151
|
Facultative dosage compensation of developmental genes on autosomes in Drosophila and mouse embryonic stem cells. Nat Commun 2018; 9:3626. [PMID: 30194291 PMCID: PMC6128902 DOI: 10.1038/s41467-018-05642-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/04/2018] [Indexed: 12/25/2022] Open
Abstract
Haploinsufficiency and aneuploidy are two phenomena, where gene dosage alterations cause severe defects ultimately resulting in developmental failures and disease. One remarkable exception is the X chromosome, where copy number differences between sexes are buffered by dosage compensation systems. In Drosophila, the Male-Specific Lethal complex (MSLc) mediates upregulation of the single male X chromosome. The evolutionary origin and conservation of this process orchestrated by MSL2, the only male-specific protein within the fly MSLc, have remained unclear. Here, we report that MSL2, in addition to regulating the X chromosome, targets autosomal genes involved in patterning and morphogenesis. Precise regulation of these genes by MSL2 is required for proper development. This set of dosage-sensitive genes maintains such regulation during evolution, as MSL2 binds and similarly regulates mouse orthologues via Histone H4 lysine 16 acetylation. We propose that this gene-by-gene dosage compensation mechanism was co-opted during evolution for chromosome-wide regulation of the Drosophila male X. In Drosophila the Male-Specific Lethal complex (MSLc) mediates upregulation of the single male X chromosome. Here the authors provide evidence that MSL2 also targets autosomal genes required for proper development and that MSL2 binds and similarly regulates mouse orthologues.
Collapse
|
152
|
Jafari N, Giehr P, Hesaraki M, Baas R, de Graaf P, Timmers HTM, Walter J, Baharvand H, Totonchi M. Genomic integrity of ground-state pluripotency. J Cell Biochem 2018; 119:9781-9789. [PMID: 30171711 DOI: 10.1002/jcb.27296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 06/25/2018] [Indexed: 11/06/2022]
Abstract
Pluripotent cells appear to be in a transient state during early development. These cells have the capability to transition into embryonic stem cells (ESCs). It has been reported that mouse pluripotent cells cultivated in chemically defined media sustain the ground state of pluripotency. Because the epigenetic pattern of pluripotent cells reflects their environment, culture under different conditions causes epigenetic changes, which could lead to genomic instability. This study focused on the DNA methylation pattern of repetitive elements (REs) and their activation levels under two ground-state conditions and assessed the genomic integrity of ESCs. We measured the methylation and expression level of REs in different media. The results indicated that although the ground-state conditions show higher REs activity, they did not lead to DNA damage; therefore, the level of genomic instability is lower under the ground-state compared with the conventional condition. Our results indicated that when choosing an optimum condition, different features of the condition must be considered to have epigenetically and genomically stable stem cells.
Collapse
Affiliation(s)
- Narges Jafari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Pascal Giehr
- Department of Genetics/Epigenetics, Saarland University, Saarbrücken, Germany
| | - Mahdi Hesaraki
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Roy Baas
- Regenerative Medicine Center and Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Petra de Graaf
- Regenerative Medicine Center and Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - H T Marc Timmers
- Regenerative Medicine Center and Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Urology, German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), University Medical Center Freiburg, Freiburg, Germany
| | - Jörn Walter
- Department of Genetics/Epigenetics, Saarland University, Saarbrücken, Germany
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Mehdi Totonchi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
153
|
Liu D, Wang X, He D, Sun C, He X, Yan L, Li Y, Han JDJ, Zheng P. Single-cell RNA-sequencing reveals the existence of naive and primed pluripotency in pre-implantation rhesus monkey embryos. Genome Res 2018; 28:1481-1493. [PMID: 30154223 PMCID: PMC6169889 DOI: 10.1101/gr.233437.117] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 08/27/2018] [Indexed: 01/23/2023]
Abstract
Naive pluripotency exists in epiblast cells of mouse pre-implantation embryos. However, whether the naive pluripotency is transient or nonexistent in primate embryos remains unclear. Using RNA-seq in single blastomeres from 16-cell embryos through to hatched blastocysts of rhesus monkey, we constructed the lineage segregation roadmap in which the specification of trophectoderm, epiblast, and primitive endoderm is initiated simultaneously at the early blastocyst stage. Importantly, we uncovered the existence of distinct pluripotent states in monkey pre-implantation embryos. At the early- and middle-blastocyst stages, the epiblast cells have the transcriptome features of naive pluripotency, whereas they display a continuum of primed pluripotency characteristics at the late and hatched blastocyst stages. Moreover, we identified potential regulators that might play roles in the transition from naive to primed pluripotency. Thus, our study suggests the transient existence of naive pluripotency in primates and proposes an ideal time window for derivation of primate embryonic stem cells with naive pluripotency.
Collapse
Affiliation(s)
- Denghui Liu
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xinyi Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Dajian He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,University of Chinese Academy of Sciences, Beijing 101408, China
| | - Chunli Sun
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiechao He
- Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Lanzhen Yan
- Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yizhou Li
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing-Dong J Han
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ping Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
154
|
Single cell analysis reveals a biophysical aspect of collective cell-state transition in embryonic stem cell differentiation. Sci Rep 2018; 8:11965. [PMID: 30097661 PMCID: PMC6086879 DOI: 10.1038/s41598-018-30461-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 07/31/2018] [Indexed: 11/09/2022] Open
Abstract
In the stem cell research field, the molecular regulatory network used to define cellular states has been extensively studied, however, the general driving force guiding the collective state dynamics remains to be identified from biophysical aspects. Here we monitored the time-development of the cell-state transition at the single-cell and colony levels, simultaneously, during the early differentiation process in mouse embryonic stem cells. Our quantitative analyses revealed that cellular heterogeneity was a result of spontaneous fluctuation of cellular state and cell-cell cooperativity. We considered that the cell state is like a ball fluctuating on a potential landscape, and found that the cooperativity affects the fluctuation. Importantly, the cooperativity temporarily decreased and increased in the intermediate state of cell differentiation, leading to cell-state transition in unison. This process can be explained using the mathematical equation of flashing-ratchet behaviour, which suggests that a general mechanism is driving the collective decision-making of stem cells.
Collapse
|
155
|
Vieira MS, Santos AK, Vasconcellos R, Goulart VAM, Parreira RC, Kihara AH, Ulrich H, Resende RR. Neural stem cell differentiation into mature neurons: Mechanisms of regulation and biotechnological applications. Biotechnol Adv 2018; 36:1946-1970. [PMID: 30077716 DOI: 10.1016/j.biotechadv.2018.08.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 02/07/2023]
Abstract
The abilities of stem cells to self-renew and form different mature cells expand the possibilities of applications in cell-based therapies such as tissue recomposition in regenerative medicine, drug screening, and treatment of neurodegenerative diseases. In addition to stem cells found in the embryo, various adult organs and tissues have niches of stem cells in an undifferentiated state. In the central nervous system of adult mammals, neurogenesis occurs in two regions: the subventricular zone and the dentate gyrus in the hippocampus. The generation of the different neural lines originates in adult neural stem cells that can self-renew or differentiate into astrocytes, oligodendrocytes, or neurons in response to specific stimuli. The regulation of the fate of neural stem cells is a finely controlled process relying on a complex regulatory network that extends from the epigenetic to the translational level and involves extracellular matrix components. Thus, a better understanding of the mechanisms underlying how the process of neurogenesis is induced, regulated, and maintained will provide elues for development of novel for strategies for neurodegenerative therapies. In this review, we focus on describing the mechanisms underlying the regulation of the neuronal differentiation process by transcription factors, microRNAs, and extracellular matrix components.
Collapse
Affiliation(s)
- Mariana S Vieira
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nanocell, Divinopólis, MG, Brazil
| | - Anderson K Santos
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rebecca Vasconcellos
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nanocell, Divinopólis, MG, Brazil
| | - Vânia A M Goulart
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ricardo C Parreira
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nanocell, Divinopólis, MG, Brazil
| | - Alexandre H Kihara
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil.
| | - Rodrigo R Resende
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nanocell, Divinopólis, MG, Brazil.
| |
Collapse
|
156
|
Liu Y, Ren X, Ke J, Zhang Y, Wei Q, Shi Z, Ai Z, Guo Z. SC1 inhibits the differentiation of F9 embryonic carcinoma cells induced by retinoic acid. Acta Biochim Biophys Sin (Shanghai) 2018; 50:793-799. [PMID: 29945210 DOI: 10.1093/abbs/gmy069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/31/2018] [Indexed: 11/12/2022] Open
Abstract
The ability to self-renew is one of the most important properties of embryonic stem (ES) cells. Pluripotin (SC1), a small molecule with high activity and low toxicity, promotes self-renewal in mouse ES cells. SC1 can noticeably change the morphology of retinoic acid (RA)-induced F9 embryonic carcinoma cells (F9 cells). However, in the long term, RA and SC1 together cause cell apoptosis. When being added after 18-24 h of RA-induced F9 cell differentiation, SC1 transitorily activated Nanog and Oct4. Both Nanog and Oct4 were downregulated when SC1 and RA were added simultaneously. On the other hand, Klf4 was continually activated when SC1 was added between 6 and 24 h. Phosphorylated Erk1/2 protein levels were reduced from 6 to 24 h, whereas unphosphorylated Erk1 protein levels remained unchanged. A higher concentration of SC1 promoted cell self-renewal by strengthening the inhibition of Erk1/2 protein phosphorylation in F9 cells. Furthermore, SC1 and RA affect global DNA methylation by influencing the expressions of methylation-associated proteins, including Dnmt3b, Dnmt3l, Tet1, Tet2, and Tet3. In conclusion, SC1 inhibits the differentiation of RA-induced F9 cells mainly by reducing the levels of phosphorylated Erk1/2 and enhancing the expression of Klf4, although it also reduces DNA methylation, which may have an additional effect on ES cell differentiation.
Collapse
Affiliation(s)
- Yingxiang Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Xuexue Ren
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Jie Ke
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Yan Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Qing Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Zhaopeng Shi
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Zhiying Ai
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Zekun Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
| |
Collapse
|
157
|
Nett IR, Mulas C, Gatto L, Lilley KS, Smith A. Negative feedback via RSK modulates Erk-dependent progression from naïve pluripotency. EMBO Rep 2018; 19:e45642. [PMID: 29895711 PMCID: PMC6073214 DOI: 10.15252/embr.201745642] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/16/2018] [Accepted: 05/18/2018] [Indexed: 01/08/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signalling is implicated in initiation of embryonic stem (ES) cell differentiation. The pathway is subject to complex feedback regulation. Here, we examined the ERK-responsive phosphoproteome in ES cells and identified the negative regulator RSK1 as a prominent target. We used CRISPR/Cas9 to create combinatorial mutations in RSK family genes. Genotypes that included homozygous null mutations in Rps6ka1, encoding RSK1, resulted in elevated ERK phosphorylation. These RSK-depleted ES cells exhibit altered kinetics of transition into differentiation, with accelerated downregulation of naïve pluripotency factors, precocious expression of transitional epiblast markers and early onset of lineage specification. We further show that chemical inhibition of RSK increases ERK phosphorylation and expedites ES cell transition without compromising multilineage potential. These findings demonstrate that the ERK activation profile influences the dynamics of pluripotency progression and highlight the role of signalling feedback in temporal control of cell state transitions.
Collapse
Affiliation(s)
- Isabelle Re Nett
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Carla Mulas
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Laurent Gatto
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK
- Computational Proteomics Unit, Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK
| | - Kathryn S Lilley
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Austin Smith
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
158
|
GSK3 inhibition, but not epigenetic remodeling, mediates efficient derivation of germline embryonic stem cells from nonobese diabetic mice. Stem Cell Res 2018; 31:5-10. [DOI: 10.1016/j.scr.2018.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 01/01/2023] Open
|
159
|
Jiapaer Z, Li G, Ye D, Bai M, Li J, Guo X, Du Y, Su D, Jia W, Chen W, Wang G, Yu Y, Zhu F, Wan X, Kang J. LincU Preserves Naïve Pluripotency by Restricting ERK Activity in Embryonic Stem Cells. Stem Cell Reports 2018; 11:395-409. [PMID: 30017820 PMCID: PMC6092693 DOI: 10.1016/j.stemcr.2018.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/15/2018] [Accepted: 06/15/2018] [Indexed: 12/17/2022] Open
Abstract
Although the functional roles of long noncoding RNAs (lncRNAs) have been increasingly identified, few lncRNAs that control the naïve state of embryonic stem cells (ESCs) are known. Here, we report a naïve-state-associated lncRNA, LincU, which is intrinsically activated by Nanog in mESCs. LincU-deficient mESCs exhibit a primed-like pluripotent state and potentiate the transition from the naïve state to the primed state, whereas ectopic LincU expression maintains mESCs in the naïve state. Mechanistically, we demonstrate that LincU binds and stabilizes the DUSP9 protein, an ERK-specific phosphatase, and then constitutively inhibits the ERK1/2 signaling pathway, which critically contributes to maintenance of the naïve state. Importantly, we reveal the functional role of LincU to be evolutionarily conserved in human. Therefore, our findings unveil LincU as a conserved lncRNA that intrinsically restricts MAPK/ERK activity and maintains the naïve state of ESCs. LincU is integral and sufficient to maintain the naïve state of mESCs LincU binds and stabilizes DUSP9 protein to inhibit the ERK1/2 phosphorylation LincU is a direct target of NANOG in naïve-state mESCs The functional role of LincU is conserved in human ESCs
Collapse
Affiliation(s)
- Zeyidan Jiapaer
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Guoping Li
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Dan Ye
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Mingliang Bai
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Jianguo Li
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Xudong Guo
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Institute of Regenerative Medicine, East Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Yanhua Du
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Dingwen Su
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Wenwen Jia
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Wen Chen
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Guiying Wang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Yangyang Yu
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Fugui Zhu
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Xiaoping Wan
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, PR China.
| |
Collapse
|
160
|
Zhu X, Li L, Gao B, Zhang D, Ren Y, Zheng B, Li M, Shi D, Huang B. Early development of porcine parthenogenetic embryos and reduced expression of primed pluripotent marker genes under the effect of lysophosphatidic acid. Reprod Domest Anim 2018; 53:1191-1199. [PMID: 29974990 DOI: 10.1111/rda.13226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/07/2018] [Accepted: 05/21/2018] [Indexed: 11/30/2022]
Abstract
To further promote the early development of porcine embryos and capture "naïve" pluripotent state within blastocyst, the experiment explored the effects of lysophosphatidic acid (LPA) on the early development of porcine parthenogenetic embryos and the expression of pluripotency relevant genes. The results showed that the addition of 50 μM LPA significantly improved parthenogenetic embryo cleavage rate (82.7% vs. 74.7%, p < 0.05), blastocyst rate (24.5% vs. 11.3%, p < 0.05) and blastocyst cell count (56 ± 7.9 vs. 42 ± 1.0, p < 0.05) than that of the control group. In addition, immunostaining experiment determined that the fluorescence intensity of OCT4 was also significantly higher than that of the control group. The quantitative real-time polymerase chain reaction (qRT-PCR) test revealed that addition of 50 μM LPA could significantly enhance the expression level of pluripotent gene OCT4 and trophoblast marker genes CDX2, however, decrease the expression of primitive hypoblast marker gene GATA4. The results also indicated that LPA might decrease the expression of GATA4 through the ROCK signalling pathway. For further investigating the effect of the addition of LPA on the expression of "primed" and "naïve" genes, we also detected the expression of those pluripotency-related genes by qRT-PCR. The results showed addition of LPA had no significant effect on the expression of "naïve" pluripotent genes, but it was able to significantly decrease the expression of "primed" pluripotent genes, NODAL and Activin-A; furthermore, it also could significantly improve the expression of OCT4 and c-Myc which act as two important ES cell renewal factors. Above all, the addition of LPA can facilitate the early development of porcine parthenogenetic embryos, which may be able to benefit for capturing "naïve" pluripotency in vitro through inhibiting "primed" pluripotency.
Collapse
Affiliation(s)
- Xiusheng Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China.,Agricultural Genomics Institute at ShenZhen Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China.,School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Lanyu Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China.,School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Bangjun Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China.,School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Dandan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China.,School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Yanyan Ren
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China.,School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Beibei Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China.,School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Mengmei Li
- School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China.,School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Ben Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China.,School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
161
|
Morgani SM, Saiz N, Garg V, Raina D, Simon CS, Kang M, Arias AM, Nichols J, Schröter C, Hadjantonakis AK. A Sprouty4 reporter to monitor FGF/ERK signaling activity in ESCs and mice. Dev Biol 2018; 441:104-126. [PMID: 29964027 DOI: 10.1016/j.ydbio.2018.06.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 06/25/2018] [Accepted: 06/25/2018] [Indexed: 12/31/2022]
Abstract
The FGF/ERK signaling pathway is highly conserved throughout evolution and plays fundamental roles during embryonic development and in adult organisms. While a plethora of expression data exists for ligands, receptors and pathway regulators, we know little about the spatial organization or dynamics of signaling in individual cells within populations. To this end we developed a transcriptional readout of FGF/ERK activity by targeting a histone H2B-linked Venus fluorophore to the endogenous locus of Spry4, an early pathway target, and generated Spry4H2B-Venus embryonic stem cells (ESCs) and a derivative mouse line. The Spry4H2B-Venus reporter was heterogeneously expressed within ESC cultures and responded to FGF/ERK signaling manipulation. In vivo, the Spry4H2B-Venus reporter recapitulated the expression pattern of Spry4 and localized to sites of known FGF/ERK activity including the inner cell mass of the pre-implantation embryo and the limb buds, somites and isthmus of the post-implantation embryo. Additionally, we observed highly localized reporter expression within adult organs. Genetic and chemical disruption of FGF/ERK signaling, in vivo in pre- and post-implantation embryos, abrogated Venus expression establishing the reporter as an accurate signaling readout. This tool will provide new insights into the dynamics of the FGF/ERK signaling pathway during mammalian development.
Collapse
Affiliation(s)
- Sophie M Morgani
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Wellcome Trust-Medical Research Council Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Nestor Saiz
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vidur Garg
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Dhruv Raina
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Claire S Simon
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Minjung Kang
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | | | - Jennifer Nichols
- Wellcome Trust-Medical Research Council Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Christian Schröter
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA.
| |
Collapse
|
162
|
Zaveri L, Dhawan J. Cycling to Meet Fate: Connecting Pluripotency to the Cell Cycle. Front Cell Dev Biol 2018; 6:57. [PMID: 29974052 PMCID: PMC6020794 DOI: 10.3389/fcell.2018.00057] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 05/14/2018] [Indexed: 01/26/2023] Open
Abstract
Pluripotent stem cells are characterized by their high proliferative rates, their ability to self-renew and their potential to differentiate to all the three germ layers. This rapid proliferation is brought about by a highly modified cell cycle that allows the cells to quickly shuttle from DNA synthesis to cell division, by reducing the time spent in the intervening gap phases. Many key regulators that define the somatic cell cycle are either absent or exhibit altered behavior, allowing the pluripotent cell to bypass cell cycle checkpoints typical of somatic cells. Experimental analysis of this modified stem cell cycle has been challenging due to the strong link between rapid proliferation and pluripotency, since perturbations to the cell cycle or pluripotency factors result in differentiation. Despite these hurdles, our understanding of this unique cell cycle has greatly improved over the past decade, in part because of the availability of new technologies that permit the analysis of single cells in heterogeneous populations. This review aims to highlight some of the recent discoveries in this area with a special emphasis on different states of pluripotency. We also discuss the highly interlinked network that connects pluripotency factors and key cell cycle genes and review evidence for how this interdependency may promote the rapid cell cycle. This issue gains translational importance since disruptions in stem cell proliferation and differentiation can impact disorders at opposite ends of a spectrum, from cancer to degenerative disease.
Collapse
Affiliation(s)
- Lamuk Zaveri
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India.,CSIR - Centre for Cellular and Molecular Biology, Hyderabad, India.,Manipal Academy of Higher Education, Manipal, India
| | - Jyotsna Dhawan
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India.,CSIR - Centre for Cellular and Molecular Biology, Hyderabad, India
| |
Collapse
|
163
|
Papatsenko D, Waghray A, Lemischka IR. Feedback control of pluripotency in embryonic stem cells: Signaling, transcription and epigenetics. Stem Cell Res 2018; 29:180-188. [DOI: 10.1016/j.scr.2018.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 02/06/2018] [Accepted: 02/16/2018] [Indexed: 12/19/2022] Open
|
164
|
Mayor-Ruiz C, Olbrich T, Drosten M, Lecona E, Vega-Sendino M, Ortega S, Dominguez O, Barbacid M, Ruiz S, Fernandez-Capetillo O. ERF deletion rescues RAS deficiency in mouse embryonic stem cells. Genes Dev 2018; 32:568-576. [PMID: 29650524 PMCID: PMC5959239 DOI: 10.1101/gad.310086.117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/12/2018] [Indexed: 11/25/2022]
Abstract
Mayor-Ruiz et al. show that deletion of ERF rescues the proliferative defects of RAS-devoid mESCs and restores their capacity to differentiate. MEK inhibition in combination with a glycogen synthase kinase-3β (GSK3β) inhibitor, referred as the 2i condition, favors pluripotency in embryonic stem cells (ESCs). However, the mechanisms by which the 2i condition limits ESC differentiation and whether RAS proteins are involved in this phenomenon remain poorly understood. Here we show that RAS nullyzygosity reduces the growth of mouse ESCs (mESCs) and prohibits their differentiation. Upon RAS deficiency or MEK inhibition, ERF (E twenty-six 2 [Ets2]-repressive factor), a transcriptional repressor from the ETS domain family, translocates to the nucleus, where it binds to the enhancers of pluripotency factors and key RAS targets. Remarkably, deletion of Erf rescues the proliferative defects of RAS-devoid mESCs and restores their capacity to differentiate. Furthermore, we show that Erf loss enables the development of RAS nullyzygous teratomas. In summary, this work reveals an essential role for RAS proteins in pluripotency and identifies ERF as a key mediator of the response to RAS/MEK/ERK inhibition in mESCs.
Collapse
Affiliation(s)
- Cristina Mayor-Ruiz
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Teresa Olbrich
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Matthias Drosten
- Experimental Oncology Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Emilio Lecona
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Maria Vega-Sendino
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Sagrario Ortega
- Transgenic Unit, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Orlando Dominguez
- Genomics Unit, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Mariano Barbacid
- Experimental Oncology Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Sergio Ruiz
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Oscar Fernandez-Capetillo
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain.,Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 21 Stockholm, Sweden
| |
Collapse
|
165
|
Dhaliwal NK, Miri K, Davidson S, Tamim El Jarkass H, Mitchell JA. KLF4 Nuclear Export Requires ERK Activation and Initiates Exit from Naive Pluripotency. Stem Cell Reports 2018; 10:1308-1323. [PMID: 29526737 PMCID: PMC6000723 DOI: 10.1016/j.stemcr.2018.02.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 02/09/2018] [Accepted: 02/12/2018] [Indexed: 01/27/2023] Open
Abstract
Cooperative action of a transcription factor complex containing OCT4, SOX2, NANOG, and KLF4 maintains the naive pluripotent state; however, less is known about the mechanisms that disrupt this complex, initiating exit from pluripotency. We show that, as embryonic stem cells (ESCs) exit pluripotency, KLF4 protein is exported from the nucleus causing rapid decline in Nanog and Klf4 transcription; as a result, KLF4 is the first pluripotency transcription factor removed from transcription-associated complexes during differentiation. KLF4 nuclear export requires ERK activation, and phosphorylation of KLF4 by ERK initiates interaction of KLF4 with nuclear export factor XPO1, leading to KLF4 export. Mutation of the ERK phosphorylation site in KLF4 (S132) blocks KLF4 nuclear export, the decline in Nanog, Klf4, and Sox2 mRNA, and differentiation. These findings demonstrate that relocalization of KLF4 to the cytoplasm is a critical first step in exit from the naive pluripotent state and initiation of ESC differentiation.
Collapse
Affiliation(s)
- Navroop K Dhaliwal
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Kamelia Miri
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Scott Davidson
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Hala Tamim El Jarkass
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Jennifer A Mitchell
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON M5S 3B2, Canada.
| |
Collapse
|
166
|
Suppression of the ERK-SRF axis facilitates somatic cell reprogramming. Exp Mol Med 2018; 50:e448. [PMID: 29472703 PMCID: PMC5903827 DOI: 10.1038/emm.2017.279] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 09/18/2017] [Indexed: 01/10/2023] Open
Abstract
The molecular mechanism underlying the initiation of somatic cell reprogramming into induced pluripotent stem cells (iPSCs) has not been well described. Thus, we generated single-cell-derived clones by using a combination of drug-inducible vectors encoding transcription factors (Oct4, Sox2, Klf4 and Myc) and a single-cell expansion strategy. This system achieved a high reprogramming efficiency after metabolic and epigenetic remodeling. Functional analyses of the cloned cells revealed that extracellular signal-regulated kinase (ERK) signaling was downregulated at an early stage of reprogramming and that its inhibition was a driving force for iPSC formation. Among the reprogramming factors, Myc predominantly induced ERK suppression. ERK inhibition upregulated the conversion of somatic cells into iPSCs through concomitant suppression of serum response factor (SRF). Conversely, SRF activation suppressed the reprogramming induced by ERK inhibition and negatively regulated embryonic pluripotency by inducing differentiation via upregulation of immediate early genes, such as c-Jun, c-Fos and EGR1. These data reveal that suppression of the ERK-SRF axis is an initial molecular event that facilitates iPSC formation and may be a useful surrogate marker for cellular reprogramming.
Collapse
|
167
|
Brown S, Matta A, Erwin M, Roberts S, Gruber HE, Hanley EN, Little CB, Melrose J. Cell Clusters Are Indicative of Stem Cell Activity in the Degenerate Intervertebral Disc: Can Their Properties Be Manipulated to Improve Intrinsic Repair of the Disc? Stem Cells Dev 2018; 27:147-165. [DOI: 10.1089/scd.2017.0213] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Sharon Brown
- Spinal Studies and ISTM (Keele University), Robert Jones and Agnes Hunt Orthopaedic Hospital, NHS Foundation Trust, Oswestry, United Kingdom
| | - Ajay Matta
- Krembil Research Institute, Toronto, Canada
| | - Mark Erwin
- Krembil Research Institute, Toronto, Canada
| | - Sally Roberts
- Spinal Studies and ISTM (Keele University), Robert Jones and Agnes Hunt Orthopaedic Hospital, NHS Foundation Trust, Oswestry, United Kingdom
| | - Helen E. Gruber
- Department of Orthopaedic Surgery, Carolinas Medical Center, Charlotte, North Carolina
| | - Edward N. Hanley
- Department of Orthopaedic Surgery, Carolinas Medical Center, Charlotte, North Carolina
| | - Christopher B. Little
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The Royal North Shore Hospital, St. Leonards, NSW, Australia
- Sydney Medical School, Northern, The University of Sydney. Royal North Shore Hospital, St. Leonards, Australia
| | - James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The Royal North Shore Hospital, St. Leonards, NSW, Australia
- Sydney Medical School, Northern, The University of Sydney. Royal North Shore Hospital, St. Leonards, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| |
Collapse
|
168
|
Ying QL, Smith A. The Art of Capturing Pluripotency: Creating the Right Culture. Stem Cell Reports 2018; 8:1457-1464. [PMID: 28591647 PMCID: PMC5470336 DOI: 10.1016/j.stemcr.2017.05.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 12/14/2022] Open
Abstract
Embryonic stem cells (ESCs) are a unique tool for genetic perturbation of mammalian cellular and organismal processes additionally in humans offer unprecedented opportunities for disease modeling and cell therapy. Furthermore, ESCs are a powerful system for exploring the fundamental biology of pluripotency. Indeed understanding the control of self-renewal and differentiation is key to realizing the potential of ESCs. Building on previous observations, we found that mouse ESCs can be derived and maintained with high efficiency through insulation from differentiation cues combined with consolidation of an innate cell proliferation program. This finding of a pluripotent ground state has led to conceptual and practical advances, including the establishment of germline-competent ESCs from recalcitrant mouse strains and for the first time from the rat. Here, we summarize historical and recent progress in defining the signaling environment that supports self-renewal. We compare the contrasting requirements of two types of pluripotent stem cell, naive ESCs and primed post-implantation epiblast stem cells (EpiSCs), and consider the outstanding challenge of generating naive pluripotent stem cells from different mammals.
Collapse
Affiliation(s)
- Qi-Long Ying
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Austin Smith
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK.
| |
Collapse
|
169
|
Kinoshita M, Smith A. Pluripotency Deconstructed. Dev Growth Differ 2018; 60:44-52. [PMID: 29359419 DOI: 10.1111/dgd.12419] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 12/02/2017] [Indexed: 12/14/2022]
Abstract
Pluripotency denotes the flexible capacity of single cells to give rise to all somatic lineages and typically also the germline. Mouse ES cells and post-implantation epiblast-derived stem cells (EpiSC) are widely used pluripotent cell culture systems. These two in vitro stem cell types have divergent characteristics. They are considered as representative of distinct developmental stages, distinguished by using the terms "naïve" and "primed". A binary description is an over-simplification, however. Here, we discuss an intermediate stage of pluripotency that we term "formative". Formative pluripotency features a gene regulatory network switch from the naïve state and comprises capacitation of enhancers, signaling pathways and epigenetic machinery in order to install competence for lineage specification.
Collapse
Affiliation(s)
- Masaki Kinoshita
- Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, UK
| | - Austin Smith
- Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, UK.,Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
170
|
Geary L, LaBonne C. FGF mediated MAPK and PI3K/Akt Signals make distinct contributions to pluripotency and the establishment of Neural Crest. eLife 2018; 7:33845. [PMID: 29350613 PMCID: PMC5790379 DOI: 10.7554/elife.33845] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/15/2018] [Indexed: 12/12/2022] Open
Abstract
Early vertebrate embryos possess cells with the potential to generate all embryonic cell types. While this pluripotency is progressively lost as cells become lineage restricted, Neural Crest cells retain broad developmental potential. Here, we provide novel insights into signals essential for both pluripotency and neural crest formation in Xenopus. We show that FGF signaling controls a subset of genes expressed by pluripotent blastula cells, and find a striking switch in the signaling cascades activated by FGF signaling as cells lose pluripotency and commence lineage restriction. Pluripotent cells display and require Map Kinase signaling, whereas PI3 Kinase/Akt signals increase as developmental potential is restricted, and are required for transit to certain lineage restricted states. Importantly, retaining a high Map Kinase/low Akt signaling profile is essential for establishing Neural Crest stem cells. These findings shed important light on the signal-mediated control of pluripotency and the molecular mechanisms governing genesis of Neural Crest.
Collapse
Affiliation(s)
- Lauren Geary
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Carole LaBonne
- Department of Molecular Biosciences, Northwestern University, Evanston, United States.,Robert H Lurie Comprehensive Cancer Center, Northwestern University, Evanston, United States
| |
Collapse
|
171
|
Umesono Y. Postembryonic Axis Formation in Planarians. DIVERSITY AND COMMONALITY IN ANIMALS 2018. [DOI: 10.1007/978-4-431-56609-0_33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
172
|
Corsinotti A, Wong FC, Tatar T, Szczerbinska I, Halbritter F, Colby D, Gogolok S, Pantier R, Liggat K, Mirfazeli ES, Hall-Ponsele E, Mullin NP, Wilson V, Chambers I. Distinct SoxB1 networks are required for naïve and primed pluripotency. eLife 2017; 6:27746. [PMID: 29256862 PMCID: PMC5758114 DOI: 10.7554/elife.27746] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 12/18/2017] [Indexed: 12/20/2022] Open
Abstract
Deletion of Sox2 from mouse embryonic stem cells (ESCs) causes trophectodermal differentiation. While this can be prevented by enforced expression of the related SOXB1 proteins, SOX1 or SOX3, the roles of SOXB1 proteins in epiblast stem cell (EpiSC) pluripotency are unknown. Here, we show that Sox2 can be deleted from EpiSCs with impunity. This is due to a shift in the balance of SoxB1 expression in EpiSCs, which have decreased Sox2 and increased Sox3 compared to ESCs. Consistent with functional redundancy, Sox3 can also be deleted from EpiSCs without eliminating self-renewal. However, deletion of both Sox2 and Sox3 prevents self-renewal. The overall SOXB1 levels in ESCs affect differentiation choices: neural differentiation of Sox2 heterozygous ESCs is compromised, while increased SOXB1 levels divert the ESC to EpiSC transition towards neural differentiation. Therefore, optimal SOXB1 levels are critical for each pluripotent state and for cell fate decisions during exit from naïve pluripotency.
Collapse
Affiliation(s)
- Andrea Corsinotti
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland.,Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Frederick Ck Wong
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Tülin Tatar
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Iwona Szczerbinska
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Florian Halbritter
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Douglas Colby
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Sabine Gogolok
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Raphaël Pantier
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Kirsten Liggat
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Elham S Mirfazeli
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Elisa Hall-Ponsele
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Nicholas P Mullin
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Valerie Wilson
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Ian Chambers
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| |
Collapse
|
173
|
Wang L, Koutelou E, Hirsch C, McCarthy R, Schibler A, Lin K, Lu Y, Jeter C, Shen J, Barton MC, Dent SYR. GCN5 Regulates FGF Signaling and Activates Selective MYC Target Genes during Early Embryoid Body Differentiation. Stem Cell Reports 2017; 10:287-299. [PMID: 29249668 PMCID: PMC5768892 DOI: 10.1016/j.stemcr.2017.11.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/14/2017] [Accepted: 11/14/2017] [Indexed: 12/12/2022] Open
Abstract
Precise control of gene expression during development is orchestrated by transcription factors and co-regulators including chromatin modifiers. How particular chromatin-modifying enzymes affect specific developmental processes is not well defined. Here, we report that GCN5, a histone acetyltransferase essential for embryonic development, is required for proper expression of multiple genes encoding components of the fibroblast growth factor (FGF) signaling pathway in early embryoid bodies (EBs). Gcn5-/- EBs display deficient activation of ERK and p38, mislocalization of cytoskeletal components, and compromised capacity to differentiate toward mesodermal lineage. Genomic analyses identified seven genes as putative direct targets of GCN5 during early differentiation, four of which are cMYC targets. These findings established a link between GCN5 and the FGF signaling pathway and highlighted specific GCN5-MYC partnerships in gene regulation during early differentiation.
Collapse
Affiliation(s)
- Li Wang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Program in Epigenetics and Molecular Carcinogenesis, The Graduate School of Biomedical Sciences (GSBS) of the University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Evangelia Koutelou
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Calley Hirsch
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Ryan McCarthy
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Andria Schibler
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Program in Genes and Development, The Graduate School of Biomedical Sciences (GSBS) of the University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Collene Jeter
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Jianjun Shen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Michelle C Barton
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Program in Epigenetics and Molecular Carcinogenesis, The Graduate School of Biomedical Sciences (GSBS) of the University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Program in Genes and Development, The Graduate School of Biomedical Sciences (GSBS) of the University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Sharon Y R Dent
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Program in Epigenetics and Molecular Carcinogenesis, The Graduate School of Biomedical Sciences (GSBS) of the University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Program in Genes and Development, The Graduate School of Biomedical Sciences (GSBS) of the University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
174
|
Ramos-Ibeas P, Nichols J, Alberio R. States and Origins of Mammalian Embryonic Pluripotency In Vivo and in a Dish. Curr Top Dev Biol 2017; 128:151-179. [PMID: 29477162 DOI: 10.1016/bs.ctdb.2017.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mouse embryonic stem cells (ESC), derived from preimplantation embryos in 1981, defined mammalian pluripotency for many decades. However, after the derivation of human ESC in 1998, comparative studies showed that different types of pluripotency exist in early embryos and that these can be captured in vitro under various culture conditions. Over the past decade much has been learned about the key signaling pathways, growth factor requirements, and transcription factor profiles of pluripotent cells in embryos, allowing improvement of derivation and culture conditions for novel pluripotent stem cell types. More recently, studies using single-cell transcriptomics of embryos from different species provided an unprecedented level of resolution of cellular interactions and cell fate decisions that are informing new ways to understand the emergence of pluripotency in different organisms. These new approaches enhance knowledge of species differences during early embryogenesis and will be instrumental for improving methodologies for generating intra- and interspecies chimeric animals using pluripotent stem cells. Here, we discuss the recent developments in our understanding of early embryogenesis in different mammalian species.
Collapse
Affiliation(s)
| | - Jennifer Nichols
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom; University of Cambridge, Cambridge, United Kingdom.
| | - Ramiro Alberio
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom.
| |
Collapse
|
175
|
Autophagy regulates proliferation and biliary differentiation of hepatic oval cells via the MAPK/ERK signaling pathway. Mol Med Rep 2017; 17:2565-2571. [PMID: 29207082 DOI: 10.3892/mmr.2017.8157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 07/07/2017] [Indexed: 11/05/2022] Open
Abstract
Hepatic oval cells (HOCs) are thought to possess self‑renewal ability and a bipotential capacity for differentiation, which allows them to differentiate into hepatocytes and cholangiocytes. Autophagy serves an important role in self‑renewal and differentiation of stem cells; however, how autophagy contributes to proliferation and differentiation of hepatic progenitor cells has yet to be elucidated. In the present study, autophagy was regulated by rapamycin (Rapa) and chloroquine (Chlo) administration. The results demonstrated that Chlo‑treated HOCs exhibited decreased autophagic activity alongside a decreased tendency to proliferate, as determined by Cell Counting Kit‑8. In addition, activation of autophagy by Rapa enhanced the biliary differentiation of HOCs. Furthermore, increased phosphorylated (p)‑extracellular signal‑regulated kinase (ERK)/p‑p38 expression was observed following the induction of autophagy, thus indicating that the mitogen‑activated protein kinase (MAPK)/ERK signaling pathway was activated by autophagy to exert effects on the stimulation of HOC proliferation and differentiation. In conclusion, the present study demonstrated that autophagy regulates proliferation and biliary differentiation of HOCs via the MAPK/ERK signaling pathway. These results suggest a role for autophagy in stimulating the proliferation and differentiation of HOCs.
Collapse
|
176
|
Ma C, Karwacki-Neisius V, Tang H, Li W, Shi Z, Hu H, Xu W, Wang Z, Kong L, Lv R, Fan Z, Zhou W, Yang P, Wu F, Diao J, Tan L, Shi YG, Lan F, Shi Y. Nono, a Bivalent Domain Factor, Regulates Erk Signaling and Mouse Embryonic Stem Cell Pluripotency. Cell Rep 2017; 17:997-1007. [PMID: 27760330 DOI: 10.1016/j.celrep.2016.09.078] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 08/29/2016] [Accepted: 09/22/2016] [Indexed: 10/20/2022] Open
Abstract
Nono is a component of the para-speckle, which stores and processes RNA. Mouse embryonic stem cells (mESCs) lack para-speckles, leaving the function of Nono in mESCs unclear. Here, we find that Nono functions as a chromatin regulator cooperating with Erk to regulate mESC pluripotency. We report that Nono loss results in robust self-renewing mESCs with epigenomic and transcriptomic features resembling the 2i (GSK and Erk inhibitors)-induced "ground state." Erk interacts with and is required for Nono localization to a subset of bivalent genes that have high levels of poised RNA polymerase. Nono loss compromises Erk activation and RNA polymerase poising at its target bivalent genes in undifferentiated mESCs, thus disrupting target gene activation and differentiation. These findings argue that Nono collaborates with Erk signaling to regulate the integrity of bivalent domains and mESC pluripotency.
Collapse
Affiliation(s)
- Chun Ma
- Key Laboratory of Birth Defects, Children's Hospital and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Violetta Karwacki-Neisius
- Newborn Medicine Division, Boston Children's Hospital, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Haoran Tang
- Key Laboratory of Birth Defects, Children's Hospital and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wenjing Li
- Key Laboratory of Birth Defects, Children's Hospital and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zhennan Shi
- Key Laboratory of Birth Defects, Children's Hospital and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Haolin Hu
- Key Laboratory of Birth Defects, Children's Hospital and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wenqi Xu
- Key Laboratory of Birth Defects, Children's Hospital and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zhentian Wang
- Key Laboratory of Birth Defects, Children's Hospital and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Lingchun Kong
- Key Laboratory of Birth Defects, Children's Hospital and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ruitu Lv
- Key Laboratory of Birth Defects, Children's Hospital and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zheng Fan
- Key Laboratory of Birth Defects, Children's Hospital and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wenhao Zhou
- Key Laboratory of Birth Defects, Children's Hospital and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China
| | - Pengyuan Yang
- Department of Systems Biology, Institutes of Biomedical Sciences, Fudan University, 138 Yixue Yuan Road, Shanghai 200032, China
| | - Feizhen Wu
- Key Laboratory of Birth Defects, Children's Hospital and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jianbo Diao
- Key Laboratory of Birth Defects, Children's Hospital and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Li Tan
- Key Laboratory of Birth Defects, Children's Hospital and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yujiang Geno Shi
- Key Laboratory of Birth Defects, Children's Hospital and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China; Division of Endocrinology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Fei Lan
- Key Laboratory of Birth Defects, Children's Hospital and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Yang Shi
- Key Laboratory of Birth Defects, Children's Hospital and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Newborn Medicine Division, Boston Children's Hospital, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
177
|
Lai YL, Lin CY, Jiang WC, Ho YC, Chen CH, Yet SF. Loss of heme oxygenase-1 accelerates mesodermal gene expressions during embryoid body development from mouse embryonic stem cells. Redox Biol 2017; 15:51-61. [PMID: 29216542 PMCID: PMC5722471 DOI: 10.1016/j.redox.2017.11.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/06/2017] [Accepted: 11/20/2017] [Indexed: 02/04/2023] Open
Abstract
Heme oxygenase (HO)-1 is an inducible stress response protein and well known to protect cells and tissues against injury. Despite its important function in cytoprotection against physiological stress, the role of HO-1 in embryonic stem cell (ESC) differentiation remains largely unknown. We showed previously that induced pluripotent stem (iPS) cells that lack HO-1 are more sensitive to oxidant stress-induced cell death and more prone to lose pluripotent markers upon LIF withdrawal. To elucidate the role of HO-1 in ESC differentiation and to rule out the controversy of potential gene flaws in iPS cells, we derived and established mouse HO-1 knockout ESC lines from HO-1 knockout blastocysts. Using wild type D3 and HO-1 knockout ESCs in the 3-dimensional embryoid body (EB) differentiation model, we showed that at an early time point during EB development, an absence of HO-1 led to enhanced ROS level, concomitant with increased expressions of master mesodermal regulator brachyury and endodermal marker GATA6. In addition, critical smooth muscle cell (SMC) transcription factor serum response factor and its coactivator myocardin were enhanced. Furthermore, HO-1 deficiency increased Smad2 in ESCs and EBs, revealing a role of HO-1 in controlling Smad2 level. Smad2 not only mediates mesendoderm differentiation of mouse ESCs but also SMC development. Collectively, loss of HO-1 resulted in higher level of mesodermal and SMC regulators, leading to accelerated and enhanced SMC marker SM α-actin expression. Our results reveal a previously unrecognized function of HO-1 in regulating SMC gene expressions during ESC-EB development. More importantly, our findings may provide a novel strategy in enhancing ESC differentiation toward SMC lineage. Loss of HO-1 in ESCs promotes adipogenesis but reduces osteogenesis. During early EB development, loss of HO-1 results in robust induction of brachyury. During early EB development, lack of HO-1 leads to enhanced ROS level. Loss of HO-1 increases SMC transcription factor SRF and cofactor myocardin. HO-1 deficiency promotes mesodermal SMC differentiation during EB development.
Collapse
Affiliation(s)
- Yan-Liang Lai
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan; Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Chen-Yu Lin
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Wei-Cheng Jiang
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Yen-Chun Ho
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Chung-Huang Chen
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Shaw-Fang Yet
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University , Taichung, Taiwan.
| |
Collapse
|
178
|
Williams EO, Taylor AK, Bell EL, Lim R, Kim DM, Guarente L. Sirtuin 1 Promotes Deacetylation of Oct4 and Maintenance of Naive Pluripotency. Cell Rep 2017; 17:809-820. [PMID: 27732856 DOI: 10.1016/j.celrep.2016.09.046] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 06/14/2016] [Accepted: 09/15/2016] [Indexed: 01/07/2023] Open
Abstract
The enhancer landscape is dramatically restructured as naive preimplantation epiblasts transition to the post-implantation state of primed pluripotency. A key factor in this process is Otx2, which is upregulated during the early stages of this transition and ultimately recruits Oct4 to a different set of enhancers. In this study, we discover that the acetylation status of Oct4 regulates the induction of the primed pluripotency gene network. Maintenance of the naive state requires the NAD-dependent deacetylase, SirT1, which deacetylates Oct4. The activity of SirT1 is reduced during the naive-to-primed transition; Oct4 becomes hyper-acetylated and binds to an Otx2 enhancer to induce Otx2 expression. Induction of Otx2 causes the reorganization of acetylated Oct4 and results in the induction of the primed pluripotency gene network. Regulation of Oct4 by SirT1 may link stem cell development to environmental conditions, and it may provide strategies to manipulate epiblast cell state.
Collapse
Affiliation(s)
- Eric O Williams
- Glenn Laboratory for the Science of Aging and the Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Amy K Taylor
- Glenn Laboratory for the Science of Aging and the Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eric L Bell
- Glenn Laboratory for the Science of Aging and the Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rachelle Lim
- Glenn Laboratory for the Science of Aging and the Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel M Kim
- Glenn Laboratory for the Science of Aging and the Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Leonard Guarente
- Glenn Laboratory for the Science of Aging and the Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
179
|
Tang MM, Lin WJ, Zhang JT, Zhao YW, Li YC. Exogenous FGF2 reverses depressive-like behaviors and restores the suppressed FGF2-ERK1/2 signaling and the impaired hippocampal neurogenesis induced by neuroinflammation. Brain Behav Immun 2017; 66:322-331. [PMID: 28529071 DOI: 10.1016/j.bbi.2017.05.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/10/2017] [Accepted: 05/17/2017] [Indexed: 01/03/2023] Open
Abstract
Our previous work demonstrated that neuroinflammation evoked by triple repeated central LPS challenges inhibited adult hippocampal neurogenesis that were correlated with the depressive-like behavioral symptoms induced by neuroinflammation. These findings suggest that hippocampal neurogenesis might be one of biological mechanisms underlying depression induced by neuroinflammation and targeting neurogenesis might lead to new therapeutic strategies for the treatment of depression. In this study, we manipulated adult hippocampal neurogenesis using fibroblast growth factor 2 (FGF2), one crucial molecule modulating cell proliferation and survival in central nervous system, and investigate the involvement and the potential therapeutic effects of FGF2 on neuroinflammation-induced depression. Central lipopolysaccharides (LPS) challenges were used as previously to evoke the neuroinflammatory state in the brain of rat. Exogenous FGF2 was infused into lateral ventricle during the neuroinflammatory state. It was found that the protein expression of FGF2 in hippocampus was inhibited by neuroinflammation. The activation of extracellular signal-regulated kinase (ERK), the downstream molecule of FGF2, was also inhibited by neuroinflammation. Exogenous FGF2 infusions prevented the decrease in phosphorylation of ERK1/2 under neuroinflammation state. Exogenous FGF2 reversed depressive-like behaviors and the impaired hippocampal neurogenesis induced by neuroinflammation. These findings provide evidence that the FGF2-ERK1/2 pathway is involved in the pathophysiology of depressive-like behaviors, and manipulating the neurogenesis pathway is a viable therapeutic approach to inflammation-associated depression.
Collapse
Affiliation(s)
- Ming-Ming Tang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Juan Lin
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China; Brain-Behavior Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jun-Tao Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ya-Wei Zhao
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ying-Cong Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China
| |
Collapse
|
180
|
Dynamics of lineage commitment revealed by single-cell transcriptomics of differentiating embryonic stem cells. Nat Commun 2017; 8:1096. [PMID: 29061959 PMCID: PMC5653659 DOI: 10.1038/s41467-017-01076-4] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 08/15/2017] [Indexed: 01/01/2023] Open
Abstract
Gene expression heterogeneity in the pluripotent state of mouse
embryonic stem cells (mESCs) has been increasingly well-characterized. In contrast,
exit from pluripotency and lineage commitment have not been studied systematically
at the single-cell level. Here we measure the gene expression dynamics of retinoic
acid driven mESC differentiation from pluripotency to lineage commitment, using an
unbiased single-cell transcriptomics approach. We find that the exit from
pluripotency marks the start of a lineage transition as well as a transient phase of
increased susceptibility to lineage specifying signals. Our study reveals several
transcriptional signatures of this phase, including a sharp increase of gene
expression variability and sequential expression of two classes of transcriptional
regulators. In summary, we provide a comprehensive analysis of the exit from
pluripotency and lineage commitment at the single cell level, a potential stepping
stone to improved lineage manipulation through timing of differentiation
cues. Commitment to different fates by differentiating pluripotent cells
depends upon integration of external and internal signals. Here the authors analyse
the entry of mouse embryonic stem cells into retinoic acid-mediated differentiation
using single cell transcriptomics with high temporal resolution.
Collapse
|
181
|
Yu C, Griffiths LR, Haupt LM. Exploiting Heparan Sulfate Proteoglycans in Human Neurogenesis-Controlling Lineage Specification and Fate. Front Integr Neurosci 2017; 11:28. [PMID: 29089873 PMCID: PMC5650988 DOI: 10.3389/fnint.2017.00028] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 09/25/2017] [Indexed: 12/26/2022] Open
Abstract
Unspecialized, self-renewing stem cells have extraordinary application to regenerative medicine due to their multilineage differentiation potential. Stem cell therapies through replenishing damaged or lost cells in the injured area is an attractive treatment of brain trauma and neurodegenerative neurological disorders. Several stem cell types have neurogenic potential including neural stem cells (NSCs), embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and mesenchymal stem cells (MSCs). Currently, effective use of these cells is limited by our lack of understanding and ability to direct lineage commitment and differentiation of neural lineages. Heparan sulfate proteoglycans (HSPGs) are ubiquitous proteins within the stem cell microenvironment or niche and are found localized on the cell surface and in the extracellular matrix (ECM), where they interact with numerous signaling molecules. The glycosaminoglycan (GAG) chains carried by HSPGs are heterogeneous carbohydrates comprised of repeating disaccharides with specific sulfation patterns that govern ligand interactions to numerous factors including the fibroblast growth factors (FGFs) and wingless-type MMTV integration site family (Wnts). As such, HSPGs are plausible targets for guiding and controlling neural stem cell lineage fate. In this review, we provide an overview of HSPG family members syndecans and glypicans, and perlecan and their role in neurogenesis. We summarize the structural changes and subsequent functional implications of heparan sulfate as cells undergo neural lineage differentiation as well as outline the role of HSPG core protein expression throughout mammalian neural development and their function as cell receptors and co-receptors. Finally, we highlight suitable biomimetic approaches for exploiting the role of HSPGs in mammalian neurogenesis to control and tailor cell differentiation into specific lineages. An improved ability to control stem cell specific neural lineage fate and produce abundant cells of lineage specificity will further advance stem cell therapy for the development of improved repair of neurological disorders. We propose a deeper understanding of HSPG-mediated neurogenesis can potentially provide novel therapeutic targets of neurogenesis.
Collapse
Affiliation(s)
- Chieh Yu
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Lyn R Griffiths
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Larisa M Haupt
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
182
|
Epigenetic foundations of pluripotent stem cells that recapitulate in vivo pluripotency. J Transl Med 2017; 97:1133-1141. [PMID: 28869587 DOI: 10.1038/labinvest.2017.87] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 07/28/2017] [Indexed: 01/07/2023] Open
Abstract
In mammalian development, dynamic epigenetic reprogramming occurs in pre-implantation embryos and primordial germ cells and plays a critical role in conferring pluripotency on embryonic cells. Pluripotent stem cells, such as embryonic stem cells and induced pluripotent stem cells, have been derived and maintained in vitro under culture conditions that include stimulators and inhibitors of extrinsic signaling. Recent advances in stem cell cultivation have opened the possibility of capturing naive pluripotency, which is reminiscent of the pluripotency of inner cell mass cells, in vitro. However, emerging evidence has revealed complexity of epigenetic regulation in pluripotent stem cells in vitro that reflects the developmental stage, gender, and species. In this review, we describe the developmental potential and epigenetic regulation of pluripotent stem cells in rodents and humans in vitro and discuss unsolved issues in developing strategies to capture in vivo pluripotency in vitro.
Collapse
|
183
|
Transcriptional and epigenetic control in mouse pluripotency: lessons from in vivo and in vitro studies. Curr Opin Genet Dev 2017; 46:114-122. [DOI: 10.1016/j.gde.2017.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/04/2017] [Accepted: 07/14/2017] [Indexed: 01/09/2023]
|
184
|
Festuccia N, Owens N, Navarro P. Esrrb, an estrogen-related receptor involved in early development, pluripotency, and reprogramming. FEBS Lett 2017; 592:852-877. [DOI: 10.1002/1873-3468.12826] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/11/2017] [Accepted: 08/19/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Nicola Festuccia
- Epigenetics of Stem Cells; Department of Developmental and Stem Cell Biology; Institut Pasteur; CNRS UMR3738; Paris France
| | - Nick Owens
- Epigenetics of Stem Cells; Department of Developmental and Stem Cell Biology; Institut Pasteur; CNRS UMR3738; Paris France
| | - Pablo Navarro
- Epigenetics of Stem Cells; Department of Developmental and Stem Cell Biology; Institut Pasteur; CNRS UMR3738; Paris France
| |
Collapse
|
185
|
Pluripotency Surveillance by Myc-Driven Competitive Elimination of Differentiating Cells. Dev Cell 2017; 42:585-599.e4. [PMID: 28919206 DOI: 10.1016/j.devcel.2017.08.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/27/2017] [Accepted: 08/15/2017] [Indexed: 12/11/2022]
Abstract
The mammalian epiblast is formed by pluripotent cells able to differentiate into all tissues of the new individual. In their progression to differentiation, epiblast cells and their in vitro counterparts, embryonic stem cells (ESCs), transit from naive pluripotency through a differentiation-primed pluripotent state. During these events, epiblast cells and ESCs are prone to death, driven by competition between Myc-high cells (winners) and Myc-low cells (losers). Using live tracking of Myc levels, we show that Myc-high ESCs approach the naive pluripotency state, whereas Myc-low ESCs are closer to the differentiation-primed state. In ESC colonies, naive cells eliminate differentiating cells by cell competition, which is determined by a limitation in the time losers are able to survive persistent contact with winners. In the mouse embryo, cell competition promotes pluripotency maintenance by elimination of primed lineages before gastrulation. The mechanism described here is relevant to mammalian embryo development and induced pluripotency.
Collapse
|
186
|
Integrated Experimental and Theoretical Studies of Stem Cells. CURRENT STEM CELL REPORTS 2017; 3:248-252. [PMID: 28845388 PMCID: PMC5548823 DOI: 10.1007/s40778-017-0096-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Purpose of Review Stem cells have to balance self-renewal and differentiation. The dynamic nature of these fate decisions has made stem cell study by traditional methods particularly challenging. Here we highlight recent advances in the field that draw on combining quantitative experiments and modeling to illuminate the biology of stem cells both in vitro and in vivo. Recent Findings Recent studies have shown that seemingly complex processes such as the fate decision-making of stem cells or the self-organization of developing tissues obey remarkably simple mathematical models. Negative feedback loops appear to stabilize cellular states hereby ensuring robust fate decision-making and reproducible outcomes. Stochastic fate decisions can account for the great variability observed in biological systems. Summary The study of stem cells is hampered by the necessity to track the fate of a cell’s progeny over time. Confronting experiments with simple predictive models has allowed to circumvent this problem and gain insights from stem cell heterogeneity in vitro to organ morphogenesis.
Collapse
|
187
|
JMJD1C Ensures Mouse Embryonic Stem Cell Self-Renewal and Somatic Cell Reprogramming through Controlling MicroRNA Expression. Stem Cell Reports 2017; 9:927-942. [PMID: 28826851 PMCID: PMC5599225 DOI: 10.1016/j.stemcr.2017.07.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 12/17/2022] Open
Abstract
The roles of histone demethylases (HDMs) for the establishment and maintenance of pluripotency are incompletely characterized. Here, we show that JmjC-domain-containing protein 1c (JMJD1C), an H3K9 demethylase, is required for mouse embryonic stem cell (ESC) self-renewal. Depletion of Jmjd1c leads to the activation of ERK/MAPK signaling and epithelial-to-mesenchymal transition (EMT) to induce differentiation of ESCs. Inhibition of ERK/MAPK signaling rescues the differentiation phenotype caused by Jmjd1c depletion. Mechanistically, JMJD1C, with the help of pluripotency factor KLF4, maintains ESC identity at least in part by regulating the expression of the miR-200 family and miR-290/295 cluster to suppress the ERK/MAPK signaling and EMT. Additionally, we uncover that JMJD1C ensures efficient generation and maintenance of induced pluripotent stem cells, at least partially through controlling the expression of microRNAs. Collectively, we propose an integrated model of epigenetic and transcriptional control mediated by the H3K9 demethylase for ESC self-renewal and somatic cell reprogramming. JMJD1C is required for the maintenance of ESC identity Depletion of Jmjd1c leads to the activation of ERK/MAPK signaling and EMT JMJD1C interplays with KLF4 to activate the expression of miR-200 family JMJD1C ensures efficient induction of pluripotency partially via miR-200 family
Collapse
|
188
|
Zhao H, Jin Y. Signaling networks in the control of pluripotency. Curr Opin Genet Dev 2017; 46:141-148. [PMID: 28806594 DOI: 10.1016/j.gde.2017.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/17/2017] [Accepted: 07/27/2017] [Indexed: 11/16/2022]
Abstract
Embryonic stem cells (ESCs) are characterized by their ability of unlimited self-renewal in vitro and pluripotent developmental potential, which endows them with great values in basic research and future clinical application. However, realization of full potential of ESCs is dependent on the elucidation of molecular mechanisms governing ESCs, among which signaling pathways play critical roles. A great deal of efforts has been made in the past decades to understand what and how signaling pathways contribute to the establishment and maintenance of pluripotency. In this review, we discuss signaling networks in both mouse and human ESCs, focusing on signals involved in the control of self-renewal and differentiation. In addition, the modulation of signaling pathways by pluripotency-associated transcription factors is also briefly summarized.
Collapse
Affiliation(s)
- Hanzhi Zhao
- Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Ying Jin
- Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, Shanghai, China.
| |
Collapse
|
189
|
Godwin S, Ward D, Pedone E, Homer M, Fletcher AG, Marucci L. An extended model for culture-dependent heterogenous gene expression and proliferation dynamics in mouse embryonic stem cells. NPJ Syst Biol Appl 2017; 3:19. [PMID: 28794899 PMCID: PMC5543144 DOI: 10.1038/s41540-017-0020-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 05/31/2017] [Accepted: 06/20/2017] [Indexed: 12/18/2022] Open
Abstract
During development, pluripotency is a transient state describing a cell's ability to give rise to all three germ layers and germline. Recent studies have shown that, in vitro, pluripotency is highly dynamic: exogenous stimuli provided to cultures of mouse embryonic stem cells, isolated from pre-implantation blastocysts, significantly affect the spectrum of pluripotency. 2i/LIF, a recently defined serum-free medium, forces mouse embryonic stem cells into a ground-state of pluripotency, while serum/LIF cultures promote the co-existence of ground-like and primed-like mouse embryonic stem cell subpopulations. The latter heterogeneity correlates with temporal fluctuations of pluripotency markers, including the master regulator Nanog, in single cells. We propose a mathematical model of Nanog dynamics in both media, accounting for recent experimental data showing the persistence of a small Nanog Low subpopulation in ground-state pluripotency mouse embryonic stem cell cultures. The model integrates into the core pluripotency Gene Regulatory Network both inhibitors present in 2i/LIF (PD and Chiron), and feedback interactions with genes found to be differentially expressed in the two media. Our simulations and bifurcation analysis show that, in ground-state cultures, Nanog dynamics result from the combination of reduced noise in gene expression and the shift of the system towards a monostable, but still excitable, regulation. Experimental data and agent-based modelling simulations indicate that mouse embryonic stem cell proliferation dynamics vary in the two media, and cannot be reproduced by accounting only for Nanog-dependent cell-cycle regulation. We further demonstrate that both PD and Chiron play a key role in regulating heterogeneity in transcription factor expression and, ultimately, mouse embryonic stem cell fate decision.
Collapse
Affiliation(s)
- Simon Godwin
- Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1UB UK
| | - Daniel Ward
- Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1UB UK
| | - Elisa Pedone
- Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1UB UK.,School of Cellular & Molecular Medicine, University of Bristol, Bristol, BS8 1TD UK
| | - Martin Homer
- Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1UB UK
| | - Alexander G Fletcher
- School of Mathematics and Statistics, University of Sheffield, Sheffield, S3 7RH UK.,Bateson Centre, University of Sheffield, Sheffield, S10 2TN UK
| | - Lucia Marucci
- Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1UB UK.,School of Cellular & Molecular Medicine, University of Bristol, Bristol, BS8 1TD UK.,BrisSynBio, University of Bristol, Bristol, BS8 1TQ UK
| |
Collapse
|
190
|
Abstract
Since its domestication over 100 years ago, the laboratory rat has been the preferred experimental animal in many areas of biomedical research (Lindsey and Baker The laboratory rat. Academic, New York, pp 1-52, 2006). Its physiology, size, genetics, reproductive cycle, cognitive and behavioural characteristics have made it a particularly useful animal model for studying many human disorders and diseases. Indeed, through selective breeding programmes numerous strains have been derived that are now the mainstay of research on hypertension, obesity and neurobiology (Okamoto and Aoki Jpn Circ J 27:282-293, 1963; Zucker and Zucker J Hered 52(6):275-278, 1961). Despite this wealth of genetic and phenotypic diversity, the ability to manipulate and interrogate the genetic basis of existing phenotypes in rat strains and the methodology to generate new rat models has lagged significantly behind the advances made with its close cousin, the laboratory mouse. However, recent technical developments in stem cell biology and genetic engineering have again brought the rat to the forefront of biomedical studies and enabled researchers to exploit the increasingly accessible wealth of genome sequence information. In this review, we will describe how a breakthrough in understanding the molecular basis of self-renewal of the pluripotent founder cells of the mammalian embryo, embryonic stem (ES) cells, enabled the derivation of rat ES cells and their application in transgenesis. We will also describe the remarkable progress that has been made in the development of gene editing enzymes that enable the generation of transgenic rats directly through targeted genetic modifications in the genomes of zygotes. The simplicity, efficiency and cost-effectiveness of the CRISPR/Cas gene editing system, in particular, mean that the ability to engineer the rat genome is no longer a limiting factor. The selection of suitable targets and gene modifications will now become a priority: a challenge where ES culture and gene editing technologies can play complementary roles in generating accurate bespoke rat models for studying biological processes and modelling human disease.
Collapse
|
191
|
Mzoughi S, Zhang J, Hequet D, Teo SX, Fang H, Xing QR, Bezzi M, Seah MKY, Ong SLM, Shin EM, Wollmann H, Wong ESM, Al-Haddawi M, Stewart CL, Tergaonkar V, Loh YH, Dunn NR, Messerschmidt DM, Guccione E. PRDM15 safeguards naive pluripotency by transcriptionally regulating WNT and MAPK-ERK signaling. Nat Genet 2017; 49:1354-1363. [PMID: 28740264 DOI: 10.1038/ng.3922] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 06/30/2017] [Indexed: 12/11/2022]
Abstract
The transcriptional network acting downstream of LIF, WNT and MAPK-ERK to stabilize mouse embryonic stem cells (ESCs) in their naive state has been extensively characterized. However, the upstream factors regulating these three signaling pathways remain largely uncharted. PR-domain-containing proteins (PRDMs) are zinc-finger sequence-specific chromatin factors that have essential roles in embryonic development and cell fate decisions. Here we characterize the transcriptional regulator PRDM15, which acts independently of PRDM14 to regulate the naive state of mouse ESCs. Mechanistically, PRDM15 modulates WNT and MAPK-ERK signaling by directly promoting the expression of Rspo1 (R-spondin1) and Spry1 (Sprouty1). Consistent with these findings, CRISPR-Cas9-mediated disruption of PRDM15-binding sites in the Rspo1 and Spry1 promoters recapitulates PRDM15 depletion, both in terms of local chromatin organization and the transcriptional modulation of these genes. Collectively, our findings uncover an essential role for PRDM15 as a chromatin factor that modulates the transcription of upstream regulators of WNT and MAPK-ERK signaling to safeguard naive pluripotency.
Collapse
Affiliation(s)
- Slim Mzoughi
- Methyltransferases in Development and Disease Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jingxian Zhang
- Methyltransferases in Development and Disease Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Delphine Hequet
- Methyltransferases in Development and Disease Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Shun Xie Teo
- Methyltransferases in Development and Disease Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Haitong Fang
- Epigenetics and Cell Fates Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Qiao Rui Xing
- Epigenetics and Cell Fates Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore
| | - Marco Bezzi
- Methyltransferases in Development and Disease Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Michelle Kay Yi Seah
- Developmental Epigenetics and Disease Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Sheena L M Ong
- Institute of Medical Biology (IMB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Eun Myoung Shin
- Cancer Science Institute of Singapore (CSI), National University of Singapore, Singapore.,NF-κB Signaling in Human Ailments, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Heike Wollmann
- DNA Sequencing Facility NGS Unit, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Esther S M Wong
- Institute of Medical Biology (IMB), Agency for Science, Technology and Research (A*STAR), Singapore
| | | | - Colin L Stewart
- Institute of Medical Biology (IMB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Vinay Tergaonkar
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,NF-κB Signaling in Human Ailments, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore.,National Cancer Centre Singapore, Singapore.,Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Yuin-Han Loh
- Epigenetics and Cell Fates Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Biological Sciences, National University of Singapore, Singapore
| | - N Ray Dunn
- Institute of Medical Biology (IMB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Daniel M Messerschmidt
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Developmental Epigenetics and Disease Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Ernesto Guccione
- Methyltransferases in Development and Disease Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Cancer Science Institute of Singapore (CSI), National University of Singapore, Singapore.,National Cancer Centre Singapore, Singapore.,Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
192
|
Mullen AC, Wrana JL. TGF-β Family Signaling in Embryonic and Somatic Stem-Cell Renewal and Differentiation. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022186. [PMID: 28108485 DOI: 10.1101/cshperspect.a022186] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Soon after the discovery of transforming growth factor-β (TGF-β), seminal work in vertebrate and invertebrate models revealed the TGF-β family to be central regulators of tissue morphogenesis. Members of the TGF-β family direct some of the earliest cell-fate decisions in animal development, coordinate complex organogenesis, and contribute to tissue homeostasis in the adult. Here, we focus on the role of the TGF-β family in mammalian stem-cell biology and discuss its wide and varied activities both in the regulation of pluripotency and in cell-fate commitment.
Collapse
Affiliation(s)
- Alan C Mullen
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138
| | - Jeffrey L Wrana
- Lunenfeld-Tanenbam Research Institute, Mount Sinai Hospital and Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1X5, Canada
| |
Collapse
|
193
|
Fathi A, Eisa-Beygi S, Baharvand H. Signaling Molecules Governing Pluripotency and Early Lineage Commitments in Human Pluripotent Stem Cells. CELL JOURNAL 2017; 19:194-203. [PMID: 28670512 PMCID: PMC5412778 DOI: 10.22074/cellj.2016.3915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/15/2016] [Indexed: 11/04/2022]
Abstract
Signaling in pluripotent stem cells is a complex and dynamic process involving multiple mediators, finely tuned to balancing pluripotency and differentiation states. Characterizing and modifying the necessary signaling pathways to attain desired cell types is required for stem-cell applications in various fields of regenerative medicine. These signals may help enhance the differentiation potential of pluripotent cells towards each of the embryonic lineages and enable us to achieve pure in vitro cultures of various cell types. This review provides a timely synthesis of recent advances into how maintenance of pluripotency in hPSCs is regulated by extrinsic cues, such as the fibroblast growth factor (FGF) and ACTIVIN signaling pathways, their interplay with other signaling pathways, namely, wingless- type MMTV integration site family (WNT) and mammalian target of rapamycin (mTOR), and the pathways governing the determination of multiple lineages.
Collapse
Affiliation(s)
- Ali Fathi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell
Biology and Technology, ACECR, Tehran, Iran
| | - Shahram Eisa-Beygi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell
Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell
Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran
| |
Collapse
|
194
|
Mulas C, Kalkan T, Smith A. NODAL Secures Pluripotency upon Embryonic Stem Cell Progression from the Ground State. Stem Cell Reports 2017; 9:77-91. [PMID: 28669603 PMCID: PMC5511111 DOI: 10.1016/j.stemcr.2017.05.033] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/24/2017] [Accepted: 05/25/2017] [Indexed: 02/02/2023] Open
Abstract
Naive mouse embryonic stem cells (ESCs) can develop multiple fates, but the cellular and molecular processes that enable lineage competence are poorly characterized. Here, we investigated progression from the ESC ground state in defined culture. We utilized downregulation of Rex1::GFPd2 to track the loss of ESC identity. We found that cells that have newly downregulated this reporter have acquired capacity for germline induction. They can also be efficiently specified for different somatic lineages, responding more rapidly than naive cells to inductive cues. Inhibition of autocrine NODAL signaling did not alter kinetics of exit from the ESC state but compromised both germline and somatic lineage specification. Transient inhibition prior to loss of ESC identity was sufficient for this effect. Genetic ablation of Nodal reduced viability during early differentiation, consistent with defective lineage specification. These results suggest that NODAL promotes acquisition of multi-lineage competence in cells departing naive pluripotency.
Collapse
Affiliation(s)
- Carla Mulas
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK,Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Tüzer Kalkan
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Austin Smith
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK,Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK,Corresponding author
| |
Collapse
|
195
|
Bates LE, Silva JC. Reprogramming human cells to naïve pluripotency: how close are we? Curr Opin Genet Dev 2017; 46:58-65. [PMID: 28668635 PMCID: PMC6112416 DOI: 10.1016/j.gde.2017.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/14/2017] [Accepted: 06/08/2017] [Indexed: 12/24/2022]
Abstract
Pluripotent stem cells (PSCs) have the potential to revolutionise biomedical science; however, while it is simple to reproducibly obtain comparable, stable cell lines in mouse, those produced from human material typically show significant variability both within and between cell lines. This is likely due to differences in the cell identity of conventional mouse and human PSCs. It is hoped that recently identified conditions to reprogram human cells to a naïve-like state will produce better PSCs resulting in reproducible experimental outcomes and more consistent differentiation protocols. In this review we discuss the latest literature on the discovery of human naïve-like stem cells and examine how similar they are to both mouse naïve cells and the preimplantation human epiblast.
Collapse
Affiliation(s)
- Lawrence E Bates
- Wellcome Trust Medical Research Council Cambridge Stem Cell Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - José Cr Silva
- Wellcome Trust Medical Research Council Cambridge Stem Cell Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.
| |
Collapse
|
196
|
Zimmerlin L, Park TS, Zambidis ET. Capturing Human Naïve Pluripotency in the Embryo and in the Dish. Stem Cells Dev 2017; 26:1141-1161. [PMID: 28537488 DOI: 10.1089/scd.2017.0055] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although human embryonic stem cells (hESCs) were first derived almost 20 years ago, it was only recently acknowledged that they share closer molecular and functional identity to postimplantation lineage-primed murine epiblast stem cells than to naïve preimplantation inner cell mass-derived mouse ESCs (mESCs). A myriad of transcriptional, epigenetic, biochemical, and metabolic attributes have now been described that distinguish naïve and primed pluripotent states in both rodents and humans. Conventional hESCs and human induced pluripotent stem cells (hiPSCs) appear to lack many of the defining hallmarks of naïve mESCs. These include important features of the naïve ground state murine epiblast, such as an open epigenetic architecture, reduced lineage-primed gene expression, and chimera and germline competence following injection into a recipient blastocyst-stage embryo. Several transgenic and chemical methods were recently reported that appear to revert conventional human PSCs to mESC-like ground states. However, it remains unclear if subtle deviations in global transcription, cell signaling dependencies, and extent of epigenetic/metabolic shifts in these various human naïve-reverted pluripotent states represent true functional differences or alternatively the existence of distinct human pluripotent states along a spectrum. In this study, we review the current understanding and developmental features of various human pluripotency-associated phenotypes and discuss potential biological mechanisms that may support stable maintenance of an authentic epiblast-like ground state of human pluripotency.
Collapse
Affiliation(s)
- Ludovic Zimmerlin
- 1 Institute for Cell Engineering, Johns Hopkins University School of Medicine , Baltimore, Maryland.,2 Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore, Maryland
| | - Tea Soon Park
- 1 Institute for Cell Engineering, Johns Hopkins University School of Medicine , Baltimore, Maryland.,2 Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore, Maryland
| | - Elias T Zambidis
- 1 Institute for Cell Engineering, Johns Hopkins University School of Medicine , Baltimore, Maryland.,2 Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore, Maryland
| |
Collapse
|
197
|
Morgani S, Nichols J, Hadjantonakis AK. The many faces of Pluripotency: in vitro adaptations of a continuum of in vivo states. BMC DEVELOPMENTAL BIOLOGY 2017; 17:7. [PMID: 28610558 PMCID: PMC5470286 DOI: 10.1186/s12861-017-0150-4] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/01/2017] [Indexed: 12/20/2022]
Abstract
Pluripotency defines the propensity of a cell to differentiate into, and generate, all somatic, as well as germ cells. The epiblast of the early mammalian embryo is the founder population of all germ layer derivatives and thus represents the bona fide in vivo pluripotent cell population. The so-called pluripotent state spans several days of development and is lost during gastrulation as epiblast cells make fate decisions towards a mesoderm, endoderm or ectoderm identity. It is now widely recognized that the features of the pluripotent population evolve as development proceeds from the pre- to post-implantation period, marked by distinct transcriptional and epigenetic signatures. During this period of time epiblast cells mature through a continuum of pluripotent states with unique properties. Aspects of this pluripotent continuum can be captured in vitro in the form of stable pluripotent stem cell types. In this review we discuss the continuum of pluripotency existing within the mammalian embryo, using the mouse as a model, and the cognate stem cell types that can be derived and propagated in vitro. Furthermore, we speculate on embryonic stage-specific characteristics that could be utilized to identify novel, developmentally relevant, pluripotent states.
Collapse
Affiliation(s)
- Sophie Morgani
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Wellcome Trust-Medical Research Council Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Jennifer Nichols
- Wellcome Trust-Medical Research Council Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
198
|
Graf U, Casanova EA, Wyck S, Dalcher D, Gatti M, Vollenweider E, Okoniewski M, Weber FA, Patel SS, Schmid MW, Li J, Sharif J, Wanner G, Koseki H, Wong J, Pelczar P, Penengo L, Santoro R, Cinelli P. Pramel7 mediates ground-state pluripotency through proteasomal–epigenetic combined pathways. Nat Cell Biol 2017; 19:763-773. [DOI: 10.1038/ncb3554] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 05/11/2017] [Indexed: 12/16/2022]
|
199
|
Abstract
Organism-level systems biology in mammals aims to identify, analyze, control, and design molecular and cellular networks executing various biological functions in mammals. In particular, system-level identification and analysis of molecular and cellular networks can be accelerated by next-generation mammalian genetics. Mammalian genetics without crossing, where all production and phenotyping studies of genome-edited animals are completed within a single generation drastically reduce the time, space, and effort of conducting the systems research. Next-generation mammalian genetics is based on recent technological advancements in genome editing and developmental engineering. The process begins with introduction of double-strand breaks into genomic DNA by using site-specific endonucleases, which results in highly efficient genome editing in mammalian zygotes or embryonic stem cells. By using nuclease-mediated genome editing in zygotes, or ~100% embryonic stem cell-derived mouse technology, whole-body knock-out and knock-in mice can be produced within a single generation. These emerging technologies allow us to produce multiple knock-out or knock-in strains in high-throughput manner. In this review, we discuss the basic concepts and related technologies as well as current challenges and future opportunities for next-generation mammalian genetics in organism-level systems biology.
Collapse
Affiliation(s)
- Etsuo A Susaki
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, , Bunkyo-ku, Tokyo 113-0033 Japan.,Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, 1-3 Yamadaoka, , Suita, Osaka 565-0871 Japan.,PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, , Kawaguchi, Saitama 332-0012 Japan
| | - Hideki Ukai
- Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, 1-3 Yamadaoka, , Suita, Osaka 565-0871 Japan
| | - Hiroki R Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, , Bunkyo-ku, Tokyo 113-0033 Japan.,Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, 1-3 Yamadaoka, , Suita, Osaka 565-0871 Japan
| |
Collapse
|
200
|
Molotkov A, Mazot P, Brewer JR, Cinalli RM, Soriano P. Distinct Requirements for FGFR1 and FGFR2 in Primitive Endoderm Development and Exit from Pluripotency. Dev Cell 2017; 41:511-526.e4. [PMID: 28552557 DOI: 10.1016/j.devcel.2017.05.004] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 03/13/2017] [Accepted: 04/30/2017] [Indexed: 12/23/2022]
Abstract
Activation of the FGF signaling pathway during preimplantation development of the mouse embryo is known to be essential for differentiation of the inner cell mass and the formation of the primitive endoderm (PrE). We now show using fluorescent reporter knockin lines that Fgfr1 is expressed in all cell populations of the blastocyst, while Fgfr2 expression becomes restricted to extraembryonic lineages, including the PrE. We further show that loss of both receptors prevents the development of the PrE and demonstrate that FGFR1 plays a more prominent role in this process than FGFR2. Finally, we document an essential role for FGFRs in embryonic stem cell (ESC) differentiation, with FGFR1 again having a greater influence than FGFR2 in ESC exit from the pluripotent state. Collectively, these results identify mechanisms through which FGF signaling regulates inner cell mass lineage restriction and cell commitment during preimplantation development.
Collapse
Affiliation(s)
- Andrei Molotkov
- Department of Cell, Developmental, and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pierre Mazot
- Department of Cell, Developmental, and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - J Richard Brewer
- Department of Cell, Developmental, and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ryan M Cinalli
- Department of Cell, Developmental, and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Philippe Soriano
- Department of Cell, Developmental, and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|