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rishi S Kotecha
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- Department of Haematology and Oncology, Princess Margaret Hospital for Children, Perth, WA, Australia
- School of Medicine, University of Western Australia, Perth, WA, Australia
| | - Ursula R Kees
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
176
|
Aldoss I, Kamal MO, Forman SJ, Pullarkat V. Adults with Philadelphia Chromosome-Like Acute Lymphoblastic Leukemia: Considerations for Allogeneic Hematopoietic Cell Transplantation in First Complete Remission. Biol Blood Marrow Transplant 2018; 25:e41-e45. [PMID: 30292743 DOI: 10.1016/j.bbmt.2018.09.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 09/27/2018] [Indexed: 10/28/2022]
Abstract
Philadelphia chromosome-like (Ph-like) acute lymphoblastic leukemia (ALL) is a subset of high-risk B cell ALLs. A large proportion of Ph-like ALL cases carry activating kinase mutations that could potentially allow them to be targeted by tyrosine kinase inhibitors. Ph-like ALL is not an uncommon entity, especially among adults, with a frequency exceeding 20%, including in older patients (>60 years old) with ALL. Ph-like ALL is associated with inferior outcomes across all ages, and studies have consistently shown a higher incidence of persistent postinduction minimal residual disease in patients carrying Ph-like ALL compared with other subgroups of ALL, and this translates into inferior leukemia-related outcomes. The inferior outcome of conventional chemotherapy for Ph-like ALL in adults raises the fundamental question of whether all adults with Ph-like ALL require an allogeneic hematopoietic cell transplantation (HCT) in first complete remission (CR1) regardless of other presenting features and treatment response parameters. Here we present and discuss several scenarios in which adults with Ph-like ALL underwent or were considered for HCT in CR1 for various reasons. Although the decision to proceed with HCT was clear and indisputable in some of these situations, in others we struggled with the decision to transplant in CR1 because of the lack of published data regarding the efficacy of allogeneic HCT as consolidation for Ph-like ALL. We emphasize the urgent need for developing well-designed studies to address this important question.
Collapse
Affiliation(s)
- Ibrahim Aldoss
- Department of Hematology and Hematopoietic cell transplantation, City of Hope Medical Center, Duarte, California.
| | - Muhammad O Kamal
- Department of Hematology and Oncology, Loma Linda Medical Center, Loma Linda, California
| | - Stephen J Forman
- Department of Hematology and Hematopoietic cell transplantation, City of Hope Medical Center, Duarte, California
| | - Vinod Pullarkat
- Department of Hematology and Hematopoietic cell transplantation, City of Hope Medical Center, Duarte, California
| |
Collapse
|
177
|
Gioiosa S, Bolis M, Flati T, Massini A, Garattini E, Chillemi G, Fratelli M, Castrignanò T. Massive NGS data analysis reveals hundreds of potential novel gene fusions in human cell lines. Gigascience 2018; 7:5026623. [PMID: 29860514 PMCID: PMC6207142 DOI: 10.1093/gigascience/giy062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 05/29/2018] [Indexed: 01/19/2023] Open
Abstract
Background Gene fusions derive from chromosomal rearrangements. The resulting chimeric transcripts are often endowed with oncogenic potential. Furthermore, they serve as diagnostic tools for the clinical classification of cancer subgroups with different prognosis and, in some cases, they can provide specific drug targets. To date, many efforts have been carried out to study gene fusion events occurring in tumor samples. In recent years, the availability of a comprehensive next-generation sequencing dataset for all existing human tumor cell lines has provided the opportunity to further investigate these data in order to identify novel and still uncharacterized gene fusion events. Results In our work, we have extensively reanalyzed 935 paired-end RNA-sequencing experiments downloaded from the Cancer Cell Line Encyclopedia repository, aiming at addressing novel putative cell-line specific gene fusion events in human malignancies. The bioinformatics analysis has been performed by the execution of four gene fusion detection algorithms. The results have been further prioritized by running a Bayesian classifier that makes an in silico validation. The collection of fusion events supported by all of the predictive software results in a robust set of ∼1,700 in silico predicted novel candidates suitable for downstream analyses. Given the huge amount of data and information produced, computational results have been systematized in a database named LiGeA. The database can be browsed through a dynamic and interactive web portal, further integrated with validated data from other well-known repositories. Taking advantage of the intuitive query forms, the users can easily access, navigate, filter, and select the putative gene fusions for further validations and studies. They can also find suitable experimental models for a given fusion of interest. Conclusions We believe that the LiGeA resource can represent not only the first compendium of both known and putative novel gene fusion events in the catalog of all of the human malignant cell lines but it can also become a handy starting point for wet-lab biologists who wish to investigate novel cancer biomarkers and specific drug targets.
Collapse
Affiliation(s)
- Silvia Gioiosa
- SCAI-Super Computing Applications and Innovation Department, CINECA, Rome, Italy.,National Council of Research, CNR, Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Bari, Italy
| | - Marco Bolis
- Laboratory of Molecular Biology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Milano, Italy
| | - Tiziano Flati
- SCAI-Super Computing Applications and Innovation Department, CINECA, Rome, Italy.,National Council of Research, CNR, Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Bari, Italy
| | | | - Enrico Garattini
- Laboratory of Molecular Biology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Milano, Italy
| | - Giovanni Chillemi
- SCAI-Super Computing Applications and Innovation Department, CINECA, Rome, Italy
| | - Maddalena Fratelli
- Laboratory of Molecular Biology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Milano, Italy
| | - Tiziana Castrignanò
- SCAI-Super Computing Applications and Innovation Department, CINECA, Rome, Italy
| |
Collapse
|
178
|
Shen S, Cai J, Chen J, Xue H, Pan C, Gao Y, Tang Y, Wang J, Li B, Wang X, Chen J, Gu L, Tang J. Long-term results of the risk-stratified treatment of childhood acute lymphoblastic leukemia in China. Hematol Oncol 2018; 36:679-688. [PMID: 30133806 DOI: 10.1002/hon.2541] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 07/22/2018] [Indexed: 11/09/2022]
Abstract
Long-term follow-up data for childhood acute lymphoblastic leukemia (ALL) are scarce in China because of lacking population-based and hospitalized registry system. This retrospective study, conducted at Shanghai's Children's Medical Center in China (SCMC), aimed to investigate the long-term results of childhood ALL and to identify prognostic factors. The Pediatric Oncology Network Database, designed by St. Jude Children's Research Hospital, USA, were used to collect data for the enrolled patients starting in 2005. From 2005 to 2014, 1085 evaluable patients with ALL aged 1 to 18 years old were enrolled and treated using SCMC-ALL-2005 risk-stratified protocol. Complete remission was achieved in 95.6% of patients. At 5 and 10 years, the event-free survival rate was 68.3 ± 1.4% and 64.6 ± 1.6%, and the overall survival rate was 80.0 ± 1.2% and 76.3 ± 1.6%, respectively. The 5-year event-free survival rates were 81.8 ± 2.0%, 67.0 ± 1.9%, and 14.3 ± 4.0% for patients in low-risk, intermediate-risk, and high-risk groups, respectively. The cumulative risk of relapse was 24.5% at 10 years. Induction failure conferred worse prognosis. Patients younger than 1 year of age at diagnosis, intermediate-risk/high-risk group, male gender, and positive minimal residual disease (MRD) results at day 55, both in the univariate and multivariate analysis, were associated with significantly worse prognosis (P < .05). Patients with positive MRD at both day 35 and day 55 were related to a significantly poor outcome (P < .0001), but not for patients with negitive MRD at day 35. The overall outcomes for ALL patients treated with protocol SCMC-ALL-2005 in SCMC are lower than in developed countries. Factors including age, gender, risk group and MRD results at day 55 were associated with treatment outcomes in childhood ALL.
Collapse
Affiliation(s)
- Shuhong Shen
- Department of Hematology/Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Key Lab of Pediatric Hematology & Oncology of China Ministry of Health, Shanghai, China
| | - Jiaoyang Cai
- Department of Hematology/Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Key Lab of Pediatric Hematology & Oncology of China Ministry of Health, Shanghai, China
| | - Jing Chen
- Department of Hematology/Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Key Lab of Pediatric Hematology & Oncology of China Ministry of Health, Shanghai, China
| | - Huiliang Xue
- Department of Hematology/Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Key Lab of Pediatric Hematology & Oncology of China Ministry of Health, Shanghai, China
| | - Ci Pan
- Department of Hematology/Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Key Lab of Pediatric Hematology & Oncology of China Ministry of Health, Shanghai, China
| | - Yijin Gao
- Department of Hematology/Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Key Lab of Pediatric Hematology & Oncology of China Ministry of Health, Shanghai, China
| | - Yanjing Tang
- Department of Hematology/Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Key Lab of Pediatric Hematology & Oncology of China Ministry of Health, Shanghai, China
| | - Jianmin Wang
- Department of Hematology/Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Key Lab of Pediatric Hematology & Oncology of China Ministry of Health, Shanghai, China
| | - Benshang Li
- Department of Hematology/Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Key Lab of Pediatric Hematology & Oncology of China Ministry of Health, Shanghai, China
| | - Xiang Wang
- Department of Hematology/Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Key Lab of Pediatric Hematology & Oncology of China Ministry of Health, Shanghai, China
| | - Jing Chen
- Department of Hematology/Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Key Lab of Pediatric Hematology & Oncology of China Ministry of Health, Shanghai, China
| | - Longjun Gu
- Department of Hematology/Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Key Lab of Pediatric Hematology & Oncology of China Ministry of Health, Shanghai, China
| | - Jingyan Tang
- Department of Hematology/Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Key Lab of Pediatric Hematology & Oncology of China Ministry of Health, Shanghai, China
| |
Collapse
|
179
|
Starý J, Zuna J, Zaliova M. New biological and genetic classification and therapeutically relevant categories in childhood B-cell precursor acute lymphoblastic leukemia. F1000Res 2018; 7. [PMID: 30345005 PMCID: PMC6173109 DOI: 10.12688/f1000research.16074.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/24/2018] [Indexed: 01/12/2023] Open
Abstract
Traditionally, genetic abnormalities detected by conventional karyotyping, fluorescence in situ hybridization, and polymerase chain reaction divided childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL) into well-established genetic subtypes. This genetic classification has been prognostically relevant and thus used for the risk stratification of therapy. Recently, the introduction of genome-wide approaches, including massive parallel sequencing methods (whole-genome, -exome, and -transcriptome sequencing), enabled extensive genomic studies which, together with gene expression profiling, largely expanded our understanding of leukemia pathogenesis and its heterogeneity. Novel BCP-ALL subtypes have been described. Exact identification of recurrent genetic alterations and their combinations facilitates more precise risk stratification of patients. Discovery of targetable lesions in subsets of patients enables the introduction of new treatment modalities into clinical practice and stimulates the transfer of modern methods from research laboratories to routine practice.
Collapse
Affiliation(s)
- Jan Starý
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic.,Childhood Leukaemia Investigation Prague (CLIP), Prague, Czech Republic
| | - Jan Zuna
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic.,Childhood Leukaemia Investigation Prague (CLIP), Prague, Czech Republic
| | - Marketa Zaliova
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic.,Childhood Leukaemia Investigation Prague (CLIP), Prague, Czech Republic
| |
Collapse
|
180
|
Pikman Y, Stegmaier K. Targeted therapy for fusion-driven high-risk acute leukemia. Blood 2018; 132:1241-1247. [PMID: 30049809 PMCID: PMC6148448 DOI: 10.1182/blood-2018-04-784157] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/14/2018] [Indexed: 11/20/2022] Open
Abstract
Despite continued progress in drug development for acute leukemias, outcomes for patients with some subtypes have not changed significantly in the last decade. Recurrent chromosomal translocations have long been recognized as driver events in leukemia, and many of these oncogenic fusions portend high-risk disease. Improved understanding of the molecular underpinnings of these fusions, coupled with novel chemistry approaches, now provide new opportunity for therapeutic inroads into the treatment of leukemia driven by these fusions.
Collapse
Affiliation(s)
- Yana Pikman
- Division of Hematology/Oncology, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston Children's Hospital, Boston, MA; and
| | - Kimberly Stegmaier
- Division of Hematology/Oncology, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston Children's Hospital, Boston, MA; and
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA
| |
Collapse
|
181
|
Abstract
Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL), or BCR-ABL1-like ALL, is a high-risk subtype of B-cell precursor ALL characterized by a gene expression profile similar to Ph-positive ALL, a high frequency of IKZF1 alterations, and poor outcome. The prevalence of Ph-like ALL is common among all ages, ranging from 10% to 15% in children to over 25% in young adults. Patients with Ph-like ALL harbor a diverse range of genetic alterations that activate cytokine receptor and kinase signaling and can be targeted with tyrosine kinase inhibitors. The majority of Ph-like ALL alterations are divided into two main groups based on activation of ABL-class or JAK-STAT alterations. Accordingly, preclinical studies and anecdotal reports suggest patients harboring ABL-class fusions are candidates for ABL1-inhibitors, whilst alterations activating the JAK-STAT pathway may be amenable to treatment with JAK inhibitors. Diagnostic screening approaches and precision medicine trials are now being developed and implemented to test the efficacy of targeted therapy with a backbone of chemotherapy, similar to the treatment of Ph-positive ALL.
Collapse
Affiliation(s)
- Kathryn G Roberts
- Department of Pathology, St Jude Children's Research Hospital, 262 Danny Thomas Place, MS342, Memphis, TN, 38105, USA.
| |
Collapse
|
182
|
Severson EA, Vergilio JA, Gay LM, Daniel S, Hemmerich AC, Elvin JA, Britt N, Nahas M, Cohen MB, Brown C, Sathyan P, Rankin A, Miller V, Ross JS, Ramkissoon SH. Genomic Landscape of Adult and Pediatric BCR-ABL1-Like B-Lymphoblastic Leukemia Using Parallel DNA and RNA Sequencing. Oncologist 2018; 24:372-374. [PMID: 30181314 DOI: 10.1634/theoncologist.2018-0272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/18/2018] [Indexed: 11/17/2022] Open
Abstract
BCR-ABL1-like B-Acute Lymphoblastic Leukemia (B-ALL) is a subset of B-ALL with a poor prognosis that is found in all age groups. Definitive identification of these patients is difficult in routine clinical practice as gene expression profiling, the gold standard test, is not widely available. Comprehensive genomic profiling performed on 450 patients with extensive fusion profiling revealed a wide range of genomic alterations which were consistent with a classification of BCR-ABL1-like B-ALL in 29% of cases. This manuscript highlights a clinically available alternative method for identifying a large subset of patients with BCR-ABL1-like B-ALL.
Collapse
Affiliation(s)
| | | | - Laurie M Gay
- Foundation Medicine, Cambridge, Massachusetts, USA
| | | | | | | | | | | | - Michael B Cohen
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | | | | | | | | | - Jeffrey S Ross
- Foundation Medicine, Cambridge, Massachusetts, USA
- The State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Shakti H Ramkissoon
- Foundation Medicine, Morrisville, North Carolina, USA
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
183
|
Piekarska A, Sadowska-Klasa A, Libura M, Karabin K, Hellmann A. Successful Use of Nilotinib in the Therapy of a Patient with a Chemoresistant Relapse of BCR-ABL1-Like Phenotype Acute Lymphoblastic Leukemia. Oncol Res Treat 2018; 41:550-553. [DOI: 10.1159/000490121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/16/2018] [Indexed: 12/13/2022]
|
184
|
Horowitz NA, Akasha D, Rowe JM. Advances in the genetics of acute lymphoblastic leukemia in adults and the potential clinical implications. Expert Rev Hematol 2018; 11:781-791. [DOI: 10.1080/17474086.2018.1509702] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Netanel A. Horowitz
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Doaa Akasha
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel
| | - Jacob M. Rowe
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
- Department of Hematology, Shaare Zedek Medical Center, Jerusalem, Israel
| |
Collapse
|
185
|
Gu Y, Han Q, McGrath M, Song C, Ge Z. Clinical significance of novel SH2B3 mutations in adult Chinese acute lymphoblastic leukemia patients. Leuk Res 2018; 72:67-70. [PMID: 30103202 DOI: 10.1016/j.leukres.2018.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/04/2018] [Accepted: 07/07/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Yan Gu
- Department of Hematology, Zhongda Hospital Southeast University, Institute of Hematology Southeast University, Nanjing 210009, China; International Cooperative Leukemia Group and International Cooperative Laboratory of Hematology, Zhongda Hospital Southeast University, Nanjing 210009, China
| | - Qi Han
- Department of Hematology, Zhongda Hospital Southeast University, Institute of Hematology Southeast University, Nanjing 210009, China; International Cooperative Leukemia Group and International Cooperative Laboratory of Hematology, Zhongda Hospital Southeast University, Nanjing 210009, China
| | - Mary McGrath
- Department of Pediatrics, Pennsylvania State University Medical College, Hershey, PA17033, USA
| | - Chunhua Song
- International Cooperative Leukemia Group and International Cooperative Laboratory of Hematology, Zhongda Hospital Southeast University, Nanjing 210009, China; Department of Pediatrics, Pennsylvania State University Medical College, Hershey, PA17033, USA.
| | - Zheng Ge
- Department of Hematology, Zhongda Hospital Southeast University, Institute of Hematology Southeast University, Nanjing 210009, China; International Cooperative Leukemia Group and International Cooperative Laboratory of Hematology, Zhongda Hospital Southeast University, Nanjing 210009, China.
| |
Collapse
|
186
|
Advances in B-cell Precursor Acute Lymphoblastic Leukemia Genomics. Hemasphere 2018; 2:e53. [PMID: 31723781 PMCID: PMC6746003 DOI: 10.1097/hs9.0000000000000053] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/13/2018] [Accepted: 04/20/2018] [Indexed: 01/07/2023] Open
Abstract
In childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL), cytogenetic abnormalities remain important diagnostic and prognostic tools. A number of well-established abnormalities are routinely used in risk stratification for treatment. These include high hyperdiploidy and ETV6-RUNX1 fusion, classified as good risk, while Philadelphia chromosome (Ph) positive ALL and rearrangements of the KMT2A (MLL) gene define poor risk. A poor risk subgroup of intrachromosomal amplification of chromosome 21 (iAMP21-ALL) has been described, in which intensification of therapy has greatly improved outcome. Until recently, no consistent molecular features were defined in around 30% of BCP-ALL (known as B-other-ALL). Recent studies are classifying them into distinct subgroups, some with clear potential for novel therapeutic approaches. For example, in 1 poor risk subtype, known as Ph-like/BCR-ABL1-like ALL, approximately 10% have rearrangements of ABL-class tyrosine kinases: including ABL1, ABL2, PDGFRB, PDGFRA, and CSF1R. Notably, they show a poor response to standard chemotherapy, while they respond to treatment with tyrosine kinase inhibitors, such as imatinib. In other Ph-like-ALL patients, deregulation of the cytokine receptor, CRLF2, and JAK2 rearrangements lead to activation of the JAK-STAT signaling pathway, implicating a specific role for JAK inhibitors in their treatment. Other novel subgroups within B-other-ALL are defined by the IGH-DUX4 translocation, related to deletions of the ERG gene and a good outcome, while fusions involving ZNF384, MEF2D, and intragenic PAX5 amplification (PAX5AMP) are linked to a poor outcome. Continued genetic screening will eventually lead to complete genomic classification of BCP-ALL and define more molecular targets for less toxic therapies.
Collapse
|
187
|
Keeping PACE with Ph Positive to Ph-Like Detection in B-Lineage Acute Lymphoblastic Leukemia: A Practical and Cost Effective (PACE) Approach in a Resource Constrained Setting. Indian J Hematol Blood Transfus 2018; 34:595-601. [PMID: 30369727 DOI: 10.1007/s12288-018-0997-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 07/31/2018] [Indexed: 12/24/2022] Open
Abstract
Philadelphia (Ph)-like or BCR-ABL like acute lymphoblastic leukemia (ALL) is defined on the basis of a gene expression profile that is similar to Ph-positive ALL. It comprises a wide spectrum of genetic lesions affecting primarily the cytokine receptor and/or kinase signalling genes. It accounts for approximately 10-15% of pediatric ALL, and is more common in patients who are high-risk according to the National Cancer Institute criteria. Presence of Ph-like mutations is an independent predictor of poor outcome. However, there is vast potential to utilize targeted therapy to improve survival in this group. The sizeable range of genetic lesions varying from translocations, fusions, point mutations and deletions make the diagnosis challenging. Hence, a practical and cost effective approach is required to enable identification in resource constrained settings. Patients with recurrent cytogenetic abnormalities such as ETV6-RUNX1, high hyperdiploidy, TCF3-PBX1, BCR-ABL1 and KMT2A (MLL) rearrangement need not be tested, as these are mutually exclusive with BCR-ABL like mutations. Detection of CRLF2 overexpression, which is the commonest abnormality, is employed as the first step. In patients lacking overexpression, testing for tyrosine kinase fusions can be performed. However, the goal should be to employ a combination of molecular diagnostic techniques such as reverse transcriptase polymerase chain reaction (PCR), real time quantitative PCR, fluorescence in situ hybridization and Sanger sequencing to detect genetic lesions that are amenable to targeted therapy.
Collapse
|
188
|
Kotb A, El Fakih R, Hanbali A, Hawsawi Y, Alfraih F, Hashmi S, Aljurf M. Philadelphia-like acute lymphoblastic leukemia: diagnostic dilemma and management perspectives. Exp Hematol 2018; 67:1-9. [PMID: 30075295 DOI: 10.1016/j.exphem.2018.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/22/2018] [Accepted: 07/24/2018] [Indexed: 01/02/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is an aggressive hematologic malignancy characterized by suboptimal outcomes in the adult age group. Recently, a new subtype called Philadelphia (Ph)-like ALL has been described. This subgroup is characterized by high cytokine receptor and tyrosine kinase signaling expression, resulting in kinase activation through stimulation of two main pathways, the ABL and JAK/STAT pathways. The diagnostic method or approach for Ph-like ALL is still not standardized and efforts are ongoing to identify an easy and applicable diagnostic method. Accurate and standard testing approaches are much needed and this will facilitate better understanding of this subgroup, including better estimation of the prevalence and incidence in different age groups and the clinical outcomes of such new entity. Here, we review the currently available diagnostic tools, activated pathways, and different therapeutic approaches used to target this subgroup.
Collapse
Affiliation(s)
- Ahmed Kotb
- King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Riad El Fakih
- King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia.
| | - Amr Hanbali
- King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Yousef Hawsawi
- King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Feras Alfraih
- King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Shahrukh Hashmi
- King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Mahmoud Aljurf
- King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
189
|
Genomic and outcome analyses of Ph-like ALL in NCI standard-risk patients: a report from the Children's Oncology Group. Blood 2018; 132:815-824. [PMID: 29997224 DOI: 10.1182/blood-2018-04-841676] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/20/2018] [Indexed: 12/15/2022] Open
Abstract
Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL; BCR-ABL1-like ALL) in children with National Cancer Institute (NCI) intermediate- or high-risk (HR) ALL is associated with poor outcome. Ph-like ALL is characterized by genetic alterations that activate cytokine receptor and kinase signaling and may be amenable to treatment with tyrosine kinase inhibitors. The prevalence, outcome, and potential for targeted therapy of Ph-like ALL in standard-risk (SR) ALL is less clear. We retrospectively analyzed a cohort of 1023 SR childhood B-ALL consecutively enrolled in the Children's Oncology Group AALL0331 clinical trial. The Ph-like ALL gene expression profile was identified in 206 patients, and 67 patients with either BCR-ABL1 (n = 6) or ETV6-RUNX1 (n = 61) were excluded from downstream analysis, leaving 139 of 1023 (13.6%) as Ph-like. Targeted reverse transcription polymerase chain reaction assays and RNA-sequencing identified kinase-activating alterations in 38.8% of SR Ph-like cases, including CRLF2 rearrangements (29.5% of Ph-like), ABL-class fusions (1.4%), JAK2 fusions (1.4%), an NTRK3 fusion (0.7%), and other sequence mutations (IL7R, KRAS, NRAS; 5.6%). Patients with Ph-like ALL had inferior 7-year event-free survival compared with non-Ph-like ALL (82.4 ± 3.6% vs 90.7 ± 1.0%, P = .0022), with no difference in overall survival (93.2 ± 2.4% vs 95.8 ± 0.7%, P = .14). These findings illustrate the significant differences in the spectrum of kinase alterations and clinical outcome of Ph-like ALL based on presenting clinical features and establish that genomic alterations potentially targetable with approved kinase inhibitors are less frequent in SR than in HR ALL.
Collapse
|
190
|
Siegele BJ, Nardi V. Laboratory testing in BCR-ABL1-like (Philadelphia-like) B-lymphoblastic leukemia/lymphoma. Am J Hematol 2018; 93:971-977. [PMID: 29696694 DOI: 10.1002/ajh.25126] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/17/2018] [Accepted: 04/22/2018] [Indexed: 02/03/2023]
Abstract
BCR-ABL1-like B-lymphoblastic leukemia/lymphoma (BCR-ABL1-like B-ALL), also known as Philadelphia-like (Ph-like) ALL, is a neoplasm of B-lineage lymphoblasts characterized by a pattern of gene expression similar to that of B-ALL with the BCR-ABL1 translocation but lacking the BCR-ABL1 fusion protein. The diagnosis of BCR-ABL1-like B-ALL is associated with a high rate of relapse and poor clinical outcomes. In recognition of the difficulty in screening these leukemias for diagnostic workup, the 2016 update/revision to the World Health Organization (WHO) 2008 edition included BCR-ABL1-like B-ALL as a provisional entity. This review addresses the various clinical considerations and methodologies currently used in the pathologic diagnosis, subclassification, and molecular characterization of cases of BCR-ABL1-like B-ALL, with particular attention paid to emerging methods useful in identification of molecular lesions potentially amenable to targeted therapy.
Collapse
Affiliation(s)
- Bradford J. Siegele
- Department of Pathology; Massachusetts General Hospital, Boston, Massachusetts
| | - Valentina Nardi
- Department of Pathology; Massachusetts General Hospital, Boston, Massachusetts
- Department of Pathology; Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
191
|
Pekmezci M, Villanueva-Meyer JE, Goode B, Van Ziffle J, Onodera C, Grenert JP, Bastian BC, Chamyan G, Maher OM, Khatib Z, Kleinschmidt-DeMasters BK, Samuel D, Mueller S, Banerjee A, Clarke JL, Cooney T, Torkildson J, Gupta N, Theodosopoulos P, Chang EF, Berger M, Bollen AW, Perry A, Tihan T, Solomon DA. The genetic landscape of ganglioglioma. Acta Neuropathol Commun 2018; 6:47. [PMID: 29880043 PMCID: PMC5992851 DOI: 10.1186/s40478-018-0551-z] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 05/27/2018] [Indexed: 12/11/2022] Open
Abstract
Ganglioglioma is the most common epilepsy-associated neoplasm that accounts for approximately 2% of all primary brain tumors. While a subset of gangliogliomas are known to harbor the activating p.V600E mutation in the BRAF oncogene, the genetic alterations responsible for the remainder are largely unknown, as is the spectrum of any additional cooperating gene mutations or copy number alterations. We performed targeted next-generation sequencing that provides comprehensive assessment of mutations, gene fusions, and copy number alterations on a cohort of 40 gangliogliomas. Thirty-six harbored mutations predicted to activate the MAP kinase signaling pathway, including 18 with BRAF p.V600E mutation, 5 with variant BRAF mutation (including 4 cases with novel in-frame insertions at p.R506 in the β3-αC loop of the kinase domain), 4 with BRAF fusion, 2 with KRAS mutation, 1 with RAF1 fusion, 1 with biallelic NF1 mutation, and 5 with FGFR1/2 alterations. Three gangliogliomas with BRAF p.V600E mutation had concurrent CDKN2A homozygous deletion and one additionally harbored a subclonal mutation in PTEN. Otherwise, no additional pathogenic mutations, fusions, amplifications, or deletions were identified in any of the other tumors. Amongst the 4 gangliogliomas without canonical MAP kinase pathway alterations identified, one epilepsy-associated tumor in the temporal lobe of a young child was found to harbor a novel ABL2-GAB2 gene fusion. The underlying genetic alterations did not show significant association with patient age or disease progression/recurrence in this cohort. Together, this study highlights that ganglioglioma is characterized by genetic alterations that activate the MAP kinase pathway, with only a small subset of cases that harbor additional pathogenic alterations such as CDKN2A deletion.
Collapse
|
192
|
Chiaretti S, Messina M, Grammatico S, Piciocchi A, Fedullo AL, Di Giacomo F, Peragine N, Gianfelici V, Lauretti A, Bareja R, Martelli MP, Vignetti M, Apicella V, Vitale A, Li LS, Salek C, Elemento O, Inghirami G, Weinstock DM, Guarini A, Foà R. Rapid identification of BCR/ABL1-like acute lymphoblastic leukaemia patients using a predictive statistical model based on quantitative real time-polymerase chain reaction: clinical, prognostic and therapeutic implications. Br J Haematol 2018; 181:642-652. [PMID: 29675955 PMCID: PMC5975184 DOI: 10.1111/bjh.15251] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/01/2018] [Indexed: 01/07/2023]
Abstract
BCR/ABL1-like acute lymphoblastic leukaemia (ALL) is a subgroup of B-lineage acute lymphoblastic leukaemia that occurs within cases without recurrent molecular rearrangements. Gene expression profiling (GEP) can identify these cases but it is expensive and not widely available. Using GEP, we identified 10 genes specifically overexpressed by BCR/ABL1-like ALL cases and used their expression values - assessed by quantitative real time-polymerase chain reaction (Q-RT-PCR) in 26 BCR/ABL1-like and 26 non-BCR/ABL1-like cases to build a statistical "BCR/ABL1-like predictor", for the identification of BCR/ABL1-like cases. By screening 142 B-lineage ALL patients with the "BCR/ABL1-like predictor", we identified 28/142 BCR/ABL1-like patients (19·7%). Overall, BCR/ABL1-like cases were enriched in JAK/STAT mutations (P < 0·001), IKZF1 deletions (P < 0·001) and rearrangements involving cytokine receptors and tyrosine kinases (P = 0·001), thus corroborating the validity of the prediction. Clinically, the BCR/ABL1-like cases identified by the BCR/ABL1-like predictor achieved a lower rate of complete remission (P = 0·014) and a worse event-free survival (P = 0·0009) compared to non-BCR/ABL1-like ALL. Consistently, primary cells from BCR/ABL1-like cases responded in vitro to ponatinib. We propose a simple tool based on Q-RT-PCR and a statistical model that is capable of easily, quickly and reliably identifying BCR/ABL1-like ALL cases at diagnosis.
Collapse
Affiliation(s)
- Sabina Chiaretti
- Haematology, Department of Cellular Biotechnologies and Haematology, “Sapienza” University, Rome, Italy
| | - Monica Messina
- Haematology, Department of Cellular Biotechnologies and Haematology, “Sapienza” University, Rome, Italy
| | - Sara Grammatico
- Haematology, Department of Cellular Biotechnologies and Haematology, “Sapienza” University, Rome, Italy
| | | | - Anna Lucia Fedullo
- Haematology, Department of Cellular Biotechnologies and Haematology, “Sapienza” University, Rome, Italy
| | - Filomena Di Giacomo
- Haematology, Department of Cellular Biotechnologies and Haematology, “Sapienza” University, Rome, Italy
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Nadia Peragine
- Haematology, Department of Cellular Biotechnologies and Haematology, “Sapienza” University, Rome, Italy
| | - Valentina Gianfelici
- Haematology, Department of Cellular Biotechnologies and Haematology, “Sapienza” University, Rome, Italy
| | - Alessia Lauretti
- Haematology, Department of Cellular Biotechnologies and Haematology, “Sapienza” University, Rome, Italy
| | - Rohan Bareja
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
| | - Maria Paola Martelli
- Institute of Haematology, Centro Ricerche Onco-Ematologiche (CREO), University of Perugia, Perugia, Italy
| | - Marco Vignetti
- Haematology, Department of Cellular Biotechnologies and Haematology, “Sapienza” University, Rome, Italy
| | - Valerio Apicella
- Haematology, Department of Cellular Biotechnologies and Haematology, “Sapienza” University, Rome, Italy
| | - Antonella Vitale
- Haematology, Department of Cellular Biotechnologies and Haematology, “Sapienza” University, Rome, Italy
| | - Loretta S. Li
- Department of Paediatric Haematology/Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Cyril Salek
- Institute of Haematology and Blood Transfusion, Prague, Czech Republic
| | - Olivier Elemento
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - David M. Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Anna Guarini
- Department of Molecular Medicine, “Sapienza” University, Rome, Italy
| | - Robin Foà
- Haematology, Department of Cellular Biotechnologies and Haematology, “Sapienza” University, Rome, Italy
| |
Collapse
|
193
|
Khan M, Siddiqi R, Tran TH. Philadelphia chromosome-like acute lymphoblastic leukemia: A review of the genetic basis, clinical features, and therapeutic options. Semin Hematol 2018; 55:235-241. [PMID: 30502852 DOI: 10.1053/j.seminhematol.2018.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 04/12/2018] [Accepted: 05/06/2018] [Indexed: 12/21/2022]
Abstract
Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL) is a recently identified high-risk subtype of B-lineage ALL (B-ALL), characterized by a gene expression profile similar to that of Philadelphia-positive (Ph+) ALL, but without the hallmark BCR-ABL1 oncoprotein. Ph-like ALL represents approximately 15% of childhood ALL and its frequency rises with age, peaking among adolescents, and young adults with B-ALL. This subtype is associated with adverse clinical features, persistence of minimal residual disease, and a poor prognosis despite modern chemotherapy regimens. While Ph-like ALL lacks the BCR-ABL1 fusion, it is characterized by a diverse spectrum of kinase fusions and cytokine receptor gene rearrangements that may be similarly amenable to molecularly targeted therapies. While survival rates for childhood ALL have drastically improved with intensive conventional chemotherapy, Ph-like ALL represents a novel paradigm of precision medicine in ALL. This review aims to provide a comprehensive review of the clinical picture and genetic basis of Ph-like ALL and to illustrate how these findings can translate into tailored targeted therapies with the hopes of improving the outcomes of Ph-like ALL patients.
Collapse
Affiliation(s)
- Maliha Khan
- Division of Hematology, Leukemia Program, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Rabbia Siddiqi
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Thai Hoa Tran
- Division of Pediatric Hematology-Oncology, Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada.
| |
Collapse
|
194
|
Copy number abnormality of acute lymphoblastic leukemia cell lines based on their genetic subtypes. Int J Hematol 2018; 108:312-318. [DOI: 10.1007/s12185-018-2474-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 05/13/2018] [Accepted: 05/14/2018] [Indexed: 11/29/2022]
|
195
|
Ding YY, Stern JW, Jubelirer TF, Wertheim GB, Lin F, Chang F, Gu Z, Mullighan CG, Li Y, Harvey RC, Chen IM, Willman CL, Hunger SP, Li MM, Tasian SK. Clinical efficacy of ruxolitinib and chemotherapy in a child with Philadelphia chromosome-like acute lymphoblastic leukemia with GOLGA5-JAK2 fusion and induction failure. Haematologica 2018; 103:e427-e431. [PMID: 29773603 DOI: 10.3324/haematol.2018.192088] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Yang Y Ding
- Children's Hospital of Philadelphia, Division of Oncology and Center for Childhood Cancer Research, PA, USA.,University of Pennsylvania Perelman School of Medicine, Department of Pediatrics, PA, USA
| | - Julie W Stern
- Children's Hospital of Philadelphia, Division of Oncology and Center for Childhood Cancer Research, PA, USA.,University of Pennsylvania Perelman School of Medicine, Department of Pediatrics, PA, USA
| | - Tracey F Jubelirer
- Children's Hospital of Philadelphia, Division of Oncology and Center for Childhood Cancer Research, PA, USA.,University of Pennsylvania Perelman School of Medicine, Department of Pediatrics, PA, USA
| | - Gerald B Wertheim
- University of Pennsylvania Perelman School of Medicine, Department of Pathology and Laboratory, PA, USA
| | - Fumin Lin
- Children's Hospital of Philadelphia, Division of Genomic Diagnostics Medicine; Children's Hospital of Philadelphia, Division of Hematopathology PA, USA
| | - Fengqi Chang
- Children's Hospital of Philadelphia, Division of Genomic Diagnostics Medicine; Children's Hospital of Philadelphia, Division of Hematopathology PA, USA
| | - Zhaohui Gu
- St Jude Children's Research Hospital, Department of Pathology, Memphis, TN, USA
| | - Charles G Mullighan
- St Jude Children's Research Hospital, Department of Pathology, Memphis, TN, USA
| | - Yong Li
- Children's Hospital of Philadelphia, Division of Oncology and Center for Childhood Cancer Research, PA, USA
| | - Richard C Harvey
- University of New Mexico, Department of Pathology and Hematologic Malignancies Research Program, Albuquerque, NM, USA
| | - I-Ming Chen
- University of New Mexico, Department of Pathology and Hematologic Malignancies Research Program, Albuquerque, NM, USA
| | - Cheryl L Willman
- University of New Mexico, Department of Pathology and Hematologic Malignancies Research Program, Albuquerque, NM, USA
| | - Stephen P Hunger
- Children's Hospital of Philadelphia, Division of Oncology and Center for Childhood Cancer Research, PA, USA.,University of Pennsylvania Perelman School of Medicine, Department of Pediatrics, PA, USA
| | - Marilyn M Li
- Children's Hospital of Philadelphia, Division of Genomic Diagnostics Medicine; Children's Hospital of Philadelphia, Division of Hematopathology PA, USA
| | - Sarah K Tasian
- Children's Hospital of Philadelphia, Division of Oncology and Center for Childhood Cancer Research, PA, USA .,University of Pennsylvania Perelman School of Medicine, Department of Pediatrics, PA, USA
| |
Collapse
|
196
|
Zhang Y, Gao Y, Zhang H, Zhang J, He F, Hnízda A, Qian M, Liu X, Gocho Y, Pui CH, Cheng T, Wang Q, Yang JJ, Zhu X, Liu X. PDGFRB mutation and tyrosine kinase inhibitor resistance in Ph-like acute lymphoblastic leukemia. Blood 2018; 131:2256-2261. [PMID: 29434033 PMCID: PMC5958655 DOI: 10.1182/blood-2017-11-817510] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/02/2018] [Indexed: 12/21/2022] Open
Abstract
Philadelphia chromosome (Ph)-like acute lymphoblastic leukemia (ALL) comprises ∼10% to 15% of childhood ALL cases, many of which respond exquisitely to tyrosine kinase inhibitors (TKIs), for example, imatinib in PDGFRB-rearranged ALL. However, some cases developed drug resistance to TKIs and the mechanisms are poorly understood. In this study, we identified a novel PDGFRB fusion gene, namely AGGF1-PDGFRB, and functionally characterized its oncogenic potential in vitro. Further genomic profiling of longitudinally collected samples during treatment revealed the emergence of a mutation, PDGFRBC843G , which directly conferred resistance to all generations of ABL TKIs, including imatinib, dasatinib, nilotinib, and ponatinib. PDGFRB-mutant leukemia cells are highly sensitive to multitarget kinase inhibitor CHZ868, suggesting potential therapeutic options for some patients resistant to ABL TKIs. In summary, we describe a complex clonal evolution pattern in Ph-like ALL and identified a novel PDGFRB point mutation that drives leukemia relapse after ABL TKI treatment.
Collapse
Affiliation(s)
- Yingchi Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yufeng Gao
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Zhang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
- Department of Hematology and Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jingliao Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Fuhong He
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Aleš Hnízda
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic; and
| | - Maoxiang Qian
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | - Xiaoming Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yoshihiro Gocho
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Qianfei Wang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun J Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xin Liu
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
197
|
Adam de Beaumais T, Jacqz-Aigrain E. Pharmacogenetics: Applications to Pediatric Patients. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2018; 83:191-215. [PMID: 29801575 DOI: 10.1016/bs.apha.2018.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Individual genomic differences may affect drug disposition and effects of many drugs, and identification of biomarkers are crucial to personalize dosage and optimize response. In children, developmental changes associated with growth and maturation translate into different relationships between genotype and phenotype and different responses to treatment compared to adults. This review aims to summarize some developmental aspects of pharmacogenetics, based on practical examples.
Collapse
Affiliation(s)
- Tiphaine Adam de Beaumais
- Department of Paediatric Pharmacology and Pharmacogenetics, Robert Debré Hospital, APHP, Paris, France
| | - Evelyne Jacqz-Aigrain
- Department of Paediatric Pharmacology and Pharmacogenetics, Robert Debré Hospital, APHP, Paris, France; University Paris Diderot Sorbonne Paris Cité, Paris, France; Clinical Investigation Center CIC1426, INSERM, Paris, France.
| |
Collapse
|
198
|
International cooperative study identifies treatment strategy in childhood ambiguous lineage leukemia. Blood 2018; 132:264-276. [PMID: 29720486 DOI: 10.1182/blood-2017-12-821363] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/09/2018] [Indexed: 01/15/2023] Open
Abstract
Despite attempts to improve the definitions of ambiguous lineage leukemia (ALAL) during the last 2 decades, general therapy recommendations are missing. Herein, we report a large cohort of children with ALAL and propose a treatment strategy. A retrospective multinational study (International Berlin-Frankfurt-Münster Study of Leukemias of Ambiguous Lineage [iBFM-AMBI2012]) of 233 cases of pediatric ALAL patients is presented. Survival statistics were used to compare the prognosis of subsets and types of treatment. Five-year event-free survival (EFS) of patients with acute lymphoblastic leukemia (ALL)-type primary therapy (80% ± 4%) was superior to that of children who received acute myeloid leukemia (AML)-type or combined-type treatment (36% ± 7.2% and 50% ± 12%, respectively). When ALL- or AML-specific gene fusions were excluded, 5-year EFS of CD19+ leukemia was 83% ± 5.3% on ALL-type primary treatment compared with 0% ± 0% and 28% ± 14% on AML-type and combined-type primary treatment, respectively. Superiority of ALL-type treatment was documented in single-population mixed phenotype ALAL (using World Health Organization and/or European Group for Immunophenotyping of Leukemia definitions) and bilineal ALAL. Treatment with ALL-type protocols is recommended for the majority of pediatric patients with ALAL, including cases with CD19+ ALAL. AML-type treatment is preferred in a minority of ALAL cases with CD19- and no other lymphoid features. No overall benefit of transplantation was documented, and it could be introduced in some patients with a poor response to treatment. As no clear indicator was found for a change in treatment type, this is to be considered only in cases with ≥5% blasts after remission induction. The results provide a basis for a prospective trial.
Collapse
|
199
|
Simioni C, Martelli AM, Zauli G, Vitale M, McCubrey JA, Capitani S, Neri LM. Targeting the phosphatidylinositol 3-kinase/Akt/mechanistic target of rapamycin signaling pathway in B-lineage acute lymphoblastic leukemia: An update. J Cell Physiol 2018; 233:6440-6454. [PMID: 29667769 DOI: 10.1002/jcp.26539] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/12/2018] [Indexed: 12/26/2022]
Abstract
Despite considerable progress in treatment protocols, B-lineage acute lymphoblastic leukemia (B-ALL) displays a poor prognosis in about 15-20% of pediatric cases and about 60% of adult patients. In addition, life-long irreversible late effects from chemo- and radiation therapy, including secondary malignancies, are a growing problem for leukemia survivors. Targeted therapy holds promising perspectives for cancer treatment as it may be more effective and have fewer side effects than conventional therapies. The phosphatidylinositol 3-phosphate kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) signaling pathway is a key regulatory cascade which controls proliferation, survival and drug-resistance of cancer cells, and it is frequently upregulated in the different subtypes of B-ALL, where it plays important roles in the pathophysiology, maintenance and progression of the disease. Moreover, activation of this signaling cascade portends a poorer prognosis in both pediatric and adult B-ALL patients. Promising preclinical data on PI3K/Akt/mTOR inhibitors have documented their anticancer activity in B-ALL and some of these novel drugs have entered clinical trials as they could lead to a longer event-free survival and reduce therapy-associated toxicity for patients with B-ALL. This review highlights the current status of PI3K/Akt/mTOR inhibitors in B-ALL, with an emphasis on emerging evidence of the superior efficacy of synergistic combinations involving the use of traditional chemotherapeutics or other novel, targeted agents.
Collapse
Affiliation(s)
- Carolina Simioni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giorgio Zauli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Marco Vitale
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,CoreLab, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Silvano Capitani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
200
|
Montaño A, Forero-Castro M, Marchena-Mendoza D, Benito R, Hernández-Rivas JM. New Challenges in Targeting Signaling Pathways in Acute Lymphoblastic Leukemia by NGS Approaches: An Update. Cancers (Basel) 2018; 10:cancers10040110. [PMID: 29642462 PMCID: PMC5923365 DOI: 10.3390/cancers10040110] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 12/18/2022] Open
Abstract
The identification and study of genetic alterations involved in various signaling pathways associated with the pathogenesis of acute lymphoblastic leukemia (ALL) and the application of recent next-generation sequencing (NGS) in the identification of these lesions not only broaden our understanding of the involvement of various genetic alterations in the pathogenesis of the disease but also identify new therapeutic targets for future clinical trials. The present review describes the main deletions, amplifications, sequence mutations, epigenetic lesions, and new structural DNA rearrangements detected by NGS in B-ALL and T-ALL and their clinical importance for therapeutic procedures. We reviewed the molecular basis of pathways including transcriptional regulation, lymphoid differentiation and development, TP53 and the cell cycle, RAS signaling, JAK/STAT, NOTCH, PI3K/AKT/mTOR, Wnt/β-catenin signaling, chromatin structure modifiers, and epigenetic regulators. The implementation of NGS strategies has enabled important mutated genes in each pathway, their associations with the genetic subtypes of ALL, and their outcomes, which will be described further. We also discuss classic and new cryptic DNA rearrangements in ALL identified by mRNA-seq strategies. Novel cooperative abnormalities in ALL could be key prognostic and/or predictive biomarkers for selecting the best frontline treatment and for developing therapies after the first relapse or refractory disease.
Collapse
Affiliation(s)
- Adrián Montaño
- IBSAL, IBMCC, Universidad de Salamanca-CSIC, Cancer Research Center, 37007 Salamanca, Spain.
| | - Maribel Forero-Castro
- Escuela de Ciencias Biológicas, Grupo de investigación en Ciencias Biomédicas (GICBUPTC), Universidad Pedagógica y Tecnológica de Colombia, Tunja 150001, Colombia.
| | - Darnel Marchena-Mendoza
- IBSAL, IBMCC, Universidad de Salamanca-CSIC, Cancer Research Center, 37007 Salamanca, Spain.
- Escuela de Ciencias Biológicas, Grupo de investigación en Ciencias Biomédicas (GICBUPTC), Universidad Pedagógica y Tecnológica de Colombia, Tunja 150001, Colombia.
| | - Rocío Benito
- IBSAL, IBMCC, Universidad de Salamanca-CSIC, Cancer Research Center, 37007 Salamanca, Spain.
| | | |
Collapse
|