151
|
Kang W, Wang T, Hu Z, Liu F, Sun Y, Ge S. Metformin Inhibits Porphyromonas gingivalis Lipopolysaccharide-Influenced Inflammatory Response in Human Gingival Fibroblasts via Regulating Activating Transcription Factor-3 Expression. J Periodontol 2017; 88:e169-e178. [PMID: 28548885 DOI: 10.1902/jop.2017.170168] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Chronic periodontitis, one of the most prevalent oral diseases, is associated with Porphyromonas gingivalis (Pg) lipopolysaccharide (LPS) infection and has profound effects on type 2 diabetes mellitus (t2DM). Metformin, a well-known antidiabetic agent, has been reported to exert anti-inflammatory effects on various cells. This study aims to investigate the role of metformin on LPS-influenced inflammatory response in human gingival fibroblasts (HGFs). METHODS Dose-dependent additive effects of metformin on LPS-influenced HGFs were detected. Cell-counting assay was used to determine effects of metformin and LPS on viability of HGFs. Enzyme-linked immunosorbent assay and quantitative real-time polymerase chain reaction (qRT-PCR) were applied to detect levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α in differently treated cells. Activating transcription factor-3 (ATF3) small interfering (si)RNA transfection was used to determine the mechanism of metformin action, and the transfection efficiency was observed by fluorescence microscope. Effects of ATF3 knockdown were determined by qRT-PCR and Western blot. RESULTS Results showed that 5 μg/mL Pg LPS and 0.1, 0.5, and 1 mM metformin exhibited no toxicity to HGFs, and metformin inhibited LPS-influenced IL-1β, IL-6, and TNF-α production in a dose-dependent manner. Metformin and LPS could synergistically facilitate ATF3 expression, and ATF3 knockdown abolished inhibitory effects of metformin on LPS-influenced inflammatory cytokine production in HGFs. CONCLUSION The present study confirms that metformin suppresses LPS-enhanced IL-6, IL-1β, and TNF-α production in HGFs via increasing ATF3 expression.
Collapse
Affiliation(s)
- Wenyan Kang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Shandong, Jinan, China.,Department of Periodontology, School of Stomatology, Shandong University
| | - Ting Wang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Shandong, Jinan, China.,Department of Periodontology, School of Stomatology, Shandong University
| | - Zhekai Hu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Shandong, Jinan, China
| | - Feng Liu
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong University
| | - Yundong Sun
- Department of Microbiology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University
| | - Shaohua Ge
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Shandong, Jinan, China.,Department of Periodontology, School of Stomatology, Shandong University
| |
Collapse
|
152
|
Feng J, Zhang J, Jackson AO, Zhu X, Chen H, Chen W, Gui Q, Yin K. Apolipoprotein A1 Inhibits the TGF-β1-Induced Endothelial-to-Mesenchymal Transition of Human Coronary Artery Endothelial Cells. Cardiology 2017; 137:179-187. [PMID: 28434000 DOI: 10.1159/000464321] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/20/2017] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Transforming growth factor β1 (TGF-β1) is the major cytokine for stimulating endothelial cells (ECs) to transdifferentiate to mesenchymal cells (MCs) in the process known as endothelial-to-mesenchymal transition (EndMT). Recently, TGF-β1-induced EndMT has been implicated in the pathogenesis of atherosclerosis (AS). It has been identified that apolipoprotein A1 (ApoA-I) obstructs TGF-β1-induced endothelial dysfunction, providing a protective effect for ECs and also anti-AS activity. However, the exact role of ApoA-I in TGF-β1-induced EndMT is not clear. In this study, we aimed to investigate whether ApoA-I can modulate TGF-β1-induced EndMT in human coronary artery ECs (HCAECs). METHODS AND RESULTS The HCAECs were treated with TGF-β1 with or without ApoA-I. Morphological changes in HCAECs and the expression of EndMT-related markers were evaluated. HCAECs treated with TGF-β1 were found to transform to MC morphology, with inconspicuous expression of EC markers such as vascular endothelial cadherin and CD31, and conspicuous expression of fibroblast-specific protein 1 (FSP-1) and α-smooth muscle actin. The treatment of HCAECs with ApoA-I inhibited the TGF-β1-induced EndMT, and elevated expression of EC markers was observed but reduced expression of MC markers. Moreover, ApoA-I impeded the expression level of Slug and Snail, crucial transcriptional factors of EndMT, and it inhibited the TGF-β1-induced phosphorylation of Smad2 and Smad3 which affected the EC morphology. In addition, the knockdown of ABCA1 by RNA interference eliminated the inhibition effect of ApoA-I on TGF-β1-induced EndMT. CONCLUSIONS Our findings revealed a novel mechanism for the ApoA-I protective effect on endothelium function via the inhibition of TGF-β1-induced EndMT. This might provide new insights for developing strategies for modulating AS and vascular remodeling.
Collapse
Affiliation(s)
- Juling Feng
- Research Lab of Translational Medicine, Medical School, University of South China, Hengyang, China
| | | | | | | | | | | | | | | |
Collapse
|
153
|
Farnaghi S, Crawford R, Xiao Y, Prasadam I. Cholesterol metabolism in pathogenesis of osteoarthritis disease. Int J Rheum Dis 2017; 20:131-140. [DOI: 10.1111/1756-185x.13061] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Saba Farnaghi
- Institute of Health and Biomedical Innovation, Science and Engineering Faculty; Queensland University of Technology; Brisbane Qld Australia
| | - Ross Crawford
- Institute of Health and Biomedical Innovation, Science and Engineering Faculty; Queensland University of Technology; Brisbane Qld Australia
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Science and Engineering Faculty; Queensland University of Technology; Brisbane Qld Australia
| | - Indira Prasadam
- Institute of Health and Biomedical Innovation, Science and Engineering Faculty; Queensland University of Technology; Brisbane Qld Australia
| |
Collapse
|
154
|
Szatmári T, Kis D, Bogdándi EN, Benedek A, Bright S, Bowler D, Persa E, Kis E, Balogh A, Naszályi LN, Kadhim M, Sáfrány G, Lumniczky K. Extracellular Vesicles Mediate Radiation-Induced Systemic Bystander Signals in the Bone Marrow and Spleen. Front Immunol 2017; 8:347. [PMID: 28396668 PMCID: PMC5366932 DOI: 10.3389/fimmu.2017.00347] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/10/2017] [Indexed: 12/02/2022] Open
Abstract
Radiation-induced bystander effects refer to the induction of biological changes in cells not directly hit by radiation implying that the number of cells affected by radiation is larger than the actual number of irradiated cells. Recent in vitro studies suggest the role of extracellular vesicles (EVs) in mediating radiation-induced bystander signals, but in vivo investigations are still lacking. Here, we report an in vivo study investigating the role of EVs in mediating radiation effects. C57BL/6 mice were total-body irradiated with X-rays (0.1, 0.25, 2 Gy), and 24 h later, EVs were isolated from the bone marrow (BM) and were intravenously injected into unirradiated (so-called bystander) animals. EV-induced systemic effects were compared to radiation effects in the directly irradiated animals. Similar to direct radiation, EVs from irradiated mice induced complex DNA damage in EV-recipient animals, manifested in an increased level of chromosomal aberrations and the activation of the DNA damage response. However, while DNA damage after direct irradiation increased with the dose, EV-induced effects peaked at lower doses. A significantly reduced hematopoietic stem cell pool in the BM as well as CD4+ and CD8+ lymphocyte pool in the spleen was detected in mice injected with EVs isolated from animals irradiated with 2 Gy. These EV-induced alterations were comparable to changes present in the directly irradiated mice. The pool of TLR4-expressing dendritic cells was different in the directly irradiated mice, where it increased after 2 Gy and in the EV-recipient animals, where it strongly decreased in a dose-independent manner. A panel of eight differentially expressed microRNAs (miRNA) was identified in the EVs originating from both low- and high-dose-irradiated mice, with a predicted involvement in pathways related to DNA damage repair, hematopoietic, and immune system regulation, suggesting a direct involvement of these pathways in mediating radiation-induced systemic effects. In conclusion, we proved the role of EVs in transmitting certain radiation effects, identified miRNAs carried by EVs potentially responsible for these effects, and showed that the pattern of changes was often different in the directly irradiated and EV-recipient bystander mice, suggesting different mechanisms.
Collapse
Affiliation(s)
- Tünde Szatmári
- Division of Radiation Medicine, National Public Health Centre, National Research Directorate for Radiobiology and Radiohygiene , Budapest , Hungary
| | - Dávid Kis
- Division of Radiation Medicine, National Public Health Centre, National Research Directorate for Radiobiology and Radiohygiene , Budapest , Hungary
| | - Enikő Noémi Bogdándi
- Division of Radiation Medicine, National Public Health Centre, National Research Directorate for Radiobiology and Radiohygiene , Budapest , Hungary
| | - Anett Benedek
- Division of Radiation Medicine, National Public Health Centre, National Research Directorate for Radiobiology and Radiohygiene , Budapest , Hungary
| | - Scott Bright
- Genomic Instability Group, Department of Biological and Medical Sciences, Oxford Brookes University , Oxford , UK
| | - Deborah Bowler
- Genomic Instability Group, Department of Biological and Medical Sciences, Oxford Brookes University , Oxford , UK
| | - Eszter Persa
- Division of Radiation Medicine, National Public Health Centre, National Research Directorate for Radiobiology and Radiohygiene , Budapest , Hungary
| | - Enikő Kis
- Division of Radiation Medicine, National Public Health Centre, National Research Directorate for Radiobiology and Radiohygiene , Budapest , Hungary
| | - Andrea Balogh
- Division of Radiation Medicine, National Public Health Centre, National Research Directorate for Radiobiology and Radiohygiene , Budapest , Hungary
| | - Lívia N Naszályi
- Research Group for Molecular Biophysics, Hungarian Academy of Sciences, Semmelweis University , Budapest , Hungary
| | - Munira Kadhim
- Genomic Instability Group, Department of Biological and Medical Sciences, Oxford Brookes University , Oxford , UK
| | - Géza Sáfrány
- Division of Radiation Medicine, National Public Health Centre, National Research Directorate for Radiobiology and Radiohygiene , Budapest , Hungary
| | - Katalin Lumniczky
- Division of Radiation Medicine, National Public Health Centre, National Research Directorate for Radiobiology and Radiohygiene , Budapest , Hungary
| |
Collapse
|
155
|
Rahman MS, Murphy AJ, Woollard KJ. Effects of dyslipidaemia on monocyte production and function in cardiovascular disease. Nat Rev Cardiol 2017; 14:387-400. [PMID: 28300081 DOI: 10.1038/nrcardio.2017.34] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Monocytes are heterogeneous effector cells involved in the maintenance and restoration of tissue integrity. Monocytes and macrophages are involved in cardiovascular disease progression, and are associated with the development of unstable atherosclerotic plaques. Hyperlipidaemia can accelerate cardiovascular disease progression. However, monocyte responses to hyperlipidaemia are poorly understood. In the past decade, accumulating data describe the relationship between the dynamic blood lipid environment and the heterogeneous circulating monocyte pool, which might have profound consequences for cardiovascular disease. In this Review, we explore the updated view of monocytes in cardiovascular disease and their relationship with macrophages in promoting the homeostatic and inflammatory responses related to atherosclerosis. We describe the different definitions of dyslipidaemia, highlight current theories on the ontogeny of monocyte heterogeneity, discuss how dyslipidaemia might alter monocyte production, and explore the mechanistic interface linking dyslipidaemia with monocyte effector functions, such as migration and the inflammatory response. Finally, we discuss the role of dietary and endogenous lipid species in mediating dyslipidaemic responses, and the role of these lipids in promoting the risk of cardiovascular disease through modulation of monocyte behaviour.
Collapse
Affiliation(s)
- Mohammed Shamim Rahman
- Renal &Vascular Inflammation Section, Division of Immunology and Inflammation, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Andrew J Murphy
- Haematopoiesis and Leukocyte Biology Lab, Baker IDI Heart &Diabetes Research Institute, 75 Commercial Road, Melbourne, Victoria 3004, Australia.,Department of Immunology, Monash University, 89 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Kevin J Woollard
- Renal &Vascular Inflammation Section, Division of Immunology and Inflammation, Imperial College London, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
156
|
Yamada H, Umemoto T, Kawano M, Kawakami M, Kakei M, Momomura SI, Ishikawa SE, Hara K. High-density lipoprotein and apolipoprotein A-I inhibit palmitate-induced translocation of toll-like receptor 4 into lipid rafts and inflammatory cytokines in 3T3-L1 adipocytes. Biochem Biophys Res Commun 2017; 484:403-408. [DOI: 10.1016/j.bbrc.2017.01.138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 01/24/2017] [Indexed: 01/20/2023]
|
157
|
Chu EP, Elso CM, Pollock AH, Alsayb MA, Mackin L, Thomas HE, Kay TW, Silveira PA, Mansell AS, Gaus K, Brodnicki TC. Disruption of Serinc1, which facilitates serine-derived lipid synthesis, fails to alter macrophage function, lymphocyte proliferation or autoimmune disease susceptibility. Mol Immunol 2017; 82:19-33. [DOI: 10.1016/j.molimm.2016.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 12/15/2022]
|
158
|
Ma Z, Wang Y, Piao T, Liu J. Echinocystic Acid Inhibits IL-1β-Induced COX-2 and iNOS Expression in Human Osteoarthritis Chondrocytes. Inflammation 2017; 39:543-9. [PMID: 26499345 DOI: 10.1007/s10753-015-0278-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Echinocystic acid (EA), a pentacyclic triterpene isolated from the fruits of Gleditsia sinensis Lam, displays a range of pharmacological activities including anti-inflammatory and antioxidant effects. However, the effect of EA on IL-1β-stimulated osteoarthritis chondrocyte has not been reported. The purpose of this study was to assess the effects of EA on IL-1β-stimulated human osteoarthritis chondrocyte. Chondrocytes were stimulated with IL-1β in the absence or presence of EA. NO and PGE2 production were measured by Griess reagent and ELISA. The expression of COX-2, iNOS, nuclear factor-κB (NF-κB), inhibitory kappa B (IκBα), c-Jun N-terminal kinase (JNK), p38, and extracellular signal-regulated kinase (ERK) were detected by Western blot analysis. The results showed that EA suppressed IL-1β-induced collagenase-3 (MMP-13), NO, and PGE2 production in a dose-dependent manner. IL-1β up-regulated the expression of COX-2 and iNOS, and the increase was inhibited by EA. Furthermore, IL-1β-induced NF-κB and mitogen-activated protein kinase (MAPK) activation were inhibited by EA. In conclusion, EA effectively attenuated IL-1β-induced inflammatory response in osteoarthritis chondrocyte which suggesting that EA may be a potential agent in the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Zhiqiang Ma
- Department of Orthopedic Surgery, The Second Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150086, People's Republic of China
| | - Yanlong Wang
- Department of Orthopedic Surgery, The Second Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150086, People's Republic of China
| | - Taikui Piao
- Children's Hospital of Harbin, Harbin, Heilongjiang Province, 150010, People's Republic of China
| | - Jianyu Liu
- Department of Orthopedic Surgery, The Second Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150086, People's Republic of China.
| |
Collapse
|
159
|
Hu X, Fu Y, Lu X, Zhang Z, Zhang W, Cao Y, Zhang N. Protective Effects of Platycodin D on Lipopolysaccharide-Induced Acute Lung Injury by Activating LXRα-ABCA1 Signaling Pathway. Front Immunol 2017; 7:644. [PMID: 28096801 PMCID: PMC5206804 DOI: 10.3389/fimmu.2016.00644] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/13/2016] [Indexed: 12/29/2022] Open
Abstract
The purpose of this study was to investigate the protective effects of platycodin D (PLD) on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and clarify the possible mechanism. An LPS-induced ALI model was used to confirm the anti-inflammatory activity of PLD in vivo. The A549 lung epithelial cells were used to investigate the molecular mechanism and targets of PLD in vitro. In vivo, the results showed that PLD significantly attenuated lung histopathologic changes, myeloperoxidase activity, and pro-inflammatory cytokines levels, including TNF-α, IL-1β, and IL-6. In vitro, PLD inhibited LPS-induced IL-6 and IL-8 production in LPS-stimulated A549 lung epithelial cells. Western blot analysis showed that PLD suppressed LPS-induced NF-κB and IRF3 activation. Moreover, PLD did not act though affecting the expression of TLR4. We also showed that PLD disrupted the formation of lipid rafts by depleting cholesterol and prevented LPS-induced TLR4 trafficking to lipid rafts, thereby blocking LPS-induced inflammatory response. Finally, PLD activated LXRα-ABCA1-dependent cholesterol efflux. Knockdown of LXRα abrogated the anti-inflammatory effects of PLD. The anti-inflammatory effects of PLD was associated with upregulation of the LXRα-ABCA1 pathway, which resulted in disrupting lipid rafts by depleting cholesterol and reducing translocation of TLR4 to lipid rafts.
Collapse
Affiliation(s)
- Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaojie Lu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zecai Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenlong Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yongguo Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
160
|
Gabor KA, Fessler MB. Roles of the Mevalonate Pathway and Cholesterol Trafficking in Pulmonary Host Defense. Curr Mol Pharmacol 2017; 10:27-45. [PMID: 26758950 PMCID: PMC6026538 DOI: 10.2174/1874467209666160112123603] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 08/01/2015] [Accepted: 12/23/2015] [Indexed: 01/17/2023]
Abstract
The mevalonic acid synthesis pathway, cholesterol, and lipoproteins play fundamental roles in lung physiology and the innate immune response. Recent literature investigating roles for cholesterol synthesis and trafficking in host defense against respiratory infection was critically reviewed. The innate immune response and the cholesterol biosynthesis/trafficking network regulate one another, with important implications for pathogen invasion and host defense in the lung. The activation of pathogen recognition receptors and downstream cellular host defense functions are critically sensitive to cellular cholesterol. Conversely, microorganisms can co-opt the sterol/lipoprotein network in order to facilitate replication and evade immunity. Emerging literature suggests the potential for harnessing these insights towards therapeutic development. Given that >50% of adults in the U.S. have serum cholesterol abnormalities and pneumonia remains a leading cause of death, the potential impact of cholesterol on pulmonary host defense is of tremendous public health significance and warrants further mechanistic and translational investigation.
Collapse
Affiliation(s)
| | - Michael B Fessler
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, P.O. Box 12233, Maildrop D2-01, Research Triangle Park, NC 27709, United States
| |
Collapse
|
161
|
Lu L, McCurdy S, Huang S, Zhu X, Peplowska K, Tiirikainen M, Boisvert WA, Garmire LX. Time Series miRNA-mRNA integrated analysis reveals critical miRNAs and targets in macrophage polarization. Sci Rep 2016; 6:37446. [PMID: 27981970 PMCID: PMC5159803 DOI: 10.1038/srep37446] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 10/25/2016] [Indexed: 01/13/2023] Open
Abstract
Polarization of macrophages is regulated through complex signaling networks. Correlating miRNA and mRNA expression over time after macrophage polarization has not yet been investigated. We used paired RNA-Seq and miRNA-Seq experiments to measure the mRNA and miRNA expression in bone marrow-derived macrophages over a time-series of 8 hours. Bioinformatics analysis identified 31 differentially expressed miRNAs between M1 and M2 polarized macrophages. The top 4 M1 miRNAs (miR-155-3p, miR-155-5p, miR-147-3p and miR-9-5p) and top 4 M2 miRNAs (miR-27a-5p, let-7c-1-3p, miR-23a-5p and miR-23b-5p) were validated by qPCR. Interestingly, M1 specific miRNAs could be categorized to early- and late-response groups, in which three new miRNAs miR-1931, miR-3473e and miR-5128 were validated as early-response miRNAs. M1 polarization led to the enrichment of genes involved in immune responses and signal transduction, whereas M2 polarization enriched genes involved in cell cycle and metabolic processes. C2H2 zinc-finger family members are key targets of DE miRNAs. The integrative analysis between miRNAs and mRNAs demonstrates the regulations of miRNAs on nearly four thousand differentially expressed genes and most of the biological pathways enriched in macrophage polarization. In summary, this study elucidates the expression profiles of miRNAs and their potential targetomes during macrophage polarization.
Collapse
Affiliation(s)
- Liangqun Lu
- Molecular Biosciences and Bioengineering Graduate Program, University of Hawaii at Manoa, Honolulu, HI 96822, USA
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Sara McCurdy
- Center for Cardiovascular Research John A. Burns School of Medicine, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Sijia Huang
- Molecular Biosciences and Bioengineering Graduate Program, University of Hawaii at Manoa, Honolulu, HI 96822, USA
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Xun Zhu
- Molecular Biosciences and Bioengineering Graduate Program, University of Hawaii at Manoa, Honolulu, HI 96822, USA
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Karolina Peplowska
- Genomics Shared Resource, University of Hawaii Cancer Center, Honolulu, HI, 96813, USA
| | - Maarit Tiirikainen
- Genomics Shared Resource, University of Hawaii Cancer Center, Honolulu, HI, 96813, USA
| | - William A. Boisvert
- Center for Cardiovascular Research John A. Burns School of Medicine, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Lana X. Garmire
- Molecular Biosciences and Bioengineering Graduate Program, University of Hawaii at Manoa, Honolulu, HI 96822, USA
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| |
Collapse
|
162
|
Józefowski S, Śróttek M. Lipid raft-dependent endocytosis negatively regulates responsiveness of J774 macrophage-like cells to LPS by down regulating the cell surface expression of LPS receptors. Cell Immunol 2016; 312:42-50. [PMID: 27908440 DOI: 10.1016/j.cellimm.2016.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/13/2016] [Accepted: 11/22/2016] [Indexed: 01/07/2023]
Abstract
Acting through CD14 and TLR4/MD-2, lipopolysaccharide (LPS) triggers strong pro-inflammatory activation of macrophages, which, if not appropriately controlled, may lead to lethal septic shock. Therefore, numerous mechanisms of negative regulation of responses to LPS exist, but whether they include down-regulation of LPS receptors is not clear. We have found that in J774 cells, the clathrin-dependent endocytic pathway enables activation of TRIF-dependent TLR4 signaling within endosomes, but is not associated with the down-regulation of TLR4 or CD14 surface expression. In contrast, lipid raft-dependent endocytosis negatively regulates the basal cell surface expression of LPS receptors and, consequently, responsiveness to LPS. Together with observations that treatments, known to selectively disrupt lipid rafts, do not inhibit LPS-stimulated cytokine production, our results suggest that lipid rafts may serve as sites in which LPS receptors are sorted for endocytosis, rather than being platforms for the assembly of TLR4-centered signaling complexes, as suggested previously.
Collapse
Affiliation(s)
- Szczepan Józefowski
- Department of Immunology, Jagiellonian University Medical College, Czysta Street 18, 31-121 Kraków, Poland.
| | - Małgorzata Śróttek
- Department of Immunology, Jagiellonian University Medical College, Czysta Street 18, 31-121 Kraków, Poland
| |
Collapse
|
163
|
Liu Y, Kong X, Wang W, Fan F, Zhang Y, Zhao M, Wang Y, Wang Y, Wang Y, Qin X, Tang G, Wang B, Xu X, Hou FF, Gao W, Sun N, Li J, Venners SA, Jiang S, Huo Y. Association of peripheral differential leukocyte counts with dyslipidemia risk in Chinese patients with hypertension: insight from the China Stroke Primary Prevention Trial. J Lipid Res 2016; 58:256-266. [PMID: 27879312 PMCID: PMC5234728 DOI: 10.1194/jlr.p067686] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 11/08/2016] [Indexed: 01/08/2023] Open
Abstract
The aim of the present study was to examine the association between peripheral differential leukocyte counts and dyslipidemia in a Chinese hypertensive population. A total of 10,866 patients with hypertension were enrolled for a comprehensive assessment of cardiovascular risk factors using data from the China Stroke Primary Prevention Trial. Plasma lipid levels and total leukocyte, neutrophil, and lymphocyte counts were determined according to standard methods. Peripheral differential leukocyte counts were consistently and positively associated with serum total cholesterol (TC), LDL cholesterol (LDL-C), and TG levels (all P < 0.001 for trend), while inversely associated with HDL cholesterol levels (P < 0.05 for trend). In subsequent analyses where serum lipids were dichotomized (dyslipidemia/normolipidemia), we found that patients in the highest quartile of total leukocyte count (≥7.6 × 109 cells/l) had 1.64 times the risk of high TG [95% confidence interval (CI): 1.46, 1.85], 1.34 times the risk of high TC (95% CI: 1.20, 1.50), and 1.24 times the risk of high LDL-C (95% CI: 1.12, 1.39) compared with their counterparts in the lowest quartile of total leukocyte count. Similar patterns were also observed with neutrophils and lymphocytes. In summary, these findings indicate that elevated differential leukocyte counts are directly associated with serum lipid levels and increased odds of dyslipidemia.
Collapse
Affiliation(s)
- Yanhong Liu
- School of Life Sciences, Anhui University, Hefei, China
| | - Xiangyi Kong
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Wen Wang
- Institute for Biomedicine, Anhui Medical University, Hefei, China
| | - Fangfang Fan
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Yan Zhang
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Min Zhao
- National Clinical Research Study Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Renal Division, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yupeng Wang
- Department of Cardiology, Peking University Third Hospital, Beijing, China
| | - Yu Wang
- National Clinical Research Study Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Renal Division, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xianhui Qin
- National Clinical Research Study Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Renal Division, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Genfu Tang
- Institute for Biomedicine, Anhui Medical University, Hefei, China
| | - Binyan Wang
- National Clinical Research Study Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Renal Division, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiping Xu
- National Clinical Research Study Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Renal Division, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fan Fan Hou
- National Clinical Research Study Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Renal Division, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Gao
- Department of Cardiology, Peking University Third Hospital, Beijing, China
| | - Ningling Sun
- Department of Cardiology, Peking University People's Hospital, Beijing, China
| | - Jianping Li
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Scott A Venners
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Shanqun Jiang
- School of Life Sciences, Anhui University, Hefei, China .,Institute for Biomedicine, Anhui Medical University, Hefei, China
| | - Yong Huo
- Department of Cardiology, Peking University First Hospital, Beijing, China
| |
Collapse
|
164
|
Wallner S, Grandl M, Liebisch G, Peer M, Orsó E, Sigrüner A, Sobota A, Schmitz G. oxLDL and eLDL Induced Membrane Microdomains in Human Macrophages. PLoS One 2016; 11:e0166798. [PMID: 27870891 PMCID: PMC5117723 DOI: 10.1371/journal.pone.0166798] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/03/2016] [Indexed: 12/14/2022] Open
Abstract
Background Extravasation of macrophages and formation of lipid-laden foam cells are key events in the development and progression of atherosclerosis. The degradation of atherogenic lipoproteins subsequently leads to alterations in cellular lipid metabolism that influence inflammatory signaling. Especially sphingolipids and ceramides are known to be involved in these processes. We therefore analyzed monocyte derived macrophages during differentiation and after loading with enzymatically (eLDL) and oxidatively (oxLDL) modified low-density lipoproteins (LDL). Methods Primary human monocytes were isolated from healthy, normolipidemic blood donors using leukapheresis and counterflow elutriation. On the fourth day of MCSF-induced differentiation eLDL (40 μg/ml) or oxLDL (80 μg/ml) were added for 48h. Lipid species were analyzed by quantitative tandem mass spectrometry. Taqman qPCR was performed to investigate transcriptional changes in enzymes involved in sphingolipid metabolism. Furthermore, membrane lipids were studied using flow cytometry and confocal microscopy. Results MCSF dependent phagocytic differentiation of blood monocytes had only minor effects on the sphingolipid composition. Levels of total sphingomyelin and total ceramide remained unchanged, while lactosylceramides, cholesterylesters and free cholesterol decreased. At the species level most ceramide species showed a reduction upon phagocytic differentiation. Loading with eLDL preferentially increased cellular cholesterol while loading with oxLDL increased cellular ceramide content. Activation of the salvage pathway with a higher mRNA expression of acid and neutral sphingomyelinase, neutral sphingomyelinase activation associated factor and glucosylceramidase as well as increased surface expression of SMPD1 were identified as potentially underlying mechanisms. Moreover, flow-cytometric analysis revealed a higher cell-surface-expression of ceramide, lactosylceramide (CDw17), globotriaosylceramide (CD77), dodecasaccharide-ceramide (CD65s) and GM1 ganglioside upon oxLDL loading. ApoE in contrast to apoA-I preferentially bound to the ceramide enriched surfaces of oxLDL loaded cells. Confocal microscopy showed a co-localization of acid sphingomyelinase with ceramide rich membrane microdomains. Conclusion eLDL leads to the formation of lipid droplets and preferentially induces cholesterol/sphingomyelin rich membrane microdomains while oxLDL promotes the development of cholesterol/ceramide rich microdomains via activation of the salvage pathway.
Collapse
Affiliation(s)
- Stefan Wallner
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Margot Grandl
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Gerhard Liebisch
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Markus Peer
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Evelyn Orsó
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Alexander Sigrüner
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Andrzej Sobota
- Department of Cell Biology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
- * E-mail:
| |
Collapse
|
165
|
Hoekstra M, Van Berkel TJ. Functionality of High-Density Lipoprotein as Antiatherosclerotic Therapeutic Target. Arterioscler Thromb Vasc Biol 2016; 36:e87-e94. [DOI: 10.1161/atvbaha.116.308262] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Menno Hoekstra
- From the Division of Biopharmaceutics, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Gorlaeus Laboratories, The Netherlands
| | - Theo J.C. Van Berkel
- From the Division of Biopharmaceutics, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Gorlaeus Laboratories, The Netherlands
| |
Collapse
|
166
|
Metabolic reprogramming & inflammation: Fuelling the host response to pathogens. Semin Immunol 2016; 28:450-468. [PMID: 27780657 DOI: 10.1016/j.smim.2016.10.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/14/2016] [Accepted: 10/17/2016] [Indexed: 12/24/2022]
Abstract
Successful immune responses to pathogens rely on efficient host innate processes to contain and limit bacterial growth, induce inflammatory response and promote antigen presentation for the development of adaptive immunity. This energy intensive process is regulated through multiple mechanisms including receptor-mediated signaling, control of phago-lysomal fusion events and promotion of bactericidal activities. Inherent macrophage activities therefore are dynamic and are modulated by signals and changes in the environment during infection. So too does the way these cells obtain their energy to adapt to altered homeostasis. It has emerged recently that the pathways employed by immune cells to derive energy from available or preferred nutrients underline the dynamic changes associated with immune activation. In particular, key breakpoints have been identified in the metabolism of glucose and lipids which direct not just how cells derive energy in the form of ATP, but also cellular phenotype and activation status. Much of this comes about through altered flux and accumulation of intermediate metabolites. How these changes in metabolism directly impact on the key processes required for anti-microbial immunity however, is less obvious. Here, we examine the 2 key nutrient utilization pathways employed by innate cells to fuel central energy metabolism and examine how these are altered in response to activation during infection, emphasising how certain metabolic switches or 'reprogramming' impacts anti-microbial processes. By examining carbohydrate and lipid pathways and how the flux of key intermediates intersects with innate immune signaling and the induction of bactericidal activities, we hope to illustrate the importance of these metabolic switches for protective immunity and provide a potential mechanism for how altered metabolic conditions in humans such as diabetes and hyperlipidemia alter the host response to infection.
Collapse
|
167
|
Wei Y, Schober A. MicroRNA regulation of macrophages in human pathologies. Cell Mol Life Sci 2016; 73:3473-95. [PMID: 27137182 PMCID: PMC11108364 DOI: 10.1007/s00018-016-2254-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/15/2016] [Accepted: 04/26/2016] [Indexed: 12/19/2022]
Abstract
Macrophages play a crucial role in the innate immune system and contribute to a broad spectrum of pathologies, like in the defence against infectious agents, in inflammation resolution, and wound repair. In the past several years, microRNAs (miRNAs) have been demonstrated to play important roles in immune diseases by regulating macrophage functions. In this review, we will summarize the role of miRNAs in the differentiation of monocytes into macrophages, in the classical and alternative activation of macrophages, and in the regulation of phagocytosis and apoptosis. Notably, miRNAs preferentially target genes related to the cellular cholesterol metabolism, which is of key importance for the inflammatory activation and phagocytic activity of macrophages. miRNAs functionally link various mechanisms involved in macrophage activation and contribute to initiation and resolution of inflammation. miRNAs represent promising diagnostic and therapeutic targets in different conditions, such as infectious diseases, atherosclerosis, and cancer.
Collapse
Affiliation(s)
- Yuanyuan Wei
- Experimental Vascular Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Pettenkoferstrasse 9, 80336, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802, Munich, Germany
| | - Andreas Schober
- Experimental Vascular Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Pettenkoferstrasse 9, 80336, Munich, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802, Munich, Germany.
| |
Collapse
|
168
|
The Role of Signaling via Aqueous Pore Formation in Resistance Responses to Amphotericin B. Antimicrob Agents Chemother 2016; 60:5122-9. [PMID: 27381391 DOI: 10.1128/aac.00878-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Drug resistance studies have played an important role in the validation of antibiotic targets. In the case of the polyene antibiotic amphotericin B (AmB), such studies have demonstrated the essential role that depletion of ergosterol plays in the development of AmB-resistant (AmB-R) organisms. However, AmB-R strains also occur in fungi and parasitic protozoa that maintain a normal level of ergosterol at the plasma membrane. Here, I review evidence that shows not only that there is increased protection against the deleterious consequences of AmB-induced ion leakage across the membrane in these resistant pathogens but also that a set of events are activated that block the cell signaling responses that trigger the oxidative damage produced by the antibiotic. Such signaling events appear to be the consequence of a membrane-thinning effect that is exerted upon lipid-anchored Ras proteins by the aqueous pores formed by AmB. A similar membrane disturbance effect may also explain the activity of AmB on mammalian cells containing Toll-like receptors. These resistance mechanisms expand our current understanding of the role that the formation of AmB aqueous pores plays in triggering signal transduction responses in both pathogens and host immune cells.
Collapse
|
169
|
Gulshan K, Brubaker G, Conger H, Wang S, Zhang R, Hazen SL, Smith JD. PI(4,5)P2 Is Translocated by ABCA1 to the Cell Surface Where It Mediates Apolipoprotein A1 Binding and Nascent HDL Assembly. Circ Res 2016; 119:827-38. [PMID: 27514935 DOI: 10.1161/circresaha.116.308856] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/11/2016] [Indexed: 12/23/2022]
Abstract
RATIONALE The molecular mechanism by which ATP-binding cassette transporter A1 (ABCA1) mediates cellular binding of apolipoprotein A-I (apoA1) and nascent high-density lipoprotein (HDL) assembly is not well understood. OBJECTIVE To determine the cell surface lipid that mediates apoA1 binding to ABCA1-expressing cells and the role it plays in nascent HDL assembly. METHODS AND RESULTS Using multiple biochemical and biophysical methods, we found that apoA1 binds specifically to phosphatidylinositol (4,5) bis-phosphate (PIP2). Flow cytometry and PIP2 reporter-binding assays demonstrated that ABCA1 led to PIP2 redistribution from the inner to the outer leaflet of the plasma membrane. Enzymatic cleavage of cell surface PIP2 or decreased cellular PIP2 by knockdown of phosphatidylinositol-5-phosphate 4-kinase impaired apoA1 binding and cholesterol efflux to apoA1. PIP2 also increased the spontaneous solubilization of phospholipid liposomes by apoA1. Using site-directed mutagenesis, we found that ABCA1's PIP2 and phosphatidylserine translocase activities are independent from each other. Furthermore, we discovered that PIP2 is effluxed from cells to apoA1, where it is associated with HDL in plasma, and that PIP2 on HDL is taken up by target cells in a scavenger receptor-BI-dependent manner. Mouse plasma PIP2 levels are apoA1 gene dosage-dependent and are >1 μM in apoA1 transgenic mice. CONCLUSIONS ABCA1 has PIP2 floppase activity, which increases cell surface PIP2 levels that mediate apoA1 binding and lipid efflux during nascent HDL assembly. We found that PIP2 itself is effluxed to apoA1 and it circulates on plasma HDL, where it can be taken up via the HDL receptor scavenger receptor-BI.
Collapse
Affiliation(s)
- Kailash Gulshan
- From the Department of Cellular and Molecular Medicine (K.G., G.B., H.C., S.W., R.Z., S.L.H., J.D.S.) and Department of Cardiovascular Medicine (S.L.H., J.D.S.), Cleveland Clinic, OH.
| | - Gregory Brubaker
- From the Department of Cellular and Molecular Medicine (K.G., G.B., H.C., S.W., R.Z., S.L.H., J.D.S.) and Department of Cardiovascular Medicine (S.L.H., J.D.S.), Cleveland Clinic, OH
| | - Heather Conger
- From the Department of Cellular and Molecular Medicine (K.G., G.B., H.C., S.W., R.Z., S.L.H., J.D.S.) and Department of Cardiovascular Medicine (S.L.H., J.D.S.), Cleveland Clinic, OH
| | - Shuhui Wang
- From the Department of Cellular and Molecular Medicine (K.G., G.B., H.C., S.W., R.Z., S.L.H., J.D.S.) and Department of Cardiovascular Medicine (S.L.H., J.D.S.), Cleveland Clinic, OH
| | - Renliang Zhang
- From the Department of Cellular and Molecular Medicine (K.G., G.B., H.C., S.W., R.Z., S.L.H., J.D.S.) and Department of Cardiovascular Medicine (S.L.H., J.D.S.), Cleveland Clinic, OH
| | - Stanley L Hazen
- From the Department of Cellular and Molecular Medicine (K.G., G.B., H.C., S.W., R.Z., S.L.H., J.D.S.) and Department of Cardiovascular Medicine (S.L.H., J.D.S.), Cleveland Clinic, OH
| | - Jonathan D Smith
- From the Department of Cellular and Molecular Medicine (K.G., G.B., H.C., S.W., R.Z., S.L.H., J.D.S.) and Department of Cardiovascular Medicine (S.L.H., J.D.S.), Cleveland Clinic, OH.
| |
Collapse
|
170
|
Lai L, Azzam KM, Lin WC, Rai P, Lowe JM, Gabor KA, Madenspacher JH, Aloor JJ, Parks JS, Näär AM, Fessler MB. MicroRNA-33 Regulates the Innate Immune Response via ATP Binding Cassette Transporter-mediated Remodeling of Membrane Microdomains. J Biol Chem 2016; 291:19651-60. [PMID: 27471270 DOI: 10.1074/jbc.m116.723056] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene expression by promoting degradation and/or repressing translation of specific target mRNAs. Several miRNAs have been identified that regulate the amplitude of the innate immune response by directly targeting Toll-like receptor (TLR) pathway members and/or cytokines. miR-33a and miR-33b (the latter present in primates but absent in rodents and lower species) are located in introns of the sterol regulatory element-binding protein (SREBP)-encoding genes and control cholesterol/lipid homeostasis in concert with their host gene products. These miRNAs regulate macrophage cholesterol by targeting the lipid efflux transporters ATP binding cassette (ABC)A1 and ABCG1. We and others have previously reported that Abca1(-/-) and Abcg1(-/-) macrophages have increased TLR proinflammatory responses due to augmented lipid raft cholesterol. Given this, we hypothesized that miR-33 would augment TLR signaling in macrophages via a raft cholesterol-dependent mechanism. Herein, we report that multiple TLR ligands down-regulate miR-33 in murine macrophages. In the case of lipopolysaccharide, this is a delayed, Toll/interleukin-1 receptor (TIR) domain-containing adapter-inducing interferon-β-dependent response that also down-regulates Srebf-2, the host gene for miR-33. miR-33 augments macrophage lipid rafts and enhances proinflammatory cytokine induction and NF-κB activation by LPS. This occurs through an ABCA1- and ABCG1-dependent mechanism and is reversible by interventions upon raft cholesterol and by ABC transporter-inducing liver X receptor agonists. Taken together, these findings extend the purview of miR-33, identifying it as an indirect regulator of innate immunity that mediates bidirectional cross-talk between lipid homeostasis and inflammation.
Collapse
Affiliation(s)
- Lihua Lai
- From the Immunity, Inflammation and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Kathleen M Azzam
- From the Immunity, Inflammation and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Wan-Chi Lin
- From the Immunity, Inflammation and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Prashant Rai
- From the Immunity, Inflammation and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Julie M Lowe
- From the Immunity, Inflammation and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Kristin A Gabor
- From the Immunity, Inflammation and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Jennifer H Madenspacher
- From the Immunity, Inflammation and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Jim J Aloor
- From the Immunity, Inflammation and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - John S Parks
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Anders M Näär
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts 02129, and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Michael B Fessler
- From the Immunity, Inflammation and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709,
| |
Collapse
|
171
|
Macrophages and Their Role in Atherosclerosis: Pathophysiology and Transcriptome Analysis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9582430. [PMID: 27493969 PMCID: PMC4967433 DOI: 10.1155/2016/9582430] [Citation(s) in RCA: 244] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/29/2016] [Accepted: 06/22/2016] [Indexed: 12/17/2022]
Abstract
Atherosclerosis can be regarded as a chronic inflammatory state, in which macrophages play different and important roles. Phagocytic proinflammatory cells populate growing atherosclerotic lesions, where they actively participate in cholesterol accumulation. Moreover, macrophages promote formation of complicated and unstable plaques by maintaining proinflammatory microenvironment. At the same time, anti-inflammatory macrophages contribute to tissue repair and remodelling and plaque stabilization. Macrophages therefore represent attractive targets for development of antiatherosclerotic therapy, which can aim to reduce monocyte recruitment to the lesion site, inhibit proinflammatory macrophages, or stimulate anti-inflammatory responses and cholesterol efflux. More studies are needed, however, to create a comprehensive classification of different macrophage phenotypes and to define their roles in the pathogenesis of atherosclerosis. In this review, we provide an overview of the current knowledge on macrophage diversity, activation, and plasticity in atherosclerosis and describe macrophage-based cellular tests for evaluation of potential antiatherosclerotic substances.
Collapse
|
172
|
Płóciennikowska A, Hromada-Judycka A, Dembinńska J, Roszczenko P, Ciesielska A, Kwiatkowska K. Contribution of CD14 and TLR4 to changes of the PI(4,5)P2
level in LPS-stimulated cells. J Leukoc Biol 2016; 100:1363-1373. [DOI: 10.1189/jlb.2vma1215-577r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 06/12/2016] [Accepted: 06/29/2016] [Indexed: 01/09/2023] Open
|
173
|
Varshney P, Yadav V, Saini N. Lipid rafts in immune signalling: current progress and future perspective. Immunology 2016; 149:13-24. [PMID: 27153983 DOI: 10.1111/imm.12617] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 04/22/2016] [Accepted: 04/28/2016] [Indexed: 12/15/2022] Open
Abstract
Lipid rafts are dynamic assemblies of proteins and lipids that harbour many receptors and regulatory molecules and so act as a platform for signal transduction. They float freely within the liquid-disordered bilayer of cellular membranes and can cluster to form larger ordered domains. Alterations in lipid rafts are commonly found to be associated with the pathogenesis of several human diseases and recent reports have shown that the raft domains can also be perturbed by targeting raft proteins through microRNAs. Over the last few years, the importance of lipid rafts in modulating both innate and acquired immune responses has been elucidated. Various receptors present on immune cells like B cells, T cells, basophils and mast cells associate with lipid rafts on ligand binding and initiate signalling cascades leading to inflammation. Furthermore, disrupting lipid raft integrity alters lipopolysaccharide-induced cytokine secretion, IgE signalling, and B-cell and T-cell activation. The objective of this review is to summarize the recent progress in understanding the role of lipid rafts in the modulation of immune signalling and its related therapeutic potential for autoimmune diseases and inflammatory disorders.
Collapse
Affiliation(s)
- Pallavi Varshney
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.,Academy of Scientific & Innovative Research, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Vikas Yadav
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Neeru Saini
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.,Academy of Scientific & Innovative Research, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| |
Collapse
|
174
|
McClean CM, Tobin DM. Macrophage form, function, and phenotype in mycobacterial infection: lessons from tuberculosis and other diseases. Pathog Dis 2016; 74:ftw068. [PMID: 27402783 DOI: 10.1093/femspd/ftw068] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2016] [Indexed: 02/07/2023] Open
Abstract
Macrophages play a central role in mycobacterial pathogenesis. Recent work has highlighted the importance of diverse macrophage types and phenotypes that depend on local environment and developmental origins. In this review, we highlight how distinct macrophage phenotypes may influence disease progression in tuberculosis. In addition, we draw on work investigating specialized macrophage populations important in cancer biology and atherosclerosis in order to suggest new areas of investigation relevant to mycobacterial pathogenesis. Understanding the mechanisms controlling the repertoire of macrophage phenotypes and behaviors during infection may provide opportunities for novel control of disease through modulation of macrophage form and function.
Collapse
Affiliation(s)
- Colleen M McClean
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, DUMC 3020, Durham, NC 27710, USA Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA Medical Scientist Training Program, Duke University School of Medicine, Durham, NC 27710, USA
| | - David M Tobin
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, DUMC 3020, Durham, NC 27710, USA Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
175
|
Jouffe C, Gobet C, Martin E, Métairon S, Morin-Rivron D, Masoodi M, Gachon F. Perturbed rhythmic activation of signaling pathways in mice deficient for Sterol Carrier Protein 2-dependent diurnal lipid transport and metabolism. Sci Rep 2016; 6:24631. [PMID: 27097688 PMCID: PMC4838911 DOI: 10.1038/srep24631] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/29/2016] [Indexed: 01/22/2023] Open
Abstract
Through evolution, most of the living species have acquired a time keeping system to anticipate daily changes caused by the rotation of the Earth. In all of the systems this pacemaker is based on a molecular transcriptional/translational negative feedback loop able to generate rhythmic gene expression with a period close to 24 hours. Recent evidences suggest that post-transcriptional regulations activated mostly by systemic cues play a fundamental role in the process, fine tuning the time keeping system and linking it to animal physiology. Among these signals, we consider the role of lipid transport and metabolism regulated by SCP2. Mice harboring a deletion of the Scp2 locus present a modulated diurnal accumulation of lipids in the liver and a perturbed activation of several signaling pathways including PPARα, SREBP, LRH-1, TORC1 and its upstream regulators. This defect in signaling pathways activation feedbacks upon the clock by lengthening the circadian period of animals through post-translational regulation of core clock regulators, showing that rhythmic lipid transport is a major player in the establishment of rhythmic mRNA and protein expression landscape.
Collapse
Affiliation(s)
- Céline Jouffe
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, CH-1011, Switzerland.,Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Cédric Gobet
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland.,Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Eva Martin
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Sylviane Métairon
- Functional Genomic, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Delphine Morin-Rivron
- Department of Gastro-Intestinal Health &Microbiome, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Mojgan Masoodi
- Department of Gastro-Intestinal Health &Microbiome, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland.,Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 3E2, Canada
| | - Frédéric Gachon
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, CH-1011, Switzerland.,Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland.,Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
176
|
Wang N, Tall AR. Cholesterol in platelet biogenesis and activation. Blood 2016; 127:1949-53. [PMID: 26929273 PMCID: PMC4841038 DOI: 10.1182/blood-2016-01-631259] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/11/2016] [Indexed: 02/06/2023] Open
Abstract
Hypercholesterolemia is a risk factor for atherothrombotic disease, largely attributed to its impact on atherosclerotic lesional cells such as macrophages. Platelets are involved in immunity and inflammation and impact atherogenesis, primarily by modulating immune and inflammatory effector cells. There is evidence that hypercholesterolemia increases the risk of atherosclerosis and thrombosis by modulating platelet biogenesis and activity. This review highlights recent findings on the impact of aberrant cholesterol metabolism on platelet biogenesis and activity and their relevance in atherosclerosis and thrombosis.
Collapse
Affiliation(s)
- Nan Wang
- Division of Molecular Medicine, Department of Medicine, Columbia University Medical Center, New York, NY
| | - Alan R Tall
- Division of Molecular Medicine, Department of Medicine, Columbia University Medical Center, New York, NY
| |
Collapse
|
177
|
Qin L, Zhu N, Ao BX, Liu C, Shi YN, Du K, Chen JX, Zheng XL, Liao DF. Caveolae and Caveolin-1 Integrate Reverse Cholesterol Transport and Inflammation in Atherosclerosis. Int J Mol Sci 2016; 17:429. [PMID: 27011179 PMCID: PMC4813279 DOI: 10.3390/ijms17030429] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/16/2016] [Accepted: 03/16/2016] [Indexed: 01/18/2023] Open
Abstract
Lipid disorder and inflammation play critical roles in the development of atherosclerosis. Reverse cholesterol transport is a key event in lipid metabolism. Caveolae and caveolin-1 are in the center stage of cholesterol transportation and inflammation in macrophages. Here, we propose that reverse cholesterol transport and inflammation in atherosclerosis can be integrated by caveolae and caveolin-1.
Collapse
Affiliation(s)
- Li Qin
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Neng Zhu
- Department of Urology, The First Hospital of Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Bao-Xue Ao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Chan Liu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Ya-Ning Shi
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Ke Du
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Jian-Xiong Chen
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS 39216, USA.
| | - Xi-Long Zheng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
- Department of Biochemistry & Molecular Biology, the Libin Cardiovascular Institute of Alberta, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| | - Duan-Fang Liao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
178
|
Tang C, Houston BA, Storey C, LeBoeuf RC. Both STAT3 activation and cholesterol efflux contribute to the anti-inflammatory effect of apoA-I/ABCA1 interaction in macrophages. J Lipid Res 2016; 57:848-57. [PMID: 26989082 DOI: 10.1194/jlr.m065797] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Indexed: 12/13/2022] Open
Abstract
ABCA1 exports excess cholesterol from cells to apoA-I and is essential for HDL synthesis. Genetic studies have shown that ABCA1 protects against cardiovascular disease. We have previously shown that the interaction of apoA-I with ABCA1 activates signaling molecule Janus kinase 2 (JAK2), which optimizes the cholesterol efflux activity of ABCA1. ABCA1-mediated activation of JAK2 also activates signal transducer and activator of transcription 3 (STAT3), which significantly attenuates proinflammatory cytokine expression in macrophages. To determine the mechanisms of the anti-inflammatory effects of apoA-I/ABCA1 interaction, we identified two special ABCA1 mutants, one with normal STAT3-activating capacity but lacking cholesterol efflux ability and the other with normal cholesterol efflux ability but lacking STAT3-activating capacity. We showed that activation of STAT3 by the interaction of apoA-I/ABCA1 without cholesterol efflux could significantly decrease proinflammatory cytokine expression in macrophages. Mechanistic studies showed that the anti-inflammatory effect of the apoA-I/ABCA1/STAT3 pathway is suppressor of cytokine signaling 3 dependent. Moreover, we showed that apoA-I/ABCA1-mediated cholesterol efflux without STAT3 activation can also reduce proinflammatory cytokine expression in macrophages. These findings suggest that the interaction of apoA-I/ABCA1 activates cholesterol efflux and STAT3 branch pathways to synergistically suppress inflammation in macrophages.
Collapse
Affiliation(s)
- Chongren Tang
- Division of Metabolism, Endocrinology and Nutrition, Diabetes Obesity Center for Excellence, University of Washington, Seattle, WA 98109
| | - Barbara A Houston
- Division of Metabolism, Endocrinology and Nutrition, Diabetes Obesity Center for Excellence, University of Washington, Seattle, WA 98109
| | - Carl Storey
- Division of Metabolism, Endocrinology and Nutrition, Diabetes Obesity Center for Excellence, University of Washington, Seattle, WA 98109
| | - Renee C LeBoeuf
- Division of Metabolism, Endocrinology and Nutrition, Diabetes Obesity Center for Excellence, University of Washington, Seattle, WA 98109
| |
Collapse
|
179
|
Cave MC, Clair HB, Hardesty JE, Falkner KC, Feng W, Clark BJ, Sidey J, Shi H, Aqel BA, McClain CJ, Prough RA. Nuclear receptors and nonalcoholic fatty liver disease. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1083-1099. [PMID: 26962021 DOI: 10.1016/j.bbagrm.2016.03.002] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 02/08/2023]
Abstract
Nuclear receptors are transcription factors which sense changing environmental or hormonal signals and effect transcriptional changes to regulate core life functions including growth, development, and reproduction. To support this function, following ligand-activation by xenobiotics, members of subfamily 1 nuclear receptors (NR1s) may heterodimerize with the retinoid X receptor (RXR) to regulate transcription of genes involved in energy and xenobiotic metabolism and inflammation. Several of these receptors including the peroxisome proliferator-activated receptors (PPARs), the pregnane and xenobiotic receptor (PXR), the constitutive androstane receptor (CAR), the liver X receptor (LXR) and the farnesoid X receptor (FXR) are key regulators of the gut:liver:adipose axis and serve to coordinate metabolic responses across organ systems between the fed and fasting states. Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease and may progress to cirrhosis and even hepatocellular carcinoma. NAFLD is associated with inappropriate nuclear receptor function and perturbations along the gut:liver:adipose axis including obesity, increased intestinal permeability with systemic inflammation, abnormal hepatic lipid metabolism, and insulin resistance. Environmental chemicals may compound the problem by directly interacting with nuclear receptors leading to metabolic confusion and the inability to differentiate fed from fasting conditions. This review focuses on the impact of nuclear receptors in the pathogenesis and treatment of NAFLD. Clinical trials including PIVENS and FLINT demonstrate that nuclear receptor targeted therapies may lead to the paradoxical dissociation of steatosis, inflammation, fibrosis, insulin resistance, dyslipidemia and obesity. Novel strategies currently under development (including tissue-specific ligands and dual receptor agonists) may be required to separate the beneficial effects of nuclear receptor activation from unwanted metabolic side effects. The impact of nuclear receptor crosstalk in NAFLD is likely to be profound, but requires further elucidation. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.
Collapse
Affiliation(s)
- Matthew C Cave
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; The Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA; The KentuckyOne Health Jewish Hospital Liver Transplant Program, Louisville, KY 40202, USA.
| | - Heather B Clair
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Josiah E Hardesty
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - K Cameron Falkner
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Wenke Feng
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Barbara J Clark
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Jennifer Sidey
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Hongxue Shi
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Bashar A Aqel
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Scottsdale, AZ 85054, USA
| | - Craig J McClain
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; The Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA; The KentuckyOne Health Jewish Hospital Liver Transplant Program, Louisville, KY 40202, USA
| | - Russell A Prough
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
180
|
Macrophage miRNAs in atherosclerosis. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:2087-2093. [PMID: 26899196 DOI: 10.1016/j.bbalip.2016.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 02/06/2016] [Accepted: 02/06/2016] [Indexed: 01/11/2023]
Abstract
The discovery of endogenous microRNAs (miRNAs) in the early 1990s has been followed by the identification of hundreds of miRNAs and their roles in regulating various biological processes, including proliferation, apoptosis, lipid metabolism, glucose homeostasis and viral infection Esteller (2011), Ameres and Zamore (2013) [1,2]. miRNAs are small (~22 nucleotides) non-coding RNAs that function as "rheostats" to simultaneously tweak the expression of multiple genes within a genetic network, resulting in dramatic functional modulation of biological processes. Although the last decade has brought the identification of miRNAs, their targets and function(s) in health and disease, there remains much to be deciphered from the human genome and its complexities in mechanistic regulation of entire genetic networks. These discoveries have opened the door to new and exciting avenues for therapeutic interventions to treat various pathological diseases, including cardiometabolic diseases such as atherosclerosis, diabetes and obesity. In a complex multi-factorial disease like atherosclerosis, many miRNAs have been shown to contribute to disease progression and may offer novel targets for future therapy. This article is part of a Special Issue entitled: MicroRNAs and lipid/energy metabolism and related diseases edited by Carlos Fernández-Hernando and Yajaira Suárez.
Collapse
|
181
|
Köberlin MS, Heinz LX, Superti-Furga G. Functional crosstalk between membrane lipids and TLR biology. Curr Opin Cell Biol 2016; 39:28-36. [PMID: 26895312 DOI: 10.1016/j.ceb.2016.01.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/20/2016] [Accepted: 01/27/2016] [Indexed: 12/16/2022]
Abstract
Toll-like receptors (TLRs) are important transmembrane proteins of the innate immune system that detect invading pathogens and subsequently orchestrate an immune response. The ensuing inflammatory processes are connected to lipid metabolism at multiple levels. Here, we describe different aspects of how membrane lipids can shape the response of TLRs. Recent reports have uncovered the role of individual lipid species on membrane protein function and mouse models have contributed to the understanding of how changes in lipid metabolism alter TLR signaling, endocytosis, and cytokine secretion. Finally, we discuss the importance of systematic approaches to identify the function of individual lipid species or the composition of membrane lipids in TLR-related processes.
Collapse
Affiliation(s)
- Marielle S Köberlin
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Leonhard X Heinz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
182
|
Constantinou C, Karavia EA, Xepapadaki E, Petropoulou PI, Papakosta E, Karavyraki M, Zvintzou E, Theodoropoulos V, Filou S, Hatziri A, Kalogeropoulou C, Panayiotakopoulos G, Kypreos KE. Advances in high-density lipoprotein physiology: surprises, overturns, and promises. Am J Physiol Endocrinol Metab 2016; 310:E1-E14. [PMID: 26530157 DOI: 10.1152/ajpendo.00429.2015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/30/2015] [Indexed: 12/21/2022]
Abstract
Emerging evidence strongly supports that changes in the HDL metabolic pathway, which result in changes in HDL proteome and function, appear to have a causative impact on a number of metabolic disorders. Here, we provide a critical review of the most recent and novel findings correlating HDL properties and functionality with various pathophysiological processes and disease states, such as obesity, type 2 diabetes mellitus, nonalcoholic fatty liver disease, inflammation and sepsis, bone and obstructive pulmonary diseases, and brain disorders.
Collapse
Affiliation(s)
| | - Eleni A Karavia
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | - Eva Xepapadaki
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | | | - Eugenia Papakosta
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | - Marilena Karavyraki
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | - Evangelia Zvintzou
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | | | - Serafoula Filou
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | - Aikaterini Hatziri
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | | | | | - Kyriakos E Kypreos
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| |
Collapse
|
183
|
Fu Y, Hu X, Cao Y, Zhang Z, Zhang N. Saikosaponin a inhibits lipopolysaccharide-oxidative stress and inflammation in Human umbilical vein endothelial cells via preventing TLR4 translocation into lipid rafts. Free Radic Biol Med 2015; 89:777-85. [PMID: 26475038 DOI: 10.1016/j.freeradbiomed.2015.10.407] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 10/05/2015] [Accepted: 10/10/2015] [Indexed: 11/15/2022]
Abstract
Saikosaponin a (SSa), the major triterpenoid saponin derivatives from Radix bupleuri (RB), has been reported to have anti-inflammatory effects. The aim of this study was to investigate the effects of SSa on lipopolysaccharide (LPS)-induced oxidative stress and inflammatory response in human umbilical vein endothelial cells (HUVECs). HUVECs were stimulated with LPS in the presence or absence of SSa. The levels of TNF-α and IL-8 were detected by ELISA. The expression of COX-2 and iNOS, NF-κB and IκB protein were determined by Western blotting. To investigate the protective mechanisms of SSa, TLR4 expression was detected by Western blotting and membrane lipid rafts were separated by density gradient ultracentrifugation and analyzed by immunoblotting with anti-TLR4 antibody. The results showed that SSa dose-dependently inhibited the production of ROS, TNF-α, IL-8, COX-2 and iNOS in LPS-stimulated HUVECs. Western blot analysis showed that SSa suppressed LPS-induced NF-κB activation. SSa did not affect the expression of TLR4 induced by LPS. However, translocation of TLR4 into lipid rafts and oligomerization of TLR4 induce by LPS was inhibited by SSa. Furthermore, SSa disrupted the formation of lipid rafts by depleting cholesterol. Moreover, SSa activated LXRα-ABCA1 signaling pathway, which could induce cholesterol efflux from lipid rafts. Knockdown of LXRα abrogated the anti-inflammatory effects of SSa. In conclusion, the effects of SSa is associated with activating LXRα-ABCA1 signaling pathway which results in disrupting lipid rafts by depleting cholesterol and reducing translocation of TLR4 to lipid rafts and oligomerization of TLR4, thereby attenuating LPS mediated oxidative and inflammatory responses.
Collapse
Affiliation(s)
- Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, PR China
| | - Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, PR China
| | - Yongguo Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, PR China
| | - Zecai Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, PR China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, PR China.
| |
Collapse
|
184
|
Ma J, Xu H, Wu J, Qu C, Sun F, Xu S. Linalool inhibits cigarette smoke-induced lung inflammation by inhibiting NF-κB activation. Int Immunopharmacol 2015; 29:708-713. [PMID: 26432179 DOI: 10.1016/j.intimp.2015.09.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 09/07/2015] [Accepted: 09/09/2015] [Indexed: 10/23/2022]
Abstract
Linalool, a natural compound that exists in the essential oils of several aromatic plants species, has been reported to have anti-inflammatory effects. However, the effects of linalool on cigarette smoke (CS)-induced acute lung inflammation have not been reported. In the present study, we investigated the protective effects of linalool on CS-induced acute lung inflammation in mice. Linalool was given i.p. to mice 2h before CS exposure daily for five consecutive days. The numbers of macrophages and neutrophils in bronchoalveolar lavage fluid (BALF) were measured. The production of TNF-α, IL-6, IL-1β, IL-8 and MCP-1 were detected by ELISA. The expression of NF-κB was detected by Western blotting. Our results showed that treatment of linalool significantly attenuated CS-induced lung inflammation, coupled with inhibited the infiltration of inflammatory cells and TNF-α, IL-6, IL-1β, IL-8 and MCP-1 production. Meanwhile, treatment of linalool inhibited CS-induced lung MPO activity and pathological changes. Furthermore, linalool suppressed CS-induced NF-κB activation in a dose-dependent manner. In conclusion, our results demonstrated that linalool protected against CS-induced lung inflammation through inhibiting CS-induced NF-κB activation.
Collapse
Affiliation(s)
- Jianqun Ma
- Department of Thoracic surgery, Harbin Medical University Cancer Hospital, Harbin, Hei Longjiang Province 150086, PR China
| | - Hai Xu
- Department of Thoracic surgery, Harbin Medical University Cancer Hospital, Harbin, Hei Longjiang Province 150086, PR China; Laboratory of Medical Genetics of Harbin Medical University, Harbin, Hei Longjiang Province 150081, PR China
| | - Jun Wu
- Department of Thoracic surgery, Harbin Medical University Cancer Hospital, Harbin, Hei Longjiang Province 150086, PR China
| | - Changfa Qu
- Department of Thoracic surgery, Harbin Medical University Cancer Hospital, Harbin, Hei Longjiang Province 150086, PR China
| | - Fenglin Sun
- Department of Thoracic surgery, Harbin Medical University Cancer Hospital, Harbin, Hei Longjiang Province 150086, PR China
| | - Shidong Xu
- Department of Thoracic surgery, Harbin Medical University Cancer Hospital, Harbin, Hei Longjiang Province 150086, PR China.
| |
Collapse
|
185
|
Zamanian-Daryoush M, DiDonato JA. Apolipoprotein A-I and Cancer. Front Pharmacol 2015; 6:265. [PMID: 26617517 PMCID: PMC4642354 DOI: 10.3389/fphar.2015.00265] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/23/2015] [Indexed: 12/22/2022] Open
Abstract
High-density lipoprotein (HDL) and apolipoprotein A-I (apoA-I), the predominant protein in plasma HDL, have long been the focus of intense studies in the field of atherosclerosis and cardiovascular disease. ApoA-I, in large part, is responsible for HDL assembly and its main atheroprotective function, that of shuttling excess cholesterol from peripheral tissues to the liver for excretion (reverse cholesterol transport). Recently, a protective role for HDL in cancer was suggested from several large clinical studies where an inverse relationship between plasma HDL-cholesterol (HDL-C) levels and risk of developing cancer was noted. This notion has now been tested and found to be supported in mouse tumor studies, where increasing levels of apoA-I/HDL were discovered to protect against tumor development and provision of human apoA-I was therapeutic against established tumors. This mini-review discusses the emerging role of apoA-I in tumor biology and its potential as cancer therapeutic.
Collapse
Affiliation(s)
- Maryam Zamanian-Daryoush
- Department of Cellular and Molecular Medicine, and Center for Cardiovascular Diagnostics and Prevention, Cleveland Clinic, Cleveland OH, USA
| | - Joseph A DiDonato
- Department of Cellular and Molecular Medicine, and Center for Cardiovascular Diagnostics and Prevention, Cleveland Clinic, Cleveland OH, USA
| |
Collapse
|
186
|
IRAK1 mediates TLR4-induced ABCA1 downregulation and lipid accumulation in VSMCs. Cell Death Dis 2015; 6:e1949. [PMID: 26512959 PMCID: PMC5399175 DOI: 10.1038/cddis.2015.212] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 06/23/2015] [Accepted: 06/30/2015] [Indexed: 12/14/2022]
Abstract
The activation of Toll-like receptor 4 (TLR4) signaling has an important role in promoting lipid accumulation and pro-inflammatory effects in vascular smooth muscle cells (VSMCs), which facilitate atherosclerosis development and progression. Previous studies have demonstrated that excess lipid accumulation in VSMCs is due to an inhibition of the expression of ATP-binding cassette transporter A1 (ABCA1), an important molecular mediator of lipid efflux from VSMCs. However, the underlying molecular mechanisms of this process are unclear. The purpose of this study was to disclose the underlying molecular mechanisms of TLR4 signaling in regulating ABCA1 expression. Primary cultured VSMCs were stimulated with 50 μg/ml oxidized low-density lipoprotein (oxLDL). We determined that enhancing TLR4 signaling using oxLDL significantly downregulated ABCA1 expression and induced lipid accumulation in VSMCs. However, TLR4 knockout significantly rescued oxLDL-induced ABCA1 downregulation and lipid accumulation. In addition, IL-1R-associated kinase 1 (IRAK1) was involved in the effects of TLR4 signaling on ABCA1 expression and lipid accumulation. Silencing IRAK1 expression using a specific siRNA reversed TLR4-induced ABCA1 downregulation and lipid accumulation in vitro. These results were further confirmed by our in vivo experiments. We determined that enhancing TLR4 signaling by administering a 12-week-long high-fat diet (HFD) to mice significantly increased IRAK1 expression, which downregulated ABCA1 expression and induced lipid accumulation. In addition, TLR4 knockout in vivo reversed the effects of the HFD on IRAK1 and ABCA1 expression, as well as on lipid accumulation. In conclusion, IRAK1 is involved in TLR4-mediated downregulation of ABCA1 expression and lipid accumulation in VSMCs.
Collapse
|
187
|
Ouimet M, Ediriweera HN, Gundra UM, Sheedy FJ, Ramkhelawon B, Hutchison SB, Rinehold K, van Solingen C, Fullerton MD, Cecchini K, Rayner KJ, Steinberg GR, Zamore PD, Fisher EA, Loke P, Moore KJ. MicroRNA-33-dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis. J Clin Invest 2015; 125:4334-48. [PMID: 26517695 PMCID: PMC4665799 DOI: 10.1172/jci81676] [Citation(s) in RCA: 312] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 09/17/2015] [Indexed: 12/12/2022] Open
Abstract
Cellular metabolism is increasingly recognized as a controller of immune cell fate and function. MicroRNA-33 (miR-33) regulates cellular lipid metabolism and represses genes involved in cholesterol efflux, HDL biogenesis, and fatty acid oxidation. Here, we determined that miR-33-mediated disruption of the balance of aerobic glycolysis and mitochondrial oxidative phosphorylation instructs macrophage inflammatory polarization and shapes innate and adaptive immune responses. Macrophage-specific Mir33 deletion increased oxidative respiration, enhanced spare respiratory capacity, and induced an M2 macrophage polarization-associated gene profile. Furthermore, miR-33-mediated M2 polarization required miR-33 targeting of the energy sensor AMP-activated protein kinase (AMPK), but not cholesterol efflux. Notably, miR-33 inhibition increased macrophage expression of the retinoic acid-producing enzyme aldehyde dehydrogenase family 1, subfamily A2 (ALDH1A2) and retinal dehydrogenase activity both in vitro and in a mouse model. Consistent with the ability of retinoic acid to foster inducible Tregs, miR-33-depleted macrophages had an enhanced capacity to induce forkhead box P3 (FOXP3) expression in naive CD4(+) T cells. Finally, treatment of hypercholesterolemic mice with miR-33 inhibitors for 8 weeks resulted in accumulation of inflammation-suppressing M2 macrophages and FOXP3(+) Tregs in plaques and reduced atherosclerosis progression. Collectively, these results reveal that miR-33 regulates macrophage inflammation and demonstrate that miR-33 antagonism is atheroprotective, in part, by reducing plaque inflammation by promoting M2 macrophage polarization and Treg induction.
Collapse
Affiliation(s)
| | | | - U. Mahesh Gundra
- Department of Microbiology, New York University (NYU) School of Medicine, New York, USA
| | | | | | | | | | | | | | - Katharine Cecchini
- RNA Therapeutics Institute, Howard Hughes Medical Institute, and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | - Gregory R. Steinberg
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Phillip D. Zamore
- RNA Therapeutics Institute, Howard Hughes Medical Institute, and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Edward A. Fisher
- Marc and Ruti Bell Vascular Biology and Disease Program and
- Department of Cell Biology, NYU School of Medicine, New York, New York, USA
| | - P’ng Loke
- Department of Microbiology, New York University (NYU) School of Medicine, New York, USA
| | - Kathryn J. Moore
- Marc and Ruti Bell Vascular Biology and Disease Program and
- Department of Cell Biology, NYU School of Medicine, New York, New York, USA
| |
Collapse
|
188
|
Płóciennikowska A, Zdioruk MI, Traczyk G, Świątkowska A, Kwiatkowska K. LPS-induced clustering of CD14 triggers generation of PI(4,5)P2. J Cell Sci 2015; 128:4096-111. [PMID: 26446256 DOI: 10.1242/jcs.173104] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 09/30/2015] [Indexed: 01/08/2023] Open
Abstract
Bacterial lipopolysaccharide (LPS) induces strong pro-inflammatory reactions after sequential binding to CD14 protein and TLR4 receptor. Here, we show that CD14 controls generation of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] in response to LPS binding. In J774 cells and HEK293 cells expressing CD14 exposed to 10-100 ng/ml LPS, the level of PI(4,5)P2 rose in a biphasic manner with peaks at 5-10 min and 60 min. After 5-10 min of LPS stimulation, CD14 underwent prominent clustering in the plasma membrane, accompanied by accumulation of PI(4,5)P2 and type-I phosphatidylinositol 4-phosphate 5-kinase (PIP5K) isoforms Iα and Iγ (encoded by Pip5k1a and Pip5k1c, respectively) in the CD14 region. Clustering of CD14 with antibodies, without LPS and TLR4 participation, was sufficient to trigger PI(4,5)P2 elevation. The newly generated PI(4,5)P2 accumulated in rafts, which also accommodated CD14 and a large portion of PIP5K Iα and PIP5K Iγ. Silencing of PIP5K Iα and PIP5K Iγ, or application of drugs interfering with PI(4,5)P2 synthesis and availability, abolished the LPS-induced PI(4,5)P2 elevation and inhibited downstream pro-inflammatory reactions. Taken together, these data indicate that LPS induces clustering of CD14, which triggers PI(4,5)P2 generation in rafts that is required for maximal pro-inflammatory signaling of TLR4.
Collapse
Affiliation(s)
- Agnieszka Płóciennikowska
- Nencki Institute of Experimental Biology, Laboratory of Molecular Membrane Biology, 3 Pasteur St., Warsaw 02-093, Poland
| | - Mykola I Zdioruk
- Nencki Institute of Experimental Biology, Laboratory of Molecular Membrane Biology, 3 Pasteur St., Warsaw 02-093, Poland
| | - Gabriela Traczyk
- Nencki Institute of Experimental Biology, Laboratory of Molecular Membrane Biology, 3 Pasteur St., Warsaw 02-093, Poland
| | - Anna Świątkowska
- Nencki Institute of Experimental Biology, Laboratory of Molecular Membrane Biology, 3 Pasteur St., Warsaw 02-093, Poland
| | - Katarzyna Kwiatkowska
- Nencki Institute of Experimental Biology, Laboratory of Molecular Membrane Biology, 3 Pasteur St., Warsaw 02-093, Poland
| |
Collapse
|
189
|
Yin K, You Y, Swier V, Tang L, Radwan MM, Pandya AN, Agrawal DK. Vitamin D Protects Against Atherosclerosis via Regulation of Cholesterol Efflux and Macrophage Polarization in Hypercholesterolemic Swine. Arterioscler Thromb Vasc Biol 2015; 35:2432-42. [PMID: 26381871 DOI: 10.1161/atvbaha.115.306132] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/03/2015] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Prevalence of vitamin D (VD) deficiency and its association with the risk of cardiovascular disease prompted us to evaluate the effect of VD status on lipid metabolism and atherosclerosis in hypercholesterolemic microswine. APPROACH AND RESULTS Yucatan microswine were fed with VD-deficient (0 IU/d), VD-sufficient (1000 IU/d), or VD-supplemented (3000 IU/d) high-cholesterol diet for 48 weeks. Serum lipids and 25(OH)-cholecalciferol levels were measured biweekly. Histology and biochemical parameters of liver and arteries were analyzed. Effect of 1,25(OH)2D3 on cholesterol metabolism was examined in human hepatocyte carcinoma cell line (HepG2) and human monocytic cell line (THP-1) macrophage-derived foam cells. VD deficiency decreased plasma high-density lipoprotein levels, expression of liver X receptors, ATP-binding membrane cassette transporter A1, and ATP-binding membrane cassette transporter G1 and promoted cholesterol accumulation and atherosclerosis in hypercholesterolemic microswine. VD promoted nascent high-density lipoprotein formation in HepG2 cells via ATP-binding membrane cassette transporter A1-mediated cholesterol efflux. Cytochrome P450 (CYP)27B1 and VD receptor were predominantly present in the CD206(+) M2 macrophage foam cell-accumulated cores in coronary artery plaques. 1,25(OH)2D3 increased the expression of liver X receptors, ATP-binding membrane cassette transporter A1, and ATP-binding membrane cassette transporter G1 and promoted cholesterol efflux in THP-1 macrophage-derived foam cells. 1,25(OH)2D3 decreased intracellular free cholesterol and polarized macrophages to M2 phenotype with decreased expression of tumor necrosis factor-α, interleukin-1β, interleukin-6 under lipopolysaccharide stimulation. 1,25(OH)2D3 markedly induced CYP27A1 expression via a VD receptor-dependent c-Jun N-terminal kinase (JNK) 1/2 signaling pathway and increased 27-hydroxycholesterol levels, which induced liver X receptors, ATP-binding membrane cassette transporter A1, and ATP-binding membrane cassette transporter G1 expression and stimulated cholesterol efflux that was inhibited by VD receptor antagonist and JNK1/2 signaling inhibitor in THP-1 macrophage-derived foam cell. CONCLUSIONS VD protects against atherosclerosis in hypercholesterolemic swine via controlling cholesterol efflux and macrophage polarization via increased CYP27A1 activation.
Collapse
Affiliation(s)
- Kai Yin
- From the Center for Clinical & Translational Science, Creighton University School of Medicine, Omaha, NE
| | - Yong You
- From the Center for Clinical & Translational Science, Creighton University School of Medicine, Omaha, NE
| | - Vicki Swier
- From the Center for Clinical & Translational Science, Creighton University School of Medicine, Omaha, NE
| | - Lin Tang
- From the Center for Clinical & Translational Science, Creighton University School of Medicine, Omaha, NE
| | - Mohamed M Radwan
- From the Center for Clinical & Translational Science, Creighton University School of Medicine, Omaha, NE
| | - Amit N Pandya
- From the Center for Clinical & Translational Science, Creighton University School of Medicine, Omaha, NE
| | - Devendra K Agrawal
- From the Center for Clinical & Translational Science, Creighton University School of Medicine, Omaha, NE.
| |
Collapse
|
190
|
Bioactive Egg Components and Inflammation. Nutrients 2015; 7:7889-913. [PMID: 26389951 PMCID: PMC4586567 DOI: 10.3390/nu7095372] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 09/03/2015] [Accepted: 09/09/2015] [Indexed: 12/27/2022] Open
Abstract
Inflammation is a normal acute response of the immune system to pathogens and tissue injury. However, chronic inflammation is known to play a significant role in the pathophysiology of numerous chronic diseases, such as cardiovascular disease, type 2 diabetes mellitus, and cancer. Thus, the impact of dietary factors on inflammation may provide key insight into mitigating chronic disease risk. Eggs are recognized as a functional food that contain a variety of bioactive compounds that can influence pro- and anti-inflammatory pathways. Interestingly, the effects of egg consumption on inflammation varies across different populations, including those that are classified as healthy, overweight, metabolic syndrome, and type 2 diabetic. The following review will discuss the pro- and anti-inflammatory properties of egg components, with a focus on egg phospholipids, cholesterol, the carotenoids lutein and zeaxanthin, and bioactive proteins. The effects of egg consumption of inflammation across human populations will additionally be presented. Together, these findings have implications for population-specific dietary recommendations and chronic disease risk.
Collapse
|
191
|
Bi X, Vitali C, Cuchel M. ABCA1 and Inflammation: From Animal Models to Humans. Arterioscler Thromb Vasc Biol 2015; 35:1551-3. [PMID: 26109737 DOI: 10.1161/atvbaha.115.305547] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Xin Bi
- From the Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Cecilia Vitali
- From the Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Marina Cuchel
- From the Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia.
| |
Collapse
|
192
|
Schultze JL, Schmieder A, Goerdt S. Macrophage activation in human diseases. Semin Immunol 2015; 27:249-56. [PMID: 26303100 DOI: 10.1016/j.smim.2015.07.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 12/24/2022]
Abstract
It is becoming increasingly accepted that macrophages play a crucial role in many diseases associated with chronic inflammation, including atherosclerosis, obesity, diabetes, cancer, skin diseases, and even neurodegenerative diseases. It is therefore not surprising that macrophages in human diseases have gained significant interest during the last years. Molecular analysis combined with more sophisticated murine disease models and the application of genome-wide technologies has resulted in a much better understanding of the role of macrophages in human disease. We highlight important gain of knowledge during the last years for tumor-associated macrophages, and for macrophages in atherosclerosis, obesity and wound healing. Albeit these exciting findings certainly pave the way to novel diagnostics and therapeutics, several hurdles still need to be overcome. We propose a general outline for future research and development in disease-related macrophage biology based on integrating (1) genome-wide technologies, (2) direct human sampling, and (3) a dedicated use of in vivo model systems.
Collapse
Affiliation(s)
- Joachim L Schultze
- Genomics & Immunoregulation, LIMES-Institute, University of Bonn, Carl-Troll-Str. 31, D-53115 Bonn, Germany.
| | - Astrid Schmieder
- Department of Dermatology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - S Goerdt
- Department of Dermatology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
193
|
Manipulating membrane lipid profiles to restore T-cell function in autoimmunity. Biochem Soc Trans 2015; 43:745-51. [PMID: 26551723 DOI: 10.1042/bst20150111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Indexed: 01/08/2023]
Abstract
Plasma membrane lipid rafts are heterogeneous cholesterol and glycosphingolipid (GSL)-enriched microdomains, within which the tight packing of cholesterol with the saturated-acyl chains of GSLs creates a region of liquid-order relative to the surrounding disordered membrane. Thus lipid rafts govern the lateral mobility and interaction of membrane proteins and regulate a plethora of signal transduction events, including T-cell antigen receptor (TCR) signalling. The pathways regulating homoeostasis of membrane cholesterol and GSLs are tightly controlled and alteration of these metabolic processes coincides with immune cell dysfunction as is evident in atherosclerosis, cancer and autoimmunity. Indeed, membrane lipid composition is emerging as an important factor influencing the ability of cells to respond appropriately to microenvironmental stimuli. Consequently, there is increasing interest in targeting membrane lipids or their metabolic control as a novel therapeutic approach to modulate immune cell behaviour and our recent work demonstrates that this is a promising strategy in T-cells from patients with the autoimmune disease systemic lupus erythematosus (SLE).
Collapse
|
194
|
Abstract
The liver X receptors (LXRs), LXRα and LXRβ, are transcription factors with well-established roles in the regulation of lipid metabolism and cholesterol homeostasis. In addition, LXRs influence innate and adaptive immunity, including responses to inflammatory stimuli, proliferation and differentiation, migration, apoptosis and survival. However, the majority of work describing the role of LXRs in immune cells has been carried out in mouse models, and there are a number of known species-specific differences concerning LXR function. Here we review what is known about the role of LXRs in human immune cells, demonstrating the importance of these receptors in the integration of lipid metabolism and immune function, but also highlighting the need for a better understanding of the species, isoform, and cell-type specific effects of LXR activation.
Collapse
|
195
|
Ito A, Hong C, Rong X, Zhu X, Tarling EJ, Hedde PN, Gratton E, Parks J, Tontonoz P. LXRs link metabolism to inflammation through Abca1-dependent regulation of membrane composition and TLR signaling. eLife 2015; 4:e08009. [PMID: 26173179 PMCID: PMC4517437 DOI: 10.7554/elife.08009] [Citation(s) in RCA: 228] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/13/2015] [Indexed: 01/22/2023] Open
Abstract
The liver X receptors (LXRs) are transcriptional regulators of lipid homeostasis that also have potent anti-inflammatory effects. The molecular basis for their anti-inflammatory effects is incompletely understood, but has been proposed to involve the indirect tethering of LXRs to inflammatory gene promoters. Here we demonstrate that the ability of LXRs to repress inflammatory gene expression in cells and mice derives primarily from their ability to regulate lipid metabolism through transcriptional activation and can occur in the absence of SUMOylation. Moreover, we identify the putative lipid transporter Abca1 as a critical mediator of LXR's anti-inflammatory effects. Activation of LXR inhibits signaling from TLRs 2, 4 and 9 to their downstream NF-κB and MAPK effectors through Abca1-dependent changes in membrane lipid organization that disrupt the recruitment of MyD88 and TRAF6. These data suggest that a common mechanism-direct transcriptional activation-underlies the dual biological functions of LXRs in metabolism and inflammation.
Collapse
Affiliation(s)
- Ayaka Ito
- Department of Pathology and Laboratory Medicine, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States
| | - Cynthia Hong
- Department of Pathology and Laboratory Medicine, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States
| | - Xin Rong
- Department of Pathology and Laboratory Medicine, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States
| | - Xuewei Zhu
- Department of Internal Medicine-Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, United States
| | - Elizabeth J Tarling
- Department of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Per Niklas Hedde
- Laboratory of Fluorescence Dynamics, Biomedical Engineering Department, Center for Complex Biological Systems, University of California, Irvine, Irvine, United States
| | - Enrico Gratton
- Laboratory of Fluorescence Dynamics, Biomedical Engineering Department, Center for Complex Biological Systems, University of California, Irvine, Irvine, United States
| | - John Parks
- Department of Internal Medicine-Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, United States
| | - Peter Tontonoz
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States
| |
Collapse
|
196
|
Protocatechuic Acid Inhibits Inflammatory Responses in LPS-Stimulated BV2 Microglia via NF-κB and MAPKs Signaling Pathways. Neurochem Res 2015; 40:1655-60. [DOI: 10.1007/s11064-015-1646-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/11/2015] [Accepted: 06/19/2015] [Indexed: 10/23/2022]
|
197
|
Ciesielska A, Kwiatkowska K. Modification of pro-inflammatory signaling by dietary components: The plasma membrane as a target. Bioessays 2015; 37:789-801. [PMID: 25966354 DOI: 10.1002/bies.201500017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
You are what you eat - this well-known phrase properly describes the phenomenon of the effects of diet on acute and chronic inflammation. Several lipids and lipophilic compounds that are delivered with food or are produced in situ in pathological conditions exert immunomodulatory activity due to their interactions with the plasma membrane. This group of compounds includes cholesterol and its oxidized derivatives, fatty acids, α-tocopherol, and polyphenols. Despite their structural heterogeneity, all these compounds ultimately induce changes in plasma membrane architecture and fluidity. By doing this, they modulate the dynamics of plasma membrane receptors, such as TLR4. This receptor is activated by lipopolysaccharide, triggering acute inflammation during bacterial infection, which often leads to sepsis and is linked with diverse chronic inflammatory diseases. In this review, we discuss how the impact on plasma membrane properties contributes to the immunomodulatory activity of dietary compounds, pointing to the therapeutic potential of some of them. Also watch the Video Abstract.
Collapse
Affiliation(s)
- Anna Ciesielska
- Nencki Institute of Experimental Biology, Laboratory of Molecular Membrane Biology, Warsaw, Poland
| | - Katarzyna Kwiatkowska
- Nencki Institute of Experimental Biology, Laboratory of Molecular Membrane Biology, Warsaw, Poland
| |
Collapse
|
198
|
Zhang H, Xue C, Shah R, Bermingham K, Hinkle CC, Li W, Rodrigues A, Tabita-Martinez J, Millar JS, Cuchel M, Pashos EE, Liu Y, Yan R, Yang W, Gosai SJ, VanDorn D, Chou ST, Gregory BD, Morrisey EE, Li M, Rader DJ, Reilly MP. Functional analysis and transcriptomic profiling of iPSC-derived macrophages and their application in modeling Mendelian disease. Circ Res 2015; 117:17-28. [PMID: 25904599 PMCID: PMC4565503 DOI: 10.1161/circresaha.117.305860] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 04/21/2015] [Indexed: 01/08/2023]
Abstract
RATIONALE An efficient and reproducible source of genotype-specific human macrophages is essential for study of human macrophage biology and related diseases. OBJECTIVE To perform integrated functional and transcriptome analyses of human induced pluripotent stem cell-derived macrophages (IPSDMs) and their isogenic human peripheral blood mononuclear cell-derived macrophage (HMDM) counterparts and assess the application of IPSDM in modeling macrophage polarization and Mendelian disease. METHODS AND RESULTS We developed an efficient protocol for differentiation of IPSDM, which expressed macrophage-specific markers and took up modified lipoproteins in a similar manner to HMDM. Like HMDM, IPSDM revealed reduction in phagocytosis, increase in cholesterol efflux capacity and characteristic secretion of inflammatory cytokines in response to M1 (lipopolysaccharide+interferon-γ) activation. RNA-Seq revealed that nonpolarized (M0) as well as M1 or M2 (interleukin-4) polarized IPSDM shared transcriptomic profiles with their isogenic HMDM counterparts while also revealing novel markers of macrophage polarization. Relative to IPSDM and HMDM of control individuals, patterns of defective cholesterol efflux to apolipoprotein A-I and high-density lipoprotein-3 were qualitatively and quantitatively similar in IPSDM and HMDM of patients with Tangier disease, an autosomal recessive disorder because of mutations in ATP-binding cassette transporter AI. Tangier disease-IPSDM also revealed novel defects of enhanced proinflammatory response to lipopolysaccharide stimulus. CONCLUSIONS Our protocol-derived IPSDM are comparable with HMDM at phenotypic, functional, and transcriptomic levels. Tangier disease-IPSDM recapitulated hallmark features observed in HMDM and revealed novel inflammatory phenotypes. IPSDMs provide a powerful tool for study of macrophage-specific function in human genetic disorders as well as molecular studies of human macrophage activation and polarization.
Collapse
Affiliation(s)
- Hanrui Zhang
- From the Cardiovascular Institute (H.Z., C.X., R.S., K.B., C.C.H., W.L., A.R., J.T.-M., E.E.P., E.E.M., D.J.R., M.P.R.), and Department of Biostatistics and Epidemiology (M.L.), Perelman School of Medicine, Institute for Translational Medicine and Therapeutics, Institute for Diabetes, Obesity, and Metabolism (A.R., M.C., E.E.P., D.J.R.), Department of Medicine, Metabolic Tracer Resource, Institute for Diabetes, Obesity, and Metabolism (J.S.M.), Institute for Regenerative Medicine (Y.L., R.Y., W.Y., E.E.M.), Department of Biology, Perelman School of Medicine and School of Arts and Science (S.J.G., B.D.G.), PENN Genome Frontiers Institute (S.J.G., B.D.G.), Department of Pediatrics, Perelman School of Medicine (S.T.C.), Department of Cell and Developmental Biology, Perelman School of Medicine (E.E.M.), and Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Division of Hematology, The Children's Hospital of Philadelphia, PA (D.V., S.T.C.)
| | - Chenyi Xue
- From the Cardiovascular Institute (H.Z., C.X., R.S., K.B., C.C.H., W.L., A.R., J.T.-M., E.E.P., E.E.M., D.J.R., M.P.R.), and Department of Biostatistics and Epidemiology (M.L.), Perelman School of Medicine, Institute for Translational Medicine and Therapeutics, Institute for Diabetes, Obesity, and Metabolism (A.R., M.C., E.E.P., D.J.R.), Department of Medicine, Metabolic Tracer Resource, Institute for Diabetes, Obesity, and Metabolism (J.S.M.), Institute for Regenerative Medicine (Y.L., R.Y., W.Y., E.E.M.), Department of Biology, Perelman School of Medicine and School of Arts and Science (S.J.G., B.D.G.), PENN Genome Frontiers Institute (S.J.G., B.D.G.), Department of Pediatrics, Perelman School of Medicine (S.T.C.), Department of Cell and Developmental Biology, Perelman School of Medicine (E.E.M.), and Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Division of Hematology, The Children's Hospital of Philadelphia, PA (D.V., S.T.C.)
| | - Rhia Shah
- From the Cardiovascular Institute (H.Z., C.X., R.S., K.B., C.C.H., W.L., A.R., J.T.-M., E.E.P., E.E.M., D.J.R., M.P.R.), and Department of Biostatistics and Epidemiology (M.L.), Perelman School of Medicine, Institute for Translational Medicine and Therapeutics, Institute for Diabetes, Obesity, and Metabolism (A.R., M.C., E.E.P., D.J.R.), Department of Medicine, Metabolic Tracer Resource, Institute for Diabetes, Obesity, and Metabolism (J.S.M.), Institute for Regenerative Medicine (Y.L., R.Y., W.Y., E.E.M.), Department of Biology, Perelman School of Medicine and School of Arts and Science (S.J.G., B.D.G.), PENN Genome Frontiers Institute (S.J.G., B.D.G.), Department of Pediatrics, Perelman School of Medicine (S.T.C.), Department of Cell and Developmental Biology, Perelman School of Medicine (E.E.M.), and Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Division of Hematology, The Children's Hospital of Philadelphia, PA (D.V., S.T.C.)
| | - Kate Bermingham
- From the Cardiovascular Institute (H.Z., C.X., R.S., K.B., C.C.H., W.L., A.R., J.T.-M., E.E.P., E.E.M., D.J.R., M.P.R.), and Department of Biostatistics and Epidemiology (M.L.), Perelman School of Medicine, Institute for Translational Medicine and Therapeutics, Institute for Diabetes, Obesity, and Metabolism (A.R., M.C., E.E.P., D.J.R.), Department of Medicine, Metabolic Tracer Resource, Institute for Diabetes, Obesity, and Metabolism (J.S.M.), Institute for Regenerative Medicine (Y.L., R.Y., W.Y., E.E.M.), Department of Biology, Perelman School of Medicine and School of Arts and Science (S.J.G., B.D.G.), PENN Genome Frontiers Institute (S.J.G., B.D.G.), Department of Pediatrics, Perelman School of Medicine (S.T.C.), Department of Cell and Developmental Biology, Perelman School of Medicine (E.E.M.), and Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Division of Hematology, The Children's Hospital of Philadelphia, PA (D.V., S.T.C.)
| | - Christine C Hinkle
- From the Cardiovascular Institute (H.Z., C.X., R.S., K.B., C.C.H., W.L., A.R., J.T.-M., E.E.P., E.E.M., D.J.R., M.P.R.), and Department of Biostatistics and Epidemiology (M.L.), Perelman School of Medicine, Institute for Translational Medicine and Therapeutics, Institute for Diabetes, Obesity, and Metabolism (A.R., M.C., E.E.P., D.J.R.), Department of Medicine, Metabolic Tracer Resource, Institute for Diabetes, Obesity, and Metabolism (J.S.M.), Institute for Regenerative Medicine (Y.L., R.Y., W.Y., E.E.M.), Department of Biology, Perelman School of Medicine and School of Arts and Science (S.J.G., B.D.G.), PENN Genome Frontiers Institute (S.J.G., B.D.G.), Department of Pediatrics, Perelman School of Medicine (S.T.C.), Department of Cell and Developmental Biology, Perelman School of Medicine (E.E.M.), and Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Division of Hematology, The Children's Hospital of Philadelphia, PA (D.V., S.T.C.)
| | - Wenjun Li
- From the Cardiovascular Institute (H.Z., C.X., R.S., K.B., C.C.H., W.L., A.R., J.T.-M., E.E.P., E.E.M., D.J.R., M.P.R.), and Department of Biostatistics and Epidemiology (M.L.), Perelman School of Medicine, Institute for Translational Medicine and Therapeutics, Institute for Diabetes, Obesity, and Metabolism (A.R., M.C., E.E.P., D.J.R.), Department of Medicine, Metabolic Tracer Resource, Institute for Diabetes, Obesity, and Metabolism (J.S.M.), Institute for Regenerative Medicine (Y.L., R.Y., W.Y., E.E.M.), Department of Biology, Perelman School of Medicine and School of Arts and Science (S.J.G., B.D.G.), PENN Genome Frontiers Institute (S.J.G., B.D.G.), Department of Pediatrics, Perelman School of Medicine (S.T.C.), Department of Cell and Developmental Biology, Perelman School of Medicine (E.E.M.), and Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Division of Hematology, The Children's Hospital of Philadelphia, PA (D.V., S.T.C.)
| | - Amrith Rodrigues
- From the Cardiovascular Institute (H.Z., C.X., R.S., K.B., C.C.H., W.L., A.R., J.T.-M., E.E.P., E.E.M., D.J.R., M.P.R.), and Department of Biostatistics and Epidemiology (M.L.), Perelman School of Medicine, Institute for Translational Medicine and Therapeutics, Institute for Diabetes, Obesity, and Metabolism (A.R., M.C., E.E.P., D.J.R.), Department of Medicine, Metabolic Tracer Resource, Institute for Diabetes, Obesity, and Metabolism (J.S.M.), Institute for Regenerative Medicine (Y.L., R.Y., W.Y., E.E.M.), Department of Biology, Perelman School of Medicine and School of Arts and Science (S.J.G., B.D.G.), PENN Genome Frontiers Institute (S.J.G., B.D.G.), Department of Pediatrics, Perelman School of Medicine (S.T.C.), Department of Cell and Developmental Biology, Perelman School of Medicine (E.E.M.), and Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Division of Hematology, The Children's Hospital of Philadelphia, PA (D.V., S.T.C.)
| | - Jennifer Tabita-Martinez
- From the Cardiovascular Institute (H.Z., C.X., R.S., K.B., C.C.H., W.L., A.R., J.T.-M., E.E.P., E.E.M., D.J.R., M.P.R.), and Department of Biostatistics and Epidemiology (M.L.), Perelman School of Medicine, Institute for Translational Medicine and Therapeutics, Institute for Diabetes, Obesity, and Metabolism (A.R., M.C., E.E.P., D.J.R.), Department of Medicine, Metabolic Tracer Resource, Institute for Diabetes, Obesity, and Metabolism (J.S.M.), Institute for Regenerative Medicine (Y.L., R.Y., W.Y., E.E.M.), Department of Biology, Perelman School of Medicine and School of Arts and Science (S.J.G., B.D.G.), PENN Genome Frontiers Institute (S.J.G., B.D.G.), Department of Pediatrics, Perelman School of Medicine (S.T.C.), Department of Cell and Developmental Biology, Perelman School of Medicine (E.E.M.), and Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Division of Hematology, The Children's Hospital of Philadelphia, PA (D.V., S.T.C.)
| | - John S Millar
- From the Cardiovascular Institute (H.Z., C.X., R.S., K.B., C.C.H., W.L., A.R., J.T.-M., E.E.P., E.E.M., D.J.R., M.P.R.), and Department of Biostatistics and Epidemiology (M.L.), Perelman School of Medicine, Institute for Translational Medicine and Therapeutics, Institute for Diabetes, Obesity, and Metabolism (A.R., M.C., E.E.P., D.J.R.), Department of Medicine, Metabolic Tracer Resource, Institute for Diabetes, Obesity, and Metabolism (J.S.M.), Institute for Regenerative Medicine (Y.L., R.Y., W.Y., E.E.M.), Department of Biology, Perelman School of Medicine and School of Arts and Science (S.J.G., B.D.G.), PENN Genome Frontiers Institute (S.J.G., B.D.G.), Department of Pediatrics, Perelman School of Medicine (S.T.C.), Department of Cell and Developmental Biology, Perelman School of Medicine (E.E.M.), and Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Division of Hematology, The Children's Hospital of Philadelphia, PA (D.V., S.T.C.)
| | - Marina Cuchel
- From the Cardiovascular Institute (H.Z., C.X., R.S., K.B., C.C.H., W.L., A.R., J.T.-M., E.E.P., E.E.M., D.J.R., M.P.R.), and Department of Biostatistics and Epidemiology (M.L.), Perelman School of Medicine, Institute for Translational Medicine and Therapeutics, Institute for Diabetes, Obesity, and Metabolism (A.R., M.C., E.E.P., D.J.R.), Department of Medicine, Metabolic Tracer Resource, Institute for Diabetes, Obesity, and Metabolism (J.S.M.), Institute for Regenerative Medicine (Y.L., R.Y., W.Y., E.E.M.), Department of Biology, Perelman School of Medicine and School of Arts and Science (S.J.G., B.D.G.), PENN Genome Frontiers Institute (S.J.G., B.D.G.), Department of Pediatrics, Perelman School of Medicine (S.T.C.), Department of Cell and Developmental Biology, Perelman School of Medicine (E.E.M.), and Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Division of Hematology, The Children's Hospital of Philadelphia, PA (D.V., S.T.C.)
| | - Evanthia E Pashos
- From the Cardiovascular Institute (H.Z., C.X., R.S., K.B., C.C.H., W.L., A.R., J.T.-M., E.E.P., E.E.M., D.J.R., M.P.R.), and Department of Biostatistics and Epidemiology (M.L.), Perelman School of Medicine, Institute for Translational Medicine and Therapeutics, Institute for Diabetes, Obesity, and Metabolism (A.R., M.C., E.E.P., D.J.R.), Department of Medicine, Metabolic Tracer Resource, Institute for Diabetes, Obesity, and Metabolism (J.S.M.), Institute for Regenerative Medicine (Y.L., R.Y., W.Y., E.E.M.), Department of Biology, Perelman School of Medicine and School of Arts and Science (S.J.G., B.D.G.), PENN Genome Frontiers Institute (S.J.G., B.D.G.), Department of Pediatrics, Perelman School of Medicine (S.T.C.), Department of Cell and Developmental Biology, Perelman School of Medicine (E.E.M.), and Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Division of Hematology, The Children's Hospital of Philadelphia, PA (D.V., S.T.C.)
| | - Ying Liu
- From the Cardiovascular Institute (H.Z., C.X., R.S., K.B., C.C.H., W.L., A.R., J.T.-M., E.E.P., E.E.M., D.J.R., M.P.R.), and Department of Biostatistics and Epidemiology (M.L.), Perelman School of Medicine, Institute for Translational Medicine and Therapeutics, Institute for Diabetes, Obesity, and Metabolism (A.R., M.C., E.E.P., D.J.R.), Department of Medicine, Metabolic Tracer Resource, Institute for Diabetes, Obesity, and Metabolism (J.S.M.), Institute for Regenerative Medicine (Y.L., R.Y., W.Y., E.E.M.), Department of Biology, Perelman School of Medicine and School of Arts and Science (S.J.G., B.D.G.), PENN Genome Frontiers Institute (S.J.G., B.D.G.), Department of Pediatrics, Perelman School of Medicine (S.T.C.), Department of Cell and Developmental Biology, Perelman School of Medicine (E.E.M.), and Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Division of Hematology, The Children's Hospital of Philadelphia, PA (D.V., S.T.C.)
| | - Ruilan Yan
- From the Cardiovascular Institute (H.Z., C.X., R.S., K.B., C.C.H., W.L., A.R., J.T.-M., E.E.P., E.E.M., D.J.R., M.P.R.), and Department of Biostatistics and Epidemiology (M.L.), Perelman School of Medicine, Institute for Translational Medicine and Therapeutics, Institute for Diabetes, Obesity, and Metabolism (A.R., M.C., E.E.P., D.J.R.), Department of Medicine, Metabolic Tracer Resource, Institute for Diabetes, Obesity, and Metabolism (J.S.M.), Institute for Regenerative Medicine (Y.L., R.Y., W.Y., E.E.M.), Department of Biology, Perelman School of Medicine and School of Arts and Science (S.J.G., B.D.G.), PENN Genome Frontiers Institute (S.J.G., B.D.G.), Department of Pediatrics, Perelman School of Medicine (S.T.C.), Department of Cell and Developmental Biology, Perelman School of Medicine (E.E.M.), and Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Division of Hematology, The Children's Hospital of Philadelphia, PA (D.V., S.T.C.)
| | - Wenli Yang
- From the Cardiovascular Institute (H.Z., C.X., R.S., K.B., C.C.H., W.L., A.R., J.T.-M., E.E.P., E.E.M., D.J.R., M.P.R.), and Department of Biostatistics and Epidemiology (M.L.), Perelman School of Medicine, Institute for Translational Medicine and Therapeutics, Institute for Diabetes, Obesity, and Metabolism (A.R., M.C., E.E.P., D.J.R.), Department of Medicine, Metabolic Tracer Resource, Institute for Diabetes, Obesity, and Metabolism (J.S.M.), Institute for Regenerative Medicine (Y.L., R.Y., W.Y., E.E.M.), Department of Biology, Perelman School of Medicine and School of Arts and Science (S.J.G., B.D.G.), PENN Genome Frontiers Institute (S.J.G., B.D.G.), Department of Pediatrics, Perelman School of Medicine (S.T.C.), Department of Cell and Developmental Biology, Perelman School of Medicine (E.E.M.), and Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Division of Hematology, The Children's Hospital of Philadelphia, PA (D.V., S.T.C.)
| | - Sager J Gosai
- From the Cardiovascular Institute (H.Z., C.X., R.S., K.B., C.C.H., W.L., A.R., J.T.-M., E.E.P., E.E.M., D.J.R., M.P.R.), and Department of Biostatistics and Epidemiology (M.L.), Perelman School of Medicine, Institute for Translational Medicine and Therapeutics, Institute for Diabetes, Obesity, and Metabolism (A.R., M.C., E.E.P., D.J.R.), Department of Medicine, Metabolic Tracer Resource, Institute for Diabetes, Obesity, and Metabolism (J.S.M.), Institute for Regenerative Medicine (Y.L., R.Y., W.Y., E.E.M.), Department of Biology, Perelman School of Medicine and School of Arts and Science (S.J.G., B.D.G.), PENN Genome Frontiers Institute (S.J.G., B.D.G.), Department of Pediatrics, Perelman School of Medicine (S.T.C.), Department of Cell and Developmental Biology, Perelman School of Medicine (E.E.M.), and Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Division of Hematology, The Children's Hospital of Philadelphia, PA (D.V., S.T.C.)
| | - Daniel VanDorn
- From the Cardiovascular Institute (H.Z., C.X., R.S., K.B., C.C.H., W.L., A.R., J.T.-M., E.E.P., E.E.M., D.J.R., M.P.R.), and Department of Biostatistics and Epidemiology (M.L.), Perelman School of Medicine, Institute for Translational Medicine and Therapeutics, Institute for Diabetes, Obesity, and Metabolism (A.R., M.C., E.E.P., D.J.R.), Department of Medicine, Metabolic Tracer Resource, Institute for Diabetes, Obesity, and Metabolism (J.S.M.), Institute for Regenerative Medicine (Y.L., R.Y., W.Y., E.E.M.), Department of Biology, Perelman School of Medicine and School of Arts and Science (S.J.G., B.D.G.), PENN Genome Frontiers Institute (S.J.G., B.D.G.), Department of Pediatrics, Perelman School of Medicine (S.T.C.), Department of Cell and Developmental Biology, Perelman School of Medicine (E.E.M.), and Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Division of Hematology, The Children's Hospital of Philadelphia, PA (D.V., S.T.C.)
| | - Stella T Chou
- From the Cardiovascular Institute (H.Z., C.X., R.S., K.B., C.C.H., W.L., A.R., J.T.-M., E.E.P., E.E.M., D.J.R., M.P.R.), and Department of Biostatistics and Epidemiology (M.L.), Perelman School of Medicine, Institute for Translational Medicine and Therapeutics, Institute for Diabetes, Obesity, and Metabolism (A.R., M.C., E.E.P., D.J.R.), Department of Medicine, Metabolic Tracer Resource, Institute for Diabetes, Obesity, and Metabolism (J.S.M.), Institute for Regenerative Medicine (Y.L., R.Y., W.Y., E.E.M.), Department of Biology, Perelman School of Medicine and School of Arts and Science (S.J.G., B.D.G.), PENN Genome Frontiers Institute (S.J.G., B.D.G.), Department of Pediatrics, Perelman School of Medicine (S.T.C.), Department of Cell and Developmental Biology, Perelman School of Medicine (E.E.M.), and Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Division of Hematology, The Children's Hospital of Philadelphia, PA (D.V., S.T.C.)
| | - Brian D Gregory
- From the Cardiovascular Institute (H.Z., C.X., R.S., K.B., C.C.H., W.L., A.R., J.T.-M., E.E.P., E.E.M., D.J.R., M.P.R.), and Department of Biostatistics and Epidemiology (M.L.), Perelman School of Medicine, Institute for Translational Medicine and Therapeutics, Institute for Diabetes, Obesity, and Metabolism (A.R., M.C., E.E.P., D.J.R.), Department of Medicine, Metabolic Tracer Resource, Institute for Diabetes, Obesity, and Metabolism (J.S.M.), Institute for Regenerative Medicine (Y.L., R.Y., W.Y., E.E.M.), Department of Biology, Perelman School of Medicine and School of Arts and Science (S.J.G., B.D.G.), PENN Genome Frontiers Institute (S.J.G., B.D.G.), Department of Pediatrics, Perelman School of Medicine (S.T.C.), Department of Cell and Developmental Biology, Perelman School of Medicine (E.E.M.), and Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Division of Hematology, The Children's Hospital of Philadelphia, PA (D.V., S.T.C.)
| | - Edward E Morrisey
- From the Cardiovascular Institute (H.Z., C.X., R.S., K.B., C.C.H., W.L., A.R., J.T.-M., E.E.P., E.E.M., D.J.R., M.P.R.), and Department of Biostatistics and Epidemiology (M.L.), Perelman School of Medicine, Institute for Translational Medicine and Therapeutics, Institute for Diabetes, Obesity, and Metabolism (A.R., M.C., E.E.P., D.J.R.), Department of Medicine, Metabolic Tracer Resource, Institute for Diabetes, Obesity, and Metabolism (J.S.M.), Institute for Regenerative Medicine (Y.L., R.Y., W.Y., E.E.M.), Department of Biology, Perelman School of Medicine and School of Arts and Science (S.J.G., B.D.G.), PENN Genome Frontiers Institute (S.J.G., B.D.G.), Department of Pediatrics, Perelman School of Medicine (S.T.C.), Department of Cell and Developmental Biology, Perelman School of Medicine (E.E.M.), and Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Division of Hematology, The Children's Hospital of Philadelphia, PA (D.V., S.T.C.)
| | - Mingyao Li
- From the Cardiovascular Institute (H.Z., C.X., R.S., K.B., C.C.H., W.L., A.R., J.T.-M., E.E.P., E.E.M., D.J.R., M.P.R.), and Department of Biostatistics and Epidemiology (M.L.), Perelman School of Medicine, Institute for Translational Medicine and Therapeutics, Institute for Diabetes, Obesity, and Metabolism (A.R., M.C., E.E.P., D.J.R.), Department of Medicine, Metabolic Tracer Resource, Institute for Diabetes, Obesity, and Metabolism (J.S.M.), Institute for Regenerative Medicine (Y.L., R.Y., W.Y., E.E.M.), Department of Biology, Perelman School of Medicine and School of Arts and Science (S.J.G., B.D.G.), PENN Genome Frontiers Institute (S.J.G., B.D.G.), Department of Pediatrics, Perelman School of Medicine (S.T.C.), Department of Cell and Developmental Biology, Perelman School of Medicine (E.E.M.), and Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Division of Hematology, The Children's Hospital of Philadelphia, PA (D.V., S.T.C.)
| | - Daniel J Rader
- From the Cardiovascular Institute (H.Z., C.X., R.S., K.B., C.C.H., W.L., A.R., J.T.-M., E.E.P., E.E.M., D.J.R., M.P.R.), and Department of Biostatistics and Epidemiology (M.L.), Perelman School of Medicine, Institute for Translational Medicine and Therapeutics, Institute for Diabetes, Obesity, and Metabolism (A.R., M.C., E.E.P., D.J.R.), Department of Medicine, Metabolic Tracer Resource, Institute for Diabetes, Obesity, and Metabolism (J.S.M.), Institute for Regenerative Medicine (Y.L., R.Y., W.Y., E.E.M.), Department of Biology, Perelman School of Medicine and School of Arts and Science (S.J.G., B.D.G.), PENN Genome Frontiers Institute (S.J.G., B.D.G.), Department of Pediatrics, Perelman School of Medicine (S.T.C.), Department of Cell and Developmental Biology, Perelman School of Medicine (E.E.M.), and Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Division of Hematology, The Children's Hospital of Philadelphia, PA (D.V., S.T.C.)
| | - Muredach P Reilly
- From the Cardiovascular Institute (H.Z., C.X., R.S., K.B., C.C.H., W.L., A.R., J.T.-M., E.E.P., E.E.M., D.J.R., M.P.R.), and Department of Biostatistics and Epidemiology (M.L.), Perelman School of Medicine, Institute for Translational Medicine and Therapeutics, Institute for Diabetes, Obesity, and Metabolism (A.R., M.C., E.E.P., D.J.R.), Department of Medicine, Metabolic Tracer Resource, Institute for Diabetes, Obesity, and Metabolism (J.S.M.), Institute for Regenerative Medicine (Y.L., R.Y., W.Y., E.E.M.), Department of Biology, Perelman School of Medicine and School of Arts and Science (S.J.G., B.D.G.), PENN Genome Frontiers Institute (S.J.G., B.D.G.), Department of Pediatrics, Perelman School of Medicine (S.T.C.), Department of Cell and Developmental Biology, Perelman School of Medicine (E.E.M.), and Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Division of Hematology, The Children's Hospital of Philadelphia, PA (D.V., S.T.C.).
| |
Collapse
|
199
|
Heinz LX, Baumann CL, Köberlin MS, Snijder B, Gawish R, Shui G, Sharif O, Aspalter IM, Müller AC, Kandasamy RK, Breitwieser FP, Pichlmair A, Bruckner M, Rebsamen M, Blüml S, Karonitsch T, Fauster A, Colinge J, Bennett KL, Knapp S, Wenk MR, Superti-Furga G. The Lipid-Modifying Enzyme SMPDL3B Negatively Regulates Innate Immunity. Cell Rep 2015; 11:1919-28. [PMID: 26095358 PMCID: PMC4508342 DOI: 10.1016/j.celrep.2015.05.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/23/2015] [Accepted: 05/01/2015] [Indexed: 12/26/2022] Open
Abstract
Lipid metabolism and receptor-mediated signaling are highly intertwined processes that cooperate to fulfill cellular functions and safeguard cellular homeostasis. Activation of Toll-like receptors (TLRs) leads to a complex cellular response, orchestrating a diverse range of inflammatory events that need to be tightly controlled. Here, we identified the GPI-anchored Sphingomyelin Phosphodiesterase, Acid-Like 3B (SMPDL3B) in a mass spectrometry screening campaign for membrane proteins co-purifying with TLRs. Deficiency of Smpdl3b in macrophages enhanced responsiveness to TLR stimulation and profoundly changed the cellular lipid composition and membrane fluidity. Increased cellular responses could be reverted by re-introducing affected ceramides, functionally linking membrane lipid composition and innate immune signaling. Finally, Smpdl3b-deficient mice displayed an intensified inflammatory response in TLR-dependent peritonitis models, establishing its negative regulatory role in vivo. Taken together, our results identify the membrane-modulating enzyme SMPDL3B as a negative regulator of TLR signaling that functions at the interface of membrane biology and innate immunity. Identification of SMPDL3B as lipid-modulating phosphodiesterase on macrophages Negative regulatory role for SMPDL3B in Toll-like receptor function Strong influence of SMPDL3B on membrane lipid composition and fluidity Smpdl3b-deficient mice show enhanced responsiveness in TLR-dependent peritonitis
Collapse
Affiliation(s)
- Leonhard X Heinz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Christoph L Baumann
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Marielle S Köberlin
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Berend Snijder
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Riem Gawish
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; Department of Medicine I, Laboratory of Infection Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Omar Sharif
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; Department of Medicine I, Laboratory of Infection Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Irene M Aspalter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - André C Müller
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Richard K Kandasamy
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Florian P Breitwieser
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Andreas Pichlmair
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Manuela Bruckner
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Manuele Rebsamen
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Stephan Blüml
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; Division of Rheumatology, Department of Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas Karonitsch
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Astrid Fauster
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Jacques Colinge
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Keiryn L Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Sylvia Knapp
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; Department of Medicine I, Laboratory of Infection Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Markus R Wenk
- Department of Biochemistry and Department of Biological Sciences, National University of Singapore, Singapore 117456, Singapore; Swiss Tropical and Public Health Institute, University of Basel, 4003 Basel, Switzerland
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
200
|
Jian CX, Li MZ, Zheng WY, He Y, Ren Y, Wu ZM, Fan QS, Hu YH, Li CJ. Tormentic acid inhibits LPS-induced inflammatory response in human gingival fibroblasts via inhibition of TLR4-mediated NF-κB and MAPK signalling pathway. Arch Oral Biol 2015; 60:1327-32. [PMID: 26123747 DOI: 10.1016/j.archoralbio.2015.05.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 03/24/2015] [Accepted: 05/15/2015] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Periodontal disease is one of the most prevalent oral diseases, which is associated with inflammation of the tooth-supporting tissues. Tormentic acid (TA), a triterpene isolated from Rosa rugosa, has been reported to exert anti-inflammatory effects. The aim of this study was to investigate the anti-inflammatory effects of TA on lipopolysaccharide (LPS)-stimulated human gingival fibroblasts (HGFs). METHODS The levels of inflammatory cytokines such as interleukin (IL)-6 and chemokines such as IL-8 were detected by enzyme-linked immunosorbent assay (ELISA). The expression of Toll-like receptor 4 (TLR4), nuclear factor kappa B (NF-κB), IκBα, p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) was determined by Western blotting. RESULTS The results showed that Porphyromonas gingivalis LPS significantly upregulated the expression of IL-6 and IL-8. TA inhibited the LPS-induced production of IL-6 and IL-8 in a dose-dependent manner. Furthermore, TA inhibited LPS-induced TLR4 expression; NF-κB activation; IκBα degradation; and phosphorylation of ERK, JNK, and P38. CONCLUSION TA inhibits the LPS-induced inflammatory response in HGFs by suppressing the TLR4-mediated NF-κB and mitogen-activated protein kinase (MAPK) signalling pathway.
Collapse
Affiliation(s)
- Cong-Xiang Jian
- Department of Stomatolog, PLA General Hospital of Chengdu Military Region, Chengdu 610083, Sichuan Province, PR China; Chengdu Military Garrison Center for Disease Control and Prevention, Chengdu 650032, Sichuan, PR China
| | - Ming-Zhe Li
- Department of Stomatolog, PLA General Hospital of Chengdu Military Region, Chengdu 610083, Sichuan Province, PR China
| | - Wei-Yin Zheng
- Department of Stomatolog, PLA General Hospital of Chengdu Military Region, Chengdu 610083, Sichuan Province, PR China
| | - Yong He
- Department of Stomatolog, PLA General Hospital of Chengdu Military Region, Chengdu 610083, Sichuan Province, PR China
| | - Yu Ren
- Department of Stomatolog, PLA General Hospital of Chengdu Military Region, Chengdu 610083, Sichuan Province, PR China
| | - Zhong-Min Wu
- Department of Stomatolog, PLA General Hospital of Chengdu Military Region, Chengdu 610083, Sichuan Province, PR China
| | - Quan-Shui Fan
- Chengdu Military Garrison Center for Disease Control and Prevention, Chengdu 650032, Sichuan, PR China
| | - Yong-He Hu
- Chengdu Military Garrison Center for Disease Control and Prevention, Chengdu 650032, Sichuan, PR China
| | - Chen-Jun Li
- Department of Stomatolog, PLA General Hospital of Chengdu Military Region, Chengdu 610083, Sichuan Province, PR China.
| |
Collapse
|