151
|
Liu SH, Peng BH, Ma JT, Liu YC, Ng SY. Serum response element associated transcription factors in mouse embryos: serum response factor, YY1, and PEA3 factor. DEVELOPMENTAL GENETICS 1995; 16:229-40. [PMID: 7796532 DOI: 10.1002/dvg.1020160303] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Many mammalian transcription factors, including human and mouse serum response factors (SRFs), are post-translationally modified with O-linked N-acetylglucosamine monosaccharides on multiple serine and/or threonine residues. Nuclear extracts were prepared from 9.5 to 19 days postcoitum mouse embryos and subsequently were fractionated by wheat germ agglutinin (WGA)-agarose affinity chromatography. SRF binds WGA-agarose and apparently is O-glycosylated. On the other hand, the low molecular weight serum response element (SRE)-binding proteins, including the previously named band I and band II factors, did not bind WGA-agarose. Furthermore, we showed that the fastest migrating complex contains the Yin-Yang 1 (YY1) factor. YY1 binds to the c-fos SRE and skeletal alpha-actin muscle regulatory element (MRE), but not the cardiac alpha-actin MRE. Nuclear extracts from NIH/3T3 fibroblasts contain similar, if not identical, SRE-binding complexes. Besides these SRE-binding factors, mouse PEA3-binding factor, presumably an ETS domain-containing protein, was found to bind SRF protein. This physical interaction, between SRF and ETS domain proteins, was shown to involve the DNA-binding domain-containing region of SRF and not the carboxyl-terminal transactivation domain.
Collapse
Affiliation(s)
- S H Liu
- Institute of Molecular Biology, Academia Sinica, NanKang, Taipei, Republic of China
| | | | | | | | | |
Collapse
|
152
|
Weiss KM, Ruddle FH, Bollekens J. Dlx and other homeobox genes in the morphological development of the dentition. Connect Tissue Res 1995; 32:35-40. [PMID: 7554933 DOI: 10.3109/03008209509013703] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The dentition is a segmental system whose evolution and morphology bears analogy to the evolution of segmentation in the vertebral column and limb. Combinatorial expression of members of the large "Hox" class of homeobox regulatory genes has been shown to play an important role in positional specification in these skeletal systems. This raises the possibility that homeobox genes are also used for positional specification in the dentition, and several homeobox genes are known to be expressed in developing teeth. To identify additional dentally expressed homeobox genes, cDNA from from murine tooth germs at 9.5, 14.5, and 17.5 days gestational age was amplified by PCR using sets of degenerate primers to the homeodomains of 18 different classes of homeobox genes. Amplification products were cloned and sequenced and compared to known gene sequences. To date this approach has confirmed the presence of Msx1, Msx2, Dlx1, and Dlx2, and identified several other homeobox genes not previously known to be expressed in teeth: Dbx, MHox, and Mox2A, plus an a additional Dlx gene, Dlx7. The Msx and Dlx genes are the best current candidates for a combinatorial mechanism that controls the differentiation of structures within and between teeth, and perhaps also the evolution of those structures.
Collapse
Affiliation(s)
- K M Weiss
- Graduate Program in Genetics, Penn State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
153
|
Lee JH, Goto K, Matsuda C, Arahata K. Characterization of a tandemly repeated 3.3-kbKpnl unit in the facioscapulohumeral muscular dystrophy (FSHD) gene region on chromosome 4q35. Muscle Nerve 1995. [DOI: 10.1002/mus.880181304] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
154
|
Thomas HF, Feldman JA, Bedalov A, Woody CO, Clark SH, Mack K, Lichtler AC. Identification of regulatory elements necessary for the expression of the COL1A1 promoter in murine odontoblasts. Connect Tissue Res 1995; 33:81-5. [PMID: 7554966 DOI: 10.3109/03008209509016986] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Recent studies have indicated that odontoblasts and osteoblasts have unique regulatory mechanisms that control COL1A1 gene expression. We are currently examining the regulation of COL1A1 gene expression in odontoblasts and have produced transgenic mice containing various collagen promoter constructs fused to the indicator gene, chloramphenicol acetyl transferase (CAT). Mandibular first molars were removed from jaws of transgenic mice. Some teeth were assayed for CAT activity (CAT diffusion assays), others were fixed and prepared for immunohistochemistry (CAT antibodies). Our results indicate the CAT activity was present in tooth germs containing promoter constructs longer than 1.719 kb. Immunoreactivity to CAT was confined to the odontoblast cell layer. No CAT activity was present in tooth germs containing a 1.670 kb construct. These data suggest that there are important regulatory elements located between -1.719 kb and -1.670 kb on the collagen promoter in odontoblasts. Examination of sequences in this region of the promoter demonstrates consensus with those known to be involved with binding of translation products of homeobox genes.
Collapse
Affiliation(s)
- H F Thomas
- Department of Pediatric Dentistry, University of Texas Health Science Center, San Antonio 78284, USA
| | | | | | | | | | | | | |
Collapse
|
155
|
|
156
|
Weiss KM, Bollekens J, Ruddle FH, Takashita K. Distal-less and other homeobox genes in the development of the dentition. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1994; 270:273-84. [PMID: 7964557 DOI: 10.1002/jez.1402700306] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The mammalian tooth develops through an interaction between two tissue layers of different embryologic origin. A number of transcription factors and as well as two members of the Msx class of homeobox genes have been shown to be involved in the histogenesis of the mammalian tooth. This raised the possibility that other homeobox genes might be involved in dental morphogenesis. We have amplified mouse tooth germ cDNA from three different gestational ages by the polymerase chain reaction with degenerate primers for 18 classes of homeobox genes. Members of several classes have been isolated, including the Msx genes, two Dlx genes, and the Dbx, MHox, Mox2A genes. One of the Dlx genes, Dlx-7, had not previously been reported in mammals, and some details are presented of its cDNA sequence. This work plus that of other investigators has shown that at least six Dlx genes are expressed in developing teeth or in first branchial arches, suggesting the possibility that these genes are involved in specifying complexity within or between teeth. The screening approach with degenerate primers is a successful way to identify new as well as previously known regulatory genes expressed in developing tooth embryos.
Collapse
Affiliation(s)
- K M Weiss
- Department of Anthropology, Penn State University, University Park 16802
| | | | | | | |
Collapse
|
157
|
Combinatorial structure of a body muscle-specific transcriptional enhancer in Caenorhabditis elegans. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47120-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
158
|
Schneider MD, Kirshenbaum LA, Brand T, MacLellan WR. Control of cardiac gene transcription by fibroblast growth factors. Mol Reprod Dev 1994; 39:112-7. [PMID: 7528025 DOI: 10.1002/mrd.1080390117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Skeletal alpha-actin (SkA) is representative of the cardiac genes that are expressed at high levels in embryonic myocardium, downregulated after birth, and reactivated by tropic signals including basic fibroblast growth factor (FGF-2) and type beta transforming growth factors (TGF beta). To investigate the molecular basis for cardiac-restricted and growth factor-induced SkA transcription, we have undertaken a mutational analysis of the SkA promoter in neonatal ventricular myocytes, with emphasis on the role of three nominal serum response elements. Serum response factor (SRF) and the bifunctional factor YY1 are the predominant cardiac proteins contacting the proximal SRE (SRE1). Mutations of SRE1 that prevent recognition by SRF and YY1. or SRF alone, virtually abolish SkA transcription; mutation of distal SREs was ineffective. A mutation which selectively abrogates YY1 binding increases expression, substantiating the predicted role of YY1 as an inhibitor of SRF effects. SkA transcription requires combinational action of SRE1 with consensus sites for Sp1 and the SV40 enhancer binding protein, TEF-1. As an isolated motif, SRE1 can confer responsiveness to both FGF-2 and TGF beta to a heterologous promoter. Whether TEF-1 binding sites likewise can function as FGF response elements is unknown. Molecular dissection of mechanisms that govern the differentiated cardiac phenotype has largely been undertaken to date in neonatal ventricular myocytes, as the adult ventricular myocyte has been refractory to conventional procedures for gene transfer. To circumvent expected limitations of other methods, we have used replication-deficient adenovirus to achieve efficient gene transfer to adult cardiac cells in culture.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M D Schneider
- Molecular Cardiology Unit, Baylor College of Medicine, Houston, Texas 77030
| | | | | | | |
Collapse
|
159
|
Okkema PG, Fire A. The Caenorhabditis elegans NK-2 class homeoprotein CEH-22 is involved in combinatorial activation of gene expression in pharyngeal muscle. Development 1994; 120:2175-86. [PMID: 7925019 DOI: 10.1242/dev.120.8.2175] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The pharyngeal muscles of Caenorhabditis elegans are single sarcomere muscles used for feeding. Like vertebrate cardiac and smooth muscles, C. elegans pharyngeal muscle does not express any of the known members of the MyoD family of myogenic factors. To identify mechanisms regulating gene expression in this tissue, we have characterized a pharyngeal muscle-specific enhancer from myo-2, a myosin heavy chain gene expressed exclusively in pharyngeal muscle. Assaying enhancer function in transgenic animals, we identified three subelements, designated A, B and C, that contribute to myo-2 enhancer activity. These subelements are individually inactive; however, any combination of two or more subelements forms a functional enhancer. The B and C subelements have distinct cell type specificities. A duplication of B activates transcription in a subset of pharyngeal muscles (m3, m4, m5 and m7). A duplication of C activates transcription in all pharyngeal cells, muscle and non-muscle. Thus, the activity of the myo-2 enhancer is regulated by a combination of pharyngeal muscle-type-specific and organ-specific signals. Screening a cDNA expression library, we identified a gene encoding an NK-2 class homeodomain protein, CEH-22, that specifically binds a site necessary for activity of the B subelement. CEH-22 protein is first expressed prior to myogenic differentiation and is present in the same subset of pharyngeal muscles in which B is active. Expression continues throughout embryonic and larval development. This expression pattern suggests CEH-22 plays a key role in pharyngeal muscle-specific activity of the myo-2 enhancer.
Collapse
Affiliation(s)
- P G Okkema
- Carnegie Institution of Washington, Department of Embryology, Baltimore, MD 21210
| | | |
Collapse
|
160
|
Heikinheimo M, Scandrett JM, Wilson DB. Localization of transcription factor GATA-4 to regions of the mouse embryo involved in cardiac development. Dev Biol 1994; 164:361-73. [PMID: 8045339 DOI: 10.1006/dbio.1994.1206] [Citation(s) in RCA: 222] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
To clarify the role of transcription factor GATA-4 in mammalian development, we have determined the pattern of expression of GATA-4 in early postimplantation mouse embryos. Using in situ hybridization and immunohistochemistry, we find that GATA-4 RNA and protein are expressed in cells associated with heart development. Intraembryonic expression of GATA-4 RNA is first apparent in coelomic epithelial cells of the primitive streak embryo (approximately 7.0-7.5 days postcoitum). During formation and bending of the heart tube (approximately 8 days postcoitum), GATA-4 RNA and protein are expressed in endocardium, myocardium, and embryonic structures containing precardiac mesoderm such as the septum transversum and intraembryonic coelomic epithelium. By the onset of cardiac septation (approximately 9 days postcoitum), abundant GATA-4 RNA expression is evident in endocardium, endocardial cushion tissue, and myocardium. Expression of GATA-4 by the myocardium continues through gestation and after birth. The temporal and spacial patterns of GATA-4 expression support a role for this factor in the regulation of cardiac differentiation, analogous to the established role of transcription factor GATA-1 in the regulation of hematopoiesis.
Collapse
Affiliation(s)
- M Heikinheimo
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | |
Collapse
|
161
|
Cserjesi P, Lilly B, Hinkley C, Perry M, Olson E. Homeodomain protein MHox and MADS protein myocyte enhancer-binding factor-2 converge on a common element in the muscle creatine kinase enhancer. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)89453-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
162
|
Chambers AE, Logan M, Kotecha S, Towers N, Sparrow D, Mohun TJ. The RSRF/MEF2 protein SL1 regulates cardiac muscle-specific transcription of a myosin light-chain gene in Xenopus embryos. Genes Dev 1994; 8:1324-34. [PMID: 7926733 DOI: 10.1101/gad.8.11.1324] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have examined the role of two RSRF/MEF2 proteins in the onset of skeletal and cardiac muscle differentiation in early Xenopus embryos. In normal development, zygotic expression of SL1 (MEF2D) precedes that of SL2 (MEF2A) by several hours, but neither gene is expressed prior to the accumulation of MyoD and Myf5 transcripts in the somitic mesoderm. Ectopic expression of the myogenic factors in explants of presumptive ectoderm induces expression of both SL1 and SL2, whereas in reciprocal experiments, neither RSRF protein activates the endogenous myoD or Myf5 genes. We conclude that SL1 and SL2 lie downstream of these myogenic factors in the skeletal myogenic pathway. SL1 is distinguished from SL2 in being expressed in the presumptive heart region of the early tailbud embryo, prior to detection of any markers for cardiac muscle differentiation. Furthermore, ectopic SL1 induces the expression of an endogenous cardiac muscle-specific myosin light-chain (XMLC2) gene in cultured blastula animal pole explants, whereas SL2 has no comparable effect. These results demonstrate that in addition to a possible role in skeletal myogenesis, SL1 also acts in vivo as a regulator of cardiac muscle-specific transcription.
Collapse
Affiliation(s)
- A E Chambers
- Laboratory of Developmental Biochemistry, National Institute for MedicalResearch, London, UK
| | | | | | | | | | | |
Collapse
|
163
|
Transforming growth factor-beta response elements of the skeletal alpha-actin gene. Combinatorial action of serum response factor, YY1, and the SV40 enhancer-binding protein, TEF-1. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)89455-3] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
164
|
Szabó P, Mann JR. Expression and methylation of imprinted genes during in vitro differentiation of mouse parthenogenetic and androgenetic embryonic stem cell lines. Development 1994; 120:1651-60. [PMID: 8050371 DOI: 10.1242/dev.120.6.1651] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Messenger RNA and methylation levels of four imprinted genes, H19, Igf2r, Igf-2 and Snrpn were examined by northern and Southern blotting in mouse parthenogenetic, androgenetic and normal or wild-type embryonic stem cell lines during their differentiation in vitro as embryoid bodies. In most instances, mRNA levels in parthenogenetic and androgenetic embryoid bodies differed from wild type as expected from previously determined patterns of monoallelic expression in midgestation embryos and at later stages of development. These findings implicate aberrant mRNA levels of these genes in the abnormal development of parthenogenetic and androgenetic embryos and chimeras. Whereas complete silence of one of the parental alleles has previously been observed in vivo, we detected some mRNA in the corresponding embryonic stem cell line. This ‘leakage’ phenomenon could be explained by partial erasure, bypass or override of imprints, or could represent the actual activity status at very early stages of development. The mRNA levels of H19, Igf2r and Igf-2 and the degree of methylation at specific associated sequences were correlated according to previous studies in embryos, and thereby are consistent with suggestions that the methylation might play a role in controlling transcription of these genes. Paternal-specific methylation of the H19 promoter region is absent in sperm, yet we observed its presence in undifferentiated androgenetic embryonic stem cells, or before the potential expression phase of this gene in embryoid bodies. As such methylation is likely to invoke a repressive effect, this finding raises the possibility that it is part of the imprinting mechanism of H19, taking the form of a secondary imprint or postfertilization epigenetic modification necessary for repression of the paternal allele.
Collapse
Affiliation(s)
- P Szabó
- Division of Biology, Beckman Research Institute of the City of Hope, Duarte, California 91010-0269
| | | |
Collapse
|
165
|
Edmondson DG, Lyons GE, Martin JF, Olson EN. Mef2 gene expression marks the cardiac and skeletal muscle lineages during mouse embryogenesis. Development 1994; 120:1251-63. [PMID: 8026334 DOI: 10.1242/dev.120.5.1251] [Citation(s) in RCA: 398] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Members of the MEF2 family of transcription factors bind a conserved A/T-rich sequence in the control regions of many skeletal and cardiac muscle genes. To begin to assess the roles of the different Mef2 genes in the control of muscle gene expression in vivo, we analyzed by in situ hybridization the expression patterns of the Mef2a, Mef2c and Mef2d genes during mouse embryogenesis. We first detected MEF2C expression at day 7.5 postcoitum (p.c.) in cells of the cardiac mesoderm that give rise to the primitive heart tube, making MEF2C one of the earliest markers for the cardiac muscle lineage yet described. By day 8.5, MEF2A, MEF2C and MEF2D mRNAs are all detected in the myocardium. By day 9.0, MEF2C is expressed in rostral myotomes, where its expression lags by about a day behind that of myf5 and several hours behind that of myogenin. MEF2A and MEF2D are expressed at a lower level than MEF2C in the myotome at day 9.5 and are detected in more embryonic tissues than MEF2C. Expression of each of the MEF2 transcripts is observed in muscle-forming regions within the limbs at day 11.5 p.c. and within muscle fibers throughout the embryo at later developmental stages. The expression of MEF2C in the somites and fetal muscle is distinct from that of MEF2A, MEF2D and the myogenic bHLH regulatory genes, suggesting that it may represent a distinct myogenic cell type. Neural crest cells also express high levels of MEF2 mRNAs between days 8.5 and 10.5 of gestation. After day 12.5 p.c., MEF2 transcripts are detected at high levels in specific regions of the brain and ultimately in a wide range of tissues. The distinct patterns of expression of the different Mef2 genes during mouse embryogenesis suggest that these genes respond to unique developmental cues and support the notion that their products play roles in the regulation of muscle-specific transcription during establishment of the cardiac and skeletal muscle lineages.
Collapse
Affiliation(s)
- D G Edmondson
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston 77030
| | | | | | | |
Collapse
|
166
|
Williams BA, Ordahl CP. Pax-3 expression in segmental mesoderm marks early stages in myogenic cell specification. Development 1994; 120:785-96. [PMID: 7600957 DOI: 10.1242/dev.120.4.785] [Citation(s) in RCA: 272] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Specification of the myogenic lineage begins prior to gastrulation and culminates in the emergence of determined myogenic precursor cells from the somites. The myoD family (MDF) of transcriptional activators controls late step(s) in myogenic specification that are closely followed by terminal muscle differentiation. Genes expressed in myogenic specification at stages earlier than MDFs are unknown. The Pax-3 gene is expressed in all the cells of the caudal segmental plate, the early mesoderm compartment that contains the precursors of skeletal muscle. As somites form from the segmental plate and mature, Pax-3 expression is progressively modulated. Beginning at the time of segmentation, Pax-3 becomes repressed in the ventral half of the somite, leaving Pax-3 expression only in the dermomyotome. Subsequently, differential modulation of Pax-3 expression levels delineates the medial and lateral halves of the dermomyotome, which contain precursors of axial (back) muscle and limb muscle, respectively. Pax-3 expression is then repressed as dermomyotome-derived cells activate MDFs. Quail-chick chimera and ablation experiments confirmed that the migratory precursors of limb muscle continue to express Pax-3 during migration. Since limb muscle precursors do not activate MDFs until 2 days after they leave the somite, Pax-3 represents the first molecular marker for this migratory cell population. A null mutation of the mouse Pax-3 gene, Splotch, produces major disruptions in early limb muscle development (Franz, T., Kothary, R., Surani, M. A. H., Halata, Z. and Grim, M. (1993) Anat. Embryol. 187, 153–160; Goulding, M., Lumsden, A. and Paquette, A. (1994) Development 120, 957–971). We conclude, therefore, that Pax-3 gene expression in the paraxial mesoderm marks earlier stages in myogenic specification than MDFs and plays a crucial role in the specification and/or migration of limb myogenic precursors.
Collapse
Affiliation(s)
- B A Williams
- Department of Anatomy, University of California, San Francisco 94143-0452, USA
| | | |
Collapse
|
167
|
Moss J, McQuinn T, Schwartz R. The avian cardiac alpha-actin promoter is regulated through a pair of complex elements composed of E boxes and serum response elements that bind both positive- and negative-acting factors. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)99937-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
168
|
Corin S, Juhasz O, Zhu L, Conley P, Kedes L, Wade R. Structure and expression of the human slow twitch skeletal muscle troponin I gene. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)34109-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
169
|
Wey E, Lyons GE, Schäfer BW. A human POU domain gene, mPOU, is expressed in developing brain and specific adult tissues. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 220:753-62. [PMID: 7908264 DOI: 10.1111/j.1432-1033.1994.tb18676.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
POU domain genes constitute a family of transcription factors that exhibit distinct temporal and spatial patterns of expression. To investigate the possible functions that POU proteins may have in muscle development we have isolated four novel POU-domain-encoding sequences from human muscle tissue. One of these sequences, referred to as mPOU, encodes a new member of subclass VI of the POU family. In the embryo, mPOU is expressed exclusively in the developing brain, whereas in the adult its expression is restricted to brain, heart, skeletal muscle and lung. In the brain, the highest expression levels were found in specific cell layers of the cortex, the olfactory bulb, the hippocampus and the cerebellum. mPOU is shown to bind to DNA sequences containing the octamer motif and other POU factor target sites. The distinct expression pattern and divergent DNA-binding characteristics indicate that mPOU may regulate a distinct set of genes.
Collapse
Affiliation(s)
- E Wey
- Department of Pediatrics, University of Zurich, Switzerland
| | | | | |
Collapse
|
170
|
|
171
|
Valarché I, Tissier-Seta JP, Hirsch MR, Martinez S, Goridis C, Brunet JF. The mouse homeodomain protein Phox2 regulates Ncam promoter activity in concert with Cux/CDP and is a putative determinant of neurotransmitter phenotype. Development 1993; 119:881-96. [PMID: 7910552 DOI: 10.1242/dev.119.3.881] [Citation(s) in RCA: 216] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Transcriptional regulation of the gene encoding the cell adhesion receptor NCAM (neural cell adhesion molecule), a putative effector molecule of a variety of morphogenetic events, is likely to involve important regulators of morphogenesis. Here we identify two mouse homeodomain proteins that bind to an upstream regulatory element in the Ncam promoter: Cux, related to Drosophila cut and human CDP, and Phox2, a novel protein with a homeodomain related to that of the Drosophila paired gene. In transient transfection experiments, Cux was found to be a strong inhibitor of Ncam promoter activity, and this inhibition could be relieved by simultaneously overexpressing Phox2. These results suggest that the Ncam gene might be a direct target of homeodomain proteins and provide a striking example of regulatory cross-talk between homeodomain proteins of different classes. Whereas the expression pattern of Cux/CDP includes many NCAM-negative sites, Phox2 expression was restricted to cells also expressing Ncam or their progenitors. The localisation data thus strongly reinforce the notion that Phox2 plays a role in transcriptional activation of Ncam in Phox2-positive cell types. In the peripheral nervous system, Phox2 was strongly expressed in all ganglia of the autonomic nervous system and more weakly in some cranial sensory ganglia, but not in the sensory ganglia of the trunk. Phox2 transcripts were detected in the primordia of sympathetic ganglia as soon as they form. Phox2 expression in the brain was confined to spatially restricted domains in the hindbrain, which correspond to the noradrenergic and adrenergic nuclei once they are identifiable. All Phox2-expressing components of the peripheral nervous system are at least transiently adrenergic or noradrenergic. In the developing brain, Phox2 was expressed at all known locations of (nor)adrenergic neurones and of their precursors. These results suggest that Phox2, in addition to regulating the NCAM gene, may be part of the regulatory cascade that controls the differentiation of neurons towards this neurotransmitter phenotype.
Collapse
Affiliation(s)
- I Valarché
- Centre d'Immunologie INSERM-CNRS de Marseille-Luminy, France
| | | | | | | | | | | |
Collapse
|
172
|
Hunter JJ, Zhu H, Lee KJ, Kubalak S, Chien KR. Targeting gene expression to specific cardiovascular cell types in transgenic mice. Hypertension 1993; 22:608-17. [PMID: 8406667 DOI: 10.1161/01.hyp.22.4.608] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Transgenic techniques, which allow the introduction of exogenous genes into the genome of experimental animals, promise to bridge the gap between the in vitro observations made by molecular and cellular biologists on cardiac and vascular cells in tissue culture and the physiology and pathology of the whole organ system. One such application of these techniques is tissue targeting: by genetic manipulation to direct expression of a protein--such as a signaling peptide, a growth factor receptor, or an oncogene involved in cell growth--to a tissue where it normally would not be expressed (or where expression is tightly controlled) by fusing it to the transcriptional control sequences of another gene normally expressed in that tissue. In the cardiovascular system, regulatory sequences for cardiomyocyte-specific proteins, vascular endothelium-specific proteins, and smooth muscle-specific proteins can be used to target heterologous genes to their respective tissues in transgenic animals. The effects that such perturbations have on organ physiology and intracellular and intercellular communication can be observed by applying established physiological and molecular approaches. In this review, we highlight some tissue-specific genes from cardiac and vascular cell types whose regulatory sequences may be used to target heterologous proteins; we discuss neutral "reporter" proteins and signal transduction components as paradigms for the application of this technique; and we briefly touch on the potentials and pitfalls of transgenic approaches to molecular physiology.
Collapse
Affiliation(s)
- J J Hunter
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla 92093-0613
| | | | | | | | | |
Collapse
|
173
|
Levi G, Corsetti MT, Boncinelli E, Corte G. Changes in the prevalence of an homeobox gene product during muscle differentiation. Mech Dev 1993; 43:111-20. [PMID: 7905281 DOI: 10.1016/0925-4773(93)90029-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have studied by immunohistofluorescence and confocal microscopy the localization of the XlHbox-1 protein, the product of a Xenopus class 1 homeobox gene corresponding to the human HOX 3C, during the development of Xenopus laevis mesodermal derivatives. The protein, not present at early stages of embryonic development, can first be detected in the neurula where it is weakly expressed in the rostral part of the spinal cord and in the nuclei of the corresponding somites. At later stages of mesodermal development, very high levels of the molecule are present in the nuclei of a small group of myogenic cells in the most dorsal aspect of the myotome, while the nuclei of differentiated muscle fibers within the myotome are either stained weakly or completely negative. A similar transient expression of XlHbox-1 gene product during myogenesis occurs during muscle differentiation in the limb bud and during differentiation of visceral smooth muscles from the lateral plate mesoderm. In both cases the nuclei of precursor cells contain high level of this protein which is rapidly down regulated during further muscle differentiation. In myogenic areas the modulation of XlHbox-1 expression invariably parallels that of the neural cell adhesion molecule N-CAM. These data are the first evidence that a homeobox gene belonging to the Antennapedia-Bithorax complex is transiently expressed in early phases of muscle differentiation. The transient expression of homeobox genes in early phases of embryonic development could act synergistically with the expression of other myogenic transcriptional factors to specify a fine level of differentiation of the muscle cells along the body axis.
Collapse
Affiliation(s)
- G Levi
- Laboratoire du Physiopathologie du Developpement, C.N.R.S. URA 1337, Paris, France
| | | | | | | |
Collapse
|
174
|
Neuhold LA, Wold B. HLH forced dimers: tethering MyoD to E47 generates a dominant positive myogenic factor insulated from negative regulation by Id. Cell 1993; 74:1033-42. [PMID: 7691411 DOI: 10.1016/0092-8674(93)90725-6] [Citation(s) in RCA: 123] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Basic-helix-loop-helix (bHLH) class transcription factors bind DNA as hetero- and homodimers. In murine myogenic cells the HLH network includes multiple members of the E protein, MyoD, and Id families; changes in the network characterize muscle determination and differentiation and have been proposed as causal for these developmental transitions. To test the importance of HLH partner choice in these cellular decisions, we have designed a strategy in which the identity of a bHLH dimer is specified by joining two monomers via a flexible polypeptide linker. A MyoD-E47 polyprotein avidly bound the same DNA targets as its unlinked counterpart, but, unlike intermolecular dimers that are very sensitive to inhibition by Id, MyoD-E47 was resistant to Id challenge. In cells MyoD-E47 acted as a dominant positive myogenic factor, capable of initiating myogenic determination and also substantially bypassing negative regulation of differentiation by serum growth factors.
Collapse
Affiliation(s)
- L A Neuhold
- Biology Division, California Institute of Technology, Pasadena 91125
| | | |
Collapse
|
175
|
Gorski DH, Patel CV, Walsh K. Homeobox transcription factor regulation in the cardiovascular system. Trends Cardiovasc Med 1993; 3:184-90. [DOI: 10.1016/1050-1738(93)90004-p] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
176
|
Breitbart RE, Liang CS, Smoot LB, Laheru DA, Mahdavi V, Nadal-Ginard B. A fourth human MEF2 transcription factor, hMEF2D, is an early marker of the myogenic lineage. Development 1993; 118:1095-106. [PMID: 8269842 DOI: 10.1242/dev.118.4.1095] [Citation(s) in RCA: 123] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The transition from multipotent mesodermal precursor to committed myoblast and its differentiation into a mature myocyte involve molecular events that enable the cell to activate muscle-specific genes. Among the participants in this process is the myocyte-specific enhancer factor 2 (MEF2) family of tissue-restricted transcription factors. These factors, which share a highly conserved DNA-binding domain including a MADS box, are essential for the expression of multiple muscle genes with cognate target MEF2 sites in cis. We report here a new human MEF2 factor, hMEF2D, which is unique among the members of this family in that it is present not only in myotubes but also in undifferentiated myoblasts, even before the appearance of myogenin. hMEF2D comprises several alternatively spliced products of a single gene, one of which is the human homolog of the Xenopus SRF-related factor SL-1. Like its relatives, cloned hMEF2D is capable of activating transcription via sequence-specific binding to the MEF2 site, recapitulating endogenous tissue-specific MEF2 activity. Indeed, while MEF2D mRNAs are ubiquitous, the protein is highly restricted to those cell types that contain this activity, implicating posttranscriptional mechanisms in the regulation of MEF2D expression. Alternative splicing may be important in this process: two alternative MEF2D domains, at least one of which is specifically included during myogenic differentiation, also correlate precisely with endogenous MEF2 activity. These findings provide compelling evidence that MEF2D is an integral link in the regulatory network for muscle gene expression. Its presence in undifferentiated myoblasts further suggests that it may be a mediator of commitment in the myogenic lineage.
Collapse
Affiliation(s)
- R E Breitbart
- Howard Hughes Medical Institute, Boston, Massachusetts
| | | | | | | | | | | |
Collapse
|
177
|
Affiliation(s)
- K R Chien
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla 92093
| |
Collapse
|
178
|
Miller JB, Everitt EA, Smith TH, Block NE, Dominov JA. Cellular and molecular diversity in skeletal muscle development: news from in vitro and in vivo. Bioessays 1993; 15:191-6. [PMID: 8387785 DOI: 10.1002/bies.950150308] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Skeletal muscle formation is studied in vitro with myogenic cell lines and primary muscle cell cultures, and in vivo with embryos of several species. We review several of the notable advances obtained from studies of cultured cells, including the recognition of myoblast diversity, isolation of the MyoD family of muscle regulatory factors, and identification of promoter elements required for muscle-specific gene expression. These studies have led to the ideas that myoblast diversity underlies the formation of the multiple types of fast and slow muscle fibers, and that myogenesis is controlled by a combination of ubiquitous and muscle-specific transcriptional regulators that may be different for each gene. We further review some unexpected results that have been obtained when ideas from work in culture have been tested in developing animals. The studies in vivo point to additional molecular and cellular mechanisms that regulate muscle formation in the animal.
Collapse
Affiliation(s)
- J B Miller
- Neuromuscular Laboratory, Massachusetts General Hospital, Charlestown 02129
| | | | | | | | | |
Collapse
|
179
|
Edmondson D, Olson E. Helix-loop-helix proteins as regulators of muscle-specific transcription. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53995-8] [Citation(s) in RCA: 174] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
180
|
Abstract
The two striated muscle cell types, skeletal and cardiac muscle, express overlapping sets of muscle-specific genes. Activation of muscle-specific transcription in skeletal muscle is controlled by the MyoD family of regulatory factors, which are expressed exclusively in skeletal muscle. Members of the MyoD family share homology within a basic helix-loop-helix (HLH) motif that mediates DNA binding and dimerization and form heterodimers with widely expressed HLH proteins, referred to as E proteins. Although many of the genes that are regulated by members of the MyoD family are also expressed in cardiac muscle, known members of the MyoD family have never been detected in cardiac muscle, suggesting that cardiac myocytes either express unique cell type-specific HLH proteins or rely on a distinct regulatory strategy for activation of cardiac muscle transcription. This review will summarize current knowledge of the mechanisms through which the MyoD family activates skeletal muscle transcription and will consider potential mechanisms that may regulate gene expression in the heart.
Collapse
Affiliation(s)
- E N Olson
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston 77030
| |
Collapse
|
181
|
Li L, Zhou J, James G, Heller-Harrison R, Czech MP, Olson EN. FGF inactivates myogenic helix-loop-helix proteins through phosphorylation of a conserved protein kinase C site in their DNA-binding domains. Cell 1992; 71:1181-94. [PMID: 1335366 DOI: 10.1016/s0092-8674(05)80066-2] [Citation(s) in RCA: 259] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Myogenin belongs to a family of myogenic helix-loop-helix (HLH) proteins that activate muscle transcription through binding to a conserved DNA sequence associated with numerous muscle-specific genes. Fibroblast growth factor (FGF) inhibits myogenesis by inactivating myogenic HLH proteins. We show that activated protein kinase C (PKC) can substitute for FGF and inhibit transcriptional activity of myogenic HLH proteins. In transfected cells, FGF induces phosphorylation of a conserved site in the DNA-binding domain of myogenin. This site is phosphorylated by PKC in vivo and in vitro and mediates repression of the myogenic program through a loss in DNA binding activity. A myogenin mutant lacking the PKC phosphorylation site is not repressed by FGF, confirming this site as a molecular target for FGF-dependent repression of muscle transcription. These results establish a direct link between the signal transduction pathways that inhibit myogenesis and the transcription factors directly activating muscle-specific genes.
Collapse
Affiliation(s)
- L Li
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston 77030
| | | | | | | | | | | |
Collapse
|
182
|
Patel C, Gorski D, LePage D, Lincecum J, Walsh K. Molecular cloning of a homeobox transcription factor from adult aortic smooth muscle. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)35720-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
183
|
Abstract
In muscle cells, as in a variety of cell types, proliferation and differentiation are mutually exclusive events controlled by a balance of opposing cellular signals. Members of the MyoD family of muscle-specific helix-loop-helix proteins which, in collaboration with ubiquitous factors, activate muscle differentiation and inhibit cell proliferation function at the nexus of the cellular circuits that control proliferation and differentiation of muscle cells. The activities of these myogenic regulators are negatively regulated by peptide growth factors and activated oncogenes whose products transmit growth signals from the membrane to the nucleus. Recent studies have revealed multiple mechanisms through which intracellular growth factor signals may interfere with the functions of the myogenic regulators. When expressed at high levels, members of the MyoD family can override mitogenic signals and can cause growth arrest independent of their effects on differentiation. The ability of these myogenic regulators to inhibit proliferation of normal as well as transformed cells from multiple lineages suggests that they interact with conserved components of the cellular machinery involved in cell cycle progression and that similar types of regulatory factors participate in differentiation and cell cycle control in diverse cell types.
Collapse
Affiliation(s)
- E N Olson
- Department of Biochemistry and Molecular Biology, University of Texas M. D. Anderson Cancer Center, Houston 77030
| |
Collapse
|
184
|
Olson EN. Regulatory mechanisms for skeletal muscle differentiation and their relevance to gene expression in the heart. Trends Cardiovasc Med 1992; 2:163-70. [DOI: 10.1016/1050-1738(92)90044-s] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
185
|
Grueneberg DA, Natesan S, Alexandre C, Gilman MZ. Human and Drosophila homeodomain proteins that enhance the DNA-binding activity of serum response factor. Science 1992; 257:1089-95. [PMID: 1509260 DOI: 10.1126/science.257.5073.1089] [Citation(s) in RCA: 259] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cells with distinct developmental histories can respond differentially to identical signals, suggesting that signals are interpreted in a fashion that reflects a cell's identity. How this might occur is suggested by the observation that proteins of the homeodomain family, including a newly identified human protein, enhance the DNA-binding activity of serum response factor, a protein required for the induction of genes by growth and differentiation factors. Interaction with proteins of the serum response factor family may allow homeodomain proteins to specify the transcriptional response to inductive signals. Moreover, because the ability to enhance the binding of serum response factor to DNA residues within the homeodomain but is independent of homeodomain DNA-binding activity, this additional activity of the homeodomain may account for some of specificity of action of homeodomain proteins in development.
Collapse
|
186
|
Groves AK, Anderson DJ. Role of environmental signals and transcriptional regulators in neural crest development. DEVELOPMENTAL GENETICS 1996; 18:64-72. [PMID: 8742835 DOI: 10.1002/(sici)1520-6408(1996)18:1<64::aid-dvg7>3.0.co;2-#] [Citation(s) in RCA: 36] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The processes by which undifferentiated cells are assigned to particular fates are far from clear. We review recent work that has examined this problem in the neural crest, a multipotential cell population that gives rise to peripheral neurons in vertebrates. Peripheral neuronal differentiation appears to occur in a series of developmental steps that can be regulated independently by signals in the environment. Furthermore, such steps are reflected by corresponding changes in the pattern of regulatory transcription factor expression in differentiating neural crest cells. The determination of neuronal identity may proceed by a series of parallel regulatory pathways involving transcription factors acting both in cascades and in combinatorial arrays.
Collapse
Affiliation(s)
- A K Groves
- Division of Biology, Howard Hughes Medical Institute, California Institute of Technology, Pasadena
| | | |
Collapse
|