151
|
Daskalaki A, Shalaby NA, Kux K, Tsoumpekos G, Tsibidis GD, Muskavitch MAT, Delidakis C. Distinct intracellular motifs of Delta mediate its ubiquitylation and activation by Mindbomb1 and Neuralized. ACTA ACUST UNITED AC 2012; 195:1017-31. [PMID: 22162135 PMCID: PMC3241720 DOI: 10.1083/jcb.201105166] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ubiquitylation of the intracellular domain of Drosophila Delta is necessary for Notch activation. DSL proteins are transmembrane ligands of the Notch receptor. They associate with a RING (really interesting new gene) family E3 ubiquitin ligase, either Neuralized (Neur) or Mindbomb 1 (Mib1), as a prerequisite to signaling. Although Neur and Mib1 stimulate internalization of DSL ligands, it is not known how ubiquitylation contributes to signaling. We present a molecular dissection of the intracellular domain (ICD) of Drosophila melanogaster Delta (Dl), a prototype DSL protein. Using a cell-based assay, we detected ubiquitylation of Dl by both Neur and Mib1. The two enzymes use distinct docking sites and displayed different acceptor lysine preferences on the Dl ICD. We generated Dl variants that selectively perturb its interactions with Neur or Mib1 and analyzed their signaling activity in two in vivo contexts. We found an excellent correlation between the ability to undergo ubiquitylation and signaling. Therefore, ubiquitylation of the DSL ICD seems to be a necessary step in the activation of Notch.
Collapse
Affiliation(s)
- Aikaterini Daskalaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Crete, Greece
| | | | | | | | | | | | | |
Collapse
|
152
|
Chillakuri CR, Sheppard D, Lea SM, Handford PA. Notch receptor-ligand binding and activation: insights from molecular studies. Semin Cell Dev Biol 2012; 23:421-8. [PMID: 22326375 PMCID: PMC3415683 DOI: 10.1016/j.semcdb.2012.01.009] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 01/17/2012] [Indexed: 11/05/2022]
Abstract
The Notch receptor is part of a core signalling pathway which is highly conserved in all metazoan species. It is required for various cell fate decisions at multiple stages of development and in the adult organism, with dysregulation of the pathway associated with genetic and acquired diseases including cancer. Although cellular and in vivo studies have provided considerable insight into the downstream consequences of Notch signalling, relatively little is known about the molecular basis of the receptor/ligand interaction and initial stages of activation. Recent advances in structure determination of the extracellular regions of human Notch-1 and one of its ligands Jagged-1 have given new insights into docking events occurring at the cell surface which may facilitate the development of new highly specific therapies. We review the structural data available for receptor and ligands and identify the challenges ahead.
Collapse
|
153
|
Sato C, Zhao G, Ilagan MXG. An overview of notch signaling in adult tissue renewal and maintenance. Curr Alzheimer Res 2012; 9:227-40. [PMID: 21605032 PMCID: PMC4361071 DOI: 10.2174/156720512799361600] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 05/27/2011] [Accepted: 06/10/2011] [Indexed: 11/22/2022]
Abstract
The Notch pathway is a critical mediator of short-range cell-cell communication that is reiteratively used to regulate a diverse array of cellular processes during embryonic development and the renewal and maintenance of adult tissues. Most Notch-dependent processes utilize a core signaling mechanism that is dependent on regulated intramembrane proteolysis: Upon ligand binding, Notch receptors undergo ectodomain shedding by ADAM metalloproteases, followed by γ-secretase-mediated intramembrane proteolysis. This releases the Notch intracellular domain, which translocates to the nucleus to activate transcription. In this review, we highlight the roles of Notch signaling particularly in self-renewing tissues in adults and several human diseases and raise some key considerations when targeting ADAMs and γ-secretase as disease-modifying strategies for Alzheimer's Disease.
Collapse
Affiliation(s)
- Chihiro Sato
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA 63110
| | - Guojun Zhao
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA 63110
| | - Ma. Xenia G. Ilagan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA 63110
| |
Collapse
|
154
|
Protein kinase Cδ negatively regulates Notch1-dependent transcription via a kinase-independent mechanism in vitro. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:387-97. [DOI: 10.1016/j.bbamcr.2011.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 11/17/2011] [Accepted: 11/18/2011] [Indexed: 11/20/2022]
|
155
|
Musse AA, Meloty-Kapella L, Weinmaster G. Notch ligand endocytosis: mechanistic basis of signaling activity. Semin Cell Dev Biol 2012; 23:429-36. [PMID: 22306180 DOI: 10.1016/j.semcdb.2012.01.011] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 01/16/2012] [Accepted: 01/19/2012] [Indexed: 02/08/2023]
Abstract
Regulation of Notch signaling is critical to development and maintenance of most eukaryotic organisms. The Notch receptors and ligands are integral membrane proteins and direct cell-cell interactions are needed to activate signaling. Ligand-expressing cells activate Notch signaling through an unusual mechanism involving Notch proteolysis to release the intracellular domain from the membrane, allowing the Notch receptor to function directly as the downstream signal transducer. In the absence of ligand, the Notch receptor is maintained in an autoinhibited, protease resistant state. Genetic studies suggest that Notch ligands require ubiquitylation, epsin endocytic adaptors and dynamin-dependent endocytosis for signaling activity. Here we discuss potential models and supporting evidence to account for the absolute requirement for ligand endocytosis to activate signaling in Notch cells. Specifically, we focus on a role for ligand-mediated endocytic force to unfold Notch, override the autoinhibited state, and activate proteolysis to direct Notch-specific cellular responses.
Collapse
Affiliation(s)
- Abdiwahab A Musse
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
156
|
Probing the druggability of protein-protein interactions: targeting the Notch1 receptor ankyrin domain using a fragment-based approach. Biochem Soc Trans 2012; 39:1327-33. [PMID: 21936810 DOI: 10.1042/bst0391327] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In order to achieve greater selectivity in drug discovery, researchers in both academia and industry are targeting cell regulatory systems. This often involves targeting the protein-protein interactions of regulatory multiprotein assemblies. Protein-protein interfaces are widely recognized to be challenging targets as they tend to be large and relatively flat, and therefore usually do not have the concave binding sites that characterize the so-called 'druggable genome'. One such prototypic multiprotein target is the Notch transcription complex, where an extensive network of protein-protein interactions stabilize the ternary complex comprising the ankyrin domain, CSL (CBF1/suppressor of Hairless/Lag-1) and MAML (Mastermind-like). Enhanced Notch activity is implicated in the development of T-ALL (T-cell acute lymphoblastic leukaemia) and selective inhibitors of Notch would be useful cancer medicines. In the present paper, we describe a fragment-based approach to explore the druggability of the ankyrin domain. Using biophysical methods and X-ray crystal structure analyses, we demonstrate that molecules can bind to the surface of the ankyrin domain at the interface region with CSL and MAML. We show that they probably represent starting points for designing larger compounds that can inhibit important protein-protein interactions that stabilize the Notch complex. Given the relatively featureless topography of the ankyrin domain, this unexpected development should encourage others to explore the druggability of such challenging multiprotein systems using fragment-based approaches.
Collapse
|
157
|
Garofalo AW, Jagodzinski JJ, Konradi AW, Ng RA, Semko CM, Sham HL, Sun M, Ye XM. Synthesis of Novel Tetrahydro-1 H-pyrazolo[4,3- c]pyridines via Intramolecular Nitrilimine Cycloaddition. Chem Pharm Bull (Tokyo) 2012; 60:1063-6. [DOI: 10.1248/cpb.c110498] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | | | | | | | | | - Minghua Sun
- Department of Medicinal Chemistry, Élan Pharmaceuticals
| | | |
Collapse
|
158
|
The molecular basis of Notch signaling: a brief overview. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 727:1-14. [PMID: 22399335 DOI: 10.1007/978-1-4614-0899-4_1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The Notch signaling pathway is evolutionarily conserved and has been associated with numerous developmental processes, including stem cell maintenance and adult tissue homeostasis. Notably, both abnormal increases and deficiencies of Notch signaling result in human developmental anomalies and cancer development implying that the precise regulation of the intensity and duration of Notch signals is imperative. Numerous studies have demonstrated that the aberrant gain or loss of Notch signaling pathway components is critically linked to multiple human diseases. In this chapter, we will briefly summarize the molecular basis of Notch signaling, focusing on the modulation of Notch signals, and its developmental outcomes including vessel formation and the onset of cancer.
Collapse
|
159
|
Shah DK, Zúñiga-Pflücker JC. Notch receptor-ligand interactions during T cell development, a ligand endocytosis-driven mechanism. Curr Top Microbiol Immunol 2012; 360:19-46. [PMID: 22581027 DOI: 10.1007/82_2012_225] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Notch signaling plays an important role during the development of different cell types and tissues. The role of Notch signaling in lymphocyte development, in particular in the development and commitment to the T cell lineage, has been the focus of research for many years. Notch signaling is absolutely required during the commitment and early stages of T cell development. Activation of the Notch signaling pathway is initiated by ligand-receptor interactions and appears to require active endocytosis of Notch ligands. Studies addressing the mechanism underlying endocytosis of Notch ligands have helped to identify the main players important and necessary for this process. Here, we review the Notch ligands, and the proposed models of Notch activation by Notch ligand endocytosis, highlighting key molecules involved. In particular, we discuss recent studies on Notch ligands involved in T cell development, current studies aimed at elucidating the relevance of Notch ligand endocytosis during T cell development and the identification of key players necessary for ligand endocytosis in the thymus and during T cell development.
Collapse
Affiliation(s)
- Divya K Shah
- Department of Immunology, Sunnybrook Research Institute, University of Toronto, 2075 Bayview Avenue, Toronto, ON, M4 N 3M5, Canada.
| | | |
Collapse
|
160
|
Marlow H, Roettinger E, Boekhout M, Martindale MQ. Functional roles of Notch signaling in the cnidarian Nematostella vectensis. Dev Biol 2011; 362:295-308. [PMID: 22155407 DOI: 10.1016/j.ydbio.2011.11.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 11/15/2011] [Accepted: 11/19/2011] [Indexed: 12/31/2022]
Abstract
Notch signaling is among the oldest of known Metazoan signaling pathways and is used in a multitude of developmental contexts to effect cellular differentiation, specification and the maintenance of stem cell state. Here we report the isolation and expression of the canonical Notch signaling pathway in the early branching metazoan Nematostella vectensis (Anthozoa, Cnidaria) during embryonic and larval development. We have used pharmacological treatment, morpholino knockdown, and dominant negative misexpression experiments to demonstrate that Notch signaling acts to mediate cnidogenesis, the development of cnidarian-specific neural effecter cells. Notch signaling often results in the transcriptional activation of NvHes genes, a conserved family of bHLH transcription factors. A loss of Notch signaling through use of pharmacological inhibition or knock-down of the Notch effecter gene Suppressor of Hairless Su(H) similarly results in a loss of cnidocyte cell fate. We also provide evidence that Notch signaling is responsible for certain aspects of neurogenesis in developing N. vectensis planula in which disruption of Notch cleavage via the pharmacological agent DAPT results in increased expression of neural marker genes in vivo. This data suggests that Notch signaling acting on components of the developing nervous system is an ancient role of this pathway. The shared requirement of Notch signaling for the development of both cnidocytes and neurons further supports the hypothesis that cnidocytes and neurons share common origins as multifunctional sensory-effecter cells.
Collapse
Affiliation(s)
- Heather Marlow
- Kewalo Marine Laboratory, University of Hawaii, Honolulu, HI 96813, USA
| | | | | | | |
Collapse
|
161
|
Maniati E, Bossard M, Cook N, Candido JB, Emami-Shahri N, Nedospasov SA, Balkwill FR, Tuveson DA, Hagemann T. Crosstalk between the canonical NF-κB and Notch signaling pathways inhibits Pparγ expression and promotes pancreatic cancer progression in mice. J Clin Invest 2011; 121:4685-99. [PMID: 22056382 DOI: 10.1172/jci45797] [Citation(s) in RCA: 207] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 09/28/2011] [Indexed: 01/03/2023] Open
Abstract
The majority of human pancreatic cancers have activating mutations in the KRAS proto-oncogene. These mutations result in increased activity of the NF-κB pathway and the subsequent constitutive production of proinflammatory cytokines. Here, we show that inhibitor of κB kinase 2 (Ikk2), a component of the canonical NF-κB signaling pathway, synergizes with basal Notch signaling to upregulate transcription of primary Notch target genes, resulting in suppression of antiinflammatory protein expression and promotion of pancreatic carcinogenesis in mice. We found that in the Kras(G12D)Pdx1-cre mouse model of pancreatic cancer, genetic deletion of Ikk2 in initiated pre-malignant epithelial cells substantially delayed pancreatic oncogenesis and resulted in downregulation of the classical Notch target genes Hes1 and Hey1. Tnf-α stimulated canonical NF-κB signaling and, in collaboration with basal Notch signals, induced optimal expression of Notch targets. Mechanistically, Tnf-α stimulation resulted in phosphorylation of histone H3 at the Hes1 promoter, and this signal was lost with Ikk2 deletion. Hes1 suppresses expression of Pparg, which encodes the antiinflammatory nuclear receptor Pparγ. Thus, crosstalk between Tnf-α/Ikk2 and Notch sustains the intrinsic inflammatory profile of transformed cells. These findings reveal what we believe to be a novel interaction between oncogenic inflammation and a major cell fate pathway and show how these pathways can cooperate to promote cancer progression.
Collapse
Affiliation(s)
- Eleni Maniati
- Centre for Cancer and Inflammation, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Design, synthesis and structure–activity relationship of novel [3.3.1] bicyclic sulfonamide-pyrazoles as potent γ-secretase inhibitors. Bioorg Med Chem Lett 2011; 21:5791-4. [DOI: 10.1016/j.bmcl.2011.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 07/29/2011] [Accepted: 08/01/2011] [Indexed: 12/21/2022]
|
163
|
Cave JW. Selective repression of Notch pathway target gene transcription. Dev Biol 2011; 360:123-31. [PMID: 21963536 DOI: 10.1016/j.ydbio.2011.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 08/28/2011] [Accepted: 09/14/2011] [Indexed: 12/21/2022]
Abstract
The Notch signaling pathway regulates metazoan development, in part, by directly controlling the transcription of target genes. For a given cellular context, however, only subsets of the known target genes are transcribed when the pathway is activated. Thus, there are context-dependent mechanisms that selectively maintain repression of target gene transcription when the Notch pathway is activated. This review focuses on molecular mechanisms that have been recently reported to mediate selective repression of Notch pathway target gene transcription. These mechanisms are essential for generating the complex spatial and temporal expression patterns of Notch target genes during development.
Collapse
Affiliation(s)
- John W Cave
- Dept. of. Neurology and Neuroscience, Weill Cornell Medical College, 785 Mamaroneck Ave., White Plains, NY 10605, USA.
| |
Collapse
|
164
|
O'Brien LL, Grimaldi M, Kostun Z, Wingert RA, Selleck R, Davidson AJ. Wt1a, Foxc1a, and the Notch mediator Rbpj physically interact and regulate the formation of podocytes in zebrafish. Dev Biol 2011; 358:318-30. [PMID: 21871448 DOI: 10.1016/j.ydbio.2011.08.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Revised: 08/05/2011] [Accepted: 08/08/2011] [Indexed: 01/02/2023]
Abstract
Podocytes help form the glomerular blood filtration barrier in the kidney and their injury or loss leads to renal disease. The Wilms' tumor suppressor-1 (Wt1) and the FoxC1/2 transcription factors, as well as Notch signaling, have been implicated as important regulators of podocyte fate. It is not known whether these factors work in parallel or sequentially on different gene targets, or as higher-order transcriptional complexes on common genes. Here, we use the zebrafish to demonstrate that embryos treated with morpholinos against wt1a, foxc1a, or the Notch transcriptional mediator rbpj develop fewer podocytes, as determined by wt1b, hey1 and nephrin expression, while embryos deficient in any two of these factors completely lack podocytes. From GST-pull-downs and co-immunoprecipitation experiments we show that Wt1a, Foxc1a, and Rbpj can physically interact with each other, whereas only Rbpj binds to the Notch intracellular domain (NICD). In transactivation assays, combinations of Wt1, FoxC1/2, and NICD synergistically induce the Hey1 promoter, and have additive or repressive effects on the Podocalyxin promoter, depending on dosage. Taken together, these data suggest that Wt1, FoxC1/2, and Notch signaling converge on common target genes where they physically interact to regulate a podocyte-specific gene program. These findings further our understanding of the transcriptional circuitry responsible for podocyte formation and differentiation during kidney development.
Collapse
Affiliation(s)
- Lori L O'Brien
- Center for Regenerative Medicine and Department of Medicine, Massachusetts General Hospital, Harvard Medical School and Harvard Stem Cell Institute, Boston, MA 02114, USA
| | | | | | | | | | | |
Collapse
|
165
|
Listinsky JJ, Siegal GP, Listinsky CM. The emerging importance of α-L-fucose in human breast cancer: a review. Am J Transl Res 2011; 3:292-322. [PMID: 21904652 PMCID: PMC3158734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 07/10/2011] [Indexed: 05/31/2023]
Abstract
Breast cancer cells incorporate the simple sugar alpha-L-fucose (fucose) into glycoproteins and glycolipids which, in turn, are expressed as part of the malignant phenotype. We have noted that fucose is not simply a bystander molecule, but, in fact, contributes to many of the fundamental oncologic properties of breast cancer cells. Here, we summarize the evidence from us and others that fucose is necessary for key functions of neoplastic progression including hematogenous metastasis, tumor invasion through extracellular matrices including basement membranes and up-regulation of the Notch signaling system, with implications for epithelial-to-mesenchymal transition and activation of breast cancer stem cells. Additionally, certain breast cancer biomarkers are fucose-rich while a well-known marker of breast cancer progression, soluble E-selectin, is a known counter-receptor of fucosylated selectin ligands. We provide illustrative examples and supportive evidence drawn from work with human breast cancer cell lines in vitro as well as clinical studies with human pathologic material. And finally, we discuss evidence that fucose (or its absence) is central to the mechanisms of action of several experimental targeted therapies which may prove useful in breast cancer treatment. We propose that alpha-L-fucose is essential in order to construct first, the malignant and then the metastatic phenotype of many human breast cancers. This knowledge may inform the search for novel treatment approaches in breast cancer.
Collapse
|
166
|
Westphal M, Lamszus K. The neurobiology of gliomas: from cell biology to the development of therapeutic approaches. Nat Rev Neurosci 2011; 12:495-508. [PMID: 21811295 DOI: 10.1038/nrn3060] [Citation(s) in RCA: 218] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gliomas are the most common type of primary brain tumour and are often fast growing with a poor prognosis for the patient. Their complex cellular composition, diffuse invasiveness and capacity to escape therapies has challenged researchers for decades and hampered progress towards an effective treatment. Recent molecular characterization of tumour cells combined with new insights into cellular diversification that occurs during development, and the modelling of these processes in transgenic animals have enabled a more detailed understanding of the events that underlie gliomagenesis. Combining this enhanced understanding of the relationship between neural stem cell biology and the cell lineage relationships of tumour cells with model systems offers new opportunities to develop specific and effective therapies.
Collapse
Affiliation(s)
- Manfred Westphal
- Department of Neurosurgery, University Hospital Hamburg Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | | |
Collapse
|
167
|
Chen J, Zolkiewska A. Force-induced unfolding simulations of the human Notch1 negative regulatory region: possible roles of the heterodimerization domain in mechanosensing. PLoS One 2011; 6:e22837. [PMID: 21829530 PMCID: PMC3145759 DOI: 10.1371/journal.pone.0022837] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 06/30/2011] [Indexed: 02/04/2023] Open
Abstract
Notch receptors are core components of the Notch signaling pathway and play a central role in cell fate decisions during development as well as tissue homeostasis. Upon ligand binding, Notch is sequentially cleaved at the S2 site by an ADAM protease and at the S3 site by the γ-secretase complex. Recent X-ray structures of the negative regulatory region (NRR) of the Notch receptor reveal an auto-inhibited fold where three protective Lin12/Notch repeats (LNR) of the NRR shield the S2 cleavage site housed in the heterodimerization (HD) domain. One of the models explaining how ligand binding drives the NRR conformation from a protease-resistant state to a protease-sensitive one invokes a mechanical force exerted on the NRR upon ligand endocytosis. Here, we combined physics-based atomistic simulations and topology-based coarse-grained modeling to investigate the intrinsic and force-induced folding and unfolding mechanisms of the human Notch1 NRR. The simulations support that external force applied to the termini of the NRR disengages the LNR modules from the heterodimerization (HD) domain in a well-defined, largely sequential manner. Importantly, the mechanical force can further drive local unfolding of the HD domain in a functionally relevant fashion that would provide full proteolytic access to the S2 site prior to heterodimer disassociation. We further analyzed local structural features, intrinsic folding free energy surfaces, and correlated motions of the HD domain. The results are consistent with a model in which the HD domain possesses inherent mechanosensing characteristics that could be utilized during Notch activation. This potential role of the HD domain in ligand-dependent Notch activation may have implications for understanding normal and aberrant Notch signaling.
Collapse
Affiliation(s)
- Jianhan Chen
- Department of Biochemistry, Kansas State University, Manhattan, Kansas, United States of America
| | - Anna Zolkiewska
- Department of Biochemistry, Kansas State University, Manhattan, Kansas, United States of America
| |
Collapse
|
168
|
Leonardi J, Fernandez-Valdivia R, Li YD, Simcox AA, Jafar-Nejad H. Multiple O-glucosylation sites on Notch function as a buffer against temperature-dependent loss of signaling. Development 2011; 138:3569-78. [PMID: 21771811 DOI: 10.1242/dev.068361] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mutations in Drosophila rumi result in a temperature-sensitive loss of Notch signaling. Rumi is a protein O-glucosyltransferase that adds glucose to EGF repeats with a C-X-S-X-P-C consensus sequence. Eighteen of the 36 EGF repeats in the Drosophila Notch receptor contain the consensus O-glucosylation motif. However, the contribution of individual O-glucose residues on Notch to the regulation of Notch signaling is not known. To address this issue, we carried out a mutational analysis of these glucosylation sites and determined their effects on Notch activity in vivo. Our results indicate that even though no single O-glucose mutation causes a significant decrease in Notch activity, all of the glucose residues on Notch contribute in additive and/or redundant fashions to maintain robust signaling, especially at higher temperatures. O-glucose motifs in and around the ligand-binding EGF repeats play a more important role than those in other EGF repeats of Notch. However, a single O-glucose mutation in EGF12 can be compensated by other O-glucose residues in neighboring EGF repeats. Moreover, timecourse cell aggregation experiments using a rumi null cell line indicate that a complete lack of Rumi does not affect Notch-Delta binding at high temperature. In addition, rumi fully suppresses the gain-of-function phenotype of a ligand-independent mutant form of Notch. Our data suggest that, at physiological levels of Notch, the combined effects of multiple O-glucose residues on this receptor allow productive S2 cleavage at high temperatures and thereby serve as a buffer against temperature-dependent loss of Notch signaling.
Collapse
Affiliation(s)
- Jessica Leonardi
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
169
|
Abstract
In the first volume of Developmental Cell, it was reported that the classic Drosophila neurogenic gene neuralized encodes a ubiquitin ligase that monoubiquitylates the Notch ligand Delta, thus promoting Delta endocytosis. A requirement for ligand internalization by the signal-sending cell, although counterintuitive, remains to date a feature unique to Notch signaling. Ten years and many ubiquitin ligases later, we discuss sequels to these three papers with an eye toward reviewing the development of ideas for how ligand ubiquitylation and endocytosis propel Notch signaling.
Collapse
Affiliation(s)
- Gerry Weinmaster
- Department of Biological Chemistry, David Geffen School of Medicine, University of California-Los Angeles, CA 90095, USA
| | | |
Collapse
|
170
|
Li H, Solomon E, Duhachek Muggy S, Sun D, Zolkiewska A. Metalloprotease-disintegrin ADAM12 expression is regulated by Notch signaling via microRNA-29. J Biol Chem 2011; 286:21500-10. [PMID: 21518768 PMCID: PMC3122209 DOI: 10.1074/jbc.m110.207951] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 04/20/2011] [Indexed: 11/06/2022] Open
Abstract
Metalloprotease-disintegrin ADAM12 is overexpressed and frequently mutated in breast cancer. We report here that ADAM12 expression in cultured mammalian cells is up-regulated by Notch signals. Expression of a constitutively active form of Notch1 in murine fibroblasts, myoblasts, or mammary epithelial cells or activation of the endogenous Notch signaling by co-culture with ligand-expressing cells increases ADAM12 protein and mRNA levels. Up-regulation of ADAM12 expression by Notch requires new transcription, is activated in a CSL-dependent manner, and is abolished upon inhibition of IκB kinase. Expression of a constitutively active Notch1 in NIH3T3 cells increases the stability of Adam12 mRNA. We further show that the microRNA-29 family, which has a predicted conserved site in the 3'-untranslated region of mouse Adam12, plays a critical role in mediating the stimulatory effect of Notch on ADAM12 expression. In human cells, Notch up-regulates the expression of the long form, but not the short form, of ADAM12 containing a divergent 3'-untranslated mRNA region. These studies uncover a novel paradigm in Notch signaling and establish Adam12 as a Notch-related gene.
Collapse
Affiliation(s)
- Hui Li
- From the Department of Biochemistry, Kansas State University, Manhattan, Kansas 66506
| | - Emilia Solomon
- From the Department of Biochemistry, Kansas State University, Manhattan, Kansas 66506
| | - Sara Duhachek Muggy
- From the Department of Biochemistry, Kansas State University, Manhattan, Kansas 66506
| | - Danqiong Sun
- From the Department of Biochemistry, Kansas State University, Manhattan, Kansas 66506
| | - Anna Zolkiewska
- From the Department of Biochemistry, Kansas State University, Manhattan, Kansas 66506
| |
Collapse
|
171
|
Neitzel ML, Aubele DL, Marugg JL, Jagodzinski JJ, Konradi AW, Pleiss MA, Szoke B, Zmolek W, Goldbach E, Quinn KP, Sauer JM, Brigham EF, Wallace W, Bova MP, Hemphill S, Basi G. Amino-caprolactam γ-secretase inhibitors showing potential for the treatment of Alzheimer’s disease. Bioorg Med Chem Lett 2011; 21:3715-20. [DOI: 10.1016/j.bmcl.2011.04.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 04/16/2011] [Accepted: 04/19/2011] [Indexed: 12/20/2022]
|
172
|
Sánchez-Solana B, Nueda ML, Ruvira MD, Ruiz-Hidalgo MJ, Monsalve EM, Rivero S, García-Ramírez JJ, Díaz-Guerra MJM, Baladrón V, Laborda J. The EGF-like proteins DLK1 and DLK2 function as inhibitory non-canonical ligands of NOTCH1 receptor that modulate each other's activities. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1153-64. [DOI: 10.1016/j.bbamcr.2011.03.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 02/19/2011] [Accepted: 03/07/2011] [Indexed: 12/23/2022]
|
173
|
Ranganathan P, Weaver KL, Capobianco AJ. Notch signalling in solid tumours: a little bit of everything but not all the time. Nat Rev Cancer 2011; 11:338-51. [PMID: 21508972 DOI: 10.1038/nrc3035] [Citation(s) in RCA: 637] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The discovery of Notch in Drosophila melanogaster nearly a century ago opened the door to an ever-widening understanding of cellular processes that are controlled or influenced by Notch signalling. As would be expected with such a pleiotropic pathway, the deregulation of Notch signalling leads to several pathological conditions, including cancer. A role for Notch is well established in haematological malignancies, and more recent studies have provided evidence for the importance of Notch activity in solid tumours. As it is thought to act as an oncogene in some cancers but as a tumour suppressor in others, the role of Notch in solid tumours seems to be highly context dependent.
Collapse
Affiliation(s)
- Prathibha Ranganathan
- Department of Surgery and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, FL 33136, USA
| | | | | |
Collapse
|
174
|
Zhang K, Zhu L, Fan M. Oxygen, a Key Factor Regulating Cell Behavior during Neurogenesis and Cerebral Diseases. Front Mol Neurosci 2011; 4:5. [PMID: 21503147 PMCID: PMC3073059 DOI: 10.3389/fnmol.2011.00005] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 03/23/2011] [Indexed: 12/13/2022] Open
Abstract
Oxygen is vital to maintain the normal functions of almost all the organs, especially for brain which is one of the heaviest oxygen consumers in the body. The important roles of oxygen on the brain are not only reflected in the development, but also showed in the pathological processes of many cerebral diseases. In the current review, we summarized the oxygen levels in brain tissues tested by real-time measurements during the embryonic and adult neurogenesis, the cerebral diseases, or in the hyperbaric/hypobaric oxygen environment. Oxygen concentration is low in fetal brain (0.076-7.6 mmHg) and in adult brain (11.4-53.2 mmHg), decreased during stroke, and increased in hyperbaric oxygen environment. In addition, we reviewed the effects of oxygen tensions on the behaviors of neural stem cells (NSCs) in vitro cultures at different oxygen concentration (15.2-152 mmHg) and in vivo niche during different pathological states and in hyperbaric/hypobaric oxygen environment. Moderate hypoxia (22.8-76 mmHg) can promote the proliferation of NSCs and enhance the differentiation of NSCs into the TH-positive neurons. Next, we briefly presented the oxygen-sensitive molecular mechanisms regulating NSCs proliferation and differentiation recently found including the Notch, Bone morphogenetic protein and Wnt pathways. Finally, the future perspectives about the roles of oxygen on brain and NSCs were given.
Collapse
Affiliation(s)
- Kuan Zhang
- Department of Brain Protection and Plasticity, Institute of Basic Medical SciencesBeijing, China
| | - Lingling Zhu
- Department of Brain Protection and Plasticity, Institute of Basic Medical SciencesBeijing, China
| | - Ming Fan
- Department of Brain Protection and Plasticity, Institute of Basic Medical SciencesBeijing, China
| |
Collapse
|
175
|
Popovic M, Bella J, Zlatev V, Hodnik V, Anderluh G, Barlow PN, Pintar A, Pongor S. The interaction of Jagged-1 cytoplasmic tail with afadin PDZ domain is local, folding-independent, and tuned by phosphorylation. J Mol Recognit 2011; 24:245-53. [DOI: 10.1002/jmr.1042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
176
|
Bai G, Chivatakarn O, Bonanomi D, Lettieri K, Franco L, Xia C, Stein E, Ma L, Lewcock JW, Pfaff SL. Presenilin-dependent receptor processing is required for axon guidance. Cell 2011; 144:106-18. [PMID: 21215373 PMCID: PMC3034090 DOI: 10.1016/j.cell.2010.11.053] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 09/20/2010] [Accepted: 11/08/2010] [Indexed: 01/17/2023]
Abstract
The Alzheimer's disease-linked gene presenilin is required for intramembrane proteolysis of amyloid-β precursor protein, contributing to the pathogenesis of neurodegeneration that is characterized by loss of neuronal connections, but the role of Presenilin in establishing neuronal connections is less clear. Through a forward genetic screen in mice for recessive genes affecting motor neurons, we identified the Columbus allele, which disrupts motor axon projections from the spinal cord. We mapped this mutation to the Presenilin-1 gene. Motor neurons and commissural interneurons in Columbus mutants lacking Presenilin-1 acquire an inappropriate attraction to Netrin produced by the floor plate because of an accumulation of DCC receptor fragments within the membrane that are insensitive to Slit/Robo silencing. Our findings reveal that Presenilin-dependent DCC receptor processing coordinates the interplay between Netrin/DCC and Slit/Robo signaling. Thus, Presenilin is a key neural circuit builder that gates the spatiotemporal pattern of guidance signaling, thereby ensuring neural projections occur with high fidelity.
Collapse
Affiliation(s)
- Ge Bai
- Howard Hughes Medical Institute and Gene Expression Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Onanong Chivatakarn
- Howard Hughes Medical Institute and Gene Expression Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Dario Bonanomi
- Howard Hughes Medical Institute and Gene Expression Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Karen Lettieri
- Howard Hughes Medical Institute and Gene Expression Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Laura Franco
- Howard Hughes Medical Institute and Gene Expression Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Caihong Xia
- Zilkha Neurogenetic Institute, Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90089, USA
| | - Elke Stein
- Department of Molecular, Cellular, and Developmental Biology, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Le Ma
- Zilkha Neurogenetic Institute, Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90089, USA
| | - Joseph W. Lewcock
- Howard Hughes Medical Institute and Gene Expression Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Samuel L. Pfaff
- Howard Hughes Medical Institute and Gene Expression Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
177
|
Hernandez F, Peluffo MC, Stouffer RL, Irusta G, Tesone M. Role of the DLL4-NOTCH system in PGF2alpha-induced luteolysis in the pregnant rat. Biol Reprod 2011; 84:859-65. [PMID: 21209419 DOI: 10.1095/biolreprod.110.088708] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We investigated the expression and cell localization of NOTCH1, NOTCH4, and the delta-like ligand DLL4 in corpus luteum (CL) from pregnant rats during prostaglandin F2alpha (PGF2alpha)-induced luteolysis. We also examined serum progesterone (P(4)) and CL proteins related to apoptosis after local administration of the notch inhibitor N-[N-(3,5-difluorophenacetyl-l-alanyl)]-S-phenylglycine t-butyl ester (DAPT). Specific staining for NOTCH1 and NOTCH4 receptors was detected predominantly in large and small luteal cells. Furthermore, in line with the fact that the notch intracellular domain is translocated to the nucleus, where it regulates gene expression, staining was evident in the nuclei of luteal cells. In addition, we detected diffuse cytoplasmic immunostaining for DLL4 in small and large luteal cells, in accordance with the fact that DLL4 undergoes proteolytic degradation after receptor binding. The mRNA expression of Notch1, Notch4, and Dll4 in CL isolated on Day 19 of pregnancy decreased significantly after administration of PGF2alpha. Consistent with the mRNA results, administration of PGF2alpha to pregnant rats on Day 19 of pregnancy decreased the protein fragment corresponding to the cleaved forms of NOTCH1/4 CL receptors. In contrast, no significant changes were detected in protein levels for the ligand DLL4. The local intrabursal administration of DAPT decreased serum P(4) levels and increased luteal levels of active caspase 3 and the BAX:BCL2 ratio 24 h after the treatment. These results support a luteotropic role for notch signaling to promote luteal cell viability and steroidogenesis, and they suggest that the luteolytic hormone PGF2alpha may act in part by reducing the expression of some notch system members.
Collapse
Affiliation(s)
- Fatima Hernandez
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
178
|
Pece S, Confalonieri S, R Romano P, Di Fiore PP. NUMB-ing down cancer by more than just a NOTCH. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1815:26-43. [PMID: 20940030 DOI: 10.1016/j.bbcan.2010.10.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 09/30/2010] [Accepted: 10/02/2010] [Indexed: 02/07/2023]
Abstract
The protein Numb does not live up to its name. This passive-sounding protein is anything but spent. Originally identified as a cell-fate determinant in Drosophila development, Numb received a good deal of attention as an inhibitor of the Notch receptor signaling pathway. It turns out, however, that Numb does a lot more than simply regulate Notch. It has been implicated in a variety of biochemical pathways connected with signaling (it regulates Notch-, Hedgehog- and TP53-activated pathways), endocytosis (it is involved in cargo internalization and recycling), determination of polarity (it interacts with the PAR complex, and regulates adherens and tight junctions), and ubiquitination (it exploits this mechanism to regulate protein function and stability). This complex biochemical network lies at the heart of Numb's involvement in diverse cellular phenotypes, including cell fate developmental decisions, maintenance of stem cell compartments, regulation of cell polarity and adhesion, and migration. Considering its multifaceted role in cellular homeostasis, it is not surprising that Numb has been implicated in cancer as a tumor suppressor. Our major goal here is to explain the cancer-related role of Numb based on our understanding of its role in cell physiology. We will attempt to do this by reviewing the present knowledge of Numb at the biochemical and functional level, and by integrating its apparently heterogeneous functions into a unifying scenario, based on our recently proposed concept of the "endocytic matrix". Finally, we will discuss the role of Numb in the maintenance of the normal stem cell compartment, as a starting point to interpret the tumor suppressor function of Numb in the context of the cancer stem cell hypothesis.
Collapse
Affiliation(s)
- Salvatore Pece
- Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139, Milan, Italy
| | | | | | | |
Collapse
|
179
|
Liu H, Chi AW, Arnett KL, Chiang MY, Xu L, Shestova O, Wang H, Li YM, Bhandoola A, Aster JC, Blacklow SC, Pear WS. Notch dimerization is required for leukemogenesis and T-cell development. Genes Dev 2010; 24:2395-407. [PMID: 20935071 PMCID: PMC2964750 DOI: 10.1101/gad.1975210] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 09/13/2010] [Indexed: 12/30/2022]
Abstract
Notch signaling regulates myriad cellular functions by activating transcription, yet how Notch selectively activates different transcriptional targets is poorly understood. The core Notch transcriptional activation complex can bind DNA as a monomer, but it can also dimerize on DNA-binding sites that are properly oriented and spaced. However, the significance of Notch dimerization is unknown. Here, we show that dimeric Notch transcriptional complexes are required for T-cell maturation and leukemic transformation but are dispensable for T-cell fate specification from a multipotential precursor. The varying requirements for Notch dimerization result from the differential sensitivity of specific Notch target genes. In particular, c-Myc and pre-T-cell antigen receptor α (Ptcra) are dimerization-dependent targets, whereas Hey1 and CD25 are not. These findings identify functionally important differences in the responsiveness among Notch target genes attributable to the formation of higher-order complexes. Consequently, it may be possible to develop a new class of Notch inhibitors that selectively block outcomes that depend on Notch dimerization (e.g., leukemogenesis).
Collapse
MESH Headings
- Animals
- Base Sequence
- Binding Sites
- Cell Line, Tumor
- Cell Proliferation
- Cells, Cultured
- Flow Cytometry
- Leukemia/genetics
- Leukemia/metabolism
- Leukemia/pathology
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred C57BL
- Models, Molecular
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Protein Multimerization
- Protein Structure, Tertiary
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- Receptor, Notch1/chemistry
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Nucleic Acid
- Signal Transduction/genetics
- Signal Transduction/physiology
- T-Lymphocytes/cytology
- T-Lymphocytes/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Hudan Liu
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Anthony W.S. Chi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Kelly L. Arnett
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Mark Y. Chiang
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Division of Hematology-Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Lanwei Xu
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Olga Shestova
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Hongfang Wang
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Yue-Ming Li
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Avinash Bhandoola
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jon C. Aster
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Stephen C. Blacklow
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Warren S. Pear
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
180
|
Jafar-Nejad H, Leonardi J, Fernandez-Valdivia R. Role of glycans and glycosyltransferases in the regulation of Notch signaling. Glycobiology 2010; 20:931-49. [PMID: 20368670 PMCID: PMC2912550 DOI: 10.1093/glycob/cwq053] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 03/27/2010] [Accepted: 03/27/2010] [Indexed: 12/17/2022] Open
Abstract
The evolutionarily conserved Notch signaling pathway plays broad and important roles during embryonic development and in adult tissue homeostasis. Unlike most other pathways used during animal development, Notch signaling does not rely on second messengers and intracellular signaling cascades. Instead, pathway activation results in the cleavage of the Notch intracellular domain and its translocation into the nucleus, where it functions as a transcriptional co-activator of the Notch target genes. To ensure tight spatial and temporal regulation of a pathway with such an unusually direct signaling transduction, animal cells have devised a variety of specialized modulatory mechanisms. One such mechanism takes advantage of decorating the Notch extracellular domain with rare types of O-linked glycans. In this review, we will discuss the genetic and biochemical data supporting the notion that carbohydrate modification is essential for Notch signaling and attempt to provide a brief historical overview of how we have learned what we know about the glycobiology of Notch. We will also summarize what is known about the contribution of specific nucleotide-sugar transporters to Notch biology and the roles-enzymatic and non-enzymatic-played by specific glycosyltransferases in the regulation of this pathway. Mutations in the Notch pathway components cause a variety of human diseases, and manipulation of Notch signaling is emerging as a powerful tool in regenerative medicine. Therefore, studying how sugar modification modulates Notch signaling provides a framework for better understanding the role of glycosylation in animal development and might offer new tools to manipulate Notch signaling for therapeutic purposes.
Collapse
|
181
|
Takeuchi H, Haltiwanger RS. Role of glycosylation of Notch in development. Semin Cell Dev Biol 2010; 21:638-45. [PMID: 20226260 PMCID: PMC2898917 DOI: 10.1016/j.semcdb.2010.03.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 03/02/2010] [Accepted: 03/03/2010] [Indexed: 11/26/2022]
Abstract
The Notch pathway is one of the major signaling pathways required for proper development in metazoans. Notch activity is regulated at numerous levels, and increasing evidence reveals the importance of "protein glycosylation" (modification of Notch receptors with sugars) for its regulation. In this review we summarize the significance of the Notch pathway in development and the players responsible for its glycosylation, and then discuss the molecular mechanisms by which protein glycosylation may regulate Notch function.
Collapse
Affiliation(s)
- Hideyuki Takeuchi
- Department of Biochemistry and Cell Biology, Institute of Cell and Developmental Biology, Stony Brook University, Stony Brook, New York, 11794-5215, USA
| | - Robert S. Haltiwanger
- Department of Biochemistry and Cell Biology, Institute of Cell and Developmental Biology, Stony Brook University, Stony Brook, New York, 11794-5215, USA
| |
Collapse
|
182
|
Yashiro-Ohtani Y, Ohtani T, Pear WS. Notch regulation of early thymocyte development. Semin Immunol 2010; 22:261-9. [PMID: 20630772 DOI: 10.1016/j.smim.2010.04.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 04/23/2010] [Indexed: 01/23/2023]
Abstract
Notch signaling plays multiple roles in T cell development. Following thymic entry, Notch signals are required to specify the T cell fate from a multipotent hematopoietic progenitor. At subsequent steps in early T cell development, Notch provides important differentiation, survival, proliferation and metabolic signals. This review focuses on the multiple functions of Notch in early T cell development, from T cell specification in the thymus through beta selection.
Collapse
Affiliation(s)
- Yumi Yashiro-Ohtani
- The Department of Pathology & Laboratory Medicine and the Abramson Family Cancer Research Institute at the University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | |
Collapse
|
183
|
Kelly DF, Lake RJ, Middelkoop TC, Fan HY, Artavanis-Tsakonas S, Walz T. Molecular structure and dimeric organization of the Notch extracellular domain as revealed by electron microscopy. PLoS One 2010; 5:e10532. [PMID: 20479883 PMCID: PMC2866536 DOI: 10.1371/journal.pone.0010532] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 04/16/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The Notch receptor links cell fate decisions of one cell to that of the immediate cellular neighbor. In humans, malfunction of Notch signaling results in diseases and congenital disorders. Structural information is essential for gaining insight into the mechanism of the receptor as well as for potentially interfering with its function for therapeutic purposes. METHODOLOGY/PRINCIPAL FINDINGS We used the Affinity Grid approach to prepare specimens of the Notch extracellular domain (NECD) of the Drosophila Notch and human Notch1 receptors suitable for analysis by electron microscopy and three-dimensional (3D) image reconstruction. The resulting 3D density maps reveal that the NECD structure is conserved across species. We show that the NECD forms a dimer and adopts different yet defined conformations, and we identify the membrane-proximal region of the receptor and its ligand-binding site. CONCLUSIONS/SIGNIFICANCE Our results provide direct and unambiguous evidence that the NECD forms a dimer. Our studies further show that the NECD adopts at least three distinct conformations that are likely related to different functional states of the receptor. These findings open the way to now correlate mutations in the NECD with its oligomeric state and conformation.
Collapse
Affiliation(s)
- Deborah F. Kelly
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Robert J. Lake
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Teije C. Middelkoop
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hua-Ying Fan
- Epigenetics and Progenitor Cells Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | | | - Thomas Walz
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
184
|
Jorissen E, Prox J, Bernreuther C, Weber S, Schwanbeck R, Serneels L, Snellinx A, Craessaerts K, Thathiah A, Tesseur I, Bartsch U, Weskamp G, Blobel CP, Glatzel M, De Strooper B, Saftig P. The disintegrin/metalloproteinase ADAM10 is essential for the establishment of the brain cortex. J Neurosci 2010; 30:4833-44. [PMID: 20371803 PMCID: PMC2921981 DOI: 10.1523/jneurosci.5221-09.2010] [Citation(s) in RCA: 290] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 02/15/2010] [Accepted: 02/23/2010] [Indexed: 01/02/2023] Open
Abstract
The metalloproteinase and major amyloid precursor protein (APP) alpha-secretase candidate ADAM10 is responsible for the shedding of proteins important for brain development, such as cadherins, ephrins, and Notch receptors. Adam10(-/-) mice die at embryonic day 9.5, due to major defects in development of somites and vasculogenesis. To investigate the function of ADAM10 in brain, we generated Adam10 conditional knock-out (cKO) mice using a Nestin-Cre promotor, limiting ADAM10 inactivation to neural progenitor cells (NPCs) and NPC-derived neurons and glial cells. The cKO mice die perinatally with a disrupted neocortex and a severely reduced ganglionic eminence, due to precocious neuronal differentiation resulting in an early depletion of progenitor cells. Premature neuronal differentiation is associated with aberrant neuronal migration and a disorganized laminar architecture in the neocortex. Neurospheres derived from Adam10 cKO mice have a disrupted sphere organization and segregated more neurons at the expense of astrocytes. We found that Notch-1 processing was affected, leading to downregulation of several Notch-regulated genes in Adam10 cKO brains, in accordance with the central role of ADAM10 in this signaling pathway and explaining the neurogenic phenotype. Finally, we found that alpha-secretase-mediated processing of APP was largely reduced in these neurons, demonstrating that ADAM10 represents the most important APP alpha-secretase in brain. Our study reveals that ADAM10 plays a central role in the developing brain by controlling mainly Notch-dependent pathways but likely also by reducing surface shedding of other neuronal membrane proteins including APP.
Collapse
Affiliation(s)
- Ellen Jorissen
- Center for Human Genetics, Katholieke Universiteit Leuven and
- Department for Developmental and Molecular Genetics, Vlaams Instituut voor Biotechnologie (VIB), 3000 Leuven, Belgium
| | - Johannes Prox
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany
| | - Christian Bernreuther
- Institute of Neuropathology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Silvio Weber
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany
| | - Ralf Schwanbeck
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany
| | - Lutgarde Serneels
- Center for Human Genetics, Katholieke Universiteit Leuven and
- Department for Developmental and Molecular Genetics, Vlaams Instituut voor Biotechnologie (VIB), 3000 Leuven, Belgium
| | - An Snellinx
- Center for Human Genetics, Katholieke Universiteit Leuven and
- Department for Developmental and Molecular Genetics, Vlaams Instituut voor Biotechnologie (VIB), 3000 Leuven, Belgium
| | - Katleen Craessaerts
- Center for Human Genetics, Katholieke Universiteit Leuven and
- Department for Developmental and Molecular Genetics, Vlaams Instituut voor Biotechnologie (VIB), 3000 Leuven, Belgium
| | - Amantha Thathiah
- Center for Human Genetics, Katholieke Universiteit Leuven and
- Department for Developmental and Molecular Genetics, Vlaams Instituut voor Biotechnologie (VIB), 3000 Leuven, Belgium
| | - Ina Tesseur
- Center for Human Genetics, Katholieke Universiteit Leuven and
- Department for Developmental and Molecular Genetics, Vlaams Instituut voor Biotechnologie (VIB), 3000 Leuven, Belgium
| | - Udo Bartsch
- Department of Ophthalmology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany, and
| | - Gisela Weskamp
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, and Departments of Medicine and of Physiology, Systems Biology and Biophysics, Weill Medical College of Cornell University, New York, New York 10021
| | - Carl P. Blobel
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, and Departments of Medicine and of Physiology, Systems Biology and Biophysics, Weill Medical College of Cornell University, New York, New York 10021
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Bart De Strooper
- Center for Human Genetics, Katholieke Universiteit Leuven and
- Department for Developmental and Molecular Genetics, Vlaams Instituut voor Biotechnologie (VIB), 3000 Leuven, Belgium
| | - Paul Saftig
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany
| |
Collapse
|
185
|
Abstract
The Notch signaling pathway regulates many aspects of embryonic development, as well as differentiation processes and tissue homeostasis in multiple adult organ systems. Disregulation of Notch signaling is associated with several human disorders, including cancer. In the last decade, it became evident that Notch signaling plays important roles within the hematopoietic and immune systems. Notch plays an essential role in the development of embryonic hematopoietic stem cells and influences multiple lineage decisions of developing lymphoid and myeloid cells. Moreover, recent evidence suggests that Notch is an important modulator of T cell-mediated immune responses. In this review, we discuss Notch signaling in hematopoiesis, lymphocyte development, and function as well as in T cell acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Freddy Radtke
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Institute for Experimental Cancer Research (ISREC), Station 19, 1015 Lausanne, Switzerland.
| | | | | |
Collapse
|
186
|
Jiao Z, Wang W, Guo M, Zhang T, Chen L, Wang Y, You H, Li J. Expression analysis of Notch-related molecules in peripheral blood T helper cells of patients with rheumatoid arthritis. Scand J Rheumatol 2010; 39:26-32. [PMID: 20132067 DOI: 10.3109/03009740903124424] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Expression of Notch homologues in local tissue inflammation in rheumatoid arthritis (RA) and cultured synoviocytes has been reported, but the expression profile of Notch-related molecules in peripheral lymphocytes in RA remains unclear. In this study, we measured the expression of Notch receptors and downstream molecules in peripheral lymphocytes from RA patients. METHODS Expression of Notch receptors in peripheral lymphocytes of RA patients was assessed by both flow cytometry and real-time polymerase chain reaction (PCR). Expression of the representative Notch target gene HES-1 and the regulatory gene NUMB in purified T helper cells from RA patients was determined by real-time PCR, and expression of Notch intracellular domain (ICD) was determined by immunoblot analysis. RESULTS There was an increased expression of Notch 2, Notch 3, and Notch 4 in T helper cells from active RA patients, among which increased expression of Notch 3 was mainly by activated T cells. Notably, expression of Notch 3 in T cells decreased in inactive RA patients and the level was similar to that of healthy controls (HC). Notch receptors were rarely observed on B cells and no difference in expression was found between RA patients and HC. T helper cells from RA patients exhibited increased expression of the target gene HES-1 but decreased expression of the negative modulation gene NUMB of Notch signalling. There was also an increased nuclear translocation of Notch-ICD in T helper cells from active RA disease. CONCLUSION The present study demonstrated that T helper cells from RA patients display a significantly altered expression profile of Notch receptors and enhanced activation of Notch signalling compared with HC.
Collapse
Affiliation(s)
- Z Jiao
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
187
|
Yuan JS, Kousis PC, Suliman S, Visan I, Guidos CJ. Functions of Notch Signaling in the Immune System: Consensus and Controversies. Annu Rev Immunol 2010; 28:343-65. [DOI: 10.1146/annurev.immunol.021908.132719] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Julie S. Yuan
- Program in Stem Cell and Developmental Biology, Hospital for Sick Children Research Institute, and Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada;
| | - Philaretos C. Kousis
- Program in Stem Cell and Developmental Biology, Hospital for Sick Children Research Institute, and Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada;
| | - Sara Suliman
- Program in Stem Cell and Developmental Biology, Hospital for Sick Children Research Institute, and Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada;
| | - Ioana Visan
- Program in Stem Cell and Developmental Biology, Hospital for Sick Children Research Institute, and Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada;
| | - Cynthia J. Guidos
- Program in Stem Cell and Developmental Biology, Hospital for Sick Children Research Institute, and Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada;
| |
Collapse
|
188
|
Myeloid translocation gene 16 (MTG16) interacts with Notch transcription complex components to integrate Notch signaling in hematopoietic cell fate specification. Mol Cell Biol 2010; 30:1852-63. [PMID: 20123979 DOI: 10.1128/mcb.01342-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Notch signaling pathway regulates gene expression programs to influence the specification of cell fate in diverse tissues. In response to ligand binding, the intracellular domain of the Notch receptor is cleaved by the gamma-secretase complex and then translocates to the nucleus. There, it binds the transcriptional repressor CSL, triggering its conversion to an activator of Notch target gene expression. The events that control this conversion are poorly understood. We show that the transcriptional corepressor, MTG16, interacts with both CSL and the intracellular domains of Notch receptors, suggesting a pivotal role in regulation of the Notch transcription complex. The Notch1 intracellular domain disrupts the MTG16-CSL interaction. Ex vivo fate specification in response to Notch signal activation is impaired in Mtg16-/- hematopoietic progenitors, and restored by MTG16 expression. An MTG16 derivative lacking the binding site for the intracellular domain of Notch1 fails to restore Notch-dependent cell fate. These data suggest that MTG16 interfaces with critical components of the Notch transcription complex to affect Notch-dependent lineage allocation in hematopoiesis.
Collapse
|
189
|
Abstract
The proteolytic cleavages elicited by activation of the Notch receptor release an intracellular fragment, Notch intracellular domain, which enters the nucleus to activate the transcription of targets. Changes in transcription are therefore a major output of this pathway. However, the Notch outputs clearly differ from cell type to cell type. In this review we discuss current understanding of Notch targets, the mechanisms involved in their transcriptional regulation, and what might underlie the activation of different sets of targets in different cell types.
Collapse
Affiliation(s)
- Sarah Bray
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
190
|
Abstract
Notch signaling induced by canonical Notch ligands is critical for normal embryonic development and tissue homeostasis through the regulation of a variety of cell fate decisions and cellular processes. Activation of Notch signaling is normally tightly controlled by direct interactions with ligand-expressing cells, and dysregulated Notch signaling is associated with developmental abnormalities and cancer. While canonical Notch ligands are responsible for the majority of Notch signaling, a diverse group of structurally unrelated noncanonical ligands has also been identified that activate Notch and likely contribute to the pleiotropic effects of Notch signaling. Soluble forms of both canonical and noncanonical ligands have been isolated, some of which block Notch signaling and could serve as natural inhibitors of this pathway. Ligand activity can also be indirectly regulated by other signaling pathways at the level of ligand expression, serving to spatiotemporally compartmentalize Notch signaling activity and integrate Notch signaling into a molecular network that orchestrates developmental events. Here, we review the molecular mechanisms underlying the dual role of Notch ligands as activators and inhibitors of Notch signaling. Additionally, evidence that Notch ligands function independent of Notch is presented. We also discuss how ligand posttranslational modification, endocytosis, proteolysis, and spatiotemporal expression regulate their signaling activity.
Collapse
Affiliation(s)
- Brendan D'Souza
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | | | |
Collapse
|
191
|
Abstract
In recent years a substantial body of evidence derived from not only preclinical but also clinical studies has accumulated in support of Notch signaling playing important oncogenic roles in several types of cancer. The finding that activating Notch mutations are frequently found in patients suffering from acute lymphoblastic leukemia is one of the best examples for a critical role of Notch signaling in cancer, a fact that motivated many researchers and clinicians to study the role of Notch also in solid tumors. Hence Notch signaling has gained increasing attention as a potential therapeutic target. In this book chapter we would like to discuss our current knowledge of Notch signaling within different types of solid cancers as well as advantages and disadvantages of potential new therapies that try to target the oncogenic properties of Notch signaling.
Collapse
Affiliation(s)
- Ute Koch
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
| | | |
Collapse
|
192
|
Kovall RA, Blacklow SC. Mechanistic insights into Notch receptor signaling from structural and biochemical studies. Curr Top Dev Biol 2010; 92:31-71. [PMID: 20816392 DOI: 10.1016/s0070-2153(10)92002-4] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Notch proteins are the receptors in a highly conserved signal transduction system used to communicate signals between cells that contact each other. Studies investigating structure-function relationships in Notch signaling have gained substantial momentum in recent years. Here, we summarize the current understanding of the molecular logic of Notch signal transduction, emphasizing structural and biochemical studies of Notch receptors, their ligands, and complexes of intracellular Notch proteins with their target transcription factors. Recent advances in the structure-based modulation of Notch-signaling activity are also discussed.
Collapse
Affiliation(s)
- Rhett A Kovall
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, USA
| | | |
Collapse
|
193
|
Abstract
The Notch-signaling pathway is involved in multiple processes during vertebrate cardiac development. Cardiomyocyte differentiation, patterning of the different cardiac regions, valve development, ventricular trabeculation, and outflow tract development have all been shown to depend on the activity of specific Notch-signaling elements. From these studies, it becomes obvious that Notch regulates in a cell autonomous or non-cell autonomous manner different signaling pathways, pointing to a role for Notch as a signal coordinator during cardiogenesis. While most of the research has concentrated on Notch signaling in the myocardium, the importance of Notch activity in the cardiac endothelium (endocardium) must not be overlooked. Endocardial Notch activity is crucial for valve and ventricular trabeculae development, two processes that illustrate the role of Notch as a signal coordinator. The importance of Notch signaling in human disease is evident from the discovery that many mutations in components of this pathway segregate in several inherited and acquired disorders. This reflects the fundamental roles that Notch performs during cardiac ontogeny. This review examines the experimental evidence supporting a role for Notch in cardiac development and adult heart homeostasis, and how dysregulated Notch signaling may lead to cardiac disease in the newborn and in the adult.
Collapse
|
194
|
|
195
|
Abstract
Notch signaling occurs through direct interaction between Notch, the receptor, and its ligands, presented on the surface of neighboring cells. Endocytosis has been shown to be essential for Notch signal activation in both signal-sending and signal-receiving cells, and numerous genes involved in vesicle trafficking have recently been shown to act as key regulators of the pathway. Defects in vesicle trafficking can lead to gain- or loss-of-function defects in a context-dependent manner. Here, we discuss how endocytosis and vesicle trafficking regulate Notch signaling in both signal-sending and signal-receiving cells. We will introduce the key players in different trafficking steps, and further illustrate how they impact the signal outcome. Some of these players act as general factors and modulate Notch signaling in all contexts, whereas others modulate signaling in a context-specific fashion. We also discuss Notch signaling during mechanosensory organ development in the fly to exemplify how endocytosis and vesicle trafficking are effectively used to determine correct cell fates. In summary, endocytosis plays an essential role in Notch signaling, whereas intracellular vesicle trafficking often plays a context-dependent or regulatory role, leading to divergent outcomes in different developmental contexts.
Collapse
Affiliation(s)
- Shinya Yamamoto
- Program in Developmental Biology, Baylor College of Medicine, Houston TX, USA
| | - Wu-Lin Charng
- Program in Developmental Biology, Baylor College of Medicine, Houston TX, USA
| | - Hugo J Bellen
- Program in Developmental Biology, Baylor College of Medicine, Houston TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston TX, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston TX, USA
| |
Collapse
|
196
|
Kreft AF, Martone R, Porte A. Recent advances in the identification of gamma-secretase inhibitors to clinically test the Abeta oligomer hypothesis of Alzheimer's disease. J Med Chem 2009; 52:6169-88. [PMID: 19694467 DOI: 10.1021/jm900188z] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
197
|
Abstract
A great many cell types are necessary for the myriad capabilities of complex, multicellular organisms. One interesting aspect of this diversity of cell type is that many cells in diploid organisms are polyploid. This is called endopolyploidy and arises from cell cycles that are often characterized as "variant," but in fact are widespread throughout nature. Endopolyploidy is essential for normal development and physiology in many different organisms. Here we review how both plants and animals use variations of the cell cycle, termed collectively as endoreplication, resulting in polyploid cells that support specific aspects of development. In addition, we discuss briefly how endoreplication occurs in response to certain physiological stresses, and how it may contribute to the development of cancer. Finally, we describe the molecular mechanisms that support the onset and progression of endoreplication.
Collapse
|
198
|
Luistro L, He W, Smith M, Packman K, Vilenchik M, Carvajal D, Roberts J, Cai J, Berkofsky-Fessler W, Hilton H, Linn M, Flohr A, Jakob-Røtne R, Jacobsen H, Glenn K, Heimbrook D, Boylan JF. Preclinical profile of a potent gamma-secretase inhibitor targeting notch signaling with in vivo efficacy and pharmacodynamic properties. Cancer Res 2009; 69:7672-80. [PMID: 19773430 DOI: 10.1158/0008-5472.can-09-1843] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Notch signaling is an area of great interest in oncology. RO4929097 is a potent and selective inhibitor of gamma-secretase, producing inhibitory activity of Notch signaling in tumor cells. The RO4929097 IC50 in cell-free and cellular assays is in the low nanomolar range with >100-fold selectivity with respect to 75 other proteins of various types (receptors, ion channels, and enzymes). RO4929097 inhibits Notch processing in tumor cells as measured by the reduction of intracellular Notch expression by Western blot. This leads to reduced expression of the Notch transcriptional target gene Hes1. RO4929097 does not block tumor cell proliferation or induce apoptosis but instead produces a less transformed, flattened, slower-growing phenotype. RO4929097 is active following oral dosing. Antitumor activity was shown in 7 of 8 xenografts tested on an intermittent or daily schedule in the absence of body weight loss or Notch-related toxicities. Importantly, efficacy is maintained after dosing is terminated. Angiogenesis reverse transcription-PCR array data show reduced expression of several key angiogenic genes. In addition, comparative microarray analysis suggests tumor cell differentiation as an additional mode of action. These preclinical results support evaluation of RO4929097 in clinical studies using an intermittent dosing schedule. A multicenter phase I dose escalation study in oncology is under way.
Collapse
Affiliation(s)
- Leopoldo Luistro
- Discovery Oncology, Discovery Chemistry, In Silico Sciences, Non-clinical Safety, Drug Metabolism, and RNA Therapeutics, Hoffmann-La Roche, Inc., Nutley, New Jersey, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Abstract
Notch signaling requires a series of proteolytic cleavage events to release the Notch intracellular domain (NICD) that functions directly in signal transduction. The Notch receptor is locked down in a protease-resistant state by a negative regulatory region (NRR) that protects an ADAM (a disintegrin and metalloprotease) cleavage site. Engagement with ligand-bearing cells induces global conformational movements in Notch that unfold the NRR structure to expose the ADAM cleavage site and initiate proteolytic activation. Although both ADAM10 and ADAM17 have been reported to cleave Notch to facilitate NICD release by gamma-secretase, the relevant ADAM has remained controversial. Our study provides new insight into this conflict, as we find that although Notch1 (N1) is a substrate for both ADAM10 and ADAM17, the particular ADAM required for receptor activation is context dependent. Specifically, ADAM10 was absolutely required for N1 signaling induced by ligands, while signaling independent of ligands required ADAM17. In contrast to the strict and differential use of ADAM10 and ADAM17 in normal and dysregulated signaling, respectively, both proteases participated in signaling intrinsic to N1 mutations associated with leukemia. We propose that in addition to exposing the ADAM cleavage site, activating N1 conformational changes facilitate selective cleavage by specific proteases.
Collapse
|
200
|
Panchision DM. The role of oxygen in regulating neural stem cells in development and disease. J Cell Physiol 2009; 220:562-8. [PMID: 19441077 DOI: 10.1002/jcp.21812] [Citation(s) in RCA: 186] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Oxygen (O2) is a substrate for energy production in the cell and is a rapid regulator of cellular metabolism. Recent studies have also implicated O2 and its signal transduction pathways in controlling cell proliferation, fate, and morphogenesis during the development of many tissues, including the nervous system. O2 tensions in the intact brain are much lower than in room air, and there is evidence that dynamic control of O2 availability may be a component of the in vivo neural stem cell (NSC) niche. At lower O2 tensions, hypoxia-inducible factor 1alpha (HIF1alpha) facilitates signal transduction pathways that promote self-renewal (e.g., Notch) and inhibits pathways that promote NSC differentiation or apoptosis (e.g., bone morphogenetic proteins). Increasing O2 tension degrades HIF1alpha, thus promoting differentiation or apoptosis of NSCs and progenitors. These dynamic changes in O2 tension can be mimicked to optimize ex vivo production methods for cell replacement therapies. Conversely, disrupted O2 availability may play a critical role in disease states such as stroke or brain tumor progression. Hypoxia during stroke activates precursor proliferation in vivo, while glioblastoma stem cells proliferate maximally in a more hypoxic environment than normal stem cells, which may make them resistant to certain anti-neoplastic therapies. These findings suggest that O2 response is central to the normal architecture and dynamics of NSC regulation and in the etiology and treatment of brain diseases.
Collapse
Affiliation(s)
- David M Panchision
- Division of Neuroscience and Basic Behavioral Science, National Institute of Mental Health, National Institutes of Health, 6001 Executive Blvd, MSC 9641, Bethesda, MD 20892-9641, USA.
| |
Collapse
|