151
|
Simon L, Song K, Vande Stouwe C, Hollenbach A, Amedee A, Mohan M, Winsauer P, Molina P. Δ9-Tetrahydrocannabinol (Δ9-THC) Promotes Neuroimmune-Modulatory MicroRNA Profile in Striatum of Simian Immunodeficiency Virus (SIV)-Infected Macaques. J Neuroimmune Pharmacol 2016; 11:192-213. [PMID: 26607731 PMCID: PMC4773048 DOI: 10.1007/s11481-015-9645-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 11/12/2015] [Indexed: 12/22/2022]
Abstract
Cannabinoid administration before and after simian immunodeficiency virus (SIV)-inoculation ameliorated disease progression and decreased inflammation in male rhesus macaques. Δ9-tetrahydrocannabinol (Δ9-THC) did not increase viral load in brain tissue or produce additive neuropsychological impairment in SIV-infected macaques. To determine if the neuroimmunomodulation of Δ9-THC involved differential microRNA (miR) expression, miR expression in the striatum of uninfected macaques receiving vehicle (VEH) or Δ9-THC (THC) and SIV-infected macaques administered either vehicle (VEH/SIV) or Δ9-THC (THC/SIV) was profiled using next generation deep sequencing. Among the 24 miRs that were differentially expressed among the four groups, 16 miRs were modulated by THC in the presence of SIV. These 16 miRs were classified into four categories and the biological processes enriched by the target genes determined. Our results indicate that Δ9-THC modulates miRs that regulate mRNAs of proteins involved in 1) neurotrophin signaling, 2) MAPK signaling, and 3) cell cycle and immune response thus promoting an overall neuroprotective environment in the striatum of SIV-infected macaques. This is also reflected by increased Brain Derived Neurotrophic Factor (BDNF) and decreased proinflammatory cytokine expression compared to the VEH/SIV group. Whether Δ9-THC-mediated modulation of epigenetic mechanisms provides neuroprotection in other regions of the brain and during chronic SIV-infection remains to be determined.
Collapse
Affiliation(s)
- Liz Simon
- Department of Physiology, Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences, 1901 Perdido Street, Medical Education Building 7205, P7-3, New Orleans, LA, 70112, USA
| | - Keijing Song
- Department of Physiology, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA, 70112, USA
| | - Curtis Vande Stouwe
- Department of Physiology, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA, 70112, USA
| | - Andrew Hollenbach
- Department of Genetics, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA, 70112, USA
| | - Angela Amedee
- Department of Microbiology, Immunology, & Parasitology; Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA, 70112, USA
| | - Mahesh Mohan
- Department of Comparative Pathology, Tulane National Primate Research Center, 18703 3 Rivers Rd, Covington, LA, 70433, USA
| | - Peter Winsauer
- Department of Pharmacology; Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA, 70112, USA
| | - Patricia Molina
- Department of Physiology, Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences, 1901 Perdido Street, Medical Education Building 7205, P7-3, New Orleans, LA, 70112, USA.
| |
Collapse
|
152
|
Lisboa SF, Gomes FV, Guimaraes FS, Campos AC. Microglial Cells as a Link between Cannabinoids and the Immune Hypothesis of Psychiatric Disorders. Front Neurol 2016; 7:5. [PMID: 26858686 PMCID: PMC4729885 DOI: 10.3389/fneur.2016.00005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/14/2016] [Indexed: 12/12/2022] Open
Abstract
Psychiatric disorders are one of the leading causes of disability worldwide. Although several therapeutic options are available, the exact mechanisms responsible for the genesis of these disorders remain to be fully elucidated. In the last decade, a body of evidence has supported the involvement of the immune system in the pathophysiology of these conditions. Microglial cells play a significant role in maintaining brain homeostasis and surveillance. Dysregulation of microglial functions has been associated with several psychiatric conditions. Cannabinoids regulate the brain–immune axis and inhibit microglial cell activation. Here, we summarized evidence supporting the hypothesis that microglial cells could be a target for cannabinoid influence on psychiatric disorders, such as anxiety, depression, schizophrenia, and stress-related disorders.
Collapse
Affiliation(s)
- Sabrina F Lisboa
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil; Center of Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Ribeirão Preto, Brazil
| | - Felipe V Gomes
- Department of Neuroscience, University of Pittsburgh , Pittsburgh, PA , USA
| | - Francisco S Guimaraes
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil; Center of Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Ribeirão Preto, Brazil
| | - Alline C Campos
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil; Center of Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
153
|
Aghazadeh Tabrizi M, Baraldi PG, Borea PA, Varani K. Medicinal Chemistry, Pharmacology, and Potential Therapeutic Benefits of Cannabinoid CB2 Receptor Agonists. Chem Rev 2016; 116:519-60. [PMID: 26741146 DOI: 10.1021/acs.chemrev.5b00411] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Mojgan Aghazadeh Tabrizi
- Department of Chemical and Pharmaceutical Sciences and ‡Department of Medical Science, Pharmacology Section, University of Ferrara , Ferrara 44121, Italy
| | - Pier Giovanni Baraldi
- Department of Chemical and Pharmaceutical Sciences and ‡Department of Medical Science, Pharmacology Section, University of Ferrara , Ferrara 44121, Italy
| | - Pier Andrea Borea
- Department of Chemical and Pharmaceutical Sciences and ‡Department of Medical Science, Pharmacology Section, University of Ferrara , Ferrara 44121, Italy
| | - Katia Varani
- Department of Chemical and Pharmaceutical Sciences and ‡Department of Medical Science, Pharmacology Section, University of Ferrara , Ferrara 44121, Italy
| |
Collapse
|
154
|
Abstract
Cannabis has been used for centuries to treat seizures. Recent anecdotal reports, accumulating animal model data, and mechanistic insights have raised interest in cannabis-based antiepileptic therapies. In this study, we review current understanding of the endocannabinoid system, characterize the pro- and anticonvulsive effects of cannabinoids [e.g., Δ9-tetrahydrocannabinol and cannabidiol (CBD)], and highlight scientific evidence from pre-clinical and clinical trials of cannabinoids in epilepsy. These studies suggest that CBD avoids the psychoactive effects of the endocannabinoid system to provide a well-tolerated, promising therapeutic for the treatment of seizures, while whole-plant cannabis can both contribute to and reduce seizures. Finally, we discuss results from a new multicenter, open-label study using CBD in a population with treatment-resistant epilepsy. In all, we seek to evaluate our current understanding of cannabinoids in epilepsy and guide future basic science and clinical studies.
Collapse
Affiliation(s)
- Evan C Rosenberg
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Langone Medical Center, New York, NY, 10016, USA
| | - Richard W Tsien
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Langone Medical Center, New York, NY, 10016, USA
| | - Benjamin J Whalley
- School of Pharmacy, The University of Reading, Whiteknights, Reading, RG6 6AP, UK
| | - Orrin Devinsky
- Department of Neurology, Comprehensive Epilepsy Center, New York University School of Medicine, New York, NY, 10016, UK.
| |
Collapse
|
155
|
Mecha M, Feliú A, Carrillo-Salinas FJ, Rueda-Zubiaurre A, Ortega-Gutiérrez S, de Sola RG, Guaza C. Endocannabinoids drive the acquisition of an alternative phenotype in microglia. Brain Behav Immun 2015; 49:233-45. [PMID: 26086345 DOI: 10.1016/j.bbi.2015.06.002] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/02/2015] [Accepted: 06/02/2015] [Indexed: 12/16/2022] Open
Abstract
The ability of microglia to acquire diverse states of activation, or phenotypes, reflects different features that are determinant for their contribution to homeostasis in the adult CNS, and their activity in neuroinflammation, repair or immunomodulation. Despite the widely reported immunomodulatory effects of cannabinoids in both the peripheral immune system and the CNS, less is known about how the endocannabinoid signaling system (eCBSS) influence the microglial phenotype. The general aim of the present study was to investigate the role of endocannabinoids in microglia polarization by using microglia cell cultures. We show that alternative microglia (M2a) and acquired deactivated microglia (M2c) exhibit changes in the eCB machinery that favor the selective synthesis of 2-AG and AEA, respectively. Once released, these eCBs might be able to act through CB1 and/or CB2 receptors in order to influence the acquisition of an M2 phenotype. We present three lines of evidence that the eCBSS is critical for the acquisition of the M2 phenotype: (i) M2 polarization occurs on exposure to the two main endocannabinoids 2-AG and AEA in microglia cultures; (ii) cannabinoid receptor antagonists block M2 polarization; and (iii) M2 polarization is dampened in microglia from CB2 receptor knockout mice. Taken together, these results indicate the interest of eCBSS for the regulation of microglial activation in normal and pathological conditions.
Collapse
MESH Headings
- Animals
- Arachidonic Acids/metabolism
- Cell Polarity
- Cells, Cultured
- Endocannabinoids/metabolism
- Glycerides/metabolism
- Lipoprotein Lipase/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microglia/metabolism
- Microglia/physiology
- Phenotype
- Polyunsaturated Alkamides/metabolism
- Rats, Wistar
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
Collapse
Affiliation(s)
- M Mecha
- Department of Functional and Systems Neurobiology, Neuroimmunology Group, Instituto Cajal, CSIC, Madrid, Spain.
| | - A Feliú
- Department of Functional and Systems Neurobiology, Neuroimmunology Group, Instituto Cajal, CSIC, Madrid, Spain
| | - F J Carrillo-Salinas
- Department of Functional and Systems Neurobiology, Neuroimmunology Group, Instituto Cajal, CSIC, Madrid, Spain
| | - A Rueda-Zubiaurre
- Department of Organic Chemistry, Chemistry Faculty, University Complutense of Madrid, Spain
| | - S Ortega-Gutiérrez
- Department of Organic Chemistry, Chemistry Faculty, University Complutense of Madrid, Spain
| | - R García de Sola
- Clinical Neurophysiology Service, Hospital Universitario la Princesa, Madrid, Spain
| | - C Guaza
- Department of Functional and Systems Neurobiology, Neuroimmunology Group, Instituto Cajal, CSIC, Madrid, Spain
| |
Collapse
|
156
|
Volden TA, Reyelts CD, Hoke TA, Arikkath J, Bonasera SJ. Validation of Flow Cytometry and Magnetic Bead-Based Methods to Enrich CNS Single Cell Suspensions for Quiescent Microglia. J Neuroimmune Pharmacol 2015; 10:655-65. [PMID: 26260923 DOI: 10.1007/s11481-015-9628-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/30/2015] [Indexed: 11/29/2022]
Abstract
Microglia are resident mononuclear phagocytes within the CNS parenchyma that intimately interact with neurons and astrocytes to remodel synapses and extracellular matrix. We briefly review studies elucidating the molecular pathways that underlie microglial surveillance, activation, chemotaxis, and phagocytosis; we additionally place these studies in a clinical context. We describe and validate an inexpensive and simple approach to obtain enriched single cell suspensions of quiescent parenchymal and perivascular microglia from the mouse cerebellum and hypothalamus. Following preparation of regional CNS single cell suspensions, we remove myelin debris, and then perform two serial enrichment steps for cells expressing surface CD11b. Myelin depletion and CD11b enrichment are both accomplished using antigen-specific magnetic beads in an automated cell separation system. Flow cytometry of the resultant suspensions shows a significant enrichment for CD11b(+)/CD45(+) cells (perivascular microglia) and CD11b(+)/CD45(-) cells (parenchymal microglia) compared to starting suspensions. Of note, cells from these enriched suspensions minimally express Aif1 (aka Iba1), suggesting that the enrichment process does not evoke significant microglial activation. However, these cells readily respond to a functional challenge (LPS) with significant changes in the expression of molecules specifically associated with microglia. We conclude that methods employing a combination of magnetic-bead based sorting and flow cytometry produce suspensions highly enriched for microglia that are appropriate for a variety of molecular and cellular assays.
Collapse
Affiliation(s)
- T A Volden
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - C D Reyelts
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - T A Hoke
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - J Arikkath
- Developmental Neuroscience, Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - S J Bonasera
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA. .,University of Nebraska Medical Center, 3028 Durham Research Center II, Omaha, NE, 68198-5039, USA.
| |
Collapse
|
157
|
Savonenko AV, Melnikova T, Wang Y, Ravert H, Gao Y, Koppel J, Lee D, Pletnikova O, Cho E, Sayyida N, Hiatt A, Troncoso J, Davies P, Dannals RF, Pomper MG, Horti AG. Cannabinoid CB2 Receptors in a Mouse Model of Aβ Amyloidosis: Immunohistochemical Analysis and Suitability as a PET Biomarker of Neuroinflammation. PLoS One 2015; 10:e0129618. [PMID: 26086915 PMCID: PMC4472959 DOI: 10.1371/journal.pone.0129618] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 05/11/2015] [Indexed: 11/18/2022] Open
Abstract
In Alzheimer's disease (AD), one of the early responses to Aβ amyloidosis is recruitment of microglia to areas of new plaque. Microglial receptors such as cannabinoid receptor 2 (CB2) might be a suitable target for development of PET radiotracers that could serve as imaging biomarkers of Aβ-induced neuroinflammation. Mouse models of amyloidosis (J20APPswe/ind and APPswe/PS1ΔE9) were used to investigate the cellular distribution of CB2 receptors. Specificity of CB2 antibody (H60) was confirmed using J20APPswe/ind mice lacking CB2 receptors. APPswe/PS1ΔE9 mice were used in small animal PET with a CB2-targeting radiotracer, [11C]A836339. These studies revealed increased binding of [11C]A836339 in amyloid-bearing mice. Specificity of the PET signal was confirmed in a blockade study with a specific CB2 antagonist, AM630. Confocal microscopy revealed that CB2-receptor immunoreactivity was associated with astroglial (GFAP) and, predominantly, microglial (CD68) markers. CB2 receptors were observed, in particular, in microglial processes forming engulfment synapses with Aβ plaques. In contrast to glial cells, neuron (NeuN)-derived CB2 signal was equal between amyloid-bearing and control mice. The pattern of neuronal CB2 staining in amyloid-bearing mice was similar to that in human cases of AD. The data collected in this study indicate that Aβ amyloidosis without concomitant tau pathology is sufficient to activate CB2 receptors that are suitable as an imaging biomarker of neuroinflammation. The main source of enhanced CB2 PET binding in amyloid-bearing mice is increased CB2 immunoreactivity in activated microglia. The presence of CB2 immunoreactivity in neurons does not likely contribute to the enhanced CB2 PET signal in amyloid-bearing mice due to a lack of significant neuronal loss in this model. However, significant loss of neurons as seen at late stages of AD might decrease the CB2 PET signal due to loss of neuronally-derived CB2. Thus this study in mouse models of AD indicates that a CB2-specific radiotracer can be used as a biomarker of neuroinflammation in the early preclinical stages of AD, when no significant neuronal loss has yet developed.
Collapse
Affiliation(s)
- Alena V. Savonenko
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Departments of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- * E-mail: (AGH); (AS)
| | - Tatiana Melnikova
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Yuchuan Wang
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Hayden Ravert
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Yongjun Gao
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Jeremy Koppel
- Litwin-Zucker Research Center, Feinstein Institute for Medical Research, North-Shore Long Island Jewish Health System, Manhasset, NY, United States of America
| | - Deidre Lee
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Olga Pletnikova
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Eugenia Cho
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Nuzhat Sayyida
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Andrew Hiatt
- MAPP Biopharmaceutical Inc, San-Diego, CA, United States of America
| | - Juan Troncoso
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Departments of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Peter Davies
- Litwin-Zucker Research Center, Feinstein Institute for Medical Research, North-Shore Long Island Jewish Health System, Manhasset, NY, United States of America
| | - Robert F. Dannals
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Martin G. Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Andrew G. Horti
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- * E-mail: (AGH); (AS)
| |
Collapse
|
158
|
Molina PE, Amedee AM, Winsauer P, Nelson S, Bagby G, Simon L. Behavioral, Metabolic, and Immune Consequences of Chronic Alcohol or Cannabinoids on HIV/AIDs: Studies in the Non-Human Primate SIV Model. J Neuroimmune Pharmacol 2015; 10:217-32. [PMID: 25795088 PMCID: PMC4470723 DOI: 10.1007/s11481-015-9599-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 03/05/2015] [Indexed: 02/07/2023]
Abstract
HIV-associated mortality has been significantly reduced with antiretroviral therapy (ART), and HIV infection has become a chronic disease that frequently coexists with many disorders, including substance abuse (Azar et al. Drug Alcohol Depend 112:178-193, 2010; Phillips et al. J Gen Int Med 16:165, 2001). Alcohol and drugs of abuse may modify host-pathogen interactions at various levels including behavioral, metabolic, and immune consequences of HIV infection, as well as the ability of the virus to integrate into the genome and replicate in host cells. Identifying mechanisms responsible for these interactions is complicated by many factors, such as the tissue specific responses to viral infection, multiple cellular mechanisms involved in inflammatory responses, neuroendocrine and localized responses to infection, and kinetics of viral replication. An integrated physiological analysis of the biomedical consequences of chronic alcohol and drug use or abuse on disease progression is possible using rhesus macaques infected with simian immunodeficiency virus (SIV), a relevant model of HIV infection. This review will provide an overview of the data gathered using this model to show that chronic administration of two of the most commonly abused substances, alcohol and cannabinoids (Δ(9)-Tetrahydrocannabinol; THC), affect host-pathogen interactions.
Collapse
Affiliation(s)
- Patricia E Molina
- Department of Physiology, Louisiana State University Health Sciences Center, School of Medicine, 1901 Perdido Street, New Orleans, LA, 70112, USA,
| | | | | | | | | | | |
Collapse
|
159
|
Schomberg D, Miranpuri G, Duellman T, Crowell A, Vemuganti R, Resnick D. Spinal cord injury induced neuropathic pain: Molecular targets and therapeutic approaches. Metab Brain Dis 2015; 30:645-58. [PMID: 25588751 DOI: 10.1007/s11011-014-9642-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/05/2014] [Indexed: 10/24/2022]
Abstract
Neuropathic pain, especially that resulting from spinal cord injury, is a tremendous clinical challenge. A myriad of biological changes have been implicated in producing these pain states including cellular interactions, extracellular proteins, ion channel expression, and epigenetic influences. Physiological consequences of these changes are varied and include functional deficits and pain responses. Developing therapies that effectively address the cause of these symptoms require a deeper knowledge of alterations in the molecular pathways. Matrix metalloproteinases and tissue inhibitors of metalloproteinases are two promising therapeutic targets. Matrix metalloproteinases interact with and influence many of the studied pain pathways. Gene expression of ion channels and inflammatory mediators clearly contributes to neuropathic pain. Localized and time dependent targeting of these proteins could alleviate and even prevent neuropathic pain from developing. Current therapeutic options for neuropathic pain are limited primarily to analgesics targeting the opioid pathway. Therapies directed at molecular targets are highly desirable and in early stages of development. These include transplantation of exogenously engineered cell populations and targeted gene manipulation. This review describes specific molecular targets amenable to therapeutic intervention using currently available delivery systems.
Collapse
Affiliation(s)
- Dominic Schomberg
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI, 53792, USA
| | | | | | | | | | | |
Collapse
|
160
|
Yaksh TL, Woller SA, Ramachandran R, Sorkin LS. The search for novel analgesics: targets and mechanisms. F1000PRIME REPORTS 2015; 7:56. [PMID: 26097729 PMCID: PMC4447049 DOI: 10.12703/p7-56] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The management of the pain state is of great therapeutic relevance to virtually every medical specialty. Failure to manage its expression has deleterious consequence to the well-being of the organism. An understanding of the complex biology of the mechanisms underlying the processing of nociceptive information provides an important pathway towards development of novel and robust therapeutics. Importantly, preclinical models have been of considerable use in determining the linkage between mechanism and the associated behaviorally defined pain state. This review seeks to provide an overview of current thinking targeting pain biology, the use of preclinical models and the development of novel pain therapeutics. Issues pertinent to the strengths and weaknesses of current development strategies for analgesics are considered.
Collapse
|
161
|
Anandamide, Acting via CB2 Receptors, Alleviates LPS-Induced Neuroinflammation in Rat Primary Microglial Cultures. Neural Plast 2015; 2015:130639. [PMID: 26090232 PMCID: PMC4452105 DOI: 10.1155/2015/130639] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 03/27/2015] [Indexed: 11/18/2022] Open
Abstract
Microglial activation is a polarized process divided into potentially neuroprotective phenotype M2 and neurotoxic phenotype M1, predominant during chronic neuroinflammation. Endocannabinoid system provides an attractive target to control the balance between microglial phenotypes. Anandamide as an immune modulator in the central nervous system acts via not only cannabinoid receptors (CB1 and CB2) but also other targets (e.g., GPR18/GPR55). We studied the effect of anandamide on lipopolysaccharide-induced changes in rat primary microglial cultures. Microglial activation was assessed based on nitric oxide (NO) production. Analysis of mRNA was conducted for M1 and M2 phenotype markers possibly affected by the treatment. Our results showed that lipopolysaccharide-induced NO release in microglia was significantly attenuated, with concomitant downregulation of M1 phenotypic markers, after pretreatment with anandamide. This effect was not sensitive to CB1 or GPR18/GPR55 antagonism. Administration of CB2 antagonist partially abolished the effects of anandamide on microglia. Interestingly, administration of a GPR18/GPR55 antagonist by itself suppressed NO release. In summary, we showed that the endocannabinoid system plays a crucial role in the management of neuroinflammation by dampening the activation of an M1 phenotype. This effect was primarily controlled by the CB2 receptor, although functional cross talk with GPR18/GPR55 may occur.
Collapse
|
162
|
Tang J, Tao Y, Tan L, Yang L, Niu Y, Chen Q, Yang Y, Feng H, Chen Z, Zhu G. Cannabinoid receptor 2 attenuates microglial accumulation and brain injury following germinal matrix hemorrhage via ERK dephosphorylation in vivo and in vitro. Neuropharmacology 2015; 95:424-33. [PMID: 25963415 DOI: 10.1016/j.neuropharm.2015.04.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/02/2015] [Accepted: 04/27/2015] [Indexed: 01/13/2023]
Abstract
Microglia accumulation plays detrimental roles in the pathology of germinal matrix hemorrhage (GMH) in the immature preterm brain. However, the underlying mechanisms remain poorly defined. Here, we investigated the effects of a cannabinoid receptor 2 (CB2R) agonist on microglia proliferation and the possible involvement of the mitogen-activated protein kinase (MAPK) family pathway in a collagenase-induced GMH rat model and in thrombin-induced rat microglia cells. We demonstrated that activation of CB2R played a key role in attenuating brain edema, neuronal degeneration, microglial accumulation and the phosphorylated extracellular signal-regulated kinase (p-ERK) protein level 24 h following GMH. In vitro, Western blot analysis and immunostaining indicated that ERK and P38 phosphorylation levels in microglia stimulated by thrombin were decreased after JWH-133 (CB2R selective agonist) treatment in a concentration-dependent manner. Microglia proliferation (EDU + microglia) and inflammatory and oxidative stress responses were attenuated by UO126 (ERK pathway inhibitor) 24 h after thrombin stimulation, an activity that was prevented by AM630 (CB2R selective antagonist). Overall, these findings suggest that activation of the endocannabinoid system might attenuate inflammation-induced secondary brain injury after GMH in rats by reducing microglia accumulation through a mechanism involving ERK dephosphorylation. Enhancing CB2R activation is a potential treatment to slow down the course of GMH in preterm newborns.
Collapse
Affiliation(s)
- Jun Tang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Yihao Tao
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Liang Tan
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Liming Yang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Yin Niu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Qianwei Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Yunfeng Yang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Zhi Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.
| | - Gang Zhu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
163
|
Fung S, Cherry AE, Xu C, Stella N. Alkylindole-sensitive receptors modulate microglial cell migration and proliferation. Glia 2015; 63:1797-808. [PMID: 25914169 DOI: 10.1002/glia.22845] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 03/06/2015] [Accepted: 04/07/2015] [Indexed: 02/01/2023]
Abstract
Ligands targeting G protein-coupled receptors (GPCR) expressed by microglia have been shown to regulate distinct components of their activation process, including cell proliferation, migration and differentiation into M1 or M2 phenotypes. Cannabinoids, including the active component of the Cannabis plant, tetrahydrocannabinol (THC), and the synthetic alkylindole (AI) compound, WIN55212-2 (WIN-2), activate two molecularly identified GPCRs: CB1 and CB2 . Previous studies reported that WIN-2 activates an additional unknown GPCR that is not activated by plant-derived cannabinoids, and evidence indicates that microglia express these receptors. Detailed studies on the role of AI-sensitive receptors in microglial cell activation were difficult as no selective pharmacological tools were available. Here, three newly-developed AI analogues allowed us to determine if microglia express AI-sensitive receptors and if so, study how they regulate the microglial cell activation process. We found that mouse microglia in primary culture express functional AI-sensitive receptors as measured by radioligand binding and changes in intracellular cAMP levels, and that these receptors control both basal and ATP-stimulated migration. AI analogues inhibit cell proliferation stimulated by macrophage-colony stimulating factor (M-CSF) without affecting basal cell proliferation. Remarkably, AI analogues do not control the expression of effector proteins characteristic of M1 or M2 phenotypes; yet activating microglia with M1 and M2 cytokines reduces the microglial response to AI analogues. Our results suggest that microglia express functional AI-sensitive receptors that control select components of their activation process. Agonists of these novel targets might represent a novel class of therapeutics to influence the microglial cell activation process.
Collapse
Affiliation(s)
- Susan Fung
- Department of Pharmacology, University of Washington, 1959 NE Pacific Way, Seattle, Washington.,Graduate Program in Neurobiology and Behavior, University of Washington, 1959 NE Pacific St., Seattle, Washington
| | - Allison E Cherry
- Department of Pharmacology, University of Washington, 1959 NE Pacific Way, Seattle, Washington
| | - Cong Xu
- Department of Pharmacology, University of Washington, 1959 NE Pacific Way, Seattle, Washington
| | - Nephi Stella
- Department of Pharmacology, University of Washington, 1959 NE Pacific Way, Seattle, Washington.,Graduate Program in Neurobiology and Behavior, University of Washington, 1959 NE Pacific St., Seattle, Washington.,Department of Psychiatry and Behavioral Sciences, University of Washington, 1959 NE Pacific Way, Seattle, Washington
| |
Collapse
|
164
|
Alizadeh A, Zendehdel M, Babapour V, Charkhkar S, Hassanpour S. Role of cannabinoidergic system on food intake in neonatal layer-type chicken. Vet Res Commun 2015; 39:151-7. [PMID: 25902906 DOI: 10.1007/s11259-015-9636-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/14/2015] [Indexed: 01/29/2023]
Abstract
Central regulatory mechanisms for neurotransmitters of food intake vary among animals. Endocannabinoids have crucial role on central food intake regulation in mammals but its role has not been studied in layer-type chicken. Thus, in this study 6 experiments designed to evaluate effects of intracerebroventricular (ICV) administration of 2-AG (2-Arachidonoylglycerol, selective CB1 receptors agonist), SR141716A (selective CB1 receptors antagonist), JWH015 (selective CB2 receptors agonist), AM630 (selective CB2 receptors antagonist) on feeding behavior in 3 h food deprived neonatal layer-type chickens. In experiment 1, birds ICV injected with control solution and 2-AG (0.25, 0.5 and 1 μg). In experiment 2: control solution, SR141716A (6.25, 12.5 and 25 μg) were ICV injected to birds. In experiment 3 animals received: control solution, SR141716A (6.25 μg), 2-AG (1 μg) and co-injection of SR141716A+2-AG. In experiment 4, chickens received control solution and JWH015 (6.25, 12.5 and 25 μg). In experiment 5, control solution and AM630 (1.25, 2.5 and 5 μg) were injected. In experiment 6, the birds received control solution, AM630 (1.25 μg), JWH015 (25 μg) and co-administration of AM630+JWH015. Then, cumulative food intake was recorded until 120 min after injection. According to the results, 2-AG dose dependently increased cumulative food intake while SR141716A reduced appetite compared to control group (P < 0.05). Injection of 2-AG (1 μg) amplified food intake and its effect minimized by SR141716A (6.25 μg) (P < 0.05). Also, ICV injection of JWH015 (25 μg) dose dependently increased food intake and co-injection of JWH015+AM630 decreased JWH015-induced food intake (P < 0.05). These results suggest CB1 and CB2 receptors have an important role on ingestive behavior in FD3 neonatal layer-type chicken.
Collapse
Affiliation(s)
- Abbas Alizadeh
- Department of Physiology, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | | | | | | |
Collapse
|
165
|
Differential upregulation of the cannabinoid CB₂ receptor in neurotoxic and inflammation-driven rat models of Parkinson's disease. Exp Neurol 2015; 269:133-41. [PMID: 25895887 DOI: 10.1016/j.expneurol.2015.04.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/08/2015] [Accepted: 04/11/2015] [Indexed: 11/24/2022]
Abstract
The cannabinoid CB2 receptor has recently emerged as a potential anti-inflammatory target to break the self-sustaining cycle of neuroinflammation and neurodegeneration that is associated with neurodegenerative diseases. However, in order to facilitate the development of cannabinoid drugs for neurodegenerative disease, the changes that occur in the endocannabinoid system in response to different neurodegenerative triggers needs to be elucidated. Therefore, the aim of this study was to investigate and compare the changes that occur in the endocannabinoid system in neurotoxic and inflammation-driven models of Parkinson's disease. To do so, male Sprague Dawley rats were given unilateral, intra-striatal injections of the dopaminergic neurotoxin, 6-hydroxydopamine, or the bacterial inflammagen, lipopolysaccharide (LPS). Animals underwent behavioural testing for motor dysfunction on Days 7, 14 and 28 post-surgery, and were sacrificed on Days 1, 4, 14 and 28. Changes in the endocannabinoid system were investigated by qRT-PCR, liquid chromatography-mass spectrometry and immunohistochemistry. After injection of 6-hydroxydopamine or LPS into the rat striatum, we found that expression of the CB2 receptor was significantly elevated in both models, and that this increase correlated significantly with an increase in microglial activation. Interestingly, the increase in CB2 receptor expression in the inflammation-driven model was significantly more pronounced than that in the neurotoxic model. Moreover, endocannabinoid levels were also elevated in the LPS model but not the 6-hydroxydopamine model. Thus, this study has shown that the endocannabinoid system is dysregulated in animal models of Parkinson's disease, and has also revealed significant differences in the level of dysregulation between the models themselves. This study indicates that targeting the CB2 receptor may represent a viable target for anti-inflammatory disease modification in Parkinson's disease.
Collapse
|
166
|
Aguirre-Rueda D, Guerra-Ojeda S, Aldasoro M, Iradi A, Obrador E, Mauricio MD, Vila JM, Marchio P, Valles SL. WIN 55,212-2, agonist of cannabinoid receptors, prevents amyloid β1-42 effects on astrocytes in primary culture. PLoS One 2015; 10:e0122843. [PMID: 25874692 PMCID: PMC4395436 DOI: 10.1371/journal.pone.0122843] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/18/2015] [Indexed: 01/07/2023] Open
Abstract
Alzheimer´s disease (AD), a neurodegenerative illness involving synaptic dysfunction with extracellular accumulation of Aβ1-42 toxic peptide, glial activation, inflammatory response and oxidative stress, can lead to neuronal death. Endogenous cannabinoid system is implicated in physiological and physiopathological events in central nervous system (CNS), and changes in this system are related to many human diseases, including AD. However, studies on the effects of cannabinoids on astrocytes functions are scarce. In primary cultured astrocytes we studied cellular viability using MTT assay. Inflammatory and oxidative stress mediators were determined by ELISA and Western-blot techniques both in the presence and absence of Aβ1-42 peptide. Effects of WIN 55,212-2 (a synthetic cannabinoid) on cell viability, inflammatory mediators and oxidative stress were also determined. Aβ1-42 diminished astrocytes viability, increased TNF-α and IL-1β levels and p-65, COX-2 and iNOS protein expression while decreased PPAR-γ and antioxidant enzyme Cu/Zn SOD. WIN 55,212-2 pretreatment prevents all effects elicited by Aβ1-42. Furthermore, cannabinoid WIN 55,212-2 also increased cell viability and PPAR-γ expression in control astrocytes. In conclusion cannabinoid WIN 55,212-2 increases cell viability and anti-inflammatory response in cultured astrocytes. Moreover, WIN 55,212-2 increases expression of anti-oxidant Cu/Zn SOD and is able to prevent inflammation induced by Aβ1-42 in cultured astrocytes. Further studies would be needed to assess the possible beneficial effects of cannabinoids in Alzheimer's disease patients.
Collapse
Affiliation(s)
- Diana Aguirre-Rueda
- Department of Physiology, School of Medicine, University of Valencia, Valencia, Spain
| | - Sol Guerra-Ojeda
- Department of Physiology, School of Medicine, University of Valencia, Valencia, Spain
| | - Martin Aldasoro
- Department of Physiology, School of Medicine, University of Valencia, Valencia, Spain
| | - Antonio Iradi
- Department of Physiology, School of Medicine, University of Valencia, Valencia, Spain
| | - Elena Obrador
- Department of Physiology, School of Medicine, University of Valencia, Valencia, Spain
| | - Maria D. Mauricio
- Department of Physiology, School of Medicine, University of Valencia, Valencia, Spain
| | - Jose Mª Vila
- Department of Physiology, School of Medicine, University of Valencia, Valencia, Spain
| | - Patricia Marchio
- Department of Physiology, School of Medicine, University of Valencia, Valencia, Spain
| | - Soraya L. Valles
- Department of Physiology, School of Medicine, University of Valencia, Valencia, Spain
- * E-mail:
| |
Collapse
|
167
|
Nimczick M, Decker M. New Approaches in the Design and Development of Cannabinoid Receptor Ligands: Multifunctional and Bivalent Compounds. ChemMedChem 2015; 10:773-86. [DOI: 10.1002/cmdc.201500041] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Indexed: 12/22/2022]
|
168
|
Iida T, Yoshikawa T, Matsuzawa T, Naganuma F, Nakamura T, Miura Y, Mohsen AS, Harada R, Iwata R, Yanai K. Histamine H3 receptor in primary mouse microglia inhibits chemotaxis, phagocytosis, and cytokine secretion. Glia 2015; 63:1213-25. [PMID: 25754956 DOI: 10.1002/glia.22812] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 02/18/2015] [Indexed: 11/06/2022]
Abstract
Histamine is a physiological amine which initiates a multitude of physiological responses by binding to four known G-protein coupled histamine receptor subtypes as follows: histamine H1 receptor (H1 R), H2 R, H3 R, and H4 R. Brain histamine elicits neuronal excitation and regulates a variety of physiological processes such as learning and memory, sleep-awake cycle and appetite regulation. Microglia, the resident macrophages in the brain, express histamine receptors; however, the effects of histamine on critical microglial functions such as chemotaxis, phagocytosis, and cytokine secretion have not been examined in primary cells. We demonstrated that mouse primary microglia express H2 R, H3 R, histidine decarboxylase, a histamine synthase, and histamine N-methyltransferase, a histamine metabolizing enzyme. Both forskolin-induced cAMP accumulation and ATP-induced intracellular Ca(2+) transients were reduced by the H3 R agonist imetit but not the H2 R agonist amthamine. H3 R activation on two ubiquitous second messenger signalling pathways suggests that H3 R can regulate various microglial functions. In fact, histamine and imetit dose-dependently inhibited microglial chemotaxis, phagocytosis, and lipopolysaccharide (LPS)-induced cytokine production. Furthermore, we confirmed that microglia produced histamine in the presence of LPS, suggesting that H3 R activation regulate microglial function by autocrine and/or paracrine signalling. In conclusion, we demonstrate the involvement of histamine in primary microglial functions, providing the novel insight into physiological roles of brain histamine.
Collapse
Affiliation(s)
- Tomomitsu Iida
- Department of Pharmacology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-Machi, Aoba-Ku, Sendai, Japan; Cyclotron Radioisotope Center, Tohoku University, 6-3 Aoba, Aramaki, Aoba-Ku, Sendai, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Cannabinoid receptor 2 deficiency results in reduced neuroinflammation in an Alzheimer's disease mouse model. Neurobiol Aging 2015; 36:710-9. [DOI: 10.1016/j.neurobiolaging.2014.09.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 09/01/2014] [Accepted: 09/17/2014] [Indexed: 12/12/2022]
|
170
|
Zhu Y, Fotinos A, Mao LL, Atassi N, Zhou EW, Ahmad S, Guan Y, Berry JD, Cudkowicz ME, Wang X. Neuroprotective agents target molecular mechanisms of disease in ALS. Drug Discov Today 2015; 20:65-75. [DOI: 10.1016/j.drudis.2014.08.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/02/2014] [Accepted: 08/31/2014] [Indexed: 12/14/2022]
|
171
|
Abstract
OBJECTIVE Substance dependence disorder is a chronically relapsing condition characterised by neurobiological changes leading to loss of control in restricting a substance intake, compulsion and withdrawal syndrome. In the past few years, (endo)cannabinoids have been raised as a possible target in the aetiology of drug addiction. On the other hand, although the exact mechanisms of the genesis of addiction remain poorly understood, it is possible that neuroinflammation might also play a role in the pathophysiology of this condition. Studies demonstrated that (endo)cannabinoids act as immunomodulators by inhibiting cytokines production and microglial cell activation. Thus, in the present review, we explore the possible role of neuroinflammation on the therapeutic effects of cannabinoids on drug addiction. METHODS We conducted an evidence-based review of the literature in order to assess the role of cannabinoids on the neuroinflammatory hypothesis of addiction (terms: addiction, cannabinoids and inflammation). We searched PubMed and BioMedCentral databases up to April 2014 with no date restrictions. RESULTS In all, 165 eligible articles were included in the present review. Existing evidence suggests that disruption in cannabinoid signalling during the drug addiction process leads to microglial activation and neuroinflammation. CONCLUSION The literature showed that inflammation and changes in endocannabinod signalling occur in drug abuse; however, it remains uncertain whether these changes are causally or coincidentally associated with addiction. Additional studies, therefore, are needed to elucidate the contribution of neuroinflammation on the behavioural and neuroprotective effects of cannabinoids on drug addiction.
Collapse
|
172
|
Milloy MJ, Marshall B, Kerr T, Richardson L, Hogg R, Guillemi S, Montaner JSG, Wood E. High-intensity cannabis use associated with lower plasma human immunodeficiency virus-1 RNA viral load among recently infected people who use injection drugs. Drug Alcohol Rev 2014; 34:135-40. [PMID: 25389027 DOI: 10.1111/dar.12223] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 09/21/2014] [Indexed: 11/28/2022]
Abstract
INTRODUCTION AND AIMS Cannabis use is common among people who are living with human immunodeficiency virus (HIV)/acquired immune deficiency syndrome (AIDS). While there is growing pre-clinical evidence of the immunomodulatory and anti-viral effects of cannabinoids, their possible effects on HIV disease parameters in humans are largely unknown. Thus, we sought to investigate the possible effects of cannabis use on plasma HIV-1 RNA viral loads (pVLs) among recently seroconverted illicit drug users. DESIGN AND METHODS We used data from two linked longitudinal observational cohorts of people who use injection drugs. Using multivariable linear mixed-effects modelling, we analysed the relationship between pVL and high-intensity cannabis use among participants who seroconverted following recruitment. RESULTS Between May 1996 and March 2012, 88 individuals seroconverted after recruitment and were included in these analyses. Median pVL in the first 365 days among all seroconverters was 4.66 log10 c mL(-1) . In a multivariable model, at least daily cannabis use was associated with 0.51 log10 c mL(-1) lower pVL (β = -0.51, standard error = 0.170, P value = 0.003). DISCUSSION AND CONCLUSIONS Consistent with the findings from recent in vitro and in vivo studies, including one conducted among lentiviral-infected primates, we observed a strong association between cannabis use and lower pVL following seroconversion among illicit drug-using participants. Our findings support the further investigation of the immunomodulatory or antiviral effects of cannabinoids among individuals living with HIV/AIDS.
Collapse
Affiliation(s)
- M-J Milloy
- British Columbia Centre for Excellence in HIV/AIDS, St. Paul's Hospital, Vancouver, Canada; Division of AIDS, Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | | | |
Collapse
|
173
|
Rosenthaler S, Pöhn B, Kolmanz C, Nguyen Huu C, Krewenka C, Huber A, Kranner B, Rausch WD, Moldzio R. Differences in receptor binding affinity of several phytocannabinoids do not explain their effects on neural cell cultures. Neurotoxicol Teratol 2014; 46:49-56. [DOI: 10.1016/j.ntt.2014.09.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 11/16/2022]
|
174
|
Dhopeshwarkar A, Mackie K. CB2 Cannabinoid receptors as a therapeutic target-what does the future hold? Mol Pharmacol 2014; 86:430-7. [PMID: 25106425 PMCID: PMC4164977 DOI: 10.1124/mol.114.094649] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 08/08/2014] [Indexed: 01/13/2023] Open
Abstract
The past decades have seen an exponential rise in our understanding of the endocannabinoid system, comprising CB1 and CB2 cannabinoid receptors, endogenous cannabinoids (endocannabinoids), and the enzymes that synthesize and degrade endocannabinoids. The primary focus of this review is the CB2 receptor. CB2 receptors have been the subject of considerable attention, primarily due to their promising therapeutic potential for treating various pathologies while avoiding the adverse psychotropic effects that can accompany CB1 receptor-based therapies. With the appreciation that CB2-selective ligands show marked functional selectivity, there is a renewed opportunity to explore this promising area of research from both a mechanistic as well as a therapeutic perspective. In this review, we summarize our present knowledge of CB2 receptor signaling, localization, and regulation. We discuss the availability of genetic tools (and their limitations) to study CB2 receptors and also provide an update on preclinical data on CB2 agonists in pain models. Finally, we suggest possible reasons for the failure of CB2 ligands in clinical pain trials and offer possible ways to move the field forward in a way that can help reconcile the inconsistencies between preclinical and clinical data.
Collapse
Affiliation(s)
- Amey Dhopeshwarkar
- Department of Psychological and Brain Sciences and Gill Center, Indiana University, Bloomington, Indiana
| | - Ken Mackie
- Department of Psychological and Brain Sciences and Gill Center, Indiana University, Bloomington, Indiana
| |
Collapse
|
175
|
Suárez-Pinilla P, López-Gil J, Crespo-Facorro B. Immune system: a possible nexus between cannabinoids and psychosis. Brain Behav Immun 2014; 40:269-82. [PMID: 24509089 DOI: 10.1016/j.bbi.2014.01.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/29/2014] [Accepted: 01/29/2014] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Endocannabinoid system is involved in the regulation of the brain-immune axis. Cannabis consumption is related with the development, course, and severity of psychosis. The epidemiological evidence for increased occurrence of immunological alterations in patients with psychosis has not been sufficiently addressed. The aim of this review is to establish whether there is any scientific evidence of the influence of cannabinoids on aspects of immunity that affect susceptibility to psychotic disorder induction. METHODS A comprehensive search of PubMed/MEDLINE, EMBASE and ISI Web of Knowledge was performed using combinations of key terms distributed into three blocks: "immune", "cannabinoid", and "endocannabinoid receptor". Studies were considered to be eligible for the review if they were original articles, they reported a quantitative or qualitative relation between cannabinoid ligands, their receptors, and immune system, and they were carried out in vitro or in mammals, included humans. All the information was systematically extracted and evaluated. RESULTS We identified 122 articles from 446 references. Overall, endocannabinoids enhanced immune response, whereas exogenous cannabinoids had immunosuppressant effects. A general change in the immune response from Th1 to Th2 was also demonstrated for cannabinoid action. Endogenous and synthetic cannabinoids also modulated microglia function and neurotransmitter secretion. CONCLUSION The actions of cannabinoids through the immune system are quite regular and predictable in the peripheral but remain fuzzy in the central nervous system. Despite this uncertainty, it may be hypothesized that exposure to exocannabinoids, in particular during adolescence might prompt immunological dysfunctions that potentially cause a latent vulnerability to psychosis. Further investigations are warranted to clarify the relationship between the immunological effects of cannabis and psychosis.
Collapse
Affiliation(s)
- Paula Suárez-Pinilla
- University Hospital Marqués de Valdecilla, Department of Psychiatry, School of Medicine, University of Cantabria, Santander, Spain; CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain; IDIVAL, Valdecilla Biomedical Research Institute, Santander, Spain.
| | - José López-Gil
- University Hospital Marqués de Valdecilla, Department of Psychiatry, School of Medicine, University of Cantabria, Santander, Spain
| | - Benedicto Crespo-Facorro
- University Hospital Marqués de Valdecilla, Department of Psychiatry, School of Medicine, University of Cantabria, Santander, Spain; CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain; IDIVAL, Valdecilla Biomedical Research Institute, Santander, Spain
| |
Collapse
|
176
|
Vendel E, de Lange ECM. Functions of the CB1 and CB 2 receptors in neuroprotection at the level of the blood-brain barrier. Neuromolecular Med 2014; 16:620-42. [PMID: 24929655 DOI: 10.1007/s12017-014-8314-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 05/14/2014] [Indexed: 12/30/2022]
Abstract
The cannabinoid (CB) receptors are the main targets of the cannabinoids, which include plant cannabinoids, endocannabinoids and synthetic cannabinoids. Over the last few years, accumulated evidence has suggested a role of the CB receptors in neuroprotection. The blood-brain barrier (BBB) is an important brain structure that is essential for neuroprotection. A link between the CB receptors and the BBB is thus likely, but this possible connection has only recently gained attention. Cannabinoids and the BBB share the same mechanisms of neuroprotection and both protect against excitotoxicity (CB1), cell death (CB1), inflammation (CB2) and oxidative stress (possibly CB independent)-all processes that also damage the BBB. Several examples of CB-mediated protection of the BBB have been found, such as inhibition of leukocyte influx and induction of amyloid beta efflux across the BBB. Moreover, the CB receptors were shown to improve BBB integrity, particularly by restoring the tightness of the tight junctions. This review demonstrated that both CB receptors are able to restore the BBB and neuroprotection, but much uncertainty about the underlying signaling cascades still exists and further investigation is needed.
Collapse
Affiliation(s)
- Esmée Vendel
- Division of Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333CC, PO Box 9502, 2300 RA, Leiden, The Netherlands
| | | |
Collapse
|
177
|
Franks LN, Ford BM, Madadi NR, Penthala NR, Crooks PA, Prather PL. Characterization of the intrinsic activity for a novel class of cannabinoid receptor ligands: Indole quinuclidine analogs. Eur J Pharmacol 2014; 737:140-8. [PMID: 24858620 DOI: 10.1016/j.ejphar.2014.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/23/2014] [Accepted: 05/06/2014] [Indexed: 12/16/2022]
Abstract
Our laboratory recently reported that a group of novel indole quinuclidine analogs bind with nanomolar affinity to cannabinoid type-1 and type-2 receptors. This study characterized the intrinsic activity of these compounds by determining whether they exhibit agonist, antagonist, or inverse agonist activity at cannabinoid type-1 and/or type-2 receptors. Cannabinoid receptors activate Gi/Go-proteins that then proceed to inhibit activity of the downstream intracellular effector adenylyl cyclase. Therefore, intrinsic activity was quantified by measuring the ability of compounds to modulate levels of intracellular cAMP in intact cells. Concerning cannabinoid type-1 receptors endogenously expressed in Neuro2A cells, a single analog exhibited agonist activity, while eight acted as neutral antagonists and two possessed inverse agonist activity. For cannabinoid type-2 receptors stably expressed in CHO cells, all but two analogs acted as agonists; these two exceptions exhibited inverse agonist activity. Confirming specificity at cannabinoid type-1 receptors, modulation of adenylyl cyclase activity by all proposed agonists and inverse agonists was blocked by co-incubation with the neutral cannabinoid type-1 antagonist O-2050. All proposed cannabinoid type-1 receptor antagonists attenuated adenylyl cyclase modulation by cannabinoid agonist CP-55,940. Specificity at cannabinoid type-2 receptors was confirmed by failure of all compounds to modulate adenylyl cyclase activity in CHO cells devoid of cannabinoid type-2 receptors. Further characterization of select analogs demonstrated concentration-dependent modulation of adenylyl cyclase activity with potencies similar to their respective affinities for cannabinoid receptors. Therefore, indole quinuclidines are a novel structural class of compounds exhibiting high affinity and a range of intrinsic activity at cannabinoid type-1 and type-2 receptors.
Collapse
MESH Headings
- Adenylyl Cyclase Inhibitors
- Adenylyl Cyclases/metabolism
- Animals
- CHO Cells
- Chemical Phenomena
- Cricetinae
- Cricetulus
- Drug Inverse Agonism
- Humans
- Indoles/chemistry
- Ligands
- Mice
- Quinuclidines/chemistry
- Quinuclidines/metabolism
- Quinuclidines/pharmacology
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/metabolism
Collapse
Affiliation(s)
- Lirit N Franks
- Department of Pharmacology & Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| | - Benjamin M Ford
- Department of Pharmacology & Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| | - Nikhil R Madadi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| | - Narsimha R Penthala
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| | - Paul L Prather
- Department of Pharmacology & Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| |
Collapse
|
178
|
Modulating the delicate glial-neuronal interactions in neuropathic pain: promises and potential caveats. Neurosci Biobehav Rev 2014; 45:19-27. [PMID: 24820245 DOI: 10.1016/j.neubiorev.2014.05.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/22/2014] [Accepted: 05/02/2014] [Indexed: 12/27/2022]
Abstract
During neuropathic pain, glial cells (mainly astrocytes and microglia) become activated and initiate a series of signaling cascades that modulate pain processing at both spinal and supraspinal levels. It has been generally accepted that glial cell activation contributes to neuropathic pain because glia release proinflammatory cytokines, chemokines, and factors such as calcitonin gene-related peptide, substance P, and glutamate, which are known to facilitate pain signaling. However, recent research has shown that activation of glia also leads to some beneficial outcomes. Glia release anti-inflammatory factors that protect against neurotoxicity and restore normal pain. Accordingly, use of glial inhibitors might compromise the protective functions of glia in addition to suppressing their detrimental effects. With a better understanding of how different conditions affect glial cell activation, we may be able to promote the protective function of glia and pave the way for future development of novel, safe, and effective treatments of neuropathic pain.
Collapse
|
179
|
Experimental cannabinoid 2 receptor-mediated immune modulation in sepsis. Mediators Inflamm 2014; 2014:978678. [PMID: 24803745 PMCID: PMC3997158 DOI: 10.1155/2014/978678] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 02/25/2014] [Accepted: 03/04/2014] [Indexed: 02/06/2023] Open
Abstract
Sepsis is a complex condition that results from a dysregulated immune system in response to a systemic infection. Current treatments lack effectiveness in reducing the incidence and mortality associated with this disease. The endocannabinoid system offers great promise in managing sepsis pathogenesis due to its unique characteristics. The present study explored the effect of modulating the CB2 receptor pathway in an acute sepsis mouse model. Endotoxemia was induced by intravenous injection of lipopolysaccharide (LPS) in mice and intestinal microcirculation was assessed through intravital microscopy. We found that HU308 (CB2 receptor agonist) reduced the number of adherent leukocytes in submucosal venules but did not restore muscular and mucosal villi FCD in endotoxemic mice. AM630 (CB2 receptor antagonist) maintained the level of adherent leukocytes induced by LPS but further reduced muscular and mucosal villi FCD. URB597 (FAAH inhibitor) and JZL184 (MAGL inhibitor) both reduced the number of adherent leukocytes in submucosal venules but did not restore the mucosal villi FCD. Using various compounds we have shown different mechanisms of activating CB2 receptors to reduce leukocyte endothelial interactions in order to prevent further inflammatory damage during sepsis.
Collapse
|
180
|
Intrathecal Injection of JWH015 Attenuates Remifentanil-Induced Postoperative Hyperalgesia by Inhibiting Activation of Spinal Glia in a Rat Model. Anesth Analg 2014; 118:841-53. [DOI: 10.1213/ane.0000000000000146] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
181
|
Koppel J, Vingtdeux V, Marambaud P, d'Abramo C, Jimenez H, Stauber M, Friedman R, Davies P. CB2 receptor deficiency increases amyloid pathology and alters tau processing in a transgenic mouse model of Alzheimer's disease. Mol Med 2014; 20:29-36. [PMID: 24722782 DOI: 10.2119/molmed.2013.00140.revised] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 10/29/2013] [Indexed: 11/06/2022] Open
Abstract
The endocannabinoid CB2 receptor system has been implicated in the neuropathology of Alzheimer's disease (AD). In order to investigate the impact of the CB2 receptor system on AD pathology, a colony of mice with a deleted CB2 receptor gene, CNR2, was established on a transgenic human mutant APP background for pathological comparison with CB2 receptor-sufficient transgenic mice. J20 APP (PDGFB-APPSwInd) mice were bred over two generations with CNR2(-/-) (Cnr2(tm1Dgen)/J) mice to produce a colony of J20 CNR2(+/+) and J20 CNR2(-/-) mice. Seventeen J20 CNR2(+/+) mice (12 females, 5 males) and 16 J20 CNR2(-/-) mice (11 females, 5 males) were killed at 12 months, and their brains were interrogated for AD-related pathology with both biochemistry and immunocytochemistry (ICC). In addition to amyloid-dependent endpoints such as soluble Aβ production and plaque deposition quantified with 6E10 staining, the effect of CB2 receptor deletion on total soluble mouse tau production was assayed by using a recently developed high-sensitivity assay. Results revealed that soluble Aβ42 and plaque deposition were significantly increased in J20 CNR2(-/-) mice relative to CNR2(+/+) mice. Microgliosis, quantified with ionized calcium-binding adapter molecule 1 (Iba-1) staining, did not differ between groups, whereas plaque associated microglia was more abundant in J20 CNR2(-/-) mice. Total tau was significantly suppressed in J20 CNR2(-/-) mice relative to J20 CNR2(+/+) mice. The results confirm the constitutive role of the CB2 receptor system both in reducing amyloid plaque pathology in AD and also support tehpotential of cannabinoid therapies targeting CB2 to reduce Aβ; however, the results suggest that interventions may have a divergent effect on tau pathology.
Collapse
Affiliation(s)
- Jeremy Koppel
- Litwin-Zucker Research Center, Feinstein Institute for Medical Research, North-Shore Long Island Jewish Health System, Manhasset, New York, United States of America
| | - Valerie Vingtdeux
- Litwin-Zucker Research Center, Feinstein Institute for Medical Research, North-Shore Long Island Jewish Health System, Manhasset, New York, United States of America
| | - Philippe Marambaud
- Litwin-Zucker Research Center, Feinstein Institute for Medical Research, North-Shore Long Island Jewish Health System, Manhasset, New York, United States of America
| | - Cristina d'Abramo
- Litwin-Zucker Research Center, Feinstein Institute for Medical Research, North-Shore Long Island Jewish Health System, Manhasset, New York, United States of America
| | - Heidy Jimenez
- Litwin-Zucker Research Center, Feinstein Institute for Medical Research, North-Shore Long Island Jewish Health System, Manhasset, New York, United States of America
| | - Mark Stauber
- Yeshiva University, New York, New York, United States of America
| | - Rachel Friedman
- Queens College, New York, New York, United States of America
| | - Peter Davies
- Litwin-Zucker Research Center, Feinstein Institute for Medical Research, North-Shore Long Island Jewish Health System, Manhasset, New York, United States of America
| |
Collapse
|
182
|
Fagan SG, Campbell VA. The influence of cannabinoids on generic traits of neurodegeneration. Br J Pharmacol 2014; 171:1347-60. [PMID: 24172185 PMCID: PMC3954477 DOI: 10.1111/bph.12492] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 09/14/2013] [Accepted: 09/16/2013] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED In an increasingly ageing population, the incidence of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and Huntington's disease are rising. While the aetiologies of these disorders are different, a number of common mechanisms that underlie their neurodegenerative components have been elucidated; namely neuroinflammation, excitotoxicity, mitochondrial dysfunction and reduced trophic support. Current therapies focus on treatment of the symptoms and attempt to delay the progression of these diseases but there is currently no cure. Modulation of the endogenous cannabinoid system is emerging as a potentially viable option in the treatment of neurodegeneration. Endocannabinoid signalling has been found to be altered in many neurodegenerative disorders. To this end, pharmacological manipulation of the endogenous cannabinoid system, as well as application of phytocannabinoids and synthetic cannabinoids have been investigated. Signalling from the CB1 and CB2 receptors are known to be involved in the regulation of Ca(2+) homeostasis, mitochondrial function, trophic support and inflammatory status, respectively, while other receptors gated by cannabinoids such as PPARγ, are gaining interest in their anti-inflammatory properties. Through multiple lines of evidence, this evolutionarily conserved neurosignalling system has shown neuroprotective capabilities and is therefore a potential target for neurodegenerative disorders. This review details the mechanisms of neurodegeneration and highlights the beneficial effects of cannabinoid treatment. LINKED ARTICLES This article is part of a themed section on Cannabinoids 2013. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-6.
Collapse
Affiliation(s)
- S G Fagan
- Trinity College Institute of Neuroscience, Department of Physiology, School of Medicine, University of Dublin, Trinity CollegeDublin 2, Ireland
| | - V A Campbell
- Trinity College Institute of Neuroscience, Department of Physiology, School of Medicine, University of Dublin, Trinity CollegeDublin 2, Ireland
| |
Collapse
|
183
|
Ahmad R, Koole M, Evens N, Serdons K, Verbruggen A, Bormans G, Van Laere K. Whole-body biodistribution and radiation dosimetry of the cannabinoid type 2 receptor ligand [11C]-NE40 in healthy subjects. Mol Imaging Biol 2014; 15:384-90. [PMID: 23508466 DOI: 10.1007/s11307-013-0626-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE The type 2 cannabinoid receptor (CB2R) is part of the human endocannabinoid system and is involved in central and peripheral inflammatory processes. In vivo imaging of the CB2R would allow study of several (neuro)inflammatory disorders. In this study we have investigated the safety and tolerability of [11C]-NE40, a CB2R positron emission tomography (PET) ligand, in healthy human male subjects and determined its biodistribution and radiation dosimetry. PROCEDURE Six healthy male subjects (age 20-65 years) underwent a dynamic series of nine whole-body PET/CT scans for up to 140 min, after injection of an average bolus of 286 MBq of [11C]-NE40. Organ absorbed and total effective doses were calculated through OLINDA. RESULTS [11C]-NE40 showed high initial uptake in the spleen and a predominant hepatobiliary excretion. In the brain, rapid uptake and swift washout were seen. Organ absorbed doses were largest for the small intestine and liver, with 15.6 and 11.5 μGy/MBq, respectively. The mean effective dose was 3.64±0.81 μSv/MBq. There were no changes with aging observed. No adverse events were encountered. CONCLUSIONS This first-in-man study of [11C]-NE40 showed an expected biodistribution compatible with lymphoid tissue uptake and appropriate fast brain kinetics in the healthy human brain, underscoring the potential of this tracer for further application in central and peripheral inflammation imaging. The effective dose is within the typical expected range for 11C ligands.
Collapse
Affiliation(s)
- Rawaha Ahmad
- Division of Nuclear Medicine, University Hospital Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
184
|
González-Naranjo P, Pérez-Macias N, Campillo NE, Pérez C, Arán VJ, Girón R, Sánchez-Robles E, Martín MI, Gómez-Cañas M, García-Arencibia M, Fernández-Ruiz J, Páez JA. Cannabinoid agonists showing BuChE inhibition as potential therapeutic agents for Alzheimer's disease. Eur J Med Chem 2014; 73:56-72. [DOI: 10.1016/j.ejmech.2013.11.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 11/08/2013] [Accepted: 11/23/2013] [Indexed: 11/26/2022]
|
185
|
Di Marzo V. Endocannabinoid pathways and their role in multiple sclerosis-related muscular dysfunction. Expert Rev Neurother 2014; 11:9-14. [DOI: 10.1586/ern.11.26] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
186
|
Chang SL, Connaghan KP, Wei Y, Li MD. NeuroHIV and use of addictive substances. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 118:403-40. [PMID: 25175871 DOI: 10.1016/b978-0-12-801284-0.00013-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the past three decades, substance abuse has been identified as a key comorbidity of human immunodeficiency virus-1 (HIV-1) infection. Many studies have found that the use and abuse of addictive substances hastens the progression of HIV-1 infection and HIV-associated neurocognitive disorders. Advances in highly active antiretroviral therapy (HAART) in the mid-1990s have been successful in limiting the HIV-1 viral load and maintaining a relatively healthy immune response, allowing the life expectancy of patients infected with HIV to approach that of the general population. However, even with HAART, HIV-1 viral proteins are still expressed and eradication of the virus, particularly in the brain, the key reservoir organ, does not occur. In the post-HAART era, the clinical challenge in the treatment of HIV infection is inflammation of the central nervous system (CNS) and its subsequent neurological disorders. To date, various explicit and implicit connections have been identified between the neuronal circuitry involved in immune responses and brain regions affected by and implicated in substance abuse. This chapter discusses past and current medical uses of prototypical substances of abuse, including morphine, alcohol, cocaine, methamphetamine, marijuana, and nicotine, and the evidence that systemic infections, particularly HIV-1 infection, cause neurological dysfunction as a result of inflammation in the CNS, which can increase the risk of substance abuse.
Collapse
Affiliation(s)
- Sulie L Chang
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, New Jersey, USA; Department of Biological Sciences, Seton Hall University, South Orange, New Jersey, USA.
| | - Kaitlyn P Connaghan
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, New Jersey, USA
| | - Yufeng Wei
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, New Jersey, USA
| | - Ming D Li
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
187
|
Di Iorio G, Lupi M, Sarchione F, Matarazzo I, Santacroce R, Petruccelli F, Martinotti G, Di Giannantonio M. The endocannabinoid system: a putative role in neurodegenerative diseases. INTERNATIONAL JOURNAL OF HIGH RISK BEHAVIORS & ADDICTION 2013; 2:100-6. [PMID: 24971285 PMCID: PMC4070159 DOI: 10.5812/ijhrba.9222] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 04/19/2013] [Accepted: 05/27/2013] [Indexed: 12/18/2022]
Abstract
BACKGROUND Following the characterization of the chemical structure of D9-tetrahydrocannabinol (THC), the main psychoactive constituent of marijuana, researchers have moved on with scientific valuable explorations. OBJECTIVES The aim of this review is to highlight the role of endocannabinoid system in neurodegenerative diseases. MATERIALS AND METHODS The article is a critical analysis of the most recent data currently present in scientific literature on the subject; a qualitative synthesis of only the most significant articles has been performed. RESULTS In central nervous system, endocannabinoids show a neuromodulatory function, often of retrograde type. This way, they play an important role in synaptic plasticity and in cognitive, motor, sensory and affective processes. In addition, in some acute or chronic pathologies of central nervous system, such as neurodegenerative and neuroinflammatory diseases, endocannabinoids can perform a pro-homeostatic and neuroprotective function, through the activation of CB1 and CB2 receptors. Scientific evidence shows that an hypofunction or a dysregulation of the endocannabinoid system may be responsible for some of the symptoms of diseases such as multiple sclerosis, amyotrophic lateral sclerosis, Huntington's, Parkinson's and Alzheimer's diseases. CONCLUSIONS The important role played by endocannabinoid system promises interesting developments, in particular to evaluate the effectiveness of new drugs in both psychiatry and neurology.
Collapse
Affiliation(s)
- Giuseppe Di Iorio
- Department of Neuroscience and Imaging, University G. d’Annunzio, Chieti, Italy
| | - Matteo Lupi
- Department of Neuroscience and Imaging, University G. d’Annunzio, Chieti, Italy
| | - Fabiola Sarchione
- Department of Neuroscience and Imaging, University G. d’Annunzio, Chieti, Italy
| | - Ilaria Matarazzo
- Department of Neuroscience and Imaging, University G. d’Annunzio, Chieti, Italy
| | - Rita Santacroce
- Department of Neuroscience and Imaging, University G. d’Annunzio, Chieti, Italy
| | - Filippo Petruccelli
- Department of Human, Social and Health Sciences, University of Cassino, Cassino, Italy
| | - Giovanni Martinotti
- Department of Neuroscience and Imaging, University G. d’Annunzio, Chieti, Italy
- Corresponding author: Giovanni Martinotti, Department of Neuroscience and Imaging, University G. d’Annunzio, Via dei Vestini 1, Chieti, Italy. Tel: +39-063355627362, Fax: +39-063052553, E-mail:,
| | | |
Collapse
|
188
|
Koppel J, Vingtdeux V, Marambaud P, d'Abramo C, Jimenez H, Stauber M, Friedman R, Davies P. CB₂ receptor deficiency increases amyloid pathology and alters tau processing in a transgenic mouse model of Alzheimer's disease. Mol Med 2013; 19:357-64. [PMID: 24408112 DOI: 10.2119/molmed.2013.00140] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 10/29/2013] [Indexed: 11/06/2022] Open
Abstract
The endocannabinoid CB₂ receptor system has been implicated in the neuropathology of Alzheimer's disease (AD). In order to investigate the impact of the CB₂ receptor system on AD pathology, a colony of mice with a deleted CB₂ receptor gene, CNR2, was established on a transgenic human mutant APP background for pathological comparison with CB₂ receptor-sufficient transgenic mice. J20 APP (PDGFB-APPSwInd) mice were bred over two generations with CNR2⁻/⁻ (Cnr2(tm1Dgen)/J) mice to produce a colony of J20 CNR2⁺/⁺ and J20 CNR2⁻/⁻ mice. Seventeen J20 CNR2⁺/⁺ mice (12 females, 5 males) and 16 J20 CNR2⁻/⁻ mice (11 females, 5 males) were killed at 12 months, and their brains were interrogated for AD-related pathology with both biochemistry and immunocytochemistry (ICC). In addition to amyloid-dependent endpoints such as soluble Aβ production and plaque deposition quantified with 6E10 staining, the effect of CB2 receptor deletion on total soluble mouse tau production was assayed by using a recently developed high-sensitivity assay. Results revealed that soluble Aβ42 and plaque deposition were significantly increased in J20 CNR2⁻/⁻ mice relative to CNR2⁺/⁺ mice. Microgliosis, quantified with ionized calcium-binding adapter molecule 1 (Iba-1) staining, did not differ between groups, whereas plaque associated microglia was more abundant in J20 CNR2⁻/⁻ mice. Total tau was significantly suppressed in J20 CNR2⁻/⁻ mice relative to J20 CNR2⁺/⁺ mice. The results confirm the constitutive role of the CB₂ receptor system both in reducing amyloid plaque pathology in AD and also support tehpotential of cannabinoid therapies targeting CB₂ to reduce Aβ; however, the results suggest that interventions may have a divergent effect on tau pathology.
Collapse
Affiliation(s)
- Jeremy Koppel
- Litwin-Zucker Research Center, Feinstein Institute for Medical Research, North-Shore Long Island Jewish Health System, Manhasset, New York, United States of America
| | - Valerie Vingtdeux
- Litwin-Zucker Research Center, Feinstein Institute for Medical Research, North-Shore Long Island Jewish Health System, Manhasset, New York, United States of America
| | - Philippe Marambaud
- Litwin-Zucker Research Center, Feinstein Institute for Medical Research, North-Shore Long Island Jewish Health System, Manhasset, New York, United States of America
| | - Cristina d'Abramo
- Litwin-Zucker Research Center, Feinstein Institute for Medical Research, North-Shore Long Island Jewish Health System, Manhasset, New York, United States of America
| | - Heidy Jimenez
- Litwin-Zucker Research Center, Feinstein Institute for Medical Research, North-Shore Long Island Jewish Health System, Manhasset, New York, United States of America
| | - Mark Stauber
- Yeshiva University, New York, New York, United States of America
| | - Rachel Friedman
- Queens College, New York, New York, United States of America
| | - Peter Davies
- Litwin-Zucker Research Center, Feinstein Institute for Medical Research, North-Shore Long Island Jewish Health System, Manhasset, New York, United States of America
| |
Collapse
|
189
|
Blaylock RL. Immunology primer for neurosurgeons and neurologists part 2: Innate brain immunity. Surg Neurol Int 2013; 4:118. [PMID: 24083053 PMCID: PMC3784951 DOI: 10.4103/2152-7806.118349] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 06/18/2013] [Indexed: 12/27/2022] Open
Abstract
Over the past several decades we have learned a great deal about microglia and innate brain immunity. While microglia are the principle innate immune cells, other cell types also play a role, including invading macrophages, astrocytes, neurons, and endothelial cells. The fastest reacting cell is the microglia and despite its name, resting microglia (also called ramified microglia) are in fact quite active. Motion photomicrographs demonstrate a constant movement of ramified microglial foot processes, which appear to be testing the microenvironment for dangerous alteration in extracellular fluid content. These foot processes, in particular, interact with synapses and play a role in synaptic function. In event of excitatory overactivity, these foot processes can strip selected synapses, thus reducing activation states as a neuroprotective mechanism. They can also clear extracellular glutamate so as to reduce the risk of excitotoxicity. Microglia also appear to have a number of activation phenotypes, such as: (1) phagocytic, (2) neuroprotective and growth promoting, or (3) primarily neurodestructive. These innate immune cells can migrate a great distance under pathological conditions and appear to have anatomic specificity, meaning they can accumulate in specifically selected areas of the brain. There is some evidence that there are several types of microglia. Macrophage infiltration into the embryonic brain is the source of resident microglia and in adulthood macrophages can infiltrate the brain and are for the most part pathologically indistinguishable from resident microglia, but may react differently. Activation itself does not imply a destructive phenotype and can be mostly neuroprotective via phagocytosis of debris, neuron parts and dying cells and by the release of neurotrophins such as nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF). Evidence is accumulating that microglia undergo dynamic fluctuations in phenotype as the neuropathology evolves. For example, in the early stages of neurotrauma and stroke, microglia play a mostly neuroprotective role and only later switch to a neurodestructive mode. A great number of biological systems alter microglia function, including neurohormones, cannabinoids, other neurotransmitters, adenosine triphosphate (ATP), adenosine, and corticosteroids. One can appreciate that with aging many of these systems are altered by the aging process itself or by disease thus changing the sensitivity of the innate immune system.
Collapse
Affiliation(s)
- Russell L Blaylock
- Theoretical Neurosciences Research, LLC, Neurosurgeon (Ret), Ridgeland, MS
| |
Collapse
|
190
|
Han S, Thatte J, Buzard DJ, Jones RM. Therapeutic Utility of Cannabinoid Receptor Type 2 (CB2) Selective Agonists. J Med Chem 2013; 56:8224-56. [DOI: 10.1021/jm4005626] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sangdon Han
- Department of Medicinal Chemistry, Arena Pharmaceuticals, 6166 Nancy Ridge Drive, San
Diego, California 92121, United States
| | - Jayant Thatte
- Department of Medicinal Chemistry, Arena Pharmaceuticals, 6166 Nancy Ridge Drive, San
Diego, California 92121, United States
| | - Daniel J. Buzard
- Department of Medicinal Chemistry, Arena Pharmaceuticals, 6166 Nancy Ridge Drive, San
Diego, California 92121, United States
| | - Robert M. Jones
- Department of Medicinal Chemistry, Arena Pharmaceuticals, 6166 Nancy Ridge Drive, San
Diego, California 92121, United States
| |
Collapse
|
191
|
Bachmeier C, Beaulieu-Abdelahad D, Mullan M, Paris D. Role of the cannabinoid system in the transit of beta-amyloid across the blood-brain barrier. Mol Cell Neurosci 2013; 56:255-62. [PMID: 23831388 DOI: 10.1016/j.mcn.2013.06.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/30/2013] [Accepted: 06/25/2013] [Indexed: 12/01/2022] Open
Abstract
Emerging evidence suggests beta-amyloid (Aβ) deposition in the Alzheimer's disease (AD) brain is the result of impaired clearance, due in part to diminished Aβ transport across the blood-brain barrier (BBB). Recently, modulation of the cannabinoid system was shown to reduce Aβ brain levels and improve cognitive behavior in AD animal models. The purpose of the current studies was to investigate the role of the cannabinoid system in the clearance of Aβ across the BBB. Using in vitro and in vivo models of BBB clearance, Aβ transit across the BBB was examined in the presence of cannabinoid receptor agonists and inhibitors. In addition, expression levels of the Aβ transport protein, lipoprotein receptor-related protein1 (LRP1), were determined in the brain and plasma of mice following cannabinoid treatment. Cannabinoid receptor agonism or inhibition of endocannabinoid-degrading enzymes significantly enhanced Aβ clearance across the BBB (2-fold). Moreover, cannabinoid receptor inhibition negated the stimulatory influence of cannabinoid treatment on Aβ BBB clearance. Additionally, LRP1 levels in the brain and plasma were elevated following cannabinoid treatment (1.5-fold), providing rationale for the observed increase in Aβ transit from the brain to the periphery. The current studies demonstrate, for the first time, a role for the cannabinoid system in the transit of Aβ across the BBB. These findings provide insight into the mechanism by which cannabinoid treatment reduces Aβ burden in the AD brain and offer additional evidence on the utility of this pathway as a treatment for AD.
Collapse
Affiliation(s)
- Corbin Bachmeier
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA.
| | | | | | | |
Collapse
|
192
|
Gadotti VM, You H, Petrov RR, Berger ND, Diaz P, Zamponi GW. Analgesic effect of a mixed T-type channel inhibitor/CB2 receptor agonist. Mol Pain 2013; 9:32. [PMID: 23815854 PMCID: PMC3703287 DOI: 10.1186/1744-8069-9-32] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 06/29/2013] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Cannabinoid receptors and T-type calcium channels are potential targets for treating pain. Here we report on the design, synthesis and analgesic properties of a new mixed cannabinoid/T-type channel ligand, NMP-181. RESULTS NMP-181 action on CB1 and CB2 receptors was characterized in radioligand binding and in vitro GTPγ[35S] functional assays, and block of transiently expressed human Cav3.2 T-type channels by NMP-181 was analyzed by patch clamp. The analgesic effects and in vivo mechanism of action of NMP-181 delivered spinally or systemically were analyzed in formalin and CFA mouse models of pain. NMP-181 inhibited peak CaV3.2 currents with IC50 values in the low micromolar range and acted as a CB2 agonist. Inactivated state dependence further augmented the inhibitory action of NMP-181. NMP-181 produced a dose-dependent antinociceptive effect when administered either spinally or systemically in both phases of the formalin test. Both i.t. and i.p. treatment of mice with NMP-181 reversed the mechanical hyperalgesia induced by CFA injection. NMP-181 showed no antinocieptive effect in CaV3.2 null mice. The antinociceptive effect of intrathecally delivered NMP-181 in the formalin test was reversed by i.t. treatment of mice with AM-630 (CB2 antagonist). In contrast, the NMP-181-induced antinociception was not affected by treatment of mice with AM-281 (CB1 antagonist). CONCLUSIONS Our work shows that both T-type channels as well as CB2 receptors play a role in the antinociceptive action of NMP-181, and also provides a novel avenue for suppressing chronic pain through novel mixed T-type/cannabinoid receptor ligands.
Collapse
Affiliation(s)
- Vinicius M Gadotti
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | | | | | | | | | | |
Collapse
|
193
|
Leleu-Chavain N, Biot C, Chavatte P, Millet R. [From cannabis to selective CB2R agonists: molecules with numerous therapeutical virtues]. Med Sci (Paris) 2013; 29:523-8. [PMID: 23732102 DOI: 10.1051/medsci/2013295016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Originally used in Asia for the treatment of pain, spasms, nausea and insomnia, marijuana is the most consumed psychotropic drug worldwide. The interest of medical cannabis has been reconsidered recently, leading to many scientific researches and commercialization of these drugs. Natural and synthetic cannabinoids display beneficial antiemetic, anti-inflammatory and analgesic effects in numerous diseases, however accompanied with undesirable effects due to the CB1 receptor. Present researches focus on the design of therapeutical molecules targeting the CB2 receptors, and thus avoiding central side effects and therefore psychotropic effects caused by the CB1 receptor.
Collapse
Affiliation(s)
- Natascha Leleu-Chavain
- Institut de chimie pharmaceutique Albert Lespagnol, université Lille Nord, EA 4481, IFR114, 3, rue du Pr Laguesse, BP 83, 59006 Lille, France
| | | | | | | |
Collapse
|
194
|
Arafah K, Croix D, Vizioli J, Desmons A, Fournier I, Salzet M. Involvement of nitric oxide through endocannabinoids release in microglia activation during the course of CNS regeneration in the medicinal leech. Glia 2013; 61:636-49. [DOI: 10.1002/glia.22462] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 12/17/2012] [Indexed: 11/06/2022]
|
195
|
Merighi S, Gessi S, Varani K, Fazzi D, Mirandola P, Borea PA. Cannabinoid CB(2) receptor attenuates morphine-induced inflammatory responses in activated microglial cells. Br J Pharmacol 2012; 166:2371-85. [PMID: 22428664 DOI: 10.1111/j.1476-5381.2012.01948.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Among several pharmacological properties, analgesia is the most common feature shared by either opioid or cannabinoid systems. Cannabinoids and opioids are distinct drug classes that have been historically used separately or in combination to treat different pain states. In the present study, we characterized the signal transduction pathways mediated by cannabinoid CB(2) and µ-opioid receptors in quiescent and LPS-stimulated murine microglial cells. EXPERIMENTAL APPROACH We examined the effects of µ-opioid and CB(2) receptor stimulation on phosphorylation of MAPKs and Akt and on IL-1β, TNF-α, IL-6 and NO production in primary mouse microglial cells. KEY RESULTS Morphine enhanced release of the proinflammatory cytokines, IL-1β, TNF-α, IL-6, and of NO via µ-opioid receptor in activated microglial cells. In contrast, CB(2) receptor stimulation attenuated morphine-induced microglial proinflammatory mediator increases, interfering with morphine action by acting on the Akt-ERK1/2 signalling pathway. CONCLUSIONS AND IMPLICATIONS Because glial activation opposes opioid analgesia and enhances opioid tolerance and dependence, we suggest that CB(2) receptors, by inhibiting microglial activity, may be potential targets to increase clinical efficacy of opioids.
Collapse
Affiliation(s)
- Stefania Merighi
- Department of Clinical and Experimental Medicine, Pharmacology Section and Interdisciplinary Center for the Study of Inflammation, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | |
Collapse
|
196
|
Kwan W, Träger U, Davalos D, Chou A, Bouchard J, Andre R, Miller A, Weiss A, Giorgini F, Cheah C, Möller T, Stella N, Akassoglou K, Tabrizi SJ, Muchowski PJ. Mutant huntingtin impairs immune cell migration in Huntington disease. J Clin Invest 2012; 122:4737-47. [PMID: 23160193 DOI: 10.1172/jci64484] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 09/27/2012] [Indexed: 11/17/2022] Open
Abstract
In Huntington disease (HD), immune cells are activated before symptoms arise; however, it is unclear how the expression of mutant huntingtin (htt) compromises the normal functions of immune cells. Here we report that primary microglia from early postnatal HD mice were profoundly impaired in their migration to chemotactic stimuli, and expression of a mutant htt fragment in microglial cell lines was sufficient to reproduce these deficits. Microglia expressing mutant htt had a retarded response to a laser-induced brain injury in vivo. Leukocyte recruitment was defective upon induction of peritonitis in HD mice at early disease stages and was normalized upon genetic deletion of mutant htt in immune cells. Migration was also strongly impaired in peripheral immune cells from pre-manifest human HD patients. Defective actin remodeling in immune cells expressing mutant htt likely contributed to their migration deficit. Our results suggest that these functional changes may contribute to immune dysfunction and neurodegeneration in HD, and may have implications for other polyglutamine expansion diseases in which mutant proteins are ubiquitously expressed.
Collapse
Affiliation(s)
- Wanda Kwan
- Biomedical Sciences Program, UCSF, San Francisco, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
de Lago E, Gómez-Ruiz M, Moreno-Martet M, Fernández-Ruiz J. Cannabinoids, multiple sclerosis and neuroprotection. Expert Rev Clin Pharmacol 2012; 2:645-60. [PMID: 22112258 DOI: 10.1586/ecp.09.42] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The cannabinoid signaling system participates in the control of cell homeostasis in the CNS, which explains why, in different neurodegenerative diseases including multiple sclerosis (MS), alterations in this system have been found to serve both as a pathogenic factor (malfunctioning of this system has been found at early phases of these diseases) and as a therapeutic target (the management of this system has beneficial effects). MS is an autoimmune disease that affects the CNS and it is characterized by inflammation, demyelination, remyelination, gliosis and axonal damage. Although it has been considered mainly as an inflammatory disorder, recent studies have recognized the importance of axonal loss both in the progression of the disorder and in the appearance of neurological disability, even in early stages of the disease. In recent years, several laboratories have addressed the therapeutic potential of cannabinoids in MS, given the experience reported by some MS patients who self-medicated with marijuana. Most of these studies focused on the alleviation of symptoms (spasticity, tremor, anxiety and pain) or on the inflammatory component of the disease. However, recent data also revealed the important neuroprotective action that could be exerted by cannabinoids in this disorder. The present review will be precisely centered on this neuroprotective potential, which is based mainly on antioxidant, anti-inflammatory and anti-excitotoxic properties, exerted through the activation of CB1 or CB2 receptors or other unknown mechanisms.
Collapse
Affiliation(s)
- Eva de Lago
- Departamento de Bioquímica y Biología Molecular and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain.
| | | | | | | |
Collapse
|
198
|
Tanveer R, McGuinness N, Daniel S, Gowran A, Campbell VA. Cannabinoid receptors and neurodegenerative diseases. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/wmts.64] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
199
|
Wu J, Bie B, Yang H, Xu JJ, Brown DL, Naguib M. Activation of the CB2 receptor system reverses amyloid-induced memory deficiency. Neurobiol Aging 2012; 34:791-804. [PMID: 22795792 DOI: 10.1016/j.neurobiolaging.2012.06.011] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 05/31/2012] [Accepted: 06/15/2012] [Indexed: 10/28/2022]
Abstract
Cannabinoid type 2 (CB(2)) agonists are neuroprotective and appear to play modulatory roles in neurodegenerative processes in Alzheimer's disease. We have studied the effect of 1-((3-benzyl-3-methyl-2,3-dihydro-1-benzofuran-6-yl) carbonyl) piperidine (MDA7)-a novel selective CB(2) agonist that lacks psychoactivity-on ameliorating the neuroinflammatory process, synaptic dysfunction, and cognitive impairment induced by bilateral microinjection of amyloid-β (Aβ)(1-40) fibrils into the hippocampal CA1 area of rats. In rats injected with Aβ(1-40) fibrils, compared with the administration of intraperitoneal saline for 14 days, treatment with 15 mg/kg of intraperitoneal MDA7 daily for 14 days (1) ameliorated the expression of CD11b (microglia marker) and glial fibrillary acidic protein (astrocyte marker), (2) decreased the secretion of interleukin-1β, (3) decreased the upsurge of CB(2) receptors, (4) promoted Aβ clearance, and (5) restored synaptic plasticity, cognition, and memory. Our findings suggest that MDA7 is an innovative therapeutic approach for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Jiang Wu
- Institute of Anesthesiology, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | | | |
Collapse
|
200
|
Merighi S, Gessi S, Varani K, Simioni C, Fazzi D, Mirandola P, Borea PA. Cannabinoid CB(2) receptors modulate ERK-1/2 kinase signalling and NO release in microglial cells stimulated with bacterial lipopolysaccharide. Br J Pharmacol 2012; 165:1773-1788. [PMID: 21951063 DOI: 10.1111/j.1476-5381.2011.01673.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Cannabinoid (CB) receptor agonists have potential utility as anti-inflammatory drugs in chronic immune inflammatory diseases. In the present study, we characterized the signal transduction pathways affected by CB(2) receptors in quiescent and lipopolysaccharide (LPS)-stimulated murine microglia. EXPERIMENTAL APPROACH We examined the effects of the synthetic CB(2) receptor ligand, JWH-015, on phosphorylation of MAPKs and NO production. KEY RESULTS Stimulation of CB(2) receptors by JWH-015 activated JNK-1/2 and ERK-1/2 in quiescent murine microglial cells. Furthermore, CB(2) receptor activation increased p-ERK-1/2 at 15 min in LPS-stimulated microglia. Surprisingly, this was reduced after 30 min in the presence of both LPS and JWH-015. The NOS inhibitor L-NAME blocked the ability of JWH-015 to down-regulate the LPS-induced p-ERK increase, indicating that activation of CB(2) receptors reduced effects of LPS on ERK-1/2 phosphorylation through NO. JWH-015 increased LPS-induced NO release at 30 min, while at 4 h CB(2) receptor stimulation had an inhibitory effect. All the effects of JWH-015 were significantly blocked by the CB(2) receptor antagonist AM 630 and, as the inhibition of CB(2) receptor expression by siRNA abolished the effects of JWH-015, were shown to be mediated specifically by activation of CB(2) receptors. CONCLUSIONS AND IMPLICATIONS Our results demonstrate that CB(2) receptor stimulation activated the MAPK pathway, but the presence of a second stimulus blocked MAPK signal transduction, inhibiting pro-inflammatory LPS-induced production of NO. Therefore, CB(2) receptor agonists may promote anti-inflammatory therapeutic responses in activated microglia.
Collapse
Affiliation(s)
- Stefania Merighi
- Department of Clinical and Experimental Medicine, Pharmacology Section and Interdisciplinary Center for the Study of Inflammation, University of Ferrara, Via Fossato di Mortara, Ferrara, ItalyDepartment of Human Anatomy, Pharmacology and Forensic Medicine, Institute of Normal Human Anatomy, Ospedale Maggiore, University of Parma, Parma, Italy
| | - Stefania Gessi
- Department of Clinical and Experimental Medicine, Pharmacology Section and Interdisciplinary Center for the Study of Inflammation, University of Ferrara, Via Fossato di Mortara, Ferrara, ItalyDepartment of Human Anatomy, Pharmacology and Forensic Medicine, Institute of Normal Human Anatomy, Ospedale Maggiore, University of Parma, Parma, Italy
| | - Katia Varani
- Department of Clinical and Experimental Medicine, Pharmacology Section and Interdisciplinary Center for the Study of Inflammation, University of Ferrara, Via Fossato di Mortara, Ferrara, ItalyDepartment of Human Anatomy, Pharmacology and Forensic Medicine, Institute of Normal Human Anatomy, Ospedale Maggiore, University of Parma, Parma, Italy
| | - Carolina Simioni
- Department of Clinical and Experimental Medicine, Pharmacology Section and Interdisciplinary Center for the Study of Inflammation, University of Ferrara, Via Fossato di Mortara, Ferrara, ItalyDepartment of Human Anatomy, Pharmacology and Forensic Medicine, Institute of Normal Human Anatomy, Ospedale Maggiore, University of Parma, Parma, Italy
| | - Debora Fazzi
- Department of Clinical and Experimental Medicine, Pharmacology Section and Interdisciplinary Center for the Study of Inflammation, University of Ferrara, Via Fossato di Mortara, Ferrara, ItalyDepartment of Human Anatomy, Pharmacology and Forensic Medicine, Institute of Normal Human Anatomy, Ospedale Maggiore, University of Parma, Parma, Italy
| | - Prisco Mirandola
- Department of Clinical and Experimental Medicine, Pharmacology Section and Interdisciplinary Center for the Study of Inflammation, University of Ferrara, Via Fossato di Mortara, Ferrara, ItalyDepartment of Human Anatomy, Pharmacology and Forensic Medicine, Institute of Normal Human Anatomy, Ospedale Maggiore, University of Parma, Parma, Italy
| | - Pier Andrea Borea
- Department of Clinical and Experimental Medicine, Pharmacology Section and Interdisciplinary Center for the Study of Inflammation, University of Ferrara, Via Fossato di Mortara, Ferrara, ItalyDepartment of Human Anatomy, Pharmacology and Forensic Medicine, Institute of Normal Human Anatomy, Ospedale Maggiore, University of Parma, Parma, Italy
| |
Collapse
|