151
|
Duddu S, Chakrabarti R, Ghosh A, Shukla PC. Hematopoietic Stem Cell Transcription Factors in Cardiovascular Pathology. Front Genet 2020; 11:588602. [PMID: 33193725 PMCID: PMC7596349 DOI: 10.3389/fgene.2020.588602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Transcription factors as multifaceted modulators of gene expression that play a central role in cell proliferation, differentiation, lineage commitment, and disease progression. They interact among themselves and create complex spatiotemporal gene regulatory networks that modulate hematopoiesis, cardiogenesis, and conditional differentiation of hematopoietic stem cells into cells of cardiovascular lineage. Additionally, bone marrow-derived stem cells potentially contribute to the cardiovascular cell population and have shown potential as a therapeutic approach to treat cardiovascular diseases. However, the underlying regulatory mechanisms are currently debatable. This review focuses on some key transcription factors and associated epigenetic modifications that modulate the maintenance and differentiation of hematopoietic stem cells and cardiac progenitor cells. In addition to this, we aim to summarize different potential clinical therapeutic approaches in cardiac regeneration therapy and recent discoveries in stem cell-based transplantation.
Collapse
Affiliation(s)
| | | | | | - Praphulla Chandra Shukla
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
152
|
Sharma A, Wasson LK, Willcox JAL, Morton SU, Gorham JM, DeLaughter DM, Neyazi M, Schmid M, Agarwal R, Jang MY, Toepfer CN, Ward T, Kim Y, Pereira AC, DePalma SR, Tai A, Kim S, Conner D, Bernstein D, Gelb BD, Chung WK, Goldmuntz E, Porter G, Tristani-Firouzi M, Srivastava D, Seidman JG, Seidman CE, Pediatric Cardiac Genomics Consortium. GATA6 mutations in hiPSCs inform mechanisms for maldevelopment of the heart, pancreas, and diaphragm. eLife 2020; 9:e53278. [PMID: 33054971 PMCID: PMC7593088 DOI: 10.7554/elife.53278] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 10/14/2020] [Indexed: 12/18/2022] Open
Abstract
Damaging GATA6 variants cause cardiac outflow tract defects, sometimes with pancreatic and diaphragmic malformations. To define molecular mechanisms for these diverse developmental defects, we studied transcriptional and epigenetic responses to GATA6 loss of function (LoF) and missense variants during cardiomyocyte differentiation of isogenic human induced pluripotent stem cells. We show that GATA6 is a pioneer factor in cardiac development, regulating SMYD1 that activates HAND2, and KDR that with HAND2 orchestrates outflow tract formation. LoF variants perturbed cardiac genes and also endoderm lineage genes that direct PDX1 expression and pancreatic development. Remarkably, an exon 4 GATA6 missense variant, highly associated with extra-cardiac malformations, caused ectopic pioneer activities, profoundly diminishing GATA4, FOXA1/2, and PDX1 expression and increasing normal retinoic acid signaling that promotes diaphragm development. These aberrant epigenetic and transcriptional signatures illuminate the molecular mechanisms for cardiovascular malformations, pancreas and diaphragm dysgenesis that arise in patients with distinct GATA6 variants.
Collapse
Affiliation(s)
- Arun Sharma
- Department of Genetics, Harvard Medical SchoolBostonUnited States
- Smidt Heart Institute, Cedars-Sinai Medical CenterLos AngelesUnited States
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical CenterLos AngelesUnited States
| | - Lauren K Wasson
- Department of Genetics, Harvard Medical SchoolBostonUnited States
- Howard Hughes Medical Institute, Harvard Medical SchoolBostonUnited States
| | - Jon AL Willcox
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Sarah U Morton
- Department of Genetics, Harvard Medical SchoolBostonUnited States
- Division of Newborn Medicine, Boston Children's HospitalBostonUnited States
| | - Joshua M Gorham
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | | | - Meraj Neyazi
- Department of Genetics, Harvard Medical SchoolBostonUnited States
- Hannover Medical SchoolHannoverGermany
| | - Manuel Schmid
- Department of Genetics, Harvard Medical SchoolBostonUnited States
- Deutsches Herzzentrum München, Technische Universität MünchenMunichGermany
| | - Radhika Agarwal
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Min Young Jang
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Christopher N Toepfer
- Department of Genetics, Harvard Medical SchoolBostonUnited States
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of OxfordOxfordUnited Kingdom
- Wellcome Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
| | - Tarsha Ward
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Yuri Kim
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Alexandre C Pereira
- Department of Genetics, Harvard Medical SchoolBostonUnited States
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, Medical School of University of Sao PauloSao PauloBrazil
| | - Steven R DePalma
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Angela Tai
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Seongwon Kim
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - David Conner
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Daniel Bernstein
- Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
| | - Bruce D Gelb
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Wendy K Chung
- Department of Medicine, Columbia University Medical CenterNew YorkUnited States
| | - Elizabeth Goldmuntz
- Department of Pediatrics, The Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - George Porter
- Department of Pediatrics, University of Rochester Medical CenterRochesterUnited States
| | - Martin Tristani-Firouzi
- Division of Pediatric Cardiology, University of Utah School of MedicineSalt Lake CityUnited States
| | | | | | - Christine E Seidman
- Department of Genetics, Harvard Medical SchoolBostonUnited States
- Howard Hughes Medical Institute, Harvard Medical SchoolBostonUnited States
- Cardiovascular Division, Department of Medicine, Brigham and Women's HospitalBostonUnited States
| | | |
Collapse
|
153
|
Dos Santos M, Backer S, Saintpierre B, Izac B, Andrieu M, Letourneur F, Relaix F, Sotiropoulos A, Maire P. Single-nucleus RNA-seq and FISH identify coordinated transcriptional activity in mammalian myofibers. Nat Commun 2020; 11:5102. [PMID: 33037211 PMCID: PMC7547110 DOI: 10.1038/s41467-020-18789-8] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/10/2020] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle fibers are large syncytia but it is currently unknown whether gene expression is coordinately regulated in their numerous nuclei. Here we show by snRNA-seq and snATAC-seq that slow, fast, myotendinous and neuromuscular junction myonuclei each have different transcriptional programs, associated with distinct chromatin states and combinations of transcription factors. In adult mice, identified myofiber types predominantly express either a slow or one of the three fast isoforms of Myosin heavy chain (MYH) proteins, while a small number of hybrid fibers can express more than one MYH. By snRNA-seq and FISH, we show that the majority of myonuclei within a myofiber are synchronized, coordinately expressing only one fast Myh isoform with a preferential panel of muscle-specific genes. Importantly, this coordination of expression occurs early during post-natal development and depends on innervation. These findings highlight a previously undefined mechanism of coordination of gene expression in a syncytium.
Collapse
Affiliation(s)
| | - Stéphanie Backer
- Université de Paris, Institut Cochin, INSERM, CNRS., 75014, Paris, France
| | | | - Brigitte Izac
- Université de Paris, Institut Cochin, INSERM, CNRS., 75014, Paris, France
| | - Muriel Andrieu
- Université de Paris, Institut Cochin, INSERM, CNRS., 75014, Paris, France
| | - Franck Letourneur
- Université de Paris, Institut Cochin, INSERM, CNRS., 75014, Paris, France
| | - Frederic Relaix
- Université Paris-Est Creteil, INSERM U955 IMRB., 94000, Creteil, France
| | | | - Pascal Maire
- Université de Paris, Institut Cochin, INSERM, CNRS., 75014, Paris, France.
| |
Collapse
|
154
|
Cosgrove D, Whitton L, Fahey L, Ó Broin P, Donohoe G, Morris DW. Genes influenced by MEF2C contribute to neurodevelopmental disease via gene expression changes that affect multiple types of cortical excitatory neurons. Hum Mol Genet 2020; 30:961-970. [PMID: 32975584 DOI: 10.1093/hmg/ddaa213] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 12/19/2022] Open
Abstract
Myocyte enhancer factor 2 C (MEF2C) is an important transcription factor during neurodevelopment. Mutation or deletion of MEF2C causes intellectual disability (ID), and common variants within MEF2C are associated with cognitive function and schizophrenia risk. We investigated if genes influenced by MEF2C during neurodevelopment are enriched for genes associated with neurodevelopmental phenotypes and if this can be leveraged to identify biological mechanisms and individual brain cell types affected. We used a set of 1055 genes that were differentially expressed in the adult mouse brain following early embryonic deletion of Mef2c in excitatory cortical neurons. Using genome-wide association studies data, we found these differentially expressed genes (DEGs) to be enriched for genes associated with schizophrenia, intelligence and educational attainment but not autism spectrum disorder (ASD). For this gene set, genes that overlap with target genes of the Fragile X mental retardation protein (FMRP) are a major driver of these enrichments. Using trios data, we found these DEGs to be enriched for genes containing de novo mutations reported in ASD and ID, but not schizophrenia. Using single-cell RNA sequencing data, we identified that a number of different excitatory glutamatergic neurons in the cortex were enriched for these DEGs including deep layer pyramidal cells and cells in the retrosplenial cortex, entorhinal cortex and subiculum, and these cell types are also enriched for FMRP target genes. The involvement of MEF2C and FMRP in synapse elimination suggests that disruption of this process in these cell types during neurodevelopment contributes to cognitive function and risk of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Donna Cosgrove
- Cognitive Genetics and Cognitive Therapy Group, Centre for Neuroimaging, Cognition and Genomics, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway H91CF50, Ireland
| | - Laura Whitton
- Cognitive Genetics and Cognitive Therapy Group, Centre for Neuroimaging, Cognition and Genomics, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway H91CF50, Ireland
| | - Laura Fahey
- Cognitive Genetics and Cognitive Therapy Group, Centre for Neuroimaging, Cognition and Genomics, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway H91CF50, Ireland.,School of Mathematics, Statistics and Applied Mathematics, National University of Ireland Galway, Galway H91CF50, Ireland
| | - Pilib Ó Broin
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland Galway, Galway H91CF50, Ireland
| | - Gary Donohoe
- Cognitive Genetics and Cognitive Therapy Group, Centre for Neuroimaging, Cognition and Genomics, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway H91CF50, Ireland
| | - Derek W Morris
- Cognitive Genetics and Cognitive Therapy Group, Centre for Neuroimaging, Cognition and Genomics, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway H91CF50, Ireland
| |
Collapse
|
155
|
Majidi SP, Reddy NC, Moore MJ, Chen H, Yamada T, Andzelm MM, Cherry TJ, Hu LS, Greenberg ME, Bonni A. Chromatin Environment and Cellular Context Specify Compensatory Activity of Paralogous MEF2 Transcription Factors. Cell Rep 2020; 29:2001-2015.e5. [PMID: 31722213 PMCID: PMC6874310 DOI: 10.1016/j.celrep.2019.10.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/04/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022] Open
Abstract
Compensation among paralogous transcription factors (TFs) confers genetic robustness of cellular processes, but how TFs dynamically respond to paralog depletion on a genome-wide scale in vivo remains incompletely understood. Using single and double conditional knockout of myocyte enhancer factor 2 (MEF2) family TFs in granule neurons of the mouse cerebellum, we find that MEF2A and MEF2D play functionally redundant roles in cerebellar-dependent motor learning. Although both TFs are highly expressed in granule neurons, transcriptomic analyses show MEF2D is the predominant genomic regulator of gene expression in vivo. Strikingly, genome-wide occupancy analyses reveal upon depletion of MEF2D, MEF2A occupancy robustly increases at a subset of sites normally bound to MEF2D. Importantly, sites experiencing compensatory MEF2A occupancy are concentrated within open chromatin and undergo functional compensation for genomic activation and gene expression. Finally, motor activity induces a switch from non-compensatory to compensatory MEF2-dependent gene regulation. These studies uncover genome-wide functional interdependency between paralogous TFs in the brain. Majidi et al. study how transcription factors respond to paralog depletion by conditionally depleting MEF2A and MEF2D in mouse cerebellum. Depletion of MEF2D induces functionally compensatory genomic occupancy by MEF2A. Compensation occurs within accessible chromatin in a context-dependent manner. This study explores the interdependency between paralogous transcription factors.
Collapse
Affiliation(s)
- Shahriyar P Majidi
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; MD-PhD Program, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Naveen C Reddy
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael J Moore
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hao Chen
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tomoko Yamada
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Milena M Andzelm
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Timothy J Cherry
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98101, USA; Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, 1900 9(th) Ave., Seattle, WA 98101, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Linda S Hu
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Azad Bonni
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
156
|
List EO, Duran-Ortiz S, Kopchick JJ. Effects of tissue-specific GH receptor knockouts in mice. Mol Cell Endocrinol 2020; 515:110919. [PMID: 32592744 DOI: 10.1016/j.mce.2020.110919] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 11/18/2022]
Abstract
Growth hormone (GH) is pituitary derived hormone which acts on most tissues of the body either directly or indirectly and affects many metabolic processes throughout life. Genetically engineered mouse lines have become vital tools for uncovering the various in vivo activities of a GH. A particularly useful mouse line has been the GH receptor (GHR) gene disrupted or knockout (KO) mouse which has been used world-wide in many studies. Recent advances in biotechnology have allowed the development of tissue-specific knockout mouse lines which allows for more direct enquiries on the activities of a given protein in specific tissues or cell types. Accordingly, twenty-two novel tissue-specific GHRKO mouse lines have been developed in the last eleven years. In this paper we provide a detailed list and review the phenotypic changes that occur in each of these tissue-specific GHRKO mouse lines.
Collapse
Affiliation(s)
- Edward O List
- Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA; Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Silvana Duran-Ortiz
- Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA; Molecular and Cellular Biology Program, Department of Biomedical Sciences, Ohio University, Athens, OH, 45701, USA
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA; Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA; Molecular and Cellular Biology Program, Department of Biomedical Sciences, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
157
|
Crystal Structures of Ternary Complexes of MEF2 and NKX2-5 Bound to DNA Reveal a Disease Related Protein-Protein Interaction Interface. J Mol Biol 2020; 432:5499-5508. [PMID: 32681840 DOI: 10.1016/j.jmb.2020.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 11/22/2022]
Abstract
MEF2 and NKX2-5 transcription factors interact with each other in cardiogenesis and are necessary for normal heart formation. Despite evidence suggesting that these two transcription factors function synergistically and possibly through direct physical interactions, molecular mechanisms by which they interact are not clear. Here we determined the crystal structures of ternary complexes of MEF2 and NKX2-5 bound to myocardin enhancer DNA in two crystal forms. These crystal structures are the first example of human MADS-box/homeobox ternary complex structures involved in cardiogenesis. Our structures reveal two possible modes of interactions between MEF2 and NKX2-5: MEF2 and NKX bind to adjacent DNA sites to recognize DNA in cis; and MEF2 and NKX bind to different DNA strands to interact with each other in trans via a conserved protein-protein interface observed in both crystal forms. Disease-related mutations are mapped to the observed protein-protein interface. Our structural studies provide a starting point to understand and further study the molecular mechanisms of the interactions between MEF2 and NKX2.5 and their roles in cardiogenesis.
Collapse
|
158
|
Dantas Machado AC, Cooper BH, Lei X, Di Felice R, Chen L, Rohs R. Landscape of DNA binding signatures of myocyte enhancer factor-2B reveals a unique interplay of base and shape readout. Nucleic Acids Res 2020; 48:8529-8544. [PMID: 32738045 PMCID: PMC7470950 DOI: 10.1093/nar/gkaa642] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 01/08/2023] Open
Abstract
Myocyte enhancer factor-2B (MEF2B) has the unique capability of binding to its DNA target sites with a degenerate motif, while still functioning as a gene-specific transcriptional regulator. Identifying its DNA targets is crucial given regulatory roles exerted by members of the MEF2 family and MEF2B's involvement in B-cell lymphoma. Analyzing structural data and SELEX-seq experimental results, we deduced the DNA sequence and shape determinants of MEF2B target sites on a high-throughput basis in vitro for wild-type and mutant proteins. Quantitative modeling of MEF2B binding affinities and computational simulations exposed the DNA readout mechanisms of MEF2B. The resulting binding signature of MEF2B revealed distinct intricacies of DNA recognition compared to other transcription factors. MEF2B uses base readout at its half-sites combined with shape readout at the center of its degenerate motif, where A-tract polarity dictates nuances of binding. The predominant role of shape readout at the center of the core motif, with most contacts formed in the minor groove, differs from previously observed protein-DNA readout modes. MEF2B, therefore, represents a unique protein for studies of the role of DNA shape in achieving binding specificity. MEF2B-DNA recognition mechanisms are likely representative for other members of the MEF2 family.
Collapse
Affiliation(s)
- Ana Carolina Dantas Machado
- Quantitative and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Brendon H Cooper
- Quantitative and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiao Lei
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Rosa Di Felice
- Quantitative and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Department of Physics & Astronomy, University of Southern California, Los Angeles, CA 90089, USA
| | - Lin Chen
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Remo Rohs
- Quantitative and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Department of Physics & Astronomy, University of Southern California, Los Angeles, CA 90089, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
- Department of Computer Science, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
159
|
Blixt N, Norton A, Zhang A, Aparicio C, Prasad H, Gopalakrishnan R, Jensen ED, Mansky KC. Loss of myocyte enhancer factor 2 expression in osteoclasts leads to opposing skeletal phenotypes. Bone 2020; 138:115466. [PMID: 32512162 PMCID: PMC7443313 DOI: 10.1016/j.bone.2020.115466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 05/04/2020] [Accepted: 06/01/2020] [Indexed: 01/08/2023]
Abstract
Osteoclasts are multinuclear cells that resorb bone. Osteoclast differentiation is regulated by multiple transcription factors which may be acting in a single or multiple factor complex to regulate gene expression. Myocyte enhancer factor 2 (MEF2) is a family of transcription factors whose role during osteoclast differentiation has not been well characterized. Because MEF2A and MEF2D are the family members most highly expressed during osteoclast differentiation, we created conditional knockout mice models for MEF2A and/or MEF2D. In vitro cultures of A- and D-KO osteoclasts were smaller and less numerous than wild type cultures, while AD-KO osteoclasts were almost completely devoid of TRAP positive mononuclear cells. Female A-KO mice are osteopetrotic while male A- and D-KO mice of either sex had no significant in vivo skeletal phenotype, suggesting a sex-specific regulation of osteoclasts by MEF2A. Lastly, in vivo male AD-KO mice are osteopenic, indicating while MEF2 is required for M-CSF and RANKL-stimulated osteoclastogenesis in vitro, osteoclasts can form in the absence of MEF2 in vivo via a RANKL-alternative pathway.
Collapse
Affiliation(s)
- Nicholas Blixt
- Departmment of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota USA 55455
| | - Andrew Norton
- Department of Developmental and Surgical Sciences, University of Minnesota, Minneapolis, Minnesota USA 55455
| | - Anqi Zhang
- Department of Restorative Sciences, MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics University of Minnesota, Minneapolis, Minnesota USA 55455
| | - Conrado Aparicio
- Department of Restorative Sciences, MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics University of Minnesota, Minneapolis, Minnesota USA 55455
| | - Hari Prasad
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, Minnesota USA 55455
| | - Rajaram Gopalakrishnan
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, Minnesota USA 55455
| | - Eric D. Jensen
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, Minnesota USA 55455
- Co-corresponding authors : To whom correspondence should be addressed:, Kim Mansky, PhD, Tel.: (612) 626-5582,
| | - Kim C. Mansky
- Department of Developmental and Surgical Sciences, University of Minnesota, Minneapolis, Minnesota USA 55455
- Co-corresponding authors : To whom correspondence should be addressed:, Kim Mansky, PhD, Tel.: (612) 626-5582,
| |
Collapse
|
160
|
Fathi M, Gharakhanlou R, Rezaei R. The Changes of Heart miR-1 and miR-133 Expressions following Physiological Hypertrophy Due to Endurance Training. CELL JOURNAL 2020; 22:133-140. [PMID: 32779443 PMCID: PMC7481891 DOI: 10.22074/cellj.2020.7014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 10/12/2019] [Indexed: 11/05/2022]
Abstract
Objective MicroRNAs (miRNAs) play a key role in the development of the heart. Recent studies have shown that miR-
1 and miR-133 are key regulators of cardiac hypertrophy. Therefore, we aimed to evaluate the effect of an endurance
training (ET) program on the expressions of these miRNAs and their transcriptional network.
Materials and Methods In this experimental study, cardiac hypertrophy was induced by 14 weeks of ET for 1 hour per
day, 6 days per week at 75% VO2 max). The rats (221 ± 23 g) in the experimental (n=7) and control (n=7) groups were
anesthetized to evaluate heart morphology changes by echocardiography. Next, we evaluated expressions of miR-1
and miR-133, and heart and neural crest derivatives express 2 (Hand2), Mef2c, histone deacetylase 4 (Hdac4) and
serum response factor (Srf) gene expressions by real-time polymerase chain reaction (PCR). Finally, the collected data
were evaluated by the independent t test to determine differences between the groups
Results The echocardiography result confirmed physiological hypertrophy in the experimental group that underwent ET as
shown by the increased left ventricular weight/body surface area (LVW/BSA) (P=0.004), LVW/body weight (BW) (P=0.011),
left ventricular diameter end-diastolic (LVDd) (P=0.003), and improvements in heart functional indexes such as fractional
shortness (FS) (P=0.036) and stroke volume (SV) (P=0.002). There were significant increases in the expressions of miR-1
(P=0.001) and miR-133 (P=0.004). The expressions of Srf, Hdac4, and Hand2 genes significantly increased (P<0.001) in the
experimental group Compared with the control group. The expression of Mef2c did not significantly change.
Conclusion The expressions of miR-1 and miR-133 and their target genes appeared to be involved in physiological
hypertrophy induced by ET in these rats.
Collapse
Affiliation(s)
- Mohammad Fathi
- Department of Physical Education and Sport Sciences, Faculty of Humanities Sciences, Lorestan University, Khorramabad, Iran Electronic Address:
| | - Reza Gharakhanlou
- Department of Physical Education and Sport Sciences, Faculty of Humanities Sciences, Tarbiyat Modares University, Tehran, Iran
| | - Razieh Rezaei
- Faculty of Physical Education and Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
161
|
Bouhaddou M, Memon D, Meyer B, White KM, Rezelj VV, Correa Marrero M, Polacco BJ, Melnyk JE, Ulferts S, Kaake RM, Batra J, Richards AL, Stevenson E, Gordon DE, Rojc A, Obernier K, Fabius JM, Soucheray M, Miorin L, Moreno E, Koh C, Tran QD, Hardy A, Robinot R, Vallet T, Nilsson-Payant BE, Hernandez-Armenta C, Dunham A, Weigang S, Knerr J, Modak M, Quintero D, Zhou Y, Dugourd A, Valdeolivas A, Patil T, Li Q, Hüttenhain R, Cakir M, Muralidharan M, Kim M, Jang G, Tutuncuoglu B, Hiatt J, Guo JZ, Xu J, Bouhaddou S, Mathy CJP, Gaulton A, Manners EJ, Félix E, Shi Y, Goff M, Lim JK, McBride T, O'Neal MC, Cai Y, Chang JCJ, Broadhurst DJ, Klippsten S, De Wit E, Leach AR, Kortemme T, Shoichet B, Ott M, Saez-Rodriguez J, tenOever BR, Mullins RD, Fischer ER, Kochs G, Grosse R, García-Sastre A, Vignuzzi M, Johnson JR, Shokat KM, Swaney DL, Beltrao P, Krogan NJ. The Global Phosphorylation Landscape of SARS-CoV-2 Infection. Cell 2020; 182:685-712.e19. [PMID: 32645325 PMCID: PMC7321036 DOI: 10.1016/j.cell.2020.06.034] [Citation(s) in RCA: 774] [Impact Index Per Article: 154.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/09/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
The causative agent of the coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected millions and killed hundreds of thousands of people worldwide, highlighting an urgent need to develop antiviral therapies. Here we present a quantitative mass spectrometry-based phosphoproteomics survey of SARS-CoV-2 infection in Vero E6 cells, revealing dramatic rewiring of phosphorylation on host and viral proteins. SARS-CoV-2 infection promoted casein kinase II (CK2) and p38 MAPK activation, production of diverse cytokines, and shutdown of mitotic kinases, resulting in cell cycle arrest. Infection also stimulated a marked induction of CK2-containing filopodial protrusions possessing budding viral particles. Eighty-seven drugs and compounds were identified by mapping global phosphorylation profiles to dysregulated kinases and pathways. We found pharmacologic inhibition of the p38, CK2, CDK, AXL, and PIKFYVE kinases to possess antiviral efficacy, representing potential COVID-19 therapies.
Collapse
Affiliation(s)
- Mehdi Bouhaddou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Danish Memon
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Bjoern Meyer
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Kris M White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Veronica V Rezelj
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Miguel Correa Marrero
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Benjamin J Polacco
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James E Melnyk
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute
| | - Svenja Ulferts
- Institute for Clinical and Experimental Pharmacology and Toxicology, University of Freiburg, Freiburg 79104, Germany
| | - Robyn M Kaake
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jyoti Batra
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alicia L Richards
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Erica Stevenson
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David E Gordon
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ajda Rojc
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kirsten Obernier
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jacqueline M Fabius
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Margaret Soucheray
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Elena Moreno
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Cassandra Koh
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Quang Dinh Tran
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Alexandra Hardy
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Rémy Robinot
- Virus & Immunity Unit, Department of Virology, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France; Vaccine Research Institute, 94000 Creteil, France
| | - Thomas Vallet
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | | | - Claudia Hernandez-Armenta
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Alistair Dunham
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Sebastian Weigang
- Institute of Virology, Medical Center - University of Freiburg, Freiburg 79104, Germany
| | - Julian Knerr
- Institute for Clinical and Experimental Pharmacology and Toxicology, University of Freiburg, Freiburg 79104, Germany
| | - Maya Modak
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Diego Quintero
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuan Zhou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Aurelien Dugourd
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Alberto Valdeolivas
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Trupti Patil
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Qiongyu Li
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ruth Hüttenhain
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Merve Cakir
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Monita Muralidharan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Minkyu Kim
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gwendolyn Jang
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Beril Tutuncuoglu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joseph Hiatt
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jeffrey Z Guo
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jiewei Xu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sophia Bouhaddou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
| | - Christopher J P Mathy
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Anna Gaulton
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Emma J Manners
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Eloy Félix
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Ying Shi
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute
| | - Marisa Goff
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jean K Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | | | | | | | | | | | - Emmie De Wit
- NIH/NIAID/Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Andrew R Leach
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Tanja Kortemme
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Brian Shoichet
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
| | - Melanie Ott
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Benjamin R tenOever
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - R Dyche Mullins
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute
| | | | - Georg Kochs
- Institute of Virology, Medical Center - University of Freiburg, Freiburg 79104, Germany; Faculty of Medicine, University of Freiburg, Freiburg 79008, Germany
| | - Robert Grosse
- Institute for Clinical and Experimental Pharmacology and Toxicology, University of Freiburg, Freiburg 79104, Germany; Faculty of Medicine, University of Freiburg, Freiburg 79008, Germany; Centre for Integrative Biological Signalling Studies (CIBSS), Freiburg 79104, Germany.
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France.
| | - Jeffery R Johnson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Kevan M Shokat
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute.
| | - Danielle L Swaney
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Pedro Beltrao
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| | - Nevan J Krogan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
162
|
Vidal-Sancho L, Fernández-García S, Solés-Tarrés I, Alberch J, Xifró X. Decreased Myocyte Enhancer Factor 2 Levels in the Hippocampus of Huntington's Disease Mice Are Related to Cognitive Dysfunction. Mol Neurobiol 2020; 57:4549-4562. [PMID: 32757160 DOI: 10.1007/s12035-020-02041-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022]
Abstract
People suffering from Huntington's disease (HD) present cognitive deficits. Hippocampal dysfunction has been involved in the HD learning and memory impairment, but proteins leading this dysregulation are not fully characterized. Here, we studied the contribution of the family of transcription factors myocyte enhancer factor 2 (MEF2) to the HD cognitive deficits. To this aim, we first analyzed MEF2 protein levels and found that they are reduced in the hippocampus of exon-1 (R6/1) and full-length (HdhQ7/Q111) mutant huntingtin (mHTT) mice at the onset of cognitive dysfunction. By the analysis of MEF2 mRNA levels and mHTT-MEF2 interaction, we discarded that reduced MEF2 levels are due to changes in the transcription or sequestration in mHTT aggregates. Interestingly, we showed in R6/1 primary hippocampal cultures that reduction of MEF2 is strongly related to a basal and non-apoptotic caspase activity. To decipher the involvement of hippocampal decreased MEF2 in memory impairment, we used the BML-210 molecule that activates MEF2 transcriptional activity by the disruption MEF2-histone deacetylase class IIa interaction. BML-210 treatment increased the number and length of neurites in R6/1 primary hippocampal cultures. Importantly, this effect was prevented by transduction of lentiviral particles containing shRNA against MEF2. Then, we demonstrated that intraperitoneal administration of BML-210 (150 mg/Kg/day) for 4 days in R6/1 mice improved cognitive performance. Finally, we observed that BML-210 treatment also promoted the activation of MEF2-dependent memory-related genes and the increase of synaptic markers in the hippocampus of R6/1 mice. Our findings point out that reduced hippocampal MEF2 is an important mediator of cognitive dysfunction in HD and suggest that MEF2 slight basal activation could be a good therapeutic option.
Collapse
Affiliation(s)
- Laura Vidal-Sancho
- New Therapeutic Targets Group, Department of Medical Science, Faculty of Medicine, University of Girona, 17003, Girona, Spain
| | - Sara Fernández-García
- Departament de Biomedicina, Institut de Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, 28031, Spain
| | - Irene Solés-Tarrés
- New Therapeutic Targets Group, Department of Medical Science, Faculty of Medicine, University of Girona, 17003, Girona, Spain
| | - Jordi Alberch
- Departament de Biomedicina, Institut de Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, 28031, Spain
| | - Xavier Xifró
- New Therapeutic Targets Group, Department of Medical Science, Faculty of Medicine, University of Girona, 17003, Girona, Spain. .,Departament de Ciències Mèdiques, Facultat de Medicina, Universitat de Girona, 17003, Girona, Spain.
| |
Collapse
|
163
|
MEF2C and HDAC5 regulate Egr1 and Arc genes to increase dendritic spine density and complexity in early enriched environment. Neuronal Signal 2020; 4:NS20190147. [PMID: 32714604 PMCID: PMC7378308 DOI: 10.1042/ns20190147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 01/16/2023] Open
Abstract
We investigated the effects of environmental enrichment during critical period of early postnatal life and how it interplays with the epigenome to affect experience-dependent visual cortical plasticity. Mice raised in an EE from birth to during CP have increased spine density and dendritic complexity in the visual cortex. EE upregulates synaptic plasticity genes, Arc and Egr1, and a transcription factor MEF2C. We also observed an increase in MEF2C binding to the promoters of Arc and Egr1. In addition, pups raised in EE show a reduction in HDAC5 and its binding to promoters of Mef2c, Arc and Egr1 genes. With an overexpression of Mef2c, neurite outgrowth increased in complexity. Our results suggest a possible underlying molecular mechanism of EE, acting through MEF2C and HDAC5, which drive Arc and Egr1. This could lead to the observed increased dendritic spine density and complexity induced by early EE.
Collapse
|
164
|
Myocyte enhancer factor 2A delays vascular endothelial cell senescence by activating the PI3K/p-Akt/SIRT1 pathway. Aging (Albany NY) 2020; 11:3768-3784. [PMID: 31182679 PMCID: PMC6594820 DOI: 10.18632/aging.102015] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/31/2019] [Indexed: 01/04/2023]
Abstract
Myocyte enhancer factor 2A (MEF2A) dysfunction is closely related to the occurrence of senile diseases such as cardiocerebrovascular diseases, but the underlying molecular mechanism is unclear. Here, we studied the effects of MEF2A on the senescent phenotype of vascular endothelial cells (VEC) and downstream signaling pathway, and the association between plasma MEF2A levels and coronary artery disease (CAD). Results showed that MEF2A silencing promoted cell senescence and down-regulated PI3K/p-AKT/Sirtuin 1 (SIRT1) expression. MEF2A overexpression delayed cell senescence and up-regulated PI3K/p-AKT/SIRT1. Hydrogen peroxide (H2O2) treatment induced cellular senescence and down-regulated the expression of MEF2A and PI3K/p-AKT/SIRT1. MEF2A overexpression inhibited cellular senescence and the down-regulation of PI3K/p-AKT/SIRT1 induced by H2O2. Further study revealed that MEF2A directly up-regulated the expression of PIK3CA and PIK3CG through MEF2 binding sites in the promoter region. Pearson correlation and logistic regression analysis showed that the plasma level of MEF2A was negatively correlated with CAD, and with age in the controls. These results suggested that MEF2A can directly up-regulate PI3K gene expression, and one of the molecular mechanisms of delaying effect of MEF2A on VEC cell senescence was SIRT1-expression activation through the PI3K/p-Akt pathway. Moreover, the plasma MEF2A levels may be a potential biomarker for CAD risk prediction.
Collapse
|
165
|
Zluhan-Martínez E, Pérez-Koldenkova V, Ponce-Castañeda MV, Sánchez MDLP, García-Ponce B, Miguel-Hernández S, Álvarez-Buylla ER, Garay-Arroyo A. Beyond What Your Retina Can See: Similarities of Retinoblastoma Function between Plants and Animals, from Developmental Processes to Epigenetic Regulation. Int J Mol Sci 2020; 21:E4925. [PMID: 32664691 PMCID: PMC7404004 DOI: 10.3390/ijms21144925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
The Retinoblastoma protein (pRb) is a key cell cycle regulator conserved in a wide variety of organisms. Experimental analysis of pRb's functions in animals and plants has revealed that this protein participates in cell proliferation and differentiation processes. In addition, pRb in animals and its orthologs in plants (RBR), are part of highly conserved protein complexes which suggest the possibility that analogies exist not only between functions carried out by pRb orthologs themselves, but also in the structure and roles of the protein networks where these proteins are involved. Here, we present examples of pRb/RBR participation in cell cycle control, cell differentiation, and in the regulation of epigenetic changes and chromatin remodeling machinery, highlighting the similarities that exist between the composition of such networks in plants and animals.
Collapse
Affiliation(s)
- Estephania Zluhan-Martínez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
- Posgrado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Coyoacán 04510, Mexico
| | - Vadim Pérez-Koldenkova
- Laboratorio Nacional de Microscopía Avanzada, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc, 330. Col. Doctores, Alc. Cuauhtémoc 06720, Mexico;
| | - Martha Verónica Ponce-Castañeda
- Unidad de Investigación Médica en Enfermedades Infecciosas, Centro Médico Nacional SXXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| | - María de la Paz Sánchez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
| | - Sergio Miguel-Hernández
- Laboratorio de Citopatología Ambiental, Departamento de Morfología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Calle Wilfrido Massieu Esquina Cda, Manuel Stampa 07738, Mexico;
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
| |
Collapse
|
166
|
Zhao X, Li X, Shi X, Karpac J. Diet-MEF2 interactions shape lipid droplet diversification in muscle to influence Drosophila lifespan. Aging Cell 2020; 19:e13172. [PMID: 32537848 PMCID: PMC7433001 DOI: 10.1111/acel.13172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 04/05/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022] Open
Abstract
The number, size, and composition of lipid droplets can be influenced by dietary changes that shift energy substrate availability. This diversification of lipid droplets can promote metabolic flexibility and shape cellular stress responses in unique tissues with distinctive metabolic roles. Using Drosophila, we uncovered a role for myocyte enhancer factor 2 (MEF2) in modulating diet-dependent lipid droplet diversification within adult striated muscle, impacting mortality rates. Muscle-specific attenuation of MEF2, whose chronic activation maintains glucose and mitochondrial homeostasis, leads to the accumulation of large, cholesterol ester-enriched intramuscular lipid droplets in response to high calorie, carbohydrate-sufficient diets. The diet-dependent accumulation of these lipid droplets also correlates with both enhanced stress protection in muscle and increases in organismal lifespan. Furthermore, MEF2 attenuation releases an antagonistic regulation of cell cycle gene expression programs, and up-regulation of Cyclin E is required for diet- and MEF2-dependent diversification of intramuscular lipid droplets. The integration of MEF2-regulated gene expression networks with dietary responses thus plays a critical role in shaping muscle metabolism and function, further influencing organismal lifespan. Together, these results highlight a potential protective role for intramuscular lipid droplets during dietary adaptation.
Collapse
Affiliation(s)
- Xiao Zhao
- Department of Molecular and Cellular MedicineTexas A&M University Health Science CenterBryanTXUSA
| | - Xiaotong Li
- Department of Molecular and Cellular MedicineTexas A&M University Health Science CenterBryanTXUSA
| | - Xiangyu Shi
- Department of Molecular and Cellular MedicineTexas A&M University Health Science CenterBryanTXUSA
| | - Jason Karpac
- Department of Molecular and Cellular MedicineTexas A&M University Health Science CenterBryanTXUSA
| |
Collapse
|
167
|
Tsuzuki S, Yasuda T, Kojima S, Kawazu M, Akahane K, Inukai T, Imaizumi M, Morishita T, Miyamura K, Ueno T, Karnan S, Ota A, Hyodo T, Konishi H, Sanada M, Nagai H, Horibe K, Tomita A, Suzuki K, Muramatsu H, Takahashi Y, Miyazaki Y, Matsumura I, Kiyoi H, Hosokawa Y, Mano H, Hayakawa F. Targeting MEF2D-fusion Oncogenic Transcriptional Circuitries in B-cell Precursor Acute Lymphoblastic Leukemia. Blood Cancer Discov 2020; 1:82-95. [PMID: 34661142 PMCID: PMC8447276 DOI: 10.1158/2643-3230.bcd-19-0080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/14/2020] [Accepted: 05/11/2020] [Indexed: 11/16/2022] Open
Abstract
The cellular context that integrates gene expression, signaling, and metabolism dictates the oncogenic behavior and shapes the treatment responses in distinct cancer types. Although chimeric fusion proteins involving transcription factors (TF) are hallmarks of many types of acute lymphoblastic leukemia (ALL), therapeutically targeting the fusion proteins is a challenge. In this work, we characterize the core regulatory circuitry (CRC; interconnected autoregulatory loops of TFs) of B-ALL involving MEF2D-fusions and identify MEF2D-fusion and SREBF1 TFs as crucial CRC components. By gene silencing and pharmacologic perturbation, we reveal that the CRC integrates the pre-B-cell receptor (BCR) and lipid metabolism to maintain itself and govern malignant phenotypes. Small-molecule inhibitors of pre-BCR signaling and lipid biosynthesis disrupt the CRC and silence the MEF2D fusion in cell culture and show therapeutic efficacy in xenografted mice. Therefore, pharmacologic disruption of CRC presents a potential therapeutic strategy to target fusion protein-driven leukemia. SIGNIFICANCE Cancer type-specific gene expression is governed by transcription factors involved in a highly interconnected autoregulatory loop called CRC. Here, we characterized fusion protein-driven CRC and identified its pharmacologic vulnerabilities, opening therapeutic avenues to indirectly target fusion-driven leukemia by disrupting its CRC.See related commentary by Sadras and Müschen, p. 18. This article is highlighted in the In This Issue feature, p. 5.
Collapse
Affiliation(s)
- Shinobu Tsuzuki
- Department of Biochemistry, Aichi Medical University, School of Medicine, Nagakute, Aichi, Japan
| | - Takahiko Yasuda
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan
| | - Shinya Kojima
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Masahito Kawazu
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Koshi Akahane
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Takeshi Inukai
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | | | - Takanobu Morishita
- Department of Hematology, Japanese Red Cross Nagoya First Hospital, Nagoya, Aichi, Japan
| | - Koichi Miyamura
- Department of Hematology, Japanese Red Cross Nagoya First Hospital, Nagoya, Aichi, Japan
| | - Toshihide Ueno
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Sivasundaram Karnan
- Department of Biochemistry, Aichi Medical University, School of Medicine, Nagakute, Aichi, Japan
| | - Akinobu Ota
- Department of Biochemistry, Aichi Medical University, School of Medicine, Nagakute, Aichi, Japan
| | - Toshinori Hyodo
- Department of Biochemistry, Aichi Medical University, School of Medicine, Nagakute, Aichi, Japan
| | - Hiroyuki Konishi
- Department of Biochemistry, Aichi Medical University, School of Medicine, Nagakute, Aichi, Japan
| | - Masashi Sanada
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan
| | - Hirokazu Nagai
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan
| | - Keizo Horibe
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan
| | - Akihiro Tomita
- Department of Hematology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Kyogo Suzuki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yasushi Miyazaki
- Department of Hematology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Itaru Matsumura
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Sayama, Osaka, Japan
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yoshitaka Hosokawa
- Department of Biochemistry, Aichi Medical University, School of Medicine, Nagakute, Aichi, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Fumihiko Hayakawa
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
168
|
Associations between PHACTR1 gene polymorphisms and pulse pressure in Chinese Han population. Biosci Rep 2020; 40:224380. [PMID: 32420588 PMCID: PMC7276519 DOI: 10.1042/bsr20193779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 11/25/2022] Open
Abstract
A genome-wide association study (GWAS) in Chinese twins was performed to explore associations between genes and pulse pressure (PP) in 2012, and detected a suggestive association in the phosphatase and actin regulator 1 (PHACTR1) gene on chromosome 6p24.1 (rs1223397, P=1.04e−07). The purpose of the present study was to investigate associations of PHACTR1 gene polymorphisms with PP in a Chinese population. We recruited 347 subjects with PP ≥ 65 mmHg as cases and 359 subjects with 30 ≤ PP ≤ 45 mmHg as controls. Seven single nucleotide polymorphisms (SNPs) in the PHACTR1 gene were genotyped. Logistic regression was performed to explore associations between SNPs and PP in codominant, additive, dominant, recessive and overdominant models. The Pearson’s χ2 test was applied to assess the relationships of haplotypes and PP. The A allele of rs9349379 had a positive effect on high PP. Multivariate logistic regression analysis showed that rs9349379 was significantly related to high PP in codominant [AA vs GG, 2.255 (1.132–4.492)], additive [GG vs GA vs AA, 1.368 (1.049–1.783)] and recessive [AA vs GA + GG, 2.062 (1.051–4.045)] models. The positive association between rs499818 and high PP was significant in codominant [AA vs GG, 3.483 (1.044–11.613)] and recessive [AA vs GG + GA, 3.716 (1.119–12.339)] models. No significant association of haplotypes with PP was detected. There was no significant interaction between six SNPs without strong linkage. In conclusion, the present study presents that rs9349379 and rs499818 in the PHACTR1 gene were significantly associated with PP in Chinese population. Future research should be conducted to confirm them.
Collapse
|
169
|
Hu X, Wang W, Zeng C, He W, Zhong Z, Liu Z, Wang Y, Ye Q. Appropriate timing for hypothermic machine perfusion to preserve livers donated after circulatory death. Mol Med Rep 2020; 22:2003-2011. [PMID: 32582977 PMCID: PMC7411412 DOI: 10.3892/mmr.2020.11257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 05/28/2020] [Indexed: 12/17/2022] Open
Abstract
Hypothermic machine perfusion (HMP) is a method that can be more effective in preserving donor organs compared with cold storage (CS). However, the optimal duration and the exact mechanisms of the protevtive effects of HMP remain unknow. The present study aimed to investigate the adequate perfusion time and mechanisms underlying HMP to protect livers donated after circulatory death (DCD). After circulatory death, adult male Sprague-Dawley rat livers were subjected to 30 min of warm ischemia (WI) and were subsequently preserved by HMP or CS. To determine the optimal perfusion time, liver tissues were analyzed at 0, 1, 3, 5, 12 and 24 h post-preservation to evaluate injury and assess the expression of relevant proteins. WI livers were preserved by HMP or CS for 3 h, and liver viability was evaluated by normothermic reperfusion (NR). During NR, oxygen consumption, bile production and the activities of hepatic enzymes in the perfusate were assessed. Following 2 h of NR, levels of inflammation and oxidative stress were determined in the livers and perfusate. HMP for 3 h resulted in the highest expression of myocyte enhancer factor 2C (MEF2C) and kruppel-like factor 2 (KLF2) and the lowest expression of NF-κB p65, tumor necrosis factor (TNF)-α and interleukin (IL)-1β among the different timepoints, which indicated that 3 h may be the optimal time for HMP induction of the KLF2-dependent signaling pathway. Compared with CS-preserved livers, HMP-preserved livers displayed significantly higher oxygen consumption, lower hepatic enzyme levels in the perfusate following NR. Following HMP preservation, the expression levels of MEF2C, KLF2, endothelial nitric oxide synthase and nitric oxide were increased, whereas the expression levels of NF-κB p65, IL-1β and TNF-α were decreased compared with CS preservation. The results indicated that 3 h may be the optimal time for HMP to protect DCD rat livers. Furthermore, HMP may significantly reduce liver inflammation and oxidative stress injury by mediating the KLF2/NF-κB/eNOS-dependent signaling pathway.
Collapse
Affiliation(s)
- Xiaoyan Hu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Wei Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Cheng Zeng
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Weiyang He
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Zibiao Zhong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Zhongzhong Liu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Yanfeng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
170
|
Liu CF, Abnousi A, Bazeley P, Ni Y, Morley M, Moravec CS, Hu M, Tang WHW. Global analysis of histone modifications and long-range chromatin interactions revealed the differential cistrome changes and novel transcriptional players in human dilated cardiomyopathy. J Mol Cell Cardiol 2020; 145:30-42. [PMID: 32533974 DOI: 10.1016/j.yjmcc.2020.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 05/18/2020] [Accepted: 06/02/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Acetylation and methylation of histones alter the chromatin structure and accessibility that affect transcriptional regulators binding to enhancers and promoters. The binding of transcriptional regulators enables the interaction between enhancers and promoters, thus affecting gene expression. However, our knowledge of these epigenetic alternations in patients with heart failure remains limited. METHODS AND RESULTS From the comprehensive analysis of major histone modifications, 3-dimensional chromatin interactions, and transcriptome in left ventricular (LV) tissues from dilated cardiomyopathy (DCM) patients and non-heart failure (NF) donors, differential active enhancer and promoter regions were identified between NF and DCM. Moreover, the genome-wide average promoter signal is significantly lower in DCM than in NF. Super-enhancer (SE) analysis revealed that fewer SEs were found in DCM LVs than in NF ones, and three unique SE-associated genes between NF and DCM were identified. Moreover, SEs are enriched within the genomic region associated with long-range chromatin interactions. The differential enhancer-promoter interactions were observed in the known heart failure gene loci and are correlated with the gene expression levels. Motif analysis identified known cardiac factors and possible novel players for DCM. CONCLUSIONS We have established the cistrome of four histone modifications and chromatin interactome for enhancers and promoters in NF and DCM tissues. Differential histone modifications and enhancer-promoter interactions were found in DCM, which were associated with gene expression levels of a subset of disease-associated genes in human heart failure.
Collapse
Affiliation(s)
- Chia-Feng Liu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, USA
| | - Armen Abnousi
- Quantitative Health Sciences, Lerner Research Institute, USA
| | - Peter Bazeley
- Quantitative Health Sciences, Lerner Research Institute, USA
| | - Ying Ni
- Taussig Cancer Institute, Heart and Vascular Institute, Cleveland Clinic, OH, USA
| | | | - Christine S Moravec
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, USA
| | - Ming Hu
- Quantitative Health Sciences, Lerner Research Institute, USA
| | - W H Wilson Tang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, USA; Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, OH, USA.
| |
Collapse
|
171
|
Tange N, Hayakawa F, Yasuda T, Odaira K, Yamamoto H, Hirano D, Sakai T, Terakura S, Tsuzuki S, Kiyoi H. Staurosporine and venetoclax induce the caspase-dependent proteolysis of MEF2D-fusion proteins and apoptosis in MEF2D-fusion (+) ALL cells. Biomed Pharmacother 2020; 128:110330. [PMID: 32504922 DOI: 10.1016/j.biopha.2020.110330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 01/01/2023] Open
Abstract
MEF2D-fusion (M-fusion) genes are newly discovered recurrent gene abnormalities that are detected in approximately 5 % of acute lymphoblastic leukemia (ALL) cases. Their introduction to cells has been reported to transform cell lines or increase the colony formation of bone marrow cells, suggesting their survival-supporting ability, which prompted us to examine M-fusion-targeting drugs. To identify compounds that reduce the protein expression level of MEF2D, we developed a high-throughput screening system using 293T cells stably expressing a fusion protein of MEF2D and luciferase, in which the protein expression level of MEF2D was easily measured by a luciferase assay. We screened 3766 compounds with known pharmaceutical activities using this system and selected staurosporine as a potential inducer of the proteolysis of MEF2D. Staurosporine induced the proteolysis of M-fusion proteins in M-fusion (+) ALL cell lines. Proteolysis was inhibited by caspase inhibitors, not proteasome inhibitors, suggesting caspase dependency. Consistent with this result, the growth inhibitory effects of staurosporine were stronger in M-fusion (+) ALL cell lines than in negative cell lines, and caspase inhibitors blocked apoptosis induced by staurosporine. We identified the cleavage site of MEF2D-HNRNPUL1 by caspases and confirmed that its caspase cleavage-resistant mutant was resistant to staurosporine-induced proteolysis. Based on these results, we investigated another Food and Drug Administration-approved caspase activator, venetoclax, and found that it exerted similar effects to staurosporine, namely, the proteolysis of M-fusion proteins and strong growth inhibitory effects in M-fusion (+) ALL cell lines. The present study provides novel insights into drug screening strategies and the clinical indications of venetoclax.
Collapse
Affiliation(s)
- Naoyuki Tange
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fumihiko Hayakawa
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Takahiko Yasuda
- Clinical Research Center, Nagoya Medical Center, National Hospital Organization, Nagoya, Japan
| | - Koya Odaira
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideyuki Yamamoto
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daiki Hirano
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshiyasu Sakai
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Seitaro Terakura
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinobu Tsuzuki
- Department of Biochemistry, Aichi Medical University, School of Medicine, Japan
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
172
|
Libetti D, Bernardini A, Sertic S, Messina G, Dolfini D, Mantovani R. The Switch from NF-YAl to NF-YAs Isoform Impairs Myotubes Formation. Cells 2020; 9:cells9030789. [PMID: 32214056 PMCID: PMC7140862 DOI: 10.3390/cells9030789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 12/19/2022] Open
Abstract
NF-YA, the regulatory subunit of the trimeric transcription factor (TF) NF-Y, is regulated by alternative splicing (AS) generating two major isoforms, “long” (NF-YAl) and “short” (NF-YAs). Muscle cells express NF-YAl. We ablated exon 3 in mouse C2C12 cells by a four-guide CRISPR/Cas9n strategy, obtaining clones expressing exclusively NF-YAs (C2-YAl-KO). C2-YAl-KO cells grow normally, but are unable to differentiate. Myogenin and—to a lesser extent, MyoD— levels are substantially lower in C2-YAl-KO, before and after differentiation. Expression of the fusogenic Myomaker and Myomixer genes, crucial for the early phases of the process, is not induced. Myomaker and Myomixer promoters are bound by MyoD and Myogenin, and Myogenin overexpression induces their expression in C2-YAl-KO. NF-Y inactivation reduces MyoD and Myogenin, but not directly: the Myogenin promoter is CCAAT-less, and the canonical CCAAT of the MyoD promoter is not bound by NF-Y in vivo. We propose that NF-YAl, but not NF-YAs, maintains muscle commitment by indirectly regulating Myogenin and MyoD expression in C2C12 cells. These experiments are the first genetic evidence that the two NF-YA isoforms have functionally distinct roles.
Collapse
|
173
|
Myocyte Enhancer Factor 2A (MEF2A) Defines Oxytocin-Induced Morphological Effects and Regulates Mitochondrial Function in Neurons. Int J Mol Sci 2020; 21:ijms21062200. [PMID: 32209973 PMCID: PMC7139413 DOI: 10.3390/ijms21062200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/16/2020] [Accepted: 03/20/2020] [Indexed: 02/06/2023] Open
Abstract
The neuropeptide oxytocin (OT) is a well-described modulator of socio-emotional traits, such as anxiety, stress, social behavior, and pair bonding. However, when dysregulated, it is associated with adverse psychiatric traits, such as various aspects of autism spectrum disorder (ASD). In this study, we identify the transcription factor myocyte enhancer factor 2A (MEF2A) as the common link between OT and cellular changes symptomatic for ASD, encompassing neuronal morphology, connectivity, and mitochondrial function. We provide evidence for MEF2A as the decisive factor defining the cellular response to OT: while OT induces neurite retraction in MEF2A expressing neurons, OT causes neurite outgrowth in absence of MEF2A. A CRISPR-Cas-mediated knockout of MEF2A and retransfection of an active version or permanently inactive mutant, respectively, validated our findings. We also identified the phosphatase calcineurin as the main upstream regulator of OT-induced MEF2A signaling. Further, MEF2A signaling dampens mitochondrial functioning in neurons, as MEF2A knockout cells show increased maximal cellular respiration, spare respiratory capacity, and total cellular ATP. In summary, we reveal a central role for OT-induced MEF2A activity as major regulator of cellular morphology as well as neuronal connectivity and mitochondrial functioning, with broad implications for a potential treatment of disorders based on morphological alterations or mitochondrial dysfunction.
Collapse
|
174
|
Belluti S, Rigillo G, Imbriano C. Transcription Factors in Cancer: When Alternative Splicing Determines Opposite Cell Fates. Cells 2020; 9:E760. [PMID: 32244895 PMCID: PMC7140685 DOI: 10.3390/cells9030760] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/05/2020] [Accepted: 03/17/2020] [Indexed: 02/08/2023] Open
Abstract
Alternative splicing (AS) is a finely regulated mechanism for transcriptome and proteome diversification in eukaryotic cells. Correct balance between AS isoforms takes part in molecular mechanisms that properly define spatiotemporal and tissue specific transcriptional programs in physiological conditions. However, several diseases are associated to or even caused by AS alterations. In particular, multiple AS changes occur in cancer cells and sustain the oncogenic transcriptional program. Transcription factors (TFs) represent a key class of proteins that control gene expression by direct binding to DNA regulatory elements. AS events can generate cancer-associated TF isoforms with altered activity, leading to sustained proliferative signaling, differentiation block and apoptosis resistance, all well-known hallmarks of cancer. In this review, we focus on how AS can produce TFs isoforms with opposite transcriptional activities or antagonistic functions that severely impact on cancer biology. This summary points the attention to the relevance of the analysis of TFs splice variants in cancer, which can allow patients stratification despite the presence of interindividual genetic heterogeneity. Recurrent TFs variants that give advantage to specific cancer types not only open the opportunity to use AS transcripts as clinical biomarkers but also guide the development of new anti-cancer strategies in personalized medicine.
Collapse
Affiliation(s)
| | | | - Carol Imbriano
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, 41125 Modena, Italy; (S.B.); (G.R.)
| |
Collapse
|
175
|
Phuycharoen M, Zarrineh P, Bridoux L, Amin S, Losa M, Chen K, Bobola N, Rattray M. Uncovering tissue-specific binding features from differential deep learning. Nucleic Acids Res 2020; 48:e27. [PMID: 31974574 PMCID: PMC7049686 DOI: 10.1093/nar/gkaa009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 11/04/2019] [Accepted: 01/07/2020] [Indexed: 01/24/2023] Open
Abstract
Transcription factors (TFs) can bind DNA in a cooperative manner, enabling a mutual increase in occupancy. Through this type of interaction, alternative binding sites can be preferentially bound in different tissues to regulate tissue-specific expression programmes. Recently, deep learning models have become state-of-the-art in various pattern analysis tasks, including applications in the field of genomics. We therefore investigate the application of convolutional neural network (CNN) models to the discovery of sequence features determining cooperative and differential TF binding across tissues. We analyse ChIP-seq data from MEIS, TFs which are broadly expressed across mouse branchial arches, and HOXA2, which is expressed in the second and more posterior branchial arches. By developing models predictive of MEIS differential binding in all three tissues, we are able to accurately predict HOXA2 co-binding sites. We evaluate transfer-like and multitask approaches to regularizing the high-dimensional classification task with a larger regression dataset, allowing for the creation of deeper and more accurate models. We test the performance of perturbation and gradient-based attribution methods in identifying the HOXA2 sites from differential MEIS data. Our results show that deep regularized models significantly outperform shallow CNNs as well as k-mer methods in the discovery of tissue-specific sites bound in vivo.
Collapse
Affiliation(s)
- Mike Phuycharoen
- Department of Computer Science, The University of Manchester, Oxford Rd, Manchester M13 9PL, UK
| | - Peyman Zarrineh
- School of Health Sciences, The University of Manchester, Oxford Rd, Manchester M13 9PL, UK
| | - Laure Bridoux
- School of Medical Sciences, The University of Manchester, Oxford Rd, Manchester M13 9PL, UK
| | - Shilu Amin
- School of Medical Sciences, The University of Manchester, Oxford Rd, Manchester M13 9PL, UK
| | - Marta Losa
- Department of Orofacial Sciences and Department of Anatomy, University of California San Francisco, 513 Parnassus Avenue, HSW 740, San Francisco, CA 94143, USA
| | - Ke Chen
- Department of Computer Science, The University of Manchester, Oxford Rd, Manchester M13 9PL, UK
| | - Nicoletta Bobola
- School of Medical Sciences, The University of Manchester, Oxford Rd, Manchester M13 9PL, UK
| | - Magnus Rattray
- School of Health Sciences, The University of Manchester, Oxford Rd, Manchester M13 9PL, UK
| |
Collapse
|
176
|
Chen P, Li Z, Nie J, Wang H, Yu B, Wen Z, Sun Y, Shi X, Jin L, Wang DW. MYH7B variants cause hypertrophic cardiomyopathy by activating the CaMK-signaling pathway. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1347-1362. [DOI: 10.1007/s11427-019-1627-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/27/2020] [Indexed: 12/12/2022]
|
177
|
D'haene E, Bar-Yaacov R, Bariah I, Vantomme L, Van Loo S, Cobos FA, Verboom K, Eshel R, Alatawna R, Menten B, Birnbaum RY, Vergult S. A neuronal enhancer network upstream of MEF2C is compromised in patients with Rett-like characteristics. Hum Mol Genet 2020; 28:818-827. [PMID: 30445463 PMCID: PMC6381311 DOI: 10.1093/hmg/ddy393] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/01/2018] [Accepted: 11/08/2018] [Indexed: 01/06/2023] Open
Abstract
Mutations in myocyte enhancer factor 2C (MEF2C), an important transcription factor in neurodevelopment, are associated with a Rett-like syndrome. Structural variants (SVs) upstream of MEF2C, which do not disrupt the gene itself, have also been found in patients with a similar phenotype, suggesting that disruption of MEF2C regulatory elements can also cause a Rett-like phenotype. To characterize those elements that regulate MEF2C during neural development and that are affected by these SVs, we used genomic tools coupled with both in vitro and in vivo functional assays. Through circularized chromosome conformation capture sequencing
(4C-seq) and the assay for transposase-accessible chromatin using sequencing
(ATAC-seq), we revealed a complex interaction network in which the MEF2C promoter physically contacts several distal enhancers that are deleted or translocated by disease-associated SVs. A total of 16 selected candidate regulatory sequences were tested for enhancer activity in vitro, with 14 found to be functional enhancers. Further analyses of their in vivo activity in zebrafish showed that each of these enhancers has a distinct activity pattern during development, with eight enhancers displaying neuronal activity. In summary, our results disentangle a complex regulatory network governing neuronal MEF2C expression that involves multiple distal enhancers. In addition, the characterized neuronal enhancers pose as novel candidates to screen for mutations in neurodevelopmental disorders, such as Rett-like syndrome.
Collapse
Affiliation(s)
- Eva D'haene
- Center for Medical Genetics, Ghent University, 9000 Ghent, Belgium
| | - Reut Bar-Yaacov
- Department of Life Sciences, Faculty of Natural Sciences, The Ben-Gurion University of the Negev, Beersheba, Israel.,Center of Evolutionary Genomics and Medicine, The Ben-Gurion University of the Negev, Beersheba, Israel
| | - Inbar Bariah
- Department of Life Sciences, Faculty of Natural Sciences, The Ben-Gurion University of the Negev, Beersheba, Israel.,Center of Evolutionary Genomics and Medicine, The Ben-Gurion University of the Negev, Beersheba, Israel
| | - Lies Vantomme
- Center for Medical Genetics, Ghent University, 9000 Ghent, Belgium
| | - Sien Van Loo
- Center for Medical Genetics, Ghent University, 9000 Ghent, Belgium
| | - Francisco Avila Cobos
- Center for Medical Genetics, Ghent University, 9000 Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium.,Bioinformatics Institute Ghent from Nucleotides to Networks (BIG N2N), Ghent, Belgium
| | - Karen Verboom
- Center for Medical Genetics, Ghent University, 9000 Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Reut Eshel
- Department of Life Sciences, Faculty of Natural Sciences, The Ben-Gurion University of the Negev, Beersheba, Israel.,Center of Evolutionary Genomics and Medicine, The Ben-Gurion University of the Negev, Beersheba, Israel
| | - Rawan Alatawna
- Department of Life Sciences, Faculty of Natural Sciences, The Ben-Gurion University of the Negev, Beersheba, Israel.,Center of Evolutionary Genomics and Medicine, The Ben-Gurion University of the Negev, Beersheba, Israel
| | - Björn Menten
- Center for Medical Genetics, Ghent University, 9000 Ghent, Belgium
| | - Ramon Y Birnbaum
- Department of Life Sciences, Faculty of Natural Sciences, The Ben-Gurion University of the Negev, Beersheba, Israel.,Center of Evolutionary Genomics and Medicine, The Ben-Gurion University of the Negev, Beersheba, Israel
| | - Sarah Vergult
- Center for Medical Genetics, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
178
|
Judge SM, Deyhle MR, Neyroud D, Nosacka RL, D'Lugos AC, Cameron ME, Vohra RS, Smuder AJ, Roberts BM, Callaway CS, Underwood PW, Chrzanowski SM, Batra A, Murphy ME, Heaven JD, Walter GA, Trevino JG, Judge AR. MEF2c-Dependent Downregulation of Myocilin Mediates Cancer-Induced Muscle Wasting and Associates with Cachexia in Patients with Cancer. Cancer Res 2020; 80:1861-1874. [PMID: 32132110 DOI: 10.1158/0008-5472.can-19-1558] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 11/27/2019] [Accepted: 02/24/2020] [Indexed: 12/27/2022]
Abstract
Skeletal muscle wasting is a devastating consequence of cancer that contributes to increased complications and poor survival, but is not well understood at the molecular level. Herein, we investigated the role of Myocilin (Myoc), a skeletal muscle hypertrophy-promoting protein that we showed is downregulated in multiple mouse models of cancer cachexia. Loss of Myoc alone was sufficient to induce phenotypes identified in mouse models of cancer cachexia, including muscle fiber atrophy, sarcolemmal fragility, and impaired muscle regeneration. By 18 months of age, mice deficient in Myoc showed significant skeletal muscle remodeling, characterized by increased fat and collagen deposition compared with wild-type mice, thus also supporting Myoc as a regulator of muscle quality. In cancer cachexia models, maintaining skeletal muscle expression of Myoc significantly attenuated muscle loss, while mice lacking Myoc showed enhanced muscle wasting. Furthermore, we identified the myocyte enhancer factor 2 C (MEF2C) transcription factor as a key upstream activator of Myoc whose gain of function significantly deterred cancer-induced muscle wasting and dysfunction in a preclinical model of pancreatic ductal adenocarcinoma (PDAC). Finally, compared with noncancer control patients, MYOC was significantly reduced in skeletal muscle of patients with PDAC defined as cachectic and correlated with MEF2c. These data therefore identify disruptions in MEF2c-dependent transcription of Myoc as a novel mechanism of cancer-associated muscle wasting that is similarly disrupted in muscle of patients with cachectic cancer. SIGNIFICANCE: This work identifies a novel transcriptional mechanism that mediates skeletal muscle wasting in murine models of cancer cachexia that is disrupted in skeletal muscle of patients with cancer exhibiting cachexia.
Collapse
Affiliation(s)
- Sarah M Judge
- Department of Physical Therapy, University of Florida Health Science Center, Gainesville, Florida.
| | - Michael R Deyhle
- Department of Physical Therapy, University of Florida Health Science Center, Gainesville, Florida
| | - Daria Neyroud
- Department of Physical Therapy, University of Florida Health Science Center, Gainesville, Florida
| | - Rachel L Nosacka
- Department of Physical Therapy, University of Florida Health Science Center, Gainesville, Florida
| | - Andrew C D'Lugos
- Department of Physical Therapy, University of Florida Health Science Center, Gainesville, Florida
| | - Miles E Cameron
- Department of Physical Therapy, University of Florida Health Science Center, Gainesville, Florida.,Department of Surgery, University of Florida Health Science Center, Gainesville, Florida
| | - Ravneet S Vohra
- Department of Physiology, College of Medicine, University of Florida Health Science Center, Gainesville, Florida
| | - Ashley J Smuder
- Department of Health and Human Performance, University of Florida, Gainesville, Florida
| | - Brandon M Roberts
- Department of Physical Therapy, University of Florida Health Science Center, Gainesville, Florida
| | - Chandler S Callaway
- Department of Physical Therapy, University of Florida Health Science Center, Gainesville, Florida
| | - Patrick W Underwood
- Department of Surgery, University of Florida Health Science Center, Gainesville, Florida
| | - Stephen M Chrzanowski
- Department of Physiology, College of Medicine, University of Florida Health Science Center, Gainesville, Florida
| | - Abhinandan Batra
- Department of Physiology, College of Medicine, University of Florida Health Science Center, Gainesville, Florida
| | - Meghan E Murphy
- Department of Physical Therapy, University of Florida Health Science Center, Gainesville, Florida
| | - Jonathan D Heaven
- Department of Physical Therapy, University of Florida Health Science Center, Gainesville, Florida
| | - Glenn A Walter
- Department of Physiology, College of Medicine, University of Florida Health Science Center, Gainesville, Florida
| | - Jose G Trevino
- Department of Surgery, University of Florida Health Science Center, Gainesville, Florida
| | - Andrew R Judge
- Department of Physical Therapy, University of Florida Health Science Center, Gainesville, Florida.
| |
Collapse
|
179
|
Xu X, Zeng Z, Huo L, Liu H, Yu Y, Zhang L, Cen J, Qiu H, Tang X, Fu C, Han Y, Miao M, Jin Z, Ruan C, Wu D, Chen S, Wang Q, Yan L. High expression of myocyte enhancer factor 2C predicts poor prognosis for adult acute myeloid leukaemia with normal karyotype. Br J Haematol 2020; 189:e23-e27. [PMID: 32017034 DOI: 10.1111/bjh.16418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Xiaoyu Xu
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Zhao Zeng
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou, China
| | - Li Huo
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou, China
| | - Hong Liu
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yan Yu
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou, China
| | - Ling Zhang
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou, China
| | - Jiannong Cen
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou, China
| | - Huiying Qiu
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xiaowen Tang
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Chengcheng Fu
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yue Han
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Miao Miao
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Zhengming Jin
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Changgeng Ruan
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Depei Wu
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Suning Chen
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Qinrong Wang
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Lingzhi Yan
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| |
Collapse
|
180
|
Moradi F, Copeland EN, Baranowski RW, Scholey AE, Stuart JA, Fajardo VA. Calmodulin-Binding Proteins in Muscle: A Minireview on Nuclear Receptor Interacting Protein, Neurogranin, and Growth-Associated Protein 43. Int J Mol Sci 2020; 21:E1016. [PMID: 32033037 PMCID: PMC7038096 DOI: 10.3390/ijms21031016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/27/2020] [Accepted: 01/31/2020] [Indexed: 01/26/2023] Open
Abstract
Calmodulin (CaM) is an important Ca2+-sensing protein with numerous downstream targets that are either CaM-dependant or CaM-regulated. In muscle, CaM-dependent proteins, which are critical regulators of dynamic Ca2+ handling and contractility, include calcineurin (CaN), CaM-dependant kinase II (CaMKII), ryanodine receptor (RyR), and dihydropyridine receptor (DHPR). CaM-regulated targets include genes associated with oxidative metabolism, muscle plasticity, and repair. Despite its importance in muscle, the regulation of CaM-particularly its availability to bind to and activate downstream targets-is an emerging area of research. In this minireview, we discuss recent studies revealing the importance of small IQ motif proteins that bind to CaM to either facilitate (nuclear receptor interacting protein; NRIP) its activation of downstream targets, or sequester (neurogranin, Ng; and growth-associated protein 43, GAP43) CaM away from their downstream targets. Specifically, we discuss recent studies that have begun uncovering the physiological roles of NRIP, Ng, and GAP43 in skeletal and cardiac muscle, thereby highlighting the importance of endogenously expressed CaM-binding proteins and their regulation of CaM in muscle.
Collapse
Affiliation(s)
- Fereshteh Moradi
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (F.M.); (J.A.S.)
| | - Emily N. Copeland
- Centre for Neuroscience, Brock University, St. Catharines, ON L2S 3A1, Canada;
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada;
| | - Ryan W. Baranowski
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada;
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada;
| | - Aiden E. Scholey
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada;
| | - Jeffrey A. Stuart
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (F.M.); (J.A.S.)
| | - Val A. Fajardo
- Centre for Neuroscience, Brock University, St. Catharines, ON L2S 3A1, Canada;
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada;
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada;
| |
Collapse
|
181
|
Ouyang H, Yu J, Chen X, Wang Z, Nie Q. A novel transcript of MEF2D promotes myoblast differentiation and its variations associated with growth traits in chicken. PeerJ 2020; 8:e8351. [PMID: 32117604 PMCID: PMC7006513 DOI: 10.7717/peerj.8351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 12/04/2019] [Indexed: 12/28/2022] Open
Abstract
Background Development of skeletal muscle is closely related to broiler production traits. The myocyte-specific enhancer binding factor (MEF) 2D gene (MEF2D) and its variant transcripts play important parts in myogenesis. Methods To identify the transcript variants of chicken MEF2D gene and their function, this study cloned chicken MEF2D gene and identified its transcript variants from different tissue samples. The expression levels of different transcripts of MEF2D gene in different tissues and different periods were measured, and their effects on myoblast proliferation and differentiation were investigated. Variations in MEF2D were identified and association analysis with chicken production traits carried out. Results Four novel transcript variants of MEF2D were obtained, all of which contained highly conserved sequences, including MADS-Box and MEF2-Domain functional regions. Transcript MEF2D-V4 was expressed specifically in muscle, and its expression was increased during embryonic muscle development. The MEF2D-V4 could promote differentiation of chicken myoblasts and its expression was regulated by RBFOX2. The single nucleotide polymorphism g.36186C > T generated a TAG stop codon, caused MEF2D-V4 to terminate translation early, and was associated with several growth traits, especially on early body weight. Conclusion We cloned the muscle-specific transcript of MEF2D and preliminarily revealed its role in embryonic muscle development.
Collapse
Affiliation(s)
- Hongjia Ouyang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Jiao Yu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiaolan Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhijun Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
182
|
Xiang J, Zhang N, Sun H, Su L, Zhang C, Xu H, Feng J, Wang M, Chen J, Liu L, Shan J, Shen J, Yang Z, Wang G, Zhou H, Prieto J, Ávila MA, Liu C, Qian C. Disruption of SIRT7 Increases the Efficacy of Checkpoint Inhibitor via MEF2D Regulation of Programmed Cell Death 1 Ligand 1 in Hepatocellular Carcinoma Cells. Gastroenterology 2020; 158:664-678.e24. [PMID: 31678303 DOI: 10.1053/j.gastro.2019.10.025] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Immune checkpoint inhibitors have some efficacy in the treatment of hepatocellular carcinoma (HCC). Programmed cell death 1 ligand 1 (PD-L1), expressed on some cancer cells, binds to the receptor programmed cell death 1 (PDCD1, also called PD1) on T cells to prevent their proliferation and reduce the antigen-tumor immune response. Immune cells that infiltrate some types of HCCs secrete interferon gamma (IFNG). Some HCC cells express myocyte enhancer factor 2D (MEF2D), which has been associated with shorter survival times of patients. We studied whether HCC cell expression of MEF2D regulates expression of PD-L1 in response to IFNG. METHODS We analyzed immune cells from 20 fresh HCC tissues by flow cytometry. We analyzed 225 fixed HCC tissues (from 2 cohorts) from patients in China by immunohistochemistry and obtained survival data. We created mice with liver-specific knockout of MEF2D (MEF2DLPC-KO mice). We knocked out or knocked down MEF2D, E1A binding protein p300 (p300), or sirtuin 7 (SIRT7) in SMMC-7721, Huh7, H22, and Hepa1-6 HCC cell lines, some incubated with IFNG. We analyzed liver tissues from mice and cell lines by RNA sequencing, immunoblot, dual luciferase reporter, and chromatin precipitation assays. MEF2D protein acetylation and proteins that interact with MEF2D were identified by coimmunoprecipitation and pull-down assays. H22 cells, with MEF2D knockout or without (controls), were transplanted into BALB/c mice, and some mice were given antibodies to deplete T cells. Mice bearing orthotopic tumors grown from HCC cells, with or without knockout of SIRT7, were given injections of an antibody against PD1. Growth of tumors was measured, and tumors were analyzed by immunohistochemistry and flow cytometry. RESULTS In human HCC specimens, we found an inverse correlation between level of MEF2D and numbers of CD4+ and CD8+ T cells; level of MEF2D correlated with percentages of PD1-positive or TIM3-positive CD8+ T cells. Knockout of MEF2D from H22 cells reduced their growth as allograft tumors in immune-competent mice but not in immune-deficient mice or mice with depletion of CD8+ T cells. When MEF2D-knockout cells were injected into immune-competent mice, they formed smaller tumors that had increased infiltration and activation of T cells compared with control HCC cells. In human and mouse HCC cells, MEF2D knockdown or knockout reduced expression of PD-L1. MEF2D bound the promoter region of the CD274 gene (encodes PD-L1) and activated its transcription. Overexpression of p300 in HCC cells, or knockout of SIRT7, promoted acetylation of MEF2D and increased its binding, along with acetylated histones, to the promoter region of CD274. Exposure of HCC cells to IFNG induced expression of p300 and its binding MEF2D, which reduced the interaction between MEF2D and SIRT7. MEF2D-induced expression of PD-L1 upon IFNG exposure was independent of interferon-regulatory factors 1 or 9. In HCC cells not exposed to IFNG, SIRT7 formed a complex with MEF2D that attenuated expression of PD-L1. Knockout of SIRT7 reduced proliferation of HCC cells and growth of tumors in immune-deficient mice. Compared with allograft tumors grown from control HCC cells, in immune-competent mice, tumors grown from SIRT7-knockout HCC cells expressed higher levels of PD-L1 and had reduced infiltration and activation of T cells. In immune-competent mice given antibodies to PD1, allograft tumors grew more slowly from SIRT7-knockout HCC cells than from control HCC cells. CONCLUSIONS Expression of MEF2D by HCC cells increases their expression of PD-L1, which prevents CD8+ T-cell-mediated antitumor immunity. When HCC cells are exposed to IFNG, p300 acetylates MEF2D, causing it to bind the CD274 gene promoter and up-regulate PD-L1 expression. In addition to promoting HCC cell proliferation, SIRT7 reduced acetylation of MEF2D and expression of PD-L1 in HCC cells not exposed to IFNG. Strategies to manipulate this pathway might increase the efficacy of immune therapies for HCC.
Collapse
Affiliation(s)
- Junyu Xiang
- Center of Biotherapy, Southwest Hospital, Army Medical University, Chongqing, China
| | - Ni Zhang
- Center of Biotherapy, Southwest Hospital, Army Medical University, Chongqing, China
| | - Hui Sun
- Center of Biotherapy, Southwest Hospital, Army Medical University, Chongqing, China
| | - Li Su
- Department of Oncology, Chinese Traditional Medicine Hospital, Chongqing, China
| | - Chengcheng Zhang
- Department of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Huailong Xu
- Center of Biotherapy, Southwest Hospital, Army Medical University, Chongqing, China
| | - Juan Feng
- Center of Biotherapy, Southwest Hospital, Army Medical University, Chongqing, China; Center for Precision Medicine of Cancer, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Meiling Wang
- Center of Biotherapy, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jun Chen
- Center of Biotherapy, Southwest Hospital, Army Medical University, Chongqing, China
| | - Limei Liu
- Center of Biotherapy, Southwest Hospital, Army Medical University, Chongqing, China; Center for Precision Medicine of Cancer, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Juanjuan Shan
- Center of Biotherapy, Southwest Hospital, Army Medical University, Chongqing, China
| | - Junjie Shen
- Center of Biotherapy, Southwest Hospital, Army Medical University, Chongqing, China
| | - Zhi Yang
- Center of Biotherapy, Southwest Hospital, Army Medical University, Chongqing, China
| | - Guiqin Wang
- Center of Biotherapy, Southwest Hospital, Army Medical University, Chongqing, China
| | - Haijun Zhou
- Center of Biotherapy, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jesus Prieto
- Hepatology Program. Cima, University of Navarra; Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Matías A Ávila
- Hepatology Program. Cima, University of Navarra; Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Chungang Liu
- Center of Biotherapy, Southwest Hospital, Army Medical University, Chongqing, China
| | - Cheng Qian
- Center of Biotherapy, Southwest Hospital, Army Medical University, Chongqing, China; Center for Precision Medicine of Cancer, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China.
| |
Collapse
|
183
|
Yu J, Yang Y, Xu Z, Lan C, Chen C, Li C, Chen Z, Yu C, Xia X, Liao Q, Jose PA, Zeng C, Wu G. Long Noncoding RNA Ahit Protects Against Cardiac Hypertrophy Through SUZ12 (Suppressor of Zeste 12 Protein Homolog)-Mediated Downregulation of MEF2A (Myocyte Enhancer Factor 2A). Circ Heart Fail 2020; 13:e006525. [PMID: 31957467 DOI: 10.1161/circheartfailure.119.006525] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Long noncoding RNA (lncRNA) can regulate various physiological and pathological processes through multiple molecular mechanisms in cis and in trans. However, the role of lncRNAs in cardiac hypertrophy is yet to be fully elucidated. METHODS A mouse lncRNA microarray was used to identify differentially expressed lncRNAs in the mouse hearts following transverse aortic constriction-induced pressure overload comparing to the sham-operated samples. The direct impact of one lncRNA, Ahit, on cardiomyocyte hypertrophy was characterized in neonatal rat cardiomyocytes in response to phenylephrine by targeted knockdown and overexpression. The in vivo function of Ahit was analyzed in mouse hearts by using cardiac-specific adeno-associated virus, serotype 9-short hairpin RNA to knockdown Ahit in combination with transverse aortic constriction. Using catRAPID program, an interaction between Ahit and SUZ12 (suppressor of zeste 12 protein homolog) was predicted and validated by RNA immunoprecipitation and immunoblotting following RNA pull-down. Chromatin immunoprecipitation was performed to determine SUZ12 or H3K27me3 occupancy on the MEF2A (myocyte enhancer factor 2A) promoter. Finally, the expression of human Ahit (leukemia-associated noncoding IGF1R activator RNA 1 [LUNAR1]) in the serum samples from patients of hypertrophic cardiomyopathy was tested by quantitative real-time polymerase chain reaction. RESULTS A previously unannotated lncRNA, antihypertrophic interrelated transcript (Ahit), was identified to be upregulated in the mouse hearts after transverse aortic constriction. Inhibition of Ahit induced cardiac hypertrophy, both in vitro and in vivo, associated with increased expression of MEF2A, a critical transcriptional factor involved in cardiac hypertrophy. In contrast, overexpression of Ahit significantly attenuated stress-induced cardiac hypertrophy in vitro. Furthermore, Ahit was significantly upregulated in serum samples of patients diagnosed with hypertensive heart disease versus nonhypertrophic hearts (1.46±0.17 fold, P=0.0325). Mechanistically, Ahit directly bound and recruited SUZ12, a core PRC2 (polycomb repressive complex 2) protein, to the promoter of MEF2A, triggering its trimethylation on H3 lysine 27 (H3K27me3) residues and mediating the downregulation of MEF2A, thereby preventing cardiac hypertrophy. CONCLUSIONS Ahit is a lncRNA with a significant role in cardiac hypertrophy regulation through epigenomic modulation. Ahit is a potential therapeutic target of cardiac hypertrophy.
Collapse
Affiliation(s)
- Junyi Yu
- Department of Cardiology, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, P.R. China (J.Y., Y.Y., Z.X., C.L., C.C., C.L., Z.C., C.Y., X.X., Q.L., C.Z., G.W.)
| | - Yang Yang
- Department of Cardiology, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, P.R. China (J.Y., Y.Y., Z.X., C.L., C.C., C.L., Z.C., C.Y., X.X., Q.L., C.Z., G.W.)
| | - Zaicheng Xu
- Department of Cardiology, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, P.R. China (J.Y., Y.Y., Z.X., C.L., C.C., C.L., Z.C., C.Y., X.X., Q.L., C.Z., G.W.)
| | - Cong Lan
- Department of Cardiology, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, P.R. China (J.Y., Y.Y., Z.X., C.L., C.C., C.L., Z.C., C.Y., X.X., Q.L., C.Z., G.W.)
| | - Caiyu Chen
- Department of Cardiology, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, P.R. China (J.Y., Y.Y., Z.X., C.L., C.C., C.L., Z.C., C.Y., X.X., Q.L., C.Z., G.W.)
| | - Chuanwei Li
- Department of Cardiology, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, P.R. China (J.Y., Y.Y., Z.X., C.L., C.C., C.L., Z.C., C.Y., X.X., Q.L., C.Z., G.W.)
| | - Zhi Chen
- Department of Cardiology, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, P.R. China (J.Y., Y.Y., Z.X., C.L., C.C., C.L., Z.C., C.Y., X.X., Q.L., C.Z., G.W.)
| | - Cheng Yu
- Department of Cardiology, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, P.R. China (J.Y., Y.Y., Z.X., C.L., C.C., C.L., Z.C., C.Y., X.X., Q.L., C.Z., G.W.)
| | - Xuewei Xia
- Department of Cardiology, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, P.R. China (J.Y., Y.Y., Z.X., C.L., C.C., C.L., Z.C., C.Y., X.X., Q.L., C.Z., G.W.)
| | - Qiao Liao
- Department of Cardiology, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, P.R. China (J.Y., Y.Y., Z.X., C.L., C.C., C.L., Z.C., C.Y., X.X., Q.L., C.Z., G.W.)
| | - Pedro A Jose
- Division of Renal Disease & Hypertension, Departments of Medicine and Pharmacology/Physiology. The George Washington University School of Medicine and Health Sciences, Washington, DC (P.A.J.)
| | - Chunyu Zeng
- Department of Cardiology, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, P.R. China (J.Y., Y.Y., Z.X., C.L., C.C., C.L., Z.C., C.Y., X.X., Q.L., C.Z., G.W.).,Cardiovascular Research Center, Chongqing College, University of Chinese Academy of Sciences, Chongqing, P.R. China (C.Z.)
| | - Gengze Wu
- Department of Cardiology, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, P.R. China (J.Y., Y.Y., Z.X., C.L., C.C., C.L., Z.C., C.Y., X.X., Q.L., C.Z., G.W.)
| |
Collapse
|
184
|
Rhim C, E. Kraus W, A. Truskey G. Biomechanical effects on microRNA expression in skeletal muscle differentiation. AIMS BIOENGINEERING 2020. [DOI: 10.3934/bioeng.2020014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
185
|
Jurek B, Meyer M. Anxiolytic and Anxiogenic? How the Transcription Factor MEF2 Might Explain the Manifold Behavioral Effects of Oxytocin. Front Endocrinol (Lausanne) 2020; 11:186. [PMID: 32322239 PMCID: PMC7156634 DOI: 10.3389/fendo.2020.00186] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/17/2020] [Indexed: 01/01/2023] Open
Abstract
The neuromodulator oxytocin, since its first synthesis by du Vigneaud in 1953, has mainly been associated with beneficial physiological effects, as well as positive social and emotional behaviors. This overall positive picture of oxytocin as the "love-, cuddle-, or bonding-hormone" has repeatedly been challenged since then. Oxytocin-induced effects that would be perceived as negative by the individual, such as increased anxiety or potentiation of stress-induced ACTH release, as well as the regulation of negative approach-related emotions, such as envy and schadenfreude (gloating) have been described. The general consent is that oxytocin, instead of acting unidirectional, induces changes in the salience network to shift the emphasis of emotional contexts, and therefore can, e.g., produce both anxiolytic as well as anxiogenic behavioral outcomes. However, the underlying mechanisms leading to alterations in the salience network are still unclear. With the aim to understand the manifold effects of oxytocin on a cellular/molecular level, a set of oxytocin receptor-coupled signaling cascades and downstream effectors regulating transcription and translation has been identified. Those oxytocin-driven effectors, such as MEF2 and CREB, are known modulators of the neuronal and glial cytoarchitecture. We hypothesize that, by determining cellular morphology and connectivity, MEF2 is one of the key factors that might contribute to the diverse behavioral effects of oxytocin.
Collapse
|
186
|
Pasqualucci L. Molecular pathogenesis of germinal center-derived B cell lymphomas. Immunol Rev 2019; 288:240-261. [PMID: 30874347 DOI: 10.1111/imr.12745] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 01/21/2019] [Accepted: 01/25/2019] [Indexed: 12/14/2022]
Abstract
B cell lymphomas comprise a heterogeneous group of genetically, biologically, and clinically distinct neoplasms that, in most cases, originate from the clonal expansion of B cells in the germinal center (GC). In recent years, the advent of novel genomics technologies has revolutionized our understanding of the molecular pathogenesis of lymphoid malignancies as a multistep process that requires the progressive accumulation of multiple genetic and epigenetic alterations. A common theme that emerged from these studies is the ability of lymphoma cells to co-opt the same biological programs and signal transduction networks that operate during the normal GC reaction, and misuse them for their own survival advantage. This review summarizes recent progress in the understanding of the genetic and epigenetic mechanisms that drive the malignant transformation of GC B cells. These insights provide a conceptual framework for the identification of cellular pathways that may be explored for precision medicine approaches.
Collapse
Affiliation(s)
- Laura Pasqualucci
- Pathology and Cell Biology, Institute for Cancer Genetics, Columbia University, New York City, New York
| |
Collapse
|
187
|
Rbfox-Splicing Factors Maintain Skeletal Muscle Mass by Regulating Calpain3 and Proteostasis. Cell Rep 2019; 24:197-208. [PMID: 29972780 DOI: 10.1016/j.celrep.2018.06.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/27/2017] [Accepted: 06/01/2018] [Indexed: 01/01/2023] Open
Abstract
Maintenance of skeletal muscle mass requires a dynamic balance between protein synthesis and tightly controlled protein degradation by the calpain, autophagy-lysosome, and ubiquitin-proteasome systems (proteostasis). Several sensing and gene-regulatory mechanisms act together to maintain this balance in response to changing conditions. Here, we show that deletion of the highly conserved Rbfox1 and Rbfox2 alternative splicing regulators in adult mouse skeletal muscle causes rapid, severe loss of muscle mass. Rbfox deletion did not cause a reduction in global protein synthesis, but it led to altered splicing of hundreds of gene transcripts, including capn3, which produced an active form of calpain3 protease. Rbfox knockout also led to a reduction in autophagy flux, likely producing a compensatory increase in general protein degradation by the proteasome. Our results indicate that the Rbfox-splicing factors are essential for the maintenance of skeletal muscle mass and proteostasis.
Collapse
|
188
|
Huang H, Zhao Y, Shang X, Ren H, Zhao Y, Liu X. CAIII expression in skeletal muscle is regulated by Ca2+–CaMKII–MEF2C signaling. Exp Cell Res 2019; 385:111672. [DOI: 10.1016/j.yexcr.2019.111672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/25/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022]
|
189
|
MESH Headings
- Animals
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aorta, Abdominal/physiopathology
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Gene Expression Regulation
- Humans
- MicroRNAs/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Phenotype
- Signal Transduction
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription, Genetic
- Vascular Diseases/genetics
- Vascular Diseases/pathology
- Vascular Diseases/physiopathology
- Vascular Remodeling/physiology
Collapse
Affiliation(s)
- Ning Shi
- Department of Surgery, University of Missouri, Columbia, MO
- Department of Physiology & pharmacology, The University of Georgia, Athens, GA
| | - Xiaohan Mei
- Department of Physiology & pharmacology, The University of Georgia, Athens, GA
| | - Shi-You Chen
- Department of Surgery, University of Missouri, Columbia, MO
- Department of Physiology & pharmacology, The University of Georgia, Athens, GA
- Correspondence to: Shi-You Chen, PhD, Department of Surgery, University of Missouri, 1 Hospital Drive, Columbia, MO 65212, , Tel: (573) 882-3137, Fax: (573)884-4585
| |
Collapse
|
190
|
Yang K, Li D, Wang M, Xu Z, Chen X, Liu Q, Sun W, Li J, Gong Y, Liu D, Shao C, Liu Q, Li X. Exposure to blue light stimulates the proangiogenic capability of exosomes derived from human umbilical cord mesenchymal stem cells. Stem Cell Res Ther 2019; 10:358. [PMID: 31779691 PMCID: PMC6883639 DOI: 10.1186/s13287-019-1472-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/20/2019] [Accepted: 10/28/2019] [Indexed: 12/30/2022] Open
Abstract
Background The therapeutic potential of mesenchymal stem cells (MSCs) may be attributed partly to the secreted paracrine factors, which comprise exosomes. Exosomes are small, saucer-shaped vesicles containing miRNAs, mRNAs, and proteins. Exosomes derived from human umbilical cord mesenchymal stem cells (hUC-MSCs) have been reported to promote angiogenesis. However, the efficacy of exosome-based therapies is still limited both in vitro and in vivo. The present study aimed to develop a new optical manipulation approach to stimulate the proangiogenic potential of exosomes and characterize its mechanism underlying tissue regeneration. Methods We used blue (455 nm) and red (638 nm) monochromatic light exposure to investigate the processing of stimuli. Exosomes were prepared by QIAGEN exoEasy Maxi kit and confirmed to be present by transmission electron microscopy and immunoblotting analyses. The proangiogenic activity of blue light-treated human umbilical vein endothelial cells (HUVECs), when co-cultured with hUC-MSCs, was assessed by EdU (5-ethynyl-2′-deoxyuridine) incorporation, wound closure, and endothelial tube formation assays. The in vivo angiogenic activity of blue light-treated MSC-derived exosomes (MSC-Exs) was evaluated using both murine matrigel plug and skin wound models. Results We found that 455-nm blue light is effective for promoting proliferation, migration, and tube formation of HUVECs co-cultured with MSCs. Furthermore, MSC-Exs stimulated in vivo angiogenesis and their proangiogenic potential were enhanced significantly upon blue light illumination. Finally, activation of the endothelial cells in response to stimulation by blue light-treated exosomes was demonstrated by upregulation of two miRNAs, miR-135b-5p, and miR-499a-3p. Conclusions Blue (455 nm) light illumination improved the therapeutic effects of hUC-MSC exosomes by enhancing their proangiogenic ability in vitro and in vivo with the upregulation of the following two miRNAs: miR-135b-5p and miR-499a-3p. Graphical abstract ![]()
Collapse
Affiliation(s)
- Kun Yang
- Key Laboratory of Experimental Teratology, Ministry of Education Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, 44 Wen Hua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Dong Li
- Cryomedicine Laboratory, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.,Stem Cell and Regenerative Medicine Research Center of Shandong University, Jinan, 250012, Shandong, China
| | - Meitian Wang
- Key Laboratory of Experimental Teratology, Ministry of Education Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, 44 Wen Hua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Zhiliang Xu
- Key Laboratory of Experimental Teratology, Ministry of Education Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, 44 Wen Hua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Xiao Chen
- Key Laboratory of Experimental Teratology, Ministry of Education Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, 44 Wen Hua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Qiao Liu
- Key Laboratory of Experimental Teratology, Ministry of Education Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, 44 Wen Hua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Wenjie Sun
- Key Laboratory of Experimental Teratology, Ministry of Education Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, 44 Wen Hua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Jiangxia Li
- Key Laboratory of Experimental Teratology, Ministry of Education Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, 44 Wen Hua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Yaoqin Gong
- Key Laboratory of Experimental Teratology, Ministry of Education Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, 44 Wen Hua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Duo Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, People's Republic of China
| | - Changshun Shao
- The First Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Qiji Liu
- Key Laboratory of Experimental Teratology, Ministry of Education Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, 44 Wen Hua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Xi Li
- Key Laboratory of Experimental Teratology, Ministry of Education Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, 44 Wen Hua Xi Road, Jinan, Shandong, 250012, People's Republic of China. .,Advanced Medical Research Institute, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
191
|
Recovery in the Myogenic Program of Congenital Myotonic Dystrophy Myoblasts after Excision of the Expanded (CTG) n Repeat. Int J Mol Sci 2019; 20:ijms20225685. [PMID: 31766224 PMCID: PMC6888582 DOI: 10.3390/ijms20225685] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
The congenital form of myotonic dystrophy type 1 (cDM) is caused by the large-scale expansion of a (CTG•CAG)n repeat in DMPK and DM1-AS. The production of toxic transcripts with long trinucleotide tracts from these genes results in impairment of the myogenic differentiation capacity as cDM’s most prominent morpho-phenotypic hallmark. In the current in vitro study, we compared the early differentiation programs of isogenic cDM myoblasts with and without a (CTG)2600 repeat obtained by gene editing. We found that excision of the repeat restored the ability of cDM myoblasts to engage in myogenic fusion, preventing the ensuing myotubes from remaining immature. Although the cDM-typical epigenetic status of the DM1 locus and the expression of genes therein were not altered upon removal of the repeat, analyses at the transcriptome and proteome level revealed that early abnormalities in the temporal expression of differentiation regulators, myogenic progression markers, and alternative splicing patterns before and immediately after the onset of differentiation became normalized. Our observation that molecular and cellular features of cDM are reversible in vitro and can be corrected by repeat-directed genome editing in muscle progenitors, when already committed and poised for myogenic differentiation, is important information for the future development of gene therapy for different forms of myotonic dystrophy type 1 (DM1).
Collapse
|
192
|
List EO, Berryman DE, Jensen EA, Kulkarni P, McKenna S, Kopchick JJ. New insights of growth hormone (GH) actions from tissue-specific GH receptor knockouts in mice. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2019; 63:557-567. [PMID: 31939480 PMCID: PMC7203760 DOI: 10.20945/2359-3997000000185] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/09/2019] [Indexed: 12/11/2022]
Abstract
In order to provide new insights into the various activities of GH in specific tissues, recent advances have allowed for the generation of tissue-specific GHR knockout mice. To date, 21 distinct tissue-specific mouse lines have been created and reported in 28 publications. Targeted tissues include liver, muscle, fat, brain, bone, heart, intestine, macrophage, pancreatic beta cells, hematopoietic stem cells, and multi-tissue "global". In this review, we provide a brief history and description of the 21 tissue-specific GHR knockout mouse lines. Arch Endocrinol Metab. 2019;63(6):557-67.
Collapse
Affiliation(s)
- Edward O. List
- The Edison Biotechnology InstituteOhio UniversityAthensOhioUSAThe Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
| | - Darlene E. Berryman
- The Edison Biotechnology InstituteOhio UniversityAthensOhioUSAThe Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
- The Department of Biomedical SciencesHeritage College of Osteopathic MedicineOhio UniversityAthensOhioUSAThe Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | - Elizabeth A. Jensen
- The Edison Biotechnology InstituteOhio UniversityAthensOhioUSAThe Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
| | - Prateek Kulkarni
- The Edison Biotechnology InstituteOhio UniversityAthensOhioUSAThe Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
| | - Savannah McKenna
- The Edison Biotechnology InstituteOhio UniversityAthensOhioUSAThe Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
| | - John J. Kopchick
- The Edison Biotechnology InstituteOhio UniversityAthensOhioUSAThe Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
- The Department of Biomedical SciencesHeritage College of Osteopathic MedicineOhio UniversityAthensOhioUSAThe Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| |
Collapse
|
193
|
Mechanism and Functions of Identified miRNAs in Poultry Skeletal Muscle Development – A Review. ANNALS OF ANIMAL SCIENCE 2019. [DOI: 10.2478/aoas-2019-0049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
Development of the skeletal muscle goes through several complex processes regulated by numerous genetic factors. Although much efforts have been made to understand the mechanisms involved in increased muscle yield, little work is done about the miRNAs and candidate genes that are involved in the skeletal muscle development in poultry. Comprehensive research of candidate genes and single nucleotide related to poultry muscle growth is yet to be experimentally unraveled. However, over a few periods, studies in miRNA have disclosed that they actively participate in muscle formation, differentiation, and determination in poultry. Specifically, miR-1, miR-133, and miR-206 influence tissue development, and they are highly expressed in the skeletal muscles. Candidate genes such as CEBPB, MUSTN1, MSTN, IGF1, FOXO3, mTOR, and NFKB1, have also been identified to express in the poultry skeletal muscles development. However, further researches, analysis, and comprehensive studies should be made on the various miRNAs and gene regulatory factors that influence the skeletal muscle development in poultry. The objective of this review is to summarize recent knowledge in miRNAs and their mode of action as well as transcription and candidate genes identified to regulate poultry skeletal muscle development.
Collapse
|
194
|
Philbrook NA, Nikolovska A, Maciver RD, Belanger CL, Winn LM. Characterizing the effects of in utero exposure to valproic acid on murine fetal heart development. Birth Defects Res 2019; 111:1551-1560. [PMID: 31661193 DOI: 10.1002/bdr2.1610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/26/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Recently, the use of the antiepileptic drug valproic acid (VPA) for the treatment of psychiatric conditions has been on the rise. However, studies have shown that in utero VPA exposure can affect embryonic development, including being associated with congenital heart defects. One proposed mechanism of VPA-initiated teratogenicity is the inhibition of histone deacetylase, which is involved in the regulation of transcription factors that regulate cardiogenesis. Myocyte enhancing factor 2C (Mef2c), a transcription factor involved in the development of cardiac structure and cardiomyocyte differentiation, has been shown to increase in response to in utero VPA exposure, associating with contractile dysfunction and myocardial disorganization. METHODS To characterize the effects of VPA on murine heart development, pregnant CD-1 mice were dosed with 400 mg/kg of VPA on gestational day (GD) 9. Using high-resolution ultrasound, we examined the effects of VPA on cardiac contractile function on GD 14-18, with fetal hearts being harvested on GD 19 for histological analysis. Lastly, we conducted quantitative real-time polymerase chain reaction to measure the relative Mef2c gene expression in GD 16 murine hearts. RESULTS We observed structural anomalies at GD 19 in the hearts of VPA-treated mice. Additionally, our results showed alterations in measures of cardiac contractility, with a decrease or increase in cardiac contractile ability in VPA-treated mice depending on the GD and measurement taken. CONCLUSIONS These results further characterize the effects of VPA on heart development and suggest that alterations in Mef2c gene expression, at least on GD 16, do not mediate VPA-induced cardiotoxicity in CD-1 mice.
Collapse
Affiliation(s)
| | | | | | | | - Louise M Winn
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.,School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
195
|
Ramachandran K, Senagolage MD, Sommars MA, Futtner CR, Omura Y, Allred AL, Barish GD. Dynamic enhancers control skeletal muscle identity and reprogramming. PLoS Biol 2019; 17:e3000467. [PMID: 31589602 PMCID: PMC6799888 DOI: 10.1371/journal.pbio.3000467] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 10/17/2019] [Accepted: 09/11/2019] [Indexed: 12/27/2022] Open
Abstract
Skeletal muscles consist of fibers of differing metabolic activities and contractility, which become remodeled in response to chronic exercise, but the epigenomic basis for muscle identity and adaptation remains poorly understood. Here, we used chromatin immunoprecipitation sequencing of dimethylated histone 3 lysine 4 and acetylated histone 3 lysine 27 as well as transposase-accessible chromatin profiling to dissect cis-regulatory networks across muscle groups. We demonstrate that in vivo enhancers specify muscles in accordance with myofiber composition, show little resemblance to cultured myotube enhancers, and identify glycolytic and oxidative muscle-specific regulators. Moreover, we find that voluntary wheel running and muscle-specific peroxisome proliferator-activated receptor gamma coactivator-1 alpha (Pgc1a) transgenic (mTg) overexpression, which stimulate endurance performance in mice, result in markedly different changes to the epigenome. Exercise predominantly leads to enhancer hypoacetylation, whereas mTg causes hyperacetylation at different sites. Integrative analysis of regulatory regions and gene expression revealed that exercise and mTg are each associated with myocyte enhancer factor (MEF) 2 and estrogen-related receptor (ERR) signaling and transcription of genes promoting oxidative metabolism. However, exercise was additionally associated with regulation by retinoid X receptor (RXR), jun proto-oncogene (JUN), sine oculis homeobox factor (SIX), and other factors. Overall, our work defines the unique enhancer repertoires of skeletal muscles in vivo and reveals that divergent exercise-induced or PGC1α-driven epigenomic programs direct partially convergent transcriptional networks.
Collapse
Affiliation(s)
- Krithika Ramachandran
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Madhavi D. Senagolage
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Meredith A. Sommars
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Christopher R. Futtner
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Yasuhiro Omura
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Amanda L. Allred
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Grant D. Barish
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Jesse Brown VA Medical Center, Chicago, Illinois, United States of America
| |
Collapse
|
196
|
Kong X, Sawalha AH. Takayasu arteritis risk locus in IL6 represses the anti-inflammatory gene GPNMB through chromatin looping and recruiting MEF2-HDAC complex. Ann Rheum Dis 2019; 78:1388-1397. [PMID: 31315839 PMCID: PMC7147956 DOI: 10.1136/annrheumdis-2019-215567] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/20/2019] [Accepted: 06/27/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Previous work has revealed a genetic association between Takayasu arteritis and a non-coding genetic variant in an enhancer region within IL6 (rs2069837 A/G). The risk allele in this variant (allele A) has a protective effect against chronic viral infection and cancer. The goal of this study was to characterise the functional consequences of this disease-associated risk locus. METHODS A combination of experimental and bioinformatics tools were used to mechanistically understand the effects of the disease-associated genetic locus in IL6. These included electrophoretic mobility shift assay, DNA affinity precipitation assays followed by mass spectrometry and western blotting, luciferase reporter assays and chromosome conformation capture (3C) to identify chromatin looping in the IL6 locus. Both cell lines and peripheral blood primary monocyte-derived macrophages were used. RESULTS We identified the monocyte/macrophage anti-inflammatory gene GPNMB,~520 kb from IL6, as a target gene regulated by rs2069837. We revealed preferential recruitment of myocyte enhancer factor 2-histone deacetylase (MEF2-HDAC) repressive complex to the Takayasu arteritis risk allele. Further, we demonstrated suppression of GPNMB expression in monocyte-derived macrophages from healthy individuals with AA compared with AG genotype, which was reversed by histone deacetylase inhibition. Our data show that the risk allele in rs2069837 represses the expression of GPNMB by recruiting MEF2-HDAC complex, enabled through a long-range intrachromatin looping. Suppression of this anti-inflammatory gene might mediate increased susceptibility in Takayasu arteritis and enhance protective immune responses in chronic infection and cancer. CONCLUSIONS Takayasu arteritis risk locus in IL6 might increase disease susceptibility by suppression of the anti-inflammatory gene GPNMB through chromatin looping and recruitment of MEF2-HDAC epigenetic repressive complex. Our data highlight long-range chromatin interactions in functional genomic and epigenomic studies in autoimmunity.
Collapse
Affiliation(s)
- Xiufang Kong
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Division of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Amr H Sawalha
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Division of Rheumatology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
197
|
Sofer A, Lee S, Papangeli I, Adachi T, Hwangbo C, Comhair S, DaSilva-Jardine P, Kim J, Schwarz JJ, Erzurum SC, Chun HJ. Therapeutic Engagement of the Histone Deacetylase IIA-Myocyte Enhancer Factor 2 Axis Improves Experimental Pulmonary Hypertension. Am J Respir Crit Care Med 2019; 198:1345-1348. [PMID: 30106596 DOI: 10.1164/rccm.201805-0817le] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Avraham Sofer
- 1 Yale University School of Medicine New Haven, Connecticut
| | - Seyoung Lee
- 1 Yale University School of Medicine New Haven, Connecticut
| | | | - Takaomi Adachi
- 1 Yale University School of Medicine New Haven, Connecticut
| | - Cheol Hwangbo
- 1 Yale University School of Medicine New Haven, Connecticut
| | | | | | - Jongmin Kim
- 4 Sookmyung Women's University Seoul, Korea and
| | | | | | - Hyung J Chun
- 1 Yale University School of Medicine New Haven, Connecticut
| |
Collapse
|
198
|
Li C, Sun XN, Chen BY, Zeng MR, Du LJ, Liu T, Gu HH, Liu Y, Li YL, Zhou LJ, Zheng XJ, Zhang YY, Zhang WC, Liu Y, Shi C, Shao S, Shi XR, Yi Y, Liu X, Wang J, Auwerx J, Wang ZV, Jia F, Li RG, Duan SZ. Nuclear receptor corepressor 1 represses cardiac hypertrophy. EMBO Mol Med 2019; 11:e9127. [PMID: 31532577 PMCID: PMC6835202 DOI: 10.15252/emmm.201809127] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/24/2019] [Accepted: 08/27/2019] [Indexed: 01/24/2023] Open
Abstract
The function of nuclear receptor corepressor 1 (NCoR1) in cardiomyocytes is unclear, and its physiological and pathological implications are unknown. Here, we found that cardiomyocyte‐specific NCoR1 knockout (CMNKO) mice manifested cardiac hypertrophy at baseline and had more severe cardiac hypertrophy and dysfunction after pressure overload. Knockdown of NCoR1 exacerbated whereas overexpression mitigated phenylephrine‐induced cardiomyocyte hypertrophy. Mechanistic studies revealed that myocyte enhancer factor 2a (MEF2a) and MEF2d mediated the effects of NCoR1 on cardiomyocyte hypertrophy. The receptor interaction domains (RIDs) of NCoR1 interacted with MEF2a to repress its transcriptional activity. Furthermore, NCoR1 formed a complex with MEF2a and class IIa histone deacetylases (HDACs) to suppress hypertrophy‐related genes. Finally, overexpression of RIDs of NCoR1 in the heart attenuated cardiac hypertrophy and dysfunction induced by pressure overload. In conclusion, NCoR1 cooperates with MEF2 and HDACs to repress cardiac hypertrophy. Targeting NCoR1 and the MEF2/HDACs complex may be an attractive therapeutic strategy to tackle pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Chao Li
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.,Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xue-Nan Sun
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.,Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bo-Yan Chen
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Meng-Ru Zeng
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.,Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lin-Juan Du
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.,Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ting Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Hui-Hui Gu
- Shanghai Jing'an District Central Hospital, Fudan University, Shanghai, China
| | - Yuan Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.,Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Lin Li
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Lu-Jun Zhou
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xiao-Jun Zheng
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.,Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Yao Zhang
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.,Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wu-Chang Zhang
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yan Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Chaoji Shi
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Shuai Shao
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue-Rui Shi
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Yi
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Liu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Wang
- Shanghai Jing'an District Central Hospital, Fudan University, Shanghai, China
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Zhao V Wang
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Feng Jia
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruo-Gu Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Sheng-Zhong Duan
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
199
|
MicroRNA 223 3p Negatively Regulates the NLRP3 Inflammasome in Acute and Chronic Liver Injury. Mol Ther 2019; 28:653-663. [PMID: 31585800 DOI: 10.1016/j.ymthe.2019.09.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023] Open
Abstract
The granulocyte-specific microRNA-223 (miR-223) has recently emerged as a negative regulator of NOD-like receptor 3 (NLRP3) expression, a central key player in chronic hepatic injuries such as fibrotic nonalcoholic steatohepatitis (NASH), as well as in other liver conditions including acute hepatitis. In this study, we evaluated the therapeutic effect of the synthetic miR-223 analog miR-223 3p in a murine model of lipopolysaccharide (LPS)/D-GalN-induced endotoxin acute hepatitis (EAH) or fibrotic NASH resultant of long-term feeding with a high-fat, fructose, and cholesterol (FFC) diet. miR-223 3p ameliorated the infiltration of monocytes, neutrophils, and early activated macrophages and downregulated the transcriptional expression of the pro-inflammatory cytokines Il6 and Il12 and the chemokines Ccl2, Ccl3, Cxcl1, and Cxcl2 in EAH. In fibrotic NASH, treatment with miR-223 3p led to a remarkable mitigation of fibrosis development and activation of hepatic stellate cells (HSCs). miR-223 3p disrupted the activation of the NLRP3 inflammasome by impairing the synthesis of cleaved interleukin-1β (IL-1β), mature IL-1β, and NLRP3, and the activation of caspase-1 p10 in both EAH and fibrotic NASH. Our data enlightens miR-223 3p as a post-transcriptional approach to treat acute and chronic hepatitis by silencing the activation of the NLRP3 inflammasome.
Collapse
|
200
|
The regulatory elements of PLZF gene are not conserved as reveled by molecular cloning and functional characterization of PLZF gene promoter of Clarias batrachus. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|