151
|
Abstract
AbstractBackground:Exosomes are small vesicles of sizes between 40 and 100 nm. They are actively segregated by numerous different cell types and they can be found in almost all body fluids. Thus, there is an emerging role of exosomes and exosomal deoxyribonucleic acid (exoDNA) in biomedical research, especially in molecular medicine. Exosomes are assembled and segregated actively and carry distinct surface markers for cellular communication. They are loaded with cargo such as DNA, ribonucleic acid (RNA) and proteins. As there are numerous different exosomal purification methods available, it is of essential need to select an appropriate technique to get reliable results. As neuropathology is faced with the challenge that brain tissue is not accessible in an easy fashion, exosomes represent an ideal tool for molecular neuropathology. Thus, disease-specific molecular alterations will be detectable in a minimally invasive way for early disease diagnosis and surveillance.Summary:The analysis of exoDNA as biomarkers in neuropathology will enable early diagnosis, monitoring and relapse detection of brain tumors and neuropsychiatric disorders.Outlook:It is assumed that the significance of exosomes will increase in the upcoming years. There are powerful approaches in development using exosomes in molecularly targeted therapy to ultimately cure devastating brain diseases.
Collapse
|
152
|
Middleton RC, Rogers RG, De Couto G, Tseliou E, Luther K, Holewinski R, Soetkamp D, Van Eyk JE, Antes TJ, Marbán E. Newt cells secrete extracellular vesicles with therapeutic bioactivity in mammalian cardiomyocytes. J Extracell Vesicles 2018; 7:1456888. [PMID: 29696078 PMCID: PMC5912190 DOI: 10.1080/20013078.2018.1456888] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 03/17/2018] [Indexed: 01/18/2023] Open
Abstract
Newts can regenerate amputated limbs and cardiac tissue, unlike mammals which lack broad regenerative capacity. Several signaling pathways involved in cell proliferation, differentiation and survival during newt tissue regeneration have been elucidated, however the factors that coordinate signaling between cells, as well as the conservation of these factors in other animals, are not well defined. Here we report that media conditioned by newt limb explant cells (A1 cells) protect mammalian cardiomyocytes from oxidative stress-induced apoptosis. The cytoprotective effect of A1-conditioned media was negated by exposing A1 cells to GW4869, which suppresses the generation of extracellular vesicles (EVs). A1-EVs are similar in diameter (~100–150 nm), structure, and share several membrane surface and cargo proteins with mammalian exosomes. However, isolated A1-EVs contain significantly higher levels of both RNA and protein per particle than mammalian EVs. Additionally, numerous cargo RNAs and proteins are unique to A1-EVs. Of particular note, A1-EVs contain numerous mRNAs encoding nuclear receptors, membrane ligands, as well as transcription factors. Mammalian cardiomyocytes treated with A1-EVs showed increased expression of genes in the PI3K/AKT pathway, a pivotal player in survival signaling. We conclude that newt cells secrete EVs with diverse, distinctive RNA and protein contents. Despite ~300 million years of evolutionary divergence between newts and mammals, newt EVs confer cytoprotective effects on mammalian cardiomyocytes.
Collapse
Affiliation(s)
- Ryan C Middleton
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Russell G Rogers
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Geoffrey De Couto
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Eleni Tseliou
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kristin Luther
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ronald Holewinski
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Daniel Soetkamp
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jennifer E Van Eyk
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Travis J Antes
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Eduardo Marbán
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
153
|
Abstract
Cellular senescence is a cellular program that prevents the proliferation of cells at risk of neoplastic transformation. On the other hand, age-related accumulation of senescent cells promotes aging at least partially due to the senescence-associated secretory phenotype, whereby cells secrete high levels of inflammatory cytokines, chemokines, and matrix metalloproteinases. Emerging evidence, however, indicates that extracellular vesicles (EVs) are important mediators of the effects of senescent cells on their microenvironment. Senescent cells secrete more EphA2 and DNA via EVs, which can promote cancer cell proliferation and inflammation, respectively. Extracellular vesicles secreted from DNA-damaged cells can also affect telomere regulation. Furthermore, it has now become clear that EVs actually play important roles in many aspects of aging. This review is intended to summarize these recent progresses, with emphasis on relationships between cellular senescence and EVs.
Collapse
|
154
|
Nogués L, Benito-Martin A, Hergueta-Redondo M, Peinado H. The influence of tumour-derived extracellular vesicles on local and distal metastatic dissemination. Mol Aspects Med 2018; 60:15-26. [PMID: 29196097 PMCID: PMC5856602 DOI: 10.1016/j.mam.2017.11.012] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/18/2017] [Accepted: 11/27/2017] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) are key mediators of intercellular communication that have been ignored for decades. Tumour cells benefit from the secretion of vesicles as they can influence the behaviour of neighbouring tumour cells within the tumour microenvironment. Several studies have shown that extracellular vesicles play an active role in pre-metastatic niche formation and importantly, they are involved in the metastatic organotropism of different tumour types. Tumour-derived EVs carry and transfer molecules to recipient cells, modifying their behaviour through a process defined as "EV-driven education". EVs favour metastasis to sentinel lymph nodes and distal organs by reinforcing angiogenesis, inflammation and lymphangiogenesis. Hence, in this review we will summarize the main mechanisms by which tumour-derived EVs regulate lymph node and distal organ metastasis. Moreover, since some cancers metastasize through the lymphatic system, we will discuss recent discoveries about the presence and function of tumour EVs in the lymph. Finally, we will address the potential value of tumour EVs as prognostic biomarkers in liquid biopsies, specially blood and lymphatic fluid, and the use of these tools as early detectors of metastases.
Collapse
Affiliation(s)
- Laura Nogués
- Children's Cancer and Blood Foundation Laboratories, Department of Pediatrics, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medical College, New York, NY 10021, USA
| | - Alberto Benito-Martin
- Children's Cancer and Blood Foundation Laboratories, Department of Pediatrics, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medical College, New York, NY 10021, USA
| | - Marta Hergueta-Redondo
- Microenvironment and Metastasis Group, Department of Molecular Oncology, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain
| | - Héctor Peinado
- Children's Cancer and Blood Foundation Laboratories, Department of Pediatrics, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medical College, New York, NY 10021, USA; Microenvironment and Metastasis Group, Department of Molecular Oncology, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain.
| |
Collapse
|
155
|
Harischandra H, Yuan W, Loghry HJ, Zamanian M, Kimber MJ. Profiling extracellular vesicle release by the filarial nematode Brugia malayi reveals sex-specific differences in cargo and a sensitivity to ivermectin. PLoS Negl Trop Dis 2018; 12:e0006438. [PMID: 29659599 PMCID: PMC5919703 DOI: 10.1371/journal.pntd.0006438] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/26/2018] [Accepted: 04/10/2018] [Indexed: 12/19/2022] Open
Abstract
The filarial nematode Brugia malayi is an etiological agent of Lymphatic Filariasis. The capability of B. malayi and other parasitic nematodes to modulate host biology is recognized but the mechanisms by which such manipulation occurs are obscure. An emerging paradigm is the release of parasite-derived extracellular vesicles (EV) containing bioactive proteins and small RNA species that allow secretion of parasite effector molecules and their potential trafficking to host tissues. We have previously described EV release from the infectious L3 stage B. malayi and here we profile vesicle release across all intra-mammalian life cycle stages (microfilariae, L3, L4, adult male and female worms). Nanoparticle Tracking Analysis was used to quantify and size EVs revealing discrete vesicle populations and indicating a secretory process that is conserved across the life cycle. Brugia EVs are internalized by murine macrophages with no preference for life stage suggesting a uniform mechanism for effector molecule trafficking. Further, the use of chemical uptake inhibitors suggests all life stage EVs are internalized by phagocytosis. Proteomic profiling of adult male and female EVs using nano-scale LC-MS/MS described quantitative and qualitative differences in the adult EV proteome, helping define the biogenesis of Brugia EVs and revealing sexual dimorphic characteristics in immunomodulatory cargo. Finally, ivermectin was found to rapidly inhibit EV release by all Brugia life stages. Further this drug effect was also observed in the related filarial nematode, the canine heartworm Dirofilaria immitis but not in an ivermectin-unresponsive field isolate of that parasite, highlighting a potential mechanism of action for this drug and suggesting new screening platforms for anti-filarial drug development.
Collapse
Affiliation(s)
- Hiruni Harischandra
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Wang Yuan
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Hannah J. Loghry
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Michael J. Kimber
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
156
|
Hosseini-Beheshti E, Grau GER. Extracellular vesicles as mediators of immunopathology in infectious diseases. Immunol Cell Biol 2018; 96:694-703. [PMID: 29577413 DOI: 10.1111/imcb.12044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 12/12/2022]
Abstract
In the last decades, extracellular vesicles have emerged as important elements in cell-cell communication and as key players in disease pathogenesis via transmission of their cargo between different cells. Various works have described different subpopulations of these membrane structures, based on their cell of origin, biogenesis, size, biophysical properties and cargo. In addition to their pathophysiological role in the development and progression of different diseases including infectious diseases, neurodegenerative disorders and cancer, extracellular vesicles are now recognized for their potential as novel therapeutic targets and intelligent drug delivery system. Here, we have reviewed the most recent data on different subtypes of extracellular vesicles, focusing on microvesicles and exosomes and their subpopulations, their involvement in immune-mediated pathogenesis of various infectious diseases and their role as potential therapeutic targets.
Collapse
Affiliation(s)
- Elham Hosseini-Beheshti
- Vascular Immunology Unit, Department of Pathology, School of Medical Sciences, Marie Bashir Institute and The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW, Australia
| | - Georges Emile Raymond Grau
- Vascular Immunology Unit, Department of Pathology, School of Medical Sciences, Marie Bashir Institute and The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
157
|
Lässer C, Jang SC, Lötvall J. Subpopulations of extracellular vesicles and their therapeutic potential. Mol Aspects Med 2018; 60:1-14. [PMID: 29432782 DOI: 10.1016/j.mam.2018.02.002] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 01/17/2018] [Accepted: 02/06/2018] [Indexed: 12/20/2022]
Abstract
Extracellular vesicles (EVs), such as exosomes and microvesicles, have over the last 10-15 years been recognized to convey key messages in the molecular communication between cells. Indeed, EVs have the capacity to shuttle proteins, lipids, and nucleotides such as RNA between cells, leading to an array of functional changes in the recipient cells. Importantly, the EV secretome changes significantly in diseased cells and under conditions of cellular stress. More recently, it has become evident that the EV secretome is exceptionally diverse, with many different types of EVs being released by a single cell type, and these EVs can be described in terms of differences in density, molecular cargos, and morphology. This review will discuss the diversity of EVs, will introduce some suggestions for how to categorize them, and will propose how EVs and their subpopulations might be used for very different therapeutic purposes.
Collapse
Affiliation(s)
- Cecilia Lässer
- Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Su Chul Jang
- Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Sweden; Codiak BioSciences, Cambridge, MA 02139, USA
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Sweden.
| |
Collapse
|
158
|
Purification and Analysis of Exosomes Released by Mature Cortical Neurons Following Synaptic Activation. Methods Mol Biol 2018; 1545:129-138. [PMID: 27943211 DOI: 10.1007/978-1-4939-6728-5_9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Exosomes are vesicles released by most cells into their environment upon fusion of multivesicular endosomes with the plasma membrane. Exosomes are vesicles of 60-100 nm in diameter, floating in sucrose at a density of ~1.15 g/mL and carrying a number of marker proteins such as Alix, Tsg101, and Flotillin-1. We use dissociated cortical neurons cultured for around two weeks as exosome-releasing cells. In these conditions, neurons make mature synapses and form networks that can be activated by physiological stimuli. Here, we describe methods to culture differentiated cortical neurons, induce exosome release by increasing glutamatergic synapse activity, and purify exosomes by differential centrifugations followed by density separation using sucrose gradients. These protocols allow purification of neuronal exosomes released within minutes of activation of glutamatergic synapses.
Collapse
|
159
|
Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release. Cell Mol Life Sci 2018; 75:193-208. [PMID: 28733901 PMCID: PMC5756260 DOI: 10.1007/s00018-017-2595-9] [Citation(s) in RCA: 1714] [Impact Index Per Article: 244.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/22/2017] [Accepted: 07/13/2017] [Indexed: 12/12/2022]
Abstract
Exosomes are nanosized membrane vesicles released by fusion of an organelle of the endocytic pathway, the multivesicular body, with the plasma membrane. This process was discovered more than 30 years ago, and during these years, exosomes have gone from being considered as cellular waste disposal to mediate a novel mechanism of cell-to-cell communication. The exponential interest in exosomes experienced during recent years is due to their important roles in health and disease and to their potential clinical application in therapy and diagnosis. However, important aspects of the biology of exosomes remain unknown. To explore the use of exosomes in the clinic, it is essential that the basic molecular mechanisms behind the transport and function of these vesicles are better understood. We have here summarized what is presently known about how exosomes are formed and released by cells. Moreover, other cellular processes related to exosome biogenesis and release, such as autophagy and lysosomal exocytosis are presented. Finally, methodological aspects related to exosome release studies are discussed.
Collapse
Affiliation(s)
- Nina Pettersen Hessvik
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, 0379, Oslo, Norway
- Centre for Cancer Biomedicine, University of Oslo, 0379, Oslo, Norway
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, 0379, Oslo, Norway.
- Centre for Cancer Biomedicine, University of Oslo, 0379, Oslo, Norway.
| |
Collapse
|
160
|
Ribeiro D, Andersson EM, Heath N, Persson-Kry A, Collins R, Hicks R, Dekker N, Forslöw A. Human pancreatic islet-derived extracellular vesicles modulate insulin expression in 3D-differentiating iPSC clusters. PLoS One 2017; 12:e0187665. [PMID: 29117231 PMCID: PMC5678888 DOI: 10.1371/journal.pone.0187665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/24/2017] [Indexed: 01/02/2023] Open
Abstract
It has been suggested that extracellular vesicles (EVs) can mediate crosstalk between hormones and metabolites within pancreatic tissue. However, the possible effect of pancreatic EVs on stem cell differentiation into pancreatic lineages remains unknown. Herein, human islet-derived EVs (h-Islet-EVs) were isolated, characterized and subsequently added to human induced pluripotent stem cell (iPSC) clusters during pancreatic differentiation. The h-islet-EVs had a mean size of 117±7 nm and showed positive expression of CD63 and CD81 EV markers as measured by ELISA. The presence of key pancreatic transcription factor mRNA, such as NGN3, MAFA and PDX1, and pancreatic hormone proteins such as C-peptide and glucagon, were confirmed in h-Islet-EVs. iPSC clusters were differentiated in suspension and at the end stages of the differentiation protocol, the mRNA expression of the main pancreatic transcription factors and pancreatic hormones was increased. H-Islet-EVs were supplemented to the iPSC clusters in the later stages of differentiation. It was observed that h-Islet-EVs were able to up-regulate the intracellular levels of C-peptide in iPSC clusters in a concentration-dependent manner. The effect of h-Islet-EVs on the differentiation of iPSC clusters cultured in 3D-collagen hydrogels was also assessed. Although increased mRNA expression for pancreatic markers was observed when culturing the iPSC clusters in 3D-collagen hydrogels, delivery of EVs did not affect the insulin or C-peptide intracellular content. Our results provide new information on the role of h-Islet-EVs in the regulation of insulin expression in differentiating iPSC clusters, and are highly relevant for pancreatic tissue engineering applications.
Collapse
Affiliation(s)
- Diana Ribeiro
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden.,Department of Biology and Bioengineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Eva-Marie Andersson
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Nikki Heath
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Alderley Park, Macclesfield, United Kingdom
| | - Anette Persson-Kry
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Richard Collins
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Ryan Hicks
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Niek Dekker
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Anna Forslöw
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
161
|
Extracellular microRNAs as messengers in the central and peripheral nervous system. Neuronal Signal 2017; 1:NS20170112. [PMID: 32714581 PMCID: PMC7373247 DOI: 10.1042/ns20170112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/29/2017] [Accepted: 10/01/2017] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs are small post-transcriptional regulators that play an important role in nervous system development, function and disease. More recently, microRNAs have been detected extracellularly and circulating in blood and other body fluids, where they are protected from degradation by encapsulation in vesicles, such as exosomes, or by association with proteins. These microRNAs are thought to be released from cells selectively through active processes and taken up by specific target cells within the same or in remote tissues where they are able to exert their repressive function. These characteristics make extracellular microRNAs ideal candidates for intercellular communication over short and long distances. This review aims to explore the potential mechanisms underlying microRNA communication within the nervous system and between the nervous system and other tissues. The suggested roles of extracellular microRNAs in the healthy and the diseased nervous system will be reviewed.
Collapse
|
162
|
Wang J, Yeung BZ, Cui M, Peer CJ, Lu Z, Figg WD, Guillaume Wientjes M, Woo S, Au JLS. Exosome is a mechanism of intercellular drug transfer: Application of quantitative pharmacology. J Control Release 2017; 268:147-158. [PMID: 29054369 DOI: 10.1016/j.jconrel.2017.10.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/02/2017] [Accepted: 10/13/2017] [Indexed: 12/12/2022]
Abstract
PURPOSE Exosomes are small membrane vesicles (30-100nm in diameter) secreted by cells into extracellular space. The present study evaluated the effect of chemotherapeutic agents on exosome production and/or release, and quantified the contribution of exosomes to intercellular drug transfer and pharmacodynamics. METHODS Human cancer cells (breast MCF7, breast-to-lung metastatic LM2, ovarian A2780 and OVCAR4) were treated with paclitaxel (PTX, 2-1000nM) or doxorubicin (DOX, 20-1000nM) for 24-48h. Exosomes were isolated from the culture medium of drug-treated donor cells (Donor cells) using ultra-centrifugation, and analyzed for acetylcholinesterase activity, total proteins, drug concentrations, and biological effects (cytotoxicity and anti-migration) on drug-naïve recipient cells (Recipient cells). These results were used to develop computational predictive quantitative pharmacology models. RESULTS Cells in exponential growth phase released ~220 exosomes/cell in culture medium. PTX and DOX significantly promoted exosome production and/or release in a dose- and time-dependent manner, with greater effects in ovarian cancer cells than in breast cancer cells. Exosomes isolated from Donor cells contained appreciable drug levels (2-7pmole/106 cells after 24h treatment with 100-1000nM PTX), and caused cytotoxicity and inhibited migration of Recipient cells. Quantitative pharmacology models that integrated cellular PTX pharmacokinetics with PTX pharmacodynamics successfully predicted effects of exosomes on intercellular drug transfer, cytotoxicity of PTX on Donor cells and cytotoxicity of PTX-containing exosomes on Recipient cells. Additional model simulations indicate that within clinically achievable PTX concentrations, the contribution of exosomes to active drug efflux increased with drug concentration and exceeded the p-glycoprotein efflux when the latter was saturated. CONCLUSIONS Our results indicate (a) chemotherapeutic agents stimulate exosome production or release, and (b) exosome is a mechanism of intercellular drug transfer that contributes to pharmacodynamics of neighboring cells.
Collapse
Affiliation(s)
- Jin Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; Institute of Quantitative Systems Pharmacology, Carlsbad, CA 92008, USA
| | - Bertrand Z Yeung
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; Institute of Quantitative Systems Pharmacology, Carlsbad, CA 92008, USA; Optimum Therapeutics LLC, Carlsbad, CA 92008, USA
| | - Minjian Cui
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; Institute of Quantitative Systems Pharmacology, Carlsbad, CA 92008, USA; Optimum Therapeutics LLC, Carlsbad, CA 92008, USA
| | - Cody J Peer
- Clinical Pharmacology Program, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Ze Lu
- Optimum Therapeutics LLC, Carlsbad, CA 92008, USA
| | - William D Figg
- Clinical Pharmacology Program, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - M Guillaume Wientjes
- Institute of Quantitative Systems Pharmacology, Carlsbad, CA 92008, USA; Optimum Therapeutics LLC, Carlsbad, CA 92008, USA
| | - Sukyung Woo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Jessie L-S Au
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; Institute of Quantitative Systems Pharmacology, Carlsbad, CA 92008, USA; Optimum Therapeutics LLC, Carlsbad, CA 92008, USA; College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
163
|
Niu Z, Pang RTK, Liu W, Li Q, Cheng R, Yeung WSB. Polymer-based precipitation preserves biological activities of extracellular vesicles from an endometrial cell line. PLoS One 2017; 12:e0186534. [PMID: 29023592 PMCID: PMC5638560 DOI: 10.1371/journal.pone.0186534] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 10/03/2017] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound vesicles released by cells and act as media for transfer of proteins, small RNAs and mRNAs to distant sites. They can be isolated by different methods. However, the biological activities of the purified EVs have seldom been studied. In this study, we compared the use of ultracentrifugation (UC), ultra-filtration (UF), polymer-based precipitation (PBP), and PBP with size-based purification (PBP+SP) for isolation of EVs from human endometrial cells and mouse uterine luminal fluid (ULF). Electron microscopy revealed that the diameters of the isolated EVs were similar among the tested methods. UF recovered the highest number of EVs followed by PBP, while UC and PBP+SP were significantly less efficient (P<0.05). Based on the number of EVs-to-protein ratios, PBP had the least protein contamination, significantly better than the other methods (P<0.05). All the isolated EVs expressed exosome-enriched proteins CD63, TSG101 and HSP70. Incubation of the trophoblast JEG-3 cells with an equal amount of the fluorescence-labelled EVs isolated by the studied methods showed that many of the PBP-EVs treated cells were fluorescence positive but only a few cells were labelled in the UC- and UF-EVs treated groups. Moreover, the PBP-EVs could transfer significantly more miRNA to the recipient cells than the other 3 methods (P<0.05). The PBP method could isolate EVs from mouse ULF; the diameter of the isolated EVs was 62±19 nm and expressed CD63, TSG101 and HSP70 proteins. In conclusion, PBP could best preserve the activities of the isolated EVs among the 4 methods studied and was able to isolate EVs from a small volume of sample. The simple setup and low equipment demands makes PBP the most suitable method for rapid EV assessment and isolation of EVs in clinical and basic research settings.
Collapse
Affiliation(s)
- Ziru Niu
- Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ronald T. K. Pang
- Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Center of Reproduction, Development, and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Weimin Liu
- Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Center of Reproduction, Development, and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Qian Li
- Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ranran Cheng
- Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - William S. B. Yeung
- Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Center of Reproduction, Development, and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital
- * E-mail:
| |
Collapse
|
164
|
Stremersch S, Brans T, Braeckmans K, De Smedt S, Raemdonck K. Nucleic acid loading and fluorescent labeling of isolated extracellular vesicles requires adequate purification. Int J Pharm 2017; 548:783-792. [PMID: 29031850 DOI: 10.1016/j.ijpharm.2017.10.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/25/2017] [Accepted: 10/10/2017] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) are nanosized vesicular structures released by cells to communicate with one another. The growing interest in the (patho)physiological function and potential pharmaceutical application of these vesicles is accompanied by a vast number of new research groups entering this research field and a plethora of different protocols to separate EVs from non-vesicular components. This lack of uniformity often generates conflicting or difficult-to-compare results. Here we provide a comparative analysis of different EV isolation strategies, discussing the purity of the final isolate and highlighting the importance of purity on downstream experimental readouts. First, we show that ultracentrifugation (UC) of B16F10 melanoma cell-derived conditioned medium co-purifies proteins or protein complexes with nuclease activity. Such contaminants should be taken into account when aiming to apply EVs as delivery carriers for exogenous nucleic acids. Second, three commonly used purification strategies (i.e. precipitation, UC and density-gradient centrifugation) were evaluated for their ability to remove non-incorporated fluorescent dye (i.e. the lipophilic PKH67 dye), important when probing EV interactions with cells. For both types of impurities, endogenous and exogenous, density gradient purification outperforms the other evaluated methods. Overall, these results demonstrate that the implementation of stringent purification protocols and adequate controls is of pivotal importance to draw reliable conclusions from downstream experiments performed with EV isolates.
Collapse
Affiliation(s)
- Stephan Stremersch
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Center for Nano-and Biophotonics (NB-Photonics), Ghent University, 9000 Ghent, Belgium
| | - Toon Brans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Center for Nano-and Biophotonics (NB-Photonics), Ghent University, 9000 Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Center for Nano-and Biophotonics (NB-Photonics), Ghent University, 9000 Ghent, Belgium
| | - Stefaan De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Koen Raemdonck
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
165
|
Kavanagh EL, Lindsay S, Halasz M, Gubbins LC, Weiner-Gorzel K, Guang MHZ, McGoldrick A, Collins E, Henry M, Blanco-Fernández A, O Gorman P, Fitzpatrick P, Higgins MJ, Dowling P, McCann A. Protein and chemotherapy profiling of extracellular vesicles harvested from therapeutic induced senescent triple negative breast cancer cells. Oncogenesis 2017; 6:e388. [PMID: 28991260 PMCID: PMC5668881 DOI: 10.1038/oncsis.2017.82] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/17/2017] [Accepted: 08/19/2017] [Indexed: 02/08/2023] Open
Abstract
Triple negative breast cancer (TNBC) is an aggressive subtype with relatively poor clinical outcomes and limited treatment options. Chemotherapy, while killing cancer cells, can result in the generation of highly chemoresistant therapeutic induced senescent (TIS) cells that potentially form stem cell niches resulting in metastases. Intriguingly, senescent cells release significantly more extracellular vesicles (EVs) than non-senescent cells. Our aim was to profile EVs harvested from TIS TNBC cells compared with control cells to identify a potential mechanism by which TIS TNBC cells maintain survival in the face of chemotherapy. TIS was induced and confirmed in Cal51 TNBC cells using the chemotherapeutic paclitaxel (PTX) (Taxol). Mass spectrometry (MS) analysis of EVs harvested from TIS compared with control Cal51 cells was performed using Ingenuity Pathway Analysis and InnateDB programs. We demonstrate that TIS Cal51 cells treated with 75 nM PTX for 7 days became senescent (senescence-associated β-galactosidase (SA-β-Gal) positive, Ki67-negative, increased p21 and p16, G2/M cell cycle arrest) and released significantly more EVs (P=0.0002) and exosomes (P=0.0007) than non-senescent control cells. Moreover, TIS cells displayed an increased expression of the multidrug resistance protein 1/p-glycoprotein. MS analysis demonstrated that EVs derived from senescent Cal51 cells contained 142 proteins with a significant increased fold change compared with control EVs. Key proteins included ATPases, annexins, tubulins, integrins, Rabs and insoluble senescence-associated secretory phenotype (SASP) factors. A fluorescent analogue of PTX (Flutax-2) allowed appreciation of the removal of chemotherapy in EVs from senescent cells. Treatment of TIS cells with the exosome biogenesis inhibitor GW4869 resulted in reduced SA-β-Gal staining (P=0.04). In summary, this study demonstrates that TIS cells release significantly more EVs compared with control cells, containing chemotherapy and key proteins involved in cell proliferation, ATP depletion, apoptosis and the SASP. These findings may partially explain why cancer senescent cells remain viable despite chemotherapeutic challenge.
Collapse
Affiliation(s)
- E L Kavanagh
- UCD Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin (UCD), Dublin, Ireland.,These authors contributed equally to this manuscript
| | - S Lindsay
- UCD Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin (UCD), Dublin, Ireland.,These authors contributed equally to this manuscript
| | - M Halasz
- Systems Biology Ireland (SBI), University College Dublin (UCD), Dublin, Ireland.,UCD School of Medicine, College of Health and Agricultural Science, University College Dublin (UCD), Dublin, Ireland
| | - L C Gubbins
- UCD Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin (UCD), Dublin, Ireland
| | - K Weiner-Gorzel
- UCD Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin (UCD), Dublin, Ireland
| | - M H Z Guang
- UCD Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin (UCD), Dublin, Ireland
| | - A McGoldrick
- UCD Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin (UCD), Dublin, Ireland
| | - E Collins
- UCD Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin (UCD), Dublin, Ireland
| | - M Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - A Blanco-Fernández
- UCD Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin (UCD), Dublin, Ireland
| | - P O Gorman
- Haematology Department, Mater Misericordiae University Hospital, Dublin, Ireland
| | - P Fitzpatrick
- UCD School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - M J Higgins
- Oncology Department, Mater Misericordiae University Hospital, Dublin, Ireland
| | - P Dowling
- Biology Department, National University of Ireland Maynooth, Dublin, Ireland
| | - A McCann
- UCD Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin (UCD), Dublin, Ireland.,UCD School of Medicine, College of Health and Agricultural Science, University College Dublin (UCD), Dublin, Ireland
| |
Collapse
|
166
|
Khan S, Simpson J, Lynch JC, Turay D, Mirshahidi S, Gonda A, Sanchez TW, Casiano CA, Wall NR. Racial differences in the expression of inhibitors of apoptosis (IAP) proteins in extracellular vesicles (EV) from prostate cancer patients. PLoS One 2017; 12:e0183122. [PMID: 28981528 PMCID: PMC5628787 DOI: 10.1371/journal.pone.0183122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/31/2017] [Indexed: 12/21/2022] Open
Abstract
African-American men with prostate cancer typically develop more aggressive tumors than men from other racial/ethnic groups, resulting in a disproportionately high mortality from this malignancy. This study evaluated differences in the expression of inhibitors of apoptosis proteins (IAPs), a known family of oncoproteins, in blood-derived exosomal vesicles (EV) between African-American and European-American men with prostate cancer. The ExoQuick™ method was used to isolate EV from both plasma and sera of African-American (n = 41) and European-American (n = 31) men with prostate cancer, as well as from controls with no cancer diagnosis (n = 10). EV preparations were quantified by acetylcholinesterase activity assays, and assessed for their IAP content by Western blotting and densitometric analysis. Circulating levels of the IAP Survivin were evaluated by ELISA. We detected a significant increase in the levels of circulating Survivin in prostate cancer patients compared to controls (P<0.01), with the highest levels in African-American patients (P<0.01). African-American patients with prostate cancer also contained significantly higher amounts of EVs in their plasma (P<0.01) and sera (P<0.05) than European-American patients. In addition, EVs from African-American patients with prostate cancer contained significantly higher amounts of the IAPs Survivin (P<0.05), XIAP (P<0.001), and cIAP-2 (P<0.01) than EVs from European-American patients. There was no significant correlation between expression of IAPs and clinicopathological parameters in the two patient groups. Increased expression of IAPs in EVs from African-American patients with prostate cancer may influence tumor aggressiveness and contribute to the mortality disparity observed in this patient population. EVs could serve as reservoirs of novel biomarkers and therapeutic targets that may have clinical utility in reducing prostate cancer health disparities.
Collapse
Affiliation(s)
- Salma Khan
- Center for Health Disparities & Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Jennifer Simpson
- Center for Health Disparities & Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - James C. Lynch
- Center for Health Disparities & Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - David Turay
- Center for Health Disparities & Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Saied Mirshahidi
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
- Cancer Center and Biospecimen Laboratory, Loma Linda University School of Medicine, Loma Linda, California
| | - Amber Gonda
- Center for Health Disparities & Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Tino W. Sanchez
- Center for Health Disparities & Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Carlos A. Casiano
- Center for Health Disparities & Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Nathan R. Wall
- Center for Health Disparities & Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
167
|
Choi J, Seong TW, Jeun M, Lee KH. Field-Effect Biosensors for On-Site Detection: Recent Advances and Promising Targets. Adv Healthc Mater 2017; 6. [PMID: 28885777 DOI: 10.1002/adhm.201700796] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/24/2017] [Indexed: 12/21/2022]
Abstract
There is an explosive interest in the immediate and cost-effective analysis of field-collected biological samples, as many advanced biodetection tools are highly sensitive, yet immobile. On-site biosensors are portable and convenient sensors that provide detection results at the point of care. They are designed to secure precision in highly ionic and heterogeneous solutions with minimal hardware. Among various methods that are capable of such analysis, field-effect biosensors are promising candidates due to their unique sensitivity, manufacturing scalability, and integrability with computational circuitry. Recent developments in nanotechnological surface modification show promising results in sensing from blood, serum, and urine. This report gives a particular emphasis on the on-site efficacy of recently published field-effect biosensors, specifically, detection limits in physiological solutions, response times, and scalability. The survey of the properties and existing detection methods of four promising biotargets, exosomes, bacteria, viruses, and metabolites, aims at providing a roadmap for future field-effect and other on-site biosensors.
Collapse
Affiliation(s)
- Jaebin Choi
- Sensor System Research Center; Korea Institute of Science and Technology (KIST); 5 Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Republic of Korea
| | - Tae Wha Seong
- Center for Biomaterials; Biomedical Research Institute; Korea Institute of Science and Technology (KIST); 5 Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Republic of Korea
| | - Minhong Jeun
- Center for Biomaterials; Biomedical Research Institute; Korea Institute of Science and Technology (KIST); 5 Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Republic of Korea
| | - Kwan Hyi Lee
- Center for Biomaterials; Biomedical Research Institute; Korea Institute of Science and Technology (KIST); 5 Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Republic of Korea
- Department of Biomedical Engineering; Korea University of Science and Technology (UST); 5 Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Republic of Korea
| |
Collapse
|
168
|
Gauthier SA, Pérez-González R, Sharma A, Huang FK, Alldred MJ, Pawlik M, Kaur G, Ginsberg SD, Neubert TA, Levy E. Enhanced exosome secretion in Down syndrome brain - a protective mechanism to alleviate neuronal endosomal abnormalities. Acta Neuropathol Commun 2017; 5:65. [PMID: 28851452 PMCID: PMC5576289 DOI: 10.1186/s40478-017-0466-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 08/17/2017] [Indexed: 12/18/2022] Open
Abstract
A dysfunctional endosomal pathway and abnormally enlarged early endosomes in neurons are an early characteristic of Down syndrome (DS) and Alzheimer's disease (AD). We have hypothesized that endosomal material can be released by endosomal multivesicular bodies (MVBs) into the extracellular space via exosomes to relieve neurons of accumulated endosomal contents when endosomal pathway function is compromised. Supporting this, we found that exosome secretion is enhanced in the brains of DS patients and a mouse model of the disease, and by DS fibroblasts. Furthermore, increased levels of the tetraspanin CD63, a regulator of exosome biogenesis, were observed in DS brains. Importantly, CD63 knockdown diminished exosome release and worsened endosomal pathology in DS fibroblasts. Taken together, these data suggest that increased CD63 expression enhances exosome release as an endogenous mechanism mitigating endosomal abnormalities in DS. Thus, the upregulation of exosome release represents a potential therapeutic goal for neurodegenerative disorders with endosomal pathology.
Collapse
|
169
|
Circulating extracellular vesicles in the aging process: impact of aerobic exercise. Mol Cell Biochem 2017; 440:115-125. [PMID: 28819811 DOI: 10.1007/s11010-017-3160-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/09/2017] [Indexed: 12/22/2022]
Abstract
Our aim was to investigate transitory and delayed exercise effects on serum extracellular vesicles (EVs) in aging process. Male Wistar rats of 3-, 21-, and 26-month old were allocated into exercised and sedentary groups. The exercise protocol consisted in a daily moderate treadmill exercise (20 min daily during 2 weeks). Trunk blood was collected 1 and 18 h after the last exercise session, and circulating EVs were obtained. CD63 levels and acetylcholinesterase (AChE) activity were used as markers of exosome, a subtype of EVs. In addition, the quantification of amyloid-β (Aβ) levels and the oxidative status parameters, specifically reactive species content, superoxide dismutase (SOD) activity, and SOD1 content were evaluated. Aged rats showed reduced CD63 levels and increased AChE activity in circulating exosomes compared to young ones. Moreover, higher reactive species levels were found in circulating EVs of aged rats. Delayed exercise effects were observed on peripheral EVs, since CD63, reactive species content, and AChE activity were altered 18 h after the last exercise session. Our results suggest that the healthy aging process can modify circulating EVs profile, and exercise-induced beneficial effects may be related to its modulation on EVs.
Collapse
|
170
|
Juan T, Fürthauer M. Biogenesis and function of ESCRT-dependent extracellular vesicles. Semin Cell Dev Biol 2017; 74:66-77. [PMID: 28807885 DOI: 10.1016/j.semcdb.2017.08.022] [Citation(s) in RCA: 321] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/04/2017] [Accepted: 08/07/2017] [Indexed: 12/18/2022]
Abstract
From bacteria to humans, cells secrete a large variety of membrane-bound extracellular vesicles. Only relatively recently has it however started to become clear that the exovesicular transport of proteins and RNAs is important for normal physiology and numerous pathological conditions. Extracellular vesicles can be formed through the release of the intralumenal vesicles of multivesicular endosomes as so-called exosomes, or through direct, ectosomal, budding from the cell surface. Through their ability to promote the bending of membranes away from the cytoplasm, the components of the Endosomal Sorting Complex Required for Transport (ESCRT) have been implicated in both exo- and ectosomal biogenesis. Studies of the ESCRT machinery may therefore provide important insights into the formation and function of extracellular vesicles. In the present review, we first describe the cell biological mechanisms through which ESCRT components contribute to the biogenesis of different types of extracellular vesicles. We then discuss how recent functional studies have started to uncover important roles of ESCRT-dependent extracellular vesicles in a wide variety of processes, including the transport of developmental signaling molecules and embryonic morphogenesis, the regulation of social behavior and host-pathogen interactions, as well as the etiology and progression of neurodegenerative pathologies and cancer.
Collapse
Affiliation(s)
- Thomas Juan
- Université Côte d'Azur, CNRS, Inserm, iBV, France
| | | |
Collapse
|
171
|
Exosomes in cancer: Use them or target them? Semin Cell Dev Biol 2017; 78:13-21. [PMID: 28803894 DOI: 10.1016/j.semcdb.2017.08.009] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 08/03/2017] [Accepted: 08/03/2017] [Indexed: 12/21/2022]
Abstract
Exosomes are small extracellular vesicles with a significant role in most processes associated with cancer. On one hand, exosomes role in the different hallmarks of cancer has been widely described, highlighting the urge to understand the potential to target communication mediated by exosomes as a novel therapeutic approach in cancer. On the other hand, exosomes stability in circulation and tumor-targeting capacity shows their applicability in the delivery of anti-cancer molecules. This review will discuss the dual applicability of exosomes in cancer focusing on their usage for therapy improvement, or their targeting to block their supportive role in tumor progression and response to therapy. We highlight the current developments and the strategies used to enhance the potential of exosomes to become clinical partners in the treatment of cancer.
Collapse
|
172
|
Poe AJ, Knowlton AA. Exosomes as agents of change in the cardiovascular system. J Mol Cell Cardiol 2017; 111:40-50. [PMID: 28782514 DOI: 10.1016/j.yjmcc.2017.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/21/2017] [Accepted: 08/02/2017] [Indexed: 12/17/2022]
Abstract
Exosomes have an evolving role in paracrine and autocrine signaling, which is enhanced because these lipid vesicles are quite stable and can deliver miRNA, DNA, protein and other molecules to cells throughout the body. Most cell types release exosomes, and exosomes are found in all biological fluids, making them accessible biomarkers. Significantly, exosomes can carry a biologically potent cargo, which can alter the phenotype of recipient cells. In the cardiovascular system exosomes have been primarily studied for their role in mediating the beneficial effects of mesenchymal stem cells after myocardial injury. Exosomes released by cardiac cells in disease states, such as myocardial ischemia, can potentially have important pathophysiologic effects on other cardiac cells as well as on distant organs.
Collapse
Affiliation(s)
- A J Poe
- Molecular & Cellular Cardiology, Cardiovascular Division, Department of Medicine, University of California-Davis, Davis, CA, United States
| | - A A Knowlton
- VA Medical Center Sacramento, University of California-Davis, Davis, CA, United States; Molecular & Cellular Cardiology, Cardiovascular Division, Department of Medicine, University of California-Davis, Davis, CA, United States; Pharmacology Department, University of California-Davis, Davis, CA, United States.
| |
Collapse
|
173
|
Vacuole-inducing compounds that disrupt endolysosomal trafficking stimulate production of exosomes by glioblastoma cells. Mol Cell Biochem 2017; 439:1-9. [PMID: 28770472 DOI: 10.1007/s11010-017-3130-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 07/26/2017] [Indexed: 12/13/2022]
Abstract
Exosomes are produced from mammalian cells when multivesicular endosomes fuse with the plasma membrane, releasing their intralumenal vesicles. In this study we assessed the effects of MOPIPP, a novel indole-based chalcone, and vacuolin-1, a distinct triazine-based compound, on exosome production in cultured glioblastoma and 293T cells. Both compounds promote vacuolization of late endosome compartments and interfere with trafficking of late endosomes to lysosomes, without significant cytotoxicity. The results show that vacuolated cells treated with these compounds release exosomes with morphologies similar to untreated controls. However, both compounds trigger multi-fold increases in release of exosome marker proteins (e.g., CD63, Alix) in exosome fractions collected from equivalent numbers of cells. Despite the marked increase in exosome production, the profiles of selected miRNA cargoes carried by the exosomes were generally similar in cells treated with the compounds. Insofar as MOPIPP and vacuolin-1 seem able to increase the overall yield of exosomes from cultured cells, they might be useful for efforts to develop exosome-based therapeutics.
Collapse
|
174
|
Pužar Dominkuš P, Ferdin J, Plemenitaš A, Peterlin BM, Lenassi M. Nef is secreted in exosomes from Nef.GFP-expressing and HIV-1-infected human astrocytes. J Neurovirol 2017; 23:713-724. [PMID: 28762184 DOI: 10.1007/s13365-017-0552-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 06/16/2017] [Accepted: 07/10/2017] [Indexed: 12/16/2022]
Abstract
HIV-1 infection of the central nervous system causes HIV-associated neurocognitive disorders, even in aviremic patients. Although astrocyte malfunction was associated to these disorders, their implication is overshadowed by contributions of microglia and macrophages. Astrocytes are infected with HIV-1 in vivo and express a relevant amount of viral protein Nef. Nef was shown to stimulate its own release in exosomes from diverse cell types, which in turn have damaging effects on neighboring cells. Using immunoblotting and electron microscopy, we showed that human astrocytes expressing Nef.GFP similarly release Nef in exosomes. Importantly, Nef.GFP expression increases the secretion of exosomes from human astrocytes up to 5.5-fold, as determined by total protein content and nanoparticle tracking analysis. Protein analysis of exosomes and viruses separated on iodixanol gradient further showed that native or pseudotyped HIV-1-infected human astrocytes release exosomes, which contain Nef. Our results provide the basis for future studies of the damaging role of Nef-exosomes produced by HIV-infected astrocytes on the central nervous system.
Collapse
Affiliation(s)
- Pia Pužar Dominkuš
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jana Ferdin
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Ana Plemenitaš
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Boris Matija Peterlin
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Departments of Medicine, Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA
| | - Metka Lenassi
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
175
|
Abramowicz A, Widlak P, Pietrowska M. Proteomic analysis of exosomal cargo: the challenge of high purity vesicle isolation. MOLECULAR BIOSYSTEMS 2017; 12:1407-19. [PMID: 27030573 DOI: 10.1039/c6mb00082g] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The re-discovery of exosomes as intercellular messengers with high potential for diagnostic and therapeutic utility has led to them becoming a popular topic of research in recent years. One of the essential research areas in this field is the characterization of exosomal cargo, which includes numerous non-randomly packed proteins and nucleic acids. Unexpectedly, a very challenging aspect of exploration of extracellular vesicles has turned out to be their effective and selective isolation. The plurality of developed protocols leads to qualitative and quantitative variability in terms of the obtained exosomes, which significantly affects the results of downstream analyses and makes them difficult to compare, reproduce and interpret between research groups. Currently, there is a general consensus among the exosome-oriented community concerning the urgent need for the optimization and standardization of methods employed for the purification of these vesicles. Hence, we review here several strategies for exosome preparation including ultracentrifugation, chemical precipitation, affinity capturing and filtration techniques. The advantages and disadvantages of different approaches are discussed with special emphasis being placed on their adequacy for proteomics applications, which are particularly sensitive to sample quality. We conclude that certain methods, exemplified by ultracentrifugation combined with iodixanol density gradient centrifugation or gel filtration, although labor-intensive, provide superior quality exosome preparations suitable for reliable analysis by mass spectrometry.
Collapse
Affiliation(s)
- Agata Abramowicz
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland.
| | - Piotr Widlak
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland.
| | - Monika Pietrowska
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland.
| |
Collapse
|
176
|
Khalyfa A, Kheirandish-Gozal L, Gozal D. Circulating exosomes in obstructive sleep apnea as phenotypic biomarkers and mechanistic messengers of end-organ morbidity. Respir Physiol Neurobiol 2017; 256:143-156. [PMID: 28676332 DOI: 10.1016/j.resp.2017.06.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/13/2017] [Accepted: 06/19/2017] [Indexed: 02/08/2023]
Abstract
Obstructive sleep apnea (OSA), the most severe form of sleep disordered breathing, is characterized by intermittent hypoxia during sleep (IH), sleep fragmentation, and episodic hypercapnia. OSA is associated with increased risk for morbidity and mortality affecting cardiovascular, metabolic, and neurocognitive systems, and more recently with non-alcoholic fatty liver disease (NAFLD) and cancer-related deaths. Substantial variability in OSA outcomes suggests that genetically-determined and environmental and lifestyle factors affect the phenotypic susceptibility to OSA. Furthermore, OSA and obesity often co-exist and manifest activation of shared molecular end-organ injury mechanisms that if properly identified may represent potential therapeutic targets. A challenge in the development of non-invasive diagnostic assays in body fluids is the ability to identify clinically relevant biomarkers. Circulating extracellular vesicles (EVs) include a heterogeneous population of vesicular structures including exosomes, prostasomes, microvesicles (MVs), ectosomes and oncosomes, and are classified based on their size, shape and membrane surface composition. Of these, exosomes (30-100nm) are very small membrane vesicles derived from multi-vesicular bodies or from the plasma membrane and play important roles in mediating cell-cell communication via cargo that includes lipids, proteins, mRNAs, miRNAs and DNA. We have recently identified a unique cluster of exosomal miRNAs in both humans and rodents exposed to intermittent hypoxia as well as in patients with OSA with divergent morbid phenotypes. Here we summarize such recent findings, and will focus on exosomal miRNAs in both adult and children which mediate intercellular communication relevant to OSA and endothelial dysfunction, and their potential value as diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Abdelnaby Khalyfa
- Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA.
| | - Leila Kheirandish-Gozal
- Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - David Gozal
- Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
177
|
Gonzalez-King H, García NA, Ontoria-Oviedo I, Ciria M, Montero JA, Sepúlveda P. Hypoxia Inducible Factor-1α Potentiates Jagged 1-Mediated Angiogenesis by Mesenchymal Stem Cell-Derived Exosomes. Stem Cells 2017; 35:1747-1759. [PMID: 28376567 DOI: 10.1002/stem.2618] [Citation(s) in RCA: 284] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/05/2017] [Accepted: 03/10/2017] [Indexed: 12/13/2022]
Abstract
Insufficient vessel growth associated with ischemia remains an unresolved issue in vascular medicine. Mesenchymal stem cells (MSCs) have been shown to promote angiogenesis via a mechanism that is potentiated by hypoxia. Overexpression of hypoxia inducible factor (HIF)-1α in MSCs improves their therapeutic potential by inducing angiogenesis in transplanted tissues. Here, we studied the contribution of exosomes released by HIF-1α-overexpressing donor MSCs (HIF-MSC) to angiogenesis by endothelial cells. Exosome secretion was enhanced in HIF-MSC. Omics analysis of miRNAs and proteins incorporated into exosomes pointed to the Notch pathway as a candidate mediator of exosome communication. Interestingly, we found that Jagged1 was the sole Notch ligand packaged into MSC exosomes and was more abundant in HIF-MSC than in MSC controls. The addition of Jagged1-containing exosomes from MSC and HIF-MSC cultures to endothelial cells triggered transcriptional changes in Notch target genes and induced angiogenesis in an in vitro model of capillary-like tube formation, and both processes were stimulated by HIF-1α. Finally, subcutaneous injection of Jagged 1-containing exosomes from MSC and HIF-MSC cultures in the Matrigel plug assay induced angiogenesis in vivo, which was more robust when they were derived from HIF-MSC cultures. All Jagged1-mediated effects could be blocked by prior incubation of exosomes with an anti-Jagged 1 antibody. All together, the results indicate that exosomes derived from MSCs stably overexpressing HIF-1α have an increased angiogenic capacity in part via an increase in the packaging of Jagged1, which could have potential applications for the treatment of ischemia-related disease. Stem Cells 2017;35:1747-1759.
Collapse
Affiliation(s)
- Hernán Gonzalez-King
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Joint Unit for cardiovascular Repair Instituto de Investigación Sanitaria La Fe-Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Nahuel A García
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Joint Unit for cardiovascular Repair Instituto de Investigación Sanitaria La Fe-Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Imelda Ontoria-Oviedo
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Joint Unit for cardiovascular Repair Instituto de Investigación Sanitaria La Fe-Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - María Ciria
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Joint Unit for cardiovascular Repair Instituto de Investigación Sanitaria La Fe-Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - José Anastasio Montero
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Joint Unit for cardiovascular Repair Instituto de Investigación Sanitaria La Fe-Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Pilar Sepúlveda
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Joint Unit for cardiovascular Repair Instituto de Investigación Sanitaria La Fe-Centro de Investigación Príncipe Felipe, Valencia, Spain
| |
Collapse
|
178
|
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a dominant cause of chronic liver disease, but the exact mechanism of progression from simple steatosis to nonalcoholic steatohepatitis (NASH) remains unknown. Here, we investigated the role of exosomes in NAFLD progression. Exosomes were isolated from a human hepatoma cell line treated with palmitic acid (PA) and their miRNA profiles examined by microarray. The human hepatic stellate cell (HSC) line (LX-2) was then treated with exosome isolated from hepatocytes. Compared with controls, PA-treated hepatocytes displayed significantly increased CD36 and exosome production. The microarray analysis showed there to be distinctive miRNA expression patterns between exosomes from vehicle- and PA-treated hepatocytes. When LX-2 cells were cultured with exosomes from PA-treated hepatocytes, the expression of genes related to the development of fibrosis were significantly amplified compared to those treated with exosomes from vehicle-treated hepatocytes. In conclusion, PA treatment enhanced the production of exosomes in these hepatocytes and changed their exosomal miRNA profile. Moreover, exosomes derived from PA-treated hepatocytes caused an increase in the expression levels of fibrotic genes in HSCs. Therefore, exosomes may have important roles in the crosstalk between hepatocytes and HSCs in the progression from simple steatosis to NASH.
Collapse
|
179
|
Qin X, Wang J, Wang X, Liu F, Jiang B, Zhang Y. Targeting Rabs as a novel therapeutic strategy for cancer therapy. Drug Discov Today 2017; 22:1139-1147. [PMID: 28390930 DOI: 10.1016/j.drudis.2017.03.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 02/18/2017] [Accepted: 03/21/2017] [Indexed: 12/13/2022]
Abstract
Rab GTPases constitute the largest family of small GTPases. Rabs regulate not only membrane trafficking but also cell signaling, growth and survival, and development. Increasingly, Rabs and their effectors are shown to be overexpressed or subject to loss-of-function mutations in a variety of disease settings, including cancer progression. This review provides an overview of dysregulated Rab proteins in cancer, and highlights the signaling and secretory pathways in which they operate, with the aim of identifying potential avenues for therapeutic intervention. Recent progress and perspectives for direct and/or indirect targeting of Rabs are also summarized.
Collapse
Affiliation(s)
- Xiaoyu Qin
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Jiongyi Wang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Xinxin Wang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Feng Liu
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Bin Jiang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China.
| | - Yanjie Zhang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China.
| |
Collapse
|
180
|
Derkus B, Emregul KC, Emregul E. A new approach in stem cell research-Exosomes: Their mechanism of action via cellular pathways. Cell Biol Int 2017; 41:466-475. [DOI: 10.1002/cbin.10742] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 02/04/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Burak Derkus
- Department of Chemistry; Faculty of Sciences; Ankara University; 06100 Ankara Turkey
| | - Kaan C. Emregul
- Department of Chemistry; Faculty of Sciences; Ankara University; 06100 Ankara Turkey
| | - Emel Emregul
- Department of Chemistry; Faculty of Sciences; Ankara University; 06100 Ankara Turkey
| |
Collapse
|
181
|
Effect of prolonged freezing of semen on exosome recovery and biologic activity. Sci Rep 2017; 7:45034. [PMID: 28338013 PMCID: PMC5364471 DOI: 10.1038/srep45034] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 02/17/2017] [Indexed: 01/07/2023] Open
Abstract
Exosomes are important vehicles of intercellular communication that shape host responses to physiologic, tumorigenic, and pathogenic conditions. The composition and function of exosomes are dynamic and depends on the state and condition of the cellular source. In prior work, we found that semen exosomes (SE) from healthy donors who do not use illicit drugs potently inhibit HIV-1. Following semen donation, specimens are either used immediately or frozen for use at a later time. It has been shown that short-term freezing of semen has no effect on SE-mediated HIV-1 inhibition. However, the effect of illicit drugs and prolonged freezing on SE bioactivity is unknown. Here, we show preservation of SE physical properties, (morphology, concentration, intensity/size) irrespective of illicit drug use or duration of semen freezing. Interestingly, illicit drugs and prolonged freezing decreased the levels of SE-bound CD63/CD9 and acetylcholinesterase activity respectively. Furthermore, we show differential effects of illicit drug use and prolonged freezing on SE-mediated HIV-1 inhibition. Our results highlight the importance of the source of SE and condition of semen storage on SE content and function. In-depth evaluation of donor drug-use and duration of semen storage on SE cargo and bioactivity will advance our understanding of SE composition and function.
Collapse
|
182
|
Abstract
Newly synthesized transmembrane proteins undergo a series of steps to ensure that only the required amount of correctly folded protein is localized to the membrane. The regulation of protein quality and its abundance at the membrane are often controlled by ubiquitination, a multistep enzymatic process that results in the attachment of ubiquitin, or chains of ubiquitin to the target protein. Protein ubiquitination acts as a signal for sorting, trafficking, and the removal of membrane proteins via endocytosis, a process through which multiple ubiquitin ligases are known to specifically regulate the functions of a number of ion channels, transporters, and signaling receptors. Endocytic removal of these proteins through ubiquitin-dependent endocytosis provides a way to rapidly downregulate the physiological outcomes, and defects in such controls are directly linked to human pathologies. Recent evidence suggests that ubiquitination is also involved in the shedding of membranes and associated proteins as extracellular vesicles, thereby not only controlling the cell surface levels of some membrane proteins, but also their potential transport to neighboring cells. In this review, we summarize the mechanisms and functions of ubiquitination of membrane proteins and provide specific examples of ubiquitin-dependent regulation of membrane proteins.
Collapse
Affiliation(s)
- Natalie Foot
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Tanya Henshall
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| |
Collapse
|
183
|
H Rashed M, Bayraktar E, K Helal G, Abd-Ellah MF, Amero P, Chavez-Reyes A, Rodriguez-Aguayo C. Exosomes: From Garbage Bins to Promising Therapeutic Targets. Int J Mol Sci 2017; 18:ijms18030538. [PMID: 28257101 PMCID: PMC5372554 DOI: 10.3390/ijms18030538] [Citation(s) in RCA: 362] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/25/2017] [Accepted: 02/27/2017] [Indexed: 12/13/2022] Open
Abstract
Intercellular communication via cell-released vesicles is a very important process for both normal and tumor cells. Cell communication may involve exosomes, small vesicles of endocytic origin that are released by all types of cells and are found in abundance in body fluids, including blood, saliva, urine, and breast milk. Exosomes have been shown to carry lipids, proteins, mRNAs, non-coding RNAs, and even DNA out of cells. They are more than simply molecular garbage bins, however, in that the molecules they carry can be taken up by other cells. Thus, exosomes transfer biological information to neighboring cells and through this cell-to-cell communication are involved not only in physiological functions such as cell-to-cell communication, but also in the pathogenesis of some diseases, including tumors and neurodegenerative conditions. Our increasing understanding of why cells release exosomes and their role in intercellular communication has revealed the very complex and sophisticated contribution of exosomes to health and disease. The aim of this review is to reveal the emerging roles of exosomes in normal and pathological conditions and describe the controversial biological role of exosomes, as it is now understood, in carcinogenesis. We also summarize what is known about exosome biogenesis, composition, functions, and pathways and discuss the potential clinical applications of exosomes, especially as biomarkers and novel therapeutic agents.
Collapse
Affiliation(s)
- Mohammed H Rashed
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, The University of Al-Azhar, Cairo 11754, Egypt.
| | - Emine Bayraktar
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- Department of Medical Biology, Faculty of Medicine, The University of Gaziantep, Gaziantep 27310, Turkey.
| | - Gouda K Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, The University of Al-Azhar, Cairo 11754, Egypt.
| | - Mohamed F Abd-Ellah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, The University of Al-Azhar, Cairo 11754, Egypt.
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Arturo Chavez-Reyes
- Centro de Investigación y Estudios Avanzados del IPN, Unidad Monterrey, Apodaca NL CP 66600, Mexico.
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
184
|
Myocyte-Derived Hsp90 Modulates Collagen Upregulation via Biphasic Activation of STAT-3 in Fibroblasts during Cardiac Hypertrophy. Mol Cell Biol 2017; 37:MCB.00611-16. [PMID: 28031326 DOI: 10.1128/mcb.00611-16] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 12/16/2016] [Indexed: 01/01/2023] Open
Abstract
Signal transducer and activator of transcription 3 (STAT-3)-mediated signaling in relation to upregulated collagen expression in fibroblasts during cardiac hypertrophy is well defined. Our recent findings have identified heat shock protein 90 (Hsp90) to be a critical modulator of fibrotic signaling in cardiac fibroblasts in this disease milieu. The present study was therefore intended to analyze the role of Hsp90 in the STAT-3-mediated collagen upregulation process. Our data revealed a significant difference between in vivo and in vitro results, pointing to a possible involvement of myocyte-fibroblast cross talk in this process. Cardiomyocyte-targeted knockdown of Hsp90 in rats (Rattus norvegicus) in which the renal artery was ligated showed downregulated collagen synthesis. Furthermore, the results obtained with cardiac fibroblasts conditioned with Hsp90-inhibited hypertrophied myocyte supernatant pointed toward cardiomyocytes' role in the regulation of collagen expression in fibroblasts during hypertrophy. Our study also revealed a novel signaling mechanism where myocyte-derived Hsp90 orchestrates not only p65-mediated interleukin-6 (IL-6) synthesis but also its release in exosomal vesicles. Such myocyte-derived exosomes and myocyte-secreted IL-6 are responsible in unison for the biphasic activation of STAT-3 signaling in cardiac fibroblasts that culminates in excess collagen synthesis, leading to severely compromised cardiac function during cardiac hypertrophy.
Collapse
|
185
|
Mikamori M, Yamada D, Eguchi H, Hasegawa S, Kishimoto T, Tomimaru Y, Asaoka T, Noda T, Wada H, Kawamoto K, Gotoh K, Takeda Y, Tanemura M, Mori M, Doki Y. MicroRNA-155 Controls Exosome Synthesis and Promotes Gemcitabine Resistance in Pancreatic Ductal Adenocarcinoma. Sci Rep 2017; 7:42339. [PMID: 28198398 PMCID: PMC5309735 DOI: 10.1038/srep42339] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 01/09/2017] [Indexed: 12/21/2022] Open
Abstract
The cancer drug gemcitabine (GEM) is a key drug for treating pancreatic ductal adenocarcinoma (PDAC), but PDAC cells develop chemoresistance after long-term administration. Since the tolerance was immediately spread to every PDAC tissue in a patient, it is assumed that some certain efficient mechanisms underlay in the development of chemoresistance. Changes in the levels of particular microRNAs or alterations in intercellular communication play a dominant role in chemoresistance development, and recent data also suggest that exosomes play an important role in this process. In this study, we revealed that the loop conferred chemoresistance in PDAC cells. The loop was as follows; 1, The long-term exposure of GEM increased miR-155 expression in PDAC cells. 2, The increase of miR-155 induced two different functions; exosome secretion and chemoresistance ability via facilitating the anti-apoptotic activity. 3, Exosome deliver the miR-155 into the other PDAC cells and induce the following function. The target therapy to miR-155 or the exosome secretion effectively attenuated the chemoresistance, and these results were validated with both clinical samples and in vivo experiments. This mechanism represents a novel therapeutic target in GEM treatment to PDAC.
Collapse
Affiliation(s)
- Manabu Mikamori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Shinichiro Hasegawa
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Tomoya Kishimoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Yoshito Tomimaru
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Tadafumi Asaoka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Wada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Koichi Kawamoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Kunihito Gotoh
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Yutaka Takeda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
- Department of Surgery, Kansai Rosai Hospital, Inabasou 3-1-69, Amagasaki, Hyogo, 660-8511, Japan
| | - Masahiro Tanemura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
- Department of Surgery, Osaka Police Hospital, Tennoji-ku Kitayamacho 10-31, Osaka, 543-0035, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
186
|
CD63 Regulates Epstein-Barr Virus LMP1 Exosomal Packaging, Enhancement of Vesicle Production, and Noncanonical NF-κB Signaling. J Virol 2017; 91:JVI.02251-16. [PMID: 27974566 DOI: 10.1128/jvi.02251-16] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/06/2016] [Indexed: 12/13/2022] Open
Abstract
Latent membrane protein 1 (LMP1) is an Epstein-Barr virus (EBV)-encoded oncoprotein that is packaged into small extracellular vesicles (EVs) called exosomes. Trafficking of LMP1 into multivesicular bodies (MVBs) alters the content and function of exosomes. LMP1-modified exosomes enhance the growth, migration, and invasion of malignant cells, demonstrating the capacity to manipulate the tumor microenvironment and enhance the progression of EBV-associated cancers. Despite the growing evidence surrounding the significance of LMP1-modified exosomes in cancer, very little is understood about the mechanisms that orchestrate LMP1 incorporation into these vesicles. Recently, LMP1 was shown to be copurified with CD63, a conserved tetraspanin protein enriched in late endosomal and lysosomal compartments. Here, we demonstrate the importance of CD63 presence for exosomal packaging of LMP1. Nanoparticle tracking analysis and gradient purification revealed an increase in extracellular vesicle secretion and exosomal proteins following LMP1 expression. Immunoisolation of CD63-positive exosomes exhibited accumulation of LMP1 in this vesicle population. Functionally, CRISPR/Cas9 knockout of CD63 resulted in a reduction of LMP1-induced particle secretion. Furthermore, LMP1 packaging was severely impaired in CD63 knockout cells, concomitant with a disruption in the perinuclear localization of LMP1. Importantly, LMP1 trafficking to lipid rafts and activation of NF-κB and PI3K/Akt pathways remained intact following CD63 knockout, while mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and noncanonical NF-κB activation were observed to be increased. These results suggest that CD63 is a critical player in LMP1 exosomal trafficking and LMP1-mediated enhancement of exosome production and may play further roles in limiting downstream LMP1 signaling.IMPORTANCE EBV is a ubiquitous gamma herpesvirus linked to malignancies such as nasopharyngeal carcinoma, Burkitt's lymphoma, and Hodgkin's lymphoma. In the context of cancer, EBV hijacks the exosomal pathway to modulate cell-to-cell signaling by secreting viral components such as an oncoprotein, LMP1, into host cell membrane-bound EVs. Trafficking of LMP1 into exosomes is associated with increased oncogenicity of these secreted vesicles. However, we have only a limited understanding of the mechanisms surrounding exosomal cargo packaging, including viral proteins. Here, we describe a role of LMP1 in EV production that requires CD63 and provide an extensive demonstration of CD63-mediated exosomal LMP1 release that is distinct from lipid raft trafficking. Finally, we present further evidence of the role of CD63 in limiting LMP1-induced noncanonical NF-κB and ERK activation. Our findings have implications for future investigations of physiological and pathological mechanisms of exosome biogenesis, protein trafficking, and signal transduction, especially in viral-associated tumorigenesis.
Collapse
|
187
|
Cianciaruso C, Phelps EA, Pasquier M, Hamelin R, Demurtas D, Alibashe Ahmed M, Piemonti L, Hirosue S, Swartz MA, De Palma M, Hubbell JA, Baekkeskov S. Primary Human and Rat β-Cells Release the Intracellular Autoantigens GAD65, IA-2, and Proinsulin in Exosomes Together With Cytokine-Induced Enhancers of Immunity. Diabetes 2017; 66:460-473. [PMID: 27872147 DOI: 10.2337/db16-0671] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 10/31/2016] [Indexed: 02/02/2023]
Abstract
The target autoantigens in several organ-specific autoimmune diseases, including type 1 diabetes (T1D), are intracellular membrane proteins, whose initial encounter with the immune system is poorly understood. Here we propose a new model for how these proteins can initiate autoimmunity. We found that rat and human pancreatic islets release the intracellular β-cell autoantigens in human T1D, GAD65, IA-2, and proinsulin in exosomes, which are taken up by and activate dendritic cells. Accordingly, the anchoring of GAD65 to exosome-mimetic liposomes strongly boosted antigen presentation and T-cell activation in the context of the human T1D susceptibility haplotype HLA-DR4. Cytokine-induced endoplasmic reticulum stress enhanced exosome secretion by β-cells; induced exosomal release of the immunostimulatory chaperones calreticulin, Gp96, and ORP150; and increased exosomal stimulation of antigen-presenting cells. We propose that stress-induced exosomal release of intracellular autoantigens and immunostimulatory chaperones may play a role in the initiation of autoimmune responses in T1D.
Collapse
Affiliation(s)
- Chiara Cianciaruso
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Graduate Program in Biotechnology and Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Edward A Phelps
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Miriella Pasquier
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Romain Hamelin
- Proteomics Core Facility, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Davide Demurtas
- Bio-Electron Microscopy Core Facility, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mohamed Alibashe Ahmed
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Lorenzo Piemonti
- Diabetes Research Institute, Istituto di Ricovero e Cura a Carattere Scientifico, San Raffaele Scientific Institute, Milan, Italy
| | - Sachiko Hirosue
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Melody A Swartz
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Graduate Program in Biotechnology and Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Institute of Molecular Engineering, University of Chicago, Chicago, IL
| | - Michele De Palma
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jeffrey A Hubbell
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Graduate Program in Biotechnology and Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Institute of Molecular Engineering, University of Chicago, Chicago, IL
| | - Steinunn Baekkeskov
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Graduate Program in Biotechnology and Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
188
|
Faught E, Henrickson L, Vijayan MM. Plasma exosomes are enriched in Hsp70 and modulated by stress and cortisol in rainbow trout. J Endocrinol 2017; 232:237-246. [PMID: 27872197 DOI: 10.1530/joe-16-0427] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 11/16/2016] [Indexed: 12/13/2022]
Abstract
Exosomes are endosomally derived vesicles that are secreted from cells and contain a suite of molecules, including proteins and nucleic acids. Recent studies suggest the possibility that exosomes in circulation may be affecting recipient target cell function, but the modes of action are unclear. Here, we tested the hypothesis that exosomes are in circulation in fish plasma and that these vesicles are enriched with heat shock protein 70 (Hsp70). Exosomes were isolated from rainbow trout (Oncorhynchus mykiss) plasma using differential centrifugation, and their presence was confirmed by transmission electron microscopy and the exosomal marker acetylcholinesterase. Plasma exosomes were enriched with Hsp70, and this stress protein was transiently elevated in trout plasma in response to a heat shock in vivo Using trout hepatocytes in primary culture, we tested whether stress levels of cortisol, the principle corticosteroid in teleosts, regulates exosomal Hsp70 content. As expected, a 1-h heat shock (+15°C above ambient) increased Hsp70 expression in hepatocytes, and this led to higher Hsp70 enrichment in exosomes over a 24-h period. However, cortisol treatment significantly reduced the expression of Hsp70 in exosomes released from either unstressed or heat-shocked hepatocytes. This cortisol-mediated suppression was not specific to Hsp70 as beta-actin expression was also reduced in exosomes released from hepatocytes treated with the steroid. Our results suggest that circulating Hsp70 is released from target tissues via exosomes, and their release is modulated by stress and cortisol. Overall, we propose a novel role for extracellular vesicular transport of Hsp70 in the organismal stress response.
Collapse
Affiliation(s)
- Erin Faught
- Department of BiologyUniversity of Waterloo, Waterloo, Ontario, Canada
| | - Lynsi Henrickson
- Department of BiologyUniversity of Waterloo, Waterloo, Ontario, Canada
| | | |
Collapse
|
189
|
Blanc L, Vidal M. New insights into the function of Rab GTPases in the context of exosomal secretion. Small GTPases 2017; 9:95-106. [PMID: 28135905 PMCID: PMC5902209 DOI: 10.1080/21541248.2016.1264352] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In the last two decades, extracellular vesicle-mediated communication between cells has become a major field in cell biology. However, the function of extracellular vesicles is far from clear, especially due to the disparity of released vesicles by cells. Basically, one must consider vesicles budding from the cell plasma membrane (ectosomes) and vesicles released upon fusion of an endosomal multivesicular compartment (exosomes). Moreover, even for exosomes, we report and discuss here the possibility that different routes regulated by specific Rab GTPases might produce exosomes having various biologic functions.
Collapse
Affiliation(s)
- Lionel Blanc
- a Laboratory of Developmental Erythropoiesis, The Feinstein Institute for Medical Research Hofstra Northwell School of Medicine , Manhasset , NY , USA
| | - Michel Vidal
- b UMR 5235, CNRS, Université Montpellier , cc107, Montpellier , France
| |
Collapse
|
190
|
Jiang X, Sucharov J, Stauffer BL, Miyamoto SD, Sucharov CC. Exosomes from pediatric dilated cardiomyopathy patients modulate a pathological response in cardiomyocytes. Am J Physiol Heart Circ Physiol 2017; 312:H818-H826. [PMID: 28130338 DOI: 10.1152/ajpheart.00673.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/19/2017] [Accepted: 01/20/2017] [Indexed: 11/22/2022]
Abstract
Stimulation of the renin-angiotensin-aldosterone system (RAAS) and β-adrenergic receptors plays an important role in adult heart failure (HF). Despite the demonstrated benefits of RAAS inhibition and β-adrenergic receptor blockade in adult HF patients, no substantial improvement in survival rate has been observed in children with HF. This suggests that the underlying disease mechanism is uniquely regulated in pediatric HF. Here, we show that treatment of human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) and neonatal rat ventricular myocytes (NRVMs) with serum from pediatric dilated cardiomyopathy (DCM) patients induces pathological changes in gene expression, which occur independently of the RAAS and adrenergic systems, suggesting that serum circulating factors play an important role in cardiac remodeling. Furthermore, exosomes purified from DCM serum induced pathological changes in gene expression in NRVMs and iPSC-CMs. Our results suggest that DCM serum exosomes mediate pathological responses in cardiomyocytes and may propagate the pediatric HF disease process, representing a potential novel therapeutic target specific to this population.NEW & NOTEWORTHY The results of this work could alter the present paradigm of basing clinical pediatric heart failure (HF) treatment on outcomes of adult HF clinical trials. The use of serum-treated primary cardiomyocytes may define age-specific mechanisms in pediatric HF with the potential to identify unique age-appropriate and disease-specific therapy.
Collapse
Affiliation(s)
- Xuan Jiang
- Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Juliana Sucharov
- Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora, Colorado.,University of Colorado Boulder, Boulder, Colorado
| | - Brian L Stauffer
- Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora, Colorado.,Division of Cardiology, Department of Medicine, Denver Health and Hospital Authority, Denver, Colorado; and
| | - Shelley D Miyamoto
- Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital, Aurora, Colorado
| | - Carmen C Sucharov
- Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora, Colorado;
| |
Collapse
|
191
|
Jayabalan N, Nair S, Nuzhat Z, Rice GE, Zuñiga FA, Sobrevia L, Leiva A, Sanhueza C, Gutiérrez JA, Lappas M, Freeman DJ, Salomon C. Cross Talk between Adipose Tissue and Placenta in Obese and Gestational Diabetes Mellitus Pregnancies via Exosomes. Front Endocrinol (Lausanne) 2017; 8:239. [PMID: 29021781 PMCID: PMC5623931 DOI: 10.3389/fendo.2017.00239] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/30/2017] [Indexed: 12/16/2022] Open
Abstract
Obesity is an important public health issue worldwide, where it is commonly associated with the development of metabolic disorders, especially insulin resistance (IR). Maternal obesity is associated with an increased risk of pregnancy complications, especially gestational diabetes mellitus (GDM). Metabolism is a vital process for energy production and the maintenance of essential cellular functions. Excess energy storage is predominantly regulated by the adipose tissue. Primarily made up of adipocytes, adipose tissue acts as the body's major energy reservoir. The role of adipose tissue, however, is not restricted to a "bag of fat." The adipose tissue is an endocrine organ, secreting various adipokines, enzymes, growth factors, and hormones that take part in glucose and lipid metabolism. In obesity, the greater portion of the adipose tissue comprises fat, and there is increased pro-inflammatory cytokine secretion, macrophage infiltration, and reduced insulin sensitivity. Obesity contributes to systemic IR and its associated metabolic complications. Similar to adipose tissue, the placenta is also an endocrine organ. During pregnancy, the placenta secretes various molecules to maintain pregnancy physiology. In addition, the placenta plays an important role in metabolism and exchange of nutrients between mother and fetus. Inflammation at the placenta may contribute to the severity of maternal IR and her likelihood of developing GDM and may also mediate the adverse consequences of obesity and GDM on the fetus. Interestingly, studies on maternal insulin sensitivity and secretion of placental hormones have not shown a positive correlation between these phenomena. Recently, a great interest in the field of extracellular vesicles (EVs) has been observed in the literature. EVs are produced by a wide range of cells and are present in all biological fluids. EVs are involved in cell-to-cell communication. Recent evidence points to an association between adipose tissue-derived EVs and metabolic syndrome in obesity. In this review, we will discuss the changes in human placenta and adipose tissue in GDM and obesity and summarize the findings regarding the role of adipose tissue and placenta-derived EVs, with an emphasis on exosomes in obesity, and the contribution of obesity to the development of GDM.
Collapse
Affiliation(s)
- Nanthini Jayabalan
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, QLD, Australia
| | - Soumyalekshmi Nair
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, QLD, Australia
| | - Zarin Nuzhat
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, QLD, Australia
| | - Gregory E. Rice
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, QLD, Australia
- Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Ochsner Clinic Foundation, New Orleans, LA, United States
| | - Felipe A. Zuñiga
- Faculty of Pharmacy, Department of Clinical Biochemistry and Immunology, University of Concepción, Concepción, Chile
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, QLD, Australia
- Faculty of Pharmacy, Department of Physiology, Universidad de Sevilla, Seville, Spain
| | - Andrea Leiva
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos Sanhueza
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jaime Agustín Gutiérrez
- Cellular Signaling and Differentiation Laboratory (CSDL), Medical Technology School, Health Sciences Faculty, Universidad San Sebastian, Santiago, Chile
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, VIC, Australia
| | - Dilys Jane Freeman
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, QLD, Australia
- Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Ochsner Clinic Foundation, New Orleans, LA, United States
- Faculty of Pharmacy, Department of Clinical Biochemistry and Immunology, University of Concepción, Concepción, Chile
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
- *Correspondence: Carlos Salomon,
| |
Collapse
|
192
|
Abstract
Precision medicine has emerged as an approach to tailor therapies for an individual at the time of diagnosis and/or treatment. This emergence has been fueled by the ability to profile nucleic acids, along with proteins and lipids isolated from biofluids, a method called "liquid biopsy ," either by or in combination of one of the following components: circulating tumor cells (CTCs), cell-free DNA (cfDNA), and/or extracellular vesicles (EVs) . EVs are membrane-surrounded structures released by cells in an evolutionarily conserved manner. EVs have gained much attention from both the basic and clinical research areas, as EVs appear to play a role in many diseases; however, the well-known case is cancer. The hallmark of EVs in cancer is their role as mediators of communication between cells both at physiological and pathophysiological levels; hence, EVs are thought to contribute to the creation of a microenvironmental niche that promotes cancer cell survival, as well as reprogramming distant tissue for invasion. It is important to understand the mechanistic and functional aspects at the basic science level of EVs to get a better grasp on their role in healthy and disease states. EVs range from 30-1000 nm membrane-enclosed vesicles that are released by many mammalian cell types and present in a variety of biofluids. EVs have emerged as an area of clinical interest in the era of Precision Medicine, from their role in liquid biopsy (tissue biopsy free) approach for screening, assessing tumor heterogeneity, monitoring therapeutic responses, and minimal residual disease detection to EV-based therapeutics . EVs' diagnostic and therapeutic exploitation is under intense investigation in various indications. This chapter highlights EV biogenesis , composition of EVs, and their potential role in liquid biopsy diagnostics and therapeutics in the area of cancer.
Collapse
|
193
|
Abstract
Saliva is an easily accessible fluid that has led to increasing interest in the development of salivary diagnostics. This chapter describes some of the newer tools and procedures for collection, stabilization, and storage of oral fluid matrices that aid in the successful use of saliva as a test specimen. This chapter focuses particularly on nucleic acid components for downstream molecular diagnostic (MDx) testing, since this is probably the area where saliva is likely to have the greatest impact in improving healthcare for the general population.
Collapse
|
194
|
Eitan E, Suire C, Zhang S, Mattson MP. Impact of lysosome status on extracellular vesicle content and release. Ageing Res Rev 2016; 32:65-74. [PMID: 27238186 DOI: 10.1016/j.arr.2016.05.001] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/09/2016] [Accepted: 05/09/2016] [Indexed: 12/18/2022]
Abstract
Extracellular vesicles (EVs) are nanoscale size bubble-like membranous structures released from cells. EVs contain RNA, lipids and proteins and are thought to serve various roles including intercellular communication and removal of misfolded proteins. The secretion of misfolded and aggregated proteins in EVs may be a cargo disposal alternative to the autophagy-lysosomal and ubiquitin-proteasome pathways. In this review we will discuss the importance of lysosome functionality for the regulation of EV secretion and content. Exosomes are a subtype of EVs that are released by the fusion of multivesicular bodies (MVB) with the plasma membrane. MVBs can also fuse with lysosomes, and the trafficking pathway of MVBs can therefore determine whether or not exosomes are released from cells. Here we summarize data from studies of the effects of lysosome inhibition on the secretion of EVs and on the possibility that cells compensate for lysosome malfunction by disposal of potentially toxic cargos in EVs. A better understanding of the molecular mechanisms that regulate trafficking of MVBs to lysosomes and the plasma membrane may advance an understanding of diseases in which pathogenic proteins, lipids or infectious agents accumulate within or outside of cells.
Collapse
|
195
|
Zhang W, Yang J, Cao D, You Y, Shen K, Peng P. Regulation of exosomes released from normal ovarian epithelial cells and ovarian cancer cells. Tumour Biol 2016; 37:15763–15771. [PMID: 27714673 DOI: 10.1007/s13277-016-5394-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 09/09/2016] [Indexed: 01/03/2023] Open
Abstract
As important cell to cell communicator, exosomes carry a range of bioactive molecules which can significantly influence phenotype of recipient cells. Inhibiting or removing cancer cell-derived exosomes are of therapeutic interest. However, regulation of secretion and release mechanism of exosomes is still unclear. To explore the regulation of exosomes released from normal ovarian epithelial cells and ovarian cancer cells, a normal ovarian epithelial cell line and three ovarian epithelial cancer cell lines were utilized to investigate their exosomes' release and regulation. A cervical cancer cell SiHa was used for identifying tissue specificity. NanoSight NS500 was used to quantify exosome numbers. Exosomes were labeled and observed by confocal microscopy to investigate their interaction with different ovarian cell lines. Exosomes released from normal or ovarian cancer cells were regulated by the extracellular exosomes. Exosome release was inhibited with the extracellular exosome concentration increase. Exosomes from normal ovarian cell and cervical cancer cell also inhibited ovarian cancer cell-derived exosome release, and there was no tissue specificity. PKH26-labeled exosomes from normal ovarian cell and cervical cancer cell were uptaken by ovarian cancer cells. Release of exosomes from ovarian cancer cell is regulated by a feedback mechanism without tissue specificity. This may provide a therapeutic approach to control the release of exosomes from ovarian cancer cells.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jiaxin Yang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Beijing, 100730, People's Republic of China
| | - Dongyan Cao
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Beijing, 100730, People's Republic of China
| | - Yan You
- Department of Pathology, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing University of Chemical Technology, Beijing, China
| | - Keng Shen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Beijing, 100730, People's Republic of China.
| | - Peng Peng
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Beijing, 100730, People's Republic of China.
| |
Collapse
|
196
|
Circulating exosomes from patients with systemic lupus erythematosus induce an proinflammatory immune response. Arthritis Res Ther 2016; 18:264. [PMID: 27852323 PMCID: PMC5112700 DOI: 10.1186/s13075-016-1159-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/19/2016] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Exosomes are involved in intercellular communication. The aim of this study was to investigate whether circulating exosomes effectively contribute to the inflammatory response in systemic lupus erythematosus (SLE). METHODS Exosomes were purified from SLE patients and healthy controls (HCs). Healthy peripheral blood mononuclear cells (PBMCs) were stimulated with exosomes isolated from SLE patients and HCs in the presence or absence of Toll-like receptor (TLR) inhibitors. Production of interferon (IFN)-α, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 were measured. Correlation between exosome levels and SLE disease activity was examined. RESULTS The serum exosomes levels were significantly higher in SLE patients than in HCs. SLE exosomes induced a higher production of IFN-α, TNF-α, IL-1β, and IL-6 compared to healthy exosomes. SLE serum that was depleted of exosomes and SLE exosomes that were mechanically disrupted failed to induce any significant cytokine production. Exosome-mediated production of TNF-α, IL-1β, and IL-6 was decreased by the TLR4 antagonist, whereas that of IFN-α was suppressed by the TLR1/2, TLR7, and TLR9 antagonists. Exosome levels correlated with disease activity in SLE patients (rho = 0.846, p = 0.008). CONCLUSIONS The circulating exosomes are immunologically active and their levels correlate with disease activity in SLE patients. The circulating exosomes might serve as novel biomarkers of SLE disease activity.
Collapse
|
197
|
Cypryk W, Lorey M, Puustinen A, Nyman TA, Matikainen S. Proteomic and Bioinformatic Characterization of Extracellular Vesicles Released from Human Macrophages upon Influenza A Virus Infection. J Proteome Res 2016; 16:217-227. [PMID: 27723984 DOI: 10.1021/acs.jproteome.6b00596] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Influenza A viruses (IAVs) are aggressive pathogens that cause acute respiratory diseases and annual epidemics in humans. Host defense against IAV infection is initiated by macrophages, which are the principal effector cells of the innate immune system. We have previously shown that IAV infection of human macrophages is associated with robust secretion of proteins via conventional and unconventional protein release pathways. Here we have characterized unconventional, extracellular vesicle (EV)-mediated protein secretion in human macrophages during IAV infection using proteomics, bioinformatics, and functional studies. We demonstrate that at 9 h postinfection a robust EV-mediated protein secretion takes place. We identified 2359 human proteins from EVs of IAV-infected macrophages compared with 1448 proteins identified from EVs of control cells. Bioinformatic analysis shows that many proteins involved in translation, like components of spliceosome machinery and the ribosome, are secreted in EVs in response to IAV infection. Our data also shows that EVs derived from IAV-infected macrophages contain fatty acid-binding proteins, antiviral cytokines, copper metabolism Murr-1 domain proteins, and autophagy-related proteins. In addition, our data suggest that secretory autophagy plays a role in activating EV-mediated protein secretion during IAV infection.
Collapse
Affiliation(s)
- Wojciech Cypryk
- Institute of Biotechnology, University of Helsinki , P.O. Box 56, 00014 Helsinki, Finland
| | - Martina Lorey
- University of Helsinki and Helsinki University Hospital, Rheumatology , 00029 Helsinki, Finland
| | - Anne Puustinen
- Finnish Institute of Occupational Health , Topeliuksenkatu 41 a A, 00250 Helsinki, Finland
| | - Tuula A Nyman
- Institute of Biotechnology, University of Helsinki , P.O. Box 56, 00014 Helsinki, Finland.,Institute of Clinical Medicine , Sognsvannsveien 20, Rikshospitalet, 0372 Oslo, Norway
| | - Sampsa Matikainen
- University of Helsinki and Helsinki University Hospital, Rheumatology , 00029 Helsinki, Finland
| |
Collapse
|
198
|
Matsumoto Y, Kano M, Akutsu Y, Hanari N, Hoshino I, Murakami K, Usui A, Suito H, Takahashi M, Otsuka R, Xin H, Komatsu A, Iida K, Matsubara H. Quantification of plasma exosome is a potential prognostic marker for esophageal squamous cell carcinoma. Oncol Rep 2016; 36:2535-2543. [PMID: 27599779 PMCID: PMC5055211 DOI: 10.3892/or.2016.5066] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/25/2016] [Indexed: 12/14/2022] Open
Abstract
Exosomes play important roles in cancer progression. Although its contents (e.g., proteins and microRNAs) have been focused on in cancer research, particularly as potential diagnostic markers, the exosome behavior and methods for exosome quantification remain unclear. In the present study, we analyzed the tumor-derived exosome behavior and assessed the quantification of exosomes in patient plasma as a biomarker for esophageal squamous cell carcinoma (ESCC). A CD63-GFP expressing human ESCC cell line (TE2-CD63-GFP) was made by transfection, and mouse subcutaneous tumor models were established. Fluorescence imaging was performed on tumors and plasma exosomes harvested from mice. GFP-positive small vesicles were confirmed in the plasma obtained from TE2-CD63-GFP tumor-bearing mice. Patient plasma was collected in Chiba University Hospital (n=86). Exosomes were extracted from 100 µl of the plasma and quantified by acetylcholinesterase (AChE) activity. The relationship between exosome quantification and the patient clinical characteristics was assessed. The quantification of exosomes isolated from the patient plasma revealed that esophageal cancer patients (n=66) expressed higher exosome levels than non-malignant patients (n=20) (P=0.0002). Although there was no correlation between the tumor progression and the exosome levels, exosome number was the independent prognostic marker and low levels of exosome predicted a poor prognosis (P=0.03). In conclusion, exosome levels may be useful as an independent prognostic factor for ESCC patients.
Collapse
Affiliation(s)
- Yasunori Matsumoto
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Masayuki Kano
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Yasunori Akutsu
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Naoyuki Hanari
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Isamu Hoshino
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Kentaro Murakami
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Akihiro Usui
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Hiroshi Suito
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Masahiko Takahashi
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Ryota Otsuka
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Hu Xin
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Aki Komatsu
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Keiko Iida
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| |
Collapse
|
199
|
Abstract
A large group of small Rab GTPases which mediate secretory and endosomal membrane transport, as well as autophagosome biogenesis, are essential components of vesicle trafficking machinery. Specific Rab protein together with the cognate effectors coordinates the dynamics of trafficking pathway and determines the cargo proteins destination. Functional impairments of Rab proteins by mutations or post-translational modifications disrupting the regulatory network of vesicle trafficking have been implicated in tumorigenesis. Therefore, the vesicle transport regulators play essential roles in the mediation of cancer cell biology, including uncontrolled cell growth, invasion and metastasis. The context-dependent role of the same Rab to act as either an oncoprotein or tumor suppressor in different cancers is found. Such discrepancies may be due in part to the interaction of specific Rab protein with different effectors or cargos in various tumors. Here, we review recent advances in the roles of Rab GTPases in communicating with other effectors in tumor progression. In this review, we also emphasize dysregulation of Rab-mediated membrane delivery shifting normal cell behaviors toward malignancy. Thus, recovery of the dysregulated vesicle trafficking systems in cancer cells may provide future directions for potential strategy to restrain tumor progression.
Collapse
Affiliation(s)
- Hong-Tai Tzeng
- Department of Pharmacology, National Cheng Kung University, College of Medicine, No.1, University Road, Tainan, 70101, Taiwan, People's Republic of China
| | - Yi-Ching Wang
- Department of Pharmacology, National Cheng Kung University, College of Medicine, No.1, University Road, Tainan, 70101, Taiwan, People's Republic of China. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 70101, Taiwan, People's Republic of China.
| |
Collapse
|
200
|
Amaya C, Militello RD, Calligaris SD, Colombo MI. Rab24 interacts with the Rab7/Rab interacting lysosomal protein complex to regulate endosomal degradation. Traffic 2016; 17:1181-1196. [PMID: 27550070 DOI: 10.1111/tra.12431] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 08/17/2016] [Accepted: 08/17/2016] [Indexed: 12/11/2022]
Abstract
Endocytosis is a multistep process engaged in extracellular molecules internalization. Several proteins including the Rab GTPases family coordinate the endocytic pathway. The small GTPase Rab7 is present in late endosome (LE) compartments being a marker of endosome maturation. The Rab interacting lysosomal protein (RILP) is a downstream effector of Rab7 that recruits the functional dynein/dynactin motor complex to late compartments. In the present study, we have found Rab24 as a component of the endosome-lysosome degradative pathway. Rab24 is an atypical protein of the Rab GTPase family, which has been attributed a function in vesicle trafficking and autophagosome maturation. Using a model of transiently expressed proteins in K562 cells, we found that Rab24 co-localizes in vesicular structures labeled with Rab7 and LAMP1. Moreover, using a dominant negative mutant of Rab24 or a siRNA-Rab24 we showed that the distribution of Rab7 in vesicles depends on a functional Rab24 to allow DQ-BSA protein degradation. Additionally, by immunoprecipitation and pull down assays, we have demonstrated that Rab24 interacts with Rab7 and RILP. Interestingly, overexpression of the Vps41 subunit from the homotypic fusion and protein-sorting (HOPS) complex hampered the co-localization of Rab24 with RILP or with the lysosomal GTPase Arl8b, suggesting that Vps41 would affect the Rab24/RILP association. In summary, our data strongly support the hypothesis that Rab24 forms a complex with Rab7 and RILP on the membranes of late compartments. Our work provides new insights into the molecular function of Rab24 in the last steps of the endosomal degradative pathway.
Collapse
Affiliation(s)
- Celina Amaya
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM)-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Rodrigo D Militello
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM)-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Sebastián D Calligaris
- Centro de Medicina Regenerativa, Facultad de Medicina, Universidad del Desarrollo Clínica Alemana, Santiago, Chile
| | - María I Colombo
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM)-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.
| |
Collapse
|