151
|
Kawasaki A, Matsumura I, Miyagawa JI, Ezoe S, Tanaka H, Terada Y, Tatsuka M, Machii T, Miyazaki H, Furukawa Y, Kanakura Y. Downregulation of an AIM-1 kinase couples with megakaryocytic polyploidization of human hematopoietic cells. J Cell Biol 2001; 152:275-87. [PMID: 11266445 PMCID: PMC2199624 DOI: 10.1083/jcb.152.2.275] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
During the late phase of megakaryopoiesis, megakaryocytes undergo polyploidization, which is characterized by DNA duplication without concomitant cell division. However, it remains unknown by which mechanisms this process occurs. AIM-1 and STK15 belong to the Aurora/increase-in-ploidy (Ipl)1 serine/threonine kinase family and play key roles in mitosis. In a human interleukin-3-dependent cell line, F-36P, the expressions of AIM-1 and STK15 mRNA were specifically observed at G2/M phase of the cell cycle during proliferation. In contrast, the expressions of AIM-1 and STK15 were continuously repressed during megakaryocytic polyploidization of human erythro/megakaryocytic cell lines (F-36P, K562, and CMK) treated with thrombopoietin, activated ras (H-ras(G12V)), or phorbol ester. Furthermore, their expressions were suppressed during thrombopoietin-induced polyploidization of normal human megakaryocytes. Activation of AIM-1 by the induced expression of AIM-1(wild-type) canceled TPA-induced polyploidization of K562 cells significantly, whereas that of STK15 did not. Moreover, suppression of AIM-1 by the induced expression of AIM-1 (K/R, dominant-negative type) led to polyploidization in 25% of K562 cells, whereas STK15(K/R) showed no effect. Also, the induced expression of AIM-1(K/R) in CMK cells provoked polyploidization up to 32N. These results suggested that downregulation of AIM-1 at M phase may be involved in abortive mitosis and polyploid formation of megakaryocytes.
Collapse
Affiliation(s)
- Akira Kawasaki
- Department of Hematology/Oncology, Osaka University Medical School, Osaka 565-0871, Japan
| | - Itaru Matsumura
- Department of Hematology/Oncology, Osaka University Medical School, Osaka 565-0871, Japan
| | - Jun-ichiro Miyagawa
- Department of Internal Medicine and Molecular Science, Osaka University Medical School, Osaka 565-0871, Japan
| | - Sachiko Ezoe
- Department of Hematology/Oncology, Osaka University Medical School, Osaka 565-0871, Japan
| | - Hirokazu Tanaka
- Department of Hematology/Oncology, Osaka University Medical School, Osaka 565-0871, Japan
| | - Yasuhiko Terada
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Masaaki Tatsuka
- Department of Regulatory Radiobiology, Research Institution for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734, Japan
| | - Takashi Machii
- Department of Hematology/Oncology, Osaka University Medical School, Osaka 565-0871, Japan
| | - Hiroshi Miyazaki
- Pharmaceutical Research Laboratory, Kirin Brewery Company, Ltd., Gunma 370-1202, Japan
| | - Yusuke Furukawa
- Division of Hemopoiesis, Institute of Hematology, Jichi Medical School, Tochigi 329-04, Japan
| | - Yuzuru Kanakura
- Department of Hematology/Oncology, Osaka University Medical School, Osaka 565-0871, Japan
| |
Collapse
|
152
|
Yang SC, Huang CH, Chen NJ, Chou CK, Lin CH. Functional implication of human serine/threonine kinase, hAIK, in cell cycle progression. J Biomed Sci 2000; 7:484-93. [PMID: 11060497 DOI: 10.1007/bf02253364] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Protein phosphorylation is involved in many biological activities and plays important roles in cell cycle progression. In the present study, we identified a serine/threonine kinase, hAIK, from human hepatic cells using degenerated polymerase chain reactions with a pair of primers derived from the highly conserved sequence in the catalytic domain of kinases. The full-length hAIK cDNA was then obtained, which contained 403 amino acids and was homologous to Drosophila Aurora2 and yeast Ipl1 proteins. Northern blotting analysis revealed that hAIK was highly expressed in the testis but not in other tissues. Expressions of hAIK drastically increased in cancer tissues/cell lines but not in fibroblasts or nontumorigenic cell lines. The recombinant hAIK protein phosphorylated itself and histone H1; this phosphorylation activity was totally abolished after a point mutation at the catalytic domain (hAIKm). During the interphase cell, hAIK was found mainly in the cytoplasm; during mitosis hAIK accumulated at the centrosomes. In addition, overexpression of hAIK in cancer cell lines (HEK293T and HeLa) appeared to inhibit cell cycle progression. None of these phenomena were observed in hAIKm whose kinase activity was rendered inactive. Our results suggest that hAIK protein/activity might modulate cell cycle progression by interacting with the centrosomes and/or proteins associated with these structures.
Collapse
Affiliation(s)
- S C Yang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan, ROC
| | | | | | | | | |
Collapse
|
153
|
Groisman I, Huang YS, Mendez R, Cao Q, Theurkauf W, Richter JD. CPEB, maskin, and cyclin B1 mRNA at the mitotic apparatus: implications for local translational control of cell division. Cell 2000; 103:435-47. [PMID: 11081630 DOI: 10.1016/s0092-8674(00)00135-5] [Citation(s) in RCA: 210] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In Xenopus development, the expression of several maternal mRNAs is regulated by cytoplasmic polyadenylation. CPEB and maskin, two factors that control polyadenylation-induced translation are present on the mitotic apparatus of animal pole blastomeres in embryos. Cyclin B1 protein and mRNA, whose translation is regulated by polyadenylation, are colocalized with CPEB and maskin. CPEB interacts with microtubules and is involved in the localization of cyclin B1 mRNA to the mitotic apparatus. Agents that disrupt polyadenylation-induced translation inhibit cell division and promote spindle and centrosome defects in injected embryos. Two of these agents inhibit the synthesis of cyclin B1 protein and one, which has little effect on this process, disrupts the localization of cyclin B1 mRNA and protein. These data suggest that CPEB-regulated mRNA translation is important for the integrity of the mitotic apparatus and for cell division.
Collapse
Affiliation(s)
- I Groisman
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester 01655, USA
| | | | | | | | | | | |
Collapse
|
154
|
Severson AF, Hamill DR, Carter JC, Schumacher J, Bowerman B. The aurora-related kinase AIR-2 recruits ZEN-4/CeMKLP1 to the mitotic spindle at metaphase and is required for cytokinesis. Curr Biol 2000; 10:1162-71. [PMID: 11050384 DOI: 10.1016/s0960-9822(00)00715-6] [Citation(s) in RCA: 194] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND The Aurora/Ipl1p-related kinase AIR-2 is required for mitotic chromosome segregation and cytokinesis in early Caenorhabditis elegans embryos. Previous studies have relied on non-conditional mutations or RNA-mediated interference (RNAi) to inactivate AIR-2. It has therefore not been possible to determine whether AIR-2 functions directly in cytokinesis or if the cleavage defect results indirectly from the failure to segregate DNA. One intriguing hypothesis is that AIR-2 acts to localize the mitotic kinesin-like protein ZEN-4 (also known as CeMKLP1), which later functions in cytokinesis. RESULTS Using conditional alleles, we established that AIR-2 is required at metaphase or early anaphase for normal segregation of chromosomes, localization of ZEN-4, and cytokinesis. ZEN-4 is first required late in cytokinesis, and also functions to maintain cell separation through much of the subsequent interphase. DNA segregation defects alone were not sufficient to disrupt cytokinesis in other mutants, suggesting that AIR-2 acts specifically during cytokinesis through ZEN-4. AIR-2 and ZEN-4 shared similar genetic interactions with the formin homology (FH) protein CYK-1, suggesting that AIR-2 and ZEN-4 function in a single pathway, in parallel to a contractile ring pathway that includes CYK-1. Using in vitro co-immunoprecipitation experiments, we found that AIR-2 and ZEN-4 interact directly. CONCLUSIONS AIR-2 has two functions during mitosis: one in chromosome segregation, and a second, independent function in cytokinesis through ZEN-4. AIR-2 and ZEN-4 may act in parallel to a second pathway that includes CYK-1.
Collapse
Affiliation(s)
- A F Severson
- Institute of Molecular Biology, University of Oregon, Eugene, 97403, USA
| | | | | | | | | |
Collapse
|
155
|
Walter AO, Seghezzi W, Korver W, Sheung J, Lees E. The mitotic serine/threonine kinase Aurora2/AIK is regulated by phosphorylation and degradation. Oncogene 2000; 19:4906-16. [PMID: 11039908 DOI: 10.1038/sj.onc.1203847] [Citation(s) in RCA: 218] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Aurora2 is a cell cycle regulated serine/threonine protein kinase which is overexpressed in many tumor cell lines. We demonstrate that Aurora2 is regulated by phosphorylation in a cell cycle dependent manner. This phosphorylation occurs on a conserved residue, Threonine 288, within the activation loop of the catalytic domain of the kinase and results in a significant increase in the enzymatic activity. Threonine 288 resides within a consensus motif for the cAMP dependent kinase and can be phosphorylated by PKA in vitro. The protein phosphatase 1 is shown to dephosphorylate this site in vitro, and in vivo the phosphorylation of T288 is induced by okadaic acid treatment. Furthermore, we show that the Aurora2 kinase is regulated by proteasome dependent degradation and that Aurora2 phosphorylated on T288 may be targeted for degradation during mitosis. Our experiments suggest that phosphorylation of T288 is important for regulation of the Aurora2 kinase both for its activity and its stability.
Collapse
Affiliation(s)
- A O Walter
- DNAX Research Institute, Palo Alto, California 94304, USA
| | | | | | | | | |
Collapse
|
156
|
Affiliation(s)
- K C Sadler
- Dept of Molecular Biology and Genetics, Bosphorus University, Istanbul, Turkey.
| | | |
Collapse
|
157
|
Pan J, Snell WJ. Regulated targeting of a protein kinase into an intact flagellum. An aurora/Ipl1p-like protein kinase translocates from the cell body into the flagella during gamete activation in chlamydomonas. J Biol Chem 2000; 275:24106-14. [PMID: 10807915 DOI: 10.1074/jbc.m002686200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the green alga Chlamydomonas reinhardtii flagellar adhesion between gametes of opposite mating types leads to rapid cellular changes, events collectively termed gamete activation, that prepare the gametes for cell-cell fusion. As is true for gametes of most organisms, the cellular and molecular mechanisms that underlie gamete activation are poorly understood. Here we report on the regulated movement of a newly identified protein kinase, Chlamydomonas aurora/Ipl1p-like protein kinase (CALK), from the cell body to the flagella during gamete activation. CALK encodes a protein of 769 amino acids and is the newest member of the aurora/Ipl1p protein kinase family. Immunoblotting with an anti-CALK antibody showed that CALK was present as a 78/80-kDa doublet in vegetative cells and unactivated gametes of both mating types and was localized primarily in cell bodies. In cells undergoing fertilization, the 78-kDa CALK was rapidly targeted to the flagella, and within 5 min after mixing gametes of opposite mating types, the level of CALK in the flagella began to approach levels normally found in the cell body. Protein synthesis was not required for targeting, indicating that the translocated CALK and the cellular molecules required for its movement are present in unactivated gametes. CALK was also translocated to the flagella during flagellar adhesion of nonfusing mutant gametes, demonstrating that cell fusion was not required for movement. Finally, the requirement for flagellar adhesion could be bypassed; incubation of cells of a single mating type in dibutyryl cAMP led to CALK translocation to flagella in gametes but not vegetative cells. These experiments document a new event in gamete activation in Chlamydomonas and reveal the existence of a mechanism for regulated translocation of molecules into an intact flagellum.
Collapse
Affiliation(s)
- J Pan
- University of Texas, Southwestern Medical School, Dallas, Texas 75390-9039, USA
| | | |
Collapse
|
158
|
Hsu JY, Sun ZW, Li X, Reuben M, Tatchell K, Bishop DK, Grushcow JM, Brame CJ, Caldwell JA, Hunt DF, Lin R, Smith MM, Allis CD. Mitotic phosphorylation of histone H3 is governed by Ipl1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes. Cell 2000; 102:279-91. [PMID: 10975519 DOI: 10.1016/s0092-8674(00)00034-9] [Citation(s) in RCA: 662] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phosphorylation of histone H3 at serine 10 occurs during mitosis and meiosis in a wide range of eukaryotes and has been shown to be required for proper chromosome transmission in Tetrahymena. Here we report that Ipl1/aurora kinase and its genetically interacting phosphatase, Glc7/PP1, are responsible for the balance of H3 phosphorylation during mitosis in Saccharomyces cerevisiae and Caenorhabditis elegans. In these models, both enzymes are required for H3 phosphorylation and chromosome segregation, although a causal link between the two processes has not been demonstrated. Deregulation of human aurora kinases has been implicated in oncogenesis as a consequence of chromosome missegregation. Our findings reveal an enzyme system that regulates chromosome dynamics and controls histone phosphorylation that is conserved among diverse eukaryotes.
Collapse
Affiliation(s)
- J Y Hsu
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville 22908, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Giet R, Prigent C. The Xenopus laevis aurora/Ip11p-related kinase pEg2 participates in the stability of the bipolar mitotic spindle. Exp Cell Res 2000; 258:145-51. [PMID: 10912796 DOI: 10.1006/excr.2000.4903] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Xenopus laevis aurora/Ip11p-related kinase pEg2 is required for centrosome separation, which is a prerequisite for bipolar mitotic spindle formation. Here, we report that the inhibition of pEg2 by addition of either an inactive kinase or a monoclonal antibody destabilizes bipolar spindles previously assembled in Xenopus egg extracts. The bipolar spindles collapse to form structures such as microtubule asters with chromosome rosettes, monopolar spindles, and multipolar spindles. In collapsed spindles, chromosomes remain attached to the microtubules plus ends. The destabilization of the bipolar spindle is reminiscent of the destabilization observed after inhibition of cross-linking activities which maintain parallel and anti-parallel microtubules linked together. We have previously reported that pEg2 phosphorylates the kinesin-related protein XlEg5 which is involved in centrosome separation but which was also reported to be involved in spindle stability. The collapse of the bipolar spindle observed after inhibition of pEg2 suggests that the kinase might regulate the cross-linking activity of XlEg5. We do not exclude the possibility that pEg2 also regulates other microtubule-based motor proteins involved in bipolar spindle stability. To our knowledge, this is the first evidence that aurora/Ip11p-related kinase activity actually participates not only in mitotic spindle formation by regulating centrosome separation but also in mitotic spindle stabilization.
Collapse
Affiliation(s)
- R Giet
- Groupe Cycle Cellulaire, Faculté de Médecine, CNRS UPR 41, Université de Rennes, France
| | | |
Collapse
|
160
|
Nakamura H, Wu C, Kuang J, Larabell C, Etkin LD. XCS-1, a maternally expressed gene product involved in regulating mitosis in Xenopus. J Cell Sci 2000; 113 ( Pt 13):2497-505. [PMID: 10852828 DOI: 10.1242/jcs.113.13.2497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The regulation of the cell cycle during early development is an important and complex biological process. We have cloned a cDNA, XCS-1, that may play an important role in regulating mitosis during early embryogenesis in Xenopus laevis. XCS-1 is a maternally expressed gene product that is the Xenopus homologue of the human cleavage signal protein (CS-1). XCS-1 transcripts were detected in oocytes with the titer decreasing just prior to the MBT. During development the XCS-1 protein was detected on the membrane and in the nucleus of blastomeres. It was also detected on the mitotic spindle in mitotic cells and on the centrosomes in interphase cells. Overexpression of myc-XCS-1 in Xenopus embryos resulted in abnormal mitoses with increased numbers of centrosomes, multipolar spindles, and abnormal distribution of chromosomes. Also, we observed incomplete cytokinesis resulting in multiple nuclei residing in the same cytoplasm with the daughter nuclei in different phases of the cell cycle. The phenotype depended on the presence of the N terminus of XCS-1 (aa 1–73) and a consensus NIMA kinase phosphorylation site (aa159-167). Mutations in this site affected the ability of the overexpressed XCS-1 protein to produce the phenotype. These results suggest that XCS-1 is a maternal factor playing an important role in the regulation of the cell cycle during early embryogenesis and that its function depends on its state of phosphorylation.
Collapse
Affiliation(s)
- H Nakamura
- Department of Molecular Genetics and Department of Clinical Investigation, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | |
Collapse
|
161
|
Brinkley BR, Goepfert TM. Supernumerary centrosomes and cancer: Boveri's hypothesis resurrected. CELL MOTILITY AND THE CYTOSKELETON 2000; 41:281-8. [PMID: 9858153 DOI: 10.1002/(sici)1097-0169(1998)41:4<281::aid-cm1>3.0.co;2-c] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- B R Brinkley
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|
162
|
Frank-Vaillant M, Haccard O, Thibier C, Ozon R, Arlot-Bonnemains Y, Prigent C, Jessus C. Progesterone regulates the accumulation and the activation of Eg2 kinase in Xenopus oocytes. J Cell Sci 2000; 113 ( Pt 7):1127-38. [PMID: 10704364 DOI: 10.1242/jcs.113.7.1127] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xenopus prophase oocytes reenter meiotic division in response to progesterone. The signaling pathway leading to Cdc2 activation depends on neosynthesized proteins and a decrease in PKA activity. We demonstrate that Eg2 protein, a Xenopus member of the Aurora/Ipl1 family of protein kinases, accumulates in response to progesterone and is degraded after parthenogenetic activation. The polyadenylation and cap ribose methylation of Eg2 mRNA are not needed for the protein accumulation. Eg2 protein accumulation is induced by progesterone through a decrease in PKA activity, upstream of Cdc2 activation. Eg2 kinase activity is undetectable in prophase and is raised in parallel with Cdc2 activation. In contrast to Eg2 protein accumulation, Eg2 kinase activation is under Cdc2 control. Furthermore, by using an anti-sense strategy, we show that Eg2 accumulation is not required in the transduction pathway leading to Cdc2 activation. Altogether, our results strongly suggest that Eg2 is not necessary for Cdc2 activation, though it could participate in the organization of the meiotic spindles, in agreement with the well-conserved roles of the members of the Aurora family, from yeast to man.
Collapse
Affiliation(s)
- M Frank-Vaillant
- Laboratoire de Physiologie de la Reproduction, INRA/ESA-CNRS 7080, Université Pierre et Marie Curie, boîte 13, 75252 Paris Cédex 05, France
| | | | | | | | | | | | | |
Collapse
|
163
|
Bischoff JR, Plowman GD. The Aurora/Ipl1p kinase family: regulators of chromosome segregation and cytokinesis. Trends Cell Biol 1999; 9:454-9. [PMID: 10511710 DOI: 10.1016/s0962-8924(99)01658-x] [Citation(s) in RCA: 266] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Members of the Aurora/Ipl1p family of mitotically regulated serine/threonine kinases are emerging as key regulators of chromosome segregation and cytokinesis. Proper chromosome segregation and cytokinesis ensure that each daughter cell receives the full complement of genetic material. Defects in these processes can lead to aneuploidy and the propagation of genetic abnormalities. This review discusses the Aurora/Ipl1p kinases in terms of their protein structure and proposed function in mitotic cells and also the potential role of aurora2 in human cancer.
Collapse
Affiliation(s)
- J R Bischoff
- SUGEN, 230 East Grand Avenue, South San Francisco, CA 94080-4811, USA.
| | | |
Collapse
|
164
|
Giet R, Prigent C. Aurora/Ipl1p-related kinases, a new oncogenic family of mitotic serine-threonine kinases. J Cell Sci 1999; 112 ( Pt 21):3591-601. [PMID: 10523496 DOI: 10.1242/jcs.112.21.3591] [Citation(s) in RCA: 244] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
During the past five years, a growing number of serine-threonine kinases highly homologous to the Saccharomyces cerevisiae Ipl1p kinase have been isolated in various organisms. A Drosophila melanogaster homologue, aurora, was the first to be isolated from a multicellular organism. Since then, several related kinases have been found in mammalian cells. They localise to the mitotic apparatus: in the centrosome, at the poles of the bipolar spindle or in the midbody. The kinases are necessary for completion of mitotic events such as centrosome separation, bipolar spindle assembly and chromosome segregation. Extensive research is now focusing on these proteins because the three human homologues are overexpressed in various primary cancers. Furthermore, overexpression of one of these kinases transforms cells. Because of the myriad of kinases identified, we suggest a generic name: Aurora/Ipl1p-related kinase (AIRK). We denote AIRKs with a species prefix and a number, e.g. HsAIRK1.
Collapse
Affiliation(s)
- R Giet
- CNRS UPR41| Université de Rennes I, Groupe Cycle Cellulaire, Faculté de Médecine, CS 34317, France
| | | |
Collapse
|
165
|
Reich A, Yanai A, Mesilaty-Gross S, Chen-Moses A, Wides R, Motro B. Cloning, mapping, and expression of ial, a novel Drosophila member of the Ipl1/aurora mitotic control kinase family. DNA Cell Biol 1999; 18:593-603. [PMID: 10433558 DOI: 10.1089/104454999315141] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The members of the Ipl1-aurora like kinase (IARK) subfamily are conserved serine/threonine kinases that play a key role in the control of chromosome segregation, centrosome separation, and cytokinesis from yeast to mammals. We report on the isolation of a new Drosophila member of the family, designated Ipl1-aurora-like kinase (ial) Phylogenetic analysis of kinase domains established that ial is more divergent from known mammalian IARKs than is aurora. Mapping based on examination of chromosomal aberrations, together with mapping within contigs identified by the Drosophila Genome Project, placed the gene at 32B on the left arm of the second chromosome. Discrete single-gene mutations in this region, including all known relevant P-element disruptions, were examined and proven not to be mutations in ial. Characterization of spatial and temporal expression of ial and its gene product showed that it manifests itself in patterns which can be consistent with a role in cell cycle control.
Collapse
Affiliation(s)
- A Reich
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | | | | | | | | |
Collapse
|
166
|
Kim JH, Kang JS, Chan CS. Sli15 associates with the ipl1 protein kinase to promote proper chromosome segregation in Saccharomyces cerevisiae. J Biophys Biochem Cytol 1999; 145:1381-94. [PMID: 10385519 PMCID: PMC2133162 DOI: 10.1083/jcb.145.7.1381] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The conserved Ipl1 protein kinase is essential for proper chromosome segregation and thus cell viability in the budding yeast Saccharomyces cerevisiae. Its human homologue has been implicated in the tumorigenesis of diverse forms of cancer. We show here that sister chromatids that have separated from each other are not properly segregated to opposite poles of ipl1-2 cells. Failures in chromosome segregation are often associated with abnormal distribution of the spindle pole-associated Nuf2-GFP protein, thus suggesting a link between potential spindle pole defects and chromosome missegregation in ipl1 mutant cells. A small fraction of ipl1-2 cells also appears to be defective in nuclear migration or bipolar spindle formation. Ipl1 associates, probably directly, with the novel and essential Sli15 protein in vivo, and both proteins are localized to the mitotic spindle. Conditional sli15 mutant cells have cytological phenotypes very similar to those of ipl1 cells, and the ipl1-2 mutation exhibits synthetic lethal genetic interaction with sli15 mutations. sli15 mutant phenotype, like ipl1 mutant phenotype, is partially suppressed by perturbations that reduce protein phosphatase 1 function. These genetic and biochemical studies indicate that Sli15 associates with Ipl1 to promote its function in chromosome segregation.
Collapse
Affiliation(s)
- J H Kim
- Department of Microbiology and Institute for Cellular and Molecular Biology, The University of Texas, Austin, Texas 78712, USA
| | | | | |
Collapse
|
167
|
Farruggio DC, Townsley FM, Ruderman JV. Cdc20 associates with the kinase aurora2/Aik. Proc Natl Acad Sci U S A 1999; 96:7306-11. [PMID: 10377410 PMCID: PMC22081 DOI: 10.1073/pnas.96.13.7306] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Cdc20/fizzy family proteins are involved in activation of the anaphase-promoting complex/cyclosome, which catalyzes the ubiquitin-dependent proteolysis of cell cycle regulatory proteins such as anaphase inhibitors and mitotic cyclins, leading to chromosome segregation and exit from mitosis. Previous work has shown that human Cdc20 (hCdc20/p55CDC) associates with one or more kinases. We report here that Cdc20-associated myelin basic protein kinase activity peaks sharply in early M phase (embryonic cells) or in G2 phase (somatic cells). In HeLa cells, Cdc20 is associated with the kinase aurora2/Aik. Aurora2/Aik is a member of the aurora/Ipl1 family of kinases that, like Cdc20, previously has been shown to be localized at mitotic spindle poles and is involved in regulating chromosome segregation and maintaining genomic stability. The demonstration that Cdc20 is associated with aurora2/Aik suggests that some function of Cdc20 is carried out or regulated through its association with aurora2/Aik.
Collapse
Affiliation(s)
- D C Farruggio
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
168
|
Abstract
The centrosome is the major microtubule nucleating center of the animal cell and forms the two poles of the mitotic spindle upon which chromosomes are segregated. During the cell division cycle, the centrosome undergoes a series of major structural and functional transitions that are essential for both interphase centrosome function and mitotic spindle formation. The localization of an increasing number of protein kinases to the centrosome has revealed the importance of protein phosphorylation in controlling many of these transitions. Here, we focus on two protein kinases, the polo-like kinase 1 and the NIMA-related kinase 2, for which recent data indicate key roles during the centrosome cycle.
Collapse
Affiliation(s)
- T Mayor
- Department of Molecular Biology, University of Geneva, Switzerland
| | | | | | | | | |
Collapse
|
169
|
Giet R, Uzbekov R, Cubizolles F, Le Guellec K, Prigent C. The Xenopus laevis aurora-related protein kinase pEg2 associates with and phosphorylates the kinesin-related protein XlEg5. J Biol Chem 1999; 274:15005-13. [PMID: 10329703 DOI: 10.1074/jbc.274.21.15005] [Citation(s) in RCA: 177] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously reported on the cloning of XlEg5, a Xenopus laevis kinesin-related protein from the bimC family (Le Guellec, R., Paris, J., Couturier, A., Roghi, C., and Philippe, M. (1991) Mol. Cell. Biol. 11, 3395-3408) as well as pEg2, an Aurora-related serine/threonine kinase (Roghi, C., Giet, R., Uzbekov, R., Morin, N., Chartrain, I., Le Guellec, R., Couturier, A., Dorée, M., Philippe, M., and Prigent, C. (1998) J. Cell Sci. 111, 557-572). Inhibition of either XlEg5 or pEg2 activity during mitosis in Xenopus egg extract led to monopolar spindle formation. Here, we report that in Xenopus XL2 cells, pEg2 and XlEg5 are both confined to separated centrosomes in prophase, and then to the microtubule spindle poles. We also show that pEg2 co-immunoprecipitates with XlEg5 from egg extracts and XL2 cell lysates. Both proteins can directly interact in vitro, but also through the two-hybrid system. Furthermore immunoprecipitated pEg2 were found to remain active when bound to the beads and phosphorylate XlEg5 present in the precipitate. Two-dimensional mapping of XlEg5 tryptic peptides phosphorylated in vivo first confirmed that XlEg5 was phosphorylated by p34(cdc2) and next revealed that in vitro pEg2 kinase phosphorylated XlEg5 on the same stalk domain serine residue that was phosphorylated in metabolically labeled XL2 cells. The kinesin-related XlEg5 is to our knowledge the first in vivo substrate ever reported for an Aurora-related kinase.
Collapse
Affiliation(s)
- R Giet
- Groupe Cycle Cellulaire, Faculté de Médecine, Laboratoire de Biologie et Génétique du Développement, CNRS UPR 41, 35043 Rennes Cedex, France
| | | | | | | | | |
Collapse
|
170
|
Abstract
As an organizer of the microtubule cytoskeleton in animals, the centrosome has an important function. From the early light microscopic observation of the centrosome to examination by electron microscopy, the centrosome field is now in an era of molecular identification and precise functional analyses. Tables compiling centrosomal proteins and reviews on the centrosome are presented here and demonstrate how active the field is. However, despite this intense research activity, many classical questions are still unanswered. These include those regarding the precise function of centrioles, the mechanism of centrosome duplication and assembly, the origin of the centrosome, and the regulation and mechanism of the centrosomal microtubule nucleation activity. Fortunately, these questions are becoming elucidated based on experimental data discussed here. Given the fact that the centrosome is primarily a site of microtubule nucleation, special focus is placed on the process of microtubule nucleation and on the regulation of centrosomal microtubule nucleation capacity during the cell cycle and in some tissues.
Collapse
Affiliation(s)
- S S Andersen
- Department of Molecular Biology, Princeton University, New Jersey 08540-1014, USA
| |
Collapse
|
171
|
Woollard A, Hodgkin J. Stu-7/air-2 is a C. elegans aurora homologue essential for chromosome segregation during embryonic and post-embryonic development. Mech Dev 1999; 82:95-108. [PMID: 10354474 DOI: 10.1016/s0925-4773(99)00020-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have isolated a new sterile uncoordinated C. elegans mutant, stu-7, which is defective in post-embryonic cell divisions in a regionally-specific fashion. The anterior of the worm is relatively unaffected whereas the mid-body and/or posterior are markedly thin, often resulting in worms having a central 'waist'. We have cloned stu-7 and found that it encodes a member of the recently expanding aurora sub-family of serine/threonine kinases. Elimination of maternal as well as zygotic stu-7 expression reveals that stu-7 is essential for mitosis from the first embryonic cell cycle onwards and is required for chromosome segregation though not for centrosome separation or for setting up a bipolar spindle. Multicopy expression of stu-7 also causes mitotic defects, suggesting that the level of this protein must be tightly controlled in order to maintain genetic stability during development.
Collapse
Affiliation(s)
- A Woollard
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| | | |
Collapse
|
172
|
Uzbekov R, Prigent C, Arlot-Bonnemains Y. Cell cycle analysis and synchronization of the Xenopus laevis XL2 cell line: study of the kinesin related protein XlEg5. Microsc Res Tech 1999; 45:31-42. [PMID: 10206152 DOI: 10.1002/(sici)1097-0029(19990401)45:1<31::aid-jemt3>3.0.co;2-k] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cell free extracts prepared from Xenopus eggs are one of the most powerful in vitro systems to analyze cell cycle-regulated mechanisms such as DNA replication, nuclear assembly, chromosome condensation, or spindle formation. Xenopus embryos can complete several synchronous cell cycles in the absence of transcription, consequently Xenopus extracts are very helpful to study the molecular level of cellular mechanisms. Many key cell cycle regulators like p34cdc2 and cdk2 have been discovered and characterized using those extracts, but their regulation during somatic cell cycles have only been studied in mammalian cultured cells. In this paper, we describe optimized conditions to obtain cell cycle arrested Xenopus XL2 cultured cells. Synchronization of XL2 cells at different stages of the cell cycle was achieved by serum starvation and drug treatments such as aphidicolin, nocodazole, and ALLN. The degree of synchronization was assessed by indirect fluorescence microscopy and FACS analysis. This method was used to study the cell cycle expression of the Xenopus kinesin-related protein, XlEg5, a microtubule-based motor protein involved in movement and cell division in early development. We found that the expression of the protein was maximum in mitosis and minimum in G1, which correlated with the expression of its messenger RNA. XL2 cultured cells were also used to analyze the ultrastructural sub-cellular localization of XlEg5. During mitosis, the protein was found around the centrosome in prophase, on the spindle microtubules in metaphase, and, interestingly, around the minus end of the midbody microtubules in telophase.
Collapse
Affiliation(s)
- R Uzbekov
- Laboratoire de Biologie et Génétique du Développement, Groupe Cycle Cellulaire, CNRS UPR 41, Faculté de Médecine de Rennes, France
| | | | | |
Collapse
|
173
|
Kimura M, Matsuda Y, Yoshioka T, Okano Y. Cell cycle-dependent expression and centrosome localization of a third human aurora/Ipl1-related protein kinase, AIK3. J Biol Chem 1999; 274:7334-40. [PMID: 10066797 DOI: 10.1074/jbc.274.11.7334] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We earlier isolated cDNAs encoding novel human protein kinases AIK and AIK2 sharing high amino acid sequence identities with Drosophila Aurora and Saccharomyces cerevisiae Ipl1 kinases whose mutations cause abnormal chromosome segregation. In the present study, a third human cDNA (AIK3) highly homologous to aurora/IPL1 was isolated, and the nucleotide sequence was determined. This cDNA encodes 309 amino acids with a predicted molecular mass of 35.9 kDa. C-terminal kinase domain of AIK3 protein shares high amino acid sequence identities with those of Aurora/Ipl1 family protein kinases including human AIK, human AIK2, Xenopus pEg2, Drosophila Aurora, and yeast Ipl1, whereas the N-terminal domain of AIK3 protein shares little homology with any other Aurora/Ipl1 family members. AIK3 gene was assigned to human chromosome 19q13.43, which is a frequently deleted or rearranged region in several tumor tissues, by fluorescence in situ hybridization, somatic cell hybrid panel, and radiation hybrid cell panel. Northern blot analyses revealed that AIK3 expression was limited to testis. The expression levels of AIK3 in several cancer cell lines were elevated severalfold compared with normal fibroblasts. In HeLa cells, the endogenous AIK3 protein level is low in G1/S, accumulates during G2/M, and reduces after mitosis. Immunofluorescence studies using a specific antibody have shown that AIK3 is localized to centrosome during mitosis from anaphase to cytokinesis. These results suggest that AIK3 may play a role(s) in centrosome function at later stages of mitosis.
Collapse
Affiliation(s)
- M Kimura
- Department of Molecular Pathobiochemistry, Gifu University School of Medicine, Tsukasamachi-40, Gifu 500-8705, Japan
| | | | | | | |
Collapse
|
174
|
Cubizolles F, Legagneux V, Le Guellec R, Chartrain I, Uzbekov R, Ford C, Le Guellec K. pEg7, a new Xenopus protein required for mitotic chromosome condensation in egg extracts. J Cell Biol 1998; 143:1437-46. [PMID: 9852142 PMCID: PMC2132990 DOI: 10.1083/jcb.143.6.1437] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have isolated a cDNA, Eg7, corresponding to a Xenopus maternal mRNA, which is polyadenylated in mature oocytes and deadenylated in early embryos. This maternal mRNA encodes a protein, pEg7, whose expression is strongly increased during oocyte maturation. The tissue and cell expression pattern of pEg7 indicates that this protein is only readily detected in cultured cells and germ cells. Immunolocalization in Xenopus cultured cells indicates that pEg7 concentrates onto chromosomes during mitosis. A similar localization of pEg7 is observed when sperm chromatin is allowed to form mitotic chromosomes in cytostatic factor-arrested egg extracts. Incubating these extracts with antibodies directed against two distinct parts of pEg7 provokes a strong inhibition of the condensation and resolution of mitotic chromosomes. Biochemical experiments show that pEg7 associates with Xenopus chromosome-associated polypeptides C and E, two components of the 13S condensin.
Collapse
Affiliation(s)
- F Cubizolles
- Biologie et Génétique du Développement, CNRS UPR 41, Université de Rennes I, Campus de Beaulieu, 35042 Rennes cedex, France
| | | | | | | | | | | | | |
Collapse
|
175
|
Schumacher JM, Golden A, Donovan PJ. AIR-2: An Aurora/Ipl1-related protein kinase associated with chromosomes and midbody microtubules is required for polar body extrusion and cytokinesis in Caenorhabditis elegans embryos. J Cell Biol 1998; 143:1635-46. [PMID: 9852156 PMCID: PMC2132979 DOI: 10.1083/jcb.143.6.1635] [Citation(s) in RCA: 251] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An emerging family of kinases related to the Drosophila Aurora and budding yeast Ipl1 proteins has been implicated in chromosome segregation and mitotic spindle formation in a number of organisms. Unlike other Aurora/Ipl1-related kinases, the Caenorhabditis elegans orthologue, AIR-2, is associated with meiotic and mitotic chromosomes. AIR-2 is initially localized to the chromosomes of the most mature prophase I-arrested oocyte residing next to the spermatheca. This localization is dependent on the presence of sperm in the spermatheca. After fertilization, AIR-2 remains associated with chromosomes during each meiotic division. However, during both meiotic anaphases, AIR-2 is present between the separating chromosomes. AIR-2 also remains associated with both extruded polar bodies. In the embryo, AIR-2 is found on metaphase chromosomes, moves to midbody microtubules at anaphase, and then persists at the cytokinesis remnant. Disruption of AIR-2 expression by RNA- mediated interference produces entire broods of one-cell embryos that have executed multiple cell cycles in the complete absence of cytokinesis. The embryos accumulate large amounts of DNA and microtubule asters. Polar bodies are not extruded, but remain in the embryo where they continue to replicate. The cytokinesis defect appears to be late in the cell cycle because transient cleavage furrows initiate at the proper location, but regress before the division is complete. Additionally, staining with a marker of midbody microtubules revealed that at least some of the components of the midbody are not well localized in the absence of AIR-2 activity. Our results suggest that during each meiotic and mitotic division, AIR-2 may coordinate the congression of metaphase chromosomes with the subsequent events of polar body extrusion and cytokinesis.
Collapse
Affiliation(s)
- J M Schumacher
- Cell Biology of Development and Differentiation Group, ABL-Basic Research Program, NCI-Frederick Cancer Research and Development Center, Frederick, Maryland 21702, USA
| | | | | |
Collapse
|
176
|
Gowdy PM, Anderson HJ, Roberge M. Entry into mitosis without Cdc2 kinase activation. J Cell Sci 1998; 111 ( Pt 22):3401-10. [PMID: 9788881 DOI: 10.1242/jcs.111.22.3401] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mouse FT210 cells at 39 degreesC cannot enter mitosis but arrest in G2 phase, because they lack Cdc2 kinase activity as a result of a temperature-sensitive lesion in the cdc2 gene. Incubation of arrested cells with the protein phosphatase 1 and 2A inhibitor okadaic acid induces morphologically normal chromosome condensation. We now show that okadaic acid also induces two other landmark events of early mitosis, nuclear lamina depolymerization and centrosome separation, in the absence of Cdc2 kinase activity. Okadaic acid-induced entry into mitosis is accompanied by partial activation of Cdc25C and may be prevented by tyrosine phosphatase inhibitors and by the protein kinase inhibitor staurosporine, suggesting that Cdc25C and kinases distinct from Cdc2 are required for these mitotic events. Using in-gel assays, we show that a 45-kDa protein kinase normally activated at mitosis is also activated by okadaic acid independently of Cdc2 kinase. The 45-kDa kinase can utilize GTP, is stimulated by spermine and is inhibited by heparin. These properties are characteristic of the kinase CK2, but immunoprecipitation studies indicate that it is not CK2. The data underline the importance of a tyrosine phosphatase, possibly Cdc25C, and of kinases other than Cdc2 in the structural changes the cell undergoes at mitosis, and indicate that entry into mitosis involves the activation of multiple kinases working in concert with Cdc2 kinase.
Collapse
Affiliation(s)
- P M Gowdy
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| | | | | |
Collapse
|
177
|
Abstract
The Xenopus centrosome protein kinase pEg2, involved in spindle assembly, binds to microtubules polymerized in vitro. We have developed a method to investigate the affinity of purified recombinant pEg2 protein for the cellular mitotic spindle. Briefly, cells grown on coverslips are fixed, permeabilized, and incubated with recombinant pEg2 protein. Localization of the protein is revealed by probing with a specific monoclonal antibody that recognizes recombinant but not endogenous pEg2. Using this method we show that recombinant pEg2 binds to microtubules in vitro, while, in vivo, pEg2 localized only to the mitotic spindle and not the interphase microtubule network. We also demonstrate that the catalytic activity of pEg2 is not necessary for its binding ability. This technique can be used to analyze the binding of various tagged proteins to cellular mitotic spindle.
Collapse
Affiliation(s)
- R Giet
- CNRS UPR41, Groupe Cycle Cellulaire, Université de Rennes I, Campus de Beaulieu, Rennes cedex, 35042, France
| | | |
Collapse
|
178
|
Bernard M, Sanseau P, Henry C, Couturier A, Prigent C. Cloning of STK13, a third human protein kinase related to Drosophila aurora and budding yeast Ipl1 that maps on chromosome 19q13.3-ter. Genomics 1998; 53:406-9. [PMID: 9799611 DOI: 10.1006/geno.1998.5522] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This report describes the identification of a cDNA encoding STK13, a third human protein kinase related to the Drosophila Aurora and the budding yeast Ipl1 kinases. After screening of a human placental cDNA library with a Xenopus laevis cDNA encoding the pEg2 protein kinase and 5' RACE on testis mRNA, a full-length cDNA was isolated. The chromosomal localization of STK13 on 19q13.3-ter between the markers D19S210 and D19S218 was established by a combination of somatic cell and radiation hybrid panel PCR screening. The localization of STK13 on human chromosome 19 was confirmed by fluorescence in situ hybridization (FISH) using a genomic clone containing STK13 as a probe.
Collapse
Affiliation(s)
- M Bernard
- Département de Biologie et Génétique du Développement, Groupe Cycle Cellulaire, CNRS UPR 41, Rennes Cedex, 35042, France
| | | | | | | | | |
Collapse
|
179
|
Abstract
The Schizosaccharomyces pombe genome sequencing project (http://www.sanger.ac.uk/Projects/S_pombe/) is nearly complete, and this is likely to generate interest in fission yeast as a model system beyond its traditional strongholds in the study of the cell cycle and sexual differentiation. In many fields S. pombe will offer a useful complement to the more widely studied Saccharomyces cerevisiae, but in some areas the impact of S. pombe may well rival or exceed that of this budding yeast in terms of relevance to higher systems. Because of the considerable differences from the S. cerevisiae microtubule cytoskeleton, studying microtubules in S. pombe is likely to enhance the contribution of model systems to our understanding of the principles and practices of microtubule organisation in eukaryotes in general.
Collapse
Affiliation(s)
- I M Hagan
- School of Biological Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|