151
|
Wang B, Kundu M. Canonical and noncanonical functions of ULK/Atg1. Curr Opin Cell Biol 2017; 45:47-54. [PMID: 28292700 DOI: 10.1016/j.ceb.2017.02.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/09/2017] [Accepted: 02/17/2017] [Indexed: 02/07/2023]
Abstract
Mammalian Unc-51-like kinases 1 and 2 (ULK1 and ULK2) belong to the ULK/Atg1 family of serine/threonine kinases, which are conserved from yeast to mammals. Although ULK/Atg1 is best known for regulating flux through the autophagy pathway, it has evolutionarily conserved noncanonical functions in protein trafficking that are essential for maintaining cellular homeostasis. As a direct target of energy- and nutrient-sensing kinases, ULK/Atg1 is positioned to regulate the distribution and use of cellular resources in response to metabolic cues. In this review, we provide an overview of the molecular mechanisms through which ULK/Atg1 carries out its canonical and noncanonical functions and the signaling pathways that link its function to metabolism. We also highlight potential contributions of ULK/Atg1 in human diseases, including cancer and neurodegeneration.
Collapse
Affiliation(s)
- Bo Wang
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States
| | - Mondira Kundu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States.
| |
Collapse
|
152
|
Nguyen N, Shteyn V, Melia TJ. Sensing Membrane Curvature in Macroautophagy. J Mol Biol 2017; 429:457-472. [PMID: 28088480 PMCID: PMC5276735 DOI: 10.1016/j.jmb.2017.01.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/07/2017] [Accepted: 01/08/2017] [Indexed: 10/20/2022]
Abstract
In response to intracellular stress events ranging from starvation to pathogen invasion, the cell activates one or more forms of macroautophagy. The key event in these related pathways is the de novo formation of a new organelle called the autophagosome, which either surrounds and sequesters random portions of the cytoplasm or selectively targets individual intracellular challenges. Thus, the autophagosome is a flexible membrane platform with dimensions that ultimately depend upon the target cargo. The intermediate membrane, termed the phagophore or isolation membrane, is a cup-like structure with a clear concave face and a highly curved rim. The phagophore is largely devoid of integral membrane proteins; thus, its shape and size are governed by peripherally associated membrane proteins and possibly by the lipid composition of the membrane itself. Growth along the phagophore rim marks the progress of both organelle expansion and ultimately organelle closure around a particular cargo. These two properties, a reliance on peripheral membrane proteins and a structurally distinct membrane architecture, suggest that the ability to target or manipulate membrane curvature might be an essential activity of proteins functioning in this pathway. In this review, we discuss the extent to which membranes are naturally curved at each of the cellular sites believed to engage in autophagosome formation, review basic mechanisms used to sense this curvature, and then summarize the existing literature concerning which autophagy proteins are capable of curvature recognition.
Collapse
Affiliation(s)
- Nathan Nguyen
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Vladimir Shteyn
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Thomas J Melia
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
153
|
Reggiori F, Ungermann C. Autophagosome Maturation and Fusion. J Mol Biol 2017; 429:486-496. [DOI: 10.1016/j.jmb.2017.01.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 02/07/2023]
|
154
|
Ogasawara Y, Kira S, Mukai Y, Noda T, Yamamoto A. Ole1, fatty acid desaturase, is required for Atg9 delivery and isolation membrane expansion during autophagy in Saccharomyces cerevisiae. Biol Open 2017; 6:35-40. [PMID: 27881438 PMCID: PMC5278431 DOI: 10.1242/bio.022053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/15/2016] [Indexed: 02/02/2023] Open
Abstract
Macroautophagy, a major degradation pathway of cytoplasmic components, is carried out through formation of a double-membrane structure, the autophagosome. Although the involvement of specific lipid species in the formation process remains largely obscure, we recently showed that mono-unsaturated fatty acids (MUFA) generated by stearoyl-CoA desaturase 1 (SCD1) are required for autophagosome formation in mammalian cells. To obtain further insight into the role of MUFA in autophagy, in this study we analyzed the autophagic phenotypes of the yeast mutant of OLE1, an orthologue of SCD1. Δole1 cells were defective in nitrogen starvation-induced autophagy, and the Cvt pathway, when oleic acid was not supplied. Defects in elongation of the isolation membrane led to a defect in autophagosome formation. In the absence of Ole1, the transmembrane protein Atg9 was not able to reach the pre-autophagosomal structure (PAS), the site of autophagosome formation. Thus, autophagosome formation requires Ole1 during the delivery of Atg9 to the PAS/autophagosome from its cellular reservoir.
Collapse
Affiliation(s)
- Yuta Ogasawara
- Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829, Japan
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shintaro Kira
- Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yukio Mukai
- Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829, Japan
| | - Takeshi Noda
- Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
- Graduate school of Frontier Bioscience, Osaka University, 1-8 Yamadaoka, Suita, Japan
| | - Akitsugu Yamamoto
- Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829, Japan
| |
Collapse
|
155
|
Nascimbeni AC, Codogno P, Morel E. Phosphatidylinositol-3-phosphate in the regulation of autophagy membrane dynamics. FEBS J 2017; 284:1267-1278. [PMID: 27973739 DOI: 10.1111/febs.13987] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 11/15/2016] [Accepted: 12/07/2016] [Indexed: 12/30/2022]
Abstract
Phosphatidylinositol-3-phosphate (PI3P) is a key player in membrane dynamics and trafficking regulation. Most PI3P is associated with endosomal membranes and with the autophagosome preassembly machinery, presumably at the endoplasmic reticulum. The enzyme responsible for most PI3P synthesis, VPS34 and proteins such as Beclin1 and ATG14L that regulate PI3P levels are positive modulators of autophagy initiation. It had been assumed that a local PI3P pool was present at autophagosomes and preautophagosomal structures, such as the omegasome and the phagophore. This was recently confirmed by the demonstration that PI3P-binding proteins participate in the complex sequence of signalling that results in autophagosome assembly and activity. Here we summarize the historical discoveries of PI3P lipid kinase involvement in autophagy, and we discuss the proposed role of PI3P during autophagy, notably during the autophagosome biogenesis sequence.
Collapse
Affiliation(s)
- Anna Chiara Nascimbeni
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Paris, France.,Université Paris Descartes-Sorbonne Paris Cité, France
| | - Patrice Codogno
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Paris, France.,Université Paris Descartes-Sorbonne Paris Cité, France
| | - Etienne Morel
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Paris, France.,Université Paris Descartes-Sorbonne Paris Cité, France
| |
Collapse
|
156
|
Gómez-Sánchez R, Sánchez-Wandelmer J, Reggiori F. Monitoring the Formation of Autophagosomal Precursor Structures in Yeast Saccharomyces cerevisiae. Methods Enzymol 2017; 588:323-365. [DOI: 10.1016/bs.mie.2016.09.085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
157
|
Davis S, Wang J, Zhu M, Stahmer K, Lakshminarayan R, Ghassemian M, Jiang Y, Miller EA, Ferro-Novick S. Sec24 phosphorylation regulates autophagosome abundance during nutrient deprivation. eLife 2016; 5. [PMID: 27855785 PMCID: PMC5148606 DOI: 10.7554/elife.21167] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/14/2016] [Indexed: 12/29/2022] Open
Abstract
Endoplasmic Reticulum (ER)-derived COPII coated vesicles constitutively transport secretory cargo to the Golgi. However, during starvation-induced stress, COPII vesicles have been implicated as a membrane source for autophagosomes, distinct organelles that engulf cellular components for degradation by macroautophagy (hereafter called autophagy). How cells regulate core trafficking machinery to fulfill dramatically different cellular roles in response to environmental cues is unknown. Here we show that phosphorylation of conserved amino acids on the membrane-distal surface of the Saccharomyces cerevisiae COPII cargo adaptor, Sec24, reprograms COPII vesicles for autophagy. We also show casein kinase 1 (Hrr25) is a key kinase that phosphorylates this regulatory surface. During autophagy, Sec24 phosphorylation regulates autophagosome number and its interaction with the C-terminus of Atg9, a component of the autophagy machinery required for autophagosome initiation. We propose that the acute need to produce autophagosomes during starvation drives the interaction of Sec24 with Atg9 to increase autophagosome abundance. DOI:http://dx.doi.org/10.7554/eLife.21167.001 When cells experience stressful conditions, such as a shortage of nutrients, they can digest their own material via a ‘self-eating’ process called autophagy and then recycle the products for further use. When autophagy is triggered, a new membrane structure called the autophagosome forms within the cell as it engulfs the material that is to be digested. The autophagosome delivers these materials to a compartment where they are broken down into smaller parts and the resulting raw materials are reused as needed. The membranes that make up the autophagosome are derived from other membranes within the cell. These include small membrane-bound compartments called vesicles, which carry proteins from one part of the cell to another, or to the outside of the cell. COPII vesicles, for example, carry out the first transport step in the pathway that leads out of the cell – the so-called secretory pathway. Recently it was found that, when cells are starving, COPII vesicles can be diverted to the autophagy pathway and provide a source of membrane to build the autophagosome. However, it was not understood how the membrane of a COPII vesicle is reprogrammed so that it can interact with the cellular machinery that builds autophagosomes. Using genetic and biochemical methods, Davis et al. have now teased apart the distinct roles of COPII vesicles in autophagy and the secretory pathway in budding yeast. The results show that a protein called Sec24, a component of the coat on the vesicles, interacts with another protein called Atg9, which is needed for the first steps of autophagosome formation. Davis et al. observed that Sec24 could be modified by the attachment of phosphate groups at a distinct site on the surface of Sec24. This modification promotes Sec24 to interact with Atg9 and increases the number of autophagosomes that form when cells are starving. Davis et al. also found that the enzyme casein kinase 1 is one of the enzymes responsible for attaching phosphate groups to Sec24. Following on from this work, it will be important to test whether modification of vesicle coat proteins is a widespread mechanism for reprogramming membranes for different uses in other situations as well. DOI:http://dx.doi.org/10.7554/eLife.21167.002
Collapse
Affiliation(s)
- Saralin Davis
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| | - Juan Wang
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| | - Ming Zhu
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| | - Kyle Stahmer
- Department of Biological Sciences, Columbia University, New York, United States
| | | | - Majid Ghassemian
- Department of Chemistry and Biochemistry, University of California, San Diego, San Diego, United States.,Biomolecular and Proteomics Mass Spectrometry Facility, University of California, San Diego, San Diego, United States
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Elizabeth A Miller
- Department of Biological Sciences, Columbia University, New York, United States.,MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Susan Ferro-Novick
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| |
Collapse
|
158
|
Martens S, Nakamura S, Yoshimori T. Phospholipids in Autophagosome Formation and Fusion. J Mol Biol 2016; 428:S0022-2836(16)30455-7. [PMID: 27984040 PMCID: PMC7610884 DOI: 10.1016/j.jmb.2016.10.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 12/29/2022]
Abstract
Autophagosomes are double membrane organelles that are formed during a process referred to as macroautophagy. They serve to deliver cytoplasmic material into the lysosome for degradation. Autophagosomes are formed in a de novo manner and are the result of substantial membrane remodeling processes involving numerous protein-lipid interactions. While most studies focus on the proteins involved in autophagosome formation it is obvious that lipids including phospholipids, sphingolipids and sterols play an equally important role. Here we summarize the current knowledge about the role of lipids, especially focusing on phospholipids and their interplay with the autophagic protein machinery during autophagosome formation and fusion.
Collapse
Affiliation(s)
- Sascha Martens
- Max F. Perutz Laboratories, University of Vienna, Dr Bohr-Gasse 9/3, 1030 Vienna, Austria.
| | - Shuhei Nakamura
- Department of Genetics, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
159
|
Suzuki H, Osawa T, Fujioka Y, Noda NN. Structural biology of the core autophagy machinery. Curr Opin Struct Biol 2016; 43:10-17. [PMID: 27723509 DOI: 10.1016/j.sbi.2016.09.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/13/2016] [Accepted: 09/21/2016] [Indexed: 02/08/2023]
Abstract
In autophagy, which is an intracellular degradation system that is conserved among eukaryotes, degradation targets are sequestered through the de novo synthesis of a double-membrane organelle, the autophagosome, which delivers them to the lysosomes for degradation. The core autophagy machinery comprising 18 autophagy-related (Atg) proteins in yeast plays an essential role in autophagosome formation; however, the molecular role of each Atg factor and the mechanism of autophagosome formation remain elusive. Recent years have seen remarkable progress in structural biological studies on the core autophagy machinery, opening new avenues for autophagy research. This review summarizes recent advances in structural biological and mechanistic studies on the core autophagy machinery and discusses the molecular mechanisms of autophagosome formation.
Collapse
Affiliation(s)
- Hironori Suzuki
- Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Takuo Osawa
- Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Yuko Fujioka
- Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Nobuo N Noda
- Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan.
| |
Collapse
|
160
|
Farré JC, Subramani S. Mechanistic insights into selective autophagy pathways: lessons from yeast. Nat Rev Mol Cell Biol 2016; 17:537-52. [PMID: 27381245 PMCID: PMC5549613 DOI: 10.1038/nrm.2016.74] [Citation(s) in RCA: 300] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autophagy has burgeoned rapidly as a field of study because of its evolutionary conservation, the diversity of intracellular cargoes degraded and recycled by this machinery, the mechanisms involved, as well as its physiological relevance to human health and disease. This self-eating process was initially viewed as a non-selective mechanism used by eukaryotic cells to degrade and recycle macromolecules in response to stress; we now know that various cellular constituents, as well as pathogens, can also undergo selective autophagy. In contrast to non-selective autophagy, selective autophagy pathways rely on a plethora of selective autophagy receptors (SARs) that recognize and direct intracellular protein aggregates, organelles and pathogens for specific degradation. Although SARs themselves are not highly conserved, their modes of action and the signalling cascades that activate and regulate them are. Recent yeast studies have provided novel mechanistic insights into selective autophagy pathways, revealing principles of how various cargoes can be marked and targeted for selective degradation.
Collapse
Affiliation(s)
- Jean-Claude Farré
- University of California, 3326 Bonner Hall, 9500 Gilman Drive, San Diego, La Jolla, California 92093-0322, USA
| | - Suresh Subramani
- University of California, 3326 Bonner Hall, 9500 Gilman Drive, San Diego, La Jolla, California 92093-0322, USA
| |
Collapse
|
161
|
Abstract
Most functions of eukaryotic cells are controlled by cellular membranes, which are not static entities but undergo frequent budding, fission, fusion, and sculpting reactions collectively referred to as membrane dynamics. Consequently, regulation of membrane dynamics is crucial for cellular functions. A key mechanism in such regulation is the reversible recruitment of cytosolic proteins or protein complexes to specific membranes at specific time points. To a large extent this recruitment is orchestrated by phosphorylated derivatives of the membrane lipid phosphatidylinositol, known as phosphoinositides. The seven phosphoinositides found in nature localize to distinct membrane domains and recruit distinct effectors, thereby contributing strongly to the maintenance of membrane identity. Many of the phosphoinositide effectors are proteins that control membrane dynamics, and in this review we discuss the functions of phosphoinositides in membrane dynamics during exocytosis, endocytosis, autophagy, cell division, cell migration, and epithelial cell polarity, with emphasis on protein effectors that are recruited by specific phosphoinositides during these processes.
Collapse
Affiliation(s)
- Kay O Schink
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway; , .,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, N-0379 Oslo, Norway
| | - Kia-Wee Tan
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway; , .,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, N-0379 Oslo, Norway
| | - Harald Stenmark
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway; , .,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, N-0379 Oslo, Norway.,Centre of Molecular Inflammation Research, Faculty of Medicine, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| |
Collapse
|
162
|
Karanasios E, Walker SA, Okkenhaug H, Manifava M, Hummel E, Zimmermann H, Ahmed Q, Domart MC, Collinson L, Ktistakis NT. Autophagy initiation by ULK complex assembly on ER tubulovesicular regions marked by ATG9 vesicles. Nat Commun 2016; 7:12420. [PMID: 27510922 PMCID: PMC4987534 DOI: 10.1038/ncomms12420] [Citation(s) in RCA: 235] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 06/30/2016] [Indexed: 12/11/2022] Open
Abstract
Autophagosome formation requires sequential translocation of autophagy-specific proteins to membranes enriched in PI3P and connected to the ER. Preceding this, the earliest autophagy-specific structure forming de novo is a small punctum of the ULK1 complex. The provenance of this structure and its mode of formation are unknown. We show that the ULK1 structure emerges from regions, where ATG9 vesicles align with the ER and its formation requires ER exit and coatomer function. Super-resolution microscopy reveals that the ULK1 compartment consists of regularly assembled punctate elements that cluster in progressively larger spherical structures and associates uniquely with the early autophagy machinery. Correlative electron microscopy after live imaging shows tubulovesicular membranes present at the locus of this structure. We propose that the nucleation of autophagosomes occurs in regions, where the ULK1 complex coalesces with ER and the ATG9 compartment.
Collapse
Affiliation(s)
| | - Simon A. Walker
- Signalling Programme, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Hanneke Okkenhaug
- Signalling Programme, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Maria Manifava
- Signalling Programme, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Eric Hummel
- Carl Zeiss Microscopy GmbH, Munich 81379, Germany
| | | | - Qashif Ahmed
- Signalling Programme, The Babraham Institute, Cambridge CB22 3AT, UK
| | | | | | | |
Collapse
|
163
|
Regulation of autophagy by mitochondrial phospholipids in health and diseases. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:114-129. [PMID: 27502688 DOI: 10.1016/j.bbalip.2016.08.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/28/2016] [Accepted: 08/04/2016] [Indexed: 12/16/2022]
Abstract
Autophagy is an evolutionarily conserved mechanism that maintains nutrient homeostasis by degrading protein aggregates and damaged organelles. Autophagy is reduced in aging, which is implicated in the pathogenesis of aging-related diseases, including cancers, obesity, type 2 diabetes, cardiovascular diseases, and neurodegenerative diseases. Mitochondria-derived phospholipids cardiolipin, phosphatidylethanolamine, and phosphatidylglycerol are critical throughout the autophagic process, from initiation and phagophore formation to elongation and fusion with endolysosomal vesicles. Cardiolipin is also required for mitochondrial fusion and fission, an important step in isolating dysfunctional mitochondria for mitophagy. Furthermore, genetic screen in yeast has identified a surprising role for cardiolipin in regulating lysosomal function. Phosphatidylethanolamine plays a pivotal role in supporting the autophagic process, including autophagosome elongation as part of lipidated Atg8/LC3. An emerging role for phosphatidylglycerol in AMPK and mTORC1 signaling as well as mitochondrial fission may provide the first glimpse into the function of phosphatidylglycerol apart from being a precursor for cardiolipin. This review examines the effects of manipulating phospholipids on autophagy and mitophagy in health and diseases, as well as current limitations in the field. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.
Collapse
|
164
|
Kaminska J, Rzepnikowska W, Polak A, Flis K, Soczewka P, Bala K, Sienko M, Grynberg M, Kaliszewski P, Urbanek A, Ayscough K, Zoladek T. Phosphatidylinositol-3-phosphate regulates response of cells to proteotoxic stress. Int J Biochem Cell Biol 2016; 79:494-504. [PMID: 27498190 DOI: 10.1016/j.biocel.2016.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/29/2016] [Accepted: 08/03/2016] [Indexed: 12/22/2022]
Abstract
Human Nedd4 ubiquitin ligase, or its variants, inhibit yeast cell growth by disturbing the actin cytoskeleton organization and dynamics, and lead to an increase in levels of ubiquitinated proteins. In a screen for multicopy suppressors which rescue growth of yeast cells producing Nedd4 ligase with an inactive WW4 domain (Nedd4w4), we identified a fragment of ATG2 gene encoding part of the Atg2 core autophagy protein. Expression of the Atg2-C1 fragment (aa 1074-1447) improved growth, actin cytoskeleton organization, but did not significantly change the levels of ubiquitinated proteins in these cells. The GFP-Atg2-C1 protein in Nedd4w4-producing cells primarily localized to a single defined structure adjacent to the vacuole, surrounded by an actin filament ring, containing Hsp42 and Hsp104 chaperones. This localization was not affected in several atg deletion mutants, suggesting that it might be distinct from the phagophore assembly site (PAS). However, deletion of ATG18 encoding a phosphatidylinositol-3-phosphate (PI3P)-binding protein affected the morphology of the GFP-Atg2-C1 structure while deletion of ATG14 encoding a subunit of PI3 kinase suppressed toxicity of Nedd4w4 independently of GFP-Atg2-C1. Further analysis of the Atg2-C1 revealed that it contains an APT1 domain of previously uncharacterized function. Most importantly, we showed that this domain is able to bind phosphatidylinositol phosphates, especially PI3P, which is abundant in the PAS and endosomes. Together our results suggest that human Nedd4 ubiquitinates proteins in yeast and causes proteotoxic stress and, with some Atg proteins, leads to formation of a perivacuolar structure, which may be involved in sequestration, aggregation or degradation of proteins.
Collapse
Affiliation(s)
- Joanna Kaminska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Weronika Rzepnikowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Anna Polak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Krzysztof Flis
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Piotr Soczewka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Katarzyna Bala
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Marzena Sienko
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Marcin Grynberg
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Pawel Kaliszewski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Agnieszka Urbanek
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Kathryn Ayscough
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Teresa Zoladek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.
| |
Collapse
|
165
|
Lystad AH, Simonsen A. Phosphoinositide-binding proteins in autophagy. FEBS Lett 2016; 590:2454-68. [PMID: 27391591 DOI: 10.1002/1873-3468.12286] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 06/28/2016] [Accepted: 07/05/2016] [Indexed: 12/21/2022]
Abstract
Phosphoinositides represent a very small fraction of membrane phospholipids, having fast turnover rates and unique subcellular distributions, which make them perfect for initiating local temporal effects. Seven different phosphoinositide species are generated through reversible phosphorylation of the inositol ring of phosphatidylinositol (PtdIns). The negative charge generated by the phosphates provides specificity for interaction with various protein domains that commonly contain a cluster of basic residues. Examples of domains that bind phosphoinositides include PH domains, WD40 repeats, PX domains, and FYVE domains. Such domains often display specificity toward a certain species or subset of phosphoinositides. Here we will review the current literature of different phosphoinositide-binding proteins involved in autophagy.
Collapse
Affiliation(s)
- Alf Håkon Lystad
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway
| |
Collapse
|
166
|
Werner A, Herzog B, Frey S, Pöggeler S. Autophagy-Associated Protein SmATG12 Is Required for Fruiting-Body Formation in the Filamentous Ascomycete Sordaria macrospora. PLoS One 2016; 11:e0157960. [PMID: 27309377 PMCID: PMC4911038 DOI: 10.1371/journal.pone.0157960] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/07/2016] [Indexed: 11/18/2022] Open
Abstract
In filamentous fungi, autophagy functions as a catabolic mechanism to overcome starvation and to control diverse developmental processes under normal nutritional conditions. Autophagy involves the formation of double-membrane vesicles, termed autophagosomes that engulf cellular components and bring about their degradation via fusion with vacuoles. Two ubiquitin-like (UBL) conjugation systems are essential for the expansion of the autophagosomal membrane: the UBL protein ATG8 is conjugated to the lipid phosphatidylethanolamine and the UBL protein ATG12 is coupled to ATG5. We recently showed that in the homothallic ascomycete Sordaria macrospora autophagy-related genes encoding components of the conjugation systems are required for fruiting-body development and/or are essential for viability. In the present work, we cloned and characterized the S. macrospora (Sm)atg12 gene. Two-hybrid analysis revealed that SmATG12 can interact with SmATG7 and SmATG3. To examine its role in S. macrospora, we replaced the open reading frame of Smatg12 with a hygromycin resistance cassette and generated a homokaryotic ΔSmatg12 knockout strain, which displayed slower vegetative growth under nutrient starvation conditions and was unable to form fruiting bodies. In the hyphae of S. macrospora EGFP-labeled SmATG12 was detected in the cytoplasm and as punctate structures presumed to be phagophores or phagophore assembly sites. Delivery of EGFP-labelled SmATG8 to the vacuole was entirely dependent on SmATG12.
Collapse
Affiliation(s)
- Antonia Werner
- Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg-August University, Göttingen, Germany
| | - Britta Herzog
- Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg-August University, Göttingen, Germany
| | - Stefan Frey
- Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg-August University, Göttingen, Germany
| | - Stefanie Pöggeler
- Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg-August University, Göttingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), Georg-August University, Göttingen, Germany
- * E-mail:
| |
Collapse
|
167
|
Yamasaki A, Watanabe Y, Adachi W, Suzuki K, Matoba K, Kirisako H, Kumeta H, Nakatogawa H, Ohsumi Y, Inagaki F, Noda NN. Structural Basis for Receptor-Mediated Selective Autophagy of Aminopeptidase I Aggregates. Cell Rep 2016; 16:19-27. [PMID: 27320913 DOI: 10.1016/j.celrep.2016.05.066] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/29/2016] [Accepted: 05/16/2016] [Indexed: 12/15/2022] Open
Abstract
Selective autophagy mediates the degradation of various cargoes, including protein aggregates and organelles, thereby contributing to cellular homeostasis. Cargo receptors ensure selectivity by tethering specific cargo to lipidated Atg8 at the isolation membrane. However, little is known about the structural requirements underlying receptor-mediated cargo recognition. Here, we report structural, biochemical, and cell biological analysis of the major selective cargo protein in budding yeast, aminopeptidase I (Ape1), and its complex with the receptor Atg19. The Ape1 propeptide has a trimeric coiled-coil structure, which tethers dodecameric Ape1 bodies together to form large aggregates. Atg19 disassembles the propeptide trimer and forms a 2:1 heterotrimer, which not only blankets the Ape1 aggregates but also regulates their size. These receptor activities may promote elongation of the isolation membrane along the aggregate surface, enabling sequestration of the cargo with high specificity.
Collapse
Affiliation(s)
- Akinori Yamasaki
- Institute of Microbial Chemistry (BIKAKEN), Tokyo 141-0021, Japan
| | | | - Wakana Adachi
- Department of Structural Biology, Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Kuninori Suzuki
- Bioimaging Center, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa 277-8562, Japan
| | - Kazuaki Matoba
- Institute of Microbial Chemistry (BIKAKEN), Tokyo 141-0021, Japan
| | - Hiromi Kirisako
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Hiroyuki Kumeta
- Department of Structural Biology, Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Hitoshi Nakatogawa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Yoshinori Ohsumi
- Unit for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Fuyuhiko Inagaki
- Institute of Microbial Chemistry (BIKAKEN), Tokyo 141-0021, Japan; Department of Structural Biology, Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Nobuo N Noda
- Institute of Microbial Chemistry (BIKAKEN), Tokyo 141-0021, Japan.
| |
Collapse
|
168
|
Turco E, Martens S. Insights into autophagosome biogenesis from in vitro reconstitutions. J Struct Biol 2016; 196:29-36. [PMID: 27251905 PMCID: PMC5039013 DOI: 10.1016/j.jsb.2016.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 01/01/2023]
Abstract
Macro-autophagy (autophagy) is a conserved catabolic pathway for the degradation of cytoplasmic material in the lysosomal system. This is achieved by the sequestration of the cytoplasmic cargo material within double membrane-bound vesicles that fuse with lysosomes, wherein the vesicle’s inner membrane and the cargo are degraded. Autophagosomes form in a de novo manner and their precursors are initially detected as small membrane structures that are referred to as isolation membranes. The isolation membranes gradually expand and subsequently close to give rise to autophagosomes. Many proteins required to form autophagosomes have been identified but how they act mechanistically is still enigmatic. Here we critically review reconstitution approaches employed to decipher the inner working of the fascinating autophagy machinery.
Collapse
Affiliation(s)
- Eleonora Turco
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria.
| | - Sascha Martens
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria.
| |
Collapse
|
169
|
Wang J, Davis S, Menon S, Zhang J, Ding J, Cervantes S, Miller E, Jiang Y, Ferro-Novick S. Ypt1/Rab1 regulates Hrr25/CK1δ kinase activity in ER-Golgi traffic and macroautophagy. J Cell Biol 2016. [PMID: 26195667 PMCID: PMC4508898 DOI: 10.1083/jcb.201408075] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Ypt1 directly recruits the kinase Hrr25 to COPII vesicles to activate it in two different pathways: ER to Golgi and the catabolic macroautophagy pathway induced in response to cell stress. ER-derived COPII-coated vesicles are conventionally targeted to the Golgi. However, during cell stress these vesicles also become a membrane source for autophagosomes, distinct organelles that target cellular components for degradation. How the itinerary of COPII vesicles is coordinated on these pathways remains unknown. Phosphorylation of the COPII coat by casein kinase 1 (CK1), Hrr25, contributes to the directional delivery of ER-derived vesicles to the Golgi. CK1 family members are thought to be constitutively active kinases that are regulated through their subcellular localization. Instead, we show here that the Rab GTPase Ypt1/Rab1 binds and activates Hrr25/CK1δ to spatially regulate its kinase activity. Consistent with a role for COPII vesicles and Hrr25 in membrane traffic and autophagosome biogenesis, hrr25 mutants were defective in ER–Golgi traffic and macroautophagy. These studies are likely to serve as a paradigm for how CK1 kinases act in membrane traffic.
Collapse
Affiliation(s)
- Juan Wang
- Department of Cellular and Molecular Medicine, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093
| | - Saralin Davis
- Department of Cellular and Molecular Medicine, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093
| | - Shekar Menon
- Department of Cellular and Molecular Medicine, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093
| | - Jinzhong Zhang
- Department of Cellular and Molecular Medicine, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093
| | - Jingzhen Ding
- Department of Cellular and Molecular Medicine, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093
| | - Serena Cervantes
- Department of Cellular and Molecular Medicine, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093
| | - Elizabeth Miller
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Susan Ferro-Novick
- Department of Cellular and Molecular Medicine, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
170
|
Li D, Song JZ, Shan MH, Li SP, Liu W, Li H, Zhu J, Wang Y, Lin J, Xie Z. A fluorescent tool set for yeast Atg proteins. Autophagy 2016; 11:954-60. [PMID: 25998947 DOI: 10.1080/15548627.2015.1040971] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Fluorescence microscopy of live cells is instrumental in deciphering the molecular details of autophagy. To facilitate the routine examination of yeast Atg proteins under diverse conditions, here we provide a comprehensive tool set, including (1) plasmids for the expression of GFP chimeras at endogenous levels for most Atg proteins, (2) RFP-Atg8 constructs with improved properties as a PAS marker, and (3) plasmids for the complementation of common yeast auxotrophic markers. We hope that the availability of this tool set will further accelerate yeast autophagy research.
Collapse
Key Words
- Atg, autophagy related
- C,G,R,YFP, cyan, green, red and yellow fluorescent protein
- Cvt, cytoplasm-to-vacuole targeting
- DsRed eExpress 2
- PAS, phagophore assembly site
- Vps, vacuolar protein sorting.
- autophagy
- auxotroph
- fluorescent protein
- mKO, monomeric Kusabira Orange
- pseudo-monomer
- starter kit
- yeast
Collapse
Affiliation(s)
- Dan Li
- a School of Life Sciences and Biotechnology; Shanghai Jiao Tong University ; Shanghai , China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Chew LH, Lu S, Liu X, Li FK, Yu AY, Klionsky DJ, Dong MQ, Yip CK. Molecular interactions of the Saccharomyces cerevisiae Atg1 complex provide insights into assembly and regulatory mechanisms. Autophagy 2016; 11:891-905. [PMID: 25998554 DOI: 10.1080/15548627.2015.1040972] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The Atg1 complex, which contains 5 major subunits: Atg1, Atg13, Atg17, Atg29, and Atg31, regulates the induction of autophagy and autophagosome formation. To gain a better understanding of the overall architecture and assembly mechanism of this essential autophagy regulatory complex, we have reconstituted a core assembly of the Saccharomyces cerevisiae Atg1 complex composed of full-length Atg17, Atg29, and Atg31, along with the C-terminal domains of Atg1 (Atg1[CTD]) and Atg13 (Atg13[CTD]). Using chemical-crosslinking coupled with mass spectrometry (CXMS) analysis we systematically mapped the intersubunit interaction interfaces within this complex. Our data revealed that the intrinsically unstructured C-terminal domain of Atg29 interacts directly with Atg17, whereas Atg17 interacts with Atg13 in 2 distinct intrinsically unstructured regions, including a previously unknown motif that encompasses several putative phosphorylation sites. The Atg1[CTD] crosslinks exclusively to the Atg13[CTD] and does not appear to make direct contact with the Atg17-Atg31-Atg29 scaffold. Finally, single-particle electron microscopy analysis revealed that both the Atg13[CTD] and Atg1[CTD] localize to the tip regions of Atg17-Atg31-Atg29 and do not alter the distinct curvature of this scaffolding subcomplex. This work provides a comprehensive understanding of the subunit interactions in the fully assembled Atg1 core complex, and uncovers the potential role of intrinsically disordered regions in regulating complex integrity.
Collapse
Affiliation(s)
- Leon H Chew
- a Department of Biochemistry and Molecular Biology ; University of British Columbia ; Vancouver , BC Canada
| | | | | | | | | | | | | | | |
Collapse
|
172
|
Liu XH, Xu F, Snyder JH, Shi HB, Lu JP, Lin FC. Autophagy in plant pathogenic fungi. Semin Cell Dev Biol 2016; 57:128-137. [PMID: 27072489 DOI: 10.1016/j.semcdb.2016.03.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/24/2016] [Accepted: 03/29/2016] [Indexed: 11/25/2022]
Abstract
Autophagy is a conserved cellular process that degrades cytoplasmic constituents in vacuoles. Plant pathogenic fungi develop special infection structures and/or secrete a range of enzymes to invade their plant hosts. It has been demonstrated that monitoring autophagy processes can be extremely useful in visualizing the sequence of events leading to pathogenicity of plant pathogenic fungi. In this review, we introduce the molecular mechanisms involved in autophagy. In addition, we explore the relationship between autophagy and pathogenicity in plant pathogenic fungi. Finally, we discuss the various experimental strategies available for use in the study of autophagy in plant pathogenic fungi.
Collapse
Affiliation(s)
- Xiao-Hong Liu
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, China
| | - Fei Xu
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - John Hugh Snyder
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Huan-Bin Shi
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, China
| | - Jian-Ping Lu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Fu-Cheng Lin
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, China.
| |
Collapse
|
173
|
Papinski D, Kraft C. Regulation of Autophagy By Signaling Through the Atg1/ULK1 Complex. J Mol Biol 2016; 428:1725-41. [PMID: 27059781 DOI: 10.1016/j.jmb.2016.03.030] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/25/2016] [Accepted: 03/28/2016] [Indexed: 02/06/2023]
Abstract
Autophagy is an intracellular degradation pathway highly conserved in eukaryotic species. It is characterized by selective or bulk trafficking of cytosolic structures-ranging from single proteins to cell organelles-to the vacuole or a lysosome, in which the autophagic cargo is degraded. Autophagy fulfils a large set of roles, including nutrient mobilization in starvation conditions, clearance of protein aggregates and host defence against intracellular pathogens. Not surprisingly, autophagy has been linked to several human diseases, among them neurodegenerative disorders and cancer. Autophagy is coordinated by the action of the Atg1/ULK1 kinase, which is the target of several important stress signaling cascades. In this review, we will discuss the available information on both upstream regulation and downstream effectors of Atg1/ULK1, with special focus on reported and proposed kinase substrates.
Collapse
Affiliation(s)
- Daniel Papinski
- Max F. Perutz Laboratories, Vienna Biocenter, University of Vienna, A-1030 Vienna, Austria
| | - Claudine Kraft
- Max F. Perutz Laboratories, Vienna Biocenter, University of Vienna, A-1030 Vienna, Austria.
| |
Collapse
|
174
|
Velázquez AP, Tatsuta T, Ghillebert R, Drescher I, Graef M. Lipid droplet-mediated ER homeostasis regulates autophagy and cell survival during starvation. J Cell Biol 2016; 212:621-31. [PMID: 26953354 PMCID: PMC4792078 DOI: 10.1083/jcb.201508102] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 02/10/2016] [Indexed: 12/14/2022] Open
Abstract
Biochemical, cytological, and lipidomic approaches show that lipid droplets are dispensable as membrane sources for autophagy, but are required for ER homeostasis by buffering fatty acid synthesis and ER stress and maintaining phospholipid composition to allow autophagy regulation and autophagosome biogenesis. Lipid droplets (LDs) are conserved organelles for intracellular neutral lipid storage. Recent studies suggest that LDs function as direct lipid sources for autophagy, a central catabolic process in homeostasis and stress response. Here, we demonstrate that LDs are dispensable as a membrane source for autophagy, but fulfill critical functions for endoplasmic reticulum (ER) homeostasis linked to autophagy regulation. In the absence of LDs, yeast cells display alterations in their phospholipid composition and fail to buffer de novo fatty acid (FA) synthesis causing chronic stress and morphologic changes in the ER. These defects compromise regulation of autophagy, including formation of multiple aberrant Atg8 puncta and drastically impaired autophagosome biogenesis, leading to severe defects in nutrient stress survival. Importantly, metabolically corrected phospholipid composition and improved FA resistance of LD-deficient cells cure autophagy and cell survival. Together, our findings provide novel insight into the complex interrelation between LD-mediated lipid homeostasis and the regulation of autophagy potentially relevant for neurodegenerative and metabolic diseases.
Collapse
Affiliation(s)
| | - Takashi Tatsuta
- Institute for Genetics, University of Cologne, 50931 Cologne, Germany Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| | - Ruben Ghillebert
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Ingmar Drescher
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Martin Graef
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
175
|
Mechanistically Dissecting Autophagy: Insights from In Vitro Reconstitution. J Mol Biol 2016; 428:1700-13. [PMID: 26946034 DOI: 10.1016/j.jmb.2016.02.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 02/19/2016] [Accepted: 02/19/2016] [Indexed: 12/13/2022]
Abstract
Autophagy is a fundamental cellular mechanism responsible for bulk turnover of cytoplasmic components. It is broadly related to many cellular activities, physiological processes, and pathological conditions. Autophagy entails a spatiotemporal interaction between cytosolic factors and membranes that are remodeled to encapsulate autophagic cargo within an autophagosome. Although majority of the factors [autophagy-related gene (Atg) proteins] involved in autophagy have been identified by genetic studies, the mechanism accounting for how these factors act upon the membrane to remodel it and efficiently recruit cargo for degradation is unclear. In vitro reconstitution of several different aspects of autophagy has provided important insights into the understanding of the mechanistic details underlying autophagic membrane remodeling and cargo recruitment. Here, we highlight these efforts toward studying autophagy through in vitro approaches.
Collapse
|
176
|
Proikas-Cezanne T, Takacs Z, Dönnes P, Kohlbacher O. WIPI proteins: essential PtdIns3P effectors at the nascent autophagosome. J Cell Sci 2016; 128:207-17. [PMID: 25568150 DOI: 10.1242/jcs.146258] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Autophagy is a pivotal cytoprotective process that secures cellular homeostasis, fulfills essential roles in development, immunity and defence against pathogens, and determines the lifespan of eukaryotic organisms. However, autophagy also crucially contributes to the development of age-related human pathologies, including cancer and neurodegeneration. Macroautophagy (hereafter referred to as autophagy) clears the cytoplasm by stochastic or specific cargo recognition and destruction, and is initiated and executed by autophagy related (ATG) proteins functioning in dynamical hierarchies to form autophagosomes. Autophagosomes sequester cytoplasmic cargo material, including proteins, lipids and organelles, and acquire acidic hydrolases from the lysosomal compartment for cargo degradation. Prerequisite and essential for autophagosome formation is the production of phosphatidylinositol 3-phosphate (PtdIns3P) by phosphatidylinositol 3-kinase class III (PI3KC3, also known as PIK3C3) in complex with beclin 1, p150 (also known as PIK3R4; Vps15 in yeast) and ATG14L. Members of the human WD-repeat protein interacting with phosphoinositides (WIPI) family play an important role in recognizing and decoding the PtdIns3P signal at the nascent autophagosome, and hence function as autophagy-specific PtdIns3P-binding effectors, similar to their ancestral yeast Atg18 homolog. The PtdIns3P effector function of human WIPI proteins appears to be compromised in cancer and neurodegeneration, and WIPI genes and proteins might present novel targets for rational therapies. Here, we summarize the current knowledge on the roles of the four human WIPI proteins, WIPI1-4, in autophagy. This article is part of a Focus on Autophagosome biogenesis. For further reading, please see related articles: 'ERES: sites for autophagosome biogenesis and maturation?' by Jana Sanchez-Wandelmer et al. (J. Cell Sci. 128, 185-192) and 'Membrane dynamics in autophagosome biogenesis' by Sven R. Carlsson and Anne Simonsen (J. Cell Sci. 128, 193-205).
Collapse
Affiliation(s)
- Tassula Proikas-Cezanne
- Autophagy Laboratory, Department of Molecular Biology, Interfaculty Institute of Cell Biology, Eberhard Karls University Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Developmental Biology and Eberhard Karls University Tuebingen, Spemannstr. 35 - 39, 72076 Tuebingen, Germany
| | - Zsuzsanna Takacs
- Autophagy Laboratory, Department of Molecular Biology, Interfaculty Institute of Cell Biology, Eberhard Karls University Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Developmental Biology and Eberhard Karls University Tuebingen, Spemannstr. 35 - 39, 72076 Tuebingen, Germany
| | - Pierre Dönnes
- Applied Bioinformatics Group, Center for Bioinformatics, Quantitative Biology Center, and Department of Computer Science, Eberhard Karls University Tuebingen, Sand 14, 72076 Tuebingen, Germany
| | - Oliver Kohlbacher
- International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Developmental Biology and Eberhard Karls University Tuebingen, Spemannstr. 35 - 39, 72076 Tuebingen, Germany Applied Bioinformatics Group, Center for Bioinformatics, Quantitative Biology Center, and Department of Computer Science, Eberhard Karls University Tuebingen, Sand 14, 72076 Tuebingen, Germany
| |
Collapse
|
177
|
Busse RA, Scacioc A, Krick R, Pérez-Lara Á, Thumm M, Kühnel K. Characterization of PROPPIN-Phosphoinositide Binding and Role of Loop 6CD in PROPPIN-Membrane Binding. Biophys J 2016; 108:2223-34. [PMID: 25954880 DOI: 10.1016/j.bpj.2015.03.045] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 03/20/2015] [Accepted: 03/24/2015] [Indexed: 11/16/2022] Open
Abstract
PROPPINs (β-propellers that bind polyphosphoinositides) are a family of PtdIns3P- and PtdIns(3,5)P2-binding proteins that play an important role in autophagy. We analyzed PROPPIN-membrane binding through isothermal titration calorimetry (ITC), stopped-flow measurements, mutagenesis studies, and molecular dynamics (MD) simulations. ITC measurements showed that the yeast PROPPIN family members Atg18, Atg21, and Hsv2 bind PtdIns3P and PtdIns(3,5)P2 with high affinities in the nanomolar to low-micromolar range and have two phosphoinositide (PIP)-binding sites. Single PIP-binding site mutants have a 15- to 30-fold reduced affinity, which explains the requirement of two PIP-binding sites in PROPPINs. Hsv2 bound small unilamellar vesicles with a higher affinity than it bound large unilamellar vesicles in stopped-flow measurements. Thus, we conclude that PROPPIN membrane binding is curvature dependent. MD simulations revealed that loop 6CD is an anchor for membrane binding, as it is the region of the protein that inserts most deeply into the lipid bilayer. Mutagenesis studies showed that both hydrophobic and electrostatic interactions are required for membrane insertion of loop 6CD. We propose a model for PROPPIN-membrane binding in which PROPPINs are initially targeted to membranes through nonspecific electrostatic interactions and are then retained at the membrane through PIP binding.
Collapse
Affiliation(s)
- Ricarda A Busse
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Andreea Scacioc
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Roswitha Krick
- Institute of Cellular Biochemistry, University Medicine, Georg-August University, Göttingen, Germany
| | - Ángel Pérez-Lara
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Michael Thumm
- Institute of Cellular Biochemistry, University Medicine, Georg-August University, Göttingen, Germany
| | - Karin Kühnel
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| |
Collapse
|
178
|
Wen X, Klionsky DJ. An overview of macroautophagy in yeast. J Mol Biol 2016; 428:1681-99. [PMID: 26908221 DOI: 10.1016/j.jmb.2016.02.021] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/15/2016] [Accepted: 02/16/2016] [Indexed: 12/19/2022]
Abstract
Macroautophagy is an evolutionarily conserved dynamic pathway that functions primarily in a degradative manner. A basal level of macroautophagy occurs constitutively, but this process can be further induced in response to various types of stress including starvation, hypoxia and hormonal stimuli. The general principle behind macroautophagy is that cytoplasmic contents can be sequestered within a transient double-membrane organelle, an autophagosome, which subsequently fuses with a lysosome or vacuole (in mammals, or yeast and plants, respectively), allowing for degradation of the cargo followed by recycling of the resulting macromolecules. Through this basic mechanism, macroautophagy has a critical role in cellular homeostasis; however, either insufficient or excessive macroautophagy can seriously compromise cell physiology, and thus, it needs to be properly regulated. In fact, a wide range of diseases are associated with dysregulation of macroautophagy. There has been substantial progress in understanding the regulation and molecular mechanisms of macroautophagy in different organisms; however, many questions concerning some of the most fundamental aspects of macroautophagy remain unresolved. In this review, we summarize current knowledge about macroautophagy mainly in yeast, including the mechanism of autophagosome biogenesis, the function of the core macroautophagic machinery, the regulation of macroautophagy and the process of cargo recognition in selective macroautophagy, with the goal of providing insights into some of the key unanswered questions in this field.
Collapse
Affiliation(s)
- Xin Wen
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
179
|
Rao Y, Matscheko N, Wollert T. Autophagy in the test tube: In vitro reconstitution of aspects of autophagosome biogenesis. FEBS J 2016; 283:2034-43. [PMID: 26797728 DOI: 10.1111/febs.13661] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 12/30/2015] [Accepted: 01/14/2016] [Indexed: 01/02/2023]
Abstract
Autophagy is a versatile recycling pathway that delivers cytoplasmic contents to lysosomal compartments for degradation. It involves the formation of a cup-shaped membrane that expands to capture cargo. After the cargo has been entirely enclosed, the membrane is sealed to generate a double-membrane-enclosed compartment, termed the autophagosome. Depending on the physiological state of the cell, the cargo is selected either specifically or non-specifically. The process involves a highly conserved set of autophagy-related proteins. Reconstitution of their action on model membranes in vitro has contributed tremendously to our understanding of autophagosome biogenesis. This review will focus on various in vitro techniques that have been employed to decipher the function of the autophagic core machinery.
Collapse
Affiliation(s)
- Yijian Rao
- Molecular Membrane and Organelle Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Nena Matscheko
- Molecular Membrane and Organelle Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Thomas Wollert
- Molecular Membrane and Organelle Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
180
|
Lipid transfer and metabolism across the endolysosomal-mitochondrial boundary. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:880-894. [PMID: 26852832 DOI: 10.1016/j.bbalip.2016.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 01/30/2016] [Accepted: 02/03/2016] [Indexed: 01/10/2023]
Abstract
Lysosomes and mitochondria occupy a central stage in the maintenance of cellular homeostasis, by playing complementary roles in nutrient sensing and energy metabolism. Specifically, these organelles function as signaling hubs that integrate environmental and endogenous stimuli with specific metabolic responses. In particular, they control various lipid biosynthetic and degradative pipelines, either directly or indirectly, by regulating major cellular metabolic pathways, and by physical and functional connections established with each other and with other organelles. Membrane contact sites allow the exchange of ions and molecules between organelles, even without membrane fusion, and are privileged routes for lipid transfer among different membrane compartments. These inter-organellar connections typically involve the endoplasmic reticulum. Direct membrane contacts have now been described also between lysosomes, autophagosomes, lipid droplets, and mitochondria. This review focuses on these recently identified membrane contact sites, and on their role in lipid biosynthesis, exchange, turnover and catabolism. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.
Collapse
|
181
|
The Atg1-kinase complex tethers Atg9-vesicles to initiate autophagy. Nat Commun 2016; 7:10338. [PMID: 26753620 PMCID: PMC4729957 DOI: 10.1038/ncomms10338] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/29/2015] [Indexed: 01/05/2023] Open
Abstract
Autophagosomes are double-membrane vesicles that sequester cytoplasmic material for lysosomal degradation. Their biogenesis is initiated by recruitment of Atg9-vesicles to the phagophore assembly site. This process depends on the regulated activation of the Atg1-kinase complex. However, the underlying molecular mechanism remains unclear. Here we reconstitute this early step in autophagy from purified components in vitro. We find that on assembly from its cytoplasmic subcomplexes, the Atg1-kinase complex becomes activated, enabling it to recruit and tether Atg9-vesicles. The scaffolding protein Atg17 targets the Atg1-kinase complex to autophagic membranes by specifically recognizing the membrane protein Atg9. This interaction is inhibited by the two regulatory subunits Atg31 and Atg29. Engagement of the Atg1-Atg13 subcomplex restores the Atg9-binding and membrane-tethering activity of Atg17. Our data help to unravel the mechanism that controls Atg17-mediated tethering of Atg9-vesicles, providing the molecular basis to understand initiation of autophagosome-biogenesis.
Collapse
|
182
|
Wesselborg S, Stork B. Autophagy signal transduction by ATG proteins: from hierarchies to networks. Cell Mol Life Sci 2015; 72:4721-57. [PMID: 26390974 PMCID: PMC4648967 DOI: 10.1007/s00018-015-2034-8] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 08/13/2015] [Accepted: 08/31/2015] [Indexed: 02/07/2023]
Abstract
Autophagy represents an intracellular degradation process which is involved in both cellular homeostasis and disease settings. In the last two decades, the molecular machinery governing this process has been characterized in detail. To date, several key factors regulating this intracellular degradation process have been identified. The so-called autophagy-related (ATG) genes and proteins are central to this process. However, several additional molecules contribute to the outcome of an autophagic response. Several review articles describing the molecular process of autophagy have been published in the recent past. In this review article we would like to add the most recent findings to this knowledge, and to give an overview of the network character of the autophagy signaling machinery.
Collapse
Affiliation(s)
- Sebastian Wesselborg
- Institute of Molecular Medicine I, Heinrich-Heine-University, Universitätsstr. 1, Building 23.12, 40225, Düsseldorf, Germany
| | - Björn Stork
- Institute of Molecular Medicine I, Heinrich-Heine-University, Universitätsstr. 1, Building 23.12, 40225, Düsseldorf, Germany.
| |
Collapse
|
183
|
Sakakibara K, Eiyama A, Suzuki SW, Sakoh-Nakatogawa M, Okumura N, Tani M, Hashimoto A, Nagumo S, Kondo-Okamoto N, Kondo-Kakuta C, Asai E, Kirisako H, Nakatogawa H, Kuge O, Takao T, Ohsumi Y, Okamoto K. Phospholipid methylation controls Atg32-mediated mitophagy and Atg8 recycling. EMBO J 2015; 34:2703-19. [PMID: 26438722 DOI: 10.15252/embj.201591440] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 09/04/2015] [Indexed: 12/15/2022] Open
Abstract
Degradation of mitochondria via selective autophagy, termed mitophagy, contributes to mitochondrial quality and quantity control whose defects have been implicated in oxidative phosphorylation deficiency, aberrant cell differentiation, and neurodegeneration. How mitophagy is regulated in response to cellular physiology remains obscure. Here, we show that mitophagy in yeast is linked to the phospholipid biosynthesis pathway for conversion of phosphatidylethanolamine to phosphatidylcholine by the two methyltransferases Cho2 and Opi3. Under mitophagy-inducing conditions, cells lacking Opi3 exhibit retardation of Cho2 repression that causes an anomalous increase in glutathione levels, leading to suppression of Atg32, a mitochondria-anchored protein essential for mitophagy. In addition, loss of Opi3 results in accumulation of phosphatidylmonomethylethanolamine (PMME) and, surprisingly, generation of Atg8-PMME, a mitophagy-incompetent lipid conjugate of the autophagy-related ubiquitin-like modifier. Amelioration of Atg32 expression and attenuation of Atg8-PMME conjugation markedly rescue mitophagy in opi3-null cells. We propose that proper regulation of phospholipid methylation is crucial for Atg32-mediated mitophagy.
Collapse
Affiliation(s)
- Kaori Sakakibara
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Akinori Eiyama
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Sho W Suzuki
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan Frontier Research Center, Tokyo Institute of Technology, Kanagawa, Japan
| | | | - Nobuaki Okumura
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Motohiro Tani
- Department of Chemistry, Kyushu University, Fukuoka, Japan
| | - Ayako Hashimoto
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Sachiyo Nagumo
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | | | - Chika Kondo-Kakuta
- Frontier Research Center, Tokyo Institute of Technology, Kanagawa, Japan
| | - Eri Asai
- Frontier Research Center, Tokyo Institute of Technology, Kanagawa, Japan
| | - Hiromi Kirisako
- Frontier Research Center, Tokyo Institute of Technology, Kanagawa, Japan
| | - Hitoshi Nakatogawa
- Frontier Research Center, Tokyo Institute of Technology, Kanagawa, Japan
| | - Osamu Kuge
- Department of Chemistry, Kyushu University, Fukuoka, Japan
| | - Toshifumi Takao
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Yoshinori Ohsumi
- Frontier Research Center, Tokyo Institute of Technology, Kanagawa, Japan
| | - Koji Okamoto
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| |
Collapse
|
184
|
Abstract
Protein export from the endoplasmic reticulum (ER), the first step in protein transport through the secretory pathway, is mediated by coatomer protein II (COPII)-coated vesicles at ER exit sites. COPII coat assembly on the ER is well understood and the conserved large hydrophilic protein Sec16 clearly has a role to play in COPII coat dynamics. Sec16 localizes to ER exit sites, its loss of function impairs their functional organization in all species where it has been studied, and it interacts with COPII coat subunits. However, its exact function in COPII dynamics is debated, as Sec16 is proposed to act as a scaffold to recruit COPII components and as a device to regulate the Sar1 activity in uncoating, in such a way that the coat is released only when the vesicle is fully formed and loaded with cargo. Furthermore, Sec16 has been shown to respond to nutrient signalling, thus coupling environmental stimuli to secretory capacity.
Collapse
|
185
|
Ypt1 and COPII vesicles act in autophagosome biogenesis and the early secretory pathway. Biochem Soc Trans 2015; 43:92-6. [PMID: 25619251 DOI: 10.1042/bst20140247] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The GTPase Ypt1, Rab1 in mammals functions on multiple intracellular trafficking pathways. Ypt1 has an established role on the early secretory pathway in targeting coat protein complex II (COPII) coated vesicles to the cis-Golgi. Additionally, Ypt1 functions during the initial stages of macroautophagy, a process of cellular degradation induced during periods of cell stress. In the present study, we discuss the role of Ypt1 and other secretory machinery during macroautophagy, highlighting commonalities between these two pathways.
Collapse
|
186
|
De Block J, Szopinska A, Guerriat B, Dodzian J, Villers J, Hochstenbach JF, Morsomme P. Yeast Pmp3p has an important role in plasma membrane organization. J Cell Sci 2015; 128:3646-59. [PMID: 26303201 DOI: 10.1242/jcs.173211] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/18/2015] [Indexed: 01/24/2023] Open
Abstract
Pmp3p-related proteins are highly conserved proteins that exist in bacteria, yeast, nematodes and plants, and its transcript is regulated in response to abiotic stresses, such as low temperature or high salinity. Pmp3p was originally identified in Saccharomyces cerevisiae, and it belongs to the sensitive to Na(+) (SNA)-protein family, which comprises four members--Pmp3p/Sna1p, Sna2p, Sna3p and Sna4p. Deletion of the PMP3 gene conferred sensitivity to cytotoxic cations, whereas removal of the other SNA genes did not lead to clear phenotypic effects. It has long been believed that Pmp3p-related proteins have a common and important role in the modulation of plasma membrane potential and in the regulation of intracellular ion homeostasis. Here, we show that several growth phenotypes linked to PMP3 deletion can be modulated by the removal of specific genes involved in sphingolipid synthesis. These genetic interactions, together with lipid binding assays and epifluorescence microscopy, as well as other biochemical experiments, suggest that Pmp3p could be part of a phosphoinositide-regulated stress sensor.
Collapse
Affiliation(s)
- Julien De Block
- Université Catholique de Louvain, Institut des Sciences de la Vie, Croix du Sud 4-5, Louvain-la-Neuve B-1348, Belgium
| | - Aleksandra Szopinska
- Université Catholique de Louvain, Institut des Sciences de la Vie, Croix du Sud 4-5, Louvain-la-Neuve B-1348, Belgium
| | - Bérengère Guerriat
- Université Catholique de Louvain, Institut des Sciences de la Vie, Croix du Sud 4-5, Louvain-la-Neuve B-1348, Belgium
| | - Joanna Dodzian
- Université Catholique de Louvain, Institut des Sciences de la Vie, Croix du Sud 4-5, Louvain-la-Neuve B-1348, Belgium
| | - Jennifer Villers
- Université Catholique de Louvain, Institut des Sciences de la Vie, Croix du Sud 4-5, Louvain-la-Neuve B-1348, Belgium
| | - Jean-François Hochstenbach
- Université Catholique de Louvain, Institut des Sciences de la Vie, Croix du Sud 4-5, Louvain-la-Neuve B-1348, Belgium
| | - Pierre Morsomme
- Université Catholique de Louvain, Institut des Sciences de la Vie, Croix du Sud 4-5, Louvain-la-Neuve B-1348, Belgium
| |
Collapse
|
187
|
Kamber RA, Shoemaker CJ, Denic V. Receptor-Bound Targets of Selective Autophagy Use a Scaffold Protein to Activate the Atg1 Kinase. Mol Cell 2015; 59:372-81. [PMID: 26166702 DOI: 10.1016/j.molcel.2015.06.009] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 04/03/2015] [Accepted: 06/03/2015] [Indexed: 01/10/2023]
Abstract
Selective autophagy eliminates protein aggregates, damaged organelles, and other targets that otherwise accumulate and cause disease. Autophagy receptors mediate selectivity by connecting targets to the autophagosome membrane. It has remained unknown whether receptors perform additional functions. Here, we show that in yeast certain receptor-bound targets activate Atg1, the kinase that controls autophagosome formation. Specifically, we found that in nutrient-rich conditions, Atg1 is active only in a multisubunit complex comprising constitutive protein aggregates, their autophagy receptor, and a scaffold protein, Atg11. Development of a cell-free assay for Atg1-mediated phosphorylation enabled us to activate Atg1 with purified receptor-bound aggregates and Atg11. Another target, damaged peroxisomes, also activated Atg1 using Atg11 with a distinct receptor. Our work reveals that receptor-target complexes activate Atg1 to drive formation of selective autophagosomes. This regulatory logic is a key similarity between selective autophagy and bulk autophagy, which is initiated by a distinct Atg1 activation mechanism during starvation.
Collapse
Affiliation(s)
- Roarke A Kamber
- Northwest Labs, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Christopher J Shoemaker
- Northwest Labs, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Vladimir Denic
- Northwest Labs, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
188
|
Abstract
During the past 20 years, autophagy signaling has entered the main stage of the cell biological theater. Autophagy represents an intracellular degradation process that is involved in both the bulk recycling of cytoplasmic components and the selective removal of organelles, protein aggregates, or intracellular pathogens. The understanding of autophagy has been greatly facilitated by the characterization of the molecular machinery governing this process. In yeast, initiation of autophagy is controlled by the Atg1 kinase complex, which is composed of the Ser/Thr kinase Atg1, the adaptor protein Atg13, and the ternary complex of Atg17-Atg31-Atg29. In vertebrates, the orthologous ULK1 kinase complex contains the Ser/Thr kinase ULK1 and the accessory proteins ATG13, RB1CC1, and ATG101. Among these components, Atg1/ULK1 have gained major attention in the past, i.e., for the identification of upstream regulatory kinases, the characterization of downstream substrates controlling the autophagic flux, or as a druggable target for the modulation of autophagy. However, accumulating data indicate that the function of Atg13/ATG13 has been likely underestimated so far. In addition to ensuring proper Atg1/ULK1 recruitment and activity, this adaptor molecule has been implicated in ULK1-independent autophagy processes. Furthermore, recent data have identified additional binding partners of Atg13/ATG13 besides the components of the Atg1/ULK1 complex, e.g., Atg8 family proteins or acidic phospholipids. Therefore, in this review we will center the spotlight on Atg13/ATG13 and summarize the role that Atg13/ATG13 assumes in the autophagy stage play.
Collapse
Affiliation(s)
- Sebastian Alers
- Institute of Molecular Medicine; Heinrich-Heine-University; Düsseldorf, Germany
| | | | - Björn Stork
- Institute of Molecular Medicine; Heinrich-Heine-University; Düsseldorf, Germany
| |
Collapse
|
189
|
Suresh HG, da Silveira Dos Santos AX, Kukulski W, Tyedmers J, Riezman H, Bukau B, Mogk A. Prolonged starvation drives reversible sequestration of lipid biosynthetic enzymes and organelle reorganization in Saccharomyces cerevisiae. Mol Biol Cell 2015; 26:1601-15. [PMID: 25761633 PMCID: PMC4436773 DOI: 10.1091/mbc.e14-11-1559] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/02/2015] [Indexed: 11/11/2022] Open
Abstract
Lipid homeostasis is modulated upon starvation at three different levels manifested in reversible 1) spatial confinement of lipid biosynthetic enzymes, 2) mitochondrial and endoplasmic reticular reorganization, and 3) loss of organelle contact sites, thus highlighting a novel mechanism regulating lipid biosynthesis by simply modulating flux through the pathway. Cells adapt to changing nutrient availability by modulating a variety of processes, including the spatial sequestration of enzymes, the physiological significance of which remains controversial. These enzyme deposits are claimed to represent aggregates of misfolded proteins, protein storage, or complexes with superior enzymatic activity. We monitored spatial distribution of lipid biosynthetic enzymes upon glucose depletion in Saccharomyces cerevisiae. Several different cytosolic-, endoplasmic reticulum–, and mitochondria-localized lipid biosynthetic enzymes sequester into distinct foci. Using the key enzyme fatty acid synthetase (FAS) as a model, we show that FAS foci represent active enzyme assemblies. Upon starvation, phospholipid synthesis remains active, although with some alterations, implying that other foci-forming lipid biosynthetic enzymes might retain activity as well. Thus sequestration may restrict enzymes' access to one another and their substrates, modulating metabolic flux. Enzyme sequestrations coincide with reversible drastic mitochondrial reorganization and concomitant loss of endoplasmic reticulum–mitochondria encounter structures and vacuole and mitochondria patch organelle contact sites that are reflected in qualitative and quantitative changes in phospholipid profiles. This highlights a novel mechanism that regulates lipid homeostasis without profoundly affecting the activity status of involved enzymes such that, upon entry into favorable growth conditions, cells can quickly alter lipid flux by relocalizing their enzymes.
Collapse
Affiliation(s)
- Harsha Garadi Suresh
- Center for Molecular Biology of the University of Heidelberg (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany
| | | | - Wanda Kukulski
- Structural and Computational Biology Unit and Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany Structural and Computational Biology Unit and Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | - Jens Tyedmers
- Department of Medicine I and Clinical Chemistry, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Howard Riezman
- NCCR Chemical Biology, Department of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Bernd Bukau
- Center for Molecular Biology of the University of Heidelberg (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany
| | - Axel Mogk
- Center for Molecular Biology of the University of Heidelberg (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany
| |
Collapse
|
190
|
Taguchi Y, Imaoka K, Kataoka M, Uda A, Nakatsu D, Horii-Okazaki S, Kunishige R, Kano F, Murata M. Yip1A, a novel host factor for the activation of the IRE1 pathway of the unfolded protein response during Brucella infection. PLoS Pathog 2015; 11:e1004747. [PMID: 25742138 PMCID: PMC4350842 DOI: 10.1371/journal.ppat.1004747] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 02/12/2015] [Indexed: 12/03/2022] Open
Abstract
Brucella species replicate within host cells in the form of endoplasmic reticulum (ER)-derived vacuoles. The mechanisms by which the bacteria are sequestered into such vacuoles and obtain a continuous membrane supply for their replication remain to be elucidated. In the present study, we provided several lines of evidence that demonstrate the mechanism by which B. abortus acquires the ER-derived membrane. First, during Brucella infection, the IRE1 pathway, but not the PERK and ATF6 pathways, of the unfolded protein response (UPR) was activated in a time-dependent manner, and the COPII vesicle components Sar1, Sec23, and Sec24D were upregulated. Second, a marked accretion of ER-derived vacuoles was observed around replicating bacteria using fluorescent microscopy and electron microscopy. Third, we identified a novel host factor, Yip1A, for the activation of the IRE1 pathway in response to both tunicamycin treatment and infection with B. abortus. We found that Yip1A is responsible for the phosphorylation of IRE1 through high-order assembly of Ire1 molecules at ER exit sites (ERES) under the UPR conditions. In Yip1A-knockdown cells, B. abortus failed to generate the ER-derived vacuoles, and remained in endosomal/lysosomal compartments. These results indicate that the activation of the IRE1 pathway and the subsequent formation of ER-derived vacuoles are critical for B. abortus to establish a safe replication niche, and that Yip1A is indispensable for these processes. Furthermore, we showed that the autophagy-related proteins Atg9 and WIPI1, but not DFCP1, were required for the biogenesis of the ER-derived membrane compartments. On the basis of our findings, we propose a model for intracellular Brucella replication that exploits the host UPR and ER-derived vacuole formation machineries, both of which depend on Yip1A-mediated IRE1 activation. The genus Brucella is a serious intracellular pathogen that causes brucellosis in a wide range of animals including humans. Infection with Brucella spp. results in a significant economic and health burden due to its high infectivity, chronic nature, and difficulties in vaccine production. Better understanding of the host-pathogen interplay that supports Brucella replication is essential for the development of effective treatments for brucellosis. The unfolded protein response (UPR) has been implicated in the pathogenesis of several viral and bacterial infections. These pathogens modulate individual pathways of the UPR to enable their replication in host cells. Autophagy has also been linked to the survival of several intracellular pathogens. They subvert autophagic machineries of host cells to establish their safe replication niche. In the present study, we show that the activation of the IRE1 pathway of the UPR and the subsequent formation of ER-derived vacuoles are crucial for intracellular survival of B. abortus. In addition, we identified a novel host factor Yip1A that is responsible for these processes. Characterization of the function of Yip1A will provide new insights into the molecular mechanisms by which Brucella spp. replicates in host cells.
Collapse
Affiliation(s)
- Yuki Taguchi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan
| | - Koichi Imaoka
- Department of Veterinary Science, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Michiyo Kataoka
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Akihiko Uda
- Department of Veterinary Science, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Daiki Nakatsu
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan
| | - Sakuya Horii-Okazaki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan
| | - Rina Kunishige
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan
| | - Fumi Kano
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan
- PRESTO, Japan Science and Technology Agent, Kawaguchi, Saitama, Japan
| | - Masayuki Murata
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan
- * E-mail:
| |
Collapse
|
191
|
Juris L, Montino M, Rube P, Schlotterhose P, Thumm M, Krick R. PI3P binding by Atg21 organises Atg8 lipidation. EMBO J 2015; 34:955-73. [PMID: 25691244 DOI: 10.15252/embj.201488957] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 01/28/2015] [Indexed: 11/09/2022] Open
Abstract
Autophagosome biogenesis requires two ubiquitin-like conjugation systems. One couples ubiquitin-like Atg8 to phosphatidylethanolamine, and the other couples ubiquitin-like Atg12 to Atg5. Atg12~Atg5 then forms a heterodimer with Atg16. Membrane recruitment of the Atg12~Atg5/Atg16 complex defines the Atg8 lipidation site. Lipidation requires a PI3P-containing precursor. How PI3P is sensed and used to coordinate the conjugation systems remained unclear. Here, we show that Atg21, a WD40 β-propeller, binds via PI3P to the preautophagosomal structure (PAS). Atg21 directly interacts with the coiled-coil domain of Atg16 and with Atg8. This latter interaction requires the conserved F5K6-motif in the N-terminal helical domain of Atg8, but not its AIM-binding site. Accordingly, the Atg8 AIM-binding site remains free to mediate interaction with its E2 enzyme Atg3. Atg21 thus defines PI3P-dependently the lipidation site by linking and organising the E3 ligase complex and Atg8 at the PAS.
Collapse
Affiliation(s)
- Lisa Juris
- Georg-August-University, University Medicine, Institute of Cellular Biochemistry, Goettingen, Germany
| | - Marco Montino
- Georg-August-University, University Medicine, Institute of Cellular Biochemistry, Goettingen, Germany
| | - Peter Rube
- Georg-August-University, University Medicine, Institute of Cellular Biochemistry, Goettingen, Germany
| | - Petra Schlotterhose
- Georg-August-University, University Medicine, Institute of Cellular Biochemistry, Goettingen, Germany
| | - Michael Thumm
- Georg-August-University, University Medicine, Institute of Cellular Biochemistry, Goettingen, Germany
| | - Roswitha Krick
- Georg-August-University, University Medicine, Institute of Cellular Biochemistry, Goettingen, Germany
| |
Collapse
|
192
|
Sakoh-Nakatogawa M, Kirisako H, Nakatogawa H, Ohsumi Y. Localization of Atg3 to autophagy-related membranes and its enhancement by the Atg8-family interacting motif to promote expansion of the membranes. FEBS Lett 2015; 589:744-9. [PMID: 25680528 DOI: 10.1016/j.febslet.2015.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 02/04/2015] [Accepted: 02/04/2015] [Indexed: 11/29/2022]
Abstract
The E2 enzyme Atg3 conjugates the ubiquitin-like protein Atg8 to phosphatidylethanolamine (PE) to drive autophagosome formation in Saccharomyces cerevisiae. In this study, we show that Atg3 localizes to the pre-autophagosomal structure (PAS) and the isolation membrane (IM), providing crucial evidence that Atg8-PE conjugates are produced on these structures. We also find that mutations in the Atg8-family interacting motif (AIM) of Atg3 significantly impairs the PAS/IM localization of Atg3, resulting in inefficient IM expansion. It is suggested that the AIM-mediated PAS/IM localization of Atg3 facilitates membrane expansion in these structures probably by ensuring active production of Atg8-PE on the membranes.
Collapse
Affiliation(s)
| | - Hiromi Kirisako
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8503, Japan; CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Hitoshi Nakatogawa
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8503, Japan; CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan.
| | - Yoshinori Ohsumi
- Frontier Research Center, Tokyo Institute of Technology, Yokohama 226-8503, Japan.
| |
Collapse
|
193
|
Ngu M, Hirata E, Suzuki K. Visualization of Atg3 during autophagosome formation in Saccharomyces cerevisiae. J Biol Chem 2015; 290:8146-53. [PMID: 25645919 DOI: 10.1074/jbc.m114.626952] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Macroautophagy (autophagy) is a highly conserved cellular recycling process involved in degradation of eukaryotic cellular components. During autophagy, macromolecules and organelles are sequestered into the double-membrane autophagosome and degraded in the vacuole/lysosome. Autophagy-related 8 (Atg8), a core Atg protein essential for autophagosome formation, is a marker of several autophagic structures: the pre-autophagosomal structure (PAS), isolation membrane (IM), and autophagosome. Atg8 is conjugated to phosphatidylethanolamine (PE) through a ubiquitin-like conjugation system to yield Atg8-PE; this reaction is called Atg8 lipidation. Although the mechanisms of Atg8 lipidation have been well studied in vitro, the cellular locale of Atg8 lipidation remains enigmatic. Atg3 is an E2-like enzyme that catalyzes the conjugation reaction between Atg8 and PE. Therefore, we hypothesized that the localization of Atg3 would provide insights about the site of the lipidation reaction. To explore this idea, we constructed functional GFP-tagged Atg3 (Atg3-GFP) by inserting the GFP portion immediately after the handle region of Atg3. During autophagy, Atg3-GFP transiently formed a single dot per cell on the vacuolar membrane. This Atg3-GFP dot colocalized with 2× mCherry-tagged Atg8, demonstrating that Atg3 is localized to autophagic structures. Furthermore, we found that Atg3-GFP is localized to the IM by fine-localization analysis. The localization of Atg3 suggests that Atg3 plays an important role in autophagosome formation at the IM.
Collapse
Affiliation(s)
- Meipin Ngu
- From the Department of Integrated Biosciences, Graduate School of Frontier Sciences, and
| | - Eri Hirata
- From the Department of Integrated Biosciences, Graduate School of Frontier Sciences, and
| | - Kuninori Suzuki
- From the Department of Integrated Biosciences, Graduate School of Frontier Sciences, and the Bioimaging Center, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| |
Collapse
|
194
|
Sanchez-Wandelmer J, Ktistakis NT, Reggiori F. ERES: sites for autophagosome biogenesis and maturation? J Cell Sci 2015; 128:185-92. [PMID: 25568152 DOI: 10.1242/jcs.158758] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Autophagosomes are the hallmark of autophagy, but despite their central role in this degradative pathway that involves vesicle transport to lysosomes or vacuoles, the mechanism underlying their biogenesis still remains largely unknown. Our current concepts about autophagosome biogenesis are based on models suggesting that a small autonomous cisterna grows into an autophagosome through expansion at its extremities. Recent findings have revealed that endoplasmic reticulum (ER) exit sites (ERES), specialized ER regions where proteins are sorted into the secretory system, are key players in the formation of autophagosomes. Owing to the morphological connection of nascent autophagosomes with the ER, this has raised several questions that challenge our current perception of autophagosome biogenesis, such as are ERES the compartments where autophagosome formation takes place? What is the functional relevance of this connection? Are these compartments providing essential molecules for the generation of autophagosomes and/or are they structural platforms where these vesicles emerge? In this Hypothesis, we discuss recent data that have implicated the ERES in autophagosome biogenesis and we propose two models to describe the possible role of this compartment at different steps in the process of autophagosome biogenesis. This article is part of a Focus on Autophagosome biogenesis. For further reading, please see related articles: 'Membrane dynamics in autophagosome biogenesis' by Sven R. Carlsson and Anne Simonsen (J. Cell Sci. 128, 193-205) and 'WIPI proteins: essential PtdIns3P effectors at the nascent autophagosome' by Tassula Proikas-Cezanne et al. (J. Cell Sci. 128, 207-217).
Collapse
Affiliation(s)
- Jana Sanchez-Wandelmer
- Department of Cell Biology, Center for Molecular Medicine, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | | | - Fulvio Reggiori
- Department of Cell Biology, Center for Molecular Medicine, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
195
|
Yu X, Long YC, Shen HM. Differential regulatory functions of three classes of phosphatidylinositol and phosphoinositide 3-kinases in autophagy. Autophagy 2015; 11:1711-28. [PMID: 26018563 PMCID: PMC4824607 DOI: 10.1080/15548627.2015.1043076] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/11/2015] [Accepted: 04/14/2015] [Indexed: 02/06/2023] Open
Abstract
Autophagy is an evolutionarily conserved and exquisitely regulated self-eating cellular process with important biological functions. Phosphatidylinositol 3-kinases (PtdIns3Ks) and phosphoinositide 3-kinases (PI3Ks) are involved in the autophagic process. Here we aim to recapitulate how 3 classes of these lipid kinases differentially regulate autophagy. Generally, activation of the class I PI3K suppresses autophagy, via the well-established PI3K-AKT-MTOR (mechanistic target of rapamycin) complex 1 (MTORC1) pathway. In contrast, the class III PtdIns3K catalytic subunit PIK3C3/Vps34 forms a protein complex with BECN1 and PIK3R4 and produces phosphatidylinositol 3-phosphate (PtdIns3P), which is required for the initiation and progression of autophagy. The class II enzyme emerged only recently as an alternative source of PtdIns3P and autophagic initiator. However, the orthodox paradigm is challenged by findings that the PIK3CB catalytic subunit of class I PI3K acts as a positive regulator of autophagy, and PIK3C3 was thought to be an amino acid sensor for MTOR, which curbs autophagy. At present, a number of PtdIns3K and PI3K inhibitors, including specific PIK3C3 inhibitors, have been developed for suppression of autophagy and for clinical applications in autophagy-related human diseases.
Collapse
Affiliation(s)
- Xinlei Yu
- a Department of Biochemistry; Yong Loo Lin School of Medicine, National University of Singapore ; Singapore
| | - Yun Chau Long
- a Department of Biochemistry; Yong Loo Lin School of Medicine, National University of Singapore ; Singapore
| | - Han-Ming Shen
- b Department of Physiology; Yong Loo Lin School of Medicine, National University of Singapore ; Singapore
| |
Collapse
|
196
|
How and why to study autophagy in Drosophila: it's more than just a garbage chute. Methods 2014; 75:151-61. [PMID: 25481477 PMCID: PMC4358840 DOI: 10.1016/j.ymeth.2014.11.016] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/21/2014] [Accepted: 11/24/2014] [Indexed: 01/30/2023] Open
Abstract
During the catabolic process of autophagy, cytoplasmic material is transported to the lysosome for degradation and recycling. This way, autophagy contributes to the homeodynamic turnover of proteins, lipids, nucleic acids, glycogen, and even whole organelles. Autophagic activity is increased by adverse conditions such as nutrient limitation, growth factor withdrawal and oxidative stress, and it generally protects cells and organisms to promote their survival. Misregulation of autophagy is likely involved in numerous human pathologies including aging, cancer, infections and neurodegeneration, so its biomedical relevance explains the still growing interest in this field. Here we discuss the different microscopy-based, biochemical and genetic methods currently available to study autophagy in various tissues of the popular model Drosophila. We show examples for results obtained in different assays, explain how to interpret these with regard to autophagic activity, and how to find out which step of autophagy a given gene product is involved in.
Collapse
|
197
|
Ge L, Zhang M, Schekman R. Phosphatidylinositol 3-kinase and COPII generate LC3 lipidation vesicles from the ER-Golgi intermediate compartment. eLife 2014; 3:e04135. [PMID: 25432021 PMCID: PMC4270069 DOI: 10.7554/elife.04135] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/14/2014] [Indexed: 01/01/2023] Open
Abstract
Formation of the autophagosome requires significant membrane input from cellular organelles. However, no direct evidence has been developed to link autophagic factors and the mobilization of membranes to generate the phagophore. Previously, we established a cell-free LC3 lipidation reaction to identify the ER-Golgi intermediate compartment (ERGIC) as a membrane source for LC3 lipidation, a key step of autophagosome biogenesis (Ge et al., eLife 2013; 2:e00947). We now report that starvation activation of autophagic phosphotidylinositol-3 kinase (PI3K) induces the generation of small vesicles active in LC3 lipidation. Subcellular fractionation studies identified the ERGIC as the donor membrane in the generation of small lipidation-active vesicles. COPII proteins are recruited to the ERGIC membrane in starved cells, dependent on active PI3K. We conclude that starvation activates the autophagic PI3K, which in turn induces the recruitment of COPII to the ERGIC to bud LC3 lipidation-active vesicles as one potential membrane source of the autophagosome.
Collapse
Affiliation(s)
- Liang Ge
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Min Zhang
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Randy Schekman
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
198
|
Targeting autophagy in skin diseases. J Mol Med (Berl) 2014; 93:31-8. [PMID: 25404245 DOI: 10.1007/s00109-014-1225-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/02/2014] [Accepted: 11/05/2014] [Indexed: 12/19/2022]
Abstract
Autophagy is a major intracellular degradative process by which cytoplasmic materials are sequestered in double-membraned vesicles and degraded upon fusion with lysosomes. Under normal circumstances, basal autophagy is necessary to maintain cellular homeostasis by scavenging dysfunctional or damaged organelles or proteins. In addition to its vital homeostatic role, this degradation pathway has been implicated in many different cellular processes such as cell apoptosis, inflammation, pathogen clearance, and antigen presentation and thereby has been linked to a variety of human disorders, including metabolic conditions, neurodegenerative diseases, cancers, and infectious diseases. The skin, the largest organ of the body, serves as the first line of defense against many different environmental insults; however, only a few studies have examined the effect of autophagy on the pathogenesis of skin diseases. This review provides an overview of the mechanisms of autophagy and highlights recent findings relevant to the role of autophagy in skin diseases and strategies for therapeutic modulation.
Collapse
|
199
|
Affiliation(s)
- Katherine Labbé
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616; , ,
| | - Andrew Murley
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616; , ,
| | - Jodi Nunnari
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616; , ,
| |
Collapse
|
200
|
Okamoto K. Organellophagy: eliminating cellular building blocks via selective autophagy. ACTA ACUST UNITED AC 2014; 205:435-45. [PMID: 24862571 PMCID: PMC4033777 DOI: 10.1083/jcb.201402054] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Maintenance of organellar quality and quantity is critical for cellular homeostasis and adaptation to variable environments. Emerging evidence demonstrates that this kind of control is achieved by selective elimination of organelles via autophagy, termed organellophagy. Organellophagy consists of three key steps: induction, cargo tagging, and sequestration, which involve signaling pathways, organellar landmark molecules, and core autophagy-related proteins, respectively. In addition, posttranslational modifications such as phosphorylation and ubiquitination play important roles in recruiting and tailoring the autophagy machinery to each organelle. The basic principles underlying organellophagy are conserved from yeast to mammals, highlighting its biological relevance in eukaryotic cells.
Collapse
Affiliation(s)
- Koji Okamoto
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|