151
|
Indulekha CL, Divya TS, Divya MS, Sanalkumar R, Rasheed VA, Dhanesh SB, Sebin A, George A, James J. Hes-1 regulates the excitatory fate of neural progenitors through modulation of Tlx3 (HOX11L2) expression. Cell Mol Life Sci 2012; 69:611-27. [PMID: 21744064 PMCID: PMC11114997 DOI: 10.1007/s00018-011-0765-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 06/22/2011] [Accepted: 06/23/2011] [Indexed: 10/18/2022]
Abstract
Tlx3 (HOX11L2) is regarded as one of the selector genes in excitatory versus inhibitory fate specification of neurons in distinct regions of the nervous system. Expression of Tlx3 in a post-mitotic immature neuron favors a glutamatergic over GABAergic fate. The factors that regulate Tlx3 have immense importance in the fate specification of glutamatergic neurons. Here, we have shown that Notch target gene, Hes-1, negatively regulates Tlx3 expression, resulting in decreased generation of glutamatergic neurons. Down-regulation of Hes-1 removed the inhibition on Tlx3 promoter, thus promoting glutamatergic differentiation. Promoter-protein interaction studies with truncated/mutated Hes-1 protein suggested that the co-repressor recruitment mediated through WRPW domain of Hes-1 has contributed to the repressive effect. Our results clearly demonstrate a new and unique role for canonical Notch signaling through Hes-1, in neurotransmitter/subtype fate specification of neurons in addition to its known functional role in proliferation/maintenance of neural progenitors.
Collapse
Affiliation(s)
- Chandrasekharan Lalitha Indulekha
- Neuro Stem Cell Biology Laboratory, Department of Neurobiology, Rajiv Gandhi Center for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695 014 India
| | - Thulasi Sheela Divya
- Neuro Stem Cell Biology Laboratory, Department of Neurobiology, Rajiv Gandhi Center for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695 014 India
| | - Mundackal Sivaraman Divya
- Neuro Stem Cell Biology Laboratory, Department of Neurobiology, Rajiv Gandhi Center for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695 014 India
| | - Rajendran Sanalkumar
- Neuro Stem Cell Biology Laboratory, Department of Neurobiology, Rajiv Gandhi Center for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695 014 India
| | - Vazhanthodi Abdul Rasheed
- Neuro Stem Cell Biology Laboratory, Department of Neurobiology, Rajiv Gandhi Center for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695 014 India
| | - Sivadasan Bindu Dhanesh
- Neuro Stem Cell Biology Laboratory, Department of Neurobiology, Rajiv Gandhi Center for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695 014 India
| | - Anu Sebin
- Neuro Stem Cell Biology Laboratory, Department of Neurobiology, Rajiv Gandhi Center for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695 014 India
| | - Amitha George
- Neuro Stem Cell Biology Laboratory, Department of Neurobiology, Rajiv Gandhi Center for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695 014 India
| | - Jackson James
- Neuro Stem Cell Biology Laboratory, Department of Neurobiology, Rajiv Gandhi Center for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695 014 India
| |
Collapse
|
152
|
Vázquez P, Arroba AI, Cecconi F, de la Rosa EJ, Boya P, de Pablo F. Atg5 and Ambra1 differentially modulate neurogenesis in neural stem cells. Autophagy 2012; 8:187-99. [PMID: 22240590 DOI: 10.4161/auto.8.2.18535] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neuroepithelial cells undergoing differentiation efficiently remodel their cytoskeleton and shape in an energy-consuming process. The capacity of autophagy to recycle cellular components and provide energy could fulfill these requirements, thus supporting differentiation. However, little is known regarding the role of basal autophagy in neural differentiation. Here we report an increase in the expression of the autophagy genes Atg7, Becn1, Ambra1 and LC3 in vivo in the mouse embryonic olfactory bulb (OB) during the initial period of neuronal differentiation at E15.5, along with a parallel increase in neuronal markers. In addition, we observed an increase in LC3 lipidation and autophagic flux during neuronal differentiation in cultured OB-derived stem/progenitor cells. Pharmacological inhibition of autophagy with 3-MA or wortmannin markedly decreased neurogenesis. These observations were supported by similar findings in two autophagy-deficient genetic models. In Ambra1 loss-of-function homozygous mice (gt/gt) the expression of several neural markers was decreased in the OB at E13.5 in vivo. In vitro, Ambra1 haploinsufficient cells developed as small neurospheres with an impaired capacity for neuronal generation. The addition of methylpyruvate during stem/progenitor cell differentiation in culture largely reversed the inhibition of neurogenesis induced by either 3-MA or Ambra1 haploinsufficiency, suggesting that neural stem/progenitor cells activate autophagy to fulfill their high energy demands. Further supporting the role of autophagy for neuronal differentiation Atg5-null OB cells differentiating in culture displayed decreased TuJ1 levels and lower number of cells with neurites. These results reveal new roles for autophagy-related molecules Atg5 and Ambra1 during early neuronal differentiation of stem/progenitor cells.
Collapse
Affiliation(s)
- Patricia Vázquez
- 3D Lab (Development, Differentiation & Degeneration), Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
153
|
Abstract
Classic experiments such as somatic cell nuclear transfer into oocytes and cell fusion demonstrated that differentiated cells are not irreversibly committed to their fate. More recent work has built on these conclusions and discovered defined factors that directly induce one specific cell type from another, which may be as distantly related as cells from different germ layers. This suggests the possibility that any specific cell type may be directly converted into any other if the appropriate reprogramming factors are known. Direct lineage conversion could provide important new sources of human cells for modeling disease processes or for cellular-replacement therapies. For future applications, it will be critical to carefully determine the fidelity of reprogramming and to develop methods for robustly and efficiently generating human cell types of interest.
Collapse
Affiliation(s)
- Thomas Vierbuchen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | | |
Collapse
|
154
|
Jahan I, Pan N, Kersigo J, Calisto LE, Morris KA, Kopecky B, Duncan JS, Beisel KW, Fritzsch B. Expression of Neurog1 instead of Atoh1 can partially rescue organ of Corti cell survival. PLoS One 2012; 7:e30853. [PMID: 22292060 PMCID: PMC3265522 DOI: 10.1371/journal.pone.0030853] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 12/21/2011] [Indexed: 11/19/2022] Open
Abstract
In the mammalian inner ear neurosensory cell fate depends on three closely related transcription factors, Atoh1 for hair cells and Neurog1 and Neurod1 for neurons. We have previously shown that neuronal cell fate can be altered towards hair cell fate by eliminating Neurod1 mediated repression of Atoh1 expression in neurons. To test whether a similar plasticity is present in hair cell fate commitment, we have generated a knockin (KI) mouse line (Atoh1KINeurog1) in which Atoh1 is replaced by Neurog1. Expression of Neurog1 under Atoh1 promoter control alters the cellular gene expression pattern, differentiation and survival of hair cell precursors in both heterozygous (Atoh1+/KINeurog1) and homozygous (Atoh1KINeurog1/KINeurog1) KI mice. Homozygous KI mice develop patches of organ of Corti precursor cells that express Neurog1, Neurod1, several prosensory genes and neurotrophins. In addition, these patches of cells receive afferent and efferent processes. Some cells among these patches form multiple microvilli but no stereocilia. Importantly, Neurog1 expressing mutants differ from Atoh1 null mutants, as they have intermittent formation of organ of Corti-like patches, opposed to a complete ‘flat epithelium’ in the absence of Atoh1. In heterozygous KI mice co-expression of Atoh1 and Neurog1 results in change in fate and patterning of some hair cells and supporting cells in addition to the abnormal hair cell polarity in the later stages of development. This differs from haploinsufficiency of Atoh1 (Pax2cre; Atoh1f/+), indicating the effect of Neurog1 expression in developing hair cells. Our data suggest that Atoh1KINeurog1 can provide some degree of functional support for survival of organ of Corti cells. In contrast to the previously demonstrated fate plasticity of neurons to differentiate as hair cells, hair cell precursors can be maintained for a limited time by Neurog1 but do not transdifferentiate as neurons.
Collapse
Affiliation(s)
- Israt Jahan
- University of Iowa, Department of Biology, Iowa City, Iowa, United States of America
| | - Ning Pan
- University of Iowa, Department of Biology, Iowa City, Iowa, United States of America
| | - Jennifer Kersigo
- University of Iowa, Department of Biology, Iowa City, Iowa, United States of America
| | - Lilian E. Calisto
- Creighton University, Department of Biomedical Sciences, Omaha, Nebraska, United States of America
| | - Ken A. Morris
- Creighton University, Department of Biomedical Sciences, Omaha, Nebraska, United States of America
| | - Benjamin Kopecky
- University of Iowa, Department of Biology, Iowa City, Iowa, United States of America
| | - Jeremy S. Duncan
- University of Iowa, Department of Biology, Iowa City, Iowa, United States of America
| | - Kirk W. Beisel
- Creighton University, Department of Biomedical Sciences, Omaha, Nebraska, United States of America
| | - Bernd Fritzsch
- University of Iowa, Department of Biology, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
155
|
Abstract
Cnidarians belong to the first phylum differentiating a nervous system, thus providing suitable model systems to trace the origins of neurogenesis. Indeed corals, sea anemones, jellyfish and hydra contract, swim and catch their food thanks to sophisticated nervous systems that share with bilaterians common neurophysiological mechanisms. However, cnidarian neuroanatomies are quite diverse, and reconstructing the urcnidarian nervous system is ambiguous. At least a series of characters recognized in all classes appear plesiomorphic: (1) the three cell types that build cnidarian nervous systems (sensory-motor cells, ganglionic neurons and mechanosensory cells called nematocytes or cnidocytes); (2) an organization of nerve nets and nerve rings [those working as annular central nervous system (CNS)]; (3) a neuronal conduction via neurotransmitters; (4) a larval anterior sensory organ required for metamorphosis; (5) a persisting neurogenesis in adulthood. By contrast, the origin of the larval and adult neural stem cells differs between hydrozoans and other cnidarians; the sensory organs (ocelli, lens-eyes, statocysts) are present in medusae but absent in anthozoans; the electrical neuroid conduction is restricted to hydrozoans. Evo-devo approaches might help reconstruct the neurogenic status of the last common cnidarian ancestor. In fact, recent genomic analyses show that if most components of the postsynaptic density predate metazoan origin, the bilaterian neurogenic gene families originated later, in basal metazoans or as eumetazoan novelties. Striking examples are the ParaHox Gsx, Pax, Six, COUP-TF and Twist-type regulators, which seemingly exert neurogenic functions in cnidarians, including eye differentiation, and support the view of a two-step process in the emergence of neurogenesis.
Collapse
Affiliation(s)
- Brigitte Galliot
- Department of Genetics and Evolution, Faculty of Science, University of Geneva, Sciences III, 30 quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland.
| | | |
Collapse
|
156
|
Ohtaka-Maruyama C, Hirai S, Miwa A, Takahashi A, Okado H. The 5'-flanking region of the RP58 coding sequence shows prominent promoter activity in multipolar cells in the subventricular zone during corticogenesis. Neuroscience 2012; 201:67-84. [PMID: 22119643 DOI: 10.1016/j.neuroscience.2011.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Revised: 11/01/2011] [Accepted: 11/01/2011] [Indexed: 12/21/2022]
Abstract
Pyramidal neurons of the neocortex are produced from progenitor cells located in the neocortical ventricular zone (VZ) and subventricular zone (SVZ) during embryogenesis. RP58 is a transcriptional repressor that is strongly expressed in the developing brain and plays an essential role in corticogenesis. The expression of RP58 is strictly regulated in a time-dependent and spatially restricted manner. It is maximally expressed in E15-16 embryonic cerebral cortex, localized specifically to the cortical plate and SVZ of the neocortex, hippocampus, and parts of amygdala during brain development, and found in glutamatergic but not GABAergic neurons. Identification of the promoter activity underlying specific expression patterns provides important clues to their mechanisms of action. Here, we show that the RP58 gene promoter is activated prominently in multipolar migrating cells, the first in vivo analysis of RP58 promoter activity in the brain. The 5.3 kb 5'-flanking genomic DNA of the RP58 coding region demonstrates promoter activity in neurons both in vitro and in vivo. This promoter is highly responsive to the transcription factor neurogenin2 (Ngn2), which is a direct upstream activator of RP58 expression. Using in utero electroporation, we demonstrate that RP58 gene promoter activity is first detected in a subpopulation of pin-like VZ cells, then prominently activated in migrating multipolar cells in the multipolar cell accumulation zone (MAZ) located just above the VZ. In dissociated primary cultured cortical neurons, RP58 promoter activity mimics in vivo expression patterns from a molecular standpoint that RP58 is expressed in a fraction of Sox2-positive progenitor cells, Ngn2-positive neuronal committed cells, and Tuj1-positive young neurons, but not in Dlx2-positive GABAergic neurons. Finally, we show that Cre recombinase expression under the control of the RP58 gene promoter is a feasible tool for conditional gene switching in post-mitotic multipolar migrating young neurons in the developing cerebral cortex.
Collapse
Affiliation(s)
- C Ohtaka-Maruyama
- Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo 156-8506, Japan.
| | | | | | | | | |
Collapse
|
157
|
Méndez-Gómez HR, Vicario-Abejón C. The homeobox gene Gsx2 regulates the self-renewal and differentiation of neural stem cells and the cell fate of postnatal progenitors. PLoS One 2012; 7:e29799. [PMID: 22242181 PMCID: PMC3252334 DOI: 10.1371/journal.pone.0029799] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 12/05/2011] [Indexed: 01/17/2023] Open
Abstract
The Genetic screened homeobox 2 (Gsx2) transcription factor is required for the development of olfactory bulb (OB) and striatal neurons, and for the regional specification of the embryonic telencephalon. Although Gsx2 is expressed abundantly by progenitor cells in the ventral telencephalon, its precise function in the generation of neurons from neural stem cells (NSCs) is not clear. Similarly, the role of Gsx2 in regulating the self-renewal and multipotentiality of NSCs has been little explored. Using retroviral vectors to express Gsx2, we have studied the effect of Gsx2 on the growth of NSCs isolated from the OB and ganglionic eminences (GE), as well as its influence on the proliferation and cell fate of progenitors in the postnatal mouse OB. Expression of Gsx2 reduces proliferation and the self-renewal capacity of NSCs, without significantly affecting cell death. Furthermore, Gsx2 overexpression decreases the differentiation of NSCs into neurons and glia, and it maintains the cells that do not differentiate as cycling progenitors. These effects were stronger in GESCs than in OBSCs, indicating that the actions of Gsx2 are cell-dependent. In vivo, Gsx2 produces a decrease in the number of Pax6+ cells and doublecortin+ neuroblasts, and an increase in Olig2+ cells. In summary, our findings show that Gsx2 inhibits the ability of NSCs to proliferate and self-renew, as well as the capacity of NSC-derived progenitors to differentiate, suggesting that this transcription factor regulates the quiescent and undifferentiated state of NSCs and progenitors. Furthermore, our data indicate that Gsx2 negatively regulates neurogenesis from postnatal progenitor cells.
Collapse
Affiliation(s)
- Héctor R. Méndez-Gómez
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Carlos Vicario-Abejón
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- * E-mail:
| |
Collapse
|
158
|
Castro DS, Guillemot F. Old and new functions of proneural factors revealed by the genome-wide characterization of their transcriptional targets. Cell Cycle 2011; 10:4026-31. [PMID: 22101262 DOI: 10.4161/cc.10.23.18578] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In the developing vertebrate nervous system, bHLH proneural factors such as Ascl1 are known to play important regulatory roles at different stages of the neurogenic differentiation process. In spite of the wealth of information gathered on the cellular functions of proneural factors, little was known of the molecular basis for their activities, and in particular of the identity of their target genes. The development of genomic approaches is making possible the characterization of transcriptional programs at an unprecedented scale. Recently, we have used a combination of genomic location analysis by ChIP-on-chip and expression profiling in order to characterize the proneural transcription program regulated by Ascl1 in the ventral telencephalon of the mouse embryonic brain. Our results demonstrate that Ascl1 directly controls successive steps of neurogenesis and provide a molecular frame for previously described Ascl1 functions. In addition, we uncovered an important but previously unrecognized role for Ascl1 in promoting the proliferation of neural progenitors. Here we discuss our recent findings and review them in light of efforts from other laboratories to characterize the transcriptional programs downstream various proneural factors.
Collapse
|
159
|
The Wnt/beta-catenin asymmetry pathway patterns the atonal ortholog lin-32 to diversify cell fate in a Caenorhabditis elegans sensory lineage. J Neurosci 2011; 31:13281-91. [PMID: 21917811 DOI: 10.1523/jneurosci.6504-10.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Each sensory ray of the Caenorhabditis elegans male tail comprises three distinct neuroglial cell types. These three cells descend from a single progenitor, the ray precursor cell, through several rounds of asymmetric division called the ray sublineage. Ray development requires the conserved atonal-family bHLH gene lin-32, which specifies the ray neuroblast and promotes the differentiation of its progeny. However, the mechanisms that allocate specific cell fates among these progeny are unknown. Here we show that the distribution of LIN-32 during the ray sublineage is markedly asymmetric, localizing to anterior daughter cells in two successive cell divisions. The anterior-posterior patterning of LIN-32 expression and of differentiated ray neuroglial fates is brought about by the Wnt/β-catenin asymmetry pathway, including the Wnt ligand LIN-44, its receptor LIN-17, and downstream components LIT-1 (NLK), SYS-1 (β-catenin), and POP-1 (TCF). LIN-32 asymmetry itself has an important role in patterning ray cell fates, because the failure to silence lin-32 expression in posterior cells disrupts development of this branch of the ray sublineage. Together, our results illustrate a mechanism whereby the regulated function of a proneural-class gene in a single neural lineage can both specify a neural precursor and actively pattern the fates of its progeny. Moreover, they reveal a central role for the Wnt/β-catenin asymmetry pathway in patterning neural and glial fates in a simple sensory lineage.
Collapse
|
160
|
Zhang Y, Wheatley R, Fulkerson E, Tapp A, Estes PA. Mastermind mutations generate a unique constellation of midline cells within the Drosophila CNS. PLoS One 2011; 6:e26197. [PMID: 22046261 PMCID: PMC3203113 DOI: 10.1371/journal.pone.0026197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 09/22/2011] [Indexed: 02/05/2023] Open
Abstract
Background The Notch pathway functions repeatedly during the development of the central nervous system in metazoan organisms to control cell fate and regulate cell proliferation and asymmetric cell divisions. Within the Drosophila midline cell lineage, which bisects the two symmetrical halves of the central nervous system, Notch is required for initial cell specification and subsequent differentiation of many midline lineages. Methodology/Principal Findings Here, we provide the first description of the role of the Notch co-factor, mastermind, in the central nervous system midline of Drosophila. Overall, zygotic mastermind mutations cause an increase in midline cell number and decrease in midline cell diversity. Compared to mutations in other components of the Notch signaling pathway, such as Notch itself and Delta, zygotic mutations in mastermind cause the production of a unique constellation of midline cell types. The major difference is that midline glia form normally in zygotic mastermind mutants, but not in Notch and Delta mutants. Moreover, during late embryogenesis, extra anterior midline glia survive in zygotic mastermind mutants compared to wild type embryos. Conclusions/Significance This is an example of a mutation in a signaling pathway cofactor producing a distinct central nervous system phenotype compared to mutations in major components of the pathway.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Genetics, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Randi Wheatley
- Department of Genetics, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Eric Fulkerson
- Department of Genetics, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Amanda Tapp
- Department of Genetics, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Patricia A. Estes
- Department of Genetics, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
161
|
Abstract
Members of the basic helix-loop-helix (bHLH) family of transcription factors have been shown to control critical aspects of development in many tissues. To identify bHLH genes that might regulate specific aspects of retinal cell development, we investigated the expression of bHLH genes in single, developing mouse retinal cells, with particular emphasis on the NeuroD family. Two of these factors, NeuroD2 and NeuroD6/NEX, had not been previously reported as expressed in the retina. A series of loss- and gain-of-function experiments was performed, which suggested that NeuroD genes have both similarities and differences in their activities. Notably, misexpression of NeuroD genes can direct amacrine cell processes to two to three specific sublaminae in the inner plexiform layer. This effect is specific to cell type and NeuroD gene, as the AII amacrine cell type is refractory to the effects of NeuroD1 and NeuroD6, but uniquely sensitive to the effect of NeuroD2 on neurite targeting. Additionally, NeuroD2 is endogenously expressed in AII amacrine cells, among others, and loss of NeuroD2 function results in a partial loss of AII amacrine cells. The effects of misexpressing NeuroD genes on retinal cell fate determination also suggested shared and divergent functions. Remarkably, NeuroD2 misexpression induced ganglion cell production even after the normal developmental window of ganglion cell genesis. Together, these data suggest that members of the NeuroD family are important for neuronal cell type identity and may be involved in several cell type-specific aspects of retinal development, including fate determination, differentiation, morphological development, and circuit formation.
Collapse
|
162
|
Stagg SB, Guardiola AR, Crews ST. Dual role for Drosophila lethal of scute in CNS midline precursor formation and dopaminergic neuron and motoneuron cell fate. Development 2011; 138:2171-83. [PMID: 21558367 DOI: 10.1242/dev.056507] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Dopaminergic neurons play important behavioral roles in locomotion, reward and aggression. The Drosophila H-cell is a dopaminergic neuron that resides at the midline of the ventral nerve cord. Both the H-cell and the glutamatergic H-cell sib are the asymmetric progeny of the MP3 midline precursor cell. H-cell sib cell fate is dependent on Notch signaling, whereas H-cell fate is Notch independent. Genetic analysis of genes that could potentially regulate H-cell fate revealed that the lethal of scute [l(1)sc], tailup and SoxNeuro transcription factor genes act together to control H-cell gene expression. The l(1)sc bHLH gene is required for all H-cell-specific gene transcription, whereas tailup acts in parallel to l(1)sc and controls genes involved in dopamine metabolism. SoxNeuro functions downstream of l(1)sc and controls expression of a peptide neurotransmitter receptor gene. The role of l(1)sc may be more widespread, as a l(1)sc mutant shows reductions in gene expression in non-midline dopaminergic neurons. In addition, l(1)sc mutant embryos possess defects in the formation of MP4-6 midline precursor and the median neuroblast stem cell, revealing a proneural role for l(1)sc in midline cells. The Notch-dependent progeny of MP4-6 are the mVUM motoneurons, and these cells also require l(1)sc for mVUM-specific gene expression. Thus, l(1)sc plays an important regulatory role in both neurogenesis and specifying dopaminergic neuron and motoneuron identities.
Collapse
Affiliation(s)
- Stephanie B Stagg
- Curriculum in Neurobiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | | | | |
Collapse
|
163
|
Smad6 promotes neuronal differentiation in the intermediate zone of the dorsal neural tube by inhibition of the Wnt/beta-catenin pathway. Proc Natl Acad Sci U S A 2011; 108:12119-24. [PMID: 21730158 DOI: 10.1073/pnas.1100160108] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Proliferation of the neural/neuronal progenitor cells (NPCs) at the ventricular zone of the dorsal spinal cord requires the stimuli of Wnt and bone morphogenic protein (BMP). However, how these two signaling pathways are regulated to initiate differentiation in the NPCs as they enter the intermediate zone is not known. Here, we show that Smad6, a negative regulator of BMP signaling, is expressed in the intermediate zone of the chick dorsal spinal cord. Knockdown experiments show that Smad6 is required for promoting NPCs to exit the cell cycle and differentiate into neurons. Although we find that Smad6 inhibits BMP signaling, as expected, we also find that Smad6 unexpectedly inhibits the Wnt/β-catenin pathway. The inhibition of the Wnt/β-catenin pathway by Smad6 is independent of its effect on the BMP pathway. Rather, Smad6 through its N-terminal domain and link region enhances the interaction of C-terminal binding protein with the β-catenin/T cell factor (TCF) complex and the TCF-binding element to inhibit β-catenin-mediated transcriptional activation. Our study provides evidence that transition of NPCs from a proliferative state to a differentiating state is controlled by the dual inhibitory role of Smad6 to both BMP and Wnt signaling at the level of transcription.
Collapse
|
164
|
Hasi M, Soileau B, Sebold C, Hill A, Hale DE, O'Donnell L, Cody JD. The role of the TCF4 gene in the phenotype of individuals with 18q segmental deletions. Hum Genet 2011; 130:777-87. [PMID: 21671075 DOI: 10.1007/s00439-011-1020-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 05/25/2011] [Indexed: 11/26/2022]
Abstract
The goal of this study is to define the effects of TCF4 hemizygosity in the context of a larger segmental deletion of chromosome 18q. Our cohort included 37 individuals with deletions of 18q. Twenty-seven had deletions including TCF4 (TCF4 (+/-)); nine had deletions that did not include TCF4 (TCF4 (+/+)); and one individual had a microdeletion that included only the TCF4 gene. We compared phenotypic data from the participants' medical records, survey responses, and in-person evaluations. Features unique to the TCF4 (+/-) individuals included abnormal corpus callosum, short neck, small penis, accessory and wide-spaced nipples, broad or clubbed fingers, and sacral dimple. The developmental data revealed that TCF4 (+/+) individuals were only moderately developmentally delayed while TCF4 (+/-) individuals failed to reach developmental milestones beyond those typically acquired by 12 months of age. TCF4 hemizygosity also conferred an increased risk of early death principally due to aspiration-related complications. Hemizygosity for TCF4 confers a significant impact primarily with regard to cognitive and motor development, resulting in a very different prognosis for individuals hemizygous for TCF4 when compared to individuals hemizygous for other regions of distal 18q.
Collapse
Affiliation(s)
- Minire Hasi
- Department of Pediatrics, UT Health Science Center, 7703 Floyd Curl Dive, San Antonio, TX 78229, USA
| | | | | | | | | | | | | |
Collapse
|
165
|
Hämmerle B, Ulin E, Guimera J, Becker W, Guillemot F, Tejedor FJ. Transient expression of Mnb/Dyrk1a couples cell cycle exit and differentiation of neuronal precursors by inducing p27KIP1 expression and suppressing NOTCH signaling. Development 2011; 138:2543-54. [PMID: 21610031 PMCID: PMC3100710 DOI: 10.1242/dev.066167] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2011] [Indexed: 11/20/2022]
Abstract
The decision of a neural precursor to stop dividing and begin its terminal differentiation at the correct place, and at the right time, is a crucial step in the generation of cell diversity in the nervous system. Here, we show that the Down's syndrome candidate gene (Mnb/Dyrk1a) is transiently expressed in prospective neurons of vertebrate CNS neuroepithelia. The gain of function (GoF) of Mnb/Dyrk1a induced proliferation arrest. Conversely, its loss of function (LoF) caused over proliferation and cell death. We found that MNB/DYRK1A is both necessary and sufficient to upregulate, at transcriptional level, the expression of the cyclin-dependent kinase inhibitor p27(KIP1) in the embryonic chick spinal cord and mouse telencephalon, supporting a regulatory role for MNB/DYRK1A in cell cycle exit of vertebrate CNS neurons. All these actions required the kinase activity of MNB/DYRK1A. We also observed that MNB/DYRK1A is co-expressed with the NOTCH ligand Delta1 in single neuronal precursors. Furthermore, we found that MNB/DYRK1A suppressed NOTCH signaling, counteracted the pro-proliferative action of the NOTCH intracellular domain (NICD), stimulated Delta1 expression and was required for the neuronal differentiation induced by the decrease in NOTCH signaling. Nevertheless, although Mnb/Dyrk1a GoF led to extensive withdrawal of neuronal precursors from the cell cycle, it was insufficient to elicit their differentiation. Remarkably, a transient (ON/OFF) Mnb/Dyrk1a GoF efficiently induced neuronal differentiation. We propose that the transient expression of MNB/DYRK1A in neuronal precursors acts as a binary switch, coupling the end of proliferation and the initiation of neuronal differentiation by upregulating p27KIP1 expression and suppressing NOTCH signaling.
Collapse
Affiliation(s)
- Barbara Hämmerle
- Instituto de Neurociencias, CSIC and Universidad Miguel Hernandez, Alicante 03550, Spain
| | - Edgar Ulin
- Instituto de Neurociencias, CSIC and Universidad Miguel Hernandez, Alicante 03550, Spain
| | - Jordi Guimera
- HMGU-Institute of Developmental Genetics, 85764 Munich, Germany
| | - Walter Becker
- Institute of Pharmacology and Toxicology, RWTH Aachen University, 52057 Aachen, Germany
| | - François Guillemot
- Division of Molecular Neurobiology, National Institute for Medical Research, London NW7 1AA, UK
| | - Francisco J. Tejedor
- Instituto de Neurociencias, CSIC and Universidad Miguel Hernandez, Alicante 03550, Spain
| |
Collapse
|
166
|
Matsumoto I, Ohmoto M, Narukawa M, Yoshihara Y, Abe K. Skn-1a (Pou2f3) specifies taste receptor cell lineage. Nat Neurosci 2011; 14:685-7. [PMID: 21572433 DOI: 10.1038/nn.2820] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 03/30/2011] [Indexed: 11/09/2022]
Abstract
Functional diversification of taste cells is crucial for proper discrimination of taste qualities. We found the homeodomain protein Skn-1a (Pou2f3) to be expressed in sweet, umami and bitter taste cells. Skn-1a-deficient mice lacked electrophysiological and behavioral responses to sweet, umami and bitter tastes, as a result of a complete absence of sweet, umami and bitter cells and the concomitant expansion of sour cells. Skn-1a is critical for generating and balancing the diverse composition of taste cells.
Collapse
Affiliation(s)
- Ichiro Matsumoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
167
|
König N, Åkesson E, Telorack M, Vasylovska S, Ngamjariyawat A, Sundström E, Oster A, Trolle C, Berens C, Aldskogius H, Seiger Å, Kozlova EN. Forced Runx1 expression in human neural stem/progenitor cells transplanted to the rat dorsal root ganglion cavity results in extensive axonal growth specifically from spinal cord-derived neurospheres. Stem Cells Dev 2011; 20:1847-57. [PMID: 21322790 DOI: 10.1089/scd.2010.0555] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cell replacement therapy holds great promise for treating a wide range of human disorders. However, ensuring the predictable differentiation of transplanted stem cells, eliminating their risk of tumor formation, and generating fully functional cells after transplantation remain major challenges in regenerative medicine. Here, we explore the potential of human neural stem/progenitor cells isolated from the embryonic forebrain (hfNSPCs) or the spinal cord (hscNSPCs) to differentiate to projection neurons when transplanted into the dorsal root ganglion cavity of adult recipient rats. To stimulate axonal growth, we transfected hfNSPC- and hscNSPC-derived neurospheres, prior to their transplantation, with a Tet-Off Runx1-overexpressing plasmid to maintain Runx1 expression in vivo after transplantation. Although pronounced cell differentiation was found in the Runx1-expressing transplants from both cell sources, we observed extensive, long-distance growth of axons exclusively from hscNSPC-derived transplants. These axons ultimately reached the dorsal root transitional zone, the boundary separating peripheral and central nervous systems. Our data show that hscNSPCs have the potential to differentiate to projection neurons with long-distance axonal outgrowth and that Runx1 overexpression is a useful approach to induce such outgrowth in specific sources of NSPCs.
Collapse
Affiliation(s)
- Niclas König
- Department of Neuroscience, Neuroanatomy, Uppsala University Biomedical Center, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Merchán P, Bardet SM, Puelles L, Ferran JL. Comparison of Pretectal Genoarchitectonic Pattern between Quail and Chicken Embryos. Front Neuroanat 2011; 5:23. [PMID: 21503155 PMCID: PMC3074437 DOI: 10.3389/fnana.2011.00023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 03/23/2011] [Indexed: 01/08/2023] Open
Abstract
Regionalization of the central nervous system is controlled by local networks of transcription factors that establish and maintain the identities of neuroepithelial progenitor areas and their neuronal derivatives. The conserved cerebral Bauplan of vertebrates must result essentially from conserved patterns of developmentally expressed transcription factors. We have previously produced detailed molecular maps for the alar plate of prosomere 1 (the pretectal region) in chicken (Ferran et al., 2007, 2008, 2009). Here we compare the early molecular signature of the pretectum of two closely related avian species of the family Phasianidae, Coturnix japonica (Japanese quail) and Gallus gallus (chicken), aiming to test conservation of the described pattern at a microevolutionary level. We studied the developmental pretectal expression of Bhlhb4, Dbx1, Ebf1, Gata3, Gbx2, Lim1, Meis1, Meis2, Pax3, Pax6, Six3, Tal2, and Tcf7l2 (Tcf4) mRNA, using in situ hybridization, and PAX7 immunohistochemistry. The genoarchitectonic profile of individual pretectal domains and strata was produced, using comparable section planes. Remarkable conservation of the combinatorial genoarchitectonic code was observed, fundamented in a tripartite anteroposterior subdivision. However, we found that at corresponding developmental stages the pretectal region of G. gallus was approximately 30% larger than that of C. japonica, but seemed relatively less mature. Altogether, our results on a conserved genoarchitectonic pattern highlight the importance of early developmental gene networks that causally underlie the production of homologous derivatives in these two evolutionarily closely related species. The shared patterns probably apply to sauropsids in general, as well as to more distantly related vertebrate species.
Collapse
Affiliation(s)
- Paloma Merchán
- Department of Human Anatomy and Psychobiology, Centre for Biomedical Research on Rare Diseases (CIBERER 736), School of Medicine, University of MurciaMurcia, Spain
| | - Sylvia M. Bardet
- Unité de Génétique Moléculaire Animale, INRA UMR 1061, University of LimogesLimoges, France
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, Centre for Biomedical Research on Rare Diseases (CIBERER 736), School of Medicine, University of MurciaMurcia, Spain
| | - José L. Ferran
- Department of Human Anatomy and Psychobiology, Centre for Biomedical Research on Rare Diseases (CIBERER 736), School of Medicine, University of MurciaMurcia, Spain
| |
Collapse
|
169
|
Wnt5a is a transcriptional target of Dlx homeogenes and promotes differentiation of interneuron progenitors in vitro and in vivo. J Neurosci 2011; 31:2675-87. [PMID: 21325536 DOI: 10.1523/jneurosci.3110-10.2011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During brain development, neurogenesis, migration, and differentiation of neural progenitor cells are regulated by an interplay between intrinsic genetic programs and extrinsic cues. The Dlx homeogene transcription factors have been proposed to directly control the genesis and maturation of GABAergic interneurons of the olfactory bulb (OB), subpallium, and cortex. Here we provide evidence that Dlx genes promote differentiation of olfactory interneurons via the signaling molecule Wnt5a. Dlx2 and Dlx5 interact with homeodomain binding sequences within the Wnt5a locus and activate its transcription. Exogenously provided Wnt5a promotes GABAergic differentiation in dissociated OB neurons and in organ-type brain cultures. Finally, we show that the Dlx-mutant environment is unfavorable for GABA differentiation, in vivo and in vitro. We conclude that Dlx genes favor interneuron differentiation also in a non-cell-autonomous fashion, via expression of Wnt5a.
Collapse
|
170
|
|
171
|
Hasegawa E, Kitada Y, Kaido M, Takayama R, Awasaki T, Tabata T, Sato M. Concentric zones, cell migration and neuronal circuits in the Drosophila visual center. Development 2011; 138:983-93. [DOI: 10.1242/dev.058370] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Drosophila optic lobe comprises a wide variety of neurons, which form laminar neuropiles with columnar units and topographic projections from the retina. The Drosophila optic lobe shares many structural characteristics with mammalian visual systems. However, little is known about the developmental mechanisms that produce neuronal diversity and organize the circuits in the primary region of the optic lobe, the medulla. Here, we describe the key features of the developing medulla and report novel phenomena that could accelerate our understanding of the Drosophila visual system. The identities of medulla neurons are pre-determined in the larval medulla primordium, which is subdivided into concentric zones characterized by the expression of four transcription factors: Drifter, Runt, Homothorax and Brain-specific homeobox (Bsh). The expression pattern of these factors correlates with the order of neuron production. Once the concentric zones are specified, the distribution of medulla neurons changes rapidly. Each type of medulla neuron exhibits an extensive but defined pattern of migration during pupal development. The results of clonal analysis suggest homothorax is required to specify the neuronal type by regulating various targets including Bsh and cell-adhesion molecules such as N-cadherin, while drifter regulates a subset of morphological features of Drifter-positive neurons. Thus, genes that show the concentric zones may form a genetic hierarchy to establish neuronal circuits in the medulla.
Collapse
Affiliation(s)
- Eri Hasegawa
- Frontier Science Organization, Kanazawa University, 13-1 Takaramachi Kanazawa-shi, Ishikawa 920-8641, Japan
| | - Yusuke Kitada
- Frontier Science Organization, Kanazawa University, 13-1 Takaramachi Kanazawa-shi, Ishikawa 920-8641, Japan
- Graduate Program in Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Masako Kaido
- Frontier Science Organization, Kanazawa University, 13-1 Takaramachi Kanazawa-shi, Ishikawa 920-8641, Japan
| | - Rie Takayama
- Frontier Science Organization, Kanazawa University, 13-1 Takaramachi Kanazawa-shi, Ishikawa 920-8641, Japan
| | - Takeshi Awasaki
- University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Tetsuya Tabata
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Makoto Sato
- Frontier Science Organization, Kanazawa University, 13-1 Takaramachi Kanazawa-shi, Ishikawa 920-8641, Japan
- PRESTO, JST, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
172
|
Fischer T, Faus-Kessler T, Welzl G, Simeone A, Wurst W, Prakash N. Fgf15-mediated control of neurogenic and proneural gene expression regulates dorsal midbrain neurogenesis. Dev Biol 2011; 350:496-510. [DOI: 10.1016/j.ydbio.2010.12.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 11/14/2010] [Accepted: 12/13/2010] [Indexed: 12/16/2022]
|
173
|
Shan ZY, Liu F, Lei L, Li QM, Jin LH, Wu YS, Li X, Shen JL. Generation of Dorsal Spinal Cord GABAergic Neurons from Mouse Embryonic Stem Cells. Cell Reprogram 2011; 13:85-91. [DOI: 10.1089/cell.2010.0055] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Zhi-yan Shan
- Department of Histology and Embryology, Harbin Medical University, Harbin, People's Republic of China
| | - Feng Liu
- Department of Breast Surgery, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Lei Lei
- Department of Histology and Embryology, Harbin Medical University, Harbin, People's Republic of China
| | - Qiu-ming Li
- Department of Histology and Embryology, Harbin Medical University, Harbin, People's Republic of China
| | - Lian-hong Jin
- Department of Histology and Embryology, Harbin Medical University, Harbin, People's Republic of China
| | - Yan-shuang Wu
- Department of Histology and Embryology, Harbin Medical University, Harbin, People's Republic of China
| | - Xue Li
- Department of Histology and Embryology, Harbin Medical University, Harbin, People's Republic of China
| | - Jing-ling Shen
- Department of Histology and Embryology, Harbin Medical University, Harbin, People's Republic of China
| |
Collapse
|
174
|
Nat R, Dechant G. Milestones of directed differentiation of mouse and human embryonic stem cells into telencephalic neurons based on neural development in vivo. Stem Cells Dev 2011; 20:947-58. [PMID: 21166522 DOI: 10.1089/scd.2010.0417] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Understanding the normal development of individual neural subtypes provides an essential framework for the design of rational approaches to embryonic stem cell differentiation for in vitro studies and cell replacement therapies. Of particular interest and a particular challenge are the cells that build-up the telencephalon. Recent research has unraveled key developmental mechanisms contributing to the generation of specific telencephalic cells. We focus on morphogens and transcription factors known to regulate distinct developmental processes. These include early anterior/posterior patterning, dorsal/ventral patterning, and generation of progenitor domains and neuronal specification into major classes of telencephalic cells: glutamatergic projection neurons, different subtypes of γ-aminobutyric acid-ergic interneurons and projection neurons, as well as cholinergic interneurons and projection neurons. Based on a comparison with in vivo telencephalic neurogenesis, we propose that the specific combinations of transcription factors expressed during development can serve as milestones for the in vitro differentiation of embryonic stem cells toward specific telencephalic neurons.
Collapse
Affiliation(s)
- Roxana Nat
- Department of Cellular and Molecular Medicine, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania.
| | | |
Collapse
|
175
|
Fritzsch B, Jahan I, Pan N, Kersigo J, Duncan J, Kopecky B. Dissecting the molecular basis of organ of Corti development: Where are we now? Hear Res 2011; 276:16-26. [PMID: 21256948 DOI: 10.1016/j.heares.2011.01.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 01/11/2011] [Accepted: 01/13/2011] [Indexed: 11/28/2022]
Abstract
This review summarizes recent progress in our understanding of the molecular basis of cochlear duct growth, specification of the organ of Corti, and differentiation of the different types of hair cells. Studies of multiple mutations suggest that developing hair cells are involved in stretching the organ of Corti through convergent extension movements. However, Atoh1 null mutants have only undifferentiated and dying organ of Corti precursors but show a near normal extension of the cochlear duct, implying that organ of Corti precursor cells can equally drive this process. Some factors influence cochlear duct growth by regulating the cell cycle and proliferation. Shortened cell cycle and premature cell cycle exit can lead to a shorter organ of Corti with multiple rows of hair cells (e.g., Foxg1 null mice). Other genes affect the initial formation of a cochlear duct with or without affecting the organ of Corti. Such observations are consistent with evolutionary data that suggest some developmental uncoupling of cochlear duct from organ of Corti formation. Positioning the organ of Corti requires multiple genes expressed in the organ of Corti and the flanking region. Several candidate factors have emerged but how they cooperate to specify the organ of Corti and the topology of hair cells remains unclear. Atoh1 is required for differentiation of all hair cells, but regulation of inner versus outer hair cell differentiation is still unidentified. In summary, the emerging molecular complexity of organ of Corti development demands further study before a rational approach towards regeneration of unique types of hair cells in specific positions is possible.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Biology, College of Liberal Arts and Sciences, 143 BB, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | | | | | |
Collapse
|
176
|
The Gata3 transcription factor is required for the survival of embryonic and adult sympathetic neurons. J Neurosci 2010; 30:10833-43. [PMID: 20702712 DOI: 10.1523/jneurosci.0175-10.2010] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The transcription factor Gata3 is essential for the development of sympathetic neurons and adrenal chromaffin cells. As Gata3 expression is maintained up to the adult stage, we addressed its function in differentiated sympathoadrenal cells at embryonic and adult stages by conditional Gata3 elimination. Inactivation of Gata3 in embryonic DBH-expressing neurons elicits a strong reduction in neuron numbers due to apoptotic cell death and reduced proliferation. No selective effect on noradrenergic gene expression (TH and DBH) was observed. Interestingly, Gata3 elimination in DBH-expressing neurons of adult animals also results in a virtually complete loss of sympathetic neurons. In the Gata3-deficient population, the expression of anti-apoptotic genes (Bcl-2, Bcl-xL, and NFkappaB) is diminished, whereas the expression of pro-apoptotic genes (Bik, Bok, and Bmf) was increased. The expression of noradrenergic genes (TH and DBH) is not affected. These results demonstrate that Gata3 is continuously required for maintaining survival but not differentiation in the sympathetic neuron lineage up to mature neurons of adult animals.
Collapse
|
177
|
Fritzsch B, Eberl DF, Beisel KW. The role of bHLH genes in ear development and evolution: revisiting a 10-year-old hypothesis. Cell Mol Life Sci 2010; 67:3089-99. [PMID: 20495996 PMCID: PMC3665285 DOI: 10.1007/s00018-010-0403-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 04/12/2010] [Accepted: 05/06/2010] [Indexed: 10/19/2022]
Abstract
In mouse ear development, two bHLH genes, Atoh1 and Neurog1, are essential for hair cell and sensory neuron differentiation. Evolution converted the original simple atonal-dependent neurosensory cell formation program of diploblasts into the derived developmental program of vertebrates that generates two neurosensory cell types, the sensory neuron and the sensory hair cell. This transformation was achieved through gene multiplication in ancestral triploblasts resulting in the expansion of the atonal bHLH gene family. Novel genes of the Neurogenin and NeuroD families are upregulated prior to the expression of Atoh1. Recent data suggest that NeuroD and Neurogenin were lost or their function in neuronal specification reduced in flies, thus changing our perception of the evolution of these genes. This sequence of expression changes was accompanied by modification of the E-box binding sites of these genes to regulate different downstream genes and to form inhibitory loops among each other, thus fine-tuning expression transitions.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Biology, College of Liberal Arts and Sciences, University of Iowa, 143 BB, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|
178
|
Méndez-Gómez HR, Vergaño-Vera E, Abad JL, Bulfone A, Moratalla R, de Pablo F, Vicario-Abejón C. The T-box brain 1 (Tbr1) transcription factor inhibits astrocyte formation in the olfactory bulb and regulates neural stem cell fate. Mol Cell Neurosci 2010; 46:108-21. [PMID: 20807572 DOI: 10.1016/j.mcn.2010.08.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 08/04/2010] [Accepted: 08/22/2010] [Indexed: 11/29/2022] Open
Abstract
The T-box brain 1 (Tbr1) gene encodes a transcription factor necessary for the maintenance and/or differentiation of glutamatergic cells in the olfactory bulb (OB) and cortex, although its precise function in the development of glutamatergic neurons is not known. Furthermore, Tbr1 has not been reported to regulate the formation of glial cells. We show that Tbr1 is expressed during the initial stages in the generation of glutamatergic mitral neurons from dividing progenitors in the E12.5 mouse OB. Retroviral-mediated overexpression of Tbr1 in cultured embryonic and adult OB stem cells (OBSC) produces a marked increase in the number of TuJ1(+) neurons (including VGLUT1(+) glutamatergic and GABA(+) neurons) and O4(+) oligodendrocytes. Moreover, transduction of Tbr1 inhibits the production of GFAP(+) astrocytes from both cultured OBSC and dividing progenitor cells in vivo. These results show that the expression of Tbr1 in neural stem and progenitor cells prevents them from following an astrocyte fate during OB development. Our findings suggest that the transduction of Tbr1 into neural stem cells could be useful to increase the production of neurons and oligodendrocytes in studies of neuroregeneration.
Collapse
Affiliation(s)
- Héctor R Méndez-Gómez
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
179
|
Borello U, Pierani A. Patterning the cerebral cortex: traveling with morphogens. Curr Opin Genet Dev 2010; 20:408-15. [DOI: 10.1016/j.gde.2010.05.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 05/03/2010] [Accepted: 05/05/2010] [Indexed: 10/19/2022]
|
180
|
Szarek E, Cheah PS, Schwartz J, Thomas P. Molecular genetics of the developing neuroendocrine hypothalamus. Mol Cell Endocrinol 2010; 323:115-23. [PMID: 20385202 DOI: 10.1016/j.mce.2010.04.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Formation of the mammalian endocrine system and neuroendocrine organs involves complex regulatory networks resulting in a highly specialized cell system able to secrete a diverse array of peptide hormones. The hypothalamus is located in the mediobasal region of the brain and acts as a gateway between the endocrine and nervous systems. From an endocrinology perspective, the parvicellular neurons of the hypothalamus are of particular interest as they function as a control centre for several critical physiological processes including growth, metabolism and reproduction by regulating hormonal signaling from target cognate cell types in the anterior pituitary. Delineating the genetic program that controls hypothalamic development is essential for complete understanding of parvicellular neuronal function and the etiology of congenital disorders that result from hypothalamic-pituitary axis dysfunction. In recent years, studies have shed light on the interactions between signaling molecules and activation of transcription factors that regulate hypothalamic cell fate commitment and terminal differentiation. The aim of this review is to summarize the recent molecular and genetic findings that have advanced our understanding of the emergence of the known important hypophysiotropic signaling molecules in the hypothalamus. We have focused on reviewing the literature that provides evidence of the dependence on expression of specific genes for the normal development and function of the cells that secrete these neuroendocrine factors, as well as studies of the elaboration of the spatial or temporal patterns of changes in gene expression that drive this development.
Collapse
Affiliation(s)
- Eva Szarek
- Discipline of Physiology, School of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, Australia
| | | | | | | |
Collapse
|
181
|
Juliandi B, Abematsu M, Nakashima K. Epigenetic regulation in neural stem cell differentiation. Dev Growth Differ 2010; 52:493-504. [DOI: 10.1111/j.1440-169x.2010.01175.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
182
|
Henrique D, Bally-Cuif L. A cross-disciplinary approach to understanding neural stem cells in development and disease. Development 2010; 137:1933-8. [PMID: 20501588 DOI: 10.1242/dev.052621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Company of Biologists recently launched a new series of workshops aimed at bringing together scientists with different backgrounds to discuss cutting edge research in emerging and cross-disciplinary areas of biology. The first workshop was held at Wilton Park, Sussex, UK, and the chosen theme was 'Neural Stem Cells in Development and Disease', which is indeed a hot topic, not only because of the potential use of neural stem cells in cell replacement therapies to treat neurodegenerative diseases, but also because alterations in their behaviour can, in certain cases, lie at the origin of brain tumours and other diseases.
Collapse
Affiliation(s)
- Domingos Henrique
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal.
| | | |
Collapse
|
183
|
Conte I, Marco-Ferreres R, Beccari L, Cisneros E, Ruiz JM, Tabanera N, Bovolenta P. Proper differentiation of photoreceptors and amacrine cells depends on a regulatory loop between NeuroD and Six6. Development 2010; 137:2307-17. [PMID: 20534668 DOI: 10.1242/dev.045294] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Timely generation of distinct neural cell types in appropriate numbers is fundamental for the generation of a functional retina. In vertebrates, the transcription factor Six6 is initially expressed in multipotent retina progenitors and then becomes restricted to differentiated retinal ganglion and amacrine cells. How Six6 expression in the retina is controlled and what are its precise functions are still unclear. To address this issue, we used bioinformatic searches and transgenic approaches in medaka fish (Oryzias latipes) to characterise highly conserved regulatory enhancers responsible for Six6 expression. One of the enhancers drove gene expression in the differentiating and adult retina. A search for transcription factor binding sites, together with luciferase, ChIP assays and gain-of-function studies, indicated that NeuroD, a bHLH transcription factor, directly binds an 'E-box' sequence present in this enhancer and specifically regulates Six6 expression in the retina. NeuroD-induced Six6 overexpression in medaka embryos promoted unorganized retinal progenitor proliferation and, most notably, impaired photoreceptor differentiation, with no apparent changes in other retinal cell types. Conversely, Six6 gain- and loss-of-function changed NeuroD expression levels and altered the expression of the photoreceptor differentiation marker Rhodopsin. In addition, knockdown of Six6 interfered with amacrine cell generation. Together, these results indicate that Six6 and NeuroD control the expression of each other and their functions coordinate amacrine cell generation and photoreceptor terminal differentiation.
Collapse
Affiliation(s)
- Ivan Conte
- Instituto Cajal, CSIC and CIBER de Enfermedades Raras, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
184
|
Ladher RK, O'Neill P, Begbie J. From shared lineage to distinct functions: the development of the inner ear and epibranchial placodes. Development 2010; 137:1777-85. [PMID: 20460364 DOI: 10.1242/dev.040055] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The inner ear and the epibranchial ganglia constitute much of the sensory system in the caudal vertebrate head. The inner ear consists of mechanosensory hair cells, their neurons, and structures necessary for sound and balance sensation. The epibranchial ganglia are knots of neurons that innervate and relay sensory signals from several visceral organs and the taste buds. Their development was once thought to be independent, in line with their independent functions. However, recent studies indicate that both systems arise from a morphologically distinct common precursor domain: the posterior placodal area. This review summarises recent studies into the induction, morphogenesis and innervation of these systems and discusses lineage restriction and cell specification in the context of their common origin.
Collapse
Affiliation(s)
- Raj K Ladher
- RIKEN Center for Developmental Biology, Chuoku, Kobe 650-0047, Japan.
| | | | | |
Collapse
|
185
|
Jahan I, Kersigo J, Pan N, Fritzsch B. Neurod1 regulates survival and formation of connections in mouse ear and brain. Cell Tissue Res 2010; 341:95-110. [PMID: 20512592 DOI: 10.1007/s00441-010-0984-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 04/15/2010] [Indexed: 12/11/2022]
Abstract
The developing sensory neurons of the mammalian ear require two sequentially activated bHLH genes, Neurog1 and Neurod1, for their development. Neurons never develop in Neurog1 null mice, and most neurons die in Neurod1 null mutants, a gene upregulated by Neurog1. The surviving neurons of Neurod1 null mice are incompletely characterized in postnatal mice because of the early lethality of mutants and the possible compromising effect of the absence of insulin on peripheral neuropathies. Using Tg(Pax2-cre), we have generated a conditional deletion of floxed Neurod1 for the ear; this mouse is viable and allows us to investigate ear innervation defects of Neurod1 absence only in the ear. We have compared the defects in embryos and show an ear phenotype in conditional Neurod1 null mice comparable with the systemic Neurod1 null mouse. By studying postnatal animals, we show that Neurod1 not only is necessary for the survival of most spiral and many vestibular neurons, but is also essential for a segregated central projection of vestibular and cochlear afferents. In the absence of Neurod1 in the ear, vestibular and cochlear afferents enter the cochlear nucleus as a single mixed nerve. Neurites coming from vestibular and cochlear sensory epithelia project centrally to both cochlear and vestibular nuclei, in addition to their designated target projections. The peripheral innervation of the remaining sensory neurons is disorganized and shows collaterals of single neurons projecting to multiple endorgans, displaying no tonotopic organization of the organ of Corti or the cochlear nucleus. Pending elucidation of the molecular details for these Neurod1 functions, these data demonstrate that Neurod1 is not only a major factor for the survival of neurons but is crucial for the development of normal ear connections, both in the ear and in the central nervous system.
Collapse
Affiliation(s)
- Israt Jahan
- Department of Biology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
186
|
Heinrich C, Blum R, Gascón S, Masserdotti G, Tripathi P, Sánchez R, Tiedt S, Schroeder T, Götz M, Berninger B. Directing astroglia from the cerebral cortex into subtype specific functional neurons. PLoS Biol 2010; 8:e1000373. [PMID: 20502524 PMCID: PMC2872647 DOI: 10.1371/journal.pbio.1000373] [Citation(s) in RCA: 375] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 04/12/2010] [Indexed: 02/06/2023] Open
Abstract
Forced expression of single defined transcription factors can selectively and stably convert cultured astroglia into synapse-forming excitatory and inhibitory neurons. Astroglia from the postnatal cerebral cortex can be reprogrammed in vitro to generate neurons following forced expression of neurogenic transcription factors, thus opening new avenues towards a potential use of endogenous astroglia for brain repair. However, in previous attempts astroglia-derived neurons failed to establish functional synapses, a severe limitation towards functional neurogenesis. It remained therefore also unknown whether neurons derived from reprogrammed astroglia could be directed towards distinct neuronal subtype identities by selective expression of distinct neurogenic fate determinants. Here we show that strong and persistent expression of neurogenic fate determinants driven by silencing-resistant retroviral vectors instructs astroglia from the postnatal cortex in vitro to mature into fully functional, synapse-forming neurons. Importantly, the neurotransmitter fate choice of astroglia-derived neurons can be controlled by selective expression of distinct neurogenic transcription factors: forced expression of the dorsal telencephalic fate determinant neurogenin-2 (Neurog2) directs cortical astroglia to generate synapse-forming glutamatergic neurons; in contrast, the ventral telencephalic fate determinant Dlx2 induces a GABAergic identity, although the overall efficiency of Dlx2-mediated neuronal reprogramming is much lower compared to Neurog2, suggesting that cortical astroglia possess a higher competence to respond to the dorsal telencephalic fate determinant. Interestingly, however, reprogramming of astroglia towards the generation of GABAergic neurons was greatly facilitated when the astroglial cells were first expanded as neurosphere cells prior to transduction with Dlx2. Importantly, this approach of expansion under neurosphere conditions and subsequent reprogramming with distinct neurogenic transcription factors can also be extended to reactive astroglia isolated from the adult injured cerebral cortex, allowing for the selective generation of glutamatergic or GABAergic neurons. These data provide evidence that cortical astroglia can undergo a conversion across cell lineages by forced expression of a single neurogenic transcription factor, stably generating fully differentiated neurons. Moreover, neuronal reprogramming of astroglia is not restricted to postnatal stages but can also be achieved from terminally differentiated astroglia of the adult cerebral cortex following injury-induced reactivation. The brain consists of two major cell types: neurons, which transmit information, and glial cells, which support and protect neurons. Interestingly, evidence suggests that some glial cells, including astroglia, can be directly converted into neurons by specific proteins, a transformation that may aid in the functional repair of damaged brain tissue. However, in order for the repaired brain areas to function properly, it is important that astroglia be directed into appropriate neuronal subclasses. In this study, we show that non-neurogenic astroglia from the cerebral cortex can be reprogrammed in vitro using just a single transcription factor to yield fully functional excitatory or inhibitory neurons. We achieved this result through forced expression of the same transcription factors that instruct the genesis of these distinct neuronal subtypes during embryonic forebrain development. Moreover we demonstrate that reactive astroglia isolated from the adult cortex after local injury can be reprogrammed into synapse-forming excitatory or inhibitory neurons following a similar strategy. Our findings provide evidence that endogenous glial cells may prove a promising strategy for replacing neurons that have degenerated due to trauma or disease.
Collapse
Affiliation(s)
- Christophe Heinrich
- Department of Physiological Genomics, Institute of Physiology, Ludwig-Maximilians University Munich, Munich, Germany
- Institute for Stem Cell Research, National Research Center for Environment and Health, Neuherberg, Germany
| | - Robert Blum
- Department of Physiological Genomics, Institute of Physiology, Ludwig-Maximilians University Munich, Munich, Germany
| | - Sergio Gascón
- Department of Physiological Genomics, Institute of Physiology, Ludwig-Maximilians University Munich, Munich, Germany
- Institute for Stem Cell Research, National Research Center for Environment and Health, Neuherberg, Germany
| | - Giacomo Masserdotti
- Department of Physiological Genomics, Institute of Physiology, Ludwig-Maximilians University Munich, Munich, Germany
| | - Pratibha Tripathi
- Institute for Stem Cell Research, National Research Center for Environment and Health, Neuherberg, Germany
| | - Rodrigo Sánchez
- Department of Physiological Genomics, Institute of Physiology, Ludwig-Maximilians University Munich, Munich, Germany
| | - Steffen Tiedt
- Department of Physiological Genomics, Institute of Physiology, Ludwig-Maximilians University Munich, Munich, Germany
| | - Timm Schroeder
- Institute for Stem Cell Research, National Research Center for Environment and Health, Neuherberg, Germany
| | - Magdalena Götz
- Department of Physiological Genomics, Institute of Physiology, Ludwig-Maximilians University Munich, Munich, Germany
- Institute for Stem Cell Research, National Research Center for Environment and Health, Neuherberg, Germany
- Munich Center for Integrated Protein Science CiPSM, Munich, Germany
- * E-mail: (MG); (BB)
| | - Benedikt Berninger
- Department of Physiological Genomics, Institute of Physiology, Ludwig-Maximilians University Munich, Munich, Germany
- Institute for Stem Cell Research, National Research Center for Environment and Health, Neuherberg, Germany
- * E-mail: (MG); (BB)
| |
Collapse
|
187
|
Juliandi B, Abematsu M, Nakashima K. Chromatin remodeling in neural stem cell differentiation. Curr Opin Neurobiol 2010; 20:408-15. [PMID: 20434901 DOI: 10.1016/j.conb.2010.04.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 03/31/2010] [Accepted: 04/03/2010] [Indexed: 12/31/2022]
Abstract
Chromatin remodeling is a dynamic alteration of chromatin structure that regulates several important biological processes. It is brought about by enzymatic activities that catalyze covalent modifications of histone tail or movement of nucleosomes along the DNA, and these activities often require multisubunit protein complexes for its proper functions. In concert with DNA methylation and noncoding RNA-mediated processes, histone modification such as acetylation and methylation regulates gene expression epigenetically, without affecting DNA sequence. Recent advances have revealed that this intrinsic regulation, together with protein complexes such as RE1 silencer of transcription/neuron-restrictive silencer factor (REST/NRSF) and switch/sucrose nonfermentable (SWI/SNF), play critical roles in neural stem cell fate determination.
Collapse
Affiliation(s)
- Berry Juliandi
- Laboratory of Molecular Neuroscience, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | | | | |
Collapse
|
188
|
Liu J, Casaccia P. Epigenetic regulation of oligodendrocyte identity. Trends Neurosci 2010; 33:193-201. [PMID: 20227775 DOI: 10.1016/j.tins.2010.01.007] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 01/21/2010] [Accepted: 01/22/2010] [Indexed: 02/06/2023]
Abstract
The interplay of transcription factors and epigenetic modifiers, including histone modifications, DNA methylation and microRNAs during development is essential for the acquisition of specific cell fates. Here, we review the epigenetic "programming" of stem cells into oligodendrocytes, by analyzing three sequential stages of lineage progression. The first transition from pluripotent stem cells to neural precursors is characterized by repression of pluripotency genes and restriction of the lineage potential to the neural fate. The second transition from multipotential precursors to oligodendrocyte progenitors is associated with the progressive loss of plasticity and the repression of neuronal and astrocytic genes. The last step of differentiation of oligodendrocyte progenitors into myelin-forming cells is defined by a model of derepression of myelin genes.
Collapse
Affiliation(s)
- Jia Liu
- Department of Neuroscience and Genetics and Genomics, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | |
Collapse
|
189
|
Swiss VA, Casaccia P. Cell-context specific role of the E2F/Rb pathway in development and disease. Glia 2010; 58:377-90. [PMID: 19795505 DOI: 10.1002/glia.20933] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Development of the central nervous system (CNS) requires the generation of neuronal and glial cell subtypes in appropriate numbers, and this demands the careful coordination of cell-cycle exit, survival, and differentiation. The E2F/Rb pathway is critical for cell-cycle regulation and also modulates survival and differentiation of distinct cell types in the developing and adult CNS. In this review, we first present the specific temporal patterns of expression of the E2F and Rb family members during CNS development and then discuss the genetic ablation of single or multiple members of these two families. Overall, the available data suggest a time-dependent and cell-context specific role of E2F and Rb family members in the developing and adult CNS.
Collapse
Affiliation(s)
- Victoria A Swiss
- Department of Neuroscience and Genetics and Genomics, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
190
|
Esain V, Postlethwait JH, Charnay P, Ghislain J. FGF-receptor signalling controls neural cell diversity in the zebrafish hindbrain by regulating olig2 and sox9. Development 2010; 137:33-42. [PMID: 20023158 DOI: 10.1242/dev.038026] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The mechanisms underlying the generation of neural cell diversity are the subject of intense investigation, which has highlighted the involvement of different signalling molecules including Shh, BMP and Wnt. By contrast, relatively little is known about FGF in this process. In this report we identify an FGF-receptor-dependent pathway in zebrafish hindbrain neural progenitors that give rise to somatic motoneurons, oligodendrocyte progenitors and differentiating astroglia. Using a combination of chemical and genetic approaches to conditionally inactivate FGF-receptor signalling, we investigate the role of this pathway. We show that FGF-receptor signalling is not essential for the survival or maintenance of hindbrain neural progenitors but controls their fate by coordinately regulating key transcription factors. First, by cooperating with Shh, FGF-receptor signalling controls the expression of olig2, a patterning gene essential for the specification of somatic motoneurons and oligodendrocytes. Second, FGF-receptor signalling controls the development of both oligodendrocyte progenitors and astroglia through the regulation of sox9, a gliogenic transcription factor the function of which we show to be conserved in the zebrafish hindbrain. Overall, for the first time in vivo, our results reveal a mechanism of FGF in the control of neural cell diversity.
Collapse
Affiliation(s)
- Virginie Esain
- INSERM, U784, Laboratoire de Génétique Moléculaire du Développement, 46 rue d'Ulm, 75230 Paris Cedex 05, France
| | | | | | | |
Collapse
|
191
|
Gonzalez-Quevedo R, Lee Y, Poss KD, Wilkinson DG. Neuronal regulation of the spatial patterning of neurogenesis. Dev Cell 2010; 18:136-47. [PMID: 20152184 PMCID: PMC2822724 DOI: 10.1016/j.devcel.2009.11.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 10/05/2009] [Accepted: 11/13/2009] [Indexed: 11/25/2022]
Abstract
Precise regulation of neurogenesis is achieved in specific regions of the vertebrate nervous system by formation of distinct neurogenic and nonneurogenic zones. We have investigated how neurogenesis becomes confined to zones adjacent to rhombomere boundaries in the zebrafish hindbrain. The nonneurogenic zone at segment centers comprises a distinct progenitor population that expresses fibroblast growth factor (fgfr) 2, erm, sox9b, and the retinoic acid degrading enzyme, cyp26b1. FGF receptor activation upregulates expression of these genes and inhibits neurogenesis in segment centers. Cyp26 activity is a key effector inhibiting neuronal differentiation, suggesting antagonistic interactions with retinoid signaling. We identify the critical FGF ligand, fgf20a, which is expressed by specific neurons located in the mantle region at the center of segments, adjacent to the nonneurogenic zone. Fgf20a mutants have ectopic neurogenesis and lack the segment center progenitor population. Our findings reveal how signaling from neurons induces formation of a nonneurogenic zone of neural progenitors.
Collapse
Affiliation(s)
- Rosa Gonzalez-Quevedo
- Division of Developmental Neurobiology, MRC National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK
| | - Yoonsung Lee
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kenneth D. Poss
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - David G. Wilkinson
- Division of Developmental Neurobiology, MRC National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK
| |
Collapse
|
192
|
Schlosser G. Making senses development of vertebrate cranial placodes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 283:129-234. [PMID: 20801420 DOI: 10.1016/s1937-6448(10)83004-7] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cranial placodes (which include the adenohypophyseal, olfactory, lens, otic, lateral line, profundal/trigeminal, and epibranchial placodes) give rise to many sense organs and ganglia of the vertebrate head. Recent evidence suggests that all cranial placodes may be developmentally related structures, which originate from a common panplacodal primordium at neural plate stages and use similar regulatory mechanisms to control developmental processes shared between different placodes such as neurogenesis and morphogenetic movements. After providing a brief overview of placodal diversity, the present review summarizes current evidence for the existence of a panplacodal primordium and discusses the central role of transcription factors Six1 and Eya1 in the regulation of processes shared between different placodes. Upstream signaling events and transcription factors involved in early embryonic induction and specification of the panplacodal primordium are discussed next. I then review how individual placodes arise from the panplacodal primordium and present a model of multistep placode induction. Finally, I briefly summarize recent advances concerning how placodal neurons and sensory cells are specified, and how morphogenesis of placodes (including delamination and migration of placode-derived cells and invagination) is controlled.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Zoology, School of Natural Sciences & Martin Ryan Institute, National University of Ireland, Galway, Ireland
| |
Collapse
|
193
|
|
194
|
Kao CF, Lee T. Birth time/order-dependent neuron type specification. Curr Opin Neurobiol 2009; 20:14-21. [PMID: 19944594 DOI: 10.1016/j.conb.2009.10.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 10/26/2009] [Accepted: 10/28/2009] [Indexed: 11/18/2022]
Abstract
Neurons derived from the same progenitor may acquire different fates according to their birth timing/order. To reveal temporally guided cell fates, we must determine neuron types as well as their lineage relationships and times of birth. Recent advances in genetic lineage analysis and fate mapping are facilitating such studies. For example, high-resolution lineage analysis can identify each sequentially derived neuron of a lineage and has revealed abrupt temporal identity changes in diverse Drosophila neuronal lineages. In addition, fate mapping of mouse neurons made from the same pool of precursors shows production of specific neuron types in specific temporal patterns. The tools used in these analyses are helping to further our understanding of the genetics of neuronal temporal identity.
Collapse
Affiliation(s)
- Chih-Fei Kao
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
195
|
Seuntjens E, Umans L, Zwijsen A, Sampaolesi M, Verfaillie CM, Huylebroeck D. Transforming Growth Factor type beta and Smad family signaling in stem cell function. Cytokine Growth Factor Rev 2009; 20:449-58. [PMID: 19892581 DOI: 10.1016/j.cytogfr.2009.10.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ligands of the Transforming Growth Factor type beta (TGFbeta) family exert multiple and sometimes opposite effects on most cell types in vivo depending on cellular context, which mainly includes the stage of the target cell, the local environment of this cell or niche, and the identity and the dosage of the ligand. Significant progress has been made in the molecular dissection of the regulation of the activity of the ligands and their intracellular signal transduction pathways, including via the canonical Smad pathway where Smads interact with many transcription factors. This knowledge together with results from functional studies within the embryology and stem cell research fields is giving us insight in the role of individual ligands and other components of this signaling system and where and how it regulates many properties of embryonic and adult stem/progenitor cells, which is anticipated to contribute to successful cell-based therapy in the future. We review and discuss recent progress on the effects of Nodal/Activin and Bone Morphogenetic Proteins (BMPs) and their canonical signaling in cells with stem cell properties. We focus on embryonic stem cells and their maintenance and pluripotency, and conversion into selected cell types of neuroectoderm, mesoderm and endoderm, on induced pluripotent cells and on neurogenic cells in the adult brain.
Collapse
Affiliation(s)
- Eve Seuntjens
- Laboratory of Molecular Biology (Celgen) of the Center for Human Genetics, University of Leuven, Flanders Institute of Biotechnology (VIB), Campus Gasthuisberg, B-3000 Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
196
|
Aldskogius H, Berens C, Kanaykina N, Liakhovitskaia A, Medvinsky A, Sandelin M, Schreiner S, Wegner M, Hjerling-Leffler J, Kozlova EN. Regulation of boundary cap neural crest stem cell differentiation after transplantation. Stem Cells 2009; 27:1592-603. [PMID: 19544468 PMCID: PMC2733376 DOI: 10.1002/stem.77] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Success of cell replacement therapies for neurological disorders will depend largely on the optimization of strategies to enhance viability and control the developmental fate of stem cells after transplantation. Once transplanted, stem/progenitor cells display a tendency to maintain an undifferentiated phenotype or differentiate into inappropriate cell types. Gain and loss of function experiments have revealed key transcription factors which drive differentiation of immature stem/progenitor cells toward more mature stages and eventually to full differentiation. An attractive course of action to promote survival and direct the differentiation of transplanted stem cells to a specific cell type would therefore be to force expression of regulatory differentiation molecules in already transplanted stem cells, using inducible gene expression systems which can be controlled from the outside. Here, we explore this hypothesis by employing a tetracycline gene regulating system (Tet-On) to drive the differentiation of boundary cap neural crest stem cells (bNCSCs) toward a sensory neuron fate after transplantation. We induced the expression of the key transcription factor Runx1 in Sox10-expressing bNCSCs. Forced expression of Runx1 strongly increased transplant survival in the enriched neurotrophic environment of the dorsal root ganglion cavity, and was sufficient to guide differentiation of bNCSCs toward a nonpeptidergic nociceptive sensory neuron phenotype both in vitro and in vivo after transplantation. These findings suggest that exogenous activation of transcription factors expression after transplantation in stem/progenitor cell grafts can be a constructive approach to control their survival as well as their differentiation to the desired type of cell and that the Tet-system is a useful tool to achieve this.
Collapse
Affiliation(s)
- Hakan Aldskogius
- Department of Neuroscience, Neuroanatomy, Uppsala University Biomedical Center, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Hirabayashi Y, Suzki N, Tsuboi M, Endo TA, Toyoda T, Shinga J, Koseki H, Vidal M, Gotoh Y. Polycomb limits the neurogenic competence of neural precursor cells to promote astrogenic fate transition. Neuron 2009; 63:600-13. [PMID: 19755104 DOI: 10.1016/j.neuron.2009.08.021] [Citation(s) in RCA: 346] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 08/20/2009] [Accepted: 08/20/2009] [Indexed: 11/26/2022]
Abstract
During neocortical development, neural precursor cells (NPCs, or neural stem cells) produce neurons first and astrocytes later. Although the timing of the fate switch from neurogenic to astrogenic is critical for determining the number of neurons, the mechanisms are not fully understood. Here, we show that the polycomb group complex (PcG) restricts neurogenic competence of NPCs and promotes the transition of NPC fate from neurogenic to astrogenic. Inactivation of PcG by knockout of the Ring1B or Ezh2 gene or Eed knockdown prolonged the neurogenic phase of NPCs and delayed the onset of the astrogenic phase. Moreover, PcG was found to repress the promoter of the proneural gene neurogenin1 in a developmental-stage-dependent manner. These results demonstrate a role of PcG: the temporal regulation of NPC fate.
Collapse
Affiliation(s)
- Yusuke Hirabayashi
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
198
|
The neurogenic basic helix-loop-helix transcription factor NeuroD6 concomitantly increases mitochondrial mass and regulates cytoskeletal organization in the early stages of neuronal differentiation. ASN Neuro 2009; 1:AN20090036. [PMID: 19743964 PMCID: PMC2785511 DOI: 10.1042/an20090036] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Mitochondria play a central role during neurogenesis by providing energy in the form of ATP for cytoskeletal remodelling, outgrowth of neuronal processes, growth cone activity and synaptic activity. However, the fundamental question of how differentiating neurons control mitochondrial biogenesis remains vastly unexplored. Since our previous studies have shown that the neurogenic bHLH (basic helix–loop–helix) transcription factor NeuroD6 is sufficient to induce differentiation of the neuronal progenitor-like PC12 cells and that it triggers expression of mitochondrial-related genes, we investigated whether NeuroD6 could modulate the mitochondrial biomass using our PC12-ND6 cellular paradigm. Using a combination of flow cytometry, confocal microscopy and mitochondrial fractionation, we demonstrate that NeuroD6 stimulates maximal mitochondrial mass at the lamellipodia stage, thus preceding axonal growth. NeuroD6 triggers remodelling of the actin and microtubule networks in conjunction with increased expression of the motor protein KIF5B, thus promoting mitochondrial movement in developing neurites with accumulation in growth cones. Maintenance of the NeuroD6-induced mitochondrial mass requires an intact cytoskeletal network, as its disruption severely reduces mitochondrial mass. The present study provides the first evidence that NeuroD6 plays an integrative role in co-ordinating increase in mitochondrial mass with cytoskeletal remodelling, suggestive of a role of this transcription factor as a co-regulator of neuronal differentiation and energy metabolism.
Collapse
Key Words
- COX, cytochrome c oxidase
- E, embryonic day
- ESC, embryonic stem cell
- F-actin, filamentous actin
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- MAP, microtubule-associated protein
- MMP, mitochondrial membrane potential
- MTG, MitoTracker® Green
- MTR, MitoTracker® Red
- NGF, nerve growth factor
- NRF, nuclear respiratory factor
- NeuroD family
- PDL, poly-d-lysine
- PGC-1, peroxisome-proliferator-activated receptor-γ co-activator-1
- SOD2, superoxide dismutase 2
- WGA, wheat germ agglutinin
- bHLH, basic helix–loop–helix
- basic helix–loop–helix transcription factor
- cytoskeletal remodelling
- mitochondrial biogenesis
- mtDNA, mitochondrial DNA
- neuronal differentiation
Collapse
|
199
|
Lacin H, Zhu Y, Wilson BA, Skeath JB. dbx mediates neuronal specification and differentiation through cross-repressive, lineage-specific interactions with eve and hb9. Development 2009; 136:3257-66. [PMID: 19710170 DOI: 10.1242/dev.037242] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Individual neurons adopt and maintain defined morphological and physiological phenotypes as a result of the expression of specific combinations of transcription factors. In particular, homeodomain-containing transcription factors play key roles in determining neuronal subtype identity in flies and vertebrates. dbx belongs to the highly divergent H2.0 family of homeobox genes. In vertebrates, Dbx1 and Dbx2 promote the development of a subset of interneurons, some of which help mediate left-right coordination of locomotor activity. Here, we identify and show that the single Drosophila ortholog of Dbx1/2 contributes to the development of specific subsets of interneurons via cross-repressive, lineage-specific interactions with the motoneuron-promoting factors eve and hb9 (exex). dbx is expressed primarily in interneurons of the embryonic, larval and adult central nervous system, and these interneurons tend to extend short axons and be GABAergic. Interestingly, many Dbx(+) interneurons share a sibling relationship with Eve(+) or Hb9(+) motoneurons. The non-overlapping expression of dbx and eve, or dbx and hb9, within pairs of sibling neurons is initially established as a result of Notch/Numb-mediated asymmetric divisions. Cross-repressive interactions between dbx and eve, and dbx and hb9, then help maintain the distinct expression profiles of these genes in their respective pairs of sibling neurons. Strict maintenance of the mutually exclusive expression of dbx relative to that of eve and hb9 in sibling neurons is crucial for proper neuronal specification, as misexpression of dbx in motoneurons dramatically hinders motor axon outgrowth.
Collapse
Affiliation(s)
- Haluk Lacin
- Program in Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | |
Collapse
|
200
|
Ribes V, Briscoe J. Establishing and interpreting graded Sonic Hedgehog signaling during vertebrate neural tube patterning: the role of negative feedback. Cold Spring Harb Perspect Biol 2009; 1:a002014. [PMID: 20066087 PMCID: PMC2742090 DOI: 10.1101/cshperspect.a002014] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The secreted protein Sonic Hedgehog (SHH) acts in graded fashion to pattern the dorsal-ventral axis of the vertebrate neural tube. This is a dynamic process in which increasing concentrations and durations of exposure to SHH generate neurons with successively more ventral identities. Interactions between the receiving cells and the graded signal underpin the mechanism of SHH action. In particular, negative feedback, involving proteins transcriptionally induced or repressed by SHH signaling, plays an essential role in shaping the graded readout. On one hand, negative feedback controls, in a noncell-autonomous manner, the distribution of SHH across the field of receiving cells. On the other, it acts cell-autonomously to convert different concentrations of SHH into distinct durations of intracellular signal transduction. Together, these mechanisms exemplify a strategy for morphogen interpretation, which we have termed temporal adaptation that relies on the continuous processing and refinement of the cellular response to the graded signal.
Collapse
Affiliation(s)
| | - James Briscoe
- Developmental Neurobiology, National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom, NW7 1AA
| |
Collapse
|