151
|
Structural basis of coactivation of liver receptor homolog-1 by β-catenin. Proc Natl Acad Sci U S A 2011; 109:143-8. [PMID: 22187462 DOI: 10.1073/pnas.1117036108] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We report the three-dimensional structure of a β-catenin armadillo repeat in complex with the liver receptor homolog-1 (LRH-1) ligand binding domain at 2.8 Å resolution as the first structure of β-catenin in complex with any nuclear receptor. The surface of β-catenin that binds LRH-1 partly overlaps defined contact sites for peptide segments of β-catenin partners, including T-cell factor-4. The surface of LRH-1 that engages β-catenin is comprised of helices 1, 9, and 10 and is distinct from known interaction surfaces of LRH-1, including corepressor and coactivator binding sites. Targeted mutagenesis of amino acids forming both sides of the LRH-1/β-catenin interface reveals that they are essential for stable interactions between these proteins in solution. The LRH-1 binding site in β-catenin is also required for association with androgen receptor, providing evidence that the observed LRH-1/β-catenin interaction may be prototypic.
Collapse
|
152
|
Bao R, Fischer T, Bolognesi R, Brown SJ, Friedrich M. Parallel duplication and partial subfunctionalization of β-catenin/armadillo during insect evolution. Mol Biol Evol 2011; 29:647-62. [PMID: 21890476 DOI: 10.1093/molbev/msr219] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
β-Catenin is a multifunctional scaffolding protein with roles in Wnt signaling, cell adhesion, and centrosome separation. Here, we report on independent duplications of the insect β-Catenin ortholog armadillo (arm) in the red flour beetle Tribolium castaneum and the pea aphid Acyrthosiphon pisum. Detailed sequence analysis shows that in both species, one paralog lost critical residues of the α-Catenin binding domain, which is essential for cell adhesion, and accumulated a dramatically higher number of amino acid substitutions in the central Arm repeat domain. Residues associated with aspects of Wnt signaling, however, are conserved in both paralogs. Consistent with these molecular signatures, the effects of specific and combinatorial knockdown experiments in the Tribolium embryo indicate that the duplication resulted in redundant involvement in Wnt signaling of both β-Catenin paralogs but differential inheritance of the ancestral cell adhesion and centrosome separation functions. We conclude that the duplicated pea aphid and flour beetle β-catenin genes experienced partial subfunctionalization, which appears to be evolutionarily favored. Providing first evidence of genetic separability of the cell adhesion and centrosome separation functions, the duplicated Tribolium and Acyrthosiphon arm paralogs offer new inroads for context-specific analyses of β-Catenin. Our data also revealed the conservation of a C-terminally truncated Arm isoform in both singleton and duplicated homologs, suggesting an as yet unexplored role in Wnt signaling.
Collapse
Affiliation(s)
- Riyue Bao
- Department of Biological Sciences, Wayne State University, USA
| | | | | | | | | |
Collapse
|
153
|
The dynamic role of beta-catenin in synaptic plasticity. Neuropharmacology 2011; 62:78-88. [PMID: 21903109 DOI: 10.1016/j.neuropharm.2011.08.032] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 08/20/2011] [Accepted: 08/22/2011] [Indexed: 01/30/2023]
Abstract
In addition to its role in development and cell proliferation, β-catenin has been implicated in neuronal synapse regulation and remodeling. Here we review basic molecular and structural mechanisms of synaptic plasticity, followed by a description of the structure and function of β-catenin. We then describe a role for β-catenin in the cellular processes underlying synaptic plasticity. We also review recent data demonstrating that β-catenin mRNA and protein phosphorylation are dynamically regulated during fear memory consolidation in adult animals. Such alterations are correlated with a change in the association of β-catenin with cadherin, and deletion of the β-catenin gene prevents fear learning. Overall, the extant data suggest that β-catenin may function in mediating the structural changes associated with memory formation. This suggests a general role for β-catenin in synaptic remodeling and stabilization underlying long-term memory in adults, and possible roles for dysfunction in the β-catenin pathway in disorders of memory impairment (e.g. Alzheimer's Disease) and in disturbances in which emotional memories are too strong or resistant to inhibition (e.g. fear learning in Posttraumatic Stress Disorder). Further understanding of the β-catenin pathway may lead to better appreciation for the structural mechanisms underlying learning and memory as well as provide novel therapeutic approaches in memory related disorders. This article is part of a Special Issue entitled 'Anxiety and Depression'.
Collapse
|
154
|
Yang XD, Huang S, Lo MC, Mizumoto K, Sawa H, Xu W, Robertson S, Lin R. Distinct and mutually inhibitory binding by two divergent β-catenins coordinates TCF levels and activity in C. elegans. Development 2011; 138:4255-65. [PMID: 21852394 DOI: 10.1242/dev.069054] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Wnt target gene activation in C. elegans requires simultaneous elevation of β-catenin/SYS-1 and reduction of TCF/POP-1 nuclear levels within the same signal-responsive cell. SYS-1 binds to the conserved N-terminal β-catenin-binding domain (CBD) of POP-1 and functions as a transcriptional co-activator. Phosphorylation of POP-1 by LIT-1, the C. elegans Nemo-like kinase homolog, promotes POP-1 nuclear export and is the main mechanism by which POP-1 nuclear levels are lowered. We present a mechanism whereby SYS-1 and POP-1 nuclear levels are regulated in opposite directions, despite the fact that the two proteins physically interact. We show that the C terminus of POP-1 is essential for LIT-1 phosphorylation and is specifically bound by the diverged β-catenin WRM-1. WRM-1 does not bind to the CBD of POP-1, nor does SYS-1 bind to the C-terminal domain. Furthermore, binding of WRM-1 to the POP-1 C terminus is mutually inhibitory with SYS-1 binding at the CBD. Computer modeling provides a structural explanation for the specificity in WRM-1 and SYS-1 binding to POP-1. Finally, WRM-1 exhibits two independent and distinct molecular functions that are novel for β-catenins: WRM-1 serves both as the substrate-binding subunit and an obligate regulatory subunit for the LIT-1 kinase. Mutual inhibitory binding would result in two populations of POP-1: one bound by WRM-1 that is LIT-1 phosphorylated and exported from the nucleus, and another, bound by SYS-1, that remains in the nucleus and transcriptionally activates Wnt target genes. These studies could provide novel insights into cancers arising from aberrant Wnt activation.
Collapse
Affiliation(s)
- Xiao-Dong Yang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | |
Collapse
|
155
|
Omori E, Matsumoto K, Ninomiya-Tsuji J. Non-canonical β-catenin degradation mediates reactive oxygen species-induced epidermal cell death. Oncogene 2011; 30:3336-44. [PMID: 21383695 PMCID: PMC3131442 DOI: 10.1038/onc.2011.49] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 10/26/2010] [Accepted: 11/10/2010] [Indexed: 01/03/2023]
Abstract
β-Catenin is constantly degraded through the ubiquitin-proteasomal pathway. In this study, we report that a different type of β-catenin degradation is causally involved in epidermal cell death. We observed that reactive oxygen species (ROS) caused β-catenin degradation in the epidermal cells through a caspase-dependent mechanism, which results in disruption of cell adhesion. Disruption of cell adhesion increased ROS and activated caspases. Upregulation of the intact β-catenin blocked ROS accumulation and caspase activation. These results indicate that a feed-forward loop consisting of ROS, caspases activation and β-catenin degradation induces epidermal cell death.
Collapse
Affiliation(s)
- Emily Omori
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, NC 27695-7633 USA
| | - Kunihiro Matsumoto
- Department of Molecular Biology, Graduate School of Science, Nagoya University, Nagoya, 464-8602 JAPAN
| | - Jun Ninomiya-Tsuji
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, NC 27695-7633 USA
| |
Collapse
|
156
|
Zhang Z, Chen L, Gao L, Lin K, Zhu L, Lu Y, Shi X, Gao Y, Zhou J, Xu P, Zhang J, Wu G. Structural basis for the recognition of Asef by adenomatous polyposis coli. Cell Res 2011; 22:372-86. [PMID: 21788986 DOI: 10.1038/cr.2011.119] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Adenomatous polyposis coli (APC) regulates cell-cell adhesion and cell migration through activating the APC-stimulated guanine nucleotide-exchange factor (GEF; Asef), which is usually autoinhibited through the binding between its Src homology 3 (SH3) and Dbl homology (DH) domains. The APC-activated Asef stimulates the small GTPase Cdc42, which leads to decreased cell-cell adherence and enhanced cell migration. In colorectal cancers, truncated APC constitutively activates Asef and promotes cancer cell migration and angiogenesis. Here, we report crystal structures of the human APC/Asef complex. We find that the armadillo repeat domain of APC uses a highly conserved surface groove to recognize the APC-binding region (ABR) of Asef, conformation of which changes dramatically upon binding to APC. Key residues on APC and Asef for the complex formation were mutated and their importance was demonstrated by binding and activity assays. Structural superimposition of the APC/Asef complex with autoinhibited Asef suggests that the binding between APC and Asef might create a steric clash between Asef-DH domain and APC, which possibly leads to a conformational change in Asef that stimulates its GEF activity. Our structures thus elucidate the molecular mechanism of Asef recognition by APC, as well as provide a potential target for pharmaceutical intervention against cancers.
Collapse
Affiliation(s)
- Zhenyi Zhang
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Min C, Cho DI, Kwon KJ, Kim KS, Shin CY, Kim KM. Novel regulatory mechanism of canonical Wnt signaling by dopamine D2 receptor through direct interaction with beta-catenin. Mol Pharmacol 2011; 80:68-78. [PMID: 21493728 DOI: 10.1124/mol.111.071340] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Classical G protein-coupled receptors (GPCRs) and canonical Wnt pathways were believed to use distinct signaling pathways. However, recent studies have shown that these two pathways interact each other by sharing several intermediate signaling components. Recent in vivo studies showed that antipsychotic drugs, which block dopamine D2-like receptors, increase the cellular levels of downstream signaling components of canonical Wnt pathways, such as dishevelled (Dvl), glycogen synthase kinase 3β (GSK3β), and β-catenin. These results suggest that some functional interactions might exist between Wnt pathway and D2-like receptors. In this study, we show that among five different dopamine receptor subtypes, D(2) receptor (D(2)R) selectively inhibited the Wnt signaling, which was measured by lymphoid enhancing factor-1 (LEF-1)-dependent transcriptional activities. D(2)R-mediated inhibition of Wnt signaling was agonist- and G protein-independent and did not require receptor phosphorylation or endocytosis. D(2)R inhibited the LEF-1-dependent transcriptional activities, and this inhibitory activity was not affected by the inhibition of GSK-3β, suggesting that D(2)R inhibited the Wnt signaling by acting on the downstream of GSK3β. D(2)R directly interacted with β-catenin through the second and third loops, leading to a reduction of β-catenin distribution in the nucleus, resulting in an inhibition of LEF-1-dependent transcription. This is a novel mechanism for the regulation of canonical Wnt signaling by GPCRs, in which receptor proteins recruit β-catenin from cytosol to the plasma membrane, resulting in the decrement of the β-catenin/LEF-1-dependent transcription in the nucleus.
Collapse
Affiliation(s)
- Chengchun Min
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju 500-757, Korea
| | | | | | | | | | | |
Collapse
|
158
|
Shi C, Lu J, Wu W, Ma F, Georges J, Huang H, Balducci J, Chang Y, Huang Y. Endothelial cell-specific molecule 2 (ECSM2) localizes to cell-cell junctions and modulates bFGF-directed cell migration via the ERK-FAK pathway. PLoS One 2011; 6:e21482. [PMID: 21720547 PMCID: PMC3123356 DOI: 10.1371/journal.pone.0021482] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 05/30/2011] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Despite its first discovery by in silico cloning of novel endothelial cell-specific genes a decade ago, the biological functions of endothelial cell-specific molecule 2 (ECSM2) have only recently begun to be understood. Limited data suggest its involvement in cell migration and apoptosis. However, the underlying signaling mechanisms and novel functions of ECSM2 remain to be explored. METHODOLOGY/PRINCIPAL FINDINGS A rabbit anti-ECSM2 monoclonal antibody (RabMAb) was generated and used to characterize the endogenous ECSM2 protein. Immunoblotting, immunoprecipitation, deglycosylation, immunostaining and confocal microscopy validated that endogenous ECSM2 is a plasma membrane glycoprotein preferentially expressed in vascular endothelial cells (ECs). Expression patterns of heterologously expressed and endogenous ECSM2 identified that ECSM2 was particularly concentrated at cell-cell contacts. Cell aggregation and transwell assays showed that ECSM2 promoted cell-cell adhesion and attenuated basic fibroblast growth factor (bFGF)-driven EC migration. Gain or loss of function assays by overexpression or knockdown of ECSM2 in ECs demonstrated that ECSM2 modulated bFGF-directed EC motility via the FGF receptor (FGFR)-extracellular regulated kinase (ERK)-focal adhesion kinase (FAK) pathway. The counterbalance between FAK tyrosine phosphorylation (activation) and ERK-dependent serine phosphorylation of FAK was critically involved. A model of how ECSM2 signals to impact bFGF/FGFR-driven EC migration was proposed. CONCLUSIONS/SIGNIFICANCE ECSM2 is likely a novel EC junctional protein. It can promote cell-cell adhesion and inhibit bFGF-mediated cell migration. Mechanistically, ECSM2 attenuates EC motility through the FGFR-ERK-FAK pathway. The findings suggest that ECSM2 could be a key player in coordinating receptor tyrosine kinase (RTK)-, integrin-, and EC junctional component-mediated signaling and may have important implications in disorders related to endothelial dysfunction and impaired EC junction signaling.
Collapse
Affiliation(s)
- Chunwei Shi
- Department of Obstetrics and Gynecology, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, United States of America
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Lu
- Department of Obstetrics and Gynecology, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, United States of America
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Wu
- Department of Obstetrics and Gynecology, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, United States of America
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fanxin Ma
- Department of Obstetrics and Gynecology, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, United States of America
- State Key Laboratory of Biotherapy, West China Hospital, College of Life Science, Sichuan University, Chengdu, China
| | - Joseph Georges
- Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, United States of America
| | - Hanju Huang
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - James Balducci
- Department of Obstetrics and Gynecology, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, United States of America
| | - Yongchang Chang
- Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, United States of America
| | - Yao Huang
- Department of Obstetrics and Gynecology, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, United States of America
| |
Collapse
|
159
|
Epithelial cell polarity and tumorigenesis: new perspectives for cancer detection and treatment. Acta Pharmacol Sin 2011; 32:552-64. [PMID: 21499288 DOI: 10.1038/aps.2011.20] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Loss of cell-cell adhesion and cell polarity is commonly observed in tumors of epithelial origin and correlates with their invasion into adjacent tissues and formation of metastases. Growing evidence indicates that loss of cell polarity and cell-cell adhesion may also be important in early stage of cancer. In first part of this review, we delineate the current understanding of the mechanisms that establish and maintain the polarity of epithelial tissues and discuss the involvement of cell polarity and apical junctional complex components in tumor pathogenesis. In the second part we address the clinical significance of cell polarity and junctional complex components in cancer diagnosis and prognosis. Finally, we explore their potential use as therapeutic targets in the treatment of cancer.
Collapse
|
160
|
Brodrick B, Vidrich A, Porter E, Bradley L, Buzan JM, Cohn SM. Fibroblast growth factor receptor-3 (FGFR-3) regulates expression of paneth cell lineage-specific genes in intestinal epithelial cells through both TCF4/beta-catenin-dependent and -independent signaling pathways. J Biol Chem 2011; 286:18515-25. [PMID: 21388956 DOI: 10.1074/jbc.m111.229252] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Fibroblast growth factor receptor-3 (FGFR-3) expression in the developing intestine is restricted to the undifferentiated epithelial cells within the lower portion of the crypt. We previously showed that mice lacking functional FGFR-3 have a significant decrease in the number of Paneth cells in the small intestine. Here, we used Caco2 cells to investigate whether FGFR-3 signaling can directly modulate expression of Paneth cell differentiation markers through its effects on TCF4/β-catenin or through other signaling pathways downstream of this receptor. Caco2 cells treated with FGFR-3 ligands or expressing FGFR-3(K650E), a constitutively active mutant, resulted in a significantly increased expression of genes characteristic of mature Paneth cells, including human α-defensins 5 and 6 (HD5 and HD6) and Paneth cell lysozyme, whereas enterocytic differentiation markers were reduced. Activation of FGFR-3 signaling sustained high levels of β-catenin mRNA expression, leading to increased TCF4/β-catenin-regulated transcriptional activity in Caco2 cells. Sustained activity of the TCF4/β-catenin pathway was required for the induction of Paneth cell markers. Activation of the MAPK pathway by FGFR-3 is also required for the induction of Paneth cell markers in addition to and independent of the effect of FGFR-3 on TCF4/β-catenin activity. These studies suggest that coordinate activation of multiple independent signaling pathways downstream of FGFR-3 is involved in regulation of Paneth cell differentiation.
Collapse
Affiliation(s)
- Brooks Brodrick
- Division of Gastroenterology and Hepatology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | |
Collapse
|
161
|
Abstract
RUNX2 is an essential transcription factor for osteoblast differentiation and chondrocyte maturation. SP7, another transcription factor, is required for osteoblast differentiation. Major signaling pathways, including FGF, Wnt, and IHH, also play important roles in skeletal development. RUNX2 regulates Sp7 expression at an early stage of osteoblast differentiation. FGF2 upregulates Runx2 expression and activates RUNX2, and gain-of-function mutations of FGFRs cause craniosynostosis and limb defect with upregulation of Runx2 expression. Wnt signaling upregulates Runx2 expression and activates RUNX2, and RUNX2 induces Tcf7 expression. IHH is required for Runx2 expression in osteoprogenitor cells during endochondral bone development, and RUNX2 directly regulates Ihh expression in chondrocytes. Thus, RUNX2 regulates osteoblast differentiation and chondrocyte maturation through the network with SP7 and with FGF, Wnt, and IHH signaling pathways during skeletal development.
Collapse
Affiliation(s)
- Toshihisa Komori
- Department of Cell Biology, Unit of Basic Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan.
| |
Collapse
|
162
|
Gauchotte G, Gauchotte É, Bressenot A, Verhaeghe JL, Guillemin F, Leroux A, Genin P. Les carcinomes métaplasiques du sein : une étude morphologique et immunohistochimique. Ann Pathol 2011; 31:18-27. [DOI: 10.1016/j.annpat.2010.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 07/30/2010] [Accepted: 10/11/2010] [Indexed: 10/18/2022]
|
163
|
Choi H, Chun YS, Kim TY, Park JW. HIF-2alpha enhances beta-catenin/TCF-driven transcription by interacting with beta-catenin. Cancer Res 2011; 70:10101-11. [PMID: 21159632 DOI: 10.1158/0008-5472.can-10-0505] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The tumor-promoting factors β-catenin and hypoxia-inducible factor (HIF) are often found to be coactivated in rapidly growing tumors. Recently, it was shown that HIF-1α negatively regulates Wnt/β-catenin signaling by sequestering β-catenin from β-catenin/T-cell factor (TCF). However, no investigation has been undertaken on the involvement of HIF-2α in β-catenin regulation. In this study, it was found that, like HIF-1α, HIF-2α interacts with β-catenin, but at a different site. Furthermore, HIF-2α was found to assemble with β-catenin/TCF and facilitate gene transcription. Mutational analyses revealed that transactivation domains of HIF-2α promote p300 coactivator recruitment by β-catenin. Furthermore, HIF-2α and β-catenin were found to associate in the nuclei of 786-0 renal cell carcinoma cells, and HIF-2α was found to be required for β-catenin activation in these cells and for their proliferation. These results suggest that this interaction contributes to the unrestrained growth of tumor cells containing coactivated HIF-2α and β-catenin. Interestingly, these actions of HIF-2α oppose those of HIF-1α on β-catenin and cell growth, and this suggests that HIF-1α/HIF-2α balance may importantly determine cell growth when hypoxia and Wnt stimulation coexist.
Collapse
Affiliation(s)
- Hyunsung Choi
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
164
|
Liu P, Yang J, Pei J, Pei D, Wilson MJ. Regulation of MT1-MMP activity by β-catenin in MDCK non-cancer and HT1080 cancer cells. J Cell Physiol 2010; 225:810-21. [PMID: 20589835 DOI: 10.1002/jcp.22292] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Past studies on β-catenin in cancer cells focused on nuclear localized β-catenin and its involvement in the Wnt pathway. Our goal here was to investigate the function of β-catenin in both the cytoplasm and nucleus on the regulation of MT1-MMP expression and activity. We found that β-catenin in MDCK non-cancer cells inhibited the cell surface localization of MT1-MMP, and thus its proteolytic activity on pro-MMP2 activation, via direct interaction with the 18-amino-acid cytoplasmic tail of MT1-MMP in the cytoplasm. In contrast, β-catenin in HT1080 cancer cells enhanced the activity of MT1-MMP by entering the nucleus and activating transcription factor Tcf-4/Lef, and elevating the level of MT1-MMP protein. We also found that enhancement of cell growth in three-dimensional (3-D)/two-dimensional (2-D) type I collagen gels and of cell migration by MT1-MMP were inhibited by β-catenin in MDCK cells, whereas these functions were enhanced in HT1080 cells. In addition, regulation of MT1-MMP by β-catenin involved E-cadherin in MDCK cells and Wnt-3a in HT1080 cells. Taken together, our results present a differential effect of cytoplasmic and nuclear β-catenin on MT1-MMP activity in non-cancer cells versus cancer cells. These differences were most probably due to different subcellular locations and different involved pathways of β-catenin in these cells.
Collapse
Affiliation(s)
- Ping Liu
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | | | |
Collapse
|
165
|
McCrea PD, Gu D, Balda MS. Junctional music that the nucleus hears: cell-cell contact signaling and the modulation of gene activity. Cold Spring Harb Perspect Biol 2010; 1:a002923. [PMID: 20066098 DOI: 10.1101/cshperspect.a002923] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell-cell junctions continue to capture the interest of cell and developmental biologists, with an emerging area being the molecular means by which junctional signals relate to gene activity in the nucleus. Although complexities often arise in determining the direct versus indirect nature of such signal transduction, it is clear that such pathways are essential for the function of tissues and that alterations may contribute to many pathological outcomes. This review assesses a variety of cell-cell junction-to-nuclear signaling pathways, and outlines interesting areas for further study.
Collapse
Affiliation(s)
- Pierre D McCrea
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Program in Genes and Development, University of Texas Graduate School of Biomedical Sciences, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
166
|
Chen YT, Gallup M, Nikulina K, Lazarev S, Zlock L, Finkbeiner W, McNamara N. Cigarette smoke induces epidermal growth factor receptor-dependent redistribution of apical MUC1 and junctional beta-catenin in polarized human airway epithelial cells. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1255-64. [PMID: 20651243 PMCID: PMC2928959 DOI: 10.2353/ajpath.2010.091129] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/25/2010] [Indexed: 01/06/2023]
Abstract
Cigarette smoke (CS) accounts for nearly 90% of lung cancer deaths worldwide; however, an incomplete understanding of how CS initiates preneoplastic changes in the normal airway hinders early diagnosis. Short-term exposure to CS causes aberrant activation of epidermal growth factor receptor (EGFR) and canonical Wnt/beta-catenin signaling pathways in human bronchial epithelial (HBE) cells. We hypothesize that this response is elicited through the disruption of spatially segregated cell membrane proteins in the polarized airway epithelium. Using an in vitro model of highly differentiated HBE cells, we observed membrane characteristics consistent with the native airway, including the presence of a membrane mucin, MUC1, at the apical cell pole, beta-catenin at the apical-lateral membrane, and EGFR at the basolateral membrane. Following exposure to smoke, intercellular spaces enlarge and cilia disappear. This histopathology is accompanied by molecular events that include perinuclear trafficking of basolateral EGFR, EGFR phosphorylation, pEGFR-mediated phosphorylation of MUC1's cytoplasmic tail (CT), loss of E-cadherin/beta-catenin complexes at the adherens junctions (AJs), intracellular formation and nuclear shuffling of beta-catenin/MUC1-CT complexes, and, ultimately, up-regulation and nuclear localization of Wnt nuclear effector, Lef-1. In the presence of EGFR inhibitor, AG1478, CS-induced histopathology and molecular events were inhibited. These data point to EGFR as a portal through which CS mediates its damaging effects on AJ-mediated cell polarity and activation of canonical Wnt/beta-catenin signaling.
Collapse
Affiliation(s)
- Ying-Ting Chen
- University of California, San Francisco, Francis I. Proctor Foundation, San Francisco, CA 94143, USA.
| | | | | | | | | | | | | |
Collapse
|
167
|
Rosenberg MM, Yang F, Mohn JL, Storer EK, Jacob MH. The postsynaptic adenomatous polyposis coli (APC) multiprotein complex is required for localizing neuroligin and neurexin to neuronal nicotinic synapses in vivo. J Neurosci 2010; 30:11073-85. [PMID: 20720115 PMCID: PMC2945243 DOI: 10.1523/jneurosci.0983-10.2010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 05/28/2010] [Accepted: 06/30/2010] [Indexed: 01/29/2023] Open
Abstract
Synaptic efficacy requires that presynaptic and postsynaptic specializations align precisely and mature coordinately. The underlying mechanisms are poorly understood, however. We propose that adenomatous polyposis coli protein (APC) is a key coordinator of presynaptic and postsynaptic maturation. APC organizes a multiprotein complex that directs nicotinic acetylcholine receptor (nAChR) localization at postsynaptic sites in avian ciliary ganglion neurons in vivo. We hypothesize that the APC complex also provides retrograde signals that direct presynaptic active zones to develop in register with postsynaptic nAChR clusters. In our model, the APC complex provides retrograde signals via postsynaptic neuroligin that interacts extracellularly with presynaptic neurexin. S-SCAM (synaptic cell adhesion molecule) and PSD-93 (postsynaptic density-93) are scaffold proteins that bind to neuroligin. We identify S-SCAM as a novel component of neuronal nicotinic synapses. We show that S-SCAM, PSD-93, neuroligin and neurexin are enriched at alpha3*-nAChR synapses. PSD-93 and S-SCAM bind to APC and its binding partner beta-catenin, respectively. Blockade of selected APC and beta-catenin interactions, in vivo, leads to decreased postsynaptic accumulation of S-SCAM, but not PSD-93. Importantly, neuroligin synaptic clusters are also decreased. On the presynaptic side, there are decreases in neurexin and active zone proteins. Further, presynaptic terminals are less mature structurally and functionally. We define a novel neural role for APC by showing that the postsynaptic APC multiprotein complex is required for anchoring neuroligin and neurexin at neuronal synapses in vivo. APC human gene mutations correlate with autism spectrum disorders, providing strong support for the importance of the association, demonstrated here, between APC, neuroligin and neurexin.
Collapse
Affiliation(s)
- Madelaine M. Rosenberg
- Department of Neuroscience, Tufts University, Sackler School of Graduate Biomedical Sciences, Boston, Massachusetts 02111
| | - Fang Yang
- Department of Neuroscience, Tufts University, Sackler School of Graduate Biomedical Sciences, Boston, Massachusetts 02111
| | - Jesse L. Mohn
- Department of Neuroscience, Tufts University, Sackler School of Graduate Biomedical Sciences, Boston, Massachusetts 02111
| | - Elizabeth K. Storer
- Department of Neuroscience, Tufts University, Sackler School of Graduate Biomedical Sciences, Boston, Massachusetts 02111
| | - Michele H. Jacob
- Department of Neuroscience, Tufts University, Sackler School of Graduate Biomedical Sciences, Boston, Massachusetts 02111
| |
Collapse
|
168
|
Tewari R, Bailes E, Bunting KA, Coates JC. Armadillo-repeat protein functions: questions for little creatures. Trends Cell Biol 2010; 20:470-81. [PMID: 20688255 DOI: 10.1016/j.tcb.2010.05.003] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 05/11/2010] [Accepted: 05/17/2010] [Indexed: 01/24/2023]
Abstract
Armadillo (ARM)-repeat proteins form a large family with diverse and fundamental functions in many eukaryotes. ARM-repeat proteins have largely been characterised in multicellular organisms and much is known about how a subset of these proteins function. The structure of ARM-repeats allows proteins containing them to be functionally very versatile. Are the ARM-repeat proteins in 'little creatures' as multifunctional as their better-studied relatives? The time is now right to start analysing ARM-repeat proteins in these new systems to better understand their cell biology. Here, we review recent advances in understanding the many cellular roles of both well-known and novel ARM-repeat proteins.
Collapse
Affiliation(s)
- Rita Tewari
- Institute of Genetics, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | | | | | | |
Collapse
|
169
|
Matsushima K, Suyama T, Takenaka C, Nishishita N, Ikeda K, Ikada Y, Sawa Y, Jakt LM, Mori H, Kawamata S. Secreted frizzled related protein 4 reduces fibrosis scar size and ameliorates cardiac function after ischemic injury. Tissue Eng Part A 2010; 16:3329-41. [PMID: 20528676 DOI: 10.1089/ten.tea.2009.0739] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Expression of the Wnt modulator secreted frizzled related protein 4 (Sfrp4) is upregulated after heart ischemic injury. We show that intramuscular administration of recombinant Sfrp4 to rat heart ischemic injury and recanalization models prevents further deterioration of cardiac function after the ischemic injury. The effect of Sfrp4 persisted for at least 20 weeks when Sfrp4 was administered in a slow release system (Sfrp4-polyhedra) to both acute and subacute ischemic models. The histology of the dissected heart showed that the cardiac wall was thicker and the area of acellular scarring was smaller in Sfrp4-treated hearts than in controls. Increased amounts of both the inactive serine 9-phosphorylated form of glycogen synthase kinase (GSK)-3β and the active form of β-catenin were observed by immunohistology 3 days after lateral anterior descendant ligation in control, but not in Sfrp4-treated hearts. All together, we show that administration of Sfrp4 interferes with canonical Wnt signaling that could mediate the formation of acellular scar and consequently contributes to the prevention of aggravation of cardiac function.
Collapse
|
170
|
Ohta S, Schoenwolf GC, Yamada G. The cessation of gastrulation: BMP signaling and EMT during and at the end of gastrulation. Cell Adh Migr 2010; 4:440-6. [PMID: 20448472 DOI: 10.4161/cam.4.3.12000] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
An integral component of gastrulation in all organisms is epithelial to mesenchymal transition (EMT), a fundamental morphogenetic event through which epithelial cells transform into mesenchymal cells. The mesenchymal cells that arise from epithelial cells during gastrulation contribute to various tissue rudiments during subsequent development, including the notochord, somites, heart, gut, kidney, body wall and lining of the coelom. The process of gastrulation has been the subject of several hundred scientific papers. Despite all that has been written, it is likely that what we currently know about gastrulation is still considerably less than what remains to be learned. One critical remaining question that we consider here is how does gastrulation cease at the right place along the body axis, and at the right time? In this commentary, we focus on the molecular mechanism for the cessation of gastrulation, using the chick embryo as a model system.
Collapse
Affiliation(s)
- Sho Ohta
- University of Utah School of Medicine, Department of Neurobiology and Anatomy, Salt Lake City, Utah, USA.
| | | | | |
Collapse
|
171
|
Harris TJC, Tepass U. Adherens junctions: from molecules to morphogenesis. Nat Rev Mol Cell Biol 2010; 11:502-14. [PMID: 20571587 DOI: 10.1038/nrm2927] [Citation(s) in RCA: 704] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
How adhesive interactions between cells generate and maintain animal tissue structure remains one of the most challenging and long-standing questions in cell and developmental biology. Adherens junctions (AJs) and the cadherin-catenin complexes at their core are therefore the subjects of intense research. Recent work has greatly advanced our understanding of the molecular organization of AJs and how cadherin-catenin complexes engage actin, microtubules and the endocytic machinery. As a result, we have gained important insights into the molecular mechanisms of tissue morphogenesis.
Collapse
Affiliation(s)
- Tony J C Harris
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada.
| | | |
Collapse
|
172
|
Kwon IK, Thangaraju M, Shuang H, Liu K, Dashwood R, Dulin N, Ganapathy V, Browning DD. PKG inhibits TCF signaling in colon cancer cells by blocking beta-catenin expression and activating FOXO4. Oncogene 2010; 29:3423-34. [PMID: 20348951 PMCID: PMC3114416 DOI: 10.1038/onc.2010.91] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 01/28/2010] [Accepted: 02/21/2010] [Indexed: 12/14/2022]
Abstract
Activation of cGMP-dependent protein kinase (PKG) has anti-tumor effects in colon cancer cells but the mechanisms are not fully understood. This study has examined the regulation of beta-catenin/TCF signaling, as this pathway has been highlighted as central to the anti-tumor effects of PKG. We show that PKG activation in SW620 cells results in reduced beta-catenin expression and a dramatic inhibition of TCF-dependent transcription. PKG did not affect protein stability, nor did it increase phosphorylation of the amino-terminal Ser33/37/Thr41 residues that are known to target beta-catenin for degradation. However, we found that PKG potently inhibited transcription from a luciferase reporter driven by the human CTNNB1 promoter, and this corresponded to reduced beta-catenin mRNA levels. Although PKG was able to inhibit transcription from both the CTNNB1 and TCF reporters, the effect on protein levels was less consistent. Ectopic PKG had a marginal effect on beta-catenin protein levels in SW480 and HCT116 but was able to inhibit TCF-reporter activity by over 80%. Investigation of alternative mechanisms revealed that cJun-N-terminal kinase (JNK) activation was required for the PKG-dependent regulation of TCF activity. PKG activation caused beta-catenin to bind to FOXO4 in colon cancer cells, and this required JNK. Activation of PKG was also found to increase the nuclear content of FOXO4 and increase the expression of the FOXO target genes MnSOD and catalase. FOXO4 activation was required for the inhibition of TCF activity as FOXO4-specific short-interfering RNA completely blocked the inhibitory effect of PKG. These data illustrate a dual-inhibitory effect of PKG on TCF activity in colon cancer cells that involves reduced expression of beta-catenin at the transcriptional level, and also beta-catenin sequestration by FOXO4 activation.
Collapse
Affiliation(s)
- In-Kiu Kwon
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA
| | - Muthusmy Thangaraju
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA
| | - Huang Shuang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA
| | | | - Nickolai Dulin
- Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL
| | - Vadivel Ganapathy
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA
| | - Darren D. Browning
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA
| |
Collapse
|
173
|
Iseki H, Takeda A, Andoh T, Takahashi N, Kurochkin IV, Yarmishyn A, Shimada H, Okazaki Y, Koyama I. Human Arm protein lost in epithelial cancers, on chromosome X 1 (ALEX1) gene is transcriptionally regulated by CREB and Wnt/beta-catenin signaling. Cancer Sci 2010; 101:1361-6. [PMID: 20398052 PMCID: PMC11159271 DOI: 10.1111/j.1349-7006.2010.01541.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 01/29/2010] [Accepted: 02/03/2010] [Indexed: 11/27/2022] Open
Abstract
The aberrant activation of Wnt signaling is a key process in colorectal tumorigenesis. Canonical Wnt signaling controls transcription of target genes via beta-catenin and T-cell factor/lymphoid enhancer factor family transcription factor complex. Arm protein lost in epithelial cancers, on chromosome X 1 (ALEX1) is a novel member of the Armadillo family which has two Armadillo repeats as opposed to more than six repeats in the classical Armadillo family members. Here we examine cis-regulatory elements and trans-acting factors involved in the transcriptional regulation of the ALEX1 gene. Site-directed mutations of a cyclic AMP response element (CRE) and an E-box impaired the basal activity of human ALEX1 promoter in colorectal and pancreatic cancer cell lines. Moreover, overexpression of CRE-binding protein (CREB) increased the ALEX1 promoter activity in these cell lines, whereas knockdown of CREB expression decreased the expression level of ALEX1 mRNA. Interestingly, luciferase reporter analysis and quantitative real-time RT-PCR demonstrated that the ALEX1 promoter was up-regulated in a CRE-dependent manner by continuous activation of Wnt/beta-catenin signaling induced by a glycogen synthase kinase-3 inhibitor and overexpression of beta-catenin. These results indicate that the CRE and E-box sites are essential cis-regulatory elements for ALEX1 promoter activity, and ALEX1 expression is regulated by CREB and Wntk/beta-catenin signaling.
Collapse
Affiliation(s)
- Hiroyoshi Iseki
- Department of Digestive Surgery, Saitama Medical University, Saitama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Izaguirre MF, Larrea D, Adur JF, Diaz-Zamboni JE, Vicente NB, Galetto CD, Casco VH. Role of E-Cadherin in Epithelial Architecture Maintenance. ACTA ACUST UNITED AC 2010; 17:1-12. [DOI: 10.3109/15419061003686938] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
175
|
In utero exposure to di-(2-ethylhexyl) phthalate affects liver morphology and metabolism in post-natal CD-1 mice. Reprod Toxicol 2010; 29:427-32. [PMID: 20307648 DOI: 10.1016/j.reprotox.2010.03.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 02/19/2010] [Accepted: 03/13/2010] [Indexed: 12/12/2022]
Abstract
The plasticizer di-(2-ethylhexyl)phthalate (DEHP) affects reproductive development, glycogen and lipid metabolism. Whereas liver is a main DEHP target in adult rodents, the potential impact on metabolic programming is unknown. Effects of in utero DEHP exposure on liver development were investigated upon treatment of pregnant CD-1 mice on gestational days (GD)11-19. F1 mice were examined at post-natal days 21 (weaning) and 35 (start of puberty): parameters included liver histopathological, immunocytochemical and alpha-fetoprotein (AFP) gene expression analyses. In utero DEHP exposure altered post-natal liver development in weanling mice causing significant, dose-related (i) increased hepatosteatosis, (ii) decreased glycogen storage, (iii) increased beta-catenin intracytoplasmic localization (females only). At puberty, significantly decreased glycogen storage was still present in males. A treatment-induced phenotype was identified with lack of glycogen accumulation and intracytoplasmic localization of beta-catenin which was associated with increased AFP gene expression. Our findings suggested that DEHP alters post-natal liver development delaying the programming of glycogen metabolism.
Collapse
|
176
|
Abstract
Mechanical loading is of pivotal importance in the maintenance of skeletal homeostasis, but the players involved in the transduction of mechanical stimuli to promote bone maintenance have long remained elusive. Osteocytes, the most abundant cells in bone, possess mechanosensing appendices stretching through a system of bone canaliculi. Mechanical stimulation plays an important role in osteocyte survival and hence in the preservation of bone mechanical properties, through the maintenance of bone hydratation. Osteocytes can also control the osteoblastic differentiation of mesenchymal precursors in response to mechanical loading by modulating WNT signaling pathways, essential regulators of cell fate and commitment, through the protein sclerostin. Mutations of Sost, the sclerostin-encoding gene, have dramatic effects on the skeleton, indicating that osteocytes may act as master regulators of bone formation and localized bone remodeling. Moreover, the development of sclerostin inhibitors is opening new possibilities for bone regeneration in orthopedics and the dental field.
Collapse
|
177
|
Dômont J, Salas S, Lacroix L, Brouste V, Saulnier P, Terrier P, Ranchère D, Neuville A, Leroux A, Guillou L, Sciot R, Collin F, Dufresne A, Blay JY, Le Cesne A, Coindre JM, Bonvalot S, Bénard J. High frequency of beta-catenin heterozygous mutations in extra-abdominal fibromatosis: a potential molecular tool for disease management. Br J Cancer 2010; 102:1032-6. [PMID: 20197769 PMCID: PMC2844024 DOI: 10.1038/sj.bjc.6605557] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: Fibromatosis comprises distinct clinical entities, including sporadic extra-abdominal fibromatosis, which have a high tendency for recurrence, even after adequate resection. There are no known molecular biomarkers of local recurrence. We searched for β-catenin mutations in a European multicentre series of fibromatosis tumours to relate β-catenin mutational status to disease outcome. Methods: Direct sequencing of exon 3 β-catenin gene was performed for 155 frozen fibromatosis tissues from all topographies. Correlation of outcome with mutation rate and type was performed on the extra-abdominal fibromatosis group (101 patients). Results: Mutations of β-catenin were detected in 83% of all cases. Among 101 extra-abdominal fibromatosis, similar mutation rates (87%) were observed, namely T41A (39.5%), S45P (9%), S45F (36.5%), and deletion (2%). None of the clinico-pathological parameters were found to be significantly associated with β-catenin mutational status. With a median follow-up of 62 months, 51 patients relapsed. Five-year recurrence-free survival was significantly worse in β-catenin-mutated tumours regardless of a specific genotype, compared with wild-type tumours (49 vs 75%, respectively, P=0.02). Conclusion: A high frequency (87%) of β-catenin mutation hallmarks extra-abdominal fibromatosis from a large multicentric retrospective study. Moreover, wild-type β-catenin seems to be an interesting prognostic marker that might be useful in the therapeutic management of extra-abdominal fibromatosis.
Collapse
Affiliation(s)
- J Dômont
- Sarcoma Committee, Institut Gustave Roussy, Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Activation of glycogen synthase kinase-3 beta is required for hyperdopamine and D2 receptor-mediated inhibition of synaptic NMDA receptor function in the rat prefrontal cortex. J Neurosci 2010; 29:15551-63. [PMID: 20007479 DOI: 10.1523/jneurosci.3336-09.2009] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The interactions between dopamine and glutamate systems play an essential role in normal brain functions and neuropsychiatric disorders. The mechanism of NMDA receptor regulation through high concentrations of dopamine, however, remains unclear. Here, we show the signaling pathways involved in hyperdopaminergic regulation of NMDA receptor functions in the prefrontal cortex by incubating cortical slices with high concentration of dopamine or administering dopamine reuptake inhibitor 1-(2-[bis-(4-fluorophenyl)methoxy]ethyl)- 4-(3-phenylpropyl)piperazine (GBR12909) in vivo. We found that, under both conditions, the synaptic NMDA receptor-mediated currents were significantly attenuated by excessive dopamine stimulation through activation of D(2) receptors. Furthermore, high dose of dopamine failed to affect NMDA receptor-mediated currents after blockade of NR2B subunits but triggered a dynamin-dependent endocytosis of NMDA receptors. The high-dose dopamine/D(2) receptor-mediated suppression of NMDA receptors was involved in the increase of glycogen synthase kinase-3beta (GSK-3beta) activity, which in turn phosphorylates beta-catenin and disrupts beta-catenin-NR2B interaction, but was dependent on neither Gq11 nor PLC (phospholipase C). Moreover, the hyperdopamine induced by GBR12909 significantly decreased the expression of both surface and intracellular NR2B proteins, as well as NR2B mRNA levels, suggesting an inhibition of protein synthesis. These effects were, however, completely reversed by administration of either GSK-3beta inhibitor or D(2) receptor antagonist. These results therefore suggest that GSK-3beta is required for the hyperdopamine/D(2) receptor-mediated inhibition of NMDA receptors in the prefrontal neurons and these actions may underlie D(2) receptor-mediated psychostimulant effects and hyperdopamine-dependent behaviors in the brain.
Collapse
|
179
|
Kormish JD, Sinner D, Zorn AM. Interactions between SOX factors and Wnt/beta-catenin signaling in development and disease. Dev Dyn 2010; 239:56-68. [PMID: 19655378 PMCID: PMC3269784 DOI: 10.1002/dvdy.22046] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The SOX family of transcription factors have emerged as modulators of canonical Wnt/beta-catenin signaling in diverse development and disease contexts. There are over 20 SOX proteins encoded in the vertebrate genome and recent evidence suggests that many of these can physically interact with beta-catenin and modulate the transcription of Wnt-target genes. The precise mechanisms by which SOX proteins regulate beta-catenin/TCF activity are still being resolved and there is evidence to support a number of models including: protein-protein interactions, the binding of SOX factors to Wnt-target gene promoters, the recruitment of co-repressors or co-activators, modulation of protein stability, and nuclear translocation. In some contexts, Wnt signaling also regulates SOX expression resulting in feedback regulatory loops that fine-tune cellular responses to beta-catenin/TCF activity. In this review, we summarize the examples of Sox-Wnt interactions and examine the underlying mechanisms of this potentially widespread and underappreciated mode of Wnt-regulation.
Collapse
Affiliation(s)
- Jay D Kormish
- Division of Developmental Biology Cincinnati Children’s Research Foundation and University of Cincinnati Department of Pediatrics, College of Medicine. 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA, amz tel: 513 636 3770, fax: 513 636 4317
| | - Débora Sinner
- Division of Developmental Biology Cincinnati Children’s Research Foundation and University of Cincinnati Department of Pediatrics, College of Medicine. 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA, amz tel: 513 636 3770, fax: 513 636 4317
| | - Aaron M Zorn
- Division of Developmental Biology Cincinnati Children’s Research Foundation and University of Cincinnati Department of Pediatrics, College of Medicine. 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA, amz tel: 513 636 3770, fax: 513 636 4317
| |
Collapse
|
180
|
Wu D, Pan W. GSK3: a multifaceted kinase in Wnt signaling. Trends Biochem Sci 2009; 35:161-8. [PMID: 19884009 DOI: 10.1016/j.tibs.2009.10.002] [Citation(s) in RCA: 671] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 10/02/2009] [Accepted: 10/12/2009] [Indexed: 12/25/2022]
Abstract
GSK3 is one of the few signaling mediators that play central roles in a diverse range of signaling pathways, including those activated by Wnts, hedgehog, growth factors, cytokines, and G protein-coupled ligands. Although the inhibition of GSK3-mediated beta-catenin phosphorylation is known to be the key event in Wnt-beta-catenin signaling, the mechanisms that underlie this event remain incompletely understood. The recent demonstration of GSK3 involvement in Wnt receptor phosphorylation illustrates the multifaceted roles that GSK3 plays in Wnt-beta-catenin signaling. In this review, we will summarize these recent results and offer explanations, hypotheses, and models to reconcile some of these observations.
Collapse
Affiliation(s)
- Dianqing Wu
- Vascular Biology and Therapeutics Program and Department of Pharmacology, Yale University School of Medicine, New Haven, CT 065202, USA.
| | | |
Collapse
|
181
|
The transcriptional activity of Pygopus is enhanced by its interaction with cAMP-response-element-binding protein (CREB)-binding protein. Biochem J 2009; 422:493-501. [PMID: 19555349 DOI: 10.1042/bj20090134] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pygopus is a core component of the beta-catenin/TCF (T-cell factor) transcriptional activation complex required for the expression of canonical Wnt target genes. Recent evidence suggests that Pygopus could interpret histone methylation associated with target genes and it was shown to be required for histone acetylation. The involvement of a specific acetyltransferase, however, was not determined. In this report, we demonstrate that Pygopus can interact with the HAT (histone acetyltransferase) CBP [CREB (cAMP-responsive-element-binding protein)-binding protein]. The interaction is via the NHD (N-terminal homology domain) of Pygopus, which binds to two regions in the vicinity of the HAT domain of CBP. Transfected and endogenous hPygo2 (human Pygopus2) and CBP proteins co-immunoprecipitate in HEK-293 (human embryonic kidney 293) cells and both proteins co-localize in SW480 colorectal cancer cells. The interaction with CBP also enhances both DNA-tethered and TCF/LEF1 (lymphoid enhancing factor 1)-dependent transcriptional activity of Pygopus. Furthermore, immunoprecipitated Pygopus protein complexes displayed CBP-dependent histone acetyltransferase activity. Our data support a model in which the NHD region of Pygopus is required to augment TCF/beta-catenin-mediated transcriptional activation by a mechanism that includes both transcriptional activation and histone acetylation resulting from the recruitment of the CBP histone acetyltransferase.
Collapse
|
182
|
Chun J, Prince A. Ca2+ signaling in airway epithelial cells facilitates leukocyte recruitment and transepithelial migration. J Leukoc Biol 2009; 86:1135-44. [PMID: 19605699 DOI: 10.1189/jlb.0209072] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In airway cells, TLR2 stimulation by bacterial products activates Ca2+ fluxes that signal leukocyte recruitment to the lung and facilitates transepithelial migration into the airway lumen. TLR2 is apically displayed on airway cells, where it senses bacterial stimuli. Biochemical and genetic approaches demonstrate that TLR2 ligands stimulate release of Ca2+ from intracellular stores by activating TLR2 phosphorylation by c-Src and recruiting PI3K and PLCgamma to affect Ca2+ release through IP3Rs. This Ca2+ release plays a pivotal role in signaling TLR2-dependent NF-kappaB activation and chemokine expression to recruit PMNs to the lung. In addition, TLR2-initiated Ca2+ release activates Ca2+-dependent proteases, calpains, which cleave the transmembrane proteins occludin and E-cadherin to promote PMN transmigration. This review highlights recent findings that demonstrate a central role for Ca2+ signaling in airway epithelial cells to induce proinflammatory gene transcription and to initiate junctional changes that accommodate transmigration of recruited PMNs.
Collapse
Affiliation(s)
- Jarin Chun
- Department of Pharmacology and Pediatrics, College of Physicians & Surgeons, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
183
|
Yuan F, El Hokayem J, Zhou W, Zhang Y. FANCI protein binds to DNA and interacts with FANCD2 to recognize branched structures. J Biol Chem 2009; 284:24443-52. [PMID: 19561358 PMCID: PMC2782037 DOI: 10.1074/jbc.m109.016006] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In this study, we report that the purified wild-type FANCI (Fanconi anemia complementation group I) protein directly binds to a variety of DNA substrates. The DNA binding domain roughly encompasses residues 200–1000, as suggested by the truncation study. When co-expressed in insect cells, a small fraction of FANCI forms a stable complex with FANCD2 (Fanconi anemia complementation group D2). Intriguingly, the purified FANCI-FANCD2 complex preferentially binds to the branched DNA structures when compared with either FANCI or FANCD2 alone. Co-immunoprecipitation with purified proteins indicates that FANCI interacts with FANCD2 through its C-terminal amino acid 1001–1328 fragment. Although the C terminus of FANCI is dispensable for direct DNA binding, it seems to be involved in the regulation of DNA binding activity. This notion is further enhanced by two C-terminal point mutations, R1285Q and D1301A, which showed differentiated DNA binding activity. We also demonstrate that FANCI forms discrete nuclear foci in HeLa cells in the absence or presence of exogenous DNA damage. The FANCI foci are colocalized perfectly with FANCD2 and partially with proliferating cell nuclear antigen irrespective of mitomycin C treatment. An increased number of FANCI foci form and become resistant to Triton X extraction in response to mitomycin C treatment. Our data suggest that the FANCI-FANCD2 complex may participate in repair of damaged replication forks through its preferential recognition of branched structures.
Collapse
Affiliation(s)
- Fenghua Yuan
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | | | | | | |
Collapse
|
184
|
Kessler R, Hausmann G, Basler K. The PHD domain is required to link Drosophila Pygopus to Legless/beta-catenin and not to histone H3. Mech Dev 2009; 126:752-9. [PMID: 19493659 DOI: 10.1016/j.mod.2009.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 04/08/2009] [Accepted: 04/10/2009] [Indexed: 10/20/2022]
Abstract
In Drosophila Pygopus (Pygo) and Legless (Lgs)/BCL9 are integral components of the nuclear Wnt/Wg signaling machine. Despite intense research, ideas that account for their mode of action remain speculative. One proposition, based on a recently discovered function of PHD fingers, is that Pygo, through its PHD, may decipher the histone code. We found that human, but not Drosophila, Pygo robustly interacts with a histone-H3 peptide methylated at lysine-4. The different binding behavior is due to a single amino acid change that appears unique to Drosophilidae Pygo proteins. Rescue experiments with predicted histone binding mutants showed that in Drosophila the ability to bind histones is not essential. Further experiments with Pygo-Lgs fusions instead demonstrated that the crucial role of the PHD is to provide an interaction motif to bind Lgs. Our results reveal an interesting evolutionary dichotomy in Pygo structure-function, as well as evidence underpinning the chain of adaptors model.
Collapse
Affiliation(s)
- Roman Kessler
- Institut für Molekularbiologie, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | | |
Collapse
|
185
|
Koch S, Nusrat A. Dynamic regulation of epithelial cell fate and barrier function by intercellular junctions. Ann N Y Acad Sci 2009; 1165:220-7. [PMID: 19538310 DOI: 10.1111/j.1749-6632.2009.04025.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the intestine, a single layer of epithelial cells effectively separates potentially harmful luminal content from the underlying tissue. The importance of an intact mucosal layer is highlighted by pathological disorders of the gut such as inflammatory bowel disease, in which disruption of the epithelial barrier leads to severe inflammation of the submucosal tissue compartments. Epithelial barrier function is provided by tightly regulated intercellular junctions, which consist of a plethora of membrane-associated and transmembrane proteins organized in discreet, spatially restricted complexes. Classically, these complexes are known to be dynamic seals for fluids and small molecules, as well as to provide mechanical strength by anchoring cell-cell contacts to the cytoskeleton. Rather than just acting as simple gates and adapters, however, junctional complexes themselves can relay extracellular stimuli to the epithelium and initiate cellular responses such as differentiation and apoptosis. In this review, we will highlight recent studies by our group and others which discuss how junctional proteins can promote outside-to-inside signaling and modulate epithelial cell fate. Unraveling the complex crosstalk between epithelial cells and their intercellular junctions is essential to understanding how epithelial barrier function is maintained in vivo and might provide new strategies for the treatment of inflammatory disorders of the intestine.
Collapse
Affiliation(s)
- Stefan Koch
- Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | | |
Collapse
|
186
|
Hoogeboom D, Burgering BMT. Should I stay or should I go: beta-catenin decides under stress. Biochim Biophys Acta Rev Cancer 2009; 1796:63-74. [PMID: 19268509 DOI: 10.1016/j.bbcan.2009.02.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 02/13/2009] [Accepted: 02/20/2009] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) are essential for efficient and proper execution of a large number of cellular processes including signalling induced by exogenous factors. However, ROS are highly reactive in nature and excessive or prolonged ROS formation can result in considerable damage to cellular constituents and is implicated in the onset of a large variety of diseases as well as in the process of ageing [reviewed in [1] T.M. Paravicini, R.M. Touyz, Redox signaling in hypertension, Cardiovasc. Res. 71 (2006) 247-258, [2] P. Chiarugi, From anchorage dependent proliferation to survival: lessons from redox signalling, IUBMB life 60 (2008) 301-307, [3] M. Valko, D. Leibfritz, J. Moncol, M.T. Cronin, M. Mazur, J. Telser, Free radicals and antioxidants in normal physiological functions and human disease, Int. J. Biochem. Cell Biol. 39 (2007) 44-84]. Management of ROS to prevent potential damage, yet enabling its signalling function is achieved through numerous enzyme systems e.g. peroxidases, superoxide dismutases etc. and small molecules e.g. glutathione that collectively form the cellular anti-oxidant system. The O-class of Forkhead box (FOXO) transcription factors regulates amongst others cellular resistance against oxidative stress [[4] Y. Honda, S. Honda, The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans, Faseb J. 13 (1999) 1385-1393]. In turn FOXOs themselves are regulated by ROS and cellular oxidative stress results in the activation of FOXOs [[5] M.A. Essers, S. Weijzen, A.M. de Vries-Smits, I. Saarloos, N.D. de Ruiter, J.L. Bos, B.M. Burgering, FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK, EMBO J. 23 (2004) 4802-4812]. A prominent feature of ROS-induced FOXO activation is ROS-induced binding of beta-catenin to FOXO [[6] M.A. Essers, L.M. de Vries-Smits, N. Barker, P.E. Polderman, B.M. Burgering, H.C. Korswagen, Functional interaction between beta-catenin and FOXO in oxidative stress signaling, Science (New York, NY) 308 (2005) 1181-1184, [7] M. Almeida, L. Han, M. Martin-Millan, C.A. O'Brien, S.C. Manolagas, Oxidative stress antagonizes Wnt signaling in osteoblast precursors by diverting beta-catenin from T cell factor- to forkhead box O-mediated transcription, J. Biol. Chem. 282 (2007) 27298-27305, [8] D. Hoogeboom, M.A. Essers, P.E. Polderman, E. Voets, L.M. Smits, B.M. Burgering, Interaction of FOXO with beta-catenin inhibits beta-catenin/T cell factor activity, J. Biol. Chem. 283 (2008) 9224-9230]. However, ROS affect many transcriptional programs besides that of FOXOs. Here, we discuss the recent progress in our understanding as to how ROS may regulate the interplay between some of the ROS-sensitive transcription factors through diverting beta-catenin binding to these transcription factors. We propose that beta-catenin acts as a key switch between the various ROS-sensitive transcription programs.
Collapse
Affiliation(s)
- Diana Hoogeboom
- Department of Physiological Chemistry, Center for Biomedical Genetics, University Medical Center Utrecht, Stratenum, Universiteitsweg 100, 3584CG Utrecht, The Netherlands.
| | | |
Collapse
|
187
|
Cavard C, Colnot S, Audard V, Benhamouche S, Finzi L, Torre C, Grimber G, Godard C, Terris B, Perret C. Wnt/beta-catenin pathway in hepatocellular carcinoma pathogenesis and liver physiology. Future Oncol 2008; 4:647-60. [PMID: 18922122 DOI: 10.2217/14796694.4.5.647] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Wnt/beta-catenin pathway is a key developmental pathway for which alterations have been described in various human cancers. The aberrant activation of this pathway is a major event in human hepatocellular carcinoma. Several laboratories have shown that the Wnt/beta-catenin pathway plays an essential role in all phases of liver development and maturation, and is required for the metabolic function of this organ. In this review, we summarize current knowledge regarding the role of the Wnt/beta-catenin pathway in hepatocellular carcinoma pathogenesis and liver biology, and the possibilities for developing new therapeutic interventions based on this knowledge.
Collapse
Affiliation(s)
- Catherine Cavard
- Département Endocrinologie Métabolisme et Cancer, Institut Cochin, Université Paris Descartes, CNRS UMR 8104, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Lee SH, Peng IF, Ng YG, Yanagisawa M, Bamji SX, Elia LP, Balsamo J, Lilien J, Anastasiadis PZ, Ullian EM, Reichardt LF. Synapses are regulated by the cytoplasmic tyrosine kinase Fer in a pathway mediated by p120catenin, Fer, SHP-2, and beta-catenin. ACTA ACUST UNITED AC 2008; 183:893-908. [PMID: 19047464 PMCID: PMC2592841 DOI: 10.1083/jcb.200807188] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Localization of presynaptic components to synaptic sites is critical for hippocampal synapse formation. Cell adhesion–regulated signaling is important for synaptic development and function, but little is known about differentiation of the presynaptic compartment. In this study, we describe a pathway that promotes presynaptic development involving p120catenin (p120ctn), the cytoplasmic tyrosine kinase Fer, the protein phosphatase SHP-2, and β-catenin. Presynaptic Fer depletion prevents localization of active zone constituents and synaptic vesicles and inhibits excitatory synapse formation and synaptic transmission. Depletion of p120ctn or SHP-2 similarly disrupts synaptic vesicle localization with active SHP-2, restoring synapse formation in the absence of Fer. Fer or SHP-2 depletion results in elevated tyrosine phosphorylation of β-catenin. β-Catenin overexpression restores normal synaptic vesicle localization in the absence of Fer or SHP-2. Our results indicate that a presynaptic signaling pathway through p120ctn, Fer, SHP-2, and β-catenin promotes excitatory synapse development and function.
Collapse
Affiliation(s)
- Seung-Hye Lee
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Lee W, Swarup S, Chen J, Ishitani T, Verheyen EM. Homeodomain-interacting protein kinases (Hipks) promote Wnt/Wg signaling through stabilization of beta-catenin/Arm and stimulation of target gene expression. Development 2008; 136:241-51. [PMID: 19088090 DOI: 10.1242/dev.025460] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Wnt/Wingless (Wg) pathway represents a conserved signaling cascade involved in diverse biological processes. Misregulation of Wnt/Wg signal transduction has profound effects on development. Homeodomain-interacting protein kinases (Hipks) represent a novel family of serine/threonine kinases. Members of this group (in particular Hipk2) are implicated as important factors in transcriptional regulation to control cell growth, apoptosis and development. Here, we provide genetic and phenotypic evidence that the sole Drosophila member of this family, Hipk, functions as a positive regulator in the Wg pathway. Expression of hipk in the wing rescues loss of the Wg signal, whereas loss of hipk can enhance decreased wg signaling phenotypes. Furthermore, loss of hipk leads to diminished Arm protein levels, whereas overexpression of hipk promotes the Wg signal by stabilizing Arm, resulting in activation of Wg responsive targets. In Wg transcriptional assays, Hipk enhanced Tcf/Arm-mediated gene expression in a kinase-dependent manner. In addition, Hipk can bind to Arm and Drosophila Tcf, and phosphorylate Arm. Using both in vitro and in vivo assays, Hipk was found to promote the stabilization of Arm. We observe similar molecular interactions between Lef1/beta-catenin and vertebrate Hipk2, suggesting a direct and conserved role for Hipk proteins in promoting Wnt signaling.
Collapse
Affiliation(s)
- Wendy Lee
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6 Canada
| | | | | | | | | |
Collapse
|
190
|
Abstract
The Wnt signaling network, which is composed of Wnt ligands, receptors, antagonists, and intracellular signaling molecules, has emerged as a powerful regulator of cell fate, proliferation, and function in multicellular organisms. Over the past two decades, the critical role of Wnt signaling in embryonic cartilage and bone development has been well established, and much has been learnt regarding the role of Wnt signaling in chondrogenesis and cartilage development. However, relatively little is known about the role of Wnt signaling in adult articular cartilage and degenerative cartilage tissue. This review will briefly summarize recent advances in Wnt regulation of chondrogenesis and hypertrophic maturation of chondrocytes, and review data concerning the role of Wnt signaling in the maintenance and degeneration of articular chondrocytes and cartilage.
Collapse
Affiliation(s)
- Jang-Soo Chun
- Cell Dynamics Research Center, Department of Life Science, Gwangju Institute of Science and Technology, Gwangju, Korea.
| | | | | | | |
Collapse
|
191
|
Lazar AJF, Tuvin D, Hajibashi S, Habeeb S, Bolshakov S, Mayordomo-Aranda E, Warneke CL, Lopez-Terrada D, Pollock RE, Lev D. Specific mutations in the beta-catenin gene (CTNNB1) correlate with local recurrence in sporadic desmoid tumors. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:1518-27. [PMID: 18832571 DOI: 10.2353/ajpath.2008.080475] [Citation(s) in RCA: 329] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Desmoid fibromatosis is a rare, nonmetastatic neoplasm marked by local invasiveness and relentless recurrence. Molecular determinants of desmoid recurrence remain obscure. beta-Catenin deregulation has been commonly identified in sporadic desmoids although the incidence of CTNNB1 (the gene encoding beta-catenin) mutations is uncertain. Consequently, we evaluated the prevalence of CTNNB1 mutations in a large cohort of sporadic desmoids and examined whether mutation type was relevant to desmoid outcome. Desmoid specimens (195 tumors from 160 patients, 1985 to 2005) and control dermal scars were assembled into a clinical data-linked tissue microarray. CTNNB1 genotyping was performed on a 138-sporadic desmoid subset. Immunohistochemical scoring was performed per standard criteria and data were analyzed using Kaplan-Meier and other indicated methods. CTNNB1 mutations were observed in 117 of 138 (85%) of desmoids. Three discrete mutations in two codons of CTNNB1 exon 3 were identified: 41A (59%), 45F (33%), and 45P (8%, excluded from further analysis because of rarity). Five-year recurrence-free survival was significantly poorer in 45F-mutated desmoids (23%, P < 0.0001) versus either 41A (57%) or nonmutated tumors (65%). Nuclear beta-catenin expression was observed in 98% of specimens and intensity was inversely correlated with incidence of desmoid recurrence (P < 0.01). In conclusion, CTNNB1 mutations are highly common in desmoid tumors. Furthermore, patients harboring CTNNB1 (45F) mutations are at particular risk for recurrence and therefore may especially benefit from adjuvant therapeutic approaches.
Collapse
Affiliation(s)
- Alexander J F Lazar
- Sarcoma Research Center, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030-4001, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Zhang J, Yan X, Shi C, Yang X, Guo Y, Tian C, Long J, Shen Y. Structural basis of beta-catenin recognition by Tax-interacting protein-1. J Mol Biol 2008; 384:255-63. [PMID: 18835279 DOI: 10.1016/j.jmb.2008.09.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2008] [Revised: 09/14/2008] [Accepted: 09/16/2008] [Indexed: 12/14/2022]
Abstract
Tax-interacting protein-1 (TIP-1) is an unusual signaling protein, containing a single PDZ domain. TIP-1 is able to bind beta-catenin with high affinity and thus inhibit its transcriptional activity. The high-resolution crystal structure of TIP-1 in complex with the C-terminal peptide of beta-catenin provides molecular details for the recognition of beta-catenin by TIP-1. Moreover, structural comparison of peptide-free and peptide-bound TIP-1 reveals that significant conformational changes are required in the betaB-betaC loop region of TIP-1 to avoid clashes with the incoming C-terminal beta-catenin peptide. Such conformational changes have not been observed in other structures of PDZ domains. In addition to the canonical peptide-binding pocket of the PDZ domain, TIP-1 can form a binding cavity to anchor more amino acids through a conserved hydrophobic residue pair (Trp776 of beta-catenin and Pro45 of TIP-1). Structural and biochemical data indicate that the canonical binding pocket together with the hydrophobic residue pair are presumably the major cause of the significantly higher affinity of the beta-catenin C-terminal to TIP-1 than to other PDZ domains, providing a unique binding specificity. Our results reveal the molecular mechanism of TIP-1 as an antagonist in PDZ domain signaling.
Collapse
Affiliation(s)
- Jinxiu Zhang
- Tianjin Key Laboratory of Protein Science, College of Life Science, NanKai University, Tianjin 300071, China
| | | | | | | | | | | | | | | |
Collapse
|
193
|
Breuhahn K, Singh S, Schirmacher P, Bläker H. Large-scale N-terminal deletions but not point mutations stabilize beta-catenin in small bowel carcinomas, suggesting divergent molecular pathways of small and large intestinal carcinogenesis. J Pathol 2008; 215:300-7. [PMID: 18491352 DOI: 10.1002/path.2362] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Small intestinal adenocarcinoma is rare and its molecular pathogenesis is incompletely understood. Stabilization of beta-catenin, a mediator of wnt/wingless signalling, can be detected in 50% of sporadic carcinomas but, in contrast to colorectal cancer, this finding can not be explained by the inactivation of adenomatous polyposis coli (APC). In order to elucidate the molecular background of beta-catenin stabilization in small intestinal adenocarcinoma, we investigated 20 non-familial adenomatous polyposis coli (FAP)-associated tumours, including five microsatellite-unstable carcinomas for beta-catenin alterations, by immunohistochemistry, western blot analysis and sequence analysis on the RNA and DNA levels. Nuclear accumulation of beta-catenin was found in 50% of carcinomas. In 30%, nuclear stabilization was restricted to tumour cells at the invasion front, while 20% of tumours displayed intense homogeneous nuclear stabilization throughout all areas. Large deletions and insertions in the beta-catenin gene (CTNNB1) resulting in a partial or complete in-frame loss of exons 3 and 4 on the RNA-transcript level were found in the latter, exclusively microsatellite-stable carcinomas. The mutations resulted in the stabilization of aberrant beta-catenin lacking large parts of N-terminal protein domains. No point mutations in CTNNB1 were observed. Our data show that large intragenic CTNNB1 mutations stabilize beta-catenin in small intestinal adenocarcinomas and influence the subcellular distribution of the protein. In contrast to colon carcinomas, neither APC nor CTNNB1 point mutations seem to play a significant role in carcinogenesis, indicating divergent mechanisms of wnt/wingless control in the small and the large intestine.
Collapse
Affiliation(s)
- K Breuhahn
- Institute of Pathology, University of Heidelberg, Im Neuenheimer Feld 220, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
194
|
Liu J, Phillips BT, Amaya MF, Kimble J, Xu W. The C. elegans SYS-1 protein is a bona fide beta-catenin. Dev Cell 2008; 14:751-61. [PMID: 18477457 PMCID: PMC2538363 DOI: 10.1016/j.devcel.2008.02.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 02/19/2008] [Accepted: 02/23/2008] [Indexed: 11/21/2022]
Abstract
C. elegans SYS-1 has key functional characteristics of a canonical beta-catenin, but no significant sequence similarity. Here, we report the SYS-1 crystal structure, both on its own and in a complex with POP-1, the C. elegans TCF homolog. The two structures possess signature features of canonical beta-catenin and the beta-catenin/TCF complex that could not be predicted by sequence. Most importantly, SYS-1 bears 12 armadillo repeats and the SYS-1/POP-1 interface is anchored by a conserved salt-bridge, the "charged button." We also modeled structures for three other C. elegans beta-catenins to predict the molecular basis of their distinct binding properties. Finally, we generated a phylogenetic tree, using the region of highest structural similarity between SYS-1 and beta-catenin, and found that SYS-1 clusters robustly within the beta-catenin clade. We conclude that the SYS-1 protein belongs to the beta-catenin family and suggest that additional divergent beta-catenins await discovery.
Collapse
Affiliation(s)
- Jing Liu
- Department of Biological Structure, University of Washington, Seattle, WA 98195-7420
- Biomolecular Structure and Design Program, University of Washington, Seattle, WA 98195-7420
| | - Bryan T. Phillips
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544
| | - Maria F. Amaya
- Department of Biological Structure, University of Washington, Seattle, WA 98195-7420
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI 53706-1544
| | - Wenqing Xu
- Department of Biological Structure, University of Washington, Seattle, WA 98195-7420
| |
Collapse
|
195
|
Firestein R, Blander G, Michan S, Oberdoerffer P, Ogino S, Campbell J, Bhimavarapu A, Luikenhuis S, de Cabo R, Fuchs C, Hahn WC, Guarente LP, Sinclair DA. The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth. PLoS One 2008; 3:e2020. [PMID: 18414679 PMCID: PMC2289879 DOI: 10.1371/journal.pone.0002020] [Citation(s) in RCA: 467] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 03/11/2008] [Indexed: 02/07/2023] Open
Abstract
Numerous longevity genes have been discovered in model organisms and altering their function results in prolonged lifespan. In mammals, some have speculated that any health benefits derived from manipulating these same pathways might be offset by increased cancer risk on account of their propensity to boost cell survival. The Sir2/SIRT1 family of NAD(+)-dependent deacetylases is proposed to underlie the health benefits of calorie restriction (CR), a diet that broadly suppresses cancer in mammals. Here we show that CR induces a two-fold increase SIRT1 expression in the intestine of rodents and that ectopic induction of SIRT1 in a beta-catenin-driven mouse model of colon cancer significantly reduces tumor formation, proliferation, and animal morbidity in the absence of CR. We show that SIRT1 deacetylates beta-catenin and suppresses its ability to activate transcription and drive cell proliferation. Moreover, SIRT1 promotes cytoplasmic localization of the otherwise nuclear-localized oncogenic form of beta-catenin. Consistent with this, a significant inverse correlation was found between the presence of nuclear SIRT1 and the oncogenic form of beta-catenin in 81 human colon tumor specimens analyzed. Taken together, these observations show that SIRT1 suppresses intestinal tumor formation in vivo and raise the prospect that therapies targeting SIRT1 may be of clinical use in beta-catenin-driven malignancies.
Collapse
Affiliation(s)
- Ron Firestein
- Paul F. Glenn Laboratories for the Biological Mechanisms of Aging, Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Medical Oncology, Dana Farber Cancer Institute, and Broad Institute of Harvard and Massachusetts Institute of Technology, Boston, Massachusetts, United States of America
| | - Gil Blander
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Shaday Michan
- Paul F. Glenn Laboratories for the Biological Mechanisms of Aging, Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Philipp Oberdoerffer
- Paul F. Glenn Laboratories for the Biological Mechanisms of Aging, Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Shuji Ogino
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Jennifer Campbell
- Paul F. Glenn Laboratories for the Biological Mechanisms of Aging, Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Anupama Bhimavarapu
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Sandra Luikenhuis
- Paul F. Glenn Laboratories for the Biological Mechanisms of Aging, Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rafael de Cabo
- Laboratory of Experimental Gerontology, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Charles Fuchs
- Department of Medical Oncology, Dana Farber Cancer Institute, and Broad Institute of Harvard and Massachusetts Institute of Technology, Boston, Massachusetts, United States of America
| | - William C. Hahn
- Department of Medical Oncology, Dana Farber Cancer Institute, and Broad Institute of Harvard and Massachusetts Institute of Technology, Boston, Massachusetts, United States of America
| | - Leonard P. Guarente
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - David A. Sinclair
- Paul F. Glenn Laboratories for the Biological Mechanisms of Aging, Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
196
|
Parmeggiani F, Pellarin R, Larsen AP, Varadamsetty G, Stumpp MT, Zerbe O, Caflisch A, Plückthun A. Designed Armadillo Repeat Proteins as General Peptide-Binding Scaffolds: Consensus Design and Computational Optimization of the Hydrophobic Core. J Mol Biol 2008; 376:1282-304. [DOI: 10.1016/j.jmb.2007.12.014] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 11/13/2007] [Accepted: 12/05/2007] [Indexed: 12/29/2022]
|