151
|
Subramaniam S, Ruf W, Bosmann M. Advocacy of targeting protease-activated receptors in severe coronavirus disease 2019. Br J Pharmacol 2021; 179:2086-2099. [PMID: 34235728 PMCID: PMC8794588 DOI: 10.1111/bph.15587] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 12/23/2022] Open
Abstract
Identifying drug targets mitigating vascular dysfunction, thrombo-inflammation and thromboembolic complications in COVID-19 is essential. COVID-19 coagulopathy differs from sepsis coagulopathy. Factors that drive severe lung pathology and coagulation abnormalities in COVID-19 are not understood. Protein-protein interaction studies indicate that the tagged viral bait protein ORF9c directly interacts with PAR2, which modulates host cell IFN and inflammatory cytokines. In addition to direct interaction of SARS-CoV-2 viral protein with PARs, we speculate that activation of PAR by proteases plays a role in COVID-19-induced hyperinflammation. In COVID-19-associated coagulopathy elevated levels of activated coagulation proteases may cleave PARs in association with TMPRSS2. PARs activation enhances the release of cytokines, chemokines and tissue factor expression to propagate IFN-dependent inflammation, leukocyte-endothelial interaction, vascular permeability and coagulation responses. This hypothesis, corroborated by in vitro findings and emerging clinical evidence, will focus targeted studies of PAR1/2 blockers as adjuvant drugs against cytokine release syndrome and COVID-19-associated coagulopathy.
Collapse
Affiliation(s)
- Saravanan Subramaniam
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.,Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
| | - Markus Bosmann
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.,Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
152
|
Moghimi M, Khodadadi K, Sarvandi M. Clinical patterns of endothelial damage and thrombotic events in two patients with COVID-19: A case report. Clin Case Rep 2021; 9:e04406. [PMID: 34257978 PMCID: PMC8259925 DOI: 10.1002/ccr3.4406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 11/19/2022] Open
Abstract
Endotheliopathy causes COVID-19 conflicting complications.
Collapse
Affiliation(s)
- Minoosh Moghimi
- Department of Internal MedicineZanjan University of Medical SciencesZanjanIran
| | - Kasra Khodadadi
- Department of Internal MedicineZanjan University of Medical SciencesZanjanIran
| | - Mehdi Sarvandi
- Department of Internal MedicineZanjan University of Medical SciencesZanjanIran
| |
Collapse
|
153
|
Krishnamachary B, Cook C, Kumar A, Spikes L, Chalise P, Dhillon NK. Extracellular vesicle-mediated endothelial apoptosis and EV-associated proteins correlate with COVID-19 disease severity. J Extracell Vesicles 2021; 10:e12117. [PMID: 34262673 PMCID: PMC8254805 DOI: 10.1002/jev2.12117] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Coronavirus disease-2019 (COVID-19), caused by the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has lead to a global pandemic with a rising toll in infections and deaths. Better understanding of its pathogenesis will greatly improve the outcomes and treatment of affected patients. Here we compared the inflammatory and cardiovascular disease-related protein cargo of circulating large and small extracellular vesicles (EVs) from 84 hospitalized patients infected with SARS-CoV-2 with different stages of disease severity. Our findings reveal significant enrichment of proinflammatory, procoagulation, immunoregulatory and tissue-remodelling protein signatures in EVs, which remarkably distinguished symptomatic COVID-19 patients from uninfected controls with matched comorbidities and delineated those with moderate disease from those who were critically ill. Specifically, EN-RAGE, followed by TF and IL-18R1, showed the strongest correlation with disease severity and length of hospitalization. Importantly, EVs from COVID-19 patients induced apoptosis of pulmonary microvascular endothelial cells in the order of disease severity. In conclusion, our findings support a role for EVs in the pathogenesis of COVID-19 disease and underpin the development of EV-based approaches to predicting disease severity, determining need for patient hospitalization and identifying new therapeutic targets.
Collapse
Affiliation(s)
- Balaji Krishnamachary
- Division of Pulmonary and Critical Care MedicineDepartment of Internal MedicineUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Christine Cook
- Division of Pulmonary and Critical Care MedicineDepartment of Internal MedicineUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Ashok Kumar
- Division of Pulmonary and Critical Care MedicineDepartment of Internal MedicineUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Leslie Spikes
- Division of Pulmonary and Critical Care MedicineDepartment of Internal MedicineUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Prabhakar Chalise
- Department of Biostatistics & Data ScienceUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Navneet K. Dhillon
- Division of Pulmonary and Critical Care MedicineDepartment of Internal MedicineUniversity of Kansas Medical CenterKansas CityKansasUSA
| |
Collapse
|
154
|
Smadja DM, Yue QY, Chocron R, Sanchez O, Lillo-Le Louet A. Vaccination against COVID-19: insight from arterial and venous thrombosis occurrence using data from VigiBase. Eur Respir J 2021; 58:13993003.00956-2021. [PMID: 33863748 PMCID: PMC8051185 DOI: 10.1183/13993003.00956-2021] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/13/2021] [Indexed: 12/16/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is associated with a prothrombotic phenotype characterised by coagulopathy and endothelial dysfunction [1–4]. Following some cases of thrombosis after vaccination, the Oxford–AstraZeneca COVID-19 vaccine (AZD1222) was temporarily suspended by some European countries. The European Medicines Agency concluded that the benefits of the vaccine in combating the COVID-19 outbreak continue to outweigh the risk of side-effects. On 19 March, 2021, Germany reported 13 cases of sinus or cerebral vein thrombosis, with more than 1.6 million AstraZeneca COVID-19 vaccine doses administered. Some of these patients also had a heparin-induced thrombocytopenia (HIT)-like syndrome, which suggests an immunological event as one of the potential origins of thrombosis. This study observed an imbalance between venous and arterial thrombotic events in mRNA vaccines while with AZ1222 they are evenly shared. Our analysis highlights cerebral vein thrombosis with the three vaccines.https://bit.ly/3mZqguE
Collapse
Affiliation(s)
- David M Smadja
- Université de Paris, Innovative Therapies in Hemostasis, INSERM, Paris, France .,Hematology Dept and Biosurgical Research Lab (Carpentier Foundation), Assistance Publique Hôpitaux de Paris-Centre (APHP-CUP), Paris, France.,F-CRIN INNOVTE Network, Saint Etienne, France
| | | | - Richard Chocron
- Emergency Dept, Université de Paris, PARCC, INSERM U970, AP-HP-Centre Université de Paris (APHP-CUP), Paris, France
| | - Olivier Sanchez
- Université de Paris, Innovative Therapies in Hemostasis, INSERM, Paris, France.,F-CRIN INNOVTE Network, Saint Etienne, France.,Respiratory Medicine Dept and Biosurgical Research Lab (Carpentier Foundation), Assistance Publique Hôpitaux de Paris-Centre (APHP-CUP), Paris, France
| | - Agnes Lillo-Le Louet
- Université de Paris, Innovative Therapies in Hemostasis, INSERM, Paris, France.,Pharmacovigilance Dept, Assistance Publique Hôpitaux de Paris-Centre (APHP-CUP), Paris, France
| |
Collapse
|
155
|
Laveneziana P, Straus C, Meiners S. How and to What Extent Immunological Responses to SARS-CoV-2 Shape Pulmonary Function in COVID-19 Patients. Front Physiol 2021; 12:628288. [PMID: 34267671 PMCID: PMC8276038 DOI: 10.3389/fphys.2021.628288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 05/31/2021] [Indexed: 12/25/2022] Open
Abstract
COVID-19 is a disease caused by a new coronavirus SARS-CoV-2, primarily impacting the respiratory system. COVID-19 can result in mild illness or serious disease leading to critical illness and requires admission to ICU due to respiratory failure. There is intense discussion around potential factors predisposing to and protecting from COVID-19. The immune response and the abnormal respiratory function with a focus on respiratory function testing in COVID-19 patients will be at the center of this Perspective article of the Frontiers in Physiology Series on “The Tribute of Physiology for the Understanding of COVID-19 Disease.” We will discuss current advances and provide future directions and present also our perspective in this field.
Collapse
Affiliation(s)
- Pierantonio Laveneziana
- Assistance Publique - Hôpitaux de Paris (AP-HP), Groupe Hospitalier Universitaire APHP-Sorbonne Université, Sites Pitié-Salpêtrière, Saint-Antoine et Tenon, Service des Explorations Fonctionnelles de la Respiration, de l'Exercice et de la Dyspnée (Département R3S), Paris, France.,Sorbonne Université, INSERM, UMRS 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Christian Straus
- Assistance Publique - Hôpitaux de Paris (AP-HP), Groupe Hospitalier Universitaire APHP-Sorbonne Université, Sites Pitié-Salpêtrière, Saint-Antoine et Tenon, Service des Explorations Fonctionnelles de la Respiration, de l'Exercice et de la Dyspnée (Département R3S), Paris, France.,Sorbonne Université, INSERM, UMRS 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Silke Meiners
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
156
|
Boudhabhay I, Rabant M, Roumenina LT, Coupry LM, Poillerat V, Marchal A, Frémeaux-Bacchi V, El Karoui K, Monchi M, Pourcine F. Case Report: Adult Post-COVID-19 Multisystem Inflammatory Syndrome and Thrombotic Microangiopathy. Front Immunol 2021; 12:680567. [PMID: 34248962 PMCID: PMC8260674 DOI: 10.3389/fimmu.2021.680567] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/27/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) pandemic has affected millions of people worldwide. A clinical series of Kawasaki-like multisystem inflammatory syndrome (MIS), occurring after SARS-CoV-2 infection, have been described in children (MIS-C) and adults (MIS-A), but the pathophysiology remains unknown. CASE PRESENTATION We describe a case of post-COVID-19 MIS-A in a 46-year-old man with biopsy-proven renal thrombotic microangiopathy (TMA). Specific complement inhibition with eculizumab was initiated promptly and led to a dramatic improvement of renal function. CONCLUSION Our case suggests that that TMA could play a central role in the pathophysiology of post-COVID-19 MIS-A, making complement blockers an interesting therapeutic option.
Collapse
Affiliation(s)
- Idris Boudhabhay
- Groupe Hospitalier Sud Ile de France, Service de Réanimation, Melun, France
- Centre Hospitalo-Universitaire Necker, Service d’Anatomie Pathologique, Paris, France
| | - Marion Rabant
- Centre Hospitalo-Universitaire Necker, Service d’Anatomie Pathologique, Paris, France
| | - Lubka T. Roumenina
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Louis-Marie Coupry
- Groupe Hospitalier Sud Ile de France, Service de Réanimation, Melun, France
| | - Victoria Poillerat
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Armance Marchal
- Hôpital Européen Georges Pompidou, Laboratoire d’Immunologie Biologique, Paris, France
| | | | - Khalil El Karoui
- Centre Hospitalo-Universitaire Henri Mondor, Service de Néphrologie et Transplantation, Créteil, France
| | - Mehran Monchi
- Groupe Hospitalier Sud Ile de France, Service de Réanimation, Melun, France
| | - Franck Pourcine
- Groupe Hospitalier Sud Ile de France, Service de Réanimation, Melun, France
- Groupe Hospitalier Sud Ile de France, Service de Néphrologie, Melun, France
| |
Collapse
|
157
|
Matli K, Farah R, Maalouf M, Chamoun N, Costanian C, Ghanem G. Role of combining anticoagulant and antiplatelet agents in COVID-19 treatment: a rapid review. Open Heart 2021; 8:openhrt-2021-001628. [PMID: 34099529 PMCID: PMC8186323 DOI: 10.1136/openhrt-2021-001628] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
Although primarily affecting the respiratory system, COVID-19 causes multiple organ damage. One of its grave consequences is a prothrombotic state that manifests as thrombotic, microthrombotic and thromboembolic events. Therefore, understanding the effect of antiplatelet and anticoagulation therapy in the context of COVID-19 treatment is important. The aim of this rapid review was to highlight the role of thrombosis in COVID-19 and to provide new insights on the use of antithrombotic therapy in its management. A rapid systematic review was performed using preferred reporting items for systematic reviews. Papers published in English on antithrombotic agent use and COVID-19 complications were eligible. Results showed that the use of anticoagulants increased survival and reduced thromboembolic events in patients. However, despite the use of anticoagulants, patients still suffered thrombotic events likely due to heparin resistance. Data on antiplatelet use in combination with anticoagulants in the setting of COVID-19 are quite scarce. Current side effects of anticoagulation therapy emphasise the need to update treatment guidelines. In this rapid review, we address a possible modulatory role of antiplatelet and anticoagulant combination against COVID-19 pathogenesis. This combination may be an effective form of adjuvant therapy against COVID-19 infection. However, further studies are needed to elucidate potential risks and benefits associated with this combination.
Collapse
Affiliation(s)
- Kamal Matli
- Lebanese American University Medical Center, Rizk Hospital, Beirut, Lebanon
| | - Raymond Farah
- Department of Sciences, Lebanese University, Beirut, Lebanon
| | - Mario Maalouf
- School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Nibal Chamoun
- School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Christy Costanian
- School of Medicine, Lebanese American University, Byblos, Lebanon .,Lebanese American University, Beirut, Lebanon
| | - Georges Ghanem
- Lebanese American University Medical Center, Rizk Hospital, Beirut, Lebanon
| |
Collapse
|
158
|
Karuppan MKM, Devadoss D, Nair M, Chand HS, Lakshmana MK. SARS-CoV-2 Infection in the Central and Peripheral Nervous System-Associated Morbidities and Their Potential Mechanism. Mol Neurobiol 2021; 58:2465-2480. [PMID: 33439437 PMCID: PMC7805264 DOI: 10.1007/s12035-020-02245-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022]
Abstract
The recent outbreak of SARS-CoV-2 infections that causes coronavirus-induced disease of 2019 (COVID-19) is the defining and unprecedented global health crisis of our time in both the scale and magnitude. Although the respiratory tract is the primary target of SARS-CoV-2, accumulating evidence suggests that the virus may also invade both the central nervous system (CNS) and the peripheral nervous system (PNS) leading to numerous neurological issues including some serious complications such as seizures, encephalitis, and loss of consciousness. Here, we present a comprehensive review of the currently known role of SARS-CoV-2 and identify all the neurological problems reported among the COVID-19 case reports throughout the world. The virus might gain entry into the CNS either through the trans-synaptic route via the olfactory neurons or through the damaged endothelium in the brain microvasculature using the ACE2 receptor potentiated by neuropilin-1 (NRP-1). The most critical of all symptoms appear to be the spontaneous loss of breathing in some COVID-19 patients. This might be indicative of a dysfunction within the cardiopulmonary regulatory centers in the brainstem. These pioneering studies, thus, lay a strong foundation for more in-depth basic and clinical research required to confirm the role of SARS-CoV-2 infection in neurodegeneration of critical brain regulatory centers.
Collapse
Affiliation(s)
- Mohan Kumar Muthu Karuppan
- Department of Immunology and Nano-Medicine, Alzheimer's Disease Research Unit, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Dinesh Devadoss
- Department of Immunology and Nano-Medicine, Alzheimer's Disease Research Unit, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Madhavan Nair
- Department of Immunology and Nano-Medicine, Alzheimer's Disease Research Unit, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Hitendra S Chand
- Department of Immunology and Nano-Medicine, Alzheimer's Disease Research Unit, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Madepalli K Lakshmana
- Department of Immunology and Nano-Medicine, Alzheimer's Disease Research Unit, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA.
| |
Collapse
|
159
|
Dimbath E, Maddipati V, Stahl J, Sewell K, Domire Z, George S, Vahdati A. Implications of microscale lung damage for COVID-19 pulmonary ventilation dynamics: A narrative review. Life Sci 2021; 274:119341. [PMID: 33716059 PMCID: PMC7946865 DOI: 10.1016/j.lfs.2021.119341] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/23/2021] [Accepted: 02/27/2021] [Indexed: 02/07/2023]
Abstract
The COVID-19 pandemic surges on as vast research is produced to study the novel SARS-CoV-2 virus and the disease state it induces. Still, little is known about the impact of COVID-19-induced microscale damage in the lung on global lung dynamics. This review summarizes the key histological features of SARS-CoV-2 infected alveoli and links the findings to structural tissue changes and surfactant dysfunction affecting tissue mechanical behavior similar to changes seen in other lung injury. Along with typical findings of diffuse alveolar damage affecting the interstitium of the alveolar walls and blood-gas barrier in the alveolar airspace, COVID-19 can cause extensive microangiopathy in alveolar capillaries that further contribute to mechanical changes in the tissues and may differentiate it from previously studied infectious lung injury. Understanding microlevel damage impact on tissue mechanics allows for better understanding of macroscale respiratory dynamics. Knowledge gained from studies into the relationship between microscale and macroscale lung mechanics can allow for optimized treatments to improve patient outcomes in case of COVID-19 and future respiratory-spread pandemics.
Collapse
Affiliation(s)
- Elizabeth Dimbath
- Department of Engineering, College of Engineering and Technology, East Carolina University, Greenville, NC, USA
| | | | - Jennifer Stahl
- Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Kerry Sewell
- Laupus Library, East Carolina University, Greenville, NC, USA
| | - Zachary Domire
- Department of Kinesiology, East Carolina University, Greenville, NC, USA
| | - Stephanie George
- Department of Engineering, College of Engineering and Technology, East Carolina University, Greenville, NC, USA
| | - Ali Vahdati
- Department of Engineering, College of Engineering and Technology, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
160
|
Shahidi Dadras M, Rakhshan A, Diab R, Abdollahimajd F. SARS-CoV-2 infection as a potential triggering factor for urticarial vasculitis during pregnancy: A case report. Clin Case Rep 2021; 9:e04323. [PMID: 34194805 PMCID: PMC8223884 DOI: 10.1002/ccr3.4323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/25/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022] Open
Abstract
During the COVID-19 pandemic, physicians must maintain a high index of suspicion for COVID-19 in cases of urticarial vasculitis or other forms of urticaria. This is particularly important for acute presentations in otherwise asymptomatic individuals and pregnant women, where a prompt approach to the patient can prevent undesirable complications.
Collapse
Affiliation(s)
- Mohammad Shahidi Dadras
- Skin Research CenterShahid Beheshti University of Medical SciencesTehranIran
- Clinical Research Development UnitShohada‐e Tajrish HospitalShahid Beheshti University of Medical SciencesTehranIran
| | - Azadeh Rakhshan
- Clinical Research Development UnitShohada‐e Tajrish HospitalShahid Beheshti University of Medical SciencesTehranIran
- Department of PathologyShohada‐e Tajrish HospitalSchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Reem Diab
- Skin Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Fahimeh Abdollahimajd
- Skin Research CenterShahid Beheshti University of Medical SciencesTehranIran
- Clinical Research Development UnitShohada‐e Tajrish HospitalShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
161
|
Lallana S, Chen A, Requena M, Rubiera M, Sanchez A, Siegler JE, Muchada M. Posterior reversible encephalopathy syndrome (PRES) associated with COVID-19. J Clin Neurosci 2021; 88:108-112. [PMID: 33992168 PMCID: PMC7985961 DOI: 10.1016/j.jocn.2021.03.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/04/2021] [Accepted: 03/17/2021] [Indexed: 12/17/2022]
Abstract
The novel human coronavirus disease (COVID-19) has been associated with vascular and thrombotic complications, some of which may result from endothelial dysfunction, including the posterior reversible encephalopathy syndrome (PRES). We report a case series of 8 patients with COVID-19 and PRES diagnosed at two academic medical centers between March and July of 2020. The clinical, laboratory and radiographic data, treatment, and short-term outcomes were retrospectively analyzed. The mean age was 57.9 ± 12 years, and 50% were women. Four patients had previous vascular comorbidities. All the patients suffered from severe pneumonia, requiring intensive care unit admission. Five patients were not hypertensive at presentation (all SBP < 127 mmHg). Neurologic symptoms included seizures in 7 patients; impaired consciousness in 5 patients; focal neurological signs in 3 patients; and visual disturbances in 1 patient. All patients underwent brain magnetic resonance imaging which indicated asymmetric T2 prolongation or diffusion changes (50%), extensive fronto-parieto-occipital involvement (25%), vascular irregularities (12.5%) and intracranial hemorrhage (25%). Four patients were treated with tocilizumab. Three patients were discharged without neurologic disability, 2 patients had persistent focal neurologic deficits and 2 expired. One patient's prognosis remains guarded. Together, these data support the relationship between PRES and endothelial dysfunction associated with severe COVID-19. In patients with severe COVID-19, PRES can be triggered by uncontrolled hypertension, or occur independently in the setting of systemic illness and certain medications. Like other infectious processes, critically ill patients with COVID-19 may be at greater risk of PRES because of impaired vasoreactivity or the use of novel agents like Tocilizumab.
Collapse
Affiliation(s)
- Sofía Lallana
- Neurology Department, Vall d'Hebron Universitary Hospital, Barcelona, Spain
| | - Austin Chen
- Cooper Medical School of Rowan University, Camden, USA
| | - Manuel Requena
- Neurology Department, Vall d'Hebron Universitary Hospital, Barcelona, Spain
| | - Marta Rubiera
- Neurology Department, Vall d'Hebron Universitary Hospital, Barcelona, Spain
| | - Anna Sanchez
- Critical Care Department, Vall d'Hebron Universitary Hospital, Barcelona, Spain
| | - James E Siegler
- Cooper Neurologic Institute, Cooper University Hospital, Camden, USA; Cooper Medical School of Rowan University, Camden, USA.
| | - Marián Muchada
- Neurology Department, Vall d'Hebron Universitary Hospital, Barcelona, Spain
| |
Collapse
|
162
|
Gouda AS, Adbelruhman FG, Elbendary RN, Alharbi FA, Alhamrani SQ, Mégarbane B. A comprehensive insight into the role of zinc deficiency in the renin-angiotensin and kinin-kallikrein system dysfunctions in COVID-19 patients. Saudi J Biol Sci 2021; 28:3540-3547. [PMID: 33746538 PMCID: PMC7962980 DOI: 10.1016/j.sjbs.2021.03.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Hypozincemia is prevalent in severe acute respiratory syndrome coronavirus-2 (SARS-COV-2)-infected patients and has been considered as a risk factor in severe coronavirus disease-2019 (COVID-19). Whereas zinc might affect SARS-COV-2 replication and cell entry, the link between zinc deficiency and COVID-19 severity could also be attributed to the effects of COVID-19 on the body metabolism and immune response. Zinc deficiency is more prevalent in the elderly and patients with underlying chronic diseases, with established deleterious consequences such as the increased risk of respiratory infection. We reviewed the expected effects of zinc deficiency on COVID-19-related pathophysiological mechanisms focusing on both the renin-angiotensin and kinin-kallikrein systems. Mechanisms and effects were extrapolated from the available scientific literature. Zinc deficiency alters angiotensin-converting enzyme-2 (ACE2) function, leading to the accumulation of angiotensin II, des-Arg9-bradykinin and Lys-des-Arg9-bradykinin, which results in an exaggerated pro-inflammatory response, vasoconstriction and pro-thrombotic effects. Additionally, zinc deficiency blocks the activation of the plasma contact system, a protease cascade initiated by factor VII activation. Suggested mechanisms include the inhibition of Factor XII activation and limitation of high-molecular-weight kininogen, prekallikrein and Factor XII to bind to endothelial cells. The subsequent accumulation of Factor XII and deficiency in bradykinin are responsible for increased production of inflammatory mediators and marked hypercoagulability, as typically observed in COVID-19 patients. To conclude, zinc deficiency may affect both the renin-angiotensin and kinin-kallikrein systems, leading to the exaggerated inflammatory manifestations characteristic of severe COVID-19.
Collapse
Affiliation(s)
- Ahmed S. Gouda
- National Egyptian Center for Toxicological Researches, Faculty of Medicine, Cairo University, Cairo, Egypt
- Poison Control and Forensic Chemistry Center, Northern Borders, Ministry of Health, Saudi Arabia
| | - Fatima G. Adbelruhman
- Department of Clinical Pathology, Alzahraa Hospital, Al-Azhar University, Cairo, Egypt
| | - Reham N. Elbendary
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Fadiyah Ahmed Alharbi
- Tabuk Poison Control and Forensic Medicinal Chemistry Center, Ministry of health, Saudi Arabia
| | - Sultan Qalit Alhamrani
- Tabuk Poison Control and Forensic Medicinal Chemistry Center, Ministry of health, Saudi Arabia
| | - Bruno Mégarbane
- Department of Medical and Toxicological Critical Care, Lariboisière Hospital, University of Paris, INSERM UMRS-1144, Paris, France
| |
Collapse
|
163
|
Varghese E, Samuel SM, Liskova A, Kubatka P, Büsselberg D. Diabetes and coronavirus (SARS-CoV-2): Molecular mechanism of Metformin intervention and the scientific basis of drug repurposing. PLoS Pathog 2021; 17:e1009634. [PMID: 34157054 PMCID: PMC8219155 DOI: 10.1371/journal.ppat.1009634] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Coronavirus Disease 2019 (COVID-19), caused by a new strain of coronavirus called Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), was declared a pandemic by WHO on March 11, 2020. Soon after its emergence in late December 2019, it was noticed that diabetic individuals were at an increased risk of COVID-19-associated complications, ICU admissions, and mortality. Maintaining proper blood glucose levels using insulin and/or other oral antidiabetic drugs (such as Metformin) reduced the detrimental effects of COVID-19. Interestingly, in diabetic COVID-19 patients, while insulin administration was associated with adverse outcomes, Metformin treatment was correlated with a significant reduction in disease severity and mortality rates among affected individuals. Metformin was extensively studied for its antioxidant, anti-inflammatory, immunomodulatory, and antiviral capabilities that would explain its ability to confer cardiopulmonary and vascular protection in COVID-19. Here, we describe the various possible molecular mechanisms that contribute to Metformin therapy's beneficial effects and lay out the scientific basis of repurposing Metformin for use in COVID-19 patients.
Collapse
Affiliation(s)
- Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| |
Collapse
|
164
|
Steffes LC, Cornfield DN. Coronavirus disease 2019 respiratory disease in children: clinical presentation and pathophysiology. Curr Opin Pediatr 2021; 33:302-310. [PMID: 33938476 DOI: 10.1097/mop.0000000000001013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Pediatric coronavirus disease 2019 (COVID-19) respiratory disease is a distinct entity from adult illness, most notable in its milder phenotype. This review summarizes the current knowledge of the clinical patterns, cellular pathophysiology, and epidemiology of COVID-19 respiratory disease in children with specific attention toward factors that account for the maturation-related differences in disease severity. RECENT FINDINGS Over the past 14 months, knowledge of the clinical presentation and pathophysiology of COVID-19 pneumonia has rapidly expanded. The decreased disease severity of COVID-19 pneumonia in children was an early observation. Differences in the efficiency of viral cell entry and timing of immune recognition and response between children and adults remain at the center of ongoing research. SUMMARY The clinical spectrum of COVID-19 respiratory disease in children is well defined. The age-related differences protecting children from severe disease and death remain incompletely understood.
Collapse
Affiliation(s)
- Lea C Steffes
- Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University Medical School, Stanford, California, USA
| | | |
Collapse
|
165
|
François S, Helissey C, Cavallero S, Drouet M, Libert N, Cosset JM, Deutsch E, Meziani L, Chargari C. COVID-19-Associated Pneumonia: Radiobiological Insights. Front Pharmacol 2021; 12:640040. [PMID: 34113249 PMCID: PMC8185272 DOI: 10.3389/fphar.2021.640040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/04/2021] [Indexed: 12/15/2022] Open
Abstract
The evolution of SARS-CoV-2 pneumonia to acute respiratory distress syndrome is linked to a virus-induced “cytokine storm”, associated with systemic inflammation, coagulopathies, endothelial damage, thrombo-inflammation, immune system deregulation and disruption of angiotensin converting enzyme signaling pathways. To date, the most promising therapeutic approaches in COVID-19 pandemic are linked to the development of vaccines. However, the fight against COVID-19 pandemic in the short and mid-term cannot only rely on vaccines strategies, in particular given the growing proportion of more contagious and more lethal variants among exposed population (the English, South African and Brazilian variants). As long as collective immunity is still not acquired, some patients will have severe forms of the disease. Therapeutic perspectives also rely on the implementation of strategies for the prevention of secondary complications resulting from vascular endothelial damage and from immune system deregulation, which contributes to acute respiratory distress and potentially to long term irreversible tissue damage. While the anti-inflammatory effects of low dose irradiation have been exploited for a long time in the clinics, few recent physiopathological and experimental data suggested the possibility to modulate the inflammatory storm related to COVID-19 pulmonary infection by exposing patients to ionizing radiation at very low doses. Despite level of evidence is only preliminary, these preclinical findings open therapeutic perspectives and are discussed in this article.
Collapse
Affiliation(s)
- Sabine François
- Department of Radiation Biological Effects, French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
| | | | - Sophie Cavallero
- Department of Radiation Biological Effects, French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
| | - Michel Drouet
- Department of Radiation Biological Effects, French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
| | | | - Jean-Marc Cosset
- Centre de Radiothérapie Charlebourg/La Défense, Groupe Amethyst, La Garenne-Colombes, France
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy Comprehensive Cancer Center, Villejuif, France.,INSERM U1030, Université Paris Saclay, Le Kremlin Bicêtre, France
| | - Lydia Meziani
- Department of Radiation Oncology, Gustave Roussy Comprehensive Cancer Center, Villejuif, France.,INSERM U1030, Université Paris Saclay, Le Kremlin Bicêtre, France
| | - Cyrus Chargari
- Department of Radiation Biological Effects, French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France.,Department of Radiation Oncology, Gustave Roussy Comprehensive Cancer Center, Villejuif, France.,INSERM U1030, Université Paris Saclay, Le Kremlin Bicêtre, France
| |
Collapse
|
166
|
Norooznezhad AH, Mansouri K. Endothelial cell dysfunction, coagulation, and angiogenesis in coronavirus disease 2019 (COVID-19). Microvasc Res 2021; 137:104188. [PMID: 34022205 PMCID: PMC8135191 DOI: 10.1016/j.mvr.2021.104188] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/08/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022]
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been led to a pandemic emergency. So far, different pathological pathways for SARS-CoV-2 infection have been introduced in which the excess release of pro-inflammatory cytokines (such as interleukin 1 β [IL-1β], IL-6, and tumor necrosis factor α [TNFα]) has earned most of the attentions. However, recent studies have identified new pathways with at least the same level of importance as cytokine storm in which endothelial cell (EC) dysfunction is one of them. In COVID-19, two main pathologic phenomena have been seen as a result of EC dysfunction: hyper-coagulation state and pathologic angiogenesis. The EC dysfunction-induced hypercoagulation state seems to be caused by alteration in the levels of different factors such as plasminogen activator inhibitor 1 (PAI-1), von Willebrand factor (vWF) antigen, soluble thrombomodulin, and tissue factor pathway inhibitor (TFPI). As data have shown, these thromboembolic events are associated with severity of disease severity or even death in COVID-19 patients. Other than thromboembolic events, pathologic angiogenesis is among the recent findings. Furthermore, over-expression/higher levels of different proangiogenic factors such as vascular endothelial growth factor (VEGF), hypoxia-inducible factor 1 α (HIF-1α), IL-6, TNF receptor super family 1A and 12, and angiotensin-converting enzyme 2 (ACE2) have been found in the lung biopsies/sera of both survived and non-survived COVID-19 patients. Also, there are some hypotheses regarding the role of nitric oxide in EC dysfunction and acute respiratory distress syndrome (ARDS) in SARS-CoV-2 infection. It has been demonstrated that different pathways involved in inflammation are generally common with EC dysfunction and angiogenesis. Altogether, considering the common possible upstream pathways in cytokine storm, pathologic angiogenesis, and EC dysfunction, it seems that targeting these molecules (such as nuclear factor κB) could be more effective in the management of patients with COVID-19.
Collapse
Affiliation(s)
- Amir Hossein Norooznezhad
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Kamran Mansouri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
167
|
Garg RK, Paliwal VK, Malhotra HS, Sharma PK. Neuroimaging Patterns in Patients with COVID-19-Associated Neurological Complications: A Review. Neurol India 2021; 69:260-271. [PMID: 33904434 DOI: 10.4103/0028-3886.314531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background A variety of neuroimaging abnormalities in COVID-19 have been described. Objectives In this article, we reviewed the varied neuroimaging patterns in patients with COVID-19-associated neurological complications. Methods We searched PubMed, Google Scholar, Scopus and preprint databases (medRxiv and bioRxiv). The search terms we used were "COVID -19 and encephalitis, encephalopathy, neuroimaging or neuroradiology" and "SARS-CoV-2 and encephalitis, encephalopathy, neuroimaging or neuroradiology". Results Neuroimaging abnormalities are common in old age and patients with comorbidities. Neuroimaging abnormalities are largely vascular in origin. COVID-19-associated coagulopathy results in large vessel occlusion and cerebral venous thrombosis. COVID-19-associated intracerebral hemorrhage resembles anticoagulant associated intracerebral hemorrhage. On neuroimaging, hypoxic-ischemic damage along with hyperimmune reaction against the SARS-COV-2 virus manifests as small vessel disease. Small vessel disease appears as diffuse leukoencephalopathy and widespread microbleeds, and subcortical white matter hyperintensities. Occasionally, gray matter hyperintensity, similar to those observed seen in autoimmune encephalitis, has been noted. In many cases, white matter lesions similar to that in acute disseminated encephalomyelitis have been described. Acute disseminated encephalomyelitis in COVID-19 seems to be a parainfectious event and autoimmune in origin. Many cases of acute necrotizing encephalitis resulting in extensive damage to thalamus and brain stem have been described; cytokine storm has been considered a pathogenic mechanism behind this. None of the neuroimaging abnormalities can provide a clue to the possible pathogenic mechanism. Conclusions Periventricular white-matter MR hyperintensity, microbleeds, arterial and venous infarcts, and hemorrhages are apparently distinctive neuroimaging abnormalities in patients with COVID-19.
Collapse
Affiliation(s)
- Ravindra K Garg
- Department of Neurology, King George Medical University, Lucknow, Uttar Pradesh, India
| | - Vimal K Paliwal
- Department of Neurology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Rae Bareli Road, Lucknow, Uttar Pradesh, India
| | - Hardeep S Malhotra
- Department of Neurology, King George Medical University, Lucknow, Uttar Pradesh, India
| | - Praveen K Sharma
- Department of Neurology, King George Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
168
|
Deng H, Tang TX, Chen D, Tang LS, Yang XP, Tang ZH. Endothelial Dysfunction and SARS-CoV-2 Infection: Association and Therapeutic Strategies. PATHOGENS (BASEL, SWITZERLAND) 2021; 10:pathogens10050582. [PMID: 34064553 PMCID: PMC8151812 DOI: 10.3390/pathogens10050582] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 02/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), has been recently considered a systemic disorder leading to the procoagulant state. Preliminary studies have shown that SARS-CoV-2 can infect endothelial cells, and extensive evidence of inflammation and endothelial dysfunction has been found in advanced COVID-19. Endothelial cells play a critical role in many physiological processes, such as controlling blood fluidity, leukocyte activation, adhesion, platelet adhesion and aggregation, and transmigration. Therefore, it is reasonable to think that endothelial dysfunction leads to vascular dysfunction, immune thrombosis, and inflammation associated with COVID-19. This article summarizes the association of endothelial dysfunction and SARS-CoV-2 infection and its therapeutic strategies.
Collapse
Affiliation(s)
- Hai Deng
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (H.D.); (D.C.); (L.-S.T.)
| | - Ting-Xuan Tang
- Class 1901, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China;
| | - Deng Chen
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (H.D.); (D.C.); (L.-S.T.)
| | - Liang-Sheng Tang
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (H.D.); (D.C.); (L.-S.T.)
| | - Xiang-Ping Yang
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Zhao-Hui Tang
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (H.D.); (D.C.); (L.-S.T.)
- Correspondence:
| |
Collapse
|
169
|
Daisley H, Rampersad A, Daisley M, Ramdin A, Acco O, Narinesingh F, Humphrey O. COVID-19: a closer look at the pathology in two autopsied cases. Is the pericyte at the center of the pathological process in COVID-19? AUTOPSY AND CASE REPORTS 2021; 11:e2021262. [PMID: 34307223 PMCID: PMC8214877 DOI: 10.4322/acr.2021.262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
We performed autopsies on two cases of COVID-19. The microcirculations of all organs were the site of the pathological findings. Thrombotic microangiopathy was found in the brain and also the kidneys. Vasculitis was also a feature of the autopsy findings, together with portal triaditis of the liver. The major pathological findings in both cases were fibrin deposits. Within the lung, the fibrin deposits were observed in the alveolar microcirculation in sub-endothelial locations of capillaries, arterioles, post capillary venules, and the adventitia of larger vessels. These fibrin deposits in the lungs occurred at the sites where pericytes are located in these vessels. The pericyte with its high concentration of ACE-2 receptors and its procoagulant state may represent one of the primary sites of action of SARS-CoV-2. A review of pericytes in health and disease is undertaken. COVID-19 is a disease of the microcirculation.
Collapse
Affiliation(s)
- Hubert Daisley
- General Hospital San Fernando, Department of Pathology, Trinidad, West Indies
| | - Arlene Rampersad
- General Hospital San Fernando, Department of Pathology, Trinidad, West Indies
| | - Martina Daisley
- Scarborough General Hospital, Department of Accident and Emergency, Tobago, West Indies
| | - Amit Ramdin
- General Hospital San Fernando, Department of Pathology, Trinidad, West Indies
| | - Oneka Acco
- General Hospital San Fernando, Department of Pathology, Trinidad, West Indies
| | | | - Ornella Humphrey
- University of the West Indies, St. Augustine, Trinidad, West Indies
| |
Collapse
|
170
|
Shahani P, Datta I. Mesenchymal stromal cell therapy for coronavirus disease 2019: which? when? and how much? Cytotherapy 2021; 23:861-873. [PMID: 34053857 PMCID: PMC8084615 DOI: 10.1016/j.jcyt.2021.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/27/2021] [Accepted: 04/10/2021] [Indexed: 12/27/2022]
Abstract
Mesenchymal stromal cells (MSCs) are under active consideration as a treatment strategy for controlling the hyper-inflammation and slow disease progression associated with coronavirus disease 2019 (COVID-19). The possible mechanism of protection through their immunoregulatory and paracrine action has been reviewed extensively. However, the importance of process control in achieving consistent cell quality, maximum safety and efficacy—for which the three key questions are which, when and how much—remains unaddressed. Any commonality, if it exists, in ongoing clinical trials has yet to be analyzed and reviewed. In this review, the authors have therefore compiled study design data from ongoing clinical trials to address the key questions of “which” with regard to tissue source, donor profile, isolation technique, culture conditions, long-term culture and cryopreservation of MSCs; “when” with regard to defining the transplantation window by identifying and staging patients based on their pro-inflammatory profile; and “how much” with regard to the number of cells in a single administration, number of doses and route of transplantation. To homogenize MSC therapy for COVID-19 on a global scale and to make it readily available in large numbers, a shared understanding and uniform agreement with respect to these fundamental issues are essential.
Collapse
Affiliation(s)
- Pradnya Shahani
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Indrani Datta
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bengaluru, India.
| |
Collapse
|
171
|
Deinhardt-Emmer S, Böttcher S, Häring C, Giebeler L, Henke A, Zell R, Jungwirth J, Jordan PM, Werz O, Hornung F, Brandt C, Marquet M, Mosig AS, Pletz MW, Schacke M, Rödel J, Heller R, Nietzsche S, Löffler B, Ehrhardt C. SARS-CoV-2 causes severe epithelial inflammation and barrier dysfunction. J Virol 2021; 95:JVI.00110-21. [PMID: 33637603 PMCID: PMC8139673 DOI: 10.1128/jvi.00110-21] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/18/2021] [Indexed: 12/16/2022] Open
Abstract
Infections with SARS-CoV-2 can be asymptomatic, but they can also be accompanied by a variety of symptoms that result in mild to severe coronavirus disease-19 (COVID-19) and are sometimes associated with systemic symptoms. Although the viral infection originates in the respiratory system, it is unclear how the virus can overcome the alveolar barrier, which is observed in severe COVID-19 disease courses. To elucidate the viral effects on the barrier integrity and immune reactions, we used mono-cell culture systems and a complex human chip model composed of epithelial, endothelial, and mononuclear cells. Our data show that SARS-CoV-2 efficiently infected epithelial cells with high viral loads and inflammatory response, including interferon expression. By contrast, the adjacent endothelial layer was neither infected nor did it show productive virus replication or interferon release. With prolonged infection, both cell types were damaged, and the barrier function was deteriorated, allowing the viral particles to overbear. In our study, we demonstrate that although SARS-CoV-2 is dependent on the epithelium for efficient replication, the neighboring endothelial cells are affected, e.g., by the epithelial cytokines or components induced during infection, which further results in the damage of the epithelial/endothelial barrier function and viral dissemination.IMPORTANCESARS-CoV-2 challenges healthcare systems and societies worldwide in unprecedented ways. Although numerous new studies have been conducted, research to better understand the molecular pathogen-host interactions are urgently needed. For this, experimental models have to be developed and adapted. In the present study we used mono cell-culture systems and we established a complex chip model, where epithelial and endothelial cells are cultured in close proximity. We demonstrate that epithelial cells can be infected with SARS-CoV-2, while the endothelium did not show any infection signs. Since SARS-CoV-2 is able to establish viremia, the link to thromboembolic events in severe COVID-19 courses is evident. However, whether the endothelial layer is damaged by the viral pathogens or whether other endothelial-independent homeostatic factors are induced by the virus is essential for understanding the disease development. Therefore, our study is important as it demonstrates that the endothelial layer could not be infected by SARS-CoV-2 in our in vitro experiments, but we were able to show the destruction of the epithelial-endothelial barrier in our chip model. From our experiments we can assume that virus-induced host factors disturbed the epithelial-endothelial barrier function and thereby promote viral spread.
Collapse
Affiliation(s)
- Stefanie Deinhardt-Emmer
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany
| | - Sarah Böttcher
- Section of Experimental Virology, Institute of Medical Microbiology, Jena University Hospital, Hans-Knoell-Str. 2, D-07745, Jena, Germany
| | - Clio Häring
- Section of Experimental Virology, Institute of Medical Microbiology, Jena University Hospital, Hans-Knoell-Str. 2, D-07745, Jena, Germany
| | - Liane Giebeler
- Section of Experimental Virology, Institute of Medical Microbiology, Jena University Hospital, Hans-Knoell-Str. 2, D-07745, Jena, Germany
| | - Andreas Henke
- Section of Experimental Virology, Institute of Medical Microbiology, Jena University Hospital, Hans-Knoell-Str. 2, D-07745, Jena, Germany
| | - Roland Zell
- Section of Experimental Virology, Institute of Medical Microbiology, Jena University Hospital, Hans-Knoell-Str. 2, D-07745, Jena, Germany
| | - Johannes Jungwirth
- Section of Experimental Virology, Institute of Medical Microbiology, Jena University Hospital, Hans-Knoell-Str. 2, D-07745, Jena, Germany
| | - Paul M Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, D-07743 Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, D-07743 Jena, Germany
| | - Franziska Hornung
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany
| | - Christian Brandt
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany
| | - Mike Marquet
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany
| | - Alexander S Mosig
- Institute of Biochemistry, Jena University Hospital, Am Klinikum 1, D-07743 Jena, Germany
| | - Mathias W Pletz
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany
| | - Michael Schacke
- Section of Experimental Virology, Institute of Medical Microbiology, Jena University Hospital, Hans-Knoell-Str. 2, D-07745, Jena, Germany
| | - Jürgen Rödel
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany
| | - Regine Heller
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knoell-Str. 2, D-07745, Jena, Germany
| | - Sandor Nietzsche
- Center for Electron Microscopy, Jena University Hospital, Ziegelmuehlenweg 1, D-07743 Jena, Germany
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany
| | - Christina Ehrhardt
- Section of Experimental Virology, Institute of Medical Microbiology, Jena University Hospital, Hans-Knoell-Str. 2, D-07745, Jena, Germany
| |
Collapse
|
172
|
Liu Y, Garron TM, Chang Q, Su Z, Zhou C, Qiu Y, Gong EC, Zheng J, Yin YW, Ksiazek T, Brasel T, Jin Y, Boor P, Comer JE, Gong B. Cell-Type Apoptosis in Lung during SARS-CoV-2 Infection. Pathogens 2021; 10:pathogens10050509. [PMID: 33922476 PMCID: PMC8145065 DOI: 10.3390/pathogens10050509] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/12/2021] [Accepted: 04/21/2021] [Indexed: 12/23/2022] Open
Abstract
The SARS-CoV-2 pandemic has inspired renewed interest in understanding the fundamental pathology of acute respiratory distress syndrome (ARDS) following infection. However, the pathogenesis of ARDS following SRAS-CoV-2 infection remains largely unknown. In the present study, we examined apoptosis in postmortem lung sections from COVID-19 patients and in lung tissues from a non-human primate model of SARS-CoV-2 infection, in a cell-type manner, including type 1 and 2 alveolar cells and vascular endothelial cells (ECs), macrophages, and T cells. Multiple-target immunofluorescence assays and Western blotting suggest both intrinsic and extrinsic apoptotic pathways are activated during SARS-CoV-2 infection. Furthermore, we observed that SARS-CoV-2 fails to induce apoptosis in human bronchial epithelial cells (i.e., BEAS2B cells) and primary human umbilical vein endothelial cells (HUVECs), which are refractory to SARS-CoV-2 infection. However, infection of co-cultured Vero cells and HUVECs or Vero cells and BEAS2B cells with SARS-CoV-2 induced apoptosis in both Vero cells and HUVECs/BEAS2B cells but did not alter the permissiveness of HUVECs or BEAS2B cells to the virus. Post-exposure treatment of the co-culture of Vero cells and HUVECs with a novel non-cyclic nucleotide small molecule EPAC1-specific activator reduced apoptosis in HUVECs. These findings may help to delineate a novel insight into the pathogenesis of ARDS following SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yakun Liu
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (Y.L.); (Q.C.); (Z.S.); (C.Z.); (Y.Q.); (E.C.G.); (T.K.)
| | - Tania M. Garron
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (T.M.G.); (T.B.)
| | - Qing Chang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (Y.L.); (Q.C.); (Z.S.); (C.Z.); (Y.Q.); (E.C.G.); (T.K.)
| | - Zhengchen Su
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (Y.L.); (Q.C.); (Z.S.); (C.Z.); (Y.Q.); (E.C.G.); (T.K.)
| | - Changcheng Zhou
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (Y.L.); (Q.C.); (Z.S.); (C.Z.); (Y.Q.); (E.C.G.); (T.K.)
| | - Yuan Qiu
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (Y.L.); (Q.C.); (Z.S.); (C.Z.); (Y.Q.); (E.C.G.); (T.K.)
| | - Eric C. Gong
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (Y.L.); (Q.C.); (Z.S.); (C.Z.); (Y.Q.); (E.C.G.); (T.K.)
| | - Junying Zheng
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Y. Whitney Yin
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Thomas Ksiazek
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (Y.L.); (Q.C.); (Z.S.); (C.Z.); (Y.Q.); (E.C.G.); (T.K.)
| | - Trevor Brasel
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (T.M.G.); (T.B.)
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, MA 02118, USA;
| | - Paul Boor
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (Y.L.); (Q.C.); (Z.S.); (C.Z.); (Y.Q.); (E.C.G.); (T.K.)
- Correspondence: (P.B.); (J.E.C.); (B.G.); Tel.: +1-409-772-2813 (P.B.); +1-409-266-6915 (J.E.C.); +1-409-266-6682 (B.G.)
| | - Jason E. Comer
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (T.M.G.); (T.B.)
- Correspondence: (P.B.); (J.E.C.); (B.G.); Tel.: +1-409-772-2813 (P.B.); +1-409-266-6915 (J.E.C.); +1-409-266-6682 (B.G.)
| | - Bin Gong
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (Y.L.); (Q.C.); (Z.S.); (C.Z.); (Y.Q.); (E.C.G.); (T.K.)
- Correspondence: (P.B.); (J.E.C.); (B.G.); Tel.: +1-409-772-2813 (P.B.); +1-409-266-6915 (J.E.C.); +1-409-266-6682 (B.G.)
| |
Collapse
|
173
|
Perez-Bermejo JA, Kang S, Rockwood SJ, Simoneau CR, Joy DA, Silva AC, Ramadoss GN, Flanigan WR, Fozouni P, Li H, Chen PY, Nakamura K, Whitman JD, Hanson PJ, McManus BM, Ott M, Conklin BR, McDevitt TC. SARS-CoV-2 infection of human iPSC-derived cardiac cells reflects cytopathic features in hearts of patients with COVID-19. Sci Transl Med 2021; 13:eabf7872. [PMID: 33723017 PMCID: PMC8128284 DOI: 10.1126/scitranslmed.abf7872] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/23/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022]
Abstract
Although coronavirus disease 2019 (COVID-19) causes cardiac dysfunction in up to 25% of patients, its pathogenesis remains unclear. Exposure of human induced pluripotent stem cell (iPSC)-derived heart cells to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) revealed productive infection and robust transcriptomic and morphological signatures of damage, particularly in cardiomyocytes. Transcriptomic disruption of structural genes corroborates adverse morphologic features, which included a distinct pattern of myofibrillar fragmentation and nuclear disruption. Human autopsy specimens from patients with COVID-19 reflected similar alterations, particularly sarcomeric fragmentation. These notable cytopathic features in cardiomyocytes provide insights into SARS-CoV-2-induced cardiac damage, offer a platform for discovery of potential therapeutics, and raise concerns about the long-term consequences of COVID-19 in asymptomatic and severe cases.
Collapse
Affiliation(s)
| | - Serah Kang
- Gladstone Institutes, San Francisco, CA 94158, USA
| | | | - Camille R Simoneau
- Gladstone Institutes, San Francisco, CA 94158, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David A Joy
- Gladstone Institutes, San Francisco, CA 94158, USA
- UC Berkeley-UCSF Joint Program in Bioengineering, Berkeley, CA 94720, USA
| | - Ana C Silva
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Gokul N Ramadoss
- Gladstone Institutes, San Francisco, CA 94158, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Will R Flanigan
- Gladstone Institutes, San Francisco, CA 94158, USA
- UC Berkeley-UCSF Joint Program in Bioengineering, Berkeley, CA 94720, USA
| | - Parinaz Fozouni
- Gladstone Institutes, San Francisco, CA 94158, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Huihui Li
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Pei-Yi Chen
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Ken Nakamura
- Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Neurology, UCSF, San Francisco, CA 94143, USA
| | - Jeffrey D Whitman
- Department of Laboratory Medicine, UCSF, San Francisco, CA 94143, USA
| | - Paul J Hanson
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Bruce M McManus
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Melanie Ott
- Gladstone Institutes, San Francisco, CA 94158, USA.
- Department of Medicine, UCSF, San Francisco, CA 94143, USA
| | - Bruce R Conklin
- Gladstone Institutes, San Francisco, CA 94158, USA.
- Department of Medicine, UCSF, San Francisco, CA 94143, USA
- Innovative Genomics Institute, Berkeley, CA 94704, USA
- Department of Ophthalmology, UCSF, San Francisco, CA 94158, USA
| | - Todd C McDevitt
- Gladstone Institutes, San Francisco, CA 94158, USA.
- Department of Bioengineering and Therapeutic Sciences, UCSF, San Francisco, CA 94158, USA
| |
Collapse
|
174
|
Role of pirfenidone in TGF-β pathways and other inflammatory pathways in acute respiratory syndrome coronavirus 2 (SARS-Cov-2) infection: a theoretical perspective. Pharmacol Rep 2021; 73:712-727. [PMID: 33880743 PMCID: PMC8057922 DOI: 10.1007/s43440-021-00255-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/14/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022]
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes pulmonary injury or multiple-organ injury by various pathological pathways. Transforming growth factor-beta (TGF-β) is a key factor that is released during SARS-CoV-2 infection. TGF-β, by internalization of the epithelial sodium channel (ENaC), suppresses the anti-oxidant system, downregulates the cystic fibrosis transmembrane conductance regulator (CFTR), and activates the plasminogen activator inhibitor 1 (PAI-1) and nuclear factor-kappa-light-chain-enhancer of activated B cells (NF-kB). These changes cause inflammation and lung injury along with coagulopathy. Moreover, reactive oxygen species play a significant role in lung injury, which levels up during SARS-CoV-2 infection. Drug Suggestion Pirfenidone is an anti-fibrotic drug with an anti-oxidant activity that can prevent lung injury during SARS-CoV-2 infection by blocking the maturation process of transforming growth factor-beta (TGF-β) and enhancing the protective role of peroxisome proliferator-activated receptors (PPARs). Pirfenidone is a safe drug for patients with hypertension or diabetes and its side effect tolerated well. Conclusion The drug as a theoretical perspective may be an effective and safe choice for suppressing the inflammatory response during COVID-19. The recommendation would be a combination of pirfenidone and N-acetylcysteine to achieve maximum benefit during SARS-CoV-2 treatment.
Collapse
|
175
|
O'Hare M, Amarnani D, Whitmore HAB, An M, Marino C, Ramos L, Delgado-Tirado S, Hu X, Chmielewska N, Chandrahas A, Fitzek A, Heinrich F, Steurer S, Ondruschka B, Glatzel M, Krasemann S, Sepulveda-Falla D, Lagares D, Pedron J, Bushweller JH, Liu P, Arboleda-Velasquez JF, Kim LA. Targeting Runt-Related Transcription Factor 1 Prevents Pulmonary Fibrosis and Reduces Expression of Severe Acute Respiratory Syndrome Coronavirus 2 Host Mediators. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1193-1208. [PMID: 33894177 PMCID: PMC8059259 DOI: 10.1016/j.ajpath.2021.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/19/2021] [Accepted: 04/06/2021] [Indexed: 12/29/2022]
Abstract
Pulmonary fibrosis (PF) can arise from unknown causes, as in idiopathic PF, or as a consequence of infections, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Current treatments for PF slow, but do not stop, disease progression. We report that treatment with a runt-related transcription factor 1 (RUNX1) inhibitor (Ro24-7429), previously found to be safe, although ineffective, as a Tat inhibitor in patients with HIV, robustly ameliorates lung fibrosis and inflammation in the bleomycin-induced PF mouse model. RUNX1 inhibition blunted fundamental mechanisms downstream pathologic mediators of fibrosis and inflammation, including transforming growth factor-β1 and tumor necrosis factor-α, in cultured lung epithelial cells, fibroblasts, and vascular endothelial cells, indicating pleiotropic effects. RUNX1 inhibition also reduced the expression of angiotensin-converting enzyme 2 and FES Upstream Region (FURIN), host proteins critical for SARS-CoV-2 infection, in mice and in vitro. A subset of human lungs with SARS-CoV-2 infection overexpress RUNX1. These data suggest that RUNX1 inhibition via repurposing of Ro24-7429 may be beneficial for PF and to battle SARS-CoV-2, by reducing expression of viral mediators and by preventing respiratory complications.
Collapse
Affiliation(s)
- Michael O'Hare
- Schepens Eye Research Institute of Mass Eye and Ear, Boston, Massachusetts, and the Department of Ophthalmology at Harvard Medical School, Boston, Massachusetts
| | - Dhanesh Amarnani
- Schepens Eye Research Institute of Mass Eye and Ear, Boston, Massachusetts, and the Department of Ophthalmology at Harvard Medical School, Boston, Massachusetts
| | - Hannah A B Whitmore
- Schepens Eye Research Institute of Mass Eye and Ear, Boston, Massachusetts, and the Department of Ophthalmology at Harvard Medical School, Boston, Massachusetts
| | - Miranda An
- Schepens Eye Research Institute of Mass Eye and Ear, Boston, Massachusetts, and the Department of Ophthalmology at Harvard Medical School, Boston, Massachusetts
| | - Claudia Marino
- Schepens Eye Research Institute of Mass Eye and Ear, Boston, Massachusetts, and the Department of Ophthalmology at Harvard Medical School, Boston, Massachusetts
| | - Leslie Ramos
- Schepens Eye Research Institute of Mass Eye and Ear, Boston, Massachusetts, and the Department of Ophthalmology at Harvard Medical School, Boston, Massachusetts
| | - Santiago Delgado-Tirado
- Schepens Eye Research Institute of Mass Eye and Ear, Boston, Massachusetts, and the Department of Ophthalmology at Harvard Medical School, Boston, Massachusetts
| | - Xinyao Hu
- Schepens Eye Research Institute of Mass Eye and Ear, Boston, Massachusetts, and the Department of Ophthalmology at Harvard Medical School, Boston, Massachusetts
| | - Natalia Chmielewska
- Schepens Eye Research Institute of Mass Eye and Ear, Boston, Massachusetts, and the Department of Ophthalmology at Harvard Medical School, Boston, Massachusetts
| | - Anita Chandrahas
- Schepens Eye Research Institute of Mass Eye and Ear, Boston, Massachusetts, and the Department of Ophthalmology at Harvard Medical School, Boston, Massachusetts
| | - Antonia Fitzek
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Heinrich
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susanne Krasemann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Diego Sepulveda-Falla
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David Lagares
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Julien Pedron
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - John H Bushweller
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Paul Liu
- National Institutes of Health, National Human Genome Research Institute, Bethesda, Maryland
| | - Joseph F Arboleda-Velasquez
- Schepens Eye Research Institute of Mass Eye and Ear, Boston, Massachusetts, and the Department of Ophthalmology at Harvard Medical School, Boston, Massachusetts.
| | - Leo A Kim
- Schepens Eye Research Institute of Mass Eye and Ear, Boston, Massachusetts, and the Department of Ophthalmology at Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
176
|
Heparin binding protein in severe COVID-19-A prospective observational cohort study. PLoS One 2021; 16:e0249570. [PMID: 33822821 PMCID: PMC8023466 DOI: 10.1371/journal.pone.0249570] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/20/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND AIMS Neutrophil-derived heparin binding protein (HBP; also known as azurocidin or CAP-37) is a key player in bacterial sepsis and a promising biomarker in severe infections. The aims of this study were to assess whether HBP is involved in the pathophysiology of COVID-19 and, if so, whether it can be used to predict severe disease preferably using a point-of-care test. METHODS This was a prospective convenience sample study of biomarkers in patients admitted to Skåne University hospital in Sweden with a confirmed COVID-19 diagnosis. Plasma samples and clinical data were collected within 72h after admission, during hospital stay and at discharge. Plasma HBP concentrations samples were measured both with enzyme-linked immunosorbent assay (ELISA) and with a novel dry immunofluorescence analyzer (Joinstar) point-of-care test. RESULTS Thirty-five COVID-19 patients were enrolled in the study. Twenty-nine patients had blood samples taken within 72h after admission. We compared the highest HBP value taken within 72h after admission in patients who eventually developed organ dysfunction (n = 23) compared to those who did not (n = 6), and found that HBP was significantly elevated in those who developed organ dysfunction (25.0 ng/mL (interquartile range (IQR) 16.6-48.5) vs 10.6 ng/mL (IQR 4.8-21.7 ng/mL), p = 0.03). Point-of-care test measurements correlated well with ELISA measurements (R = 0.83). HBP measured by the POC device predicted development of COVID-induced organ dysfunction with an AUC of 0.88 (95% confidence interval (CI) 0.70-1.0). CONCLUSIONS HBP is elevated prior to onset of organ dysfunction in patients with severe COVID-19 using a newly developed point-of-care test and hence HBP could be used in a clinical setting as a prognostic marker in COVID-19.
Collapse
|
177
|
Ghandikota S, Sharma M, Jegga AG. Secondary analysis of transcriptomes of SARS-CoV-2 infection models to characterize COVID-19. PATTERNS 2021; 2:100247. [PMID: 33842903 PMCID: PMC8020120 DOI: 10.1016/j.patter.2021.100247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/18/2021] [Accepted: 04/01/2021] [Indexed: 12/13/2022]
Abstract
Standard transcriptomic analyses alone have limited power in capturing the molecular mechanisms driving disease pathophysiology and outcomes. To overcome this, unsupervised network analyses are used to identify clusters of genes that can be associated with distinct molecular mechanisms and outcomes for a disease. In this study, we developed an integrated network analysis framework that integrates transcriptional signatures from multiple model systems with protein-protein interaction data to find gene modules. Through a meta-analysis of different enriched features from these gene modules, we extract communities of highly interconnected features. These clusters of higher-order features, working as a multifeatured machine, enable collective assessment of their contribution for disease or phenotype characterization. We show the utility of this workflow using transcriptomics data from three different models of SARS-CoV-2 infection and identify several pathways and biological processes that could enable understanding or hypothesizing molecular signatures inducing pathophysiological changes, risks, or sequelae of COVID-19. Defined a consensus gene signature across three models of SARS-CoV-2 infection Characterized subnetworks of host proteins interacting with SARS-CoV-2 proteome Integrated a wide range of COVID-19 and related data to build functional modules Identified gene functional modules that can further the understanding of COVID-19
This study is based on the premise that combining information from multiple layers of data can result in new biologically interpretable associations in several ways. The underlying and unifying theme of this study is data integration, data mining, and meta-analysis for pattern detection that supports knowledge discovery and generation of hypotheses. The methods and the workflow used are disease agnostic and can be applied to any disease or phenotype that has multiple models and heterogeneous data elements. By integrating and joint analysis of several heterogeneous data types (multiple disease models, viral-host protein interaction data, single-cell RNA-sequencing data, protein-protein interactions, and genome-wide association study data), gene functional modules are identified that can have direct bearing on furthering the understanding of COVID-19.
Collapse
Affiliation(s)
- Sudhir Ghandikota
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, 240 Albert Sabin Way, MLC 7024, Cincinnati, OH 45229, USA.,Department of Computer Science, University of Cincinnati College of Engineering, Cincinnati, OH 45221, USA
| | - Mihika Sharma
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, 240 Albert Sabin Way, MLC 7024, Cincinnati, OH 45229, USA
| | - Anil G Jegga
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, 240 Albert Sabin Way, MLC 7024, Cincinnati, OH 45229, USA.,Department of Computer Science, University of Cincinnati College of Engineering, Cincinnati, OH 45221, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
178
|
Barbosa LC, Gonçalves TL, de Araujo LP, Rosario LVDO, Ferrer VP. Endothelial cells and SARS-CoV-2: An intimate relationship. Vascul Pharmacol 2021; 137:106829. [PMID: 33422689 PMCID: PMC7834309 DOI: 10.1016/j.vph.2021.106829] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/24/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is an important player of the renin-angiotensin-aldosterone system (RAAS) in regulating the conversion of angiotensin II into angiotensin (1-7). While expressed on the surface of human cells, such as lung, heart, kidney, neurons, and endothelial cells (EC), ACE2 is the entry receptor for SARS-CoV-2. Here, we would like to highlight that ACE2 is predominant on the EC membrane. Many of coronavirus disease 2019 (COVID-19) symptoms have been associated with the large recruitment of immune cells, directly affecting EC. Additionally, cytokines, hypoxia, and complement activation can trigger the activation of EC leading to the coagulation cascade. The EC dysfunction plus the inflammation due to SARS-CoV-2 infection may lead to abnormal coagulation, actively participating in thrombo-inflammatory processes resulting in vasculopathy and indicating poor prognosis in patients with COVID-19. Considering the intrinsic relationship between EC and the pathophysiology of SARS-CoV-2, EC-associated therapies such as anticoagulants, fibrinolytic drugs, immunomodulators, and molecular therapies have been proposed. In this review, we will discuss the role of EC in the lung inflammation and edema, in the disseminate coagulation process, ACE2 positive cancer patients, and current and future EC-associated therapies to treat COVID-19.
Collapse
Affiliation(s)
- Lucas Cunha Barbosa
- Graduate Program in Medicine - Pathological Anatomy, Clementino Fraga Filho Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Brain's Biomedicine Lab, Paulo Niemeyer State Brain Institute, Rio de Janeiro, Brazil
| | | | | | | | - Valéria Pereira Ferrer
- Graduate Program in Medicine - Pathological Anatomy, Clementino Fraga Filho Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Cellular and Molecular Biology, Institute of Biology, Fluminense Federal University, Niteroi, Brazil.
| |
Collapse
|
179
|
Remy-Jardin M, Duthoit L, Perez T, Felloni P, Faivre JB, Fry S, Bautin N, Chenivesse C, Remy J, Duhamel A. Assessment of pulmonary arterial circulation 3 months after hospitalization for SARS-CoV-2 pneumonia: Dual-energy CT (DECT) angiographic study in 55 patients. EClinicalMedicine 2021; 34:100778. [PMID: 33817609 PMCID: PMC8008988 DOI: 10.1016/j.eclinm.2021.100778] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND During COVID-19, the main manifestations of the disease are not only pneumonia but also coagulation disorders. The purpose of this study was to evaluate pulmonary vascular abnormalities 3 months after hospitalization for SARS-CoV-2 pneumonia in patients with persistent respiratory symptoms. METHODS Among the 320 patients who participated in a systematic follow-up 3 months after hospitalization, 76 patients had residual symptoms justifying a specialized follow-up in the department of pulmonology. Among them, dual-energy CT angiography (DECTA) was obtained in 55 patients. FINDINGS The 55 patients had partial (n = 40; 72.7%) or complete (n = 15; 27.3%) resolution of COVID-19 lung infiltration. DECTA was normal in 52 patients (52/55; 94.6%) and showed endoluminal filling defects in 3 patients (3/55; 5.4%) at the level of one (n = 1) and two (n = 1) segmental arteries of a single lobe and within central and peripheral arteries (n = 1). DECT lung perfusion was rated as non-interpretable (n = 2;3.6%), normal (n = 17; 30.9%) and abnormal (n = 36; 65.5%), the latter group comprising 32 patients with residual COVID-19 opacities (32/36; 89%) and 4 patients with normal lung parenchyma (4/36; 11%). Perfusion abnormalities consisted of (a) patchy defects (30/36; 83%), (b) PE-type defects (6/36; 16.6%) with (n = 1) or without proximal thrombosis (n = 5); and (c) focal areas of hypoperfusion (2/36; 5.5%). Increased perfusion was seen in 15 patients, always matching GGOs, bands and/or vascular tree-in- bud patterns. INTERPRETATION DECT depicted proximal arterial thrombosis in 5.4% of patients and perfusion abnormalities suggestive of widespread microangiopathy in 65.5% of patients. Lung microcirculation was abnormal in 4 patients with normal lung parenchyma.
Collapse
Affiliation(s)
- Martine Remy-Jardin
- Univ.Lille, CHU Lille, Department of Thoracic Imaging, ULR 2694 METRICS Evaluation des technologies de santé et des pratiques médicales, F-59000 LILLE, France
- Hospital Calmette, University Hospital Center of Lille, Blvd Jules Leclercq F-59000 LILLE, France
| | - Louise Duthoit
- Hospital Calmette, University Hospital Center of Lille, Blvd Jules Leclercq F-59000 LILLE, France
- Univ.Lille, CHU Lille, Department of Pulmonology, Hospital Calmette, University Hospital Center of Lille, Blvd Jules Leclercq, F-59000 LILLE, France
| | - Thierry Perez
- Hospital Calmette, University Hospital Center of Lille, Blvd Jules Leclercq F-59000 LILLE, France
- Department of Pulmonary Function Testing, Hospital Calmette, University Hospital Center of Lille, Blvd Jules Leclercq, F-59000 LILLE, France
| | - Paul Felloni
- Univ.Lille, CHU Lille, Department of Thoracic Imaging, ULR 2694 METRICS Evaluation des technologies de santé et des pratiques médicales, F-59000 LILLE, France
- Hospital Calmette, University Hospital Center of Lille, Blvd Jules Leclercq F-59000 LILLE, France
| | - Jean-Baptiste Faivre
- Univ.Lille, CHU Lille, Department of Thoracic Imaging, ULR 2694 METRICS Evaluation des technologies de santé et des pratiques médicales, F-59000 LILLE, France
- Hospital Calmette, University Hospital Center of Lille, Blvd Jules Leclercq F-59000 LILLE, France
| | - Stéphanie Fry
- Hospital Calmette, University Hospital Center of Lille, Blvd Jules Leclercq F-59000 LILLE, France
- Univ.Lille, CHU Lille, Department of Pulmonology, Hospital Calmette, University Hospital Center of Lille, Blvd Jules Leclercq, F-59000 LILLE, France
| | - Nathalie Bautin
- Hospital Calmette, University Hospital Center of Lille, Blvd Jules Leclercq F-59000 LILLE, France
- Univ.Lille, CHU Lille, Department of Pulmonology, Hospital Calmette, University Hospital Center of Lille, Blvd Jules Leclercq, F-59000 LILLE, France
| | - Cécile Chenivesse
- Hospital Calmette, University Hospital Center of Lille, Blvd Jules Leclercq F-59000 LILLE, France
- Univ.Lille, CHU Lille, Department of Pulmonology, Hospital Calmette, University Hospital Center of Lille, Blvd Jules Leclercq, F-59000 LILLE, France
| | - Jacques Remy
- Univ.Lille, CHU Lille, Department of Thoracic Imaging, ULR 2694 METRICS Evaluation des technologies de santé et des pratiques médicales, F-59000 LILLE, France
- Hospital Calmette, University Hospital Center of Lille, Blvd Jules Leclercq F-59000 LILLE, France
| | - Alain Duhamel
- Univ.Lille, CHU Lille, Department of Biostatistics, ULR 2694 METRICS Evaluation des technologies de santé et des pratiques médicales, F-59000 LILLE, France
| |
Collapse
|
180
|
Stenmark KR, Frid MG, Gerasimovskaya E, Zhang H, McCarthy MK, Thurman JM, Morrison TE. Mechanisms of SARS-CoV-2-induced lung vascular disease: potential role of complement. Pulm Circ 2021; 11:20458940211015799. [PMID: 34046161 PMCID: PMC8138299 DOI: 10.1177/20458940211015799] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
The outbreak of COVID-19 disease, caused by SARS-CoV-2 beta-coronovirus, urges a focused search for the underlying mechanisms and treatment options. The lung is the major target organ of COVID-19, wherein the primary cause of mortality is hypoxic respiratory failure, resulting from acute respiratory distress syndrome, with severe hypoxemia, often requiring assisted ventilation. While similar in some ways to acute respiratory distress syndrome secondary to other causes, lungs of some patients dying with COVID-19 exhibit distinct features of vascular involvement, including severe endothelial injury and cell death via apoptosis and/or pyroptosis, widespread capillary inflammation, and thrombosis. Furthermore, the pulmonary pathology of COVID-19 is characterized by focal inflammatory cell infiltration, impeding alveolar gas exchange resulting in areas of local tissue hypoxia, consistent with potential amplification of COVID-19 pathogenicity by hypoxia. Vascular endothelial cells play essential roles in both innate and adaptive immune responses, and are considered to be "conditional innate immune cells" centrally participating in various inflammatory, immune pathologies. Activated endothelial cells produce cytokines/chemokines, dynamically recruit and activate inflammatory cells and platelets, and centrally participate in pro-thrombotic processes (thrombotic microangiopathies). Initial reports presented pathological findings of localized direct infection of vascular endothelial cells with SARS-CoV-2, yet emerging evidence does not support direct infection of endothelial or other vascular wall cell and thus widespread endothelial cell dysfunction and inflammation may be better explained as secondary responses to epithelial cell infection and inflammation. Endothelial cells are also actively engaged in a cross-talk with the complement system, the essential arm of innate immunity. Recent reports present evidence for complement deposition in SARS-CoV-2-damaged lung microcirculation, further strengthening the idea that, in severe cases of COVID-19, complement activation is an essential player, generating destructive hemorrhagic, capillaritis-like tissue damage, clotting, and hyperinflammation. Thus, complement-targeted therapies are actively in development. This review is intended to explore in detail these ideas.
Collapse
Affiliation(s)
- Kurt R. Stenmark
- Divisions of Pediatric Critical Care Medicine and Cardiovascular
Pulmonary Research, University of Colorado Denver, Denver, CO, USA
| | - Maria G. Frid
- Divisions of Pediatric Critical Care Medicine and Cardiovascular
Pulmonary Research, University of Colorado Denver, Denver, CO, USA
| | - Evgenia Gerasimovskaya
- Divisions of Pediatric Critical Care Medicine and Cardiovascular
Pulmonary Research, University of Colorado Denver, Denver, CO, USA
| | - Hui Zhang
- Divisions of Pediatric Critical Care Medicine and Cardiovascular
Pulmonary Research, University of Colorado Denver, Denver, CO, USA
| | - Mary K. McCarthy
- Department of Immunology and Microbiology, University of
Colorado Denver, Denver, CO, USA
| | - Joshua M. Thurman
- Division of Renal Medicine, Department of Medicine, University
of Colorado Denver, Denver, CO, USA
| | - Thomas E. Morrison
- Department of Immunology and Microbiology, University of
Colorado Denver, Denver, CO, USA
| |
Collapse
|
181
|
Dennison D, Al Khabori M, Al Mamari S, Aurelio A, Al Hinai H, Al Maamari K, Alshekaili J, Al Khadouri G. Circulating activated neutrophils in COVID-19: An independent predictor for mechanical ventilation and death. Int J Infect Dis 2021; 106:155-159. [PMID: 33781906 PMCID: PMC7997692 DOI: 10.1016/j.ijid.2021.03.066] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES Critical illness in COVID-19 is attributed to an exaggerated host immune response. Since neutrophils are the major component of innate immunity, we hypothesize that the quantum of activated neutrophils in the blood may predict an adverse outcome. DESIGN In a retrospective study of 300 adult patients with confirmed COVID-19, we analyzed the impact of neutrophil activation (NEUT-RI), interleukin-6 (IL-6) and the established clinical risk factors of age, diabetes, obesity and hypertension on the clinical outcome. RESULTS Significant predictors of the need for mechanical ventilation were NEUT-RI (Odds Ratio (OR) = 1.22, P < 0.001), diabetes (OR = 2.56, P = 0.00846) and obesity (OR = 6.55, P < 0.001). For death, the significant predictors were NEUT-RI (OR = 1.14, P = 0.00432), diabetes (OR = 4.11, P = 0.00185) and age (OR = 1.04, P = 0.00896). The optimal cut-off value for NEUT-RI to predict mechanical ventilation and death was 52 fluorescence intensity units (sensitivity 44%, specificity 88%, area under the curve 0.67 and 44%, 86%, 0.64, respectively). CONCLUSION This finding supports an aberrant neutrophil response in COVID-19, likely due to uncontained viral replication, tissue hypoxia and exacerbated inflammation, introduces a novel biomarker for rapid monitoring and opens new avenues for therapeutic strategies.
Collapse
Affiliation(s)
- David Dennison
- Department of Hematology, Sultan Qaboos University Hospital, Oman.
| | | | | | - Allan Aurelio
- Department of Hematology, Sultan Qaboos University Hospital, Oman.
| | - Houda Al Hinai
- Department of Hematology, Sultan Qaboos University Hospital, Oman.
| | - Khuloud Al Maamari
- Department of Microbiology and Immunology, Sultan Qaboos University Hospital, Oman.
| | - Jalila Alshekaili
- Department of Microbiology and Immunology, Sultan Qaboos University Hospital, Oman.
| | | |
Collapse
|
182
|
Pavel A, del Giudice G, Federico A, Di Lieto A, Kinaret PAS, Serra A, Greco D. Integrated network analysis reveals new genes suggesting COVID-19 chronic effects and treatment. Brief Bioinform 2021; 22:1430-1441. [PMID: 33569598 PMCID: PMC7929418 DOI: 10.1093/bib/bbaa417] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/13/2020] [Accepted: 12/19/2020] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 disease led to an unprecedented health emergency, still ongoing worldwide. Given the lack of a vaccine or a clear therapeutic strategy to counteract the infection as well as its secondary effects, there is currently a pressing need to generate new insights into the SARS-CoV-2 induced host response. Biomedical data can help to investigate new aspects of the COVID-19 pathogenesis, but source heterogeneity represents a major drawback and limitation. In this work, we applied data integration methods to develop a Unified Knowledge Space (UKS) and used it to identify a new set of genes associated with SARS-CoV-2 host response, both in vitro and in vivo. Functional analysis of these genes reveals possible long-term systemic effects of the infection, such as vascular remodelling and fibrosis. Finally, we identified a set of potentially relevant drugs targeting proteins involved in multiple steps of the host response to the virus.
Collapse
Affiliation(s)
- Alisa Pavel
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- BioMediTech Institute, Tampere University, Tampere, Finland
| | - Giusy del Giudice
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- BioMediTech Institute, Tampere University, Tampere, Finland
| | - Antonio Federico
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- BioMediTech Institute, Tampere University, Tampere, Finland
| | - Antonio Di Lieto
- Department of Forensic Psychiatry, Aarhus University, Aarhus, Denmark
| | - Pia A S Kinaret
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Angela Serra
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- BioMediTech Institute, Tampere University, Tampere, Finland
| | - Dario Greco
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- BioMediTech Institute, Tampere University, Tampere, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
183
|
Andrade FB, Gualberto A, Rezende C, Percegoni N, Gameiro J, Hottz ED. The Weight of Obesity in Immunity from Influenza to COVID-19. Front Cell Infect Microbiol 2021; 11:638852. [PMID: 33816341 PMCID: PMC8011498 DOI: 10.3389/fcimb.2021.638852] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/19/2021] [Indexed: 12/15/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emerged in December 2019 and rapidly outspread worldwide endangering human health. The coronavirus disease 2019 (COVID-19) manifests itself through a wide spectrum of symptoms that can evolve to severe presentations as pneumonia and several non-respiratory complications. Increased susceptibility to COVID-19 hospitalization and mortality have been linked to associated comorbidities as diabetes, hypertension, cardiovascular diseases and, recently, to obesity. Similarly, individuals living with obesity are at greater risk to develop clinical complications and to have poor prognosis in severe influenza pneumonia. Immune and metabolic dysfunctions associated with the increased susceptibility to influenza infection are linked to obesity-associated low-grade inflammation, compromised immune and endocrine systems, and to high cardiovascular risk. These preexisting conditions may favor virological persistence, amplify immunopathological responses and worsen hemodynamic instability in severe COVID-19 as well. In this review we highlight the main factors and the current state of the art on obesity as risk factor for influenza and COVID-19 hospitalization, severe respiratory manifestations, extrapulmonary complications and even death. Finally, immunoregulatory mechanisms of severe influenza pneumonia in individuals with obesity are addressed as likely factors involved in COVID-19 pathophysiology.
Collapse
Affiliation(s)
- Fernanda B. Andrade
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Ana Gualberto
- Laboratory of Immunology, Obesity and Infectious Diseases, Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Camila Rezende
- Department of Nutrition, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Nathércia Percegoni
- Department of Nutrition, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Jacy Gameiro
- Laboratory of Immunology, Obesity and Infectious Diseases, Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Eugenio D. Hottz
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| |
Collapse
|
184
|
Yiangou L, Davis RP, Mummery CL. Using Cardiovascular Cells from Human Pluripotent Stem Cells for COVID-19 Research: Why the Heart Fails. Stem Cell Reports 2021; 16:385-397. [PMID: 33306986 PMCID: PMC7833904 DOI: 10.1016/j.stemcr.2020.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to the coronavirus disease (COVID-19) outbreak that became a pandemic in 2020, causing more than 30 million infections and 1 million deaths to date. As the scientific community has looked for vaccines and drugs to treat or eliminate the virus, unexpected features of the disease have emerged. Apart from respiratory complications, cardiovascular disease has emerged as a major indicator of poor prognosis in COVID-19. It has therefore become of utmost importance to understand how SARS-CoV-2 damages the heart. Human pluripotent stem cell (hPSC) cardiovascular derivatives were rapidly recognized as an invaluable tool to address this, not least because one of the major receptors for the virus is not recognized by SARS-CoV-2 in mice. Here, we outline how hPSC-derived cardiovascular cells have been utilized to study COVID-19, and their potential for further understanding the cardiac pathology and in therapeutic development.
Collapse
Affiliation(s)
- Loukia Yiangou
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Richard P Davis
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands.
| |
Collapse
|
185
|
Bugert CL, Kwiat V, Valera IC, Bugert JJ, Parvatiyar MS. Cardiovascular Injury Due to SARS-CoV-2. CURRENT CLINICAL MICROBIOLOGY REPORTS 2021; 8:167-177. [PMID: 33717830 PMCID: PMC7934983 DOI: 10.1007/s40588-021-00160-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
Purpose of Review The world is currently facing the largest global health crisis since the early 1900s due to a novel coronavirus. While SARS-CoV-2 infection causes predictable symptoms in COVID-19 patients, including upper respiratory distress and fever, the heterogeneity of manifestations is surprising. This review focuses on direct and indirect causes of myocardial injury in COVID-19 patients and highlights current knowledge, treatment strategies, and outstanding questions in the field. Recent Findings Data are emerging that highlight the extent of cardiovascular involvement in COVID-19 patients, including evidence that SARS-CoV-2 causes myocarditis and increases cardiac risk. The incidence of cardiac injury is much greater in patients with severe disease presentation and those in intensive care. Summary During the past year, COVID-19 patient mortality rates have improved due to tailored pharmacological treatments and patient management strategies that address the unique presentation of symptoms, which will hopefully also reduce the incidence of cardiac injury.
Collapse
Affiliation(s)
- Christina L. Bugert
- College of Life and Environmental Sciences, University of Exeter, Exeter, South West UK
| | - Victoria Kwiat
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL USA
| | - Isela C. Valera
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL USA
| | | | - Michelle S. Parvatiyar
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL USA
| |
Collapse
|
186
|
McGonagle D, Bridgewood C, Ramanan AV, Meaney JFM, Watad A. COVID-19 vasculitis and novel vasculitis mimics. THE LANCET. RHEUMATOLOGY 2021; 3:e224-e233. [PMID: 33521655 PMCID: PMC7832717 DOI: 10.1016/s2665-9913(20)30420-3] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
COVID-19 has been occasionally linked to histologically confirmed cutaneous vasculitis and a Kawasaki-like vasculitis, with these entities generally having minimal or no lung involvement and a good prognosis. Unlike these vasculitis types, patients with severe COVID-19 pneumonia can develop cutaneous vasculitis-like lesions and systemic arterial and venous thromboemboli, including cryptogenic strokes and other vasculopathy features. Proposed underlying mechanisms for these severe manifestations have encompassed immune dysregulation, including an anti-phospholipid syndrome-like state, complement activation, viral dissemination with direct systemic endothelial infection, viral RNAaemia with immunothrombosis, clotting pathway activation mediated by hypoxaemia, and immobility. In this Viewpoint, we highlight how imaging and post-mortem findings from patients with COVID-19 indicate a novel thrombosis in the pulmonary venous territory distal to the alveolar capillary bed, a territory that normally acts as a clot filtration system, which might represent an unappreciated nidus for systemic microembolism. Additionally, we suggest that this mechanism represents a novel vasculitis mimic related to COVID-19 that might lead to cryptogenic strokes across multivessel territories, acute kidney injury with haematuria, a skin vasculitis mimic, intestinal ischaemia, and other organ ischaemic manifestations. This finding is supported by pathological reports of extensive pulmonary venular thrombosis and peripheral organ thrombosis with pauci-immune cellular infiltrates. Therefore, severe COVID-19 pneumonia with extensive pulmonary intravascular coagulopathy might help to explain the numerous systemic complications of COVID-19, in which the demonstration of direct organ infection has not adequately explained the pathology.
Collapse
Affiliation(s)
- Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- National Institute for Health Research Leeds Biomedical Research Centre, Leeds Teaching Hospitals, Leeds, UK
| | - Charlie Bridgewood
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Athimalaipet V Ramanan
- University Hospitals Bristol NHS Foundation Trust and Bristol Medical School, University of Bristol, Bristol, UK
| | - James F M Meaney
- Department of Radiology, St James Hospital and The Thomas Mitchell Centre for Advanced Medical Imaging, Trinity College Dublin, Dublin, Ireland
| | - Abdulla Watad
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- Department of Medicine B, Rheumatology Unit, Sheba Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
187
|
Triggle CR, Bansal D, Ding H, Islam MM, Farag EABA, Hadi HA, Sultan AA. A Comprehensive Review of Viral Characteristics, Transmission, Pathophysiology, Immune Response, and Management of SARS-CoV-2 and COVID-19 as a Basis for Controlling the Pandemic. Front Immunol 2021; 12:631139. [PMID: 33717166 PMCID: PMC7952616 DOI: 10.3389/fimmu.2021.631139] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/26/2021] [Indexed: 12/15/2022] Open
Abstract
COVID-19 emerged from China in December 2019 and during 2020 spread to every continent including Antarctica. The coronavirus, SARS-CoV-2, has been identified as the causative pathogen, and its spread has stretched the capacities of healthcare systems and negatively affected the global economy. This review provides an update on the virus, including the genome, the risks associated with the emergence of variants, mode of transmission, immune response, COVID-19 in children and the elderly, and advances made to contain, prevent and manage the disease. Although our knowledge of the mechanics of virus transmission and the immune response has been substantially demystified, concerns over reinfection, susceptibility of the elderly and whether asymptomatic children promote transmission remain unanswered. There are also uncertainties about the pathophysiology of COVID-19 and why there are variations in clinical presentations and why some patients suffer from long lasting symptoms-"the long haulers." To date, there are no significantly effective curative drugs for COVID-19, especially after failure of hydroxychloroquine trials to produce positive results. The RNA polymerase inhibitor, remdesivir, facilitates recovery of severely infected cases but, unlike the anti-inflammatory drug, dexamethasone, does not reduce mortality. However, vaccine development witnessed substantial progress with several being approved in countries around the globe.
Collapse
Affiliation(s)
- Chris R. Triggle
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Devendra Bansal
- Department of Health Protection & Communicable Diseases Control, Ministry of Public Health, Doha, Qatar
| | - Hong Ding
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Md Mazharul Islam
- Department of Animal Resources, Ministry of Municipality and Environment, Doha, Qatar
| | | | - Hamad Abdel Hadi
- Communicable Diseases Centre, Hamad Medical Corporations, Doha, Qatar
| | - Ali A. Sultan
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, Doha, Qatar
| |
Collapse
|
188
|
Townsend L, Moloney D, Finucane C, McCarthy K, Bergin C, Bannan C, Kenny RA. Fatigue following COVID-19 infection is not associated with autonomic dysfunction. PLoS One 2021; 16:e0247280. [PMID: 33630906 PMCID: PMC7906457 DOI: 10.1371/journal.pone.0247280] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The long-term clinical and physiological consequences of COVID-19 infection remain unclear. While fatigue has emerged as a common symptom following infection, little is known about its links with autonomic dysfunction. SARS-CoV-2 is known to infect endothelial cells in acute infection, resulting in autonomic dysfunction. Here we set out to test the hypothesis that this results in persistent autonomic dysfunction and is associated with post-COVID fatigue in convalescent patients. METHODS We recruited 20 fatigued and 20 non-fatigued post-COVID patients (median age 44.5 years, 36/40 (90%) female, median time to follow up 166.5 days). Fatigue was assessed using the Chalder Fatigue Scale. These underwent the Ewing's autonomic function test battery, including deep breathing, active standing, Valsalva manoeuvre and cold-pressor testing, with continuous electrocardiogram and blood pressure monitoring, as well as near-infrared spectroscopy-based cerebral oxygenation. 24-hour ambulatory blood pressure monitoring was also conducted, and patients completed the generalised anxiety disorder-7 questionnaire. We assessed between-group differences in autonomic function test results and used unadjusted and adjusted linear regression to investigate the relationship between fatigue, anxiety, and autonomic test results. RESULTS We found no pathological differences between fatigued and non-fatigued patients on autonomic testing or on 24-hour blood pressure monitoring. Symptoms of orthostatic intolerance were reported by 70% of the fatigued cohort at the time of active standing, with no associated physiological abnormality detected. Fatigue was strongly associated with increased anxiety (p <0.001), with no patients having a pre-existing diagnosis of anxiety. CONCLUSIONS These results demonstrate the significant burden of fatigue, symptoms of autonomic dysfunction and anxiety in the aftermath of COVID-19 infection, but reassuringly do not demonstrate pathological findings on autonomic testing.
Collapse
Affiliation(s)
- Liam Townsend
- Department of Infectious Diseases, St James’s Hospital, Dublin, Ireland
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - David Moloney
- The Irish Longitudinal Study on Ageing (TILDA), Trinity College Dublin, Dublin, Ireland
- Falls and Syncope Unit, Mercer’s Institute for Successful Ageing, St James’s Hospital, Dublin, Ireland
| | - Ciaran Finucane
- Falls and Syncope Unit, Mercer’s Institute for Successful Ageing, St James’s Hospital, Dublin, Ireland
- Department of Medical Physics and Bioengineering, Mercer’s Institute for Successful Ageing, St James’s Hospital, Dublin, Ireland
| | - Kevin McCarthy
- The Irish Longitudinal Study on Ageing (TILDA), Trinity College Dublin, Dublin, Ireland
- Falls and Syncope Unit, Mercer’s Institute for Successful Ageing, St James’s Hospital, Dublin, Ireland
| | - Colm Bergin
- Department of Infectious Diseases, St James’s Hospital, Dublin, Ireland
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Ciaran Bannan
- Department of Infectious Diseases, St James’s Hospital, Dublin, Ireland
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Rose-Anne Kenny
- The Irish Longitudinal Study on Ageing (TILDA), Trinity College Dublin, Dublin, Ireland
- Falls and Syncope Unit, Mercer’s Institute for Successful Ageing, St James’s Hospital, Dublin, Ireland
| |
Collapse
|
189
|
Umbrajkar S, Stankowski RV, Rezkalla S, Kloner RA. Cardiovascular Health and Disease in the Context of COVID-19. Cardiol Res 2021; 12:67-79. [PMID: 33738009 PMCID: PMC7935632 DOI: 10.14740/cr1199] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
First documented in China in early December 2019, the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread rapidly and continues to test the strength of healthcare systems and public health programs all over the world. Underlying cardiovascular disease has been recognized as a risk factor for coronavirus disease 2019 (COVID-19)-related morbidity and mortality since the early days of the pandemic. In addition, evidence demonstrates cardiac and endothelial damage in somewhere between one-third and three-quarters of individuals with COVID-19, regardless of symptom severity. This damage is thought to be mediated by direct viral infection, immunopathology and hypoxemia with the additional possibility of exacerbation via medication-induced cardiotoxicity. Clinically, the cardiovascular consequences of COVID-19 may present as myocarditis with or without arrhythmia, endothelial dysfunction and thrombosis, acute coronary syndromes and heart failure. Presentation can vary widely and may or may not be typical of the condition in an individual without COVID-19. There is evidence to support the prognostic utility of cardiac biomarkers (e.g., cardiac troponin) and imaging studies (e.g., echocardiography, cardiac magnetic resonance imaging) in the context of COVID-19 and building evidence suggests that cardiovascular screening may be warranted even among those with asymptomatic or mild infection and those without traditional cardiovascular risk factors. In addition, evidence suggests the potential for long-term cardiovascular consequences for those who recover from COVID-19 with implications for the field of cardiology long into the future. Even among those without COVID-19, disruption of infrastructure and changes in human behavior as a result of the pandemic also have an upstream role in cardiovascular outcomes, which have already been documented in multiple locations. This review summarizes what is currently known regarding the pathogenic mechanisms of COVID-19-related cardiovascular injury and describes clinical cardiovascular presentations, prognostic indicators, recommendations for screening and treatment, and long-term cardiovascular consequences of infection. Ultimately, medical personnel must be vigilant in their attention to possible cardiovascular symptoms, take appropriate steps for clinical diagnosis and be prepared for long-term ramifications of myocardial injury sustained as a result of COVID-19.
Collapse
Affiliation(s)
- Sidhant Umbrajkar
- University of California, Los Angeles (UCLA), 10833 Le Conte Ave., Los Angeles, CA 90095, USA.,Huntington Medical Research Institutes, 686 South Fair Oaks Ave., Pasadena, CA 91105, USA
| | - Rachel V Stankowski
- Family Health Center of Marshfield, Inc., Marshfield Clinic Health System, 1000 N Oak Ave., Marshfield, WI 54449, USA
| | - Shereif Rezkalla
- Department of Cardiology, Marshfield Medical Center, 1000 N Oak Ave., Marshfield, WI 54449, USA
| | - Robert A Kloner
- Huntington Medical Research Institutes, 686 South Fair Oaks Ave., Pasadena, CA 91105, USA.,Keck School of Medicine of the University of Southern California, 1975 Zonal Ave., Los Angeles, CA 90033, USA
| |
Collapse
|
190
|
Arciniegas E, Carrillo LM, Salgado A. Potential Role of Galectin-glycan Lattices in SARS-CoV-2 Infection and Pathogenesis: A Hypothesis. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2021; 000:000-000. [DOI: 10.14218/erhm.2020.00079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
191
|
Qian Y, Lei T, Patel PS, Lee CH, Monaghan-Nichols P, Xin HB, Qiu J, Fu M. Direct activation of endothelial cells by SARS-CoV-2 nucleocapsid protein is blocked by Simvastatin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.02.14.431174. [PMID: 33594363 PMCID: PMC7885915 DOI: 10.1101/2021.02.14.431174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Emerging evidence suggests that endothelial activation plays a central role in the pathogenesis of acute respiratory distress syndrome (ARDS) and multi-organ failure in patients with COVID-19. However, the molecular mechanisms underlying endothelial activation in COVID-19 patients remain unclear. In this study, the SARS-CoV-2 viral proteins that potently activate human endothelial cells were screened to elucidate the molecular mechanisms involved with endothelial activation. It was found that nucleocapsid protein (NP) of SARS-CoV-2 significantly activated human endothelial cells through TLR2/NF-κB and MAPK signaling pathways. Moreover, by screening a natural microbial compound library containing 154 natural compounds, simvastatin was identified as a potent inhibitor of NP-induced endothelial activation. Remarkablely, though the protein sequences of N proteins from coronaviruses are highly conserved, only NP from SARS-CoV-2 induced endothelial activation. The NPs from other coronaviruses such as SARS-CoV, MERS-CoV, HUB1-CoV and influenza virus H1N1 did not affect endothelial activation. These findings are well consistent with the results from clinical investigations showing broad endotheliitis and organ injury in severe COVID-19 patients. In conclusion, the study provides insights on SARS-CoV-2-induced vasculopathy and coagulopathy, and suggests that simvastatin, an FDA-approved lipid-lowering drug, may benefit to prevent the pathogenesis and improve the outcome of COVID-19 patients.
Collapse
Affiliation(s)
- Yisong Qian
- Department of Biomedical Sciences and Shock/Trauma Research Center, School of Medicine, University of Missouri Kansas City, 2411 Holmes Street, Kansas City, MO 64108
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Rd, Honggu District, Nanchang, 330031, China
| | - Tianhua Lei
- Department of Biomedical Sciences and Shock/Trauma Research Center, School of Medicine, University of Missouri Kansas City, 2411 Holmes Street, Kansas City, MO 64108
| | - Parth S. Patel
- Department of Biomedical Sciences and Shock/Trauma Research Center, School of Medicine, University of Missouri Kansas City, 2411 Holmes Street, Kansas City, MO 64108
| | - Chi H Lee
- Department of Pharmaceutics, School of Pharmacy, University of Missouri Kansas City, 2464 Charlotte Street, Kansas City, 64108
| | - Paula Monaghan-Nichols
- Department of Biomedical Sciences and Shock/Trauma Research Center, School of Medicine, University of Missouri Kansas City, 2411 Holmes Street, Kansas City, MO 64108
| | - Hong-Bo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Rd, Honggu District, Nanchang, 330031, China
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160
| | - Mingui Fu
- Department of Biomedical Sciences and Shock/Trauma Research Center, School of Medicine, University of Missouri Kansas City, 2411 Holmes Street, Kansas City, MO 64108
| |
Collapse
|
192
|
The COVID-19 Pandemic: Disproportionate Thrombotic Tendency and Management Recommendations. Trop Med Infect Dis 2021; 6:tropicalmed6010026. [PMID: 33670475 PMCID: PMC7930939 DOI: 10.3390/tropicalmed6010026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/13/2020] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
COVID-19 is an infectious disease caused by the SARS COV-2 virus. Patients with COVID-19 are susceptible to thrombosis due to excessive inflammation, platelet activation, endothelial dysfunction, and circulatory stasis, resulting in an increased risk of death due to associated coagulopathies. In addition, many patients receiving antithrombotic therapy for pre-existing thrombotic diseases can develop COVID-19, which can further complicate dose adjustment, choice and laboratory monitoring of antithrombotic treatment. This review summarizes the laboratory findings, the prohemostatic state, incidence of thromboembolic events and some potential therapeutic interventions of COVID-19 associated coagulopathy. We explore the roles of biomarkers of thrombosis and inflammation according to the severity of COVID-19. While therapeutic anticoagulation has been used empirically in some patients with severe COVID-19 but without thrombosis, it may be preferable to provide supportive care based on evidence-based randomized clinical trials. The likely lifting of travel restrictions will accelerate the spread of COVID-19, increasing morbidity and mortality across nations. Many individuals will continue to receive anticoagulation therapy regardless of their location, requiring on-going treatment with low-molecular weight heparin, vitamin K antagonist or direct-acting anticoagulants.
Collapse
|
193
|
Rendon-Marin S, Martinez-Gutierrez M, Whittaker GR, Jaimes JA, Ruiz-Saenz J. SARS CoV-2 Spike Protein in silico Interaction With ACE2 Receptors From Wild and Domestic Species. Front Genet 2021; 12:571707. [PMID: 33659022 PMCID: PMC7917236 DOI: 10.3389/fgene.2021.571707] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 01/05/2021] [Indexed: 12/14/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been declared a pandemic by the World Health Organization (WHO), and since its first report, it has become a major public health concern. SARS-CoV-2 is closely related to SARS-CoV and SARS-related bat coronaviruses, and it has been described to use angiotensin-converting enzyme 2 (ACE2) as a receptor. Natural SARS-CoV-2 infection in domestic and wildlife animals, measured by RT-qPCR, has been confirmed in different countries, especially from the Felidae family. In silico analysis of the interaction between the SARS-CoV-2 spike protein and the cellular receptor ACE2 in various animal species has suggested that wild felids and domestic cats could be susceptible to SARS-CoV-2 based on this interaction. Here, we performed a protein-protein molecular docking analysis of SARS-CoV-2 spike protein with the ACE2 receptor from different animals to elucidate the potential of those species as intermediate hosts or susceptible animals for SARS-CoV-2 infection. Compared to human ACE2, we found that ACE2 receptors from domestic cats and tigers could efficiently interact with RBD of SARS CoV-2 Spike protein. However, dog, ferret, and hamster ACE2 receptor interaction with SARS-CoV-2 S protein RBD was not predicted as favorable, demonstrating a potential differentiated susceptibility in the evaluated species.
Collapse
Affiliation(s)
- Santiago Rendon-Marin
- Grupo de Investigación en Ciencias Animales - GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
| | - Marlen Martinez-Gutierrez
- Grupo de Investigación en Ciencias Animales - GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - Gary R. Whittaker
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Javier A. Jaimes
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Julian Ruiz-Saenz
- Grupo de Investigación en Ciencias Animales - GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
| |
Collapse
|
194
|
Sánchez-Martínez F, Arenas-Miras M, Jové-Caballé N, Knobel-Freud H. Influence of Cytokine Release Syndrome in Severe COVID-19 Patients Treated With Tocilizumab Over the Quantiferon TB Gold Plus Results. Arch Bronconeumol 2021; 57:58-59. [PMID: 34629655 PMCID: PMC7881697 DOI: 10.1016/j.arbres.2021.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | - Mar Arenas-Miras
- Infectious Diseases Service, Hospital del Mar, Barcelona, Spain.
| | | | | | -
- Infectious Diseases Service, Hospital del Mar, Barcelona, Spain
| |
Collapse
|
195
|
Pincemail J, Cavalier E, Charlier C, Cheramy–Bien JP, Brevers E, Courtois A, Fadeur M, Meziane S, Goff CL, Misset B, Albert A, Defraigne JO, Rousseau AF. Oxidative Stress Status in COVID-19 Patients Hospitalized in Intensive Care Unit for Severe Pneumonia. A Pilot Study. Antioxidants (Basel) 2021; 10:257. [PMID: 33562403 PMCID: PMC7914603 DOI: 10.3390/antiox10020257] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND A key role of oxidative stress has been highlighted in the pathogenesis of COVID-19. However, little has been said about oxidative stress status (OSS) of COVID-19 patients hospitalized in intensive care unit (ICU). MATERIAL AND METHODS Biomarkers of the systemic OSS included antioxidants (9 assays), trace elements (3 assays), inflammation markers (4 assays) and oxidative damage to lipids (3 assays). RESULTS Blood samples were drawn after 9 (7-11) and 41 (39-43) days of ICU stay, respectively in 3 and 6 patients. Vitamin C, thiol proteins, reduced glutathione, γ-tocopherol, β-carotene and PAOT® score were significantly decreased compared to laboratory reference values. Selenium concentration was at the limit of the lower reference value. By contrast, the copper/zinc ratio (as a source of oxidative stress) was higher than reference values in 55% of patients while copper was significantly correlated with lipid peroxides (r = 0.95, p < 0.001). Inflammatory biomarkers (C-reactive protein and myeloperoxidase) were significantly increased when compared to normals. CONCLUSIONS The systemic OSS was strongly altered in critically ill COVID-19 patients as evidenced by increased lipid peroxidation but also by deficits in some antioxidants (vitamin C, glutathione, thiol proteins) and trace elements (selenium).
Collapse
Affiliation(s)
- Joël Pincemail
- Clinical Chemistry, CHU of Liège, Sart Tilman, 4000 Liège, Belgium; (E.C.); (E.B.); (C.L.G.)
| | - Etienne Cavalier
- Clinical Chemistry, CHU of Liège, Sart Tilman, 4000 Liège, Belgium; (E.C.); (E.B.); (C.L.G.)
| | - Corinne Charlier
- Toxicology Department, CHU of Liège, Sart Tilman, 4000 Liège, Belgium;
| | - Jean-Paul Cheramy–Bien
- Department of Cardiovascular Surgery, CHU of Liège, Sart Tilman, 4000 Liège, Belgium; (J.-P.C.-B.); (A.C.); (J.-O.D.)
| | - Eric Brevers
- Clinical Chemistry, CHU of Liège, Sart Tilman, 4000 Liège, Belgium; (E.C.); (E.B.); (C.L.G.)
| | - Audrey Courtois
- Department of Cardiovascular Surgery, CHU of Liège, Sart Tilman, 4000 Liège, Belgium; (J.-P.C.-B.); (A.C.); (J.-O.D.)
| | - Marjorie Fadeur
- Service of Diabetology, Nutrition and Metabolic Diseases, CHU of Liège, Sart Tilman, 4000 Liège, Belgium;
| | - Smail Meziane
- Institut Européen des Antioxydants, 54000 Nancy, France;
| | - Caroline Le Goff
- Clinical Chemistry, CHU of Liège, Sart Tilman, 4000 Liège, Belgium; (E.C.); (E.B.); (C.L.G.)
| | - Benoît Misset
- Intensive Care Department, CHU of Liège, Sart Tilman, 4000 Liège, Belgium; (B.M.); (A.-F.R.)
| | - Adelin Albert
- Biostatistics and Medico-economic Information Department, CHU of Liège, Sart Tilman, 4000 Liège, Belgium;
| | - Jean-Olivier Defraigne
- Department of Cardiovascular Surgery, CHU of Liège, Sart Tilman, 4000 Liège, Belgium; (J.-P.C.-B.); (A.C.); (J.-O.D.)
| | - Anne-Françoise Rousseau
- Intensive Care Department, CHU of Liège, Sart Tilman, 4000 Liège, Belgium; (B.M.); (A.-F.R.)
| |
Collapse
|
196
|
Giordo R, Zinellu A, Eid AH, Pintus G. Therapeutic Potential of Resveratrol in COVID-19-Associated Hemostatic Disorders. Molecules 2021; 26:856. [PMID: 33562030 PMCID: PMC7915700 DOI: 10.3390/molecules26040856] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 01/30/2021] [Accepted: 02/03/2021] [Indexed: 12/14/2022] Open
Abstract
Coagulation disorders, endotheliopathy and inflammation are the most common hallmarks in SARS-CoV-2 infection, largely determining COVID-19's outcome and severity. Dysfunctions of endothelial cells and platelets are tightly linked in contributing to the systemic inflammatory response that appears to be both a cause and a consequence of COVID-19-associated coagulation disorders and thrombotic events. Indeed, elevated levels of circulating inflammatory cytokines are often associated with abnormal coagulation parameters in COVID-19 patients. Although treatments with low molecular weight heparin (LMWH) have shown beneficial effects in decreasing patient mortality with severe COVID-19, additional therapeutic strategies are urgently needed. Utilizing the anti-inflammatory and anti-thrombotic properties of natural compounds may provide alternative therapeutic approaches to prevent or reduce the risk factors associated with pre-existing conditions and comorbidities that can worsen COVID-19 patients' outcomes. In this regard, resveratrol, a natural compound found in several plants and fruits such as grapes, blueberries and cranberries, may represent a promising coadjuvant for the prevention and treatment of COVID-19. By virtue of its anti-thrombotic and anti-inflammatory properties, resveratrol would be expected to lower COVID-19-associated mortality, which is well known to be increased by thrombosis and inflammation. This review analyzes and discusses resveratrol's ability to modulate vascular hemostasis at different levels targeting both primary hemostasis (interfering with platelet activation and aggregation) and secondary hemostasis (modulating factors involved in coagulation cascade).
Collapse
Affiliation(s)
- Roberta Giordo
- Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah 27272, United Arab Emirates;
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Ali Hussein Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, P.O. Box 2713 Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, P.O. Box 2713 Doha, Qatar
| | - Gianfranco Pintus
- Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah 27272, United Arab Emirates;
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy;
| |
Collapse
|
197
|
Ermilov VV, Barkanov VB, Barkanova ON, Dorofeev NA, Filatov VE. [Clinical and anatomical features of SARS-COV-2 with acute hemorrhagic necrotizing encephalopathy]. Arkh Patol 2021; 83:35-43. [PMID: 33512126 DOI: 10.17116/patol20218301135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Autopsy material and medical history were studied and analyzed in a 20-year-old male patient who had died from COVID-19 infection with the development of acute SARS-CoV-2-associated hemorrhagic necrotizing encephalopathy in adults with obvious endothelial dysfunction confirmed by virological examination of the autopsy material. In this case, the brain structures displayed the main found histopathologic signs: widespread vasculitis (endotheliitis) with varying degrees of segmental and total endothelial destruction; thrombosis mainly of the vessels of the microcirculatory bed; parenchymal hemorrhagic necrosis and inflammation (encephalitis); severe necrobiotic damage to neurons. Cerebrovascular immune damages and hypercoagulable states, which were observed in some acute viral neuroinfections, are the basis for the neurological complications of COVID-19. In this case of bicausal diagnosis (the presence of a comorbidity), the primary disease contributed to the acute progression of the background disease (secondary infiltrative tuberculosis with the development of specific pleuritis and pneumothorax with the addition of acute bilateral focal confluent bronchopneumonia with a history of undifferentiated immunodeficiency syndrome. Emphasis is laid on the possibility and importance of involving the brain structures in the process in COVID-19 for the timely diagnosis of emerging neurological disorders. A brief literature review is given.
Collapse
Affiliation(s)
- V V Ermilov
- Volgograd State Medical University, Volgograd, Russia
| | - V B Barkanov
- Volgograd State Medical University, Volgograd, Russia
| | - O N Barkanova
- Volgograd State Medical University, Volgograd, Russia
| | - N A Dorofeev
- Volgograd State Medical University, Volgograd, Russia
| | - V E Filatov
- Volgograd Regional Bureau of Forensic Medicine, Volgograd, Russia
| |
Collapse
|
198
|
Papadopoulou C, Al Obaidi M, Moraitis E, Compeyrot-Lacassagne S, Eleftheriou D, Brogan P. Management of severe hyperinflammation in the COVID-19 era: the role of the rheumatologist. Rheumatology (Oxford) 2021; 60:911-917. [PMID: 33197261 PMCID: PMC7717388 DOI: 10.1093/rheumatology/keaa652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/04/2020] [Indexed: 01/17/2023] Open
Abstract
Objectives The objectives of this study were (i) to describe the clinical presentation, treatment and outcome of paediatric inflammatory multisystem syndrome temporally related to Sars-CoV-2 (PIMS-TS) in children; (ii) to propose a framework to guide multidisciplinary team (MDT) management; and (iii) to highlight the role of the paediatric rheumatologist in this context. Methods This study involved a retrospective case notes review of patients referred to a single specialist paediatric centre with suspected PIMS-TS, with a focus on clinical presentation, laboratory parameters, treatment, and outcome in the context of an MDT framework. Results Nineteen children of median age 9.1 years fulfilled the definition of PIMS-TS and were managed within an MDT framework: 5/19 were female; 14/19 were of Black, Asian or minority ethnicity; 9/19 also fulfilled diagnostic criteria for complete or incomplete Kawasaki disease (KD). Severe systemic inflammation, shock, and abdominal pain were ubiquitous. Treatment was stratified within an MDT framework and included CSs in all; i.v. immunoglobulin in all; anakinra in 4/19; infliximab in 1/19; and antiviral (aciclovir) in 4/19. Conclusions We observed significant diagnostic equipoise using a current definition of PIMS-TS, overlapping with KD. Outside of clinical trials, an MDT approach is vital. The role of the paediatric rheumatologist is to consider differential diagnoses of hyperinflammation in the young, to advise on empiric immunomodulatory therapy, to set realistic therapeutic targets, to gauge therapeutic success, to oversee timely step-down of immunomodulation, and to contribute to the longer-term MDT follow-up of any late inflammatory sequelae.
Collapse
Affiliation(s)
- Charalampia Papadopoulou
- Department of Paediatric Rheumatology, London, UK.,Infection, Inflammation and Rheumatology Section, London, UK.,NIHR Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Muthana Al Obaidi
- Department of Paediatric Rheumatology, London, UK.,Infection, Inflammation and Rheumatology Section, London, UK.,NIHR Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Elena Moraitis
- Department of Paediatric Rheumatology, London, UK.,Infection, Inflammation and Rheumatology Section, London, UK.,NIHR Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Sandrine Compeyrot-Lacassagne
- Department of Paediatric Rheumatology, London, UK.,NIHR Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Despina Eleftheriou
- Department of Paediatric Rheumatology, London, UK.,Infection, Inflammation and Rheumatology Section, London, UK.,NIHR Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital NHS Foundation Trust, London, UK.,Centre for Adolescent Rheumatology Versus Arthritis, London, UK
| | - Paul Brogan
- Department of Paediatric Rheumatology, London, UK.,Infection, Inflammation and Rheumatology Section, London, UK.,NIHR Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
199
|
García-Ortega A, Oscullo G, Calvillo P, López-Reyes R, Méndez R, Gómez-Olivas JD, Bekki A, Fonfría C, Trilles-Olaso L, Zaldívar E, Ferrando A, Anguera G, Briones-Gómez A, Reig-Mezquida JP, Feced L, González-Jiménez P, Reyes S, Muñoz-Núñez CF, Carreres A, Gil R, Morata C, Toledo-Pons N, Martí-Bonmati L, Menéndez R, Martínez-García MÁ. Incidence, risk factors, and thrombotic load of pulmonary embolism in patients hospitalized for COVID-19 infection. J Infect 2021; 82:261-269. [PMID: 33440207 PMCID: PMC7834386 DOI: 10.1016/j.jinf.2021.01.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/31/2020] [Accepted: 01/08/2021] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To determine the incidence, characteristics, and risk factors of pulmonary embolism (PE) among patients hospitalized for COVID-19. PATIENTS AND METHODS We performed a prospective observational study of a randomly selected cohort of consecutive patients hospitalized for COVID-19 infection between March 8, 2020 through April 25, 2020. All eligible patients underwent a computed tomography pulmonary angiography independently of their PE clinical suspicion and were pre-screened for a baseline elevated D-dimer level. RESULTS 119 patients were randomly selected from the 372 admitted to one tertiary hospital in Valencia (Spain) for COVID-19 infection during the period of study. Seventy-three patients fulfilled both the inclusion criteria and none of the exclusion criteria and were finally included in the study. Despite a high level of pharmacological thromboprophylaxis (89%), the incidence of PE was 35.6% (95% confidence interval [CI], 29.6 to 41.6%), mostly with a peripheral location and low thrombotic load (Qanadli score 18.5%). Multivariate analysis showed that heart rate (Hazard Ratio [HR], 1.04), room-air oxygen saturation (spO2) (HR, 0.87), D-dimer (HR, 1.02), and C-reactive protein (CRP) levels (HR, 1.01) at the time of admission were independent predictors of incident PE during hospitalization. A risk score was constructed with these four variables showing a high predictive value of incident PE (AUC-ROC: 0.86; 95% CI: 0.80 to 0.93). CONCLUSIONS Our findings confirmed a high incidence of PE in hospitalized COVID-19 patients. Heart rate, spO2, D-dimer, and CRP levels at admission were associated with higher rates of PE during hospitalization.
Collapse
Affiliation(s)
- Alberto García-Ortega
- Respiratory Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain; Medical Research Institute Hospital La Fe (IISLAFE), Valencia, Spain.
| | - Grace Oscullo
- Respiratory Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain; Medical Research Institute Hospital La Fe (IISLAFE), Valencia, Spain
| | - Pilar Calvillo
- Radiology Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Raquel López-Reyes
- Respiratory Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain; Medical Research Institute Hospital La Fe (IISLAFE), Valencia, Spain
| | - Raúl Méndez
- Respiratory Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain; Medical Research Institute Hospital La Fe (IISLAFE), Valencia, Spain
| | | | - Amina Bekki
- Respiratory Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Carles Fonfría
- Radiology Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Laura Trilles-Olaso
- Radiology Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Enrique Zaldívar
- Respiratory Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain; Medical Research Institute Hospital La Fe (IISLAFE), Valencia, Spain
| | - Ana Ferrando
- Respiratory Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Gabriel Anguera
- Respiratory Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain; Lung Transplantation Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Andrés Briones-Gómez
- Respiratory Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Juan Pablo Reig-Mezquida
- Respiratory Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain; Lung Transplantation Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Laura Feced
- Respiratory Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain; Medical Research Institute Hospital La Fe (IISLAFE), Valencia, Spain
| | - Paula González-Jiménez
- Respiratory Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain; Medical Research Institute Hospital La Fe (IISLAFE), Valencia, Spain
| | - Soledad Reyes
- Respiratory Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Carlos F Muñoz-Núñez
- Radiology Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Ainhoa Carreres
- Radiology Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Ricardo Gil
- Internal Medicine, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Carmen Morata
- Internal Medicine, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Nuria Toledo-Pons
- Department of Pneumology, University Hospital Son Espases, Palma de Mallorca, Spain
| | - Luis Martí-Bonmati
- Radiology Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain; Biomedical Imaging Research Group (GIBI230), Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Rosario Menéndez
- Respiratory Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain; Medical Research Institute Hospital La Fe (IISLAFE), Valencia, Spain; Medicine Faculty, University of Valencia, Valencia, Spain; CIBER de enfermedades respiratorias, Instituto Carlos III, Madrid, Spain
| | - Miguel Ángel Martínez-García
- Respiratory Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain; Medical Research Institute Hospital La Fe (IISLAFE), Valencia, Spain; CIBER de enfermedades respiratorias, Instituto Carlos III, Madrid, Spain
| |
Collapse
|
200
|
Pulmonary vascular enlargement and lesion extent on computed tomography are correlated with COVID-19 disease severity. Jpn J Radiol 2021; 39:451-458. [PMID: 33502657 PMCID: PMC7838849 DOI: 10.1007/s11604-020-01085-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 12/23/2020] [Indexed: 02/02/2023]
Abstract
PURPOSE To assess the relationships among pulmonary vascular enlargement, computed tomography (CT) findings quantified with software, and coronavirus disease (COVID-19) severity. MATERIALS AND METHODS Ultra-high-resolution (UHR) CT images of 87 patients (50 males, 37 females; median age, 63 years) with COVID-19 confirmed using real-time polymerase chain reaction were analyzed. The maximum subsegmental vascular diameter was measured on CT. Total CT lung volume (CTLV total) and lesion extent (ratio of lesion volume to CTLV total) of ground-glass opacities, reticulation, and consolidation were measured using software. Maximum pulmonary vascular diameter and lesion extent were analyzed using Spearman's correlation analysis. Logistic regression analysis was performed on CT results to predict disease severity. We also assessed changes in these measures on follow-up scans in 16 patients. RESULTS All 23 patients with severe and critical illness had vascular enlargement (> 4 mm). Pulmonary vascular enlargement (odds ratio 3.05, p = 0.018) and CT lesion extent (odds ratio 1.07, p = 0.002) were independent predictors of disease severity after adjustment for age and comorbidities. On follow-up CT, vascular diameter and CT lesion volume decreased (p = 0.001, p = 0.002; respectively), but CTLV total did not change significantly. CONCLUSION Subsegmental vascular enlargement is a notable finding to predict acute COVID-19 disease severity.
Collapse
|