151
|
Suzuki H, Saba R, Sada A, Saga Y. The Nanos3-3'UTR is required for germ cell specific NANOS3 expression in mouse embryos. PLoS One 2010; 5:e9300. [PMID: 20174582 PMCID: PMC2823788 DOI: 10.1371/journal.pone.0009300] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2009] [Accepted: 01/25/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The regulation of gene expression via a 3' untranslated region (UTR) plays essential roles in the discrimination of the germ cell lineage from somatic cells during embryogenesis. This is fundamental to the continuation of a species. Mouse NANOS3 is an essential protein required for the germ cell maintenance and is specifically expressed in these cells. However, the regulatory mechanisms that restrict the expression of this gene in the germ cells is largely unknown at present. METHODOLOGY/PRINCIPAL FINDINGS In our current study, we show that differences in the stability of Nanos3 mRNA between germ cells and somatic cells is brought about in a 3'UTR-dependent manner in mouse embryos. Although Nanos3 is transcribed in both cell lineages, it is efficiently translated only in the germ lineage. We also find that the translational suppression of NANOS3 in somatic cells is caused by a 3'UTR-mediated mRNA destabilizing mechanism. Surprisingly, even when under the control of the CAG promoter which induces strong ubiquitous transcription in both germ cells and somatic cells, the addition of the Nanos3-3'UTR sequence to the coding region of exogenous gene was effective in restricting protein expression in germ cells. CONCLUSIONS/SIGNIFICANCE Our current study thus suggests that Nanos3-3'UTR has an essential role in translational control in the mouse embryo.
Collapse
Affiliation(s)
- Hitomi Suzuki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Rie Saba
- Division of Mammalian Development, National Institute of Genetics, Shizuoka, Japan
| | - Aiko Sada
- Department of Genetics, The Graduate University for Advanced Studies (Sokendai), Shizuoka, Japan
| | - Yumiko Saga
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
- Division of Mammalian Development, National Institute of Genetics, Shizuoka, Japan
- Department of Genetics, The Graduate University for Advanced Studies (Sokendai), Shizuoka, Japan
| |
Collapse
|
152
|
Ewen-Campen B, Schwager EE, Extavour CGM. The molecular machinery of germ line specification. Mol Reprod Dev 2010; 77:3-18. [PMID: 19790240 DOI: 10.1002/mrd.21091] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Germ cells occupy a unique position in animal reproduction, development, and evolution. In sexually reproducing animals, only they can produce gametes and contribute genetically to subsequent generations. Nonetheless, germ line specification during embryogenesis is conceptually the same as the specification of any somatic cell type: germ cells must activate a specific gene regulatory network in order to differentiate and go through gametogenesis. While many genes with critical roles in the germ line have been characterized with respect to expression pattern and genetic interactions, it is the molecular interactions of the relevant gene products that are ultimately responsible for germ cell differentiation. This review summarizes the current state of knowledge on the molecular functions and biochemical connections between germ line gene products. We find that homologous genes often interact physically with the same conserved molecular partners across the metazoans. We also point out cases of nonhomologous genes from different species whose gene products play analogous biological roles in the germ line. We suggest a preliminary molecular definition of an ancestral "pluripotency module" that could have been modified during metazoan evolution to become specific to the germ line.
Collapse
Affiliation(s)
- Ben Ewen-Campen
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
153
|
Young JC, Dias VL, Loveland KL. Defining the Window of Germline Genesis In Vitro from Murine Embryonic Stem Cells1. Biol Reprod 2010; 82:390-401. [DOI: 10.1095/biolreprod.109.078493] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
154
|
Abstract
Two major functions of the mammalian ovary are the production of germ cells (oocytes), which allow continuation of the species, and the generation of bioactive molecules, primarily steroids (mainly estrogens and progestins) and peptide growth factors, which are critical for ovarian function, regulation of the hypothalamic-pituitary-ovarian axis, and development of secondary sex characteristics. The female germline is created during embryogenesis when the precursors of primordial germ cells differentiate from somatic lineages of the embryo and take a unique route to reach the urogenital ridge. This undifferentiated gonad will differentiate along a female pathway, and the newly formed oocytes will proliferate and subsequently enter meiosis. At this point, the oocyte has two alternative fates: die, a common destiny of millions of oocytes, or be fertilized, a fate of at most approximately 100 oocytes, depending on the species. At every step from germline development and ovary formation to oogenesis and ovarian development and differentiation, there are coordinated interactions of hundreds of proteins and small RNAs. These studies have helped reproductive biologists to understand not only the normal functioning of the ovary but also the pathophysiology and genetics of diseases such as infertility and ovarian cancer. Over the last two decades, parallel progress has been made in the assisted reproductive technology clinic including better hormonal preparations, prenatal genetic testing, and optimal oocyte and embryo analysis and cryopreservation. Clearly, we have learned much about the mammalian ovary and manipulating its most important cargo, the oocyte, since the birth of Louise Brown over 30 yr ago.
Collapse
Affiliation(s)
- Mark A Edson
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | |
Collapse
|
155
|
Ohinata Y, Ohta H, Shigeta M, Yamanaka K, Wakayama T, Saitou M. A signaling principle for the specification of the germ cell lineage in mice. Cell 2009; 137:571-84. [PMID: 19410550 DOI: 10.1016/j.cell.2009.03.014] [Citation(s) in RCA: 384] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Revised: 01/09/2009] [Accepted: 03/05/2009] [Indexed: 01/12/2023]
Abstract
Specification of the germ cell lineage is vital to development and heredity. In mice, the germ cell fate is induced in pluripotent epiblast cells by signaling molecules, yet the underlying mechanism remains unknown. Here we demonstrate that germ cell fate in the epiblast is a direct consequence of Bmp4 signaling from the extraembryonic ectoderm (ExE), which is antagonized by the anterior visceral endoderm (AVE). Strikingly, Bmp8b from the ExE restricts AVE development, thereby contributing to Bmp4 signaling. Furthermore, Wnt3 in the epiblast ensures its responsiveness to Bmp4. Serum-free, defined cultures revealed that, in response to Bmp4, competent epiblast cells uniformly expressed key transcriptional regulators Blimp1 and Prdm14 and acquired germ-cell properties, including genome-wide epigenetic reprogramming, in an orderly fashion. Notably, the induced cells contributed to both spermatogenesis and fertility of offspring. By identifying a signaling principle in germ cell specification, our study establishes a robust strategy for reconstituting the mammalian germ cell lineage in vitro.
Collapse
Affiliation(s)
- Yasuhide Ohinata
- Center for Developmental Biology, RIKEN Kobe Institute, Minatojima-Minamimachi, Chuo-ku, Japan
| | | | | | | | | | | |
Collapse
|
156
|
Saitou M. Germ cell specification in mice. Curr Opin Genet Dev 2009; 19:386-95. [DOI: 10.1016/j.gde.2009.06.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Revised: 05/29/2009] [Accepted: 06/05/2009] [Indexed: 01/16/2023]
|
157
|
Liu CF, Barsoum I, Gupta R, Hofmann MC, Yao HHC. Stem cell potential of the mammalian gonad. Front Biosci (Elite Ed) 2009; 1:510-8. [PMID: 19482665 DOI: 10.2741/e47] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Stem cells have enormous potential for therapeutic application because of their ability to self-renew and differentiate into different cell types. Gonads, which consist of somatic cells and germ cells, are the only organs capable of transmitting genetic materials to the offspring. Germ-line stem cells and somatic stem cells have been found in the testis; however, the presence of stem cells in the ovary remains controversial. In this review, we discuss studies focusing on whether stem cell properties are present in the different cell types of male and female gonads and their implications on stem cell research.
Collapse
Affiliation(s)
- Chia-Feng Liu
- Department of Veterinary Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | | | | | | | | |
Collapse
|
158
|
Nicholas CR, Chavez SL, Baker VL, Reijo Pera RA. Instructing an embryonic stem cell-derived oocyte fate: lessons from endogenous oogenesis. Endocr Rev 2009; 30:264-83. [PMID: 19366753 PMCID: PMC2726843 DOI: 10.1210/er.2008-0034] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Female reproductive potential is limited in the majority of species due to oocyte depletion. Because functional human oocytes are restricted in number and accessibility, a robust system to differentiate oocytes from stem cells would enable a thorough investigation of the genetic, epigenetic, and environmental factors affecting human oocyte development. Also, the differentiation of functional oocytes from stem cells may permit the success of human somatic cell nuclear transfer for reprogramming studies and for the production of patient-specific embryonic stem cells (ESCs). Thus, ESC-derived oocytes could ultimately help to restore fertility in women. Here, we review endogenous and ESC-derived oocyte development, and we discuss the potential and challenges for differentiating functional oocytes from ESCs.
Collapse
Affiliation(s)
- Cory R Nicholas
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Palo Alto, California 94304, USA.
| | | | | | | |
Collapse
|
159
|
Park TS, Galic Z, Conway AE, Lindgren A, Van Handel BJ, Magnusson M, Richter L, Teitell MA, Mikkola HK, Lowry WE, Plath K, Clark AT. Derivation of primordial germ cells from human embryonic and induced pluripotent stem cells is significantly improved by coculture with human fetal gonadal cells. Stem Cells 2009; 27:783-95. [PMID: 19350678 PMCID: PMC4357362 DOI: 10.1002/stem.13] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The derivation of germ cells from human embryonic stem cells (hESCs) or human induced pluripotent stem (hIPS) cells represents a desirable experimental model and potential strategy for treating infertility. In the current study, we developed a triple biomarker assay for identifying and isolating human primordial germ cells (PGCs) by first evaluating human PGC formation during the first trimester in vivo. Next, we applied this technology to characterizing in vitro derived PGCs (iPGCs) from pluripotent cells. Our results show that codifferentiation of hESCs on human fetal gonadal stromal cells significantly improves the efficiency of generating iPGCs. Furthermore, the efficiency was comparable between various pluripotent cell lines regardless of origin from the inner cell mass of human blastocysts (hESCs), or reprogramming of human skin fibroblasts (hIPS). To better characterize the iPGCs, we performed Real-time polymerase chain reaction, microarray, and bisulfite sequencing. Our results show that iPGCs at day 7 of differentiation are transcriptionally distinct from the somatic cells, expressing genes associated with pluripotency and germ cell development while repressing genes associated with somatic differentiation (specifically multiple HOX genes). Using bisulfite sequencing, we show that iPGCs initiate imprint erasure from differentially methylated imprinted regions by day 7 of differentiation. However, iPGCs derived from hIPS cells do not initiate imprint erasure as efficiently. In conclusion, our results indicate that triple positive iPGCs derived from pluripotent cells differentiated on hFGS cells correspond to committed first trimester germ cells (before 9 weeks) that have initiated the process of imprint erasure.
Collapse
Affiliation(s)
- Tae Sub Park
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles
- College of Letters and Science, University of California, Los Angeles
| | - Zoran Galic
- Department of Medicine, University of California, Los Angeles
| | - Anne E. Conway
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles
- College of Letters and Science, University of California, Los Angeles
| | - Anne Lindgren
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles
- College of Letters and Science, University of California, Los Angeles
| | - Benjamin J. Van Handel
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles
- College of Letters and Science, University of California, Los Angeles
| | - Mattias Magnusson
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles
- College of Letters and Science, University of California, Los Angeles
| | - Laura Richter
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles
- College of Letters and Science, University of California, Los Angeles
| | - Michael A. Teitell
- Department of Medicine, Pathology and Laboratory Medicine, University of California, Los Angeles
- David Geffen School of Medicine, University of California, Los Angeles
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles
- Molecular Biology Institute, University of California, Los Angeles
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Reserach, University of California, Los Angeles
| | - Hanna K.A Mikkola
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles
- College of Letters and Science, University of California, Los Angeles
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles
- Molecular Biology Institute, University of California, Los Angeles
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Reserach, University of California, Los Angeles
| | - William E. Lowry
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles
- College of Letters and Science, University of California, Los Angeles
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles
- Molecular Biology Institute, University of California, Los Angeles
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Reserach, University of California, Los Angeles
| | - Kathrin Plath
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles
- College of Letters and Science, University of California, Los Angeles
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles
- Molecular Biology Institute, University of California, Los Angeles
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Reserach, University of California, Los Angeles
| | - Amander T Clark
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles
- College of Letters and Science, University of California, Los Angeles
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles
- Molecular Biology Institute, University of California, Los Angeles
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Reserach, University of California, Los Angeles
| |
Collapse
|
160
|
Boles MK, Wilkinson BM, Maxwell A, Lai L, Mills AA, Nishijima I, Salinger AP, Moskowitz I, Hirschi KK, Liu B, Bradley A, Justice MJ. A mouse chromosome 4 balancer ENU-mutagenesis screen isolates eleven lethal lines. BMC Genet 2009; 10:12. [PMID: 19267930 PMCID: PMC2670824 DOI: 10.1186/1471-2156-10-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 03/06/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND ENU-mutagenesis is a powerful technique to identify genes regulating mammalian development. To functionally annotate the distal region of mouse chromosome 4, we performed an ENU-mutagenesis screen using a balancer chromosome targeted to this region of the genome. RESULTS We isolated 11 lethal lines that map to the region of chromosome 4 between D4Mit117 and D4Mit281. These lines form 10 complementation groups. The majority of lines die during embryonic development between E5.5 and E12.5 and display defects in gastrulation, cardiac development, and craniofacial development. One line displayed postnatal lethality and neurological defects, including ataxia and seizures. CONCLUSION These eleven mutants allow us to query gene function within the distal region of mouse chromosome 4 and demonstrate that new mouse models of mammalian developmental defects can easily and quickly be generated and mapped with the use of ENU-mutagenesis in combination with balancer chromosomes. The low number of mutations isolated in this screen compared with other balancer chromosome screens indicates that the functions of genes in different regions of the genome vary widely.
Collapse
Affiliation(s)
- Melissa K Boles
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Oktem O, Oktay K. Current knowledge in the renewal capability of germ cells in the adult ovary. ACTA ACUST UNITED AC 2009; 87:90-5. [DOI: 10.1002/bdrc.20143] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
162
|
|
163
|
Germ cell migration in zebrafish is cyclopamine-sensitive but Smoothened-independent. Dev Biol 2009; 328:342-54. [PMID: 19389352 DOI: 10.1016/j.ydbio.2009.01.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 01/27/2009] [Accepted: 01/27/2009] [Indexed: 11/23/2022]
Abstract
Primordial germ cells (PGCs) are the progenitors of reproductive cells in metazoans and are an important model for the study of cell migration in vivo. Previous reports have suggested that Hedgehog (Hh) protein acts as a chemoattractant for PGC migration in the Drosophila embryo and that downstream signaling proteins such as Patched (Ptc) and Smoothened (Smo) are required for PGC localization to somatic gonadal precursors. Here we interrogate whether Hh signaling is required for PGC migration in vertebrates, using the zebrafish as a model system. We find that cyclopamine, an inhibitor of Hh signaling, causes strong defects in the migration of PGCs in the zebrafish embryo. However, these defects are not due to inhibition of Smoothened (Smo) by cyclopamine; rather, we find that neither maternal nor zygotic Smo is required for PGC migration in the zebrafish embryo. Cyclopamine instead acts independently of Smo to decrease the motility of zebrafish PGCs, in part by dysregulating cell adhesion and uncoupling cell polarization and translocation. These results demonstrate that Hh signaling is not required for zebrafish PGC migration, and underscore the importance of regulated cell-cell adhesion for cell migration in vivo.
Collapse
|
164
|
Yamamoto M, Beppu H, Takaoka K, Meno C, Li E, Miyazono K, Hamada H. Antagonism between Smad1 and Smad2 signaling determines the site of distal visceral endoderm formation in the mouse embryo. ACTA ACUST UNITED AC 2009; 184:323-34. [PMID: 19153222 PMCID: PMC2654303 DOI: 10.1083/jcb.200808044] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The anterior–posterior axis of the mouse embryo is established by formation of distal visceral endoderm (DVE) and its subsequent migration. The precise mechanism of DVE formation has remained unknown, however. Here we show that bone morphogenetic protein (BMP) signaling plays dual roles in DVE formation. BMP signaling is required at an early stage for differentiation of the primitive endoderm into the embryonic visceral endoderm (VE), whereas it inhibits DVE formation, restricting it to the distal region, at a later stage. A Smad2-activating factor such as Activin also contributes to DVE formation by generating a region of VE positive for the Smad2 signal and negative for Smad1 signal. DVE is thus formed at the distal end of the embryo, the only region of VE negative for the Smad1 signal and positive for Smad2 signal. An inverse relation between the level of phosphorylated Smad1 and that of phosphorylated Smad2 in VE suggests an involvement of antagonism between Smad1- and Smad2-mediated signaling.
Collapse
Affiliation(s)
- Masamichi Yamamoto
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.
| | | | | | | | | | | | | |
Collapse
|
165
|
|
166
|
Wei W, Qing T, Ye X, Liu H, Zhang D, Yang W, Deng H. Primordial germ cell specification from embryonic stem cells. PLoS One 2008; 3:e4013. [PMID: 19107197 PMCID: PMC2602984 DOI: 10.1371/journal.pone.0004013] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Accepted: 11/21/2008] [Indexed: 11/19/2022] Open
Abstract
Background Primordial germ cell (PGC) specification is the first crucial step in germ line development. However, owing to significant challenges regarding the in vivo system, such as the complex cellular environment and potential problems with embryo manipulation, it is desirable to generate embryonic stem (ES) cells that are capable of overcoming these aforementioned limitations in order to provide a potential in vitro model to recapitulate the developmental processes in vivo. Methodology and Principal Findings Here, we studied the detailed process of PGC specification from stella-GFP ES cells. We first observed the heterogeneous expression of stella in ES cells. However, neither Stella-positive ES cells nor Stella-negative ES cells shared a similar gene expression pattern with either PGCs or PGC precursors. Second, we derived PGCs from ES cells using two differentiation methods, namely the attachment culture technique and the embryoid body (EB) method. Compared with PGCs derived via the attachment culture technique, PGCs derived via the EB method that had undergone the sequential erasure of Peg3 followed by Igf2r resulted in a cell line in which the expression dynamics of T, Fgf8 and Sox17, in addition to the expression of the epiblast markers, were more similar to the in vivo expression, thus demonstrating that the process of PGC derivation was more faithfully recapitulated using the EB method. Furthermore, we developed an in vitro model of PGC specification in a completely chemically defined medium (CDM) that indicated that BMP4 and Wnt3a promoted PGC derivation, whereas BMP8b and activinA had no observable effect on PGC derivation. Conclusions and Significance The in vitro model we have established can recapitulate the developmental processes in vivo and provides new insights into the mechanism of PGC specification.
Collapse
Affiliation(s)
- Wei Wei
- Laboratory of Chemical Genomics, School of Chemical Biology and Biothechnology, Shenzhen Graduate School of Peking University, Shenzhen, China
- Laboratory of Stem Cell and Generative Biology, College of Life Sciences, Peking University, Beijing, China
| | - Tingting Qing
- Laboratory of Stem Cell and Generative Biology, College of Life Sciences, Peking University, Beijing, China
- INSERM/UEVE U861 I-Stem, AFM, Evry, France
| | - Xin Ye
- Laboratory of Stem Cell and Generative Biology, College of Life Sciences, Peking University, Beijing, China
- Cardiovascular Research Laboratory, University of British Columbia, St Paul's Hospital, Vancouver, British Columbia, Canada
| | - Haisong Liu
- Laboratory of Stem Cell and Generative Biology, College of Life Sciences, Peking University, Beijing, China
| | - Donghui Zhang
- Laboratory of Chemical Genomics, School of Chemical Biology and Biothechnology, Shenzhen Graduate School of Peking University, Shenzhen, China
- Laboratory of Stem Cell and Generative Biology, College of Life Sciences, Peking University, Beijing, China
| | - Weifeng Yang
- Laboratory of Chemical Genomics, School of Chemical Biology and Biothechnology, Shenzhen Graduate School of Peking University, Shenzhen, China
- Laboratory of Stem Cell and Generative Biology, College of Life Sciences, Peking University, Beijing, China
| | - Hongkui Deng
- Laboratory of Chemical Genomics, School of Chemical Biology and Biothechnology, Shenzhen Graduate School of Peking University, Shenzhen, China
- Laboratory of Stem Cell and Generative Biology, College of Life Sciences, Peking University, Beijing, China
- * E-mail:
| |
Collapse
|
167
|
Öllinger R, Childs AJ, Burgess HM, Speed RM, Lundegaard PR, Reynolds N, Gray NK, Cooke HJ, Adams IR. Deletion of the pluripotency-associated Tex19.1 gene causes activation of endogenous retroviruses and defective spermatogenesis in mice. PLoS Genet 2008; 4:e1000199. [PMID: 18802469 PMCID: PMC2531233 DOI: 10.1371/journal.pgen.1000199] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 08/15/2008] [Indexed: 01/06/2023] Open
Abstract
As genetic information is transmitted through successive generations, it passes between pluripotent cells in the early embryo and germ cells in the developing foetus and adult animal. Tex19.1 encodes a protein of unknown function, whose expression is restricted to germ cells and pluripotent cells. During male spermatogenesis, Tex19.1 expression is highest in mitotic spermatogonia and diminishes as these cells differentiate and progress through meiosis. In pluripotent stem cells, Tex19.1 expression is also downregulated upon differentiation. However, it is not clear whether Tex19.1 has an essential function in germ cells or pluripotent stem cells, or what that function might be. To analyse the potential role of Tex19.1 in pluripotency or germ cell function we have generated Tex19.1(-/-) knockout mice and analysed the Tex19.1(-/-) mutant phenotype. Adult Tex19.1(-/-) knockout males exhibit impaired spermatogenesis. Immunostaining and histological analysis revealed defects in meiotic chromosome synapsis, the persistence of DNA double-strand breaks during meiosis, and a loss of post-meiotic germ cells in the testis. Furthermore, expression of a class of endogenous retroviruses is upregulated during meiosis in the Tex19.1(-/-) testes. Increased transposition of endogenous retroviruses in the germline of Tex19.1(-/-) mutant mice, and the concomitant increase in DNA damage, may be sufficient to disrupt the normal processes of recombination and chromosome synapsis during meiosis and cause defects in spermatogenesis. Our results suggest that Tex19.1 is part of a specialised mechanism that operates in the germline to repress transposable genetic elements and maintain genomic stability through successive generations.
Collapse
Affiliation(s)
- Rupert Öllinger
- MRC Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Andrew J. Childs
- MRC Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Hannah M. Burgess
- MRC Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
- School of Clinical Sciences and Community Health, University of Edinburgh, Edinburgh, United Kingdom
- MRC Human Reproductive Sciences Unit, Centre for Reproductive Biology, The Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Robert M. Speed
- MRC Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Pia R. Lundegaard
- MRC Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
- Institute for Genetics and Molecular Medicine, Western General Hospital, Edinburgh, United Kingdom
| | - Nicola Reynolds
- MRC Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Nicola K. Gray
- MRC Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
- School of Clinical Sciences and Community Health, University of Edinburgh, Edinburgh, United Kingdom
- MRC Human Reproductive Sciences Unit, Centre for Reproductive Biology, The Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Howard J. Cooke
- MRC Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Ian R. Adams
- MRC Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
- Edinburgh Cancer Research Centre, School of Molecular and Clinical Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| |
Collapse
|
168
|
Complex genome-wide transcription dynamics orchestrated by Blimp1 for the specification of the germ cell lineage in mice. Genes Dev 2008; 22:1617-35. [PMID: 18559478 DOI: 10.1101/gad.1649908] [Citation(s) in RCA: 251] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Specification of germ cell fate is fundamental in development. With a highly representative single-cell microarray and rigorous quantitative PCR analysis, we defined the genome-wide transcription dynamics that create primordial germ cells (PGCs) from the epiblast, a process that exclusively segregates them from their somatic neighbors. We also analyzed the effect of the loss of Blimp1, a key transcriptional regulator, on these dynamics. Our analysis revealed that PGC specification involves complex, yet highly ordered regulation of a large number of genes, proceeding under the strong influence of mesoderm induction but specifically avoiding developmental programs such as the epithelial-mesenchymal transition, Hox cluster activation, cell cycle progression, and DNA methyltransferase machinery. Remarkably, Blimp1 is essential for repressing nearly all the genes normally down-regulated in PGCs relative to their somatic neighbors. In contrast, it is dispensable for the activation of approximately half of the genes up-regulated in PGCs, uncovering the Blimp1-independent events for PGC specification. Notably, however, highly PGC-specific genes exhibited distinct correlations to Blimp1 in wild-type embryos, and these correlations faithfully predicted their expression impairments in Blimp1 mutants. Moreover, their expression overlaps within single cells were severely damaged without Blimp1, demonstrating that Blimp1 exerts positive influence on their concerted activation. Thus, Blimp1 is not a single initiator but a dominant coordinator of the transcriptional program for the establishment of the germ cell fate in mice.
Collapse
|
169
|
Rodrigues P, Limback D, McGinnis LK, Plancha CE, Albertini DF. Oogenesis: Prospects and challenges for the future. J Cell Physiol 2008; 216:355-65. [PMID: 18452183 DOI: 10.1002/jcp.21473] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Oogenesis serves a singular role in the reproductive success of plants and animals. Of their remarkable differentiation pathway what stands out is the ability of oocytes to transform from a single cell into the totipotent lineages that seed the early embryo. As our understanding that commonalities between diverse organisms at the genetic, cellular and molecular levels are conserved to achieve successful reproduction, the notion that embryogenesis presupposes oogenesis has entered the day-to-day parlance of regenerative medicine and stem cell biology. With emphasis on the mammalian oocyte, this review will cover (1) current concepts regarding the birth, survival and growth of oocytes that depends on complex patterns of cell communication between germ line and soma, (2) the notion of "maternal inheritance" from a genetic and epigenetic perspective, and (3) the relative value of model systems with reference to current clinical and biotechnology applications.
Collapse
Affiliation(s)
- P Rodrigues
- Department Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, USA
| | | | | | | | | |
Collapse
|
170
|
Abstract
Stem cells, with their unlimited self-renewal feature and their ability to differentiate into almost every mature cell type in the body, have enormous potential for research and therapeutic application. In this article, we review the formation of primordial germ cells, the precursors of adult gametocytes, from their specification to their migration to prospective gonads. We discuss recent studies that obtained germ cells from stem cells in vitro. We place special emphasis on studies that challenge the current dogma in reproductive biology that female mammals are born with a set number of nonrenewable germ cells in the ovary by showing germ cell renewal in the adult ovary.
Collapse
Affiliation(s)
- Ozgur Oktem
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics & Gynecology, New York Medical College, Munger Pavilion Room 617, Valhalla, NY 10595, USA
| | | |
Collapse
|
171
|
Suzuki H, Tsuda M, Kiso M, Saga Y. Nanos3 maintains the germ cell lineage in the mouse by suppressing both Bax-dependent and -independent apoptotic pathways. Dev Biol 2008; 318:133-42. [PMID: 18436203 DOI: 10.1016/j.ydbio.2008.03.020] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 02/26/2008] [Accepted: 03/08/2008] [Indexed: 10/22/2022]
Abstract
Cell death in the germ line is controlled by both positive and negative mechanisms that maintain the appropriate number of germ cells and that prevent the possible formation of germ cell tumors. In the mouse embryo, Steel/c-Kit signaling is required to prevent migrating primordial germ cells (PGCs) from undergoing Bax-dependent apoptosis. In our current study, we show that migrating PGCs also undergo apoptosis in Nanos3-null embryos. We assessed whether the Bax-dependent apoptotic pathway is responsible for this cell death by knocking out the Bax gene together with the Nanos3 gene. Differing from Steel-null embryos, however, the Bax elimination did not completely rescue PGC apoptosis in Nanos3-null embryos, and only a portion of the PGCs survived in the double knockout embryo. We further established a mouse line, Nanos3-Cre-pA, to undertake lineage analysis and our results indicate that most of the Nanos3-null PGCs die rather than differentiate into somatic cells, irrespective of the presence or absence of Bax. In addition, a small number of surviving PGCs in Nanos3/Bax-null mice are maintained and differentiate as male and female germ cells in the adult gonads. Our findings thus suggest that heterogeneity exists in the PGC populations and that Nanos3 maintains the germ cell lineage by suppressing both Bax-dependent and Bax-independent apoptotic pathways.
Collapse
Affiliation(s)
- Hitomi Suzuki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
172
|
Okamura D, Tokitake Y, Niwa H, Matsui Y. Requirement of Oct3/4 function for germ cell specification. Dev Biol 2008; 317:576-84. [PMID: 18395706 DOI: 10.1016/j.ydbio.2008.03.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 03/03/2008] [Accepted: 03/03/2008] [Indexed: 11/17/2022]
Abstract
In mammalian embryos, PGCs (primordial germ cells) are specified from a pluripotent epiblast cell population after implantation. In this study, we demonstrated an essential role for the germline-specific transcription factor Oct3/4 in PGC specification. We generated chimeric embryos with ZHBTc4 ES cells lacking both alleles of the Oct3/4 gene (pou5f1). Pluripotency was maintained by an Oct3/4 transgene, and its expression was suppressed by doxycycline (Dox). Transcription of the Oct3/4 transgene in the ES-derived cells unexpectedly suffered constitutive suppression in chimeric embryos without Dox, and the ES-derived cells contributed to PGC precursor-like cells, but failed to form PGCs. We then attempted to rescue Oct3/4 expression in the ES-derived cells in the chimeric embryos by introducing an additional Oct3/4 transgene. The ES cell-derived cells indeed recovered Oct3/4 transcription in these chimeric embryos, and were successfully specified to PGCs. We further confirmed the requirement of Oct3/4 by using another derivative of ZHBTc4 ES cells in which a Dex (dexamethasone)-dependent Oct3/4 transgene was introduced. In the presence of Dox, Oct3/4 protein was absent in the nuclei of the ES-derived cells, which failed to form PGCs. In contrast, the ES-derived cells could be specified to PGCs after activation of Oct3/4 function in the presence of Dex.
Collapse
Affiliation(s)
- Daiji Okamura
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Sendai 980-8575, Japan
| | | | | | | |
Collapse
|
173
|
Hao J, Yamamoto M, Richardson TE, Chapman KM, Denard BS, Hammer RE, Zhao GQ, Hamra FK. Sohlh2 knockout mice are male-sterile because of degeneration of differentiating type A spermatogonia. Stem Cells 2008; 26:1587-97. [PMID: 18339773 DOI: 10.1634/stemcells.2007-0502] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The spermatogenesis and oogenesis-specific transcription factor Sohlh2 is normally expressed only in premeiotic germ cells. In this study, Sohlh2 and several other germ cell transcripts were found to be induced in mouse embryonic stem cells when cultured on a feeder cell line that overexpresses bone morphogenetic protein 4. To study the function of Sohlh2 in germ cells, we generated mice harboring null alleles of Sohlh2. Male Sohlh2-deficient mice were infertile because of a block in spermatogenesis. Although normal prior to birth, Sohlh2-null mice had reduced numbers of intermediate and type B spermatogonia by postnatal day 7. By day 10, development to the preleptotene spermatocyte stage was severely disrupted, rendering seminiferous tubules with only Sertoli cells, undifferentiated spermatogonia, and degenerating colonies of differentiating spermatogonia. Degenerating cells resembled type A2 spermatogonia and accumulated in M-phase prior to death. A similar phenotype was observed in Sohlh2-null mice on postnatal days 14, 21, 35, 49, 68, and 151. In adult Sohlh2-mutant mice, the ratio of undifferentiated type A spermatogonia (DAZL+/PLZF+) to differentiating type A spermatogonia (DAZL+/PLZF-) was twice normal levels. In culture, undifferentiated type A spermatogonia isolated from Sohlh2-null mice proliferated normally but linked the mutant phenotype to aberrant cell surface expression of the receptor-tyrosine kinase cKit. Thus, Sohlh2 is required for progression of differentiating type A spermatogonia into type B spermatogonia. One conclusion originating from these studies would be that testicular factors normally regulate the viability of differentiating spermatogonia by signaling through Sohlh2. This regulation would provide a crucial checkpoint to optimize the numbers of spermatocytes entering meiosis during each cycle of spermatogenesis. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Jing Hao
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | | | | | |
Collapse
|
174
|
Epigenetic events in mammalian germ-cell development: reprogramming and beyond. Nat Rev Genet 2008; 9:129-40. [PMID: 18197165 DOI: 10.1038/nrg2295] [Citation(s) in RCA: 633] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The epigenetic profile of germ cells, which is defined by modifications of DNA and chromatin, changes dynamically during their development. Many of the changes are associated with the acquisition of the capacity to support post-fertilization development. Our knowledge of this aspect has greatly increased- for example, insights into how the re-establishment of parental imprints is regulated. In addition, an emerging theme from recent studies is that epigenetic modifiers have key roles in germ-cell development itself--for example, epigenetics contributes to the gene-expression programme that is required for germ-cell development, regulation of meiosis and genomic integrity. Understanding epigenetic regulation in germ cells has implications for reproductive engineering technologies and human health.
Collapse
|
175
|
Elliott AM, de Miguel MP, Rebel VI, Donovan PJ. Identifying genes differentially expressed between PGCs and ES cells reveals a role for CREB-binding protein in germ cell survival. Dev Biol 2007; 311:347-58. [DOI: 10.1016/j.ydbio.2007.08.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 08/11/2007] [Accepted: 08/14/2007] [Indexed: 12/30/2022]
|
176
|
Abstract
Although mammalian sex is determined genetically, the sex-specific development of germ cells as sperm or oocytes is initiated by cues provided by the gonadal environment. During embryogenesis, germ cells in an ovary enter meiosis, thereby committing to oogenesis. By contrast, germ cells in a testicular environment do not enter meiosis until puberty. Recent findings indicate that the key to this sex-specific timing of meiosis entry is the presence or absence of the signaling molecule retinoic acid. Although this knowledge clarifies a long-standing mystery in reproductive biology, it also poses many new questions, which we discuss in this review.
Collapse
Affiliation(s)
- Josephine Bowles
- Division of Molecular Genetics and Development, and ARC Centre of Excellence in Biotechnology and Development, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | | |
Collapse
|
177
|
Clark AT. The Stem Cell Identity of Testicular Cancer. ACTA ACUST UNITED AC 2007; 3:49-59. [PMID: 17873381 DOI: 10.1007/s12015-007-0002-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/29/2022]
Abstract
Testicular germ cell tumors account for 1% of all cancers, and are the most common malignancies to affect males between the ages of 15 and 34. Understanding the pathogenesis of testis cancer has been challenging because the molecular and cellular events that result in the formation of germ cell tumors are hypothesized to occur during human fetal development. In this review, the molecular pathways involved in human testis cancer will be presented based on our research in human embryonic stem cells (hESCs), and also research using animal models. Testis germ cell tumors are unique in that the normal germ cell from which the tumor is derived has distinct stem cell characteristics that are shared with pluripotent hESCs. In particular, normal fetal germ cells express the core pluripotent transcription factors NANOG, SOX2 and OCT4. In contrast to hESCs, the germ line is not pluripotent. As a result, germ cell tumorigenesis may arise from loss of germ line-specific inhibitors which in normal germ cells prevent overt pluripotency and self-renewal and when absent in abnormal germ cells, result in the conversion to germ line cancer stem cells. At the conclusion of this review, a model for the molecular events involved in germ cell tumor formation and the relationship between germ cell tumorigenesis and stem cell biology will be presented.
Collapse
Affiliation(s)
- Amander T Clark
- Department of Molecular Cell and Developmental Biology, Institute for Stem Cell Biology and Medicine and the Jonsson Comprehensive Cancer Center, University of California, Los Angeles, 90054 USA.
| |
Collapse
|
178
|
Inman KE, Downs KM. The murine allantois: emerging paradigms in development of the mammalian umbilical cord and its relation to the fetus. Genesis 2007; 45:237-58. [PMID: 17440924 DOI: 10.1002/dvg.20281] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The fertilized egg of the mammal gives rise to the embryo and its extraembryonic structures, all of which develop in intimate relation with each other. Yet, whilst the past several decades have witnessed a vast number of studies on the embryonic component of the conceptus, study of the extraembryonic tissues and their relation to the fetus have been largely ignored. The allantois, precursor tissue of the mature umbilical cord, is a universal feature of all placental mammals that establishes the vital vascular bridge between the fetus and its mother. The allantois differentiates into the umbilical blood vessels, which become secured onto the chorionic component of the placenta at one end and onto the fetus at the other. In this way, fetal blood is channeled through the umbilical cord for exchange with the mother. Despite the importance of this vascular bridge, little is known about how it is made. The aim of this review is to address current understanding of the biology of the allantois in the mouse and genetic control of its features and functions, and to highlight new paradigms concerning the developmental relationship between the fetus and its umbilical cord.
Collapse
Affiliation(s)
- Kimberly E Inman
- Department of Anatomy, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
179
|
Abstract
Specification of germ cells in mice occurs relatively late in embryonic development. It is initiated by signals that induce expression of Blimp1, a key regulator of the germ cell, in a few epiblast cells of early postimplantation embryos. Blimp1 represses the incipient somatic program in these cells and promotes progression toward the germ cell fate. Blimp1 may also have a role in the maintenance of early germ cell characteristics by ensuring their escape from the somatic fate as well as possible reversion to pluripotent stem cells.
Collapse
Affiliation(s)
- Katsuhiko Hayashi
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | | | | |
Collapse
|
180
|
Aflalo ED, Bakhrat A, Raviv S, Harari D, Sagi A, Abdu U. Characterization of a vasa-like gene from the pacific white shrimp Litopenaeus vannamei and its expression during oogenesis. Mol Reprod Dev 2007; 74:172-7. [PMID: 16955407 DOI: 10.1002/mrd.20622] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The vasa gene encodes an ATP-dependent RNA helicase belonging to the DEAD-box family that, in many organisms, is specifically expressed in germline cells throughout the life cycle. In this study we first cloned Pacific white shrimp (Litopenaeus vannamei) partial cDNAs of two members of the DEAD-box family, one belonging to the vasa subfamily (Lv-Vasa) and the other to the PL10 subfamily (Lv-PL10). Examination of their spatial expression pattern in adult tissues revealed that Lv-Vasa is restricted to the gonads, whereas Lv-PL10 is found in gonads as well as in somatic tissues. Next, we cloned the full-length shrimp vasa cDNA and found that Lv-Vasa encoded a protein with a DEAD-like helicase domain followed by a helicase superfamily C-terminal domain. In addition, Lv-Vasa encoded N-terminal three repeats of the C2HC-type zinc finger domain, a motif encoded by vasa genes of several crustaceans and several other invertebrate organisms. In situ hybridization of ovarian sections showed that the Lv-Vasa transcript is localized to the cytoplasm of the oocyte throughout oogenesis. The abundance of Lv-Vasa mRNA in mature oocytes suggests a maternal contribution for the developing embryo. It is demonstrated that the vasa homolog from L. vannamei is a gonad specific germline cell marker that could be exploited to enhance our understanding of developmental and reproductive processes in the germline of this economically important shrimp.
Collapse
Affiliation(s)
- Eli D Aflalo
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University, Beer-Sheva, Israel
| | | | | | | | | | | |
Collapse
|
181
|
Itman C, Loveland KL. SMAD expression in the testis: An insight into BMP regulation of spermatogenesis. Dev Dyn 2007; 237:97-111. [DOI: 10.1002/dvdy.21401] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
182
|
Dudley BM, Runyan C, Takeuchi Y, Schaible K, Molyneaux K. BMP signaling regulates PGC numbers and motility in organ culture. Mech Dev 2006; 124:68-77. [PMID: 17112707 DOI: 10.1016/j.mod.2006.09.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 09/08/2006] [Accepted: 09/27/2006] [Indexed: 12/29/2022]
Abstract
Members of the bone morphogenetic protein (BMP) family play diverse roles in multiple developmental processes. However, in the mouse, mutations in many BMPs, BMP receptors and signaling components result in early embryonic lethality making it difficult to analyze the role of these factors during organogenesis or tissue homeostasis in the adult. To bypass this early lethality, we used an organ culture system to study the role of BMPs during primordial germ cell (PGC) migration. PGCs are the embryonic precursors of the sperm and eggs. BMPs induce formation of primordial germ cells within the proximal epiblast of embryonic day 7.5 (E7.5) mouse embryos. PGCs then migrate via the gut to arrive at the developing gonads by E10.5. Addition of BMP4 or the BMP-antagonist Noggin to transverse slices dissected from E9.5 embryos elevated PGC numbers or reduced PGC numbers, respectively. Noggin treatment also slowed and randomized PGC movements, resulting in a failure of PGCs to colonize the urogenital ridges (UGRs). Based on p-Smad1/5/8 staining, migratory PGCs do not respond to endogenous BMPs. Instead, the somatic cells of the urogenital ridges exhibit elevated p-Smad1/5/8 staining revealing active BMP signaling within the UGRs. Noggin treatment abrogated p-Smad staining within the UGRs and blocked localized expression of Kitl, a cytokine known to regulate the survival and motility of PGCs and Id1, a transcription factor expressed within the UGRs. We propose that BMP signaling regulates PGC migration by controlling gene expression within the somatic cells along the migration route and within the genital ridges.
Collapse
Affiliation(s)
- Brian M Dudley
- Department of Genetics, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
183
|
Bosman EA, Lawson KA, Debruyn J, Beek L, Francis A, Schoonjans L, Huylebroeck D, Zwijsen A. Smad5 determines murine amnion fate through the control of bone morphogenetic protein expression and signalling levels. Development 2006; 133:3399-409. [PMID: 16887830 DOI: 10.1242/dev.02497] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Smad5 is an intracellular mediator of bone morphogenetic protein (Bmp)signalling. It is essential for primordial germ cell (PGC) development, for the development of the allantois and for amnion closure, as demonstrated by loss of Bmp signalling. By contrast, the appearance of ectopic PGC-like cells and regionalized ectopic vasculogenesis and haematopoiesis in thickened Smad5m1/m1 amnion are amnion defects that have not been associated with loss of Bmp signalling components. We show that defects in amnion and allantois can already be detected at embryonic day (E) 7.5 in Smad5 mutant mice. However, ectopic Oct4-positive (Oct4+)and alkaline phosphatase-positive (AP+) cells appear suddenly in thickened amnion at E8.5, and at a remote distance from the allantois and posterior primitive streak, suggesting a change of fate in situ. These ectopic Oct4+, AP+ cells appear to be Stella negative and hence cannot be called bona fide PGCs. We demonstrate a robust upregulation of Bmp2 and Bmp4 expression, as well as of Erk and Smad activity, in the Smad5 mutant amnion. The ectopic expression of several Bmp target genes in different domains and the regionalized presence of cells of several Bmp-sensitive lineages in the mutant amnion suggest that different levels of Bmp signalling may determine cell fate. Injection of rBMP4 in the exocoelom of wild-type embryos can induce thickening of amnion,mimicking the early amnion phenotype in Smad5 mutants. These results support a model in which loss of Smad5 results paradoxically in gain of Bmp function defects in the amnion.
Collapse
Affiliation(s)
- Erika A Bosman
- Department of Developmental Biology (VIB7 for Biotechnology (VIB) and Laboratory of Molecular Biology (Celgen), University of Leuven, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
184
|
Maatouk DM, Kellam LD, Mann MRW, Lei H, Li E, Bartolomei MS, Resnick JL. DNA methylation is a primary mechanism for silencing postmigratory primordial germ cell genes in both germ cell and somatic cell lineages. Development 2006; 133:3411-8. [PMID: 16887828 DOI: 10.1242/dev.02500] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
DNA methylation is necessary for the silencing of endogenous retrotransposons and the maintenance of monoallelic gene expression at imprinted loci and on the X chromosome. Dynamic changes in DNA methylation occur during the initial stages of primordial germ cell development; however, all consequences of this epigenetic reprogramming are not understood. DNA demethylation in postmigratory primordial germ cells coincides with erasure of genomic imprints and reactivation of the inactive X chromosome, as well as ongoing germ cell differentiation events. To investigate a possible role for DNA methylation changes in germ cell differentiation, we have studied several marker genes that initiate expression at this time. Here, we show that the postmigratory germ cell-specific genes Mvh, Dazl and Scp3 are demethylated in germ cells, but not in somatic cells. Premature loss of genomic methylation in Dnmt1 mutant embryos leads to early expression of these genes as well as GCNA1, a widely used germ cell marker. In addition, GCNA1 is ectopically expressed by somatic cells in Dnmt1 mutants. These results provide in vivo evidence that postmigratory germ cell-specific genes are silenced by DNA methylation in both premigratory germ cells and somatic cells. This is the first example of ectopic gene activation in Dnmt1 mutant mice and suggests that dynamic changes in DNA methylation regulate tissue-specific gene expression of a set of primordial germ cell-specific genes.
Collapse
Affiliation(s)
- Danielle M Maatouk
- Department of Molecular Genetics and Microbiology, PO Box 100266, University of Florida, Gainesville, FL 32610-0266, USA
| | | | | | | | | | | | | |
Collapse
|
185
|
Yabuta Y, Kurimoto K, Ohinata Y, Seki Y, Saitou M. Gene expression dynamics during germline specification in mice identified by quantitative single-cell gene expression profiling. Biol Reprod 2006; 75:705-16. [PMID: 16870942 DOI: 10.1095/biolreprod.106.053686] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Germ cell fate in mice is induced in proximal epiblast cells at Embryonic Day (E) 6.5 by signaling molecules. Prdm1(also known as Blimp1)-positive lineage-restricted precursors of primordial germ cells (PGCs) initiate the formation of a cluster that differentiates into Dppa3 (also known as stella)-positive PGCs from around E7.0 onwards in the extra-embryonic mesoderm. Around E7.5, these PGCs begin migrating towards the definitive endoderm, with concomitant extensive epigenetic reprogramming. To gain a more precise insight into the mechanism of PGC specification and its subsequent development, we exploited quantitative, single-cell, gene expression profiling to explore gene expression dynamics during the 36 h of PGC differentiation from E6.75 to E8.25, in comparison with the corresponding profiles of somatic neighbors. This analysis revealed that the transitions from Prdm1-positive PGC precursors to Dppa3-positive PGCs and to more advanced migrating PGCs involve a highly dynamic, stage-dependent transcriptional orchestration that begins with the regaining of the pluripotency-associated gene network, followed by stepwise activation of PGC-specific genes, differential repression of the somatic mesodermal program, as well as potential modulations of signal transduction capacities and unique control of epigenetic regulators. The information presented here regarding the cascade of events involved in PGC development should serve as a basis for detailed functional analyses of the gene products associated with this process, as well as for appropriate reconstitution of PGCs and their descendant cells in culture.
Collapse
Affiliation(s)
- Yukihiro Yabuta
- Laboratory for Mammalian Germ Cell Biology, Center for Developmental Biology, RIKEN Kobe Institute, Kobe 650-0047, Japan
| | | | | | | | | |
Collapse
|
186
|
Barnett KR, Schilling C, Greenfeld CR, Tomic D, Flaws JA. Ovarian follicle development and transgenic mouse models. Hum Reprod Update 2006; 12:537-55. [PMID: 16728463 DOI: 10.1093/humupd/dml022] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ovarian follicle development is a complex process that begins with the establishment of what is thought to be a finite pool of primordial follicles and culminates in either the atretic degradation of the follicle or the release of a mature oocyte for fertilization. This review highlights the many advances made in understanding these events using transgenic mouse models. Specifically, this review describes the ovarian phenotypes of mice with genetic mutations that affect ovarian differentiation, primordial follicle formation, follicular growth, atresia, ovulation and corpus luteum (CL) formation. In addition, this review describes the phenotypes of mice with mutations in a variety of genes, which affect the hormones that regulate folliculogenesis. Because studies using transgenic animals have revealed a variety of reproductive abnormalities that resemble many reproductive disorders in women, it is likely that studies using transgenic mouse models will impact our understanding of ovarian function and fertility in women.
Collapse
Affiliation(s)
- K R Barnett
- Department of Epidemiology and Preventive Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
187
|
Selwood L, Johnson MH. Trophoblast and hypoblast in the monotreme, marsupial and eutherian mammal: evolution and origins. Bioessays 2006; 28:128-45. [PMID: 16435291 DOI: 10.1002/bies.20360] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The pregastrula stage mammalian conceptus consists of both embryonic and non-embryonic components. The latter forms the bulk of the tissues, provides nutrition for the developing embryo and also contributes developmental signals that influence events within the embryo itself. Understanding the origins and relationships between the embryonic and extraembryonic cell lineages is thus central to understanding development in mammals. Despite the apparent gross differences in early developmental strategy and form, the conceptuses of eutherian, marsupial and monotreme mammals show some remarkable similarities in the lineage allocation to trophoblast and hypoblast and in the emergent properties of the two cell types. We suggest that the gross differences can be explained by two relatively small evolutionary timing changes affecting cell adhesion patterns and the polarisation of developmentally significant information. These changes result in the conversion of a unilaminar blastocyst to a morula form composed of blastomeres with increased regulatory capacity.
Collapse
Affiliation(s)
- Lynne Selwood
- Department of Zoology, University of Melbourne, Vic, Australia
| | | |
Collapse
|
188
|
Mattiske D, Kume T, Hogan BLM. The mouse forkhead gene Foxc1 is required for primordial germ cell migration and antral follicle development. Dev Biol 2006; 290:447-58. [PMID: 16412416 DOI: 10.1016/j.ydbio.2005.12.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 11/28/2005] [Accepted: 12/01/2005] [Indexed: 02/02/2023]
Abstract
Foxc1 encodes a forkhead/winged helix transcription factor expressed in many embryonic tissues. Previous studies have investigated defects in the urogenital system of Foxc1 null mutants, but the mechanisms underlying the abnormal development of the gonad have not been explored. From earliest stages, the mutant ovaries are smaller than normal, with fewer germ cells and disorganized somatic issue. No bursa membrane is formed, and the oviduct remains uncoiled. Although germ cells are specified correctly, many of them do not migrate to the gonadal ridge, remaining trapped in the hindgut. Consequently, the number initially reaching the gonad is less than 25% of normal. Once in the ovary, germ cells proliferate normally, but the supporting somatic cells are not organized correctly. Since mutant embryos die at birth, further development was followed in ovaries grafted underneath the kidney capsule of ovariectomized females. Transplanted ovaries display normal folliculogenesis up to preantral stages. However, no follicles develop beyond early antral stages. Mutant follicles are often polyovulatory and have disrupted theca and granulosa cell layers. We conclude that alongside its previously known roles in kidney, cardiovascular and eye development, Foxc1 has essential functions during at least two stages of gonad development-germ cell migration and folliculogenesis.
Collapse
Affiliation(s)
- Deidre Mattiske
- Department of Cell Biology, Duke University Medical Center, Box 3709, Durham, NC 27710, USA
| | | | | |
Collapse
|
189
|
Zhang J, Li L. BMP signaling and stem cell regulation. Dev Biol 2005; 284:1-11. [PMID: 15963490 DOI: 10.1016/j.ydbio.2005.05.009] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Revised: 05/05/2005] [Accepted: 05/06/2005] [Indexed: 12/17/2022]
Abstract
Stem cells play an essential role in cellular specialization and pattern formation during embryogenesis and in tissue regeneration in adults. This is mainly due to a stem cell's ability to replenish itself (self-renewal) and, at the same time, produce differentiated progeny. Realization of these special stem cell features has changed the prospective of the field. However, regulation of stem cell self-renewal and maintenance of its potentiality require a complicated regulatory network of both extracellular cues and intrinsic programs. Understanding how signaling regulates stem cell behavior will shed light on the molecular mechanisms underlying stem cell self-renewal. In this review, we focus on comparing the progress of recent research regarding the roles of the BMP signaling pathway in different stem cell systems, including embryonic stem cells, germline stem cells, hematopoietic stem cells, and intestinal stem cells. We hope this comparison, together with a brief look at other signaling pathways, will bring a more balanced view of BMP signaling in regulation of stem cell properties, and further point to a general principle that self-renewal of stem cells may require a combination of maintenance of proliferation potential, inhibition of apoptosis, and blocking of differentiation.
Collapse
Affiliation(s)
- Jiwang Zhang
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | |
Collapse
|
190
|
Baleato RM, Aitken RJ, Roman SD. Vitamin A regulation of BMP4 expression in the male germ line. Dev Biol 2005; 286:78-90. [PMID: 16120438 DOI: 10.1016/j.ydbio.2005.07.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Revised: 06/23/2005] [Accepted: 07/07/2005] [Indexed: 11/26/2022]
Abstract
The molecular mechanisms leading to male infertility in vitamin A deficient (VAD) rodents have never been fully elucidated. Here, we report an interaction between BMP4 and retinoid signaling pathways in germ cells that may help clarify the biochemical basis of VAD. Adult germ cells, in particular spermatogonia, expressed BMP4 at both the mRNA and protein levels. BMP4 expression was significantly up-regulated in the testes of VAD mice and was down-regulated in freshly isolated germ cells and VAD testes by retinol, but not retinoic acid. The retinoid-responsive gene, RARbeta, was not induced in germ cells following retinoid treatment. Examination of BMP4 promoter usage in spermatogonia and the VAD testis revealed that germ cells utilize the recently characterized BMP4 intron 2 promoter, in addition to the classical 1A and 1B promoters. The observed decrease in BMP4 in response to retinol was mediated by the 1A and intron 2 promoters of the BMP4 gene. Our results reflect a direct requirement for retinoids by germ cells for the resumption of spermatogenesis in VAD animals via mechanisms that involve the suppression of BMP4 expression.
Collapse
Affiliation(s)
- Rosa M Baleato
- Reproductive Science Group, School of Environmental and Life Sciences, University of Newcastle, NSW 2308, Australia
| | | | | |
Collapse
|
191
|
Loveland KL, Hogarth C, Szczepny A, Prabhu SM, Jans DA. Expression of nuclear transport importins beta 1 and beta 3 is regulated during rodent spermatogenesis. Biol Reprod 2005; 74:67-74. [PMID: 16192402 DOI: 10.1095/biolreprod.105.042341] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Spermatogenic differentiation requires progressive gene expression changes, and proteins required for this must be transported into the nucleus. Many of these contain a nuclear localization signal and are likely to be transported by importin protein family members, each of which recognizes and transports distinct cargo proteins. We hypothesized that importins, as modulators of protein nuclear access, would display distinct expression profiles during spermatogenesis, indicating their potential to regulate key steps in cellular differentiation. This was tested throughout testicular development in rodents. Real-time PCR analysis of postnatal mouse testes revealed changing expression levels of Knpb1 (encoding importin beta 1) and Ranbp5 (encoding beta 3) mRNAs, with Knpb1 highest at 26 days postpartum and Ranbp5 highest in Day 26 and adult testis. Their distinctive cellular expression patterns visualized using in situ hybridization and immunohistochemistry were identical in mouse and rat testes where examined. Within the seminiferous epithelium, Knpb1 mRNA and importin beta1 protein were detected within mitotic Sertoli and germ cells during fetal and early postnatal development, becoming restricted to spermatogonia and spermatocytes in adulthood. Importin beta 3 protein in fetal germ cells displayed a striking difference in intracellular localization between male and female gonads. In adult testes, Ranbp5 mRNA was detected in round spermatids and importin beta 3 protein in elongating spermatids. This is the first comprehensive in situ demonstration of developmentally regulated synthesis of nuclear transport components. The contrasting expression patterns of importins beta 1 and 3 identify them as candidates for regulating nuclear access of factors required for developmental switches.
Collapse
Affiliation(s)
- Kate L Loveland
- Monash Institute of Medical Research, Monash University, Melbourne, Victoria 3168, Australia.
| | | | | | | | | |
Collapse
|
192
|
Turnpenny L, Spalluto CM, Perrett RM, O'Shea M, Hanley KP, Cameron IT, Wilson DI, Hanley NA. Evaluating human embryonic germ cells: concord and conflict as pluripotent stem cells. Stem Cells 2005; 24:212-20. [PMID: 16144875 DOI: 10.1634/stemcells.2005-0255] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The realization of cell replacement therapy derived from human pluripotent stem cells requires full knowledge of the starting cell types as well as their differentiated progeny. Alongside embryonic stem cells, embryonic germ cells (EGCs) are an alternative source of pluripotent stem cell. Since 1998, four groups have described the derivation of human EGCs. This review analyzes the progress on derivation, culture, and differentiation, drawing comparison with other pluripotent stem cell populations.
Collapse
Affiliation(s)
- Lee Turnpenny
- Early Human Development and Stem Cells Group, University of Southampton, Duthie Building (M.P. 808), Southampton General Hospital, Tremona Road, Southampton SO16 6YD, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
193
|
Extavour CG, Pang K, Matus DQ, Martindale MQ. vasa and nanos expression patterns in a sea anemone and the evolution of bilaterian germ cell specification mechanisms. Evol Dev 2005; 7:201-15. [PMID: 15876193 DOI: 10.1111/j.1525-142x.2005.05023.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Most bilaterians specify primordial germ cells (PGCs) during early embryogenesis using either inherited cytoplasmic germ line determinants (preformation) or induction of germ cell fate through signaling pathways (epigenesis). However, data from nonbilaterian animals suggest that ancestral metazoans may have specified germ cells very differently from most extant bilaterians. Cnidarians and sponges have been reported to generate germ cells continuously throughout reproductive life, but previous studies on members of these basal phyla have not examined embryonic germ cell origin. To try to define the embryonic origin of PGCs in the sea anemone Nematostella vectensis, we examined the expression of members of the vasa and nanos gene families, which are critical genes in bilaterian germ cell specification and development. We found that vasa and nanos family genes are expressed not only in presumptive PGCs late in embryonic development, but also in multiple somatic cell types during early embryogenesis. These results suggest one way in which preformation in germ cell development might have evolved from the ancestral epigenetic mechanism that was probably used by a metazoan ancestor.
Collapse
Affiliation(s)
- Cassandra G Extavour
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, Cambridge, UK.
| | | | | | | |
Collapse
|
194
|
Kim DK, Song KD, Kim JN, Park TS, Lim JM, Han JY. Increased reactivity of cultured chicken blastodermal cells to anti-stage-specific embryonic antigen-1 antibody after exposure to bone morphogenetic proteins. Theriogenology 2005; 65:658-68. [PMID: 16024068 DOI: 10.1016/j.theriogenology.2005.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2004] [Revised: 06/07/2005] [Accepted: 06/09/2005] [Indexed: 11/15/2022]
Abstract
We evaluated whether bone morphogenetic proteins (BMPs) increased the reactivity of chicken stage X blastodermal cells to the germ cell marker, anti-stage-specific embryonic antigen (SSEA)-1 antibody. In Experiment 1, blastodermal cells cultured on a feeder layer of SIM mouse embryo-derived thioguanine and ouabain resistant (STO) cells were treated with different doses of BMP-2 and/or BMP-4, and the anti-SSEA-1 antibody reactivity of cultured cells was examined 48 h later. A significant (P < 0.05) increase in the number of anti-SSEA-1 antibody-positive cells was detected after the addition of 75 or 100 ng/ml BMP-2. Neither 0-20 ng/ml BMP-4 nor the combined addition of 75 ng/ml BMP-2 with either 10 or 15 ng/ml BMP-4 increased reactivity more than that induced by 75 ng/ml BMP-2 alone. Results of the qualification and quantification of BMP receptor kinase (BRK)-1, BRK-2, and BRK-3 using RT-PCR and real-time PCR showed that all three receptors were detected in blastodermal cells treated with BMPs, intact stage X embryos and 5.5-day-old embryonic gonads, but no expression was detected in STO feeder cells. In Experiment 2, the treatment of stage X embryos with different doses of BMP-2 (0.15-3 ng/embryo) or BMP-4 (0.02-0.4 ng/embryo) did not affect the reactivity of 5.5-day-old embryonic gonadal cells to the anti-SSEA-1 antibody. BRK-1 expression was selectively increased in stage X embryos after the infusion of 3ng BMP-2 than after no infusion, but no changes in other BRKs' expression were detected. In conclusion, the addition of BMP-2 to culture medium in the presence of STO feeder cells promoted the reactivity of blastodermal cells to anti-SSEA-1 antibody, which might contribute to the generation of chicken primordial germ cell precursor or germ cell-like cells. The relationship between BMP action and BRK expression was further discussed.
Collapse
Affiliation(s)
- Duk Kyung Kim
- Department of Food and Animal Biotechnology, Division of Animal Genetic Engineering, Seoul National University, Seoul 151-921, Republic of Korea
| | | | | | | | | | | |
Collapse
|
195
|
Berekelya LA, Ponomarev MB, Mikryukov AA, Luchinskaya NN, Belyavsky AV. Molecular Mechanisms of Germ Line Cell Determination in Animals. Mol Biol 2005. [DOI: 10.1007/s11008-005-0073-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
196
|
Drummond AE. TGFβ signalling in the development of ovarian function. Cell Tissue Res 2005; 322:107-15. [PMID: 15983782 DOI: 10.1007/s00441-005-1153-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Accepted: 04/20/2005] [Indexed: 11/29/2022]
Abstract
Ovarian development begins back in the embryo with the formation of primordial germ cells and their subsequent migration and colonisation of the genital ridges. Once the ovary has been defined structurally, the primordial germ cells transform into oocytes and become housed in structures called follicles (in this case, primordial follicles), a procedure that, in most mammals, occurs either shortly before or during the first few days after birth. The growth and differentiation of follicles from the primordial population is termed folliculogenesis. Primordial follicles give rise to primary follicles that transform into preantral follicles, then antral follicles (secondary follicles) and, finally (preovulatory) Graafian follicles (tertiary follicles) in a co-ordinated series of transitions regulated by hormones and local intraovarian factors. Members of the transforming growth factor-beta (TGFbeta) superfamily have been shown to play important roles in this developmental process starting with the specification of primordial germ cells by the bone morphogenetic proteins through to the recruitment of primordial follicles by anti-Mullerian hormone and, potentially, growth and differentiation factor-9 (GDF9) and, finally, their transformation into preantral and antral follicles in response to activin and TGF-beta. Developmental and mutant mouse models have been used to show the importance of this family of growth factors in establishing the first wave of folliculogenesis.
Collapse
Affiliation(s)
- Ann E Drummond
- Prince Henry's Institute of Medical Research, P.O. Box 5152, Clayton, Victoria 3168, Australia.
| |
Collapse
|
197
|
Donnison M, Beaton A, Davey HW, Broadhurst R, L'Huillier P, Pfeffer PL. Loss of the extraembryonic ectoderm in Elf5 mutants leads to defects in embryonic patterning. Development 2005; 132:2299-308. [PMID: 15829518 DOI: 10.1242/dev.01819] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The extraembryonic ectoderm (ExE) is essential for mammalian placental formation and survival of the embryo in utero. We have obtained a mouse model lacking the ExE, by targeted deletion of the transcription factor Elf5. Although Elf5 mutant embryos implant and form an ectoplacental cone, no trophoblast stem (TS) cells can be derived, indicating that the absence of ExE is a result of the lack of TS cell maintenance. Embryos without ExE tissue are able to form the anterior visceral endoderm but fail to undergo gastrulation, demonstrating an essential role for the ExE in embryonic patterning during a defined window of development.
Collapse
Affiliation(s)
- Martyn Donnison
- AgResearch Crown Research Institute, Ruakura Campus, East Street, Hamilton 2001, New Zealand
| | | | | | | | | | | |
Collapse
|
198
|
Abstract
Because embryonic stem (ES) cells are generally derived by the culture of inner cell mass (ICM) cells, they are often assumed to be the equivalent of ICM cells. However, various evidence indicates that ICM cells transition to a different cell type during ES-cell derivation. Historically, ES cells have been believed to most closely resemble pluripotent primitive ectoderm cells derived directly from the ICM. However, differences between ES cells and primitive ectoderm cells have caused developmental biologists to question whether ES cells really have an in vivo equivalent, or whether their properties merely reflect their tissue culture environment. Here, we review recent evidence that the closest in vivo equivalent of an ES cell is an early germ cell.
Collapse
Affiliation(s)
- Thomas P Zwaka
- University of Wisconsin--Medical School and The National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA
| | | |
Collapse
|
199
|
Abstract
The mode and timing of germ-cell specification has been studied in diverse organisms, however, the molecular mechanism regulating germ-cell-fate determination remains to be elucidated. In some model organisms, maternal germ-cell determinants play a key role. In mouse embryos, some germ-line-specific gene products exist as maternal molecules and play critical roles in a pluripotential cell population at preimplantation stages. From those cells, primordial germ cells (PGCs) are specified by extracellular signaling mediated by tissue, as well as cell-cell interaction during gastrulation. Thus, establishment of germ-cell lineage in mammalian embryos appears to be regulated by a multistep process, including formation and maintenance of a pluripotential cell population, as well as specification of PGCs. PGCs can be generated from pluripotential embryonic stem (ES) cells in a simple monolayer culture in which tissue interaction does not occur. This raises the possibility that ES cells, as well as, possibly, pluripotential cells in preimplantation embryos, are more closely related to the PGC precursors than pluripotential cells after implantation.
Collapse
Affiliation(s)
- Yasuhisa Matsui
- Department of Molecular Embryology, Research Institute, Osaka Medical Center for Maternal and Child Health, Japan.
| | | |
Collapse
|
200
|
Extavour CG. The fate of isolated blastomeres with respect to germ cell formation in the amphipod crustacean Parhyale hawaiensis. Dev Biol 2005; 277:387-402. [PMID: 15617682 DOI: 10.1016/j.ydbio.2004.09.030] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Revised: 09/16/2004] [Accepted: 09/21/2004] [Indexed: 11/26/2022]
Abstract
Germ cells may be specified through the localization of germ line determinants to specific cells in early embryogenesis, or by inductive signals from neighboring cells to germ cell precursors in later embryogenesis. Such determinants can be produced and localized during or after oogenesis, either autonomously by oocytes or by associated nutritive cells. In Drosophila, each oocyte is connected to nurse cells by cytoplasmic bridges, and determinants synthesized in nurse cells are transported through these bridges to the oocyte. However, the Drosophila model may not be applicable to all arthropods, since in many species of all four extant arthropod classes, gametogenesis functions without nurse cells. In this paper, I use immunodetection of Vasa protein to study germ cell development in the amphipod crustacean Parhyale hawaiensis, a species whose ovaries lack nurse cells and whose eggs lack obvious polarity. Previous cell lineage analyses have shown that all three germ layers and the germ line are exclusively specified by third cleavage. In the present study, I use a molecular marker to follow germ cell development during P. hawaiensis embryogenesis. I determine the capacity of individual blastomeres to form germ cells by isolating blastomeres at early cleavage stages and provide experimental evidence for localized germ cell determinants at the two-cell stage in P. hawaiensis. These experiments indicate that many aspects of early amphipod development, including timing and symmetry of cell division, the transition from holoblastic to superficial cleavage, and possibly some gastrulation movements, are cell autonomous following first cleavage.
Collapse
Affiliation(s)
- Cassandra G Extavour
- Department of Zoology, Laboratory for Development and Evolution, University of Cambridge, Downing Street, Cambridge, CB2 3EJ Cambridgeshire, United Kingdom.
| |
Collapse
|