151
|
Pandey A, Singh P, Jauhari A, Singh T, Khan F, Pant AB, Parmar D, Yadav S. Critical role of the miR-200 family in regulating differentiation and proliferation of neurons. J Neurochem 2015; 133:640-52. [DOI: 10.1111/jnc.13089] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 02/20/2015] [Accepted: 02/20/2015] [Indexed: 01/12/2023]
Affiliation(s)
- Ankita Pandey
- Developmental Toxicology Division; CSIR-Indian Institute of Toxicology Research; Lucknow Uttar Pradesh India
| | - Parul Singh
- Developmental Toxicology Division; CSIR-Indian Institute of Toxicology Research; Lucknow Uttar Pradesh India
| | - Abhishek Jauhari
- Developmental Toxicology Division; CSIR-Indian Institute of Toxicology Research; Lucknow Uttar Pradesh India
- Academy of Scientific and Innovative Research (AcSIR); New Delhi India
| | - Tanisha Singh
- Developmental Toxicology Division; CSIR-Indian Institute of Toxicology Research; Lucknow Uttar Pradesh India
| | - Farah Khan
- Department of Biochemistry; JamiaHamdard University; New Delhi India
| | - Aditya B. Pant
- Developmental Toxicology Division; CSIR-Indian Institute of Toxicology Research; Lucknow Uttar Pradesh India
| | - Devendra Parmar
- Developmental Toxicology Division; CSIR-Indian Institute of Toxicology Research; Lucknow Uttar Pradesh India
| | - Sanjay Yadav
- Developmental Toxicology Division; CSIR-Indian Institute of Toxicology Research; Lucknow Uttar Pradesh India
| |
Collapse
|
152
|
Rué P, Martinez Arias A. Cell dynamics and gene expression control in tissue homeostasis and development. Mol Syst Biol 2015; 11:792. [PMID: 25716053 PMCID: PMC4358661 DOI: 10.15252/msb.20145549] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
During tissue and organ development and maintenance, the dynamic regulation of cellular proliferation and differentiation allows cells to build highly elaborate structures. The development of the vertebrate retina or the maintenance of adult intestinal crypts, for instance, involves the arrangement of newly created cells with different phenotypes, the proportions of which need to be tightly controlled. While some of the basic principles underlying these processes developing and maintaining these organs are known, much remains to be learnt from how cells encode the necessary information and use it to attain those complex but reproducible arrangements. Here, we review the current knowledge on the principles underlying cell population dynamics during tissue development and homeostasis. In particular, we discuss how stochastic fate assignment, cell division, feedback control and cellular transition states interact during organ and tissue development and maintenance in multicellular organisms. We propose a framework, involving the existence of a transition state in which cells are more susceptible to signals that can affect their gene expression state and influence their cell fate decisions. This framework, which also applies to systems much more amenable to quantitative analysis like differentiating embryonic stem cells, links gene expression programmes with cell population dynamics.
Collapse
Affiliation(s)
- Pau Rué
- Department of Genetics, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
153
|
Skalova S, Svadlakova T, Shaikh Qureshi WM, Dev K, Mokry J. Induced pluripotent stem cells and their use in cardiac and neural regenerative medicine. Int J Mol Sci 2015; 16:4043-67. [PMID: 25689424 PMCID: PMC4346943 DOI: 10.3390/ijms16024043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 01/27/2015] [Accepted: 02/02/2015] [Indexed: 12/20/2022] Open
Abstract
Stem cells are unique pools of cells that are crucial for embryonic development and maintenance of adult tissue homeostasis. The landmark Nobel Prize winning research by Yamanaka and colleagues to induce pluripotency in somatic cells has reshaped the field of stem cell research. The complications related to the usage of pluripotent embryonic stem cells (ESCs) in human medicine, particularly ESC isolation and histoincompatibility were bypassed with induced pluripotent stem cell (iPSC) technology. The human iPSCs can be used for studying embryogenesis, disease modeling, drug testing and regenerative medicine. iPSCs can be diverted to different cell lineages using small molecules and growth factors. In this review we have focused on iPSC differentiation towards cardiac and neuronal lineages. Moreover, we deal with the use of iPSCs in regenerative medicine and modeling diseases like myocardial infarction, Timothy syndrome, dilated cardiomyopathy, Parkinson’s, Alzheimer’s and Huntington’s disease. Despite the promising potential of iPSCs, genome contamination and low efficacy of cell reprogramming remain significant challenges.
Collapse
Affiliation(s)
- Stepanka Skalova
- Department of Histology and Embryology, Medical Faculty in Hradec Kralove, Charles University in Prague, Simkova 870, Hradec Kralove 50038, Czech Republic.
| | - Tereza Svadlakova
- Department of Histology and Embryology, Medical Faculty in Hradec Kralove, Charles University in Prague, Simkova 870, Hradec Kralove 50038, Czech Republic.
| | - Wasay Mohiuddin Shaikh Qureshi
- Department of Histology and Embryology, Medical Faculty in Hradec Kralove, Charles University in Prague, Simkova 870, Hradec Kralove 50038, Czech Republic.
| | - Kapil Dev
- Department of Histology and Embryology, Medical Faculty in Hradec Kralove, Charles University in Prague, Simkova 870, Hradec Kralove 50038, Czech Republic.
| | - Jaroslav Mokry
- Department of Histology and Embryology, Medical Faculty in Hradec Kralove, Charles University in Prague, Simkova 870, Hradec Kralove 50038, Czech Republic.
| |
Collapse
|
154
|
Gro/TLE enables embryonic stem cell differentiation by repressing pluripotent gene expression. Dev Biol 2015; 397:56-66. [DOI: 10.1016/j.ydbio.2014.10.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/21/2014] [Accepted: 10/14/2014] [Indexed: 01/03/2023]
|
155
|
Garcia-Lavandeira M, Diaz-Rodriguez E, Bahar D, Garcia-Rendueles AR, Rodrigues JS, Dieguez C, Alvarez CV. Pituitary Cell Turnover: From Adult Stem Cell Recruitment through Differentiation to Death. Neuroendocrinology 2015; 101:175-92. [PMID: 25662152 DOI: 10.1159/000375502] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/23/2015] [Indexed: 11/19/2022]
Abstract
The recent demonstration using genetic tracing that in the adult pituitary stem cells are normally recruited from the niche in the marginal zone and differentiate into secretory cells in the adenopituitary has elegantly confirmed the proposal made when the pituitary stem cell niche was first discovered 5 years ago. Some of the early controversies have also been resolved. However, many questions remain, such as which are the markers that make a pituitary stem cell truly unique and the exact mechanisms that trigger recruitment from the niche. Little is known about the processes of commitment and differentiation once a stem cell has left the niche. Moreover, the acceptance that pituitary cells are renewed by stem cells implies the existence of regulated mechanisms of cell death in differentiated cells which must themselves be explained. The demonstration of an apoptotic pathway mediated by RET/caspase 3/Pit-1/Arf/p53 in normal somatotrophs is therefore an important step towards understanding how pituitary cell number is regulated. Further work will elucidate how the rates of the three processes of cell renewal, differentiation and apoptosis are balanced in tissue homeostasis after birth, but altered in pituitary hyperplasia in response to physiological stimuli such as puberty and lactation. Thus, we can aim to understand the mechanisms underlying human disease due to insufficient (hypopituitarism) or excess (pituitary tumor) cell numbers.
Collapse
Affiliation(s)
- Montserrat Garcia-Lavandeira
- Neoplasia and Endocrine Differentiation, Centre for Investigations in Medicine (CIMUS), Instituto de Investigaciones Sanitarias, School of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | | | | | | | |
Collapse
|
156
|
Hess S, Rambukkana A. Bacterial-induced cell reprogramming to stem cell-like cells: new premise in host-pathogen interactions. Curr Opin Microbiol 2014; 23:179-88. [PMID: 25541240 DOI: 10.1016/j.mib.2014.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 11/26/2014] [Indexed: 12/12/2022]
Abstract
Bacterial pathogens employ a myriad of strategies to alter host tissue cell functions for bacterial advantage during infection. Recent advances revealed a fusion of infection biology with stem cell biology by demonstrating developmental reprogramming of lineage committed host glial cells to progenitor/stem cell-like cells by an intracellular bacterial pathogen Mycobacterium leprae. Acquisition of migratory and immunomodulatory properties of such reprogrammed cells provides an added advantage for promoting bacterial spread. This presents a previously unseen sophistication of cell manipulation by hijacking the genomic plasticity of host cells by a human bacterial pathogen. The rationale for such extreme fate conversion of host cells may be directly linked to the exceedingly passive obligate life style of M. leprae with a degraded genome and host cell dependence for both bacterial survival and dissemination, particularly the use of host-derived stem cell-like cells as a vehicle for spreading infection without being detected by immune cells. Thus, this unexpected link between cell reprogramming and infection opens up a new premise in host-pathogen interactions. Furthermore, such bacterial ingenuity could also be harnessed for developing natural ways of reprogramming host cells for repairing damaged tissues from infection, injury and diseases.
Collapse
Affiliation(s)
- Samuel Hess
- MRC Centre for Regenerative Medicine, University of Edinburgh, Little France Campus, Edinburgh EH16 4UU, United Kingdom
| | - Anura Rambukkana
- MRC Centre for Regenerative Medicine, University of Edinburgh, Little France Campus, Edinburgh EH16 4UU, United Kingdom; Edinburgh Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom; Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
157
|
Dowell KG, Simons AK, Bai H, Kell B, Wang ZZ, Yun K, Hibbs MA. Novel insights into embryonic stem cell self-renewal revealed through comparative human and mouse systems biology networks. Stem Cells 2014; 32:1161-72. [PMID: 24307629 DOI: 10.1002/stem.1612] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/11/2013] [Indexed: 12/25/2022]
Abstract
Embryonic stem cells (ESCs), characterized by their ability to both self-renew and differentiate into multiple cell lineages, are a powerful model for biomedical research and developmental biology. Human and mouse ESCs share many features, yet have distinctive aspects, including fundamental differences in the signaling pathways and cell cycle controls that support self-renewal. Here, we explore the molecular basis of human ESC self-renewal using Bayesian network machine learning to integrate cell-type-specific, high-throughput data for gene function discovery. We integrated high-throughput ESC data from 83 human studies (~1.8 million data points collected under 1,100 conditions) and 62 mouse studies (~2.4 million data points collected under 1,085 conditions) into separate human and mouse predictive networks focused on ESC self-renewal to analyze shared and distinct functional relationships among protein-coding gene orthologs. Computational evaluations show that these networks are highly accurate, literature validation confirms their biological relevance, and reverse transcriptase polymerase chain reaction (RT-PCR) validation supports our predictions. Our results reflect the importance of key regulatory genes known to be strongly associated with self-renewal and pluripotency in both species (e.g., POU5F1, SOX2, and NANOG), identify metabolic differences between species (e.g., threonine metabolism), clarify differences between human and mouse ESC developmental signaling pathways (e.g., leukemia inhibitory factor (LIF)-activated JAK/STAT in mouse; NODAL/ACTIVIN-A-activated fibroblast growth factor in human), and reveal many novel genes and pathways predicted to be functionally associated with self-renewal in each species. These interactive networks are available online at www.StemSight.org for stem cell researchers to develop new hypotheses, discover potential mechanisms involving sparsely annotated genes, and prioritize genes of interest for experimental validation.
Collapse
Affiliation(s)
- Karen G Dowell
- The Jackson Laboratory, Bar Harbor, Maine, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
| | | | | | | | | | | | | |
Collapse
|
158
|
Li Y, Rivera CM, Ishii H, Jin F, Selvaraj S, Lee AY, Dixon JR, Ren B. CRISPR reveals a distal super-enhancer required for Sox2 expression in mouse embryonic stem cells. PLoS One 2014; 9:e114485. [PMID: 25486255 PMCID: PMC4259346 DOI: 10.1371/journal.pone.0114485] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/11/2014] [Indexed: 12/22/2022] Open
Abstract
The pluripotency of embryonic stem cells (ESCs) is maintained by a small group of master transcription factors including Oct4, Sox2 and Nanog. These core factors form a regulatory circuit controlling the transcription of a number of pluripotency factors including themselves. Although previous studies have identified transcriptional regulators of this core network, the cis-regulatory DNA sequences required for the transcription of these key pluripotency factors remain to be defined. We analyzed epigenomic data within the 1.5 Mb gene-desert regions around the Sox2 gene and identified a 13kb-long super-enhancer (SE) located 100kb downstream of Sox2 in mouse ESCs. This SE is occupied by Oct4, Sox2, Nanog, and the mediator complex, and physically interacts with the Sox2 locus via DNA looping. Using a simple and highly efficient double-CRISPR genome editing strategy we deleted the entire 13-kb SE and characterized transcriptional defects in the resulting monoallelic and biallelic deletion clones with RNA-seq. We showed that the SE is responsible for over 90% of Sox2 expression, and Sox2 is the only target gene along the chromosome. Our results support the functional significance of a SE in maintaining the pluripotency transcription program in mouse ESCs.
Collapse
Affiliation(s)
- Yan Li
- Ludwig Institute for Cancer Research, San Diego, California, United States of America
| | - Chloe M. Rivera
- Ludwig Institute for Cancer Research, San Diego, California, United States of America
- The Biomedical Sciences Graduate Program, University of California San Diego, School of Medicine, San Diego, California, United States of America
| | - Haruhiko Ishii
- Ludwig Institute for Cancer Research, San Diego, California, United States of America
| | - Fulai Jin
- Ludwig Institute for Cancer Research, San Diego, California, United States of America
| | - Siddarth Selvaraj
- Ludwig Institute for Cancer Research, San Diego, California, United States of America
| | - Ah Young Lee
- Ludwig Institute for Cancer Research, San Diego, California, United States of America
| | - Jesse R. Dixon
- Ludwig Institute for Cancer Research, San Diego, California, United States of America
- Medical Scientist Training Program, University of California San Diego, School of Medicine, San Diego, California, United States of America
| | - Bing Ren
- Ludwig Institute for Cancer Research, San Diego, California, United States of America
- Department of Cellular and Molecular Medicine, Institute of Genome Medicine, Moores Cancer Center, University of California San Diego, School of Medicine, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
159
|
TALEN/CRISPR-mediated eGFP knock-in add-on at the OCT4 locus does not impact differentiation of human embryonic stem cells towards endoderm. PLoS One 2014; 9:e114275. [PMID: 25474420 PMCID: PMC4256397 DOI: 10.1371/journal.pone.0114275] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 11/08/2014] [Indexed: 12/22/2022] Open
Abstract
Human embryonic stem cells (hESCs) have great promise as a source of unlimited transplantable cells for regenerative medicine. However, current progress on producing the desired cell type for disease treatment has been limited due to an insufficient understanding of the developmental processes that govern their differentiation, as well as a paucity of tools to systematically study differentiation in the lab. In order to overcome these limitations, cell-type reporter hESC lines will be required. Here we outline two strategies using Transcription Activator Like Effector Nucleases (TALENs) and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-Associated protein (Cas) to create OCT4-eGFP knock-in add-on hESC lines. Thirty-one and forty-seven percent of clones were correctly modified using the TALEN and CRISPR-Cas9 systems, respectively. Further analysis of three correctly targeted clones demonstrated that the insertion of eGFP in-frame with OCT4 neither significantly impacted expression from the wild type allele nor did the fusion protein have a dramatically different biological stability. Importantly, the OCT4-eGFP fusion was easily detected using microscopy, flow cytometry and western blotting. The OCT4 reporter lines remained equally competent at producing CXCR4+ definitive endoderm that expressed a panel of endodermal genes. Moreover, the genomic modification did not impact the formation of NKX6.1+/SOX9+ pancreatic progenitor cells following directed differentiation. In conclusion, these findings demonstrate for the first time that CRISPR-Cas9 can be used to modify OCT4 and highlight the feasibility of creating cell-type specific reporter hESC lines utilizing genome-editing tools that facilitate homologous recombination.
Collapse
|
160
|
Rad SMAH, Bamdad T, Sadeghizadeh M, Arefian E, Lotfinia M, Ghanipour M. Transcription factor decoy against stem cells master regulators, Nanog and Oct-4: a possible approach for differentiation therapy. Tumour Biol 2014; 36:2621-9. [PMID: 25464862 DOI: 10.1007/s13277-014-2884-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 11/21/2014] [Indexed: 01/31/2023] Open
Abstract
Transcription factor decoys (TFDs) are exogenous oligonucleotides which can compete by cis-elements in promoters or enhancers for binding to TFs and downregulating gene expression in a specific manner. It is believed that tumor mass originates from cancer stem cells (CSCs) which the same with embryonic stem cells (ESCs) have the properties of both pluripotency and self-renewal (stemness). Many transcription factors such as Nanog, Oct-4, Sox2, Klf4, and Sall4 act as master regulators in the maintenance of stemness in both cell types. Differentiation therapy is based on this theory that by differentiation of CSCs, tumor mass can be eliminated with common cancer therapy methods. To our knowledge, the present study is the first report of a TFD approach against master regulator of stemness, Nanog, Oct-4, and Klf4, for downregulation purposes in P19 embryonic carcinoma stem cell. Different simple and complex decoys against Nanog, OCT-4, Sox2, and Klf4 were designed and used for this purpose. The results showed that the applied decoys especially Nanog-specific decoy decreased the expression of downstream genes.
Collapse
|
161
|
Zhu L, Zhang S, Jin Y. Foxd3 suppresses NFAT-mediated differentiation to maintain self-renewal of embryonic stem cells. EMBO Rep 2014; 15:1286-96. [PMID: 25378483 DOI: 10.15252/embr.201438643] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Pluripotency-associated transcription factor Foxd3 is required for maintaining pluripotent cells. However, molecular mechanisms underlying its function are largely unknown. Here, we report that Foxd3 suppresses differentiation induced by calcineurin-NFAT signaling to maintain the ESC identity. Mechanistically, Foxd3 interacts with NFAT proteins and recruits co-repressor Tle4, a member of the Tle repressor family highly expressed in undifferentiated ESCs, to suppress NFATc3's transcriptional activities. Furthermore, global transcriptome analysis shows that Foxd3 and NFATc3 co-regulate a set of differentiation-associated genes in ESCs. Collectively, our study establishes a molecular and functional link between a pluripotency-associated factor and an important ESC differentiation-inducing pathway.
Collapse
Affiliation(s)
- Lili Zhu
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes of Biological Sciences Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Shiyue Zhang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes of Biological Sciences Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, Shanghai, China University of Chinese Academy of Sciences, Beijing, China
| | - Ying Jin
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes of Biological Sciences Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, Shanghai, China Shanghai Stem Cell Institute, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
162
|
Embryonic stem cells conditioned medium enhances Wharton's jelly-derived mesenchymal stem cells expansion under hypoxic condition. Cytotechnology 2014; 67:493-505. [PMID: 25326788 DOI: 10.1007/s10616-014-9708-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 02/19/2014] [Indexed: 12/22/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are accepted as a promising tool for therapeutic purposes. However, low proliferation and early senescence are still main obstacles of MSCs expansion for using as cell-based therapy. Thus, clinical scale of cell expansion is needed to obtain a large number of cells serving for further applications. In this study, we investigated the value of embryonic stem cells conditioned medium (ESCM) for in vitro expansion of Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) as compared to typical culture medium for MSCs, Dulbecco's modified Eagle's medium with 1.0 g/l glucose (DMEM-LG) supplemented with 10 % FBS, under hypoxic condition. The expanded cells from ESCM (ESCM-MSCs) and DMEM-LG (DMEM-MSCs) were characterized for both phenotype and biological activities including proliferation rate, population doubling time, cell cycle distribution and MSCs characteristics. ESCM and DMEM-LG could enhance WJ-MSCs proliferation as 204.66 ± 10.39 and 113.77 ± 7.89 fold increase at day 12, respectively. ESCM-MSCs could express pluripotency genes including Oct-4, Oct-3/4, Nanog, Klf-4, C-Myc and Sox-2 both in early and late passages whereas the downregulations of Oct-4 and Nanog were detected in late passage cells of DMEM-MSCs. The 2 cell populations also showed common MSCs characteristics including normal cell cycle, fibroblastic morphology, cell surface markers expressions (CD29(+), CD44(+), CD90(+), CD34(-), CD45(-)) and differentiation capacities into adipogenic, chondrogenic and osteogenic lineages. Moreover, our results revealed that ESCM exhibited as a rich source of several factors which are required for supportive WJ-MSCs proliferation. In conclusion, ESCM under hypoxic condition could accelerate WJ-MSCs expansion while maintaining their pluripotency properties. Our knowledge provide short term and cost-saving in WJ-MSCs expansion which has benefit to overcome insufficient cell numbers for clinical applications by reusing the discarded cell culture supernates from human ES culture system. Moreover, these findings can also apply for stem cell banking, regenerative medicine and pharmacological applications.
Collapse
|
163
|
van Dartel DA, Schulpen SH, Theunissen PT, Bunschoten A, Piersma AH, Keijer J. Dynamic changes in energy metabolism upon embryonic stem cell differentiation support developmental toxicant identification. Toxicology 2014; 324:76-87. [DOI: 10.1016/j.tox.2014.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 07/24/2014] [Accepted: 07/24/2014] [Indexed: 02/06/2023]
|
164
|
Sánchez-Castillo M, Ruau D, Wilkinson AC, Ng FSL, Hannah R, Diamanti E, Lombard P, Wilson NK, Gottgens B. CODEX: a next-generation sequencing experiment database for the haematopoietic and embryonic stem cell communities. Nucleic Acids Res 2014; 43:D1117-23. [PMID: 25270877 PMCID: PMC4384009 DOI: 10.1093/nar/gku895] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
CODEX (http://codex.stemcells.cam.ac.uk/) is a user-friendly database for the direct access and interrogation of publicly available next-generation sequencing (NGS) data, specifically aimed at experimental biologists. In an era of multi-centre genomic dataset generation, CODEX provides a single database where these samples are collected, uniformly processed and vetted. The main drive of CODEX is to provide the wider scientific community with instant access to high-quality NGS data, which, irrespective of the publishing laboratory, is directly comparable. CODEX allows users to immediately visualize or download processed datasets, or compare user-generated data against the database's cumulative knowledge-base. CODEX contains four types of NGS experiments: transcription factor chromatin immunoprecipitation coupled to high-throughput sequencing (ChIP-Seq), histone modification ChIP-Seq, DNase-Seq and RNA-Seq. These are largely encompassed within two specialized repositories, HAEMCODE and ESCODE, which are focused on haematopoiesis and embryonic stem cell samples, respectively. To date, CODEX contains over 1000 samples, including 221 unique TFs and 93 unique cell types. CODEX therefore provides one of the most complete resources of publicly available NGS data for the direct interrogation of transcriptional programmes that regulate cellular identity and fate in the context of mammalian development, homeostasis and disease.
Collapse
Affiliation(s)
- Manuel Sánchez-Castillo
- Department of Haematology, Wellcome Trust-MRC Cambridge Stem Cell Institute & Cambridge Institute for Medical Research, Cambridge University, Cambridge CB2 0XY, UK
| | - David Ruau
- Department of Haematology, Wellcome Trust-MRC Cambridge Stem Cell Institute & Cambridge Institute for Medical Research, Cambridge University, Cambridge CB2 0XY, UK
| | - Adam C Wilkinson
- Department of Haematology, Wellcome Trust-MRC Cambridge Stem Cell Institute & Cambridge Institute for Medical Research, Cambridge University, Cambridge CB2 0XY, UK
| | - Felicia S L Ng
- Department of Haematology, Wellcome Trust-MRC Cambridge Stem Cell Institute & Cambridge Institute for Medical Research, Cambridge University, Cambridge CB2 0XY, UK
| | - Rebecca Hannah
- Department of Haematology, Wellcome Trust-MRC Cambridge Stem Cell Institute & Cambridge Institute for Medical Research, Cambridge University, Cambridge CB2 0XY, UK
| | - Evangelia Diamanti
- Department of Haematology, Wellcome Trust-MRC Cambridge Stem Cell Institute & Cambridge Institute for Medical Research, Cambridge University, Cambridge CB2 0XY, UK
| | - Patrick Lombard
- Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 1QR, UK
| | - Nicola K Wilson
- Department of Haematology, Wellcome Trust-MRC Cambridge Stem Cell Institute & Cambridge Institute for Medical Research, Cambridge University, Cambridge CB2 0XY, UK
| | - Berthold Gottgens
- Department of Haematology, Wellcome Trust-MRC Cambridge Stem Cell Institute & Cambridge Institute for Medical Research, Cambridge University, Cambridge CB2 0XY, UK
| |
Collapse
|
165
|
Youngblood BA, MacDonald CC. CstF-64 is necessary for endoderm differentiation resulting in cardiomyocyte defects. Stem Cell Res 2014; 13:413-21. [PMID: 25460602 DOI: 10.1016/j.scr.2014.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/06/2014] [Accepted: 09/16/2014] [Indexed: 12/23/2022] Open
Abstract
Although adult cardiomyocytes have the capacity for cellular regeneration, they are unable to fully repair severely injured hearts. The use of embryonic stem cell (ESC)-derived cardiomyocytes as transplantable heart muscle cells has been proposed as a solution, but is limited by the lack of understanding of the developmental pathways leading to specification of cardiac progenitors. Identification of these pathways will enhance the ability to differentiate cardiomyocytes into a clinical source of transplantable cells. Here, we show that the mRNA 3' end processing protein, CstF-64, is essential for cardiomyocyte differentiation in mouse ESCs. Loss of CstF-64 in mouse ESCs results in loss of differentiation potential toward the endodermal lineage. However, CstF-64 knockout (Cstf2(E6)) cells were able to differentiate into neuronal progenitors, demonstrating that some differentiation pathways were still intact. Markers for mesodermal differentiation were also present, although Cstf2(E6) cells were defective in forming beating cardiomyocytes and expressing cardiac specific markers. Since the extraembryonic endoderm is needed for cardiomyocyte differentiation and endodermal markers were decreased, we hypothesized that endodermal factors were required for efficient cardiomyocyte formation in the Cstf2(E6) cells. Using conditioned medium from the extraembryonic endodermal (XEN) stem cell line we were able to restore cardiomyocyte differentiation in Cstf2(E6) cells, suggesting that CstF-64 has a role in regulating endoderm differentiation that is necessary for cardiac specification and that extraembryonic endoderm signaling is essential for cardiomyocyte development.
Collapse
Affiliation(s)
- Bradford A Youngblood
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430-6540, USA
| | - Clinton C MacDonald
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430-6540, USA.
| |
Collapse
|
166
|
Zuryn S, Ahier A, Portoso M, White ER, Morin MC, Margueron R, Jarriault S. Transdifferentiation. Sequential histone-modifying activities determine the robustness of transdifferentiation. Science 2014; 345:826-9. [PMID: 25124442 DOI: 10.1126/science.1255885] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Natural interconversions between distinct somatic cell types have been reported in species as diverse as jellyfish and mice. The efficiency and reproducibility of some reprogramming events represent unexploited avenues in which to probe mechanisms that ensure robust cell conversion. We report that a conserved H3K27me3/me2 demethylase, JMJD-3.1, and the H3K4 methyltransferase Set1 complex cooperate to ensure invariant transdifferentiation (Td) of postmitotic Caenorhabditis elegans hindgut cells into motor neurons. At single-cell resolution, robust conversion requires stepwise histone-modifying activities, functionally partitioned into discrete phases of Td through nuclear degradation of JMJD-3.1 and phase-specific interactions with transcription factors that have conserved roles in cell plasticity and terminal fate selection. Our results draw parallels between epigenetic mechanisms underlying robust Td in nature and efficient cell reprogramming in vitro.
Collapse
Affiliation(s)
- Steven Zuryn
- Department of Development and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104/INSERM U964, Université de Strasbourg, 67404 Illkirch CU Strasbourg, France
| | - Arnaud Ahier
- Department of Development and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104/INSERM U964, Université de Strasbourg, 67404 Illkirch CU Strasbourg, France
| | - Manuela Portoso
- Institut Curie, INSERM U934, CNRS UMR3215, 26, Rue d'Ulm, 75005 Paris, France
| | - Esther Redhouse White
- Department of Development and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104/INSERM U964, Université de Strasbourg, 67404 Illkirch CU Strasbourg, France
| | - Marie-Charlotte Morin
- Department of Development and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104/INSERM U964, Université de Strasbourg, 67404 Illkirch CU Strasbourg, France
| | - Raphaël Margueron
- Institut Curie, INSERM U934, CNRS UMR3215, 26, Rue d'Ulm, 75005 Paris, France
| | - Sophie Jarriault
- Department of Development and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104/INSERM U964, Université de Strasbourg, 67404 Illkirch CU Strasbourg, France.
| |
Collapse
|
167
|
Diversity in TAF proteomics: consequences for cellular differentiation and migration. Int J Mol Sci 2014; 15:16680-97. [PMID: 25244017 PMCID: PMC4200853 DOI: 10.3390/ijms150916680] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/25/2014] [Accepted: 08/27/2014] [Indexed: 12/31/2022] Open
Abstract
Development is a highly controlled process of cell proliferation and differentiation driven by mechanisms of dynamic gene regulation. Specific DNA binding factors for establishing cell- and tissue-specific transcriptional programs have been characterised in different cell and animal models. However, much less is known about the role of “core transcription machinery” during cell differentiation, given that general transcription factors and their spatiotemporally patterned activity govern different aspects of cell function. In this review, we focus on the role of TATA-box associated factor 4 (TAF4) and its functional isoforms generated by alternative splicing in controlling lineage-specific differentiation of normal mesenchymal stem cells and cancer stem cells. In the light of our recent findings, induction, control and maintenance of cell differentiation status implies diversification of the transcription initiation apparatus orchestrated by alternative splicing.
Collapse
|
168
|
Zeineddine D, Hammoud AA, Mortada M, Boeuf H. The Oct4 protein: more than a magic stemness marker. AMERICAN JOURNAL OF STEM CELLS 2014; 3:74-82. [PMID: 25232507 PMCID: PMC4163606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 08/07/2014] [Indexed: 06/03/2023]
Abstract
The Oct4 protein, encoded by the Pou5f1 gene was the very first master gene, discovered 25 years ago, to be absolutely required for the stemness properties of murine and primate embryonic stem cells. This transcription factor, which has also been shown to be essential for somatic cell reprogrammation, displays various functions depending upon its level of expression and has been quoted as a "rheostat" gene. Oct4 protein is in complexes with many different partners and its activity depends upon fine post-translational modifications. This review aims at revisiting some properties of this protein, which has not yet delivered all its potentialities.
Collapse
Affiliation(s)
| | - Aya Abou Hammoud
- Lebanese UniversityBeyrouth, Liban
- Univ. Bordeaux, CIRID, UMR 5164F-33 000 Bordeaux, France
- CNRS, CIRID, UMR 5164F-33 000 Bordeaux, France
| | | | - Hélène Boeuf
- Univ. Bordeaux, CIRID, UMR 5164F-33 000 Bordeaux, France
- CNRS, CIRID, UMR 5164F-33 000 Bordeaux, France
| |
Collapse
|
169
|
Krueger W, Boelsterli UA, Rasmussen TP. Stem Cell Strategies to Evaluate Idiosyncratic Drug-induced Liver Injury. J Clin Transl Hepatol 2014; 2:143-52. [PMID: 26355943 PMCID: PMC4521249 DOI: 10.14218/jcth.2014.00012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/13/2014] [Accepted: 06/07/2014] [Indexed: 12/14/2022] Open
Abstract
The host-dependent nature of idiosyncratic drug-induced liver injury (iDILI) suggests that rare genetic polymorphisms may contribute to the disease. Indeed, a few mutations in key genes have already been identified using conventional human genetics approaches. Over 50 commonly used drugs can precipitate iDILI, making this a substantial medical problem. Only recently have human induced pluripotent stem cells been used as a research tool to discover novel iDILI genes and to study the mechanisms of iDILI in vitro. Here we review the current state of stem cell use in the investigation of iDILI, with a special focus on genetics. In addition, the concerns and difficulties associated with genetics and animal model research are discussed. We then present the features of patient-specific pluripotent stem cells (which may be derived from iDILI patients themselves), and explain why these cells may be of great utility. A variety of recent approaches to produce hepatocyte-like cells from pluripotent cells and the associated advantages and limitations of such cells are discussed. Future directions for the use of stem cell science to investigate iDILI include novel ways to identify new iDILI genes, a consideration of epigenetic impacts on iDILI, and the development of new and improved strategies for the production of hepatocytes from human pluripotent cells.
Collapse
Affiliation(s)
- Winfried Krueger
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Urs A. Boelsterli
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Theodore P. Rasmussen
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
- University of Connecticut Stem Cell Institute, Storrs/Farmington, CT, USA
- Correspondence to: Theodore P. Rasmussen, Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, U-3092, Storrs, CT 06269, USA. Tel: +86-486-8339, Fax: +86-486-5792. E-mail:
| |
Collapse
|
170
|
West JA, Cook A, Alver BH, Stadtfeld M, Deaton AM, Hochedlinger K, Park PJ, Tolstorukov MY, Kingston RE. Nucleosomal occupancy changes locally over key regulatory regions during cell differentiation and reprogramming. Nat Commun 2014; 5:4719. [PMID: 25158628 PMCID: PMC4217530 DOI: 10.1038/ncomms5719] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 07/16/2014] [Indexed: 01/23/2023] Open
Abstract
Chromatin structure determines DNA accessibility. We compare nucleosome occupancy in mouse and human embryonic stem cells (ESCs), induced-pluripotent stem cells (iPSCs) and differentiated cell types using MNase-seq. To address variability inherent in this technique, we developed a bioinformatic approach to identify regions of difference (RoD) in nucleosome occupancy between pluripotent and somatic cells. Surprisingly, most chromatin remains unchanged; a majority of rearrangements appear to affect a single nucleosome. RoDs are enriched at genes and regulatory elements, including enhancers associated with pluripotency and differentiation. RoDs co-localize with binding sites of key developmental regulators, including the reprogramming factors Klf4, Oct4/Sox2 and c-Myc. Nucleosomal landscapes in ESC enhancers are extensively altered, exhibiting lower nucleosome occupancy in pluripotent cells than in somatic cells. Most changes are reset during reprogramming. We conclude that changes in nucleosome occupancy are a hallmark of cell differentiation and reprogramming and likely identify regulatory regions essential for these processes. Changes in chromatin structure impact gene expression programs by modulating accessibility to the transcription machinery. Here, West et al. explore differences in nucleosome occupancy between mammalian pluripotent and somatic cells and uncover regulatory regions likely to play key roles in determining cell identity.
Collapse
Affiliation(s)
- Jason A West
- 1] Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA [2] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA [3] [4]
| | - April Cook
- 1] Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA [2] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA [3]
| | - Burak H Alver
- Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Matthias Stadtfeld
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine, The Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| | - Aimee M Deaton
- 1] Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA [2] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Konrad Hochedlinger
- 1] Howard Hughes Medical Institute and the Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA [2] The Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Peter J Park
- Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Michael Y Tolstorukov
- 1] Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA [2]
| | - Robert E Kingston
- 1] Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA [2] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
171
|
Abstract
Embryonic stem cell maintenance, differentiation, and somatic cell reprogramming require the interplay of multiple pluripotency factors, epigenetic remodelers, and extracellular signaling pathways. RNA-binding proteins (RBPs) are involved in a wide range of regulatory pathways, from RNA metabolism to epigenetic modifications. In recent years we have witnessed more and more studies on the discovery of new RBPs and the assessment of their functions in a variety of biological systems, including stem cells. We review the current studies on RBPs and focus on those that have functional implications in pluripotency, differentiation, and/or reprogramming in both the human and mouse systems.
Collapse
|
172
|
Dai X, Liu P, Lau AW, Liu Y, Inuzuka H. Acetylation-dependent regulation of essential iPS-inducing factors: a regulatory crossroad for pluripotency and tumorigenesis. Cancer Med 2014; 3:1211-24. [PMID: 25116380 PMCID: PMC4302671 DOI: 10.1002/cam4.298] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/04/2014] [Accepted: 06/10/2014] [Indexed: 12/26/2022] Open
Abstract
Induced pluripotent stem (iPS) cells can be generated from somatic cells by coexpression of four transcription factors: Sox2, Oct4, Klf4, and c-Myc. However, the low efficiency in generating iPS cells and the tendency of tumorigenesis hinder the therapeutic applications for iPS cells in treatment of human diseases. To this end, it remains largely unknown how the iPS process is subjected to regulation by upstream signaling pathway(s). Here, we report that Akt regulates the iPS process by modulating posttranslational modifications of these iPS factors in both direct and indirect manners. Specifically, Akt directly phosphorylates Oct4 to modulate the Oct4/Sox2 heterodimer formation. Furthermore, Akt either facilitates the p300-mediated acetylation of Oct4, Sox2, and Klf4, or stabilizes Klf4 by inactivating GSK3, thus indirectly modulating stemness. As tumorigenesis shares possible common features and mechanisms with iPS, our study suggests that Akt inhibition might serve as a cancer therapeutic approach to target cancer stem cells.
Collapse
Affiliation(s)
- Xiangpeng Dai
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | | | | | | | | |
Collapse
|
173
|
Bartman CM, Egelston J, Ren X, Das R, Phiel CJ. A simple and efficient method for transfecting mouse embryonic stem cells using polyethylenimine. Exp Cell Res 2014; 330:178-85. [PMID: 25102378 DOI: 10.1016/j.yexcr.2014.07.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/12/2014] [Accepted: 07/15/2014] [Indexed: 12/24/2022]
Abstract
Mouse embryonic stem cells (ESCs) can be transfected by electroporation, liposomal reagents, and viral transduction methods. The cationic polymer polyethylenimine (PEI) has been shown to transfect a variety of differentiated mammalian cell types, including mouse ESCs, but existing methods require the use of additional equipment that is not readily accessible to most labs. Here we describe conditions that permit for the efficient transfection of mouse ESCs with low cytotoxicity and without the need for specialized equipment. Our goal was to devise a protocol for the PEI-mediated transfection of mouse ESCs that was comparable in ease to commercial transfection reagents. For these studies, we compared PEI transfection efficiency and cytotoxicity to a well-known liposomal transfection reagent, Lipofectamine2000(™) (LF2K), using fluorescence microscopy, flow cytometry, cell viability assays, and Western blotting. We provide evidence that PEI transfection of mouse ESCs compares favorably to LF2K. Our optimized protocol for efficient transfection of mouse ESCs with PEI is detailed in this report.
Collapse
Affiliation(s)
- Colleen M Bartman
- Department of Integrative Biology, University of Colorado Denver, S4111, 1201 Fifth Street, Denver, CO 80204, United States
| | - Jennifer Egelston
- Department of Integrative Biology, University of Colorado Denver, S4111, 1201 Fifth Street, Denver, CO 80204, United States
| | - Xiaojun Ren
- Department of Chemistry, University of Colorado Denver, 1201 Fifth Street, Denver, CO 80204, United States
| | - Raibatak Das
- Department of Integrative Biology, University of Colorado Denver, S4111, 1201 Fifth Street, Denver, CO 80204, United States
| | - Christopher J Phiel
- Department of Integrative Biology, University of Colorado Denver, S4111, 1201 Fifth Street, Denver, CO 80204, United States.
| |
Collapse
|
174
|
Lineage-restricted function of the pluripotency factor NANOG in stratified epithelia. Nat Commun 2014; 5:4226. [PMID: 24979572 DOI: 10.1038/ncomms5226] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 05/23/2014] [Indexed: 12/22/2022] Open
Abstract
NANOG is a pluripotency transcription factor in embryonic stem cells; however, its role in adult tissues remains largely unexplored. Here we show that mouse NANOG is selectively expressed in stratified epithelia, most notably in the oesophagus where the Nanog promoter is hypomethylated. Interestingly, inducible ubiquitous overexpression of NANOG in mice causes hyperplasia selectively in the oesophagus, in association with increased cell proliferation. NANOG transcriptionally activates the mitotic programme, including Aurora A kinase (Aurka), in stratified epithelia, and endogenous NANOG directly binds to the Aurka promoter in primary keratinocytes. Interestingly, overexpression of Nanog or Aurka in mice increased proliferation and aneuploidy in the oesophageal basal epithelium. Finally, inactivation of NANOG in cell lines from oesophageal or head and neck squamous cell carcinomas (ESCCs or HNSCCs, respectively) results in lower levels of AURKA and decreased proliferation, and NANOG and AURKA expression are positively correlated in HNSCCs. Together, these results indicate that NANOG has a lineage-restricted mitogenic function in stratified epithelia.
Collapse
|
175
|
Claros S, Rico-Llanos GA, Becerra J, Andrades JA. A novel human TGF-β1 fusion protein in combination with rhBMP-2 increases chondro-osteogenic differentiation of bone marrow mesenchymal stem cells. Int J Mol Sci 2014; 15:11255-74. [PMID: 24968268 PMCID: PMC4139781 DOI: 10.3390/ijms150711255] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/03/2014] [Accepted: 06/10/2014] [Indexed: 01/06/2023] Open
Abstract
Transforming growth factor-beta (TGF-β) is involved in processes related to the differentiation and maturation of osteoprogenitor cells into osteoblasts. Rat bone marrow (BM) cells were cultured in a collagen-gel containing 0.5% fetal bovine serum (FBS) for 10 days in the presence of rhTGF (recombinant human TGF)-β1-F2, a fusion protein engineered to include a high-affinity collagen-binding decapeptide derived from von Willebrand factor. Subsequently, cells were moderately expanded in medium with 10% FBS for 4 days and treated with a short pulse of rhBMP (recombinant human bone morphogenetic protein)-2 for 4 h. During the last 2 days, dexamethasone and β-glycerophosphate were added to potentiate osteoinduction. Concomitant with an up-regulation of cell proliferation, DNA synthesis levels were determined. Polymerase chain reaction was performed to reveal the possible stemness of these cells. Osteogenic differentiation was evaluated in terms of alkaline phosphatase activity and mineralized matrix formation as well as by mRNA expression of osteogenic marker genes. Moreover, cells were placed inside diffusion chambers and implanted subcutaneously into the backs of adult rats for 4 weeks. Histological study provided evidence of cartilage and bone-like tissue formation. This experimental procedure is capable of selecting cell populations from BM that, in the presence of rhTGF-β1-F2 and rhBMP-2, achieve skeletogenic potential in vitro and in vivo.
Collapse
Affiliation(s)
- Silvia Claros
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, Universidad de Málaga, Campus de Teatinos, Málaga 29071, Spain.
| | - Gustavo A Rico-Llanos
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, Universidad de Málaga, Campus de Teatinos, Málaga 29071, Spain.
| | - José Becerra
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, Universidad de Málaga, Campus de Teatinos, Málaga 29071, Spain.
| | - José A Andrades
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, Universidad de Málaga, Campus de Teatinos, Málaga 29071, Spain.
| |
Collapse
|
176
|
Papanayotou C, Benhaddou A, Camus A, Perea-Gomez A, Jouneau A, Mezger V, Langa F, Ott S, Sabéran-Djoneidi D, Collignon J. A novel nodal enhancer dependent on pluripotency factors and smad2/3 signaling conditions a regulatory switch during epiblast maturation. PLoS Biol 2014; 12:e1001890. [PMID: 24960041 PMCID: PMC4068991 DOI: 10.1371/journal.pbio.1001890] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 05/15/2014] [Indexed: 02/07/2023] Open
Abstract
HBE, a newly discovered enhancer element, mediates the influence of pluripotency factors and Activin/Nodal signaling on early Nodal expression in the mouse embryo, and controls the activation of later-acting Nodal enhancers. During early development, modulations in the expression of Nodal, a TGFβ family member, determine the specification of embryonic and extra-embryonic cell identities. Nodal has been extensively studied in the mouse, but aspects of its early expression remain unaccounted for. We identified a conserved hotspot for the binding of pluripotency factors at the Nodal locus and called this sequence “highly bound element” (HBE). Luciferase-based assays, the analysis of fluorescent HBE reporter transgenes, and a conditional mutation of HBE allowed us to establish that HBE behaves as an enhancer, is activated ahead of other Nodal enhancers in the epiblast, and is essential to Nodal expression in embryonic stem cells (ESCs) and in the mouse embryo. We also showed that HBE enhancer activity is critically dependent on its interaction with the pluripotency factor Oct4 and on Activin/Nodal signaling. Use of an in vitro model of epiblast maturation, relying on the differentiation of ESCs into epiblast stem cells (EpiSCs), revealed that this process entails a shift in the regulation of Nodal expression from an HBE-driven phase to an ASE-driven phase, ASE being another autoregulatory Nodal enhancer. Deletion of HBE in ESCs or in EpiSCs allowed us to show that HBE, although not necessary for Nodal expression in EpiSCs, is required in differentiating ESCs to activate the differentiation-promoting ASE and therefore controls this regulatory shift. Our findings clarify how early Nodal expression is regulated and suggest how this regulation can promote the specification of extra-embryonic precusors without inducing premature differentiation of epiblast cells. More generally, they open new perspectives on how pluripotency factors achieve their function. In the early mouse embryo, Nodal, a member of the TGFbeta superfamily of signalling proteins, promotes the differentiation of extra-embryonic tissues, as well as tissues within the developing embryo itself. Characterising the regulation of Nodal gene expression is essential to understand how Nodal signals in diverse tissue types and at different stages of embryonic development. Four distinct enhancer sequences have been shown to regulate Nodal expression, although none could account for it in the preimplantation epiblast or in embryonic stem cells. We identified a novel enhancer, HBE, responsible for the earliest aspects of Nodal expression. We show that activation of HBE depends on its interaction with a well-known pluripotency factor called Oct4. HBE itself also controls the activation of at least one other Nodal enhancer. Our findings clarify how early Nodal expression is regulated and reveal how pluripotency factors may control the onset of differentiation in embryonic tissues.
Collapse
Affiliation(s)
- Costis Papanayotou
- Institut Jacques Monod, UMR 7592, CNRS, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
- * E-mail: (JC); (CP)
| | - Ataaillah Benhaddou
- Institut Jacques Monod, UMR 7592, CNRS, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - Anne Camus
- Institut Jacques Monod, UMR 7592, CNRS, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - Aitana Perea-Gomez
- Institut Jacques Monod, UMR 7592, CNRS, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - Alice Jouneau
- Unité de Biologie du Développement et de la reproduction, UMR INRA-ENVA, INRA, Jouy-en-Josas, France
| | - Valérie Mezger
- Epigenetics and Cell Fate, UMR7216, CNRS, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - Francina Langa
- Centre d'Ingénierie Génétique Murine, Institut Pasteur, Paris, France
| | - Sascha Ott
- Warwick Systems Biology Centre, University of Warwick, Coventry, United Kingdom
| | - Délara Sabéran-Djoneidi
- Institut Jacques Monod, UMR 7592, CNRS, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
- Epigenetics and Cell Fate, UMR7216, CNRS, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - Jérôme Collignon
- Institut Jacques Monod, UMR 7592, CNRS, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
- * E-mail: (JC); (CP)
| |
Collapse
|
177
|
Miyazawa K, Tanaka T, Nakai D, Morita N, Suzuki K. Immunohistochemical expression of four different stem cell markers in prostate cancer: High expression of NANOG in conjunction with hypoxia-inducible factor-1α expression is involved in prostate epithelial malignancy. Oncol Lett 2014; 8:985-992. [PMID: 25120646 PMCID: PMC4114613 DOI: 10.3892/ol.2014.2274] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 05/23/2014] [Indexed: 01/06/2023] Open
Abstract
Cancer stem cells (CSCs) have been identified in a variety of cancer types, including prostate cancer. The aim of the present study was to evaluate the immunohistochemical expression of NANOG, octamer 4 (OCT4), cluster of differentiation 133 (CD133) and NESTIN, which are all CSC markers, and assess their function in prostate carcinogenesis. A total of 114 patients were referred to the Kanazawa Medical University Hospital (Uchinada, Japan) having presented with elevated serum prostate-specific antigen levels and/or abnormal digital rectal examinations, and underwent transrectal ultrasound sonography guided eight core biopsies. The prostate pathological specimens were re-evaluated for selection in this study. When specimens were diagnosed as prostate cancer, immunohistochemical analysis of the four different stem cell markers (NANOG, OCT4, CD133 and NESTIN) and hypoxia-inducible factor (HIF)-1α was performed. Prostate cancer was found in 38 cases (33.3%), while the other patients had benign prostate hyperplasia with prostatitis. All prostate cancers were histopathologically identified as adenocarcinomas of various grades, and cancer cells and intraepithelial neoplasia (high grade) were immunohistochemically shown to express NANOG and OCT4, but not CD133 and NESTIN. The intensity of NANOG expression was much greater than that of OCT4, and the positivity and intensity of the four stem cell markers, including NANOG, were elevated with high Gleason scores. A significant correlation was observed between the NANOG- and HIF-1α-positive regions. The CSC markers, in particular OCT4 and NANOG, were immunohistochemically expressed in prostate cancers. Furthermore, HIF-1α expression may affect NANOG and/or OCT4 expression. The findings of the current study suggested that NANOG expression may be a biomarker for the diagnosis of prostate cancer, and the coexpression of NANOG and HIF-1α may be involved in prostate carcinogenesis.
Collapse
Affiliation(s)
- Katsuhito Miyazawa
- Department of Urology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Takuji Tanaka
- Department of Diagnositic Pathology and Research Center of Diagnostic Pathology, Gifu Municipal Hospital, Gifu, Gifu 500-8513, Japan
| | - Dan Nakai
- Department of Urology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Nobuyo Morita
- Department of Urology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Koji Suzuki
- Department of Urology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| |
Collapse
|
178
|
Thu KL, Becker-Santos DD, Radulovich N, Pikor LA, Lam WL, Tsao MS. SOX15 and other SOX family members are important mediators of tumorigenesis in multiple cancer types. Oncoscience 2014; 1:326-35. [PMID: 25594027 PMCID: PMC4278306 DOI: 10.18632/oncoscience.46] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 05/31/2014] [Indexed: 12/12/2022] Open
Abstract
SOX genes are transcription factors with important roles in embryonic development and carcinogenesis. The SOX family of 20 genes is responsible for regulating lineage and tissue specific gene expression patterns, controlling numerous developmental processes including cell differentiation, sex determination, and organogenesis. As is the case with many genes involved in regulating development, SOX genes are frequently deregulated in cancer. In this perspective we provide a brief overview of how SOX proteins can promote or suppress cancer growth. We also present a pan-cancer analysis of aberrant SOX gene expression and highlight potential molecular mechanisms responsible for their disruption in cancer. Our analyses indicate the prominence of SOX deregulation in different cancer types and reveal potential roles for SOX genes not previously described in cancer. Finally, we summarize our recent identification of SOX15 as a candidate tumor suppressor in pancreatic cancer and propose several research avenues to pursue to further delineate the emerging role of SOX15 in development and carcinogenesis.
Collapse
Affiliation(s)
- Kelsie L Thu
- BC Cancer Research Centre, Vancouver, B.C., Canada
| | | | | | | | - Wan L Lam
- BC Cancer Research Centre, Vancouver, B.C., Canada
| | - Ming-Sound Tsao
- Ontario Cancer Institute, Princess Margaret Hospital, University Health Network at the University of Toronto
| |
Collapse
|
179
|
Abstract
In pluripotent stem cells, the interplay between signaling cues, epigenetic regulators and transcription factors orchestrates developmental potency. Flexibility in gene expression control is imparted by molecular changes to the nucleosomes, the building block of chromatin. Here, we review the current understanding of the role of chromatin as a plastic and integrative platform to direct gene expression changes in pluripotent stem cells, giving rise to distinct pluripotent states. We will further explore the concept of epigenetic asymmetry, focusing primarily on histone stoichiometry and their associated modifications, that is apparent at both the nucleosome and chromosome-wide levels, and discuss the emerging importance of these asymmetric chromatin configurations in diversifying epigenetic states and their implications for cell fate control.
Collapse
Affiliation(s)
- Wee-Wei Tee
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Danny Reinberg
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
180
|
Wong JCY, Jack MM, Li Y, O'Neill C. The epigenetic bivalency of core pancreatic β-cell transcription factor genes within mouse pluripotent embryonic stem cells is not affected by knockdown of the polycomb repressive complex 2, SUZ12. PLoS One 2014; 9:e97820. [PMID: 24845830 PMCID: PMC4028244 DOI: 10.1371/journal.pone.0097820] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/23/2014] [Indexed: 12/19/2022] Open
Abstract
This study assesses changes in activator and repressor modifications to histones associated with the core transcription factor genes most highly upregulated or downregulated in pancreatic β-cells relative to expression in an embryonic stem cell line. Epigenetic analysis of the Oct4, Utf1, Nanog and Sox2 (pluripotency) and Pdx1, Nkx6.1, Nkx2.2 and MafA (pancreatic β-cells) transcription factor genes in embryonic stem cells and a β-cell line (MIN6) showed the pluripotency genes were enriched for active (histone 3 trimethylated at lysine 4 and histone 3 acetylated at lysine 9) and depleted of repressor modifications (histone 3 trimethylated at lysine 27 and histone 3 trimethylated at lysine 9) around the transcription start site in mouse embryonic stem cells (D3), and this was reversed in MIN6 cells. The β-cell transcription factors were bivalently enriched for activating (histone 3 trimethylated at lysine 4) and repressor (histone 3 trimethylated at lysine 27) modifications in embryonic stem cells but were monovalent for the activator modification (histone 3 trimethylated at lysine 4) in the β-cells. The polycomb repressor complex 2 acts as a histone 3 lysine 27 methylase and an essential component of this complex, SUZ12, was enriched at the β-cell transcription factors in embryonic stem cells and was reduced MIN6. Knock-down of SUZ12 in embryonic stem cells, however, did not reduce the level of histone 3 trimethylated at lysine 27 at β-cell transcription factor loci or break the transcriptional repression of these genes in embryonic stem cells. This study shows the reduction in the total SUZ12 level was not a sufficient cause of the resolution of the epigenetic bivalency of β-cell transcription factors in embryonic stem cells.
Collapse
Affiliation(s)
- Jennifer C. Y. Wong
- Centre for Developmental and Regenerative Medicine, Kolling Institute of Medical Research, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Michelle M. Jack
- Department of Endocrinology, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Yan Li
- Centre for Developmental and Regenerative Medicine, Kolling Institute of Medical Research, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Christopher O'Neill
- Centre for Developmental and Regenerative Medicine, Kolling Institute of Medical Research, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
181
|
Uslu S, Oktem G, Uysal A, Soner BC, Arbak S, Ince U. Stem cell and extracellular matrix-related molecules increase following melatonin treatment in the skin of postmenopausal rats. Cell Biol Int 2014; 38:924-32. [PMID: 24740758 DOI: 10.1002/cbin.10286] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 03/13/2014] [Indexed: 12/11/2022]
Abstract
The menopause has a negative effect in the skin. Melatonin affects skin functions and structures through actions mediated by cell-surface and putative-nuclear receptors expressed in skin cell. We have therefore determined the effects of melatonin treatment on stem cell in the epidermis and extracellular matrix related molecules in the dermis the skin of postmenopausal rats. A total of 45 female rats were divided into 5 groups: control group, group A [ovariectomy (OVX)], group B (OVX +10 mg/kg/day melatonin), group C (OVX +30 mg/kg/day melatonin), group S (sham operated + 10 mg/kg/day melatonin). Ventral skin samples were excised at 12th week after ovariectomy. Hematoxylin-eosin, periodic acid- methylamine silver, elastic van Gieson staining techniques were used to measure histomorphometrically the thickness of elastic fibers and basement membrane, depths of the epidermis, dermis, and subcutaneous fat layer. Immunohistochemical staining methods were used for fibroblast growth factor β (FGF β), collagen type I, fibronectin, β-catenin, c-kit, c-Myc evaluation. Epidermal thickness, subcutaneous fat layer, and elastic fibers were significantly decreased in group C, and there was a significant increase after melatonin treatment. Although there was no difference in dermal thickness of group C, melatonin also significantly increased the dermal thickness. High FGF β, type I collagen, fibronectin, β-catenin, c-Myc immunoreactivity developed following melatonin in all groups. Thus melatonin treatment of postmenopausal rats was mostly due to the decrease of stem cell and extracellular matrix-related molecules in the skin.
Collapse
Affiliation(s)
- Serap Uslu
- Histology and Embryology, Acıbadem University, Vocational School of Health Services, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
182
|
Alfano R, Youngblood BA, Zhang D, Huang N, MacDonald CC. Human leukemia inhibitory factor produced by the ExpressTec method from rice (Oryza sativa L.) is active in human neural stem cells and mouse induced pluripotent stem cells. Bioengineered 2014; 5:180-5. [PMID: 24776984 PMCID: PMC4101010 DOI: 10.4161/bioe.28996] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Stem cell-based therapy has the potential to treat an array of human diseases. However, to study the therapeutic potential and safety of these cells, a scalable cell culture medium is needed that is free of human or bovine-derived serum proteins. Thus, cost-effective recombinant serum proteins and cytokines are needed to produce such mediums. One such cytokine, leukemia inhibitory factor (LIF), has been shown to be a critical paracrine factor that maintains stem cell pluripotency in murine embryonic stem cells and human naïve stem cells while simultaneously inhibiting differentiation. We recently produced recombinant human LIF (rhLIF) in a rice-based protein expression system known as ExpressTec. (12) We described expression of rice-derived rhLIF and demonstrated its biological equivalency to E. coli-derived rhLIF in traditional and embryonic mouse stem cell systems. Here we describe the expression yield of rice-derived rhLIF and the scale up production capacity. We provide further evidence of the efficacy of rice-derived rhLIF in additional stem cell systems including human neural stem cells and mouse induced pluripotent stem (iPS) cells. The expression level, biological activity, and potential for production at commercial scale of rice-derived rhLIF provides a proof-of-principal for ExpressTec-derived proteins to produce regulatory-friendly, high performance, and dependable stem cell media.
Collapse
Affiliation(s)
| | - Bradford A Youngblood
- Department of Cell Biology & Biochemistry; Texas Tech University Health Sciences Center; Lubbock, TX USA
| | | | - Ning Huang
- Ventria Bioscience Inc; Fort Collins, CO USA
| | - Clinton C MacDonald
- Department of Cell Biology & Biochemistry; Texas Tech University Health Sciences Center; Lubbock, TX USA
| |
Collapse
|
183
|
Thakurela S, Garding A, Jung J, Schübeler D, Burger L, Tiwari VK. Gene regulation and priming by topoisomerase IIα in embryonic stem cells. Nat Commun 2014; 4:2478. [PMID: 24072229 DOI: 10.1038/ncomms3478] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 08/21/2013] [Indexed: 11/09/2022] Open
Abstract
Topoisomerases resolve torsional stress, while their function in gene regulation, especially during cellular differentiation, remains unknown. Here we find that the expression of topo II isoforms, topoisomerase IIα and topoisomerase IIβ, is the characteristic of dividing and postmitotic tissues, respectively. In embryonic stem cells, topoisomerase IIα preferentially occupies active gene promoters. Topoisomerase IIα inhibition compromises genomic integrity, which results in epigenetic changes, altered kinetics of RNA Pol II at target promoters and misregulated gene expression. Common targets of topoisomerase IIα and topoisomerase IIβ are housekeeping genes, while unique targets are involved in proliferation/pluripotency and neurogenesis, respectively. Topoisomerase IIα targets exhibiting bivalent chromatin resolve upon differentiation, concomitant with their activation and occupancy by topoisomerase IIβ, features further observed for long genes. These long silent genes display accessible chromatin in embryonic stem cells that relies on topoisomerase IIα activity. These findings suggest that topoisomerase IIα not only contributes to stem-cell transcriptome regulation but also primes developmental genes for subsequent activation upon differentiation.
Collapse
|
184
|
The States of Pluripotency: Pluripotent Lineage Development in the Embryo and in the Dish. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/208067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The pluripotent cell lineage of the embryo comprises a series of temporally and functionally distinct intermediary cell states, the epiblast precursor cell of the newly formed blastocyst, the epiblast population of the inner cell mass, and the early and late epiblast of the postimplantation embryo, referred to here as early and late primitive ectoderm. Pluripotent cell populations representative of the embryonic populations can be formed in culture. Although multiple pluripotent cell states are now recognised, little is known about the signals and pathways that progress cells from the epiblast precursor cell to the late primitive ectoderm in the embryo or in culture. The characterisation of cell states is most advanced in mouse where conditions for culturing distinct pluripotent cell states are well established and embryonic material is accessible. This review will focus on the pluripotent cell states present during embryonic development in the mouse and what is known of the mechanisms that regulate the progression of the lineage from the epiblast precursor cell and the ground state of pluripotency to the late primitive ectoderm present immediately prior to cell differentiation.
Collapse
|
185
|
Transcription regulation and chromatin structure in the pluripotent ground state. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:129-37. [DOI: 10.1016/j.bbagrm.2013.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/06/2013] [Accepted: 09/07/2013] [Indexed: 01/19/2023]
|
186
|
Zfp322a Regulates mouse ES cell pluripotency and enhances reprogramming efficiency. PLoS Genet 2014; 10:e1004038. [PMID: 24550733 PMCID: PMC3923668 DOI: 10.1371/journal.pgen.1004038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 11/04/2013] [Indexed: 12/16/2022] Open
Abstract
Embryonic stem (ES) cells derived from the inner cell mass (ICM) of blastocysts are characterised by their ability to self-renew and their potential to differentiate into many different cell types. Recent studies have shown that zinc finger proteins are crucial for maintaining pluripotent ES cells. Mouse zinc finger protein 322a (Zfp322a) is expressed in the ICM of early mouse embryos. However, little is known regarding the role of Zfp322a in the pluripotency maintenance of mouse ES cells. Here, we report that Zfp322a is required for mES cell identity since depletion of Zfp322a directs mES cells towards differentiation. Chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays revealed that Zfp322a binds to Pou5f1 and Nanog promoters and regulates their transcription. These data along with the results obtained from our ChIP-seq experiment showed that Zfp322a is an essential component of mES cell transcription regulatory network. Targets which are directly regulated by Zfp322a were identified by correlating the gene expression profile of Zfp322a RNAi-treated mES cells with the ChIP-seq results. These experiments revealed that Zfp322a inhibits mES cell differentiation by suppressing MAPK pathway. Additionally, Zfp322a is found to be a novel reprogramming factor that can replace Sox2 in the classical Yamanaka's factors (OSKM). It can be even used in combination with Yamanaka's factors and that addition leads to a higher reprogramming efficiency and to acceleration of the onset of the reprogramming process. Together, our results demonstrate that Zfp322a is a novel essential component of the transcription factor network which maintains the identity of mouse ES cells. Embryonic stem (ES) cells are featured by their ability to self-renew and by their potential to differentiate into many different cell types. Recent studies have revealed that the unique properties of mouse ES cells are governed by a specific transcription regulatory network, including master regulators Oct4/Sox2/Nanog and other pluripotency factors. The importance of these factors was highlighted by the subsequent finding that combination of several transcription factors can reprogram differentiated fibroblasts back to pluripotent stem cells. Here, we report that Zfp322a is a novel factor which is required for mES cell identity. We revealed that Zfp322a can regulate the key pluripotency genes Pou5f1 and Nanog and functions as a repressor of MAPK/ERK pathway in mES cells, therefore preventing mES cell differentiation. Furthermore, we discovered that Zfp332a can promote the generation of induced pluripotent stem cells (iPSCs) from mouse embryonic fibroblasts (MEFs). Our results reveal that Zfp322a is a novel essential transcription factor which not only regulates ES cell pluripotency but also enhances iPSC formation.
Collapse
|
187
|
Computational analysis of transcriptional circuitries in human embryonic stem cells reveals multiple and independent networks. BIOMED RESEARCH INTERNATIONAL 2014; 2014:725780. [PMID: 24511543 PMCID: PMC3910540 DOI: 10.1155/2014/725780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 11/12/2013] [Accepted: 11/17/2013] [Indexed: 11/17/2022]
Abstract
It has been known that three core transcription factors (TFs), NANOG, OCT4, and SOX2, collaborate to form a transcriptional circuitry to regulate pluripotency and self-renewal of human embryonic stem (ES) cells. Similarly, MYC also plays an important role in regulating pluripotency and self-renewal of human ES cells. However, the precise mechanism by which the transcriptional regulatory networks control the activity of ES cells remains unclear. In this study, we reanalyzed an extended core network, which includes the set of genes that are cobound by the three core TFs and additional TFs that also bind to these cobound genes. Our results show that beyond the core transcriptional network, additional transcriptional networks are potentially important in the regulation of the fate of human ES cells. Several gene families that encode TFs play a key role in the transcriptional circuitry of ES cells. We also demonstrate that MYC acts independently of the core module in the regulation of the fate of human ES cells, consistent with the established argument. We find that TP53 is a key connecting molecule between the core-centered and MYC-centered modules. This study provides additional insights into the underlying regulatory mechanisms involved in the fate determination of human ES cells.
Collapse
|
188
|
De D, Jeong MH, Leem YE, Svergun DI, Wemmer DE, Kang JS, Kim KK, Kim SH. Inhibition of master transcription factors in pluripotent cells induces early stage differentiation. Proc Natl Acad Sci U S A 2014; 111:1778-83. [PMID: 24434556 PMCID: PMC3918783 DOI: 10.1073/pnas.1323386111] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The potential for pluripotent cells to differentiate into diverse specialized cell types has given much hope to the field of regenerative medicine. Nevertheless, the low efficiency of cell commitment has been a major bottleneck in this field. Here we provide a strategy to enhance the efficiency of early differentiation of pluripotent cells. We hypothesized that the initial phase of differentiation can be enhanced if the transcriptional activity of master regulators of stemness is suppressed, blocking the formation of functional transcriptomes. However, an obstacle is the lack of an efficient strategy to block protein-protein interactions. In this work, we take advantage of the biochemical property of seventeen kilodalton protein (Skp), a bacterial molecular chaperone that binds directly to sex determining region Y-box 2 (Sox2). The small angle X-ray scattering analyses provided a low resolution model of the complex and suggested that the transactivation domain of Sox2 is probably wrapped in a cleft on Skp trimer. Upon the transduction of Skp into pluripotent cells, the transcriptional activity of Sox2 was inhibited and the expression of Sox2 and octamer-binding transcription factor 4 was reduced, which resulted in the expression of early differentiation markers and appearance of early neuronal and cardiac progenitors. These results suggest that the initial stage of differentiation can be accelerated by inhibiting master transcription factors of stemness. This strategy can possibly be applied to increase the efficiency of stem cell differentiation into various cell types and also provides a clue to understanding the mechanism of early differentiation.
Collapse
Affiliation(s)
- Debojyoti De
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea
| | - Myong-Ho Jeong
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea
| | - Young-Eun Leem
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea
| | - Dmitri I. Svergun
- European Molecular Biology Laboratory, Hamburg Outstation, 22603 Hamburg, Germany; and
| | - David E. Wemmer
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea
| | - Sung-Hou Kim
- Department of Chemistry, University of California, Berkeley, CA 94720
| |
Collapse
|
189
|
Lasorella A, Benezra R, Iavarone A. The ID proteins: master regulators of cancer stem cells and tumour aggressiveness. Nat Rev Cancer 2014; 14:77-91. [PMID: 24442143 DOI: 10.1038/nrc3638] [Citation(s) in RCA: 286] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Inhibitor of DNA binding (ID) proteins are transcriptional regulators that control the timing of cell fate determination and differentiation in stem and progenitor cells during normal development and adult life. ID genes are frequently deregulated in many types of human neoplasms, and they endow cancer cells with biological features that are hijacked from normal stem cells. The ability of ID proteins to function as central 'hubs' for the coordination of multiple cancer hallmarks has established these transcriptional regulators as therapeutic targets and biomarkers in specific types of human tumours.
Collapse
Affiliation(s)
- Anna Lasorella
- Institute for Cancer Genetics, Department of Pathology and Pediatrics, Columbia University Medical Center, 1130 St. Nicholas Avenue, New York, 10032 New York, USA
| | - Robert Benezra
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Box 241, New York, 10065 New York, USA
| | - Antonio Iavarone
- Institute for Cancer Genetics, Department of Pathology and Neurology, Columbia University Medical Center, 1130 St. Nicholas Avenue, New York, 10032 New York, USA
| |
Collapse
|
190
|
Boyette LB, Tuan RS. Adult Stem Cells and Diseases of Aging. J Clin Med 2014; 3:88-134. [PMID: 24757526 PMCID: PMC3992297 DOI: 10.3390/jcm3010088] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 12/15/2013] [Accepted: 12/17/2013] [Indexed: 02/06/2023] Open
Abstract
Preservation of adult stem cells pools is critical for maintaining tissue homeostasis into old age. Exhaustion of adult stem cell pools as a result of deranged metabolic signaling, premature senescence as a response to oncogenic insults to the somatic genome, and other causes contribute to tissue degeneration with age. Both progeria, an extreme example of early-onset aging, and heritable longevity have provided avenues to study regulation of the aging program and its impact on adult stem cell compartments. In this review, we discuss recent findings concerning the effects of aging on stem cells, contributions of stem cells to age-related pathologies, examples of signaling pathways at work in these processes, and lessons about cellular aging gleaned from the development and refinement of cellular reprogramming technologies. We highlight emerging therapeutic approaches to manipulation of key signaling pathways corrupting or exhausting adult stem cells, as well as other approaches targeted at maintaining robust stem cell pools to extend not only lifespan but healthspan.
Collapse
Affiliation(s)
- Lisa B Boyette
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA; ; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA; ; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA ; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
191
|
Necsulea A, Soumillon M, Warnefors M, Liechti A, Daish T, Zeller U, Baker JC, Grützner F, Kaessmann H. The evolution of lncRNA repertoires and expression patterns in tetrapods. Nature 2014; 505:635-40. [PMID: 24463510 DOI: 10.1038/nature12943] [Citation(s) in RCA: 751] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 12/05/2013] [Indexed: 01/06/2023]
Abstract
Only a very small fraction of long noncoding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into their functionality, but the absence of lncRNA annotations in non-model organisms has precluded comparative analyses. Here we present a large-scale evolutionary study of lncRNA repertoires and expression patterns, in 11 tetrapod species. We identify approximately 11,000 primate-specific lncRNAs and 2,500 highly conserved lncRNAs, including approximately 400 genes that are likely to have originated more than 300 million years ago. We find that lncRNAs, in particular ancient ones, are in general actively regulated and may function predominantly in embryonic development. Most lncRNAs evolve rapidly in terms of sequence and expression levels, but tissue specificities are often conserved. We compared expression patterns of homologous lncRNA and protein-coding families across tetrapods to reconstruct an evolutionarily conserved co-expression network. This network suggests potential functions for lncRNAs in fundamental processes such as spermatogenesis and synaptic transmission, but also in more specific mechanisms such as placenta development through microRNA production.
Collapse
Affiliation(s)
- Anamaria Necsulea
- 1] Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland [2] Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland [3] Laboratory of Developmental Genomics, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland (A.N.); Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA, and Broad Institute, Cambridge, Massachusetts 02142, USA (M.S.)
| | - Magali Soumillon
- 1] Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland [2] Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland [3] Laboratory of Developmental Genomics, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland (A.N.); Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA, and Broad Institute, Cambridge, Massachusetts 02142, USA (M.S.)
| | - Maria Warnefors
- 1] Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland [2] Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Angélica Liechti
- 1] Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland [2] Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Tasman Daish
- The Robinson Institute, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Ulrich Zeller
- Department of Systematic Zoology, Faculty of Agriculture and Horticulture, Humboldt University Berlin, 10099 Berlin, Germany
| | - Julie C Baker
- Department of Genetics, Stanford University School of Medicine, Stanford University, Stanford, California 94305, USA
| | - Frank Grützner
- The Robinson Institute, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Henrik Kaessmann
- 1] Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland [2] Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| |
Collapse
|
192
|
Youngblood BA, Alfano R, Pettit SC, Zhang D, Dallmann HG, Huang N, Macdonald CC. Application of recombinant human leukemia inhibitory factor (LIF) produced in rice (Oryza sativa L.) for maintenance of mouse embryonic stem cells. J Biotechnol 2013; 172:67-72. [PMID: 24380819 DOI: 10.1016/j.jbiotec.2013.12.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 12/16/2013] [Indexed: 10/25/2022]
Abstract
Embryonic and induced pluripotent stem cells have the ability to differentiate into any somatic cell type, and thus have potential to treat a number of diseases that are currently incurable. Application of these cells for clinical or industrial uses would require an increase in production to yield adequate numbers of viable cells. However, the relatively high costs of cytokines and growth factors required for maintenance of stem cells in the undifferentiated state have the potential to limit translational research. Leukemia inhibitory factor (LIF), a member of the IL-6 cytokine family, is a key regulator in the maintenance of naïve states for both human and mouse stem cells. In this study, we describe a new recombinant human LIF (rhLIF) using a plant-based (rice) expression system. We found that rice-derived rhLIF possessed the same specific activity as commercial Escherichia coli-derived LIF and was capable of supporting mouse embryonic stem cell proliferation in the undifferentiated state as evidenced from pluripotency marker level analysis. Retention of the pluripotent state was found to be indistinguishable between rice-derived rhLIF and other recombinant LIF proteins currently on the market.
Collapse
Affiliation(s)
- Bradford A Youngblood
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430-6540, USA
| | - Randall Alfano
- InVitria, 320 East Vine Drive, Suite 223, Fort Collins, CO 80524, USA
| | - Steve C Pettit
- InVitria, 320 East Vine Drive, Suite 223, Fort Collins, CO 80524, USA
| | - Deshui Zhang
- Ventria Bioscience Inc., 320 East Vine Drive, Suite 223, Fort Collins, CO 80524, USA
| | - H Garry Dallmann
- Ventria Bioscience Inc., 320 East Vine Drive, Suite 223, Fort Collins, CO 80524, USA
| | - Ning Huang
- Ventria Bioscience Inc., 320 East Vine Drive, Suite 223, Fort Collins, CO 80524, USA
| | - Clinton C Macdonald
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430-6540, USA.
| |
Collapse
|
193
|
Scerbo P, Coen L. [Pluripotency and induced nuclear reprogramming in vertebrates: new perspectives]. Biol Aujourdhui 2013; 207:201-17. [PMID: 24330973 DOI: 10.1051/jbio/2013016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Indexed: 11/14/2022]
Abstract
Pluripotency is a transitory state during vertebrate development. A pluripotent cell can theoretically acquire all cell fates of the organism. During ontogenetic dynamics, loss of pluripotency is associated with a progressive acquisition of a specific genetic program, which is determined both by instructions received and by cell position in the whole organism. Pluripotent embryonic stem cells can be isolated and cultured in vitro indefinitely. Using mammalian embryonic stem cells (ESCs), it has been possible to identify the factors involved in the establishment and maintenance of pluripotency state. In this review, we will describe recent scientific advances in the understanding of pluripotency, the molecular actors involved in such a regulation and their functional conservation during evolution. We shall focus on new concepts, obtained from the study of vertebrate model organisms, to shed light on the cell transition from pluripotency to differentiated state, and shall recapitulate fundamental and clinical applications of pluripotent cells, of "somatic cell nuclear transfer" (SCNT), of induced nuclear reprogramming in vitro and future perspectives of in vivo applications. Our results, in the xenopus, concerning the first in vivo induced nuclear reprogramming might open new perspectives about the understanding of cell plasticity in an integrated context. Our analyses sought to encourage new and alternative clinical approaches to achieve in situ tissue regeneration.
Collapse
Affiliation(s)
- Pierluigi Scerbo
- Institut de Biologie du Développement de Marseille Luminy, CNRS UMR 7288, case 907, campus de Luminy, 13009 Marseille, France - Département Régulations, Développement et Diversité Moléculaire, CNRS UMR 7221, Muséum National d'Histoire Naturelle (MNHN), CP No. 32, 7 rue Cuvier, 75231 Paris Cedex 5, France
| | - Laurent Coen
- Département Régulations, Développement et Diversité Moléculaire, CNRS UMR 7221, Muséum National d'Histoire Naturelle (MNHN), CP No. 32, 7 rue Cuvier, 75231 Paris Cedex 5, France
| |
Collapse
|
194
|
Monajemzadeh M, Soleimani V, Vasei M, Koochakzadeh L, Karbakhsh M. Expression and prognostic significance of Oct4 and Nanog in neuroblastoma. APMIS 2013; 122:734-41. [PMID: 24320714 DOI: 10.1111/apm.12207] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 09/24/2013] [Indexed: 12/22/2022]
Abstract
Neuroblastoma is the most common extracranial solid tumor of children, accounting for an estimated 15% cancer-related deaths in this period. It has been hypothesized that drug resistance of cancer stem cells may be responsible for chemotherapy failure, sustained tumor growth, and recurrence in many solid tumors. In this study, we investigated the expression of Octamer-binding transcription factor 4 (Oct4) and Nanog, two stem cell markers, in 47 neuroblastic tumors by immunohistochemistry and correlated their expression by other prognostic factors especially with NMYC amplification using both fluorescent and chromogenic in situ hybridization methods. Twenty three cases (48.9%) showed Oct4 signals and eight cases (17%) showed Nanog expression. All Nanog positive tumors showed Oct4 expression. Seven cases (14.1%) had NMYC amplification. There was also no association between positive Oct4 and Nanog reactivity and tumor morphology, age, mitosis-karyorrhexis index, NMYC amplification, favorable or unfavorable histology, and risk groups (p > 0.05). Cancer stem cells hypothesis is a challenging issue and controversies exist about their significance. Although our study did not show strong association between prognostic factors and expression of stem cell markers, performing of further large-scale studies of various neuroblastic tumors with various stages is suggested.
Collapse
Affiliation(s)
- Maryam Monajemzadeh
- Department of Pathology, Children Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | |
Collapse
|
195
|
Sousa BR, Parreira RC, Fonseca EA, Amaya MJ, Tonelli FMP, Lacerda SMSN, Lalwani P, Santos AK, Gomes KN, Ulrich H, Kihara AH, Resende RR. Human adult stem cells from diverse origins: An overview from multiparametric immunophenotyping to clinical applications. Cytometry A 2013; 85:43-77. [DOI: 10.1002/cyto.a.22402] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/27/2013] [Accepted: 10/01/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Bruna R. Sousa
- Department of Biochemistry and Immunology, Cell Signaling and Nanobiotechnology Laboratory; Federal University of Minas Gerais; Belo Horizonte MG Brazil
| | - Ricardo C. Parreira
- Department of Biochemistry and Immunology, Cell Signaling and Nanobiotechnology Laboratory; Federal University of Minas Gerais; Belo Horizonte MG Brazil
| | - Emerson A Fonseca
- Department of Biochemistry and Immunology, Cell Signaling and Nanobiotechnology Laboratory; Federal University of Minas Gerais; Belo Horizonte MG Brazil
| | - Maria J. Amaya
- Department of Internal Medicine, Section of Digestive Diseases; Yale University School of Medicine; New Haven Connecticut
| | - Fernanda M. P. Tonelli
- Department of Biochemistry and Immunology, Cell Signaling and Nanobiotechnology Laboratory; Federal University of Minas Gerais; Belo Horizonte MG Brazil
| | - Samyra M. S. N. Lacerda
- Department of Biochemistry and Immunology, Cell Signaling and Nanobiotechnology Laboratory; Federal University of Minas Gerais; Belo Horizonte MG Brazil
| | - Pritesh Lalwani
- Faculdade de Ciências Farmacêuticas; Universidade Federal do Amazonas; Manaus AM Brazil
| | - Anderson K. Santos
- Department of Biochemistry and Immunology, Cell Signaling and Nanobiotechnology Laboratory; Federal University of Minas Gerais; Belo Horizonte MG Brazil
| | - Katia N. Gomes
- Department of Biochemistry and Immunology, Cell Signaling and Nanobiotechnology Laboratory; Federal University of Minas Gerais; Belo Horizonte MG Brazil
| | - Henning Ulrich
- Departamento de Bioquímica; Instituto de Química, Universidade de São Paulo; São Paulo SP Brazil
| | - Alexandre H. Kihara
- Núcleo de Cognição e Sistemas Complexos, Centro de Matemática, Computação e Cognição; Universidade Federal do ABC; Santo André SP Brazil
| | - Rodrigo R. Resende
- Department of Biochemistry and Immunology, Cell Signaling and Nanobiotechnology Laboratory; Federal University of Minas Gerais; Belo Horizonte MG Brazil
| |
Collapse
|
196
|
Ko CI, Wang Q, Fan Y, Xia Y, Puga A. Pluripotency factors and Polycomb Group proteins repress aryl hydrocarbon receptor expression in murine embryonic stem cells. Stem Cell Res 2013; 12:296-308. [PMID: 24316986 DOI: 10.1016/j.scr.2013.11.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 11/07/2013] [Accepted: 11/08/2013] [Indexed: 11/18/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a transcription factor and environmental sensor that regulates expression of genes involved in drug-metabolism and cell cycle regulation. Chromatin immunoprecipitation analyses, Ahr ablation in mice and studies with orthologous genes in invertebrates suggest that AHR may also play a significant role in embryonic development. To address this hypothesis, we studied the regulation of Ahr expression in mouse embryonic stem cells and their differentiated progeny. In ES cells, interactions between OCT3/4, NANOG, SOX2 and Polycomb Group proteins at the Ahr promoter repress AHR expression, which can also be repressed by ectopic expression of reprogramming factors in hepatoma cells. In ES cells, unproductive RNA polymerase II binds at the Ahr transcription start site and drives the synthesis of short abortive transcripts. Activation of Ahr expression during differentiation follows from reversal of repressive marks in Ahr promoter chromatin, release of pluripotency factors and PcG proteins, binding of Sp factors, establishment of histone marks of open chromatin, and engagement of active RNAPII to drive full-length RNA transcript elongation. Our results suggest that reversible Ahr repression in ES cells holds the gene poised for expression and allows for a quick switch to activation during embryonic development.
Collapse
Affiliation(s)
- Chia-I Ko
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, 3223 Eden Avenue, Cincinnati, OH 45267, USA
| | - Qin Wang
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, 3223 Eden Avenue, Cincinnati, OH 45267, USA
| | - Yunxia Fan
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, 3223 Eden Avenue, Cincinnati, OH 45267, USA
| | - Ying Xia
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, 3223 Eden Avenue, Cincinnati, OH 45267, USA
| | - Alvaro Puga
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, 3223 Eden Avenue, Cincinnati, OH 45267, USA.
| |
Collapse
|
197
|
Ivanov VN, Wen G, Hei TK. Sodium arsenite exposure inhibits AKT and Stat3 activation, suppresses self-renewal and induces apoptotic death of embryonic stem cells. Apoptosis 2013; 18:188-200. [PMID: 23143138 DOI: 10.1007/s10495-012-0779-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Sodium arsenite exposure at concentration >5 μM may induce embryotoxic and teratogenic effects in animal models. Long-term health effects of sodium arsenite from contaminated drinking water may result in different forms of cancer and neurological abnormalities. As cancer development processes seem to be originated in stem cells, we have chosen to examine the effects of sodium arsenite on signaling pathways and the corresponding transcription factors that regulate cell viability and self-renewal in mouse embryonic stem cells (ESC) and mouse neural stem/precursor cells. We demonstrated that the crucial signaling pathway, which was substantially suppressed by sodium arsenite exposure (4 μM) in ESC, was the PI3K-AKT pathway linked with numerous downstream targets that control cell survival and apoptosis. Furthermore, the whole core transcription factor circuitry that control self-renewal of mouse ESC (Stat3-P-Tyr705, Oct4, Sox2 and Nanog) was strongly down-regulated by sodium arsenite (4 μM) exposure. This was followed by G2/M arrest and induction of the mitochondrial apoptotic pathway that might be suppressed by caspase-9 and caspase-3 inhibitors. In contrast to mouse ESC with very low endogenous IL6, mouse neural stem/precursor cells (C17.2 clone immortalized by v-myc) with high endogenous production of IL6 exhibited a strong resistance to cytotoxic effects of sodium arsenite that could be decreased by inhibitory anti-IL6 antibody or Stat3 inhibition. In summary, our data demonstrated suppression of self-renewal and induction of apoptosis in mouse ESC by sodium arsenite exposure, which was further accelerated due to simultaneous inhibition of the protective PI3K-AKT and Stat3-dependent pathways.
Collapse
Affiliation(s)
- Vladimir N Ivanov
- Department of Radiation Oncology, Center for Radiological Research, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA.
| | | | | |
Collapse
|
198
|
Franzin C, Piccoli M, Serena E, Bertin E, Urbani L, Luni C, Pasqualetto V, Eaton S, Elvassore N, De Coppi P, Pozzobon M. Single-cell PCR analysis of murine embryonic stem cells cultured on different substrates highlights heterogeneous expression of stem cell markers. Biol Cell 2013; 105:549-60. [PMID: 24024612 DOI: 10.1111/boc.201300034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 09/06/2013] [Indexed: 11/27/2022]
Abstract
BACKGROUND INFORMATION In the last few years, recent evidence has revealed that inside an apparently homogeneous cell population there indeed appears to be heterogeneity. This is particularly true for embryonic stem (ES) cells where markers of pluripotency are dynamically expressed within the single cells. In this work, we have designed and tested a new set of primers for multiplex PCR detection of pluripotency markers expression, and have applied it to perform a single-cell analysis in murine ES cells cultured on three different substrates that could play an important role in controlling cell behaviour and fate: (i) mouse embryonic fibroblast (MEF) feeder layer, as the standard method for ES cells culture; (ii) Matrigel coating; (iii) micropatterned hydrogel. RESULTS Compared with population analysis, using a single-cell approach, we were able to evaluate not only the number of cells that maintained the expression of a specific gene but, most importantly, how many cells co-expressed different markers. We found that micropatterned hydrogel seems to represent a good alternative to MEF, as the expression of stemness markers is better preserved than in Matrigel culture. CONCLUSIONS This single-cell assay allows for the assessment of the stemness maintenance at a single-cell level in terms of gene expression profile, and can be applied in stem cell research to characterise freshly isolated and cultured cells, or to standardise, for instance, the method of culture closely linked to the transcriptional activity and the differentiation potential.
Collapse
Affiliation(s)
- Chiara Franzin
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, 35127, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Targeting neuroblastoma stem cells with retinoic acid and proteasome inhibitor. PLoS One 2013; 8:e76761. [PMID: 24116151 PMCID: PMC3792090 DOI: 10.1371/journal.pone.0076761] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 08/28/2013] [Indexed: 11/24/2022] Open
Abstract
Background Neuroblastma cell lines contain a side-population of cells which express stemness markers. These stem-like cells may represent the potential underlying mechanism for resistance to conventional therapy and recurrence of neuroblastoma in patients. Methodology/Principal Findings To develop novel strategies for targeting the side-population of neurobastomas, we analyzed the effects of 13-cis-retinoic acid (RA) combined with the proteasome inhibitor MG132. The short-term action of the treatment was compared with effects after a 5-day recovery period during which both chemicals were withdrawn. RA induced growth arrest and differentiation of SH-SY5Y and SK-N-BE(2) neuroblastoma cell lines. Inhibition of the proteasome caused apoptosis in both cell lines, thus, revealing the critical role of this pathway in the regulated degradation of proteins involved in neuroblastoma proliferation and survival. The combination of RA with MG132 induced apoptosis in a dose-dependent manner, in addition to promoting G2/M arrest in treated cultures. Interestingly, expression of stem cell markers such as Nestin, Sox2, and Oct4 were reduced after the recovery period of combined treatment as compared with untreated cells or treated cells with either compound alone. Consistent with this, neurosphere formation was significantly impaired by the combined treatment of RA and MG132. Conclusions Given that stem-like cells are associated with resistant to conventional therapy and are thought to be responsible for relapse, our results suggest that dual therapy of RA and proteasome inhibitor might be beneficial for targeting the side-population of cells associated residual disease in high-risk neuroblastoma.
Collapse
|
200
|
Lee MT, Bonneau AR, Takacs CM, Bazzini AA, DiVito KR, Fleming ES, Giraldez AJ. Nanog, Pou5f1 and SoxB1 activate zygotic gene expression during the maternal-to-zygotic transition. Nature 2013; 503:360-4. [PMID: 24056933 PMCID: PMC3925760 DOI: 10.1038/nature12632] [Citation(s) in RCA: 364] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 09/04/2013] [Indexed: 12/21/2022]
Abstract
Upon fertilization, maternal factors direct development and trigger zygotic genome activation (ZGA) at the maternal-to-zygotic transition (MZT). In zebrafish, ZGA is required for gastrulation and clearance of maternal mRNAs, which is in part regulated by the conserved microRNA miR-430. However, the factors that activate the zygotic program in vertebrates are unknown. Here, we show that Nanog, Pou5f1 and SoxB1 regulate zygotic gene activation in zebrafish. We identified several hundred genes directly activated by maternal factors, constituting the first wave of zygotic transcription. Ribosome profiling revealed that nanog, sox19b and pou5f1 are the most highly translated transcription factors pre-MZT. Combined loss of these factors resulted in developmental arrest prior to gastrulation and a failure to activate >75% of zygotic genes, including miR-430. Our results demonstrate that maternal Nanog, Pou5f1 and SoxB1 are required to initiate the zygotic developmental program and induce clearance of the maternal program by activating miR-430 expression.
Collapse
Affiliation(s)
- Miler T Lee
- 1] Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA [2]
| | | | | | | | | | | | | |
Collapse
|