151
|
The distinctive role of tau and amyloid beta in mitochondrial dysfunction through alteration in Mfn2 and Drp1 mRNA Levels: A comparative study in Drosophila melanogaster. Gene 2020; 754:144854. [PMID: 32525045 DOI: 10.1016/j.gene.2020.144854] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 05/26/2020] [Accepted: 06/03/2020] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is one of the most common forms of neurodegenerative diseases. Aggregation of Aβ42 and hyperphosphorylated tau are two major hallmarks of AD. Whether different forms of tau (soluble or hyperphosphorylated) or Aβ are the main culprit in the events observed in AD is still under investigation. Here, we examined the effect of wild-type, prone to hyperphosphorylation and hyperphosphorylated tau, and also Aβ42 peptide on the brain antioxidant defense system and two mitochondrial genes, Marf (homologous to human MFN2) and Drp1 involved in mitochondrial dynamics in transgenic Drosophila melanogaster. AD is an age associated disease. Therefore, the activity of antioxidant agents, CAT, SOD, and GSH levels and the mRNA levels of Marf and Drp1 were assessed in different time points of the flies lifespan. Reduction in cognitive function and antioxidant activity was observed in all transgenic flies at any time point. The most and the least effect on the eye phenotype was exerted by hyperphosphorylated tau and Aβ42, respectively. In addition, the most remarkable alteration in Marf and Drp1 mRNA levels was observed in transgenic flies expressing hyperphosphorylated tau when pan neuronal expression of transgenes was applied. However, when the disease causing gene expression was confined to the mushroom body, Marf and Drp1 mRNA levels alteration was more prominent in tauWT and tauE14 transgenic flies, respectively. In conclusion, in spite of antioxidant deficiency caused by different types of tau and Aβ42, it seems that tau exerts more toxic effect on the eye phenotype and mitochondrial genes regulation (Marf and Drp1). Moreover, different mechanisms seem to be involved in mitochondrial genes dysregulation when Aβ or various forms of tau are expressed.
Collapse
|
152
|
Ayaydın H, Kirmit A, Çelik H, Akaltun İ, Koyuncu İ, Bilgen Ulgar Ş. High Serum Levels of Serum 100 Beta Protein, Neuron-specific Enolase, Tau, Active Caspase-3, M30 and M65 in Children with Autism Spectrum Disorders. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2020; 18:270-278. [PMID: 32329316 PMCID: PMC7242104 DOI: 10.9758/cpn.2020.18.2.270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/24/2019] [Accepted: 01/14/2020] [Indexed: 12/27/2022]
Abstract
Objective The purpose of this study was therefore to investigate whether neuronal, axonal, and glial cell markers (Neuron-specific enolase [NSE], tau, serum 100 beta protein [S100B], respectively) and apoptosis markers (active caspase 3, M30, M65) and whether these parameters can be used as diagnostic biomarkers in autism spectrum disorders (ASD). Methods This study measured the serum S100B, NSE, tau, active caspase 3, M30, and M65 levels in 43 patients with ASD (aged 3−12 years) and in 41 age- and sex-matched healthy controls. ASD severity was rated using the Childhood Autism Rating Scale. The serum levels were determined in the biochemistry laboratory using the ELISA technique. The receiver operator characteristics curve method was employed to evaluate the accuracy of the parameters in diagnosing ASD. Results Serum S100B, tau, NSE, active caspase-3, M30, and M65 levels were significantly higher in the patient group than in the control group (p < 0.001, p = 0.002, p = 0.002, p = 0.005, p < 0.001, and p = 0.004, respectively). The cut-off value of S100B was 48.085 pg/ml (sensitivity: 74.4%, specificity: 80.5%, areas under the curve: 0.879, p < 0.001). Conclusion Apoptosis increased in children with ASD, and neuronal, axonal, and glial cell injury was observed. In addition, S100B may be an important diagnostic biomarker in patients with ASD. Apoptosis, and neuronal, axonal and astrocyte pathologies may play a significant role in the pathogenesis of ASD, and further studies are now required to confirm this.
Collapse
Affiliation(s)
- Hamza Ayaydın
- Departments of Child and Adolescent Psychiatry, Gaziantep Dr. Ersin Arslan Training and Research Hospital, Gaziantep, Turkey
| | - Adnan Kirmit
- Departments of Biochemistry, Gaziantep Dr. Ersin Arslan Training and Research Hospital, Gaziantep, Turkey
| | - Hakim Çelik
- Departments of Physiology, Faculty of Medicine, Harran University, Şanlıurfa, Gaziantep Dr. Ersin Arslan Training and Research Hospital, Gaziantep, Turkey
| | - İsmail Akaltun
- Department of Child and Adolescent Psychiatry, Gaziantep Dr. Ersin Arslan Training and Research Hospital, Gaziantep, Turkey
| | - İsmail Koyuncu
- Departments of Biochemistry, Gaziantep Dr. Ersin Arslan Training and Research Hospital, Gaziantep, Turkey
| | - Şermin Bilgen Ulgar
- Departments of Child and Adolescent Psychiatry, Gaziantep Dr. Ersin Arslan Training and Research Hospital, Gaziantep, Turkey
| |
Collapse
|
153
|
Song Z, Xu Y, Deng W, Zhang L, Zhu H, Yu P, Qu Y, Zhao W, Han Y, Qin C. Brain Derived Exosomes Are a Double-Edged Sword in Alzheimer's Disease. Front Mol Neurosci 2020; 13:79. [PMID: 32547364 PMCID: PMC7274346 DOI: 10.3389/fnmol.2020.00079] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
Brain derived exosomes (BDEs) are extracellular nanovesicles that are collectively released by all cell lineages of the central nervous system and contain cargo from their original cells. They are emerging as key mediators of communication and waste management among neurons, glial cells and connective tissue during both physiological and pathological conditions in the brain. We review the rapidly growing frontier of BDEs biology in recent years including the involvement of exosomes in neuronal development, maintenance and communication through their multiple signaling functions. Particularly, we highlight the important role of exosomes in Alzheimer's disease (AD), both as a pathogenic agent and as a disease biomarker. Our understanding of such unique nanovesicles may offer not only answers about the (patho) physiological course in AD and associated neurodegenerative diseases but also ideal methods to develop these vesicles as vehicles for drug delivery or as tools to monitor brain diseases in a non-invasive manner because crossing the blood brain barrier is an inherent capability of exosomes. BDEs have potential as biomarkers and as therapeutic tools for AD and related brain disorders in the near future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Chuan Qin
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Comparative Medicine Center, Peking Union Medical College, Beijing, China
| |
Collapse
|
154
|
Sonawane SK, Chinnathambi S. P301 L, an FTDP-17 Mutant, Exhibits Enhanced Glycation in vitro. J Alzheimers Dis 2020; 75:61-71. [PMID: 32250308 DOI: 10.3233/jad-191348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Frontotemporal dementia and parkinsonism-linked to chromosome-17 are a group of diseases with tau mutations leading to primary tauopathies which include progressive supranuclear palsy, corticobasal syndrome, and frontotemporal lobar degeneration. Alzheimer's disease is a non-primary tauopathy, which displays tau neuropathology of excess tangle formation and accumulation. FTDP-17 mutations are responsible for early onset of AD, which can be attributed to compromised physiological functions due to the mutations. Tau is a microtubule-binding protein that secures the integrity of polymerized microtubules in neuronal cells. It malfunctions owing to various insults and stress conditions-like mutations and post-translational modifications. OBJECTIVE In this study, we modified the wild type and tau mutants by methyl glyoxal and thus studied whether glycation can enhance the aggregation of predisposed mutant tau. METHODS Tau glycation was studied by fluorescence assays, SDS-PAGE analysis, conformational evaluation, and transmission electron microscopy. RESULTS Our study suggests that FTDP-17 mutant P301 L leads to enhanced glycation-induced aggregation as well as advanced glycation end products formation. Glycation forms amorphous aggregates of tau and its mutants without altering its native conformation. CONCLUSION The metabolic anomalies and genetic predisposition have found to accelerate tau-mediated neurodegeneration and prove detrimental for the early-onset of Alzheimer's disease.
Collapse
Affiliation(s)
- Shweta Kishor Sonawane
- Neurobiology Group, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
155
|
Kosel F, Pelley JMS, Franklin TB. Behavioural and psychological symptoms of dementia in mouse models of Alzheimer's disease-related pathology. Neurosci Biobehav Rev 2020; 112:634-647. [PMID: 32070692 DOI: 10.1016/j.neubiorev.2020.02.012] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 12/12/2022]
Abstract
Transgenic mouse models have been used extensively to model the cognitive impairments arising from Alzheimer's disease (AD)-related pathology. However, less is known about the relationship between AD-related pathology and the behavioural and psychological symptoms of dementia (BPSD) commonly presented by patients. This review discusses the BPSD-like behaviours recapitulated by several mouse models of AD-related pathology, including the APP/PS1, Tg2576, 3xTg-AD, 5xFAD, and APP23 models. Current evidence suggests that social withdrawal and depressive-like behaviours increase with progressive neuropathology, and increased aggression and sleep-wake disturbances are present even at early stages; however, there is no clear evidence to support increased anxiety-like behaviours, agitation (hyperactivity), or general apathy. Overall, transgenic mouse models of AD-related pathology recapitulate some of the BPSD-like behaviours associated with AD, but these behaviours vary by model. This reflects the patient population, where AD patients typically exhibit one or more BPSD, but rarely all symptoms at once. As a result, we suggest that transgenic mouse models are an important tool to investigate the pathology underlying BPSD in human AD patients.
Collapse
Affiliation(s)
- Filip Kosel
- The Social Lab, Department of Psychology and Neuroscience, Dalhousie University, Halifax, B3H 4R2, Canada
| | - Jessica M S Pelley
- The Social Lab, Department of Psychology and Neuroscience, Dalhousie University, Halifax, B3H 4R2, Canada
| | - Tamara B Franklin
- The Social Lab, Department of Psychology and Neuroscience, Dalhousie University, Halifax, B3H 4R2, Canada.
| |
Collapse
|
156
|
Samimi N, Asada A, Ando K. Tau Abnormalities and Autophagic Defects in Neurodegenerative Disorders; A Feed-forward Cycle. Galen Med J 2020; 9:e1681. [PMID: 34466566 PMCID: PMC8343705 DOI: 10.31661/gmj.v9i0.1681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/11/2019] [Accepted: 11/24/2019] [Indexed: 11/16/2022] Open
Abstract
Abnormal deposition of misfolded proteins is a neuropathological characteristic shared by many neurodegenerative disorders including Alzheimer’s disease (AD). Generation of excessive amounts of aggregated proteins and impairment of degradation systems for misfolded proteins such as autophagy can lead to accumulation of proteins in diseased neurons. Molecules that contribute to both these effects are emerging as critical players in disease pathogenesis. Furthermore, impairment of autophagy under disease conditions can be both a cause and a consequence of abnormal protein accumulation. Specifically, disease-causing proteins can impair autophagy, which further enhances the accumulation of abnormal proteins. In this short review, we focus on the relationship between the microtubule-associated protein tau and autophagy to highlight a feed-forward mechanism in disease pathogenesis.
Collapse
Affiliation(s)
- Nastaran Samimi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Akiko Asada
- Department of Biological Sciences, School of Science, Tokyo Metropolitan University, Tokyo, Japan
- Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Kanae Ando
- Department of Biological Sciences, School of Science, Tokyo Metropolitan University, Tokyo, Japan
- Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
- Correspondence to: Kanae Ando, Department of Biological Sciences, School of Science, Tokyo Metropolitan University, Tokyo 192- 0397, Japan Telephone Number: +81-42-677-2769 Email Address:
| |
Collapse
|
157
|
Liyanage SI, Weaver DF. Misfolded proteins as a therapeutic target in Alzheimer's disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 118:371-411. [PMID: 31928732 DOI: 10.1016/bs.apcsb.2019.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
For decades, Alzheimer's Disease (AD) was defined as a disorder of protein misfolding and aggregation. In particular, the extracellular peptide fragment: amyloid-β (Aβ), and the intracellular microtubule-associated protein: tau, were thought to initiate a neurodegenerative cascade which culminated in AD's progressive loss of memory and executive function. As such, both proteins became the focus of intense scrutiny, and served as the principal pathogenic target for hundreds of clinical trials. However, with varying efficacy, none of these investigations produced a disease-modifying therapy - offering patients with AD little recourse aside from transient, symptomatic medications. The near universal failure of clinical trials is unprecedented for a major research discipline. In part, this has motivated an increasing skepticism of the relevance of protein misfolding to AD's etiology. Several recent observations, principally the presence of significant protein pathologies in non-demented seniors, have lent credence to an apparent cursory role for Aβ and tau. Herein, we review both Aβ and tau, examining the processes from their biosynthesis to their pathogenesis and evaluate their vulnerability to medicinal intervention. We further attempt to reconcile the apparent failure of trials with the potential these targets hold. Ultimately, we seek to answer if protein misfolding is a viable platform in the pursuit of a disease-arresting strategy for AD.
Collapse
Affiliation(s)
- S Imindu Liyanage
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Donald F Weaver
- Krembil Research Institute, University Health Network, Toronto, ON, Canada; Departments of Medicine (Neurology), Chemistry and Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
158
|
Birol M, Melo AM. Untangling the Conformational Polymorphism of Disordered Proteins Associated With Neurodegeneration at the Single-Molecule Level. Front Mol Neurosci 2020; 12:309. [PMID: 31998071 PMCID: PMC6965022 DOI: 10.3389/fnmol.2019.00309] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/29/2019] [Indexed: 12/15/2022] Open
Abstract
A large fraction of the human genome encodes intrinsically disordered proteins/regions (IDPs/IDRs) that are involved in diverse cellular functions/regulation and dysfunctions. Moreover, several neurodegenerative disorders are associated with the pathological self-assembly of neuronal IDPs, including tau [Alzheimer's disease (AD)], α-synuclein [Parkinson's disease (PD)], and huntingtin exon 1 [Huntington's disease (HD)]. Therefore, there is an urgent and emerging clinical interest in understanding the physical and structural features of their functional and disease states. However, their biophysical characterization is inherently challenging by traditional ensemble techniques. First, unlike globular proteins, IDPs lack stable secondary/tertiary structures under physiological conditions and may interact with multiple and distinct biological partners, subsequently folding differentially, thus contributing to the conformational polymorphism. Second, amyloidogenic IDPs display a high aggregation propensity, undergoing complex heterogeneous self-assembly mechanisms. In this review article, we discuss the advantages of employing cutting-edge single-molecule fluorescence (SMF) techniques to characterize the conformational ensemble of three selected neuronal IDPs (huntingtin exon 1, tau, and α-synuclein). Specifically, we survey the versatility of these powerful approaches to describe their monomeric conformational ensemble under functional and aggregation-prone conditions, and binding to biological partners. Together, the information gained from these studies provides unique insights into the role of gain or loss of function of these disordered proteins in neurodegeneration, which may assist the development of new therapeutic molecules to prevent and treat these devastating human disorders.
Collapse
Affiliation(s)
- Melissa Birol
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| | - Ana M Melo
- Centro de Química-Física Molecular- IN and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
159
|
Guo J, Zhang G, Ma J, Zhao C, Xue Q, Wang J, Liu W, Liu K, Wang H, Liu N, Song Q, Li J. Detection and identification of O-GlcNAc-modified proteins using 6-azido-6-deoxy-N-acetyl-galactosamine. Org Biomol Chem 2019; 17:4326-4334. [PMID: 30976765 DOI: 10.1039/c9ob00516a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
An unnatural monosaccharide with a C6-azide, Ac36AzGalNAc, has been developed as a potent and selective probe for O-GlcNAc-modified proteins. Combined with click chemistry, we demonstrate that Ac36AzGalNAc can robustly label O-GlcNAc glycosylation in a wide range of cell lines. Meanwhile, cell imaging and LC-MS/MS proteomics verify its selective activity on O-GlcNAc. More importantly, the protocol presented here provides a general methodology for tracking, capturing and identifying unnatural monosaccharide modified proteins in cells or cell lysates.
Collapse
Affiliation(s)
- Jianshuang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
The puzzle of preserved cognition in the oldest old. Neurol Sci 2019; 41:441-447. [PMID: 31713754 DOI: 10.1007/s10072-019-04111-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023]
Abstract
Although epidemiological studies predict an exponential increase in the prevalence of dementia with age, recent studies have demonstrated that the oldest old are actually less frequently affected by dementia than the younger elderly. To explain this, I suggest a parallel between brain ageing and Alzheimer's disease (AD) and assume that theories concerning the brain's vulnerability to AD and its individual variability may also explain why some of the oldest old remain cognitively efficient. Some theories argue that AD is due to the continuing presence of the immature neurones vulnerable to amyloid beta protein (Aß) that are normally involved in brain development and then removed as a result of cell selection by the proteins associated with both brain development and AD. If a dysfunction in cell selection allows these immature neurones to survive, they degenerate early as a result of the neurotoxic action of Aß accumulation, which their mature counterparts can withstand. Consequently, age at the time of onset of AD and its clinical presentations depend on the number and location of such immature cells. I speculate that the same mechanism is responsible for the variability of normal brain ageing: the oldest old with well-preserved cognitive function are people genetically programmed for extreme ageing who have benefited from better cell selection during prenatal and neonatal life and therefore have fewer surviving neurones vulnerable to amyloid-promoted degeneration, whereas the process of early life cell selection was less successful in the oldest old who develop dementia.
Collapse
|
161
|
Xue S, Gong R, He F, Li Y, Wang Y, Tan T, Luo SZ. Low-complexity domain of U1-70K modulates phase separation and aggregation through distinctive basic-acidic motifs. SCIENCE ADVANCES 2019; 5:eaax5349. [PMID: 31723601 PMCID: PMC6834393 DOI: 10.1126/sciadv.aax5349] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/17/2019] [Indexed: 05/20/2023]
Abstract
Liquid-liquid phase separation (LLPS) facilitates the formation of functional membraneless organelles and recent reports have linked this phenomenon to protein aggregation in neurodegenerative diseases. Understanding the mechanism of LLPS and its regulation thus promises to shed light on the pathogenesis of these conditions. The RNA-binding protein U1-70K, which aggregates in brains of Alzheimer's disease patients, is considered a potential target for Alzheimer's therapy. Here, we report that two fragments in the low-complexity (LC) domain of U1-70K can undergo LLPS. We have demonstrated that the repetitive basic-acidic motifs in these fragments induce nucleotide-independent phase separation and initiate aggregation in vitro. We also have confirmed that LLPS and aggregation occur in vivo and that the content of ampholytic motifs in a protein domain determines the transition between droplets and aggregation, providing insights into the mechanism underlying the formation of diverse assembly states.
Collapse
|
162
|
Sureda A, Capó X, Tejada S. Neuroprotective Effects of Flavonoid Compounds on Neuronal Death Associated to Alzheimer’s Disease. Curr Med Chem 2019; 26:5124-5136. [DOI: 10.2174/0929867325666171226103237] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 01/25/2023]
Abstract
Alzheimer’s disease is an increasing neurodegenerative pathology related to
age in many societies. Some aspects of the disease are related to the loss of neuronal cells
derived by the formation of extracellular neuritic plaques and the appearance of intracellular
neurofibrillary tangles, altogether generating an inflammatory and oxidative status.
The accumulation of amyloids in cells induces the activation of the apoptotic cascade
which implies caspases activation. Alzheimer’s disease is treated with acetylcholine esterase
inhibitors, although their effects are still far away to reduce or eliminate the problems
associated with the pathology. The lack of effective treatment has led to the search
for new therapeutic alternatives based on natural products. Flavonoids comprise a group
of phenolic compounds that have gained great interest since they present great diversity of
biological activities. In the present work, we review the potential uses of flavonoids and
the proposed mechanisms of action as a new therapeutic strategy in neurological cell
death associated with Alzheimer’s disease.
Collapse
Affiliation(s)
- Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, E-07122 Palma de Mallorca, Balearic Islands, Spain
| | - Xavier Capó
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, E-07122 Palma de Mallorca, Balearic Islands, Spain
| | - Silvia Tejada
- CIBEROBN (Physiopathology of Obesity and Nutrition), E- 07122 Palma de Mallorca, Balearic Islands, Spain
| |
Collapse
|
163
|
Impaired adult neurogenesis is an early event in Alzheimer's disease neurodegeneration, mediated by intracellular Aβ oligomers. Cell Death Differ 2019; 27:934-948. [PMID: 31591472 PMCID: PMC7206128 DOI: 10.1038/s41418-019-0409-3] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 12/13/2022] Open
Abstract
Alterations of adult neurogenesis have been reported in several Alzheimer's disease (AD) animal models and human brains, while defects in this process at presymptomatic/early stages of AD have not been explored yet. To address this, we investigated potential neurogenesis defects in Tg2576 transgenic mice at 1.5 months of age, a prodromal asymptomatic age in terms of Aβ accumulation and neurodegeneration. We observe that Tg2576 resident and SVZ-derived adult neural stem cells (aNSCs) proliferate significantly less. Further, they fail to terminally differentiate into mature neurons due to pathological, tau-mediated, and microtubule hyperstabilization. Olfactory bulb neurogenesis is also strongly reduced, confirming the neurogenic defect in vivo. We find that this phenotype depends on the formation and accumulation of intracellular A-beta oligomers (AβOs) in aNSCs. Indeed, impaired neurogenesis of Tg2576 progenitors is remarkably rescued both in vitro and in vivo by the expression of a conformation-specific anti-AβOs intrabody (scFvA13-KDEL), which selectively interferes with the intracellular generation of AβOs in the endoplasmic reticulum (ER). Altogether, our results demonstrate that SVZ neurogenesis is impaired already at a presymptomatic stage of AD and is caused by endogenously generated intracellular AβOs in the ER of aNSCs. From a translational point of view, impaired SVZ neurogenesis may represent a novel biomarker for AD early diagnosis, in association to other biomarkers. Further, this study validates intracellular Aβ oligomers as a promising therapeutic target and prospects anti-AβOs scFvA13-KDEL intrabody as an effective tool for AD treatment.
Collapse
|
164
|
Siano G, Caiazza MC, Ollà I, Varisco M, Madaro G, Quercioli V, Calvello M, Cattaneo A, Di Primio C. Identification of an ERK Inhibitor as a Therapeutic Drug Against Tau Aggregation in a New Cell-Based Assay. Front Cell Neurosci 2019; 13:386. [PMID: 31496937 PMCID: PMC6712076 DOI: 10.3389/fncel.2019.00386] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/06/2019] [Indexed: 01/01/2023] Open
Abstract
Formation of Tau aggregates is a common pathological feature of tauopathies and their accumulation directly correlates with cytotoxicity and neuronal degeneration. Great efforts have been made to understand Tau aggregation and to find therapeutics halting or reversing the process, however, progress has been slowed due to the lack of a suitable method for monitoring Tau aggregation. We developed a cell-based assay allowing to detect and quantify Tau aggregation in living cells. The system is based on the FRET biosensor CST able to monitor the molecular dynamic of Tau aggregation in different cellular conditions. We probed candidate compounds that could block Tau hyperphosphorylation. In particular, to foster the drug discovery process, we tested kinase inhibitors approved for the treatment of other diseases. We identified the ERK inhibitor PD-901 as a promising therapeutic molecule since it reduces and prevents Tau aggregation. This evidence establishes the CST cell-based aggregation assay as a reliable tool for drug discovery and suggests that PD-901 might be a promising compound to be tested for further preclinical studies on AD.
Collapse
Affiliation(s)
- Giacomo Siano
- Laboratorio di Biologia (BIO@SNS), Scuola Normale Superiore, Pisa, Italy
| | | | - Ivana Ollà
- Laboratorio di Biologia (BIO@SNS), Scuola Normale Superiore, Pisa, Italy
| | - Martina Varisco
- Laboratorio di Biologia (BIO@SNS), Scuola Normale Superiore, Pisa, Italy
| | - Giuseppe Madaro
- Laboratorio di Biologia (BIO@SNS), Scuola Normale Superiore, Pisa, Italy
| | | | | | - Antonino Cattaneo
- Laboratorio di Biologia (BIO@SNS), Scuola Normale Superiore, Pisa, Italy.,Neurotrophins and Neurodegenerative Diseases Laboratory, Rita Levi-Montalcini European Brain Research Institute, Rome, Italy
| | - Cristina Di Primio
- Laboratorio di Biologia (BIO@SNS), Scuola Normale Superiore, Pisa, Italy
| |
Collapse
|
165
|
Kim J, Selvaraji S, Kang SW, Lee WT, Chen CLH, Choi H, Koo EH, Jo DG, Leong Lim K, Lim YA, Arumugam TV. Cerebral transcriptome analysis reveals age-dependent progression of neuroinflammation in P301S mutant tau transgenic male mice. Brain Behav Immun 2019; 80:344-357. [PMID: 30980950 DOI: 10.1016/j.bbi.2019.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/31/2019] [Accepted: 04/02/2019] [Indexed: 12/31/2022] Open
Abstract
Aggregation of the microtubule-associated protein, tau, can lead to neurofibrillary tangle formation in neurons and glia which is the hallmark of tauopathy. The cellular damage induced by the formation of neurofibrillary tangles leads to neuroinflammation and consecutive neuronal death. However, detailed observation of transcriptomic changes under tauopathy together with the comparison of age-dependent progression of neuroinflammatory gene expressions mediated by tau overexpression is required. Employing RNA sequencing on PS19 transgenic mice that overexpress human mutant tau harboring the P301S mutation, we have examined the effects of age-dependent tau overexpression on transcriptomic changes of immune and inflammatory responses in the cerebral cortex. Compared to age-matched wild type control, P301S transgenic mice exhibit significant transcriptomic alterations. We have observed age-dependent neuroinflammatory gene expression changes in both wild type and P301S transgenic mice where tau overexpression further promoted the expression of neuroinflammatory genes in 10-month old P301S transgenic mice. Moreover, functional gene network analyses (gene ontology and pathway enrichment) and prospective target protein interactions predicted the potential involvement of multiple immune and inflammatory pathways that may contribute to tau-mediated neuronal pathology. Our current study on P301S transgenic mice model revealed for the first time, the differences of gene expression patterns in both early and late stage of tau pathology in cerebral cortex. Our analyses also revealed that tau overexpression alone induces multiple inflammatory and immune transcriptomic changes and may provide a roadmap to elucidate the targets of anti-inflammatory therapeutic strategy focused on tau pathology and related neurodegenerative diseases.
Collapse
Affiliation(s)
- Joonki Kim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Natural Products Research Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do, Republic of Korea
| | - Sharmelee Selvaraji
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sung Wook Kang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wei Thye Lee
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Christopher Li-Hsian Chen
- Department of Pharmacology, National University of Singapore, Singapore; Memory Aging and Cognition Centre, National University Health System, Singapore
| | - Hyungwon Choi
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore
| | - Edward H Koo
- Department of Medicine, Yong Loo Lin School of Medicine, National University Health System, Singapore
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Kah Leong Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Neurodegeneration Research Laboratory, National Neuroscience Institute, Singapore; Neuroscience and Behavioral Disorders Program, Duke-NUS Medical School, Singapore; Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Yun-An Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Thiruma V Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea; Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore.
| |
Collapse
|
166
|
Sanchez-Bezanilla S, Nilsson M, Walker FR, Ong LK. Can We Use 2,3,5-Triphenyltetrazolium Chloride-Stained Brain Slices for Other Purposes? The Application of Western Blotting. Front Mol Neurosci 2019; 12:181. [PMID: 31417355 PMCID: PMC6682641 DOI: 10.3389/fnmol.2019.00181] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 07/10/2019] [Indexed: 01/15/2023] Open
Abstract
2,3,5-Triphenyltetrazolium chloride (TTC) staining is a commonly used method to determine the volume of the cerebral infarction in experimental stroke models. The TTC staining protocol is considered to interfere with downstream analyses, and it is unclear whether TTC-stained brain samples can be used for biochemistry analyses. However, there is evidence indicating that, with proper optimization and handling, TTC-stained brains may remain viable for protein analyses. In the present study, we aimed to rigorously assess whether TTC can reliably be used for western blotting of various markers. In this study, brain samples obtained from C57BL/6 male mice were treated with TTC (TTC+) or left untreated (TTC−) at 1 week after photothrombotic occlusion or sham surgery. Brain regions were dissected into infarct, thalamus, and hippocampus, and proteins were extracted by using radioimmunoprecipitation assay buffer. Protein levels of apoptosis, autophagy, neuronal, glial, vascular, and neurodegenerative-related markers were analyzed by western blotting. Our results showed that TTC+ brains display similar relative changes in most of the markers compared with TTC− brains. In addition, we validated that these analyses can be performed in the infarct as well as other brain regions such as the thalamus and hippocampus. Our findings demonstrate that TTC+ brains are reliable for protein analyses using western blotting. Widespread adoption of this approach will be key to lowering the number of animals used while maximizing data.
Collapse
Affiliation(s)
- Sonia Sanchez-Bezanilla
- School of Biomedical Sciences and Pharmacy and Priority Research Centre for Stroke and Brain Injury, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Michael Nilsson
- School of Biomedical Sciences and Pharmacy and Priority Research Centre for Stroke and Brain Injury, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,NHMRC Centre of Research Excellence in Stroke Rehabilitation and Brain Recovery, Heidelberg, VIC, Australia.,Centre for Rehab Innovations, The University of Newcastle, Callaghan, NSW, Australia.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Frederick R Walker
- School of Biomedical Sciences and Pharmacy and Priority Research Centre for Stroke and Brain Injury, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,NHMRC Centre of Research Excellence in Stroke Rehabilitation and Brain Recovery, Heidelberg, VIC, Australia.,Centre for Rehab Innovations, The University of Newcastle, Callaghan, NSW, Australia
| | - Lin Kooi Ong
- School of Biomedical Sciences and Pharmacy and Priority Research Centre for Stroke and Brain Injury, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,NHMRC Centre of Research Excellence in Stroke Rehabilitation and Brain Recovery, Heidelberg, VIC, Australia.,School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
167
|
Use of the tau protein-to-peptide ratio in CSF to improve diagnostic classification of Alzheimer's disease. CLINICAL MASS SPECTROMETRY 2019; 14 Pt B:74-82. [PMID: 34917763 DOI: 10.1016/j.clinms.2019.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 07/09/2019] [Accepted: 07/09/2019] [Indexed: 11/22/2022]
Abstract
Cerebrospinal fluid (CSF) tau and phospho-tau are well established biomarkers of Alzheimer's disease. While these measures are conventionally referred to as 'total tau' (T-tau) and 'phospho-tau' (P-tau), several truncated and modified tau forms exist that may relay additional diagnostic information. We evaluated the diagnostic performance of an endogenous tau peptide in CSF, tau 175-190, in the phosphorylated and non-phosphorylated state. A liquid chromatography-mass spectrometry (LC-MS) method was established to measure these peptides in CSF and was used to analyze two independent clinical cohorts; the first cohort included patients with Alzheimer's disease (AD, n = 15), Parkinson's disease (PD, n = 15), progressive supranuclear palsy (PSP, n = 15), and healthy controls (n = 15), the second cohort included AD patients (n = 16), and healthy controls (n = 24). In both cohorts T-tau and P-tau concentrations were determined by immunoassay. While tau 175-190 and P-tau 175-190 did not differentiate the study groups, the separation of AD and controls by T-tau (area under the ROC Curve (AUC) = 95%) and P-tau (AUC = 92%) was improved when normalizing the ELISA measurements to the concentrations of the endogenous peptides: T-tau/tau 175-190 (AUC = 100%), P-tau/P-tau 175-190 (AUC = 95%). The separation between patients and controls by T-tau (AUC = 88%) and P-tau (AUC = 82%) was similarly improved in the second cohort by taking the ratios of T-tau/tau 175-190 (AUC = 97%) and P-tau/P-tau 175-190 (AUC = 98%). In conclusion, our results suggest that the performance of the AD biomarkers T-tau and P-tau could be improved by normalizing their measurements to the endogenous peptides tau 175-190 and P-tau 175-190, possibly because these endogenous tau peptides serve to normalize for physiological, and disease-independent, secretion of tau from neurons to the extracellular space and the CSF. Finally, the observations made here add to the general applicability of mass spectrometry as a tool for rapid identification and accurate quantification of biomarker candidates.
Collapse
Key Words
- AD
- AD, Alzheimer’s disease
- AUC, Area under the ROC curve
- Biomarker
- CSF, cerebrospinal fluid
- ELISA, enzyme-linked immunosorbent assay
- Endogenous peptides
- GdnHCl, Guanidinium hydrochloride
- Mass spectrometry
- Microtubule-associated protein tau
- P-tau, phospho-tau protein
- PD, Parkinson’s disease
- PSP, Progressive Supranuclear Palsy
- Peptidomics
- SIL, peptide Synthetic isotope-labelled peptide
- T-tau, total tau protein
Collapse
|
168
|
Venkatramani A, Panda D. Regulation of neuronal microtubule dynamics by tau: Implications for tauopathies. Int J Biol Macromol 2019; 133:473-483. [DOI: 10.1016/j.ijbiomac.2019.04.120] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022]
|
169
|
Deolankar SC, Patil AH, Koyangana SG, Subbannayya Y, Prasad TSK, Modi PK. Dissecting Alzheimer's Disease Molecular Substrates by Proteomics and Discovery of Novel Post-translational Modifications. ACTA ACUST UNITED AC 2019; 23:350-361. [DOI: 10.1089/omi.2019.0085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sayali Chandrashekhar Deolankar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Arun H. Patil
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Shashanka G. Koyangana
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Yashwanth Subbannayya
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | | | - Prashant Kumar Modi
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| |
Collapse
|
170
|
Van Ommeren R, Hazrati LN. Pathological Assessment of Chronic Traumatic Encephalopathy: Review of Concepts and Methodology. Acad Forensic Pathol 2019; 8:555-564. [PMID: 31240059 DOI: 10.1177/1925362118797729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/01/2018] [Indexed: 11/17/2022]
Abstract
Chronic traumatic encephalopathy (CTE) has become a topic of considerable interest in recent years, with wide-ranging implications for athletes, military members, and other groups exposed to frequent concussive or subconcussive head trauma. The condition has been subject to intensive neuropathological characterization by various groups, with assessment methodologies and staging criteria proposed. Clinical characterization of symptoms has also been performed, but has not yet been definitively formalized. While efforts are underway to develop in vivo markers of tauopathies including CTE, these remain experimental at this time, necessitating postmortem analysis for definitive diagnosis. The putative link between development of cognitive and behavioral dysfunction and neuropathological findings of CTE may prompt requests for postmortem assessment in the forensic setting. Here, we review current concepts in CTE research, describe histopathological findings in CTE, and describe methodologies for pathological assessment of CTE which may be useful to the forensic pathologist.
Collapse
|
171
|
Death-Associated Protein Kinase 1 Phosphorylation in Neuronal Cell Death and Neurodegenerative Disease. Int J Mol Sci 2019; 20:ijms20133131. [PMID: 31248062 PMCID: PMC6651373 DOI: 10.3390/ijms20133131] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 06/25/2019] [Indexed: 12/15/2022] Open
Abstract
Regulated neuronal cell death plays an essential role in biological processes in normal physiology, including the development of the nervous system. However, the deregulation of neuronal apoptosis by various factors leads to neurodegenerative diseases such as ischemic stroke and Alzheimer’s disease (AD). Death-associated protein kinase 1 (DAPK1) is a calcium/calmodulin (Ca2+/CaM)-dependent serine/threonine (Ser/Thr) protein kinase that activates death signaling and regulates apoptotic neuronal cell death. Although DAPK1 is tightly regulated under physiological conditions, DAPK1 deregulation in the brain contributes to the development of neurological disorders. In this review, we describe the molecular mechanisms of DAPK1 regulation in neurons under various stresses. We also discuss the role of DAPK1 signaling in the phosphorylation-dependent and phosphorylation-independent regulation of its downstream targets in neuronal cell death. Moreover, we focus on the major impact of DAPK1 deregulation on the progression of neurodegenerative diseases and the development of drugs targeting DAPK1 for the treatment of diseases. Therefore, this review summarizes the DAPK1 phosphorylation signaling pathways in various neurodegenerative diseases.
Collapse
|
172
|
Abstract
The microtubule associated protein tau in a hyperphosphorylated form was identified as the building block of the filamentous aggregates found in the neurons of Alzheimer's disease (AD) patients. In the abnormal state, hyperphosphorylated tau from AD brains (AD P-tau) was unable to promote microtubule assembly and more importantly, it could inhibit the normal activity of tau and other MAPs. AD P-tau was able to disrupt preformed microtubules and, by binding to normal tau, turn the latter into an AD P-tau like molecule. AD P-tau toxic behavior was prevalent in the soluble form and it was lost upon dephosphorylation. Mutations on tau associated with disease, e.g., R406W in frontotemporal dementia with Parkinsonism linked to chromosome 17, altered its conformation to make it a better substrate for kinases. Using phospho-mimetics, it was found that the minimum phospho-sites necessary to acquire such a toxic behavior of tau were at 199, 212, 231 and 262, and tau pseudophosphorylated at those sites in combination with R406W was named Pathological Human Tau (PH-Tau). PH-Tau expressed in cells had similar behavior to AD P-tau: disruption of the microtubule system, change in the normal subcellular localization, and gain of toxic function for cells. In animal models expressing PH-Tau, it was found that two putative mechanisms of neurodegeneration exist depending on the concentration of the toxic protein, both involving cognitive decline, due to synaptic dysfunction at lower concentration and neuronal death at higher. Studies investigating the mechanism of tau pathology and its transmission from neuron to neuron are currently ongoing.
Collapse
Affiliation(s)
- Alejandra D Alonso
- Department of Biology and Center for Developmental Neuroscience, College of Staten Island, The City University of New York, Staten Island, NY, USA.,Department of Neuroscience, The Graduate Center, The City University of New York, New York, NY, USA
| | - Leah S Cohen
- Department of Biology and Center for Developmental Neuroscience, College of Staten Island, The City University of New York, Staten Island, NY, USA
| |
Collapse
|
173
|
Watson LS, Hamlett ED, Stone TD, Sims-Robinson C. Neuronally derived extracellular vesicles: an emerging tool for understanding Alzheimer's disease. Mol Neurodegener 2019; 14:22. [PMID: 31182115 PMCID: PMC6558712 DOI: 10.1186/s13024-019-0317-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/17/2019] [Indexed: 12/21/2022] Open
Abstract
In order for Alzheimer’s disease (AD) to manifest, cells must communicate “pathogenic material” such as proteins, signaling molecules, or genetic material to ensue disease propagation. Small extracellular vesicles are produced via the endocytic pathways and released by nearly all cell types, including neurons. Due to their intrinsic interrelationship with endocytic processes and autophagy, there has been increased interest in studying the role of these neuronally-derived extracellular vesicles (NDEVs) in the propagation of AD. Pathologic cargo associated with AD have been found in a number of studies, and NDEVs have been shown to induce pathogenesis in vivo and in vitro. Exogenous NDEVs are also shown to reduce plaque burden in AD models. Thus, the NDEV has the potential to become a useful biomarker, a pathologic potentiator, and a therapeutic opportunity. While the field of NDEV research in AD is still in its infancy, we review the current literature supporting these three claims.
Collapse
Affiliation(s)
- Luke S Watson
- Department of Neurology, Medical University of South Carolina, 96 Jonathan Lucas Street, 301 Clinical Sciences Building, MSC 606, Charleston, SC, 29425, USA.,Molecular and Cellular Biology and Pathobiology Program, Medical University of South Carolina, Charleston, Charleston, SC, 29425, USA
| | - Eric D Hamlett
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Tyler D Stone
- Department of Neurology, Medical University of South Carolina, 96 Jonathan Lucas Street, 301 Clinical Sciences Building, MSC 606, Charleston, SC, 29425, USA.,Honors College, College of Charleston, Charleston, SC, 29424, USA
| | - Catrina Sims-Robinson
- Department of Neurology, Medical University of South Carolina, 96 Jonathan Lucas Street, 301 Clinical Sciences Building, MSC 606, Charleston, SC, 29425, USA. .,Molecular and Cellular Biology and Pathobiology Program, Medical University of South Carolina, Charleston, Charleston, SC, 29425, USA.
| |
Collapse
|
174
|
Association of cerebrospinal fluid zinc-α2-glycoprotein and tau protein with temporal lobe epilepsy and related white matter impairment. Neuroreport 2019; 30:586-591. [DOI: 10.1097/wnr.0000000000001252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
175
|
Sui Y, Zhang Y, Dong C, Xu B, Sun X. The small molecular CCR3 antagonist YM344031 attenuates neurodegenerative pathologies and improves learning and memory performance in a mouse model of Alzheimer's disease. Brain Res 2019; 1719:1-10. [PMID: 31121157 DOI: 10.1016/j.brainres.2019.05.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/03/2019] [Accepted: 05/19/2019] [Indexed: 12/13/2022]
Abstract
The chemokine C-C receptor 3 (CCR3) plays a role in the pathogenesis of Alzheimer's disease (AD). Based on our previous observations that deletion of CCR3 prevented neurodegenerative pathologies in amyloid precursor protein/presenilin 1 (APP/PS1) double-transgenic mice, we hypothesize that CCR3 antagonists may provide therapeutic benefits to AD. To this end, we examined the effect of the brain-penetrable CCR3 antagonist, YM344031, on AD-related pathologies in APP/PS1 double transgenic mice. Treatment of 10-month-old APP/PS1 double-transgenic mice with YM344031 (50 mg/kg, b.i.d.) for two months resulted in dramatic decreases in β-amyloid deposition, tau hyperphosphorylation and synaptic loss in the forebrain, significant attenuation of microgliosis and astrogliosis, and marked improvement of spatial learning and memory performance compared with the vehicle-treated mice. These results support CCR3 antagonism as a potential therapeutic strategy for AD.
Collapse
Affiliation(s)
- Yi Sui
- Department of Neurology, Shenyang First People's Hospital, Shenyang Brain Institute, Shenyang Medical College Affiliated Shenyang Brain Hospital, Shenyang 110047, China
| | - Yao Zhang
- Department of Neurology, Shenyang First People's Hospital, Shenyang Brain Institute, Shenyang Medical College Affiliated Shenyang Brain Hospital, Shenyang 110047, China
| | - Chunyao Dong
- Department of Neurology, Shenyang First People's Hospital, Shenyang Brain Institute, Shenyang Medical College Affiliated Shenyang Brain Hospital, Shenyang 110047, China
| | - Bing Xu
- Department of Neurology, Shenyang First People's Hospital, Shenyang Brain Institute, Shenyang Medical College Affiliated Shenyang Brain Hospital, Shenyang 110047, China
| | - Xiaohong Sun
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang 110004, China.
| |
Collapse
|
176
|
Ahmadi S, Zhu S, Sharma R, Wilson DJ, Kraatz HB. Interaction of metal ions with tau protein. The case for a metal-mediated tau aggregation. J Inorg Biochem 2019; 194:44-51. [DOI: 10.1016/j.jinorgbio.2019.02.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/05/2019] [Accepted: 02/10/2019] [Indexed: 12/18/2022]
|
177
|
Non-Proteasomal UbL-UbA Family of Proteins in Neurodegeneration. Int J Mol Sci 2019; 20:ijms20081893. [PMID: 30999567 PMCID: PMC6514573 DOI: 10.3390/ijms20081893] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/09/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022] Open
Abstract
Ubiquitin-like/ubiquitin-associated proteins (UbL-UbA) are a well-studied family of non-proteasomal ubiquitin receptors that are evolutionarily conserved across species. Members of this non-homogenous family facilitate and support proteasomal activity by promoting different effects on proteostasis but exhibit diverse extra-proteasomal activities. Dysfunctional UbL-UbA proteins render cells, particularly neurons, more susceptible to stressors or aging and may cause earlier neurodegeneration. In this review, we summarized the properties and functions of UbL-UbA family members identified to date, with an emphasis on new findings obtained using Drosophila models showing a direct or indirect role in some neurodegenerative diseases.
Collapse
|
178
|
Kaviarasi S, Yuba E, Harada A, Krishnan UM. Emerging paradigms in nanotechnology for imaging and treatment of cerebral ischemia. J Control Release 2019; 300:22-45. [DOI: 10.1016/j.jconrel.2019.02.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 02/07/2023]
|
179
|
Silva MC, Ferguson FM, Cai Q, Donovan KA, Nandi G, Patnaik D, Zhang T, Huang HT, Lucente DE, Dickerson BC, Mitchison TJ, Fischer ES, Gray NS, Haggarty SJ. Targeted degradation of aberrant tau in frontotemporal dementia patient-derived neuronal cell models. eLife 2019; 8:e45457. [PMID: 30907729 PMCID: PMC6450673 DOI: 10.7554/elife.45457] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/23/2019] [Indexed: 12/11/2022] Open
Abstract
Tauopathies are neurodegenerative diseases characterized by aberrant forms of tau protein accumulation leading to neuronal death in focal brain areas. Positron emission tomography (PET) tracers that bind to pathological tau are used in diagnosis, but there are no current therapies to eliminate these tau species. We employed targeted protein degradation technology to convert a tau PET-probe into a functional degrader of pathogenic tau. The hetero-bifunctional molecule QC-01-175 was designed to engage both tau and Cereblon (CRBN), a substrate-receptor for the E3-ubiquitin ligase CRL4CRBN, to trigger tau ubiquitination and proteasomal degradation. QC-01-175 effected clearance of tau in frontotemporal dementia (FTD) patient-derived neuronal cell models, with minimal effect on tau from neurons of healthy controls, indicating specificity for disease-relevant forms. QC-01-175 also rescued stress vulnerability in FTD neurons, phenocopying CRISPR-mediated MAPT-knockout. This work demonstrates that aberrant tau in FTD patient-derived neurons is amenable to targeted degradation, representing an important advance for therapeutics.
Collapse
Affiliation(s)
- M Catarina Silva
- Chemical Neurobiology Laboratory, Center for Genomic MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonUnited States
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonUnited States
- Department of PsychiatryMassachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | - Fleur M Ferguson
- Department of Cancer BiologyDana-Farber Cancer InstituteBostonUnited States
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonUnited States
| | - Quan Cai
- Department of Cancer BiologyDana-Farber Cancer InstituteBostonUnited States
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonUnited States
| | - Katherine A Donovan
- Department of Cancer BiologyDana-Farber Cancer InstituteBostonUnited States
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonUnited States
| | - Ghata Nandi
- Chemical Neurobiology Laboratory, Center for Genomic MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonUnited States
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonUnited States
- Department of PsychiatryMassachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | - Debasis Patnaik
- Chemical Neurobiology Laboratory, Center for Genomic MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonUnited States
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonUnited States
- Department of PsychiatryMassachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | - Tinghu Zhang
- Department of Cancer BiologyDana-Farber Cancer InstituteBostonUnited States
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonUnited States
| | - Hai-Tsang Huang
- Department of Cancer BiologyDana-Farber Cancer InstituteBostonUnited States
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonUnited States
| | - Diane E Lucente
- Molecular Neurogenetics Unit, Center for Genomic MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonUnited States
- MGH Frontotemporal Disorders Unit, Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
- Gerontology Research Unit, Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
- Alzheimer’s Disease Research Center, Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| | - Bradford C Dickerson
- MGH Frontotemporal Disorders Unit, Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
- Gerontology Research Unit, Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
- Alzheimer’s Disease Research Center, Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| | - Timothy J Mitchison
- Department of Systems BiologyHarvard Medical SchoolBostonUnited States
- Laboratory of Systems PharmacologyHarvard Medical SchoolBostonUnited States
| | - Eric S Fischer
- Department of Cancer BiologyDana-Farber Cancer InstituteBostonUnited States
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonUnited States
| | - Nathanael S Gray
- Department of Cancer BiologyDana-Farber Cancer InstituteBostonUnited States
| | - Stephen J Haggarty
- Chemical Neurobiology Laboratory, Center for Genomic MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonUnited States
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonUnited States
- Department of PsychiatryMassachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
180
|
Papanikolopoulou K, Grammenoudi S, Samiotaki M, Skoulakis EMC. Differential effects of 14-3-3 dimers on Tau phosphorylation, stability and toxicity in vivo. Hum Mol Genet 2019; 27:2244-2261. [PMID: 29659825 DOI: 10.1093/hmg/ddy129] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/06/2018] [Indexed: 01/09/2023] Open
Abstract
Neurodegenerative dementias collectively known as Tauopathies involve aberrant phosphorylation and aggregation of the neuronal protein Tau. The largely neuronal 14-3-3 proteins are also elevated in the central nervous system (CNS) and cerebrospinal fluid of Tauopathy patients, suggesting functional linkage. We use the simplicity and genetic facility of the Drosophila system to investigate in vivo whether 14-3-3s are causal or synergistic with Tau accumulation in precipitating pathogenesis. Proteomic, biochemical and genetic evidence demonstrate that both Drosophila 14-3-3 proteins interact with human wild-type and mutant Tau on multiple sites irrespective of their phosphorylation state. 14-3-3 dimers regulate steady-state phosphorylation of both wild-type and the R406W mutant Tau, but they are not essential for toxicity of either variant. Moreover, 14-3-3 elevation itself is not pathogenic, but recruitment of dimers on accumulating wild-type Tau increases its steady-state levels ostensibly by occluding access to proteases in a phosphorylation-dependent manner. In contrast, the R406W mutant, which lacks a putative 14-3-3 binding site, responds differentially to elevation of each 14-3-3 isoform. Although excess 14-3-3ζ stabilizes the mutant protein, elevated D14-3-3ɛ has a destabilizing effect probably because of altered 14-3-3 dimer composition. Our collective data demonstrate the complexity of 14-3-3/Tau interactions in vivo and suggest that 14-3-3 attenuation is not appropriate ameliorative treatment of Tauopathies. Finally, we suggest that 'bystander' 14-3-3s are recruited by accumulating Tau with the consequences depending on the composition of available dimers within particular neurons and the Tau variant.
Collapse
Affiliation(s)
- Katerina Papanikolopoulou
- Division of Neuroscience, Biomedical Sciences Research Centre 'Alexander Fleming', Vari 16672, Greece
| | - Sofia Grammenoudi
- Division of Neuroscience, Biomedical Sciences Research Centre 'Alexander Fleming', Vari 16672, Greece
| | - Martina Samiotaki
- Proteomics Facility, Biomedical Sciences Research Centre 'Alexander Fleming', Vari 16672, Greece
| | - Efthimios M C Skoulakis
- Division of Neuroscience, Biomedical Sciences Research Centre 'Alexander Fleming', Vari 16672, Greece
| |
Collapse
|
181
|
Illes P, Rubini P, Huang L, Tang Y. The P2X7 receptor: a new therapeutic target in Alzheimer’s disease. Expert Opin Ther Targets 2019; 23:165-176. [DOI: 10.1080/14728222.2019.1575811] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Peter Illes
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, Germany
- Acupuncture and Tuina School, Chengdu University of TCM, Chengdu, China
| | - Patrizia Rubini
- Acupuncture and Tuina School, Chengdu University of TCM, Chengdu, China
| | - Lumei Huang
- Acupuncture and Tuina School, Chengdu University of TCM, Chengdu, China
| | - Yong Tang
- Acupuncture and Tuina School, Chengdu University of TCM, Chengdu, China
| |
Collapse
|
182
|
Shi Y, Wang Y, Wei H. Dantrolene : From Malignant Hyperthermia to Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2019; 18:668-676. [PMID: 29921212 PMCID: PMC7754833 DOI: 10.2174/1871527317666180619162649] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 05/07/2018] [Accepted: 06/13/2018] [Indexed: 12/12/2022]
Abstract
Dantrolene, a ryanodine receptor antagonist, is primarily known as the only clinically acceptable and effective treatment for Malignant Hyperthermia (MH). Inhibition of Ryanodine Receptor (RyR) by dantrolene decreases the abnormal calcium release from the Sarcoplasmic Reticulum (SR) or Endoplasmic Reticulum (ER), where RyR is located. Recently, emerging researches on dissociated cells, brains slices, live animal models and patients have demonstrated that altered RyR expression and function can also play a vital role in the pathogenesis of Alzheimer's Disease (AD). Therefore, dantrolene is now widely studied as a novel treatment for AD, targeting the blockade of RyR channels or another alternative pathway, such as the inhibitory effects of NMDA glutamate receptors and the effects of ER-mitochondria connection. However, the therapeutic effects are not consistent. In this review, we focus on the relationship between the altered RyR expression and function and the pathogenesis of AD, and the potential application of dantrolene as a novel treatment for the disease.
Collapse
Affiliation(s)
- Yun Shi
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA 19104, USA
- Department of Anesthesiology, Children’s Hospital of Fudan University, Shanghai, China
| | - Yong Wang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA 19104, USA
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Huafeng Wei
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA 19104, USA
| |
Collapse
|
183
|
Bachiller S, Jiménez-Ferrer I, Paulus A, Yang Y, Swanberg M, Deierborg T, Boza-Serrano A. Microglia in Neurological Diseases: A Road Map to Brain-Disease Dependent-Inflammatory Response. Front Cell Neurosci 2018; 12:488. [PMID: 30618635 PMCID: PMC6305407 DOI: 10.3389/fncel.2018.00488] [Citation(s) in RCA: 502] [Impact Index Per Article: 71.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/29/2018] [Indexed: 12/12/2022] Open
Abstract
Microglia represent a specialized population of macrophages-like cells in the central nervous system (CNS) considered immune sentinels that are capable of orchestrating a potent inflammatory response. Microglia are also involved in synaptic organization, trophic neuronal support during development, phagocytosis of apoptotic cells in the developing brain, myelin turnover, control of neuronal excitability, phagocytic debris removal as well as brain protection and repair. Microglial response is pathology dependent and affects to immune, metabolic. In this review, we will shed light on microglial activation depending on the disease context and the influence of factors such as aging, environment or cell-to-cell interaction.
Collapse
Affiliation(s)
- Sara Bachiller
- Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Itzia Jiménez-Ferrer
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Agnes Paulus
- Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Yiyi Yang
- Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Maria Swanberg
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Tomas Deierborg
- Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | | |
Collapse
|
184
|
Shimizu T, Kanai K, Sugawara Y, Uchida C, Uchida T. Prolyl Isomerase Pin1 Directly Regulates Calcium/Calmodulin-Dependent Protein Kinase II Activity in Mouse Brains. Front Pharmacol 2018; 9:1351. [PMID: 30532705 PMCID: PMC6265371 DOI: 10.3389/fphar.2018.01351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/05/2018] [Indexed: 11/28/2022] Open
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) is abundant in the brain and functions as a mediator of calcium signaling. We found that the relative activity of CaMKII was significantly lower in the WT mouse brains than in the Pin1-/- mouse brains. Pin1 binds to phosphorylated CaMKII and weakens its activity. For this reason, the phosphorylation level of tau in the presence of Pin1 is lower than that in the absence of Pin1, and microtubule polymerization is not downregulated by CaMKII when Pin1 is present. These results suggest a novel mechanism of action of Pin1 to prevent neurodegeneration.
Collapse
Affiliation(s)
- Taiki Shimizu
- Molecular Enzymology, Department of Molecular Cell Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Kenta Kanai
- Molecular Enzymology, Department of Molecular Cell Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Yui Sugawara
- Molecular Enzymology, Department of Molecular Cell Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Chiyoko Uchida
- Department of Human Development and Culture, Fukushima University, Fukushima, Japan
| | - Takafumi Uchida
- Molecular Enzymology, Department of Molecular Cell Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
185
|
Markowicz-Piasecka M, Huttunen KM, Sikora J. Metformin and its sulphonamide derivative simultaneously potentiateanti-cholinesterase activity of donepezil and inhibit beta-amyloid aggregation. J Enzyme Inhib Med Chem 2018; 33:1309-1322. [PMID: 30251898 PMCID: PMC6161601 DOI: 10.1080/14756366.2018.1499627] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/06/2018] [Accepted: 07/06/2018] [Indexed: 02/09/2023] Open
Abstract
The aim of this study was to assess in vitro the effects of sulphenamide and sulphonamide derivatives of metformin on the activity of human acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), establish the type of inhibition, and assess the potential synergism between biguanides and donepezil towards both cholinesterases (ChEs) and the effects on the β-amyloid aggregation. Sulphonamide 5 with para-trifluoromethyl- and ortho-nitro substituents in aromatic ring inhibited AChE in a mixed-type manner at micromolar concentrations (IC50 = 212.5 ± 48.3 µmol/L). The binary mixtures of donepezil and biguanides produce an anti-AChE effect, which was greater than either compound had alone. A combination of donepezil and sulphonamide 5 improved the IC50 value by 170 times. Compound 5 at 200 µmol/L inhibited Aβ aggregation by ∼20%. In conclusion, para-trifluoromethyl-ortho-nitro-benzenesulphonamide presents highly beneficial anti-AChE and anti-Aβ aggregation properties which could serve as a promising starting point for the design and development of novel biguanide-based candidates for AD treatment.
Collapse
Affiliation(s)
- Magdalena Markowicz-Piasecka
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, Lodz, Poland
| | - Kristiina M. Huttunen
- Faculty of Health Sciences, School Of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Joanna Sikora
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
186
|
Sierra-Fonseca JA, Gosselink KL. Tauopathy and neurodegeneration: A role for stress. Neurobiol Stress 2018; 9:105-112. [PMID: 30450376 PMCID: PMC6234266 DOI: 10.1016/j.ynstr.2018.08.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 01/22/2023] Open
Abstract
Neurodegenerative diseases are characterized by an irreversible and progressive loss of neuronal structure and function. While many alterations to normal cellular processes occur during neurodegeneration, a pathological accumulation of aggregated proteins constitutes a hallmark of several neurodegenerative disorders. Alzheimer's disease, specifically, is pathologically defined by the formation of amyloid plaques and tangles of hyperphosphorylated tau protein. Stress has emerged as an important factor in the development and progression of neurodegenerative diseases, including Alzheimer's. Very little is known, however, regarding the effects of stress on the mechanisms controlling abnormal protein aggregation and clearance. Chronic stress activates the hypothalamic-pituitary-adrenal (HPA) axis, causing an excessive secretion of glucocorticoids that are capable of impacting diverse physiological and cellular processes. The present review focuses on the influence of stress on a key feature of Alzheimer's disease pathology, emphasizing the relationship between tau phosphorylation and accumulation and its connection to HPA axis dysfunction.
Collapse
Affiliation(s)
- Jorge A Sierra-Fonseca
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Kristin L Gosselink
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA
| |
Collapse
|
187
|
Mahady L, Nadeem M, Malek-Ahmadi M, Chen K, Perez SE, Mufson EJ. HDAC2 dysregulation in the nucleus basalis of Meynert during the progression of Alzheimer's disease. Neuropathol Appl Neurobiol 2018; 45:380-397. [PMID: 30252960 DOI: 10.1111/nan.12518] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/23/2018] [Indexed: 02/06/2023]
Abstract
AIMS Alzheimer's disease (AD) is characterized by degeneration of cholinergic basal forebrain (CBF) neurons in the nucleus basalis of Meynert (nbM), which provides the major cholinergic input to the cortical mantle and is related to cognitive decline in patients with AD. Cortical histone deacetylase (HDAC) dysregulation has been associated with neuronal degeneration during AD progression. However, whether HDAC alterations play a role in CBF degeneration during AD onset is unknown. We investigated global HDAC protein levels and nuclear HDAC2 immunoreactivity in tissue containing the nbM, changes and their association with neurofibrillary tangles (NFTs) during the progression of AD. METHODS We used semi-quantitative western blotting and immunohistochemistry to evaluate HDAC and sirtuin (SIRT) levels in individuals that died with a premortem clinical diagnosis of no cognitive impairment (NCI), mild cognitive impairment (MCI), mild/moderate AD (mAD) or severe AD (sAD). Quantitative immunohistochemistry was used to identify HDAC2 protein levels in individual cholinergic nbM nuclei and their colocalization with the early phosphorylated tau marker AT8, the late-stage apoptotic tau marker TauC3 and Thioflavin-S, a marker of β-pleated sheet structures in NFTs. RESULTS In AD patients, HDAC2 protein levels were dysregulated in the basal forebrain region containing cholinergic neurons of the nbM. HDAC2 nuclear immunoreactivity was reduced in individual cholinergic nbM neurons across disease stages. HDAC2 nuclear reactivity correlated with multiple cognitive domains and with NFT formation. CONCLUSIONS These findings suggest that HDAC2 dysregulation contributes to cholinergic nbM neuronal dysfunction, NFT pathology, and cognitive decline during clinical progression of AD.
Collapse
Affiliation(s)
- L Mahady
- Department of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA.,Arizona State University Interdisciplinary Graduate Program in Neuroscience, Tempe, Arizona, USA
| | - M Nadeem
- Department of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | | | - K Chen
- Banner Alzheimer's Institute, Phoenix, Arizona, USA
| | - S E Perez
- Department of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - E J Mufson
- Department of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| |
Collapse
|
188
|
Denver P, McClean PL. Distinguishing normal brain aging from the development of Alzheimer's disease: inflammation, insulin signaling and cognition. Neural Regen Res 2018; 13:1719-1730. [PMID: 30136683 PMCID: PMC6128051 DOI: 10.4103/1673-5374.238608] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2018] [Indexed: 12/21/2022] Open
Abstract
As populations age, prevalence of Alzheimer's disease (AD) is rising. Over 100 years of research has provided valuable insights into the pathophysiology of the disease, for which age is the principal risk factor. However, in recent years, a multitude of clinical trial failures has led to pharmaceutical corporations becoming more and more unwilling to support drug development in AD. It is possible that dependence on the amyloid cascade hypothesis as a guide for preclinical research and drug discovery is part of the problem. Accumulating evidence suggests that amyloid plaques and tau tangles are evident in non-demented individuals and that reducing or clearing these lesions does not always result in clinical improvement. Normal aging is associated with pathologies and cognitive decline that are similar to those observed in AD, making differentiation of AD-related cognitive decline and neuropathology challenging. In this mini-review, we discuss the difficulties with discerning normal, age-related cognitive decline with that related to AD. We also discuss some neuropathological features of AD and aging, including amyloid and tau pathology, synapse loss, inflammation and insulin signaling in the brain, with a view to highlighting cognitive or neuropathological markers that distinguish AD from normal aging. It is hoped that this review will help to bolster future preclinical research and support the development of clinical tools and therapeutics for AD.
Collapse
Affiliation(s)
- Paul Denver
- Greater Los Angeles Veterans Affairs Healthcare System, West Los Angeles Medical Center and Department of Neurology, University of California, Los Angeles, CA, USA
- Centre for Molecular Biosciences, University of Ulster, Coleraine, Northern Ireland, UK
| | - Paula L. McClean
- Northern Ireland Centre for Stratified Medicine, Clinical, Translational and Research Innovation Centre (C-TRIC), University of Ulster, Derry/Londonderry, Northern Ireland, UK
| |
Collapse
|
189
|
Barai P, Raval N, Acharya S, Acharya N. Neuroprotective effects of Bergenia ciliata on NMDA induced injury in SH-SY5Y cells and attenuation of cognitive deficits in scopolamine induced amnesia in rats. Biomed Pharmacother 2018; 108:374-390. [PMID: 30227331 DOI: 10.1016/j.biopha.2018.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/02/2018] [Accepted: 09/03/2018] [Indexed: 02/06/2023] Open
Abstract
Bergenia ciliata (Haw) Sternb. possess immunomodulatory, anti-inflammatory, antioxidant, anti-urolithiatic, wound healing, anti-malarial, anti-diabetic and anti-cancer properties. Moreover, the methanolic extracts of the rhizomes of the plant were found to demonstrate beneficial neuroprotective effects in the intracerebroventricular streptozotocin-induced model in rats. Thus, the present study was undertaken to further explore the neuroprotective potential of the aqueous (BA) and methanolic extracts (BM) of B. ciliata through various in-vitro and in-vivo studies. Both the extracts at all tested concentrations i.e. 50-50,000 ng/mL did not cause any significant reduction of cell viability of SH-SY5Y cells when tested for 48 h when assessed through MTT and resazurin metabolism- based cell viability assays. The pre-treatment with the extracts could confer significant (p < 0.001) and dose-dependent protective effects against NMDA induced injury in SH-SY5Y cells. BM [IC50: 5.7 and 5.19 μg/mL for acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) respectively] led to more potent inhibition of both the enzymes as compared to BA (IC50: 227.12 and 23.25 μg/mL for AChE and BuChE respectively). BM also proved to be a 1.85-fold better scavenger of the DPPH free radicals as compared to BA. Thus, BM was taken further for the evaluation of the beneficial effects of 14-day pre-treatment in rats in the scopolamine (2 mg/kg, i.p.) induced amnesia model at 125, 250 and 500 mg/kg, p.o. BM pre-treatment at 250 and 500 mg/kg could significantly ameliorate the cognitive impairment (p < 0.001), inhibit AChE (p < 0.001) and BuChE (p < 0.05) activity, restore GSH levels (p < 0.05) in serum and brain homogenates and recover the morphology of hippocampal neurons back to normal. Moreover, the BM administration at 500 mg/kg also showed beneficial effects through the significant (p < 0.05) reduction of Aβ1-42, phosphorylated tau (p-tau) and GSK-3β immunoreactivity in the brain homogenates of the intracerebroventricularly streptozotocin (ICV STZ) injected rats as observed from the results of the ELISA assays. The outcomes of the study unveiled that BM exerts its beneficial effects through prevention of NMDA induced excitotoxic cell death, dual cholinesterase inhibition, antioxidant activity coupled with the reduction of the immunoreactivity for the Aβ1-42, p-tau and GSK-3β indicating its potential to be screened further for various other models to determine the exact mechanism of action.
Collapse
Affiliation(s)
- Priyal Barai
- Institute of Pharmacy, Nirma University, S. G. Highway, Ahmedabad, 382481, Gujarat, India
| | - Nisith Raval
- Institute of Pharmacy, Nirma University, S. G. Highway, Ahmedabad, 382481, Gujarat, India
| | - Sanjeev Acharya
- SSR College of Pharmacy, Sayli, Silvassa, 306230, U. T. of D&NH, India
| | - Niyati Acharya
- Institute of Pharmacy, Nirma University, S. G. Highway, Ahmedabad, 382481, Gujarat, India.
| |
Collapse
|
190
|
Mammadova N, Summers CM, Kokemuller RD, He Q, Ding S, Baron T, Yu C, Valentine RJ, Sakaguchi DS, Kanthasamy AG, Greenlee JJ, Heather West Greenlee M. Accelerated accumulation of retinal α-synuclein (pSer129) and tau, neuroinflammation, and autophagic dysregulation in a seeded mouse model of Parkinson's disease. Neurobiol Dis 2018; 121:1-16. [PMID: 30218757 DOI: 10.1016/j.nbd.2018.09.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/05/2018] [Accepted: 09/11/2018] [Indexed: 01/08/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by accumulation of misfolded α-synuclein within the central nervous system (CNS). Visual problems in PD patients are common, although retinal pathology associated with PD is not well understood. The purpose of this study was to investigate retinal pathology in a transgenic mouse model (TgM83) expressing the human A53T α-synuclein mutation and assess the effect of α-synuclein "seeding" on the development of retinal pathology. Two-month-old TgM83 mice were intracerebrally inoculated with brain homogenate from old (12-18 months) TgM83 mice. Retinas were then analyzed at 5 months of age. We analyzed retinas from 5-month-old and 8-month-old uninoculated healthy TgM83 mice, and old (12-18 months) mice that were euthanized following the development of clinical signs. Retinas of B6C3H mice (genetic background of the TgM83 mouse) served as control. We used immunohistochemistry and western blot analysis to detect accumulation of α-synuclein, pTauThr231, inflammation, changes in macroautophagy, and cell death. Raman spectroscopy was used to test the potential to differentiate between retinal tissues of healthy mice and diseased mice. This work demonstrates retinal changes associated with the A53T mutation. Retinas of non-inoculated TgM83 mice had accumulation of α-synuclein, "pre-tangle" tau, activation of retinal glial cells, and photoreceptor cell loss by 8 months of age. The development of these changes is accelerated by inoculation with brain homogenate from clinically ill TgM83 mice. Compared to non-inoculated 5-month-old TgM83 mice, retinas of inoculated 5-month-old mice had increased accumulation of α-synuclein (pSer129) and pTauThr231 proteins, upregulated microglial activation, and dysregulated macroautophagy. Raman spectroscopic analysis was able to discriminate between healthy and diseased mice. This study describes retinal pathology resulting from the A53T mutation. We show that seeding with brain homogenates from old TgM83 mice accelerates retinal pathology. We demonstrate that Raman spectroscopy can be used to accurately identify a diseased retina based on its biochemical profile, and that α-synuclein accumulation may contribute to accumulation of pTauThr231 proteins, neuroinflammation, metabolic dysregulation, and photoreceptor cell death. Our work provides insight into retinal changes associated with Parkinson's disease, and may contribute to a better understanding of visual symptoms experienced by patients.
Collapse
Affiliation(s)
- Najiba Mammadova
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States; Immunobiology Graduate Program, Iowa State University, United States; Neuroscience Graduate Program, Iowa State University, United States.
| | - Corey M Summers
- Immunobiology Graduate Program, Iowa State University, United States; Department of Kinesiology, Iowa State University, United States.
| | - Robyn D Kokemuller
- Neuroscience Graduate Program, Iowa State University, United States; Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA, United States; Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States.
| | - Qing He
- Department of Agriculture and Biosystems Engineering, Iowa State University, Ames, IA, United States.
| | - Shaowei Ding
- Department of Mechanical Engineering, Iowa State University, Ames, IA, United States.
| | - Thierry Baron
- Anses, Laboratoire de Lyon, Unité Maladies Neurodégénératives, Lyon, France.
| | - Chenxu Yu
- Department of Agriculture and Biosystems Engineering, Iowa State University, Ames, IA, United States.
| | - Rudy J Valentine
- Immunobiology Graduate Program, Iowa State University, United States; Department of Kinesiology, Iowa State University, United States.
| | - Donald S Sakaguchi
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States; Neuroscience Graduate Program, Iowa State University, United States.
| | - Anumantha G Kanthasamy
- Immunobiology Graduate Program, Iowa State University, United States; Neuroscience Graduate Program, Iowa State University, United States; Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States.
| | - Justin J Greenlee
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA, United States.
| | - M Heather West Greenlee
- Immunobiology Graduate Program, Iowa State University, United States; Neuroscience Graduate Program, Iowa State University, United States; Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States.
| |
Collapse
|
191
|
Jazvinšćak Jembrek M, Slade N, Hof PR, Šimić G. The interactions of p53 with tau and Aß as potential therapeutic targets for Alzheimer’s disease. Prog Neurobiol 2018; 168:104-127. [DOI: 10.1016/j.pneurobio.2018.05.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/04/2018] [Accepted: 05/01/2018] [Indexed: 12/24/2022]
|
192
|
Bejoy J, Song L, Wang Z, Sang QX, Zhou Y, Li Y. Neuroprotective Activities of Heparin, Heparinase III, and Hyaluronic Acid on the A β42-Treated Forebrain Spheroids Derived from Human Stem Cells. ACS Biomater Sci Eng 2018; 4:2922-2933. [PMID: 30533518 PMCID: PMC6286050 DOI: 10.1021/acsbiomaterials.8b00021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Extracellular matrix (ECM) components of the brain play complex roles in neurodegenerative diseases. The study of microenvironment of brain tissues with Alzheimer's disease revealed colocalized expression of different ECM molecules such as heparan sulfate proteoglycans (HSPGs), chondroitin sulfate proteoglycans (CSPGs), matrix metal-loproteinases (MMPs), and hyaluronic acid. In this study, both cortical and hippocampal populations were generated from human-induced pluripotent stem cell-derived neural spheroids. The cultures were then treated with heparin (competes for Aβ affinity with HSPG), heparinase III (digests HSPGs), chondroitinase (digests CSPGs), hyaluronic acid, and an MMP-2/9 inhibitor (SB-3CT) together with amyloid β (Aβ42) oligomers. The results indicate that inhibition of HSPG binding to Aβ42 using either heparinase III or heparin reduces Aβ42 expression and increases the population of β-tubulin III+ neurons, whereas the inhibition of MMP2/9 induces more neurotoxicity. The results should enhance our understanding of the contribution of ECMs to the Aβ-related neural cell death.
Collapse
Affiliation(s)
- Julie Bejoy
- Department of Chemical and Biomedical Engineering; FAMU-FSU College of Engineering
| | - Liqing Song
- Department of Chemical and Biomedical Engineering; FAMU-FSU College of Engineering
| | - Zhe Wang
- Department of Chemistry and Biochemistry
| | - Qing-Xiang Sang
- Department of Chemistry and Biochemistry
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States
| | - Yi Zhou
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States
| | - Yan Li
- Department of Chemical and Biomedical Engineering; FAMU-FSU College of Engineering
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States
| |
Collapse
|
193
|
Paltsev MA, Zuev VA, Kozhevnikova EO, Linkova NS, Kvetnaia TV, Polyakova VO, Kvetnoy IM. Molecular Markers of Early Diagnosis of Alzheimer Disease: Prospects for Research in Peripheral Tissues. ADVANCES IN GERONTOLOGY 2018. [DOI: 10.1134/s2079057018020133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
194
|
Rotermund C, Machetanz G, Fitzgerald JC. The Therapeutic Potential of Metformin in Neurodegenerative Diseases. Front Endocrinol (Lausanne) 2018; 9:400. [PMID: 30072954 PMCID: PMC6060268 DOI: 10.3389/fendo.2018.00400] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/27/2018] [Indexed: 12/12/2022] Open
Abstract
The search for treatments for neurodegenerative diseases is a major concern in light of today's aging population and an increasing burden on individuals, families, and society. Although great advances have been made in the last decades to understand the underlying genetic and biological cause of these diseases, only some symptomatic treatments are available. Metformin has long since been used to treat Type 2 Diabetes and has been shown to be beneficial in several other conditions. Metformin is well-tested in vitro and in vivo and an approved compound that targets diverse pathways including mitochondrial energy production and insulin signaling. There is growing evidence for the benefits of metformin to counteract age-related diseases such as cancer, cardiovascular disease, and neurodegenerative diseases. We will discuss evidence showing that certain neurodegenerative diseases and diabetes are explicitly linked and that metformin along with other diabetes drugs can reduce neurological symptoms in some patients and reduce disease phenotypes in animal and cell models. An interesting therapeutic factor might be how metformin is able to balance survival and death signaling in cells through pathways that are commonly associated with neurodegenerative diseases. In healthy neurons, these overarching signals keep energy metabolism, oxidative stress, and proteostasis in check, avoiding the dysfunction and neuronal death that defines neurodegenerative disease. We will discuss the biological mechanisms involved and the relevance of neuronal vulnerability and potential difficulties for future trials and development of therapies.
Collapse
Affiliation(s)
| | - Gerrit Machetanz
- Department of Neurodegenerative Diseases, Centre of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Julia C. Fitzgerald
- German Centre for Neurodegenerative Diseases, Tübingen, Germany
- Department of Neurodegenerative Diseases, Centre of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
195
|
Rotermund C, Machetanz G, Fitzgerald JC. The Therapeutic Potential of Metformin in Neurodegenerative Diseases. Front Endocrinol (Lausanne) 2018; 9:400. [PMID: 30072954 DOI: 10.3389/fendo.2018.00400/xml/nlm] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/27/2018] [Indexed: 05/25/2023] Open
Abstract
The search for treatments for neurodegenerative diseases is a major concern in light of today's aging population and an increasing burden on individuals, families, and society. Although great advances have been made in the last decades to understand the underlying genetic and biological cause of these diseases, only some symptomatic treatments are available. Metformin has long since been used to treat Type 2 Diabetes and has been shown to be beneficial in several other conditions. Metformin is well-tested in vitro and in vivo and an approved compound that targets diverse pathways including mitochondrial energy production and insulin signaling. There is growing evidence for the benefits of metformin to counteract age-related diseases such as cancer, cardiovascular disease, and neurodegenerative diseases. We will discuss evidence showing that certain neurodegenerative diseases and diabetes are explicitly linked and that metformin along with other diabetes drugs can reduce neurological symptoms in some patients and reduce disease phenotypes in animal and cell models. An interesting therapeutic factor might be how metformin is able to balance survival and death signaling in cells through pathways that are commonly associated with neurodegenerative diseases. In healthy neurons, these overarching signals keep energy metabolism, oxidative stress, and proteostasis in check, avoiding the dysfunction and neuronal death that defines neurodegenerative disease. We will discuss the biological mechanisms involved and the relevance of neuronal vulnerability and potential difficulties for future trials and development of therapies.
Collapse
Affiliation(s)
| | - Gerrit Machetanz
- Department of Neurodegenerative Diseases, Centre of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Julia C Fitzgerald
- German Centre for Neurodegenerative Diseases, Tübingen, Germany
- Department of Neurodegenerative Diseases, Centre of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
196
|
Prion-Like Propagation of Post-Translationally Modified Tau in Alzheimer’s Disease: A Hypothesis. J Mol Neurosci 2018; 65:480-490. [DOI: 10.1007/s12031-018-1111-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/20/2018] [Indexed: 12/25/2022]
|
197
|
Proteostasis and Mitochondrial Role on Psychiatric and Neurodegenerative Disorders: Current Perspectives. Neural Plast 2018; 2018:6798712. [PMID: 30050571 PMCID: PMC6040257 DOI: 10.1155/2018/6798712] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/13/2018] [Accepted: 05/17/2018] [Indexed: 12/14/2022] Open
Abstract
Proteostasis involves processes that are fundamental for neural viability. Thus, protein misfolding and the formation of toxic aggregates at neural level, secondary to dysregulation of the conservative mechanisms of proteostasis, are associated with several neuropsychiatric conditions. It has been observed that impaired mitochondrial function due to a dysregulated proteostasis control system, that is, ubiquitin-proteasome system and chaperones, could also have effects on neurodegenerative disorders. We aimed to critically analyze the available findings regarding the neurobiological implications of proteostasis on the development of neurodegenerative and psychiatric diseases, considering the mitochondrial role. Proteostasis alterations in the prefrontal cortex implicate proteome instability and accumulation of misfolded proteins. Altered mitochondrial dynamics, especially in proteostasis processes, could impede the normal compensatory mechanisms against cell damage. Thereby, altered mitochondrial functions on regulatory modulation of dendritic development, neuroinflammation, and respiratory function may underlie the development of some psychiatric conditions, such as schizophrenia, being influenced by a genetic background. It is expected that with the increasing evidence about proteostasis in neuropsychiatric disorders, new therapeutic alternatives will emerge.
Collapse
|
198
|
A silver lining for 24-hydroxycholesterol in Alzheimer's disease: The involvement of the neuroprotective enzyme sirtuin 1. Redox Biol 2018; 17:423-431. [PMID: 29883958 PMCID: PMC6007083 DOI: 10.1016/j.redox.2018.05.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/16/2018] [Accepted: 05/21/2018] [Indexed: 12/27/2022] Open
Abstract
It is now established that cholesterol oxidation products (oxysterols) are involved in several events underlying Alzheimer's disease (AD) pathogenesis. Of note, certain oxysterols cause neuron dysfunction and degeneration but, recently, some of them have been shown also to have neuroprotective effects. The present study, which aimed to understand the potential effects of 24-hydroxycholesterol (24-OH) against the intraneuronal accumulation of hyperphosphorylated tau protein, stressed these latter effects. A beneficial effect of 24-OH was demonstrated in SK-N-BE neuroblastoma cells, and is due to its ability to modulate the deacetylase sirtuin 1 (SIRT1), which contributes to preventing the neurotoxic accumulation of the hyperphosphorylated tau protein. Unlike 24-OH, 7-ketocholesterol (7-K) did not modulate the SIRT1-dependent neuroprotective pathway. To confirm the neuroprotective role of 24-OH, in vivo experiments were run on mice that express human tau without spontaneously developing tau pathology (hTau mice), by means of the intracerebroventricular injection of 24-OH. 24-OH, unlike 7-K, was found to completely prevent the hyperphosphorylation of tau induced by amyloid β monomers. These data highlight the importance of preventing the loss of 24-OH in the brain, and of maintaining high levels of the enzyme SIRT1, in order to counteract neurodegeneration. Graphical abstract A hypothetical scheme of the molecular mechanisms underlying the effects of 24-OH on hyperphosphorylated tau accumulation.fx1![]() 24-OH, unlike 7-K, upregulates the neuroprotective enzyme SIRT1. 24-OH induces a cell redox imbalance leading to SIRT1 activation. 24-OH prevents the accumulation of hyperphosphorylated tau.
Collapse
|
199
|
Ethyl Acetate Fraction from Persimmon ( Diospyros kaki) Ameliorates Cerebral Neuronal Loss and Cognitive Deficit via the JNK/Akt Pathway in TMT-Induced Mice. Int J Mol Sci 2018; 19:ijms19051499. [PMID: 29772805 PMCID: PMC5983595 DOI: 10.3390/ijms19051499] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/11/2018] [Accepted: 05/11/2018] [Indexed: 12/12/2022] Open
Abstract
This study was conducted to assess the antioxidant capacity and protective effect of the ethyl acetate fraction from persimmon (Diospyros kaki) (EFDK) on H2O2-induced hippocampal HT22 cells and trimethyltin chloride (TMT)-induced Institute of Cancer Research (ICR) mice. EFDK had high antioxidant activities and neuroprotective effects in HT22 cells. EFDK ameliorated behavioral and memory deficits in Y-maze, passive avoidance and Morris water maze tests. Also, EFDK restored the antioxidant system by regulating malondialdehyde (MDA), superoxide dismutase (SOD) and reduced gluthathione (GSH), and the cholinergic system by controlling the acetylcholine (ACh) level and acetylcholinesterase (AChE) activity and expression. EFDK enhanced mitochondrial function by regulating reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP), and adenosine triphosphate (ATP). Ultimately, EFDK regulated the c-Jun N-terminal kinase (JNK)/protein kinase B (Akt) pathway and apoptotic pathway by suppressing the expression of tumor necrosis factor-alpha (TNF-α), phosphorylated insulin receptor substrate 1 (IRS-1pSer), phosphorylated JNK (p-JNK), phosphorylated tau (p-tau), phosphorylated nuclear factor kappa-light-chain-enhancer of activated B cells (p-NF-κB), Bcl-2-associated X protein (BAX) and cytosolic cytochrome c, and increasing the expression of phosphorylated Akt (p-Akt) and mitochondrial cytochrome c. This study suggested that EFDK had antioxidant activity and a neuroprotective effect, and ameliorated cognitive abnormalities in TMT-induced mice by regulating the JNK/Akt and apoptotic pathway.
Collapse
|
200
|
Abstract
Mild traumatic brain injury (mTBI) represents a significant public healthcare concern, accounting for the majority of all head injuries. While symptoms are generally transient, some patients go on to experience long-term cognitive impairments and additional mild impacts can result in exacerbated and persisting negative outcomes. To date, studies using a range of experimental models have reported chronic behavioral deficits in the presence of axonal injury and inflammation following repeated mTBI; assessments of oxidative stress and myelin pathology have thus far been limited. However, some models employed induced acute focal damage more suggestive of moderate–severe brain injury and are therefore not relevant to repeated mTBI. Given that the nature of mechanical loading in TBI is implicated in downstream pathophysiological changes, the mechanisms of damage and chronic consequences of single and repeated closed-head mTBI remain to be fully elucidated. This review covers literature on potential mechanisms of damage following repeated mTBI, integrating known mechanisms of pathology underlying moderate–severe TBIs, with recent studies on adult rodent models relevant to direct impact injuries rather than blast-induced damage. Pathology associated with excitotoxicity and cerebral blood flow-metabolism uncoupling, oxidative stress, cell death, blood-brain barrier dysfunction, astrocyte reactivity, microglial activation, diffuse axonal injury, and dysmyelination is discussed, followed by a summary of functional deficits and preclinical assessments of therapeutic strategies. Comprehensive characterization of the pathology underlying delayed and persisting deficits following repeated mTBI is likely to facilitate further development of therapeutic strategies to limit long-term sequelae.
Collapse
Affiliation(s)
- Brooke Fehily
- 1 Experimental and Regenerative Neurosciences, School of Biological sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Melinda Fitzgerald
- 1 Experimental and Regenerative Neurosciences, School of Biological sciences, The University of Western Australia, Perth, Western Australia, Australia.,2 Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia.,3 Perron Institute for Neurological and Translational Science, Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia
| |
Collapse
|