151
|
Liu W, Zhang L, Xuan K, Hu C, Li L, Zhang Y, Jin F, Jin Y. Alkaline Phosphatase Controls Lineage Switching of Mesenchymal Stem Cells by Regulating the LRP6/GSK3β Complex in Hypophosphatasia. Theranostics 2018; 8:5575-5592. [PMID: 30555565 PMCID: PMC6276305 DOI: 10.7150/thno.27372] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 09/18/2018] [Indexed: 01/17/2023] Open
Abstract
Lineage differentiation of bone marrow mesenchymal stem cells (BMMSCs) is the key to bone-fat reciprocity in bone marrow. To date, the regulators of BMMSC lineage switching have all been identified to be transcription factors, and researchers have not determined whether other genes control this process. This study aims to reveal a previously unknown role of tissue-nonspecific alkaline phosphatase (TNSALP) in controlling BMMSC lineage selection. Methods: We compared the characteristics of cultured BMMSCs from patients with hypophosphatasia (HPP), which is caused by mutations in the liver/bone/kidney alkaline phosphatase (ALPL) gene, and an ALPL knockout (ko) mouse model. We performed ALPL downregulation and overexpression experiments to investigate the regulatory role of ALPL in BMMSC lineage switching. Using the PathScan array, coimmunoprecipitation experiments and pathway-guided small molecule treatments, we explored the possible mechanism underlying the regulatory effects of ALPL on cell differentiation and evaluated its therapeutic effect on ALPL ko mice. Results: BMMSCs from both patients with HPP and ALPL ko mice exhibited defective lineage differentiation, including a decrease in osteogenic differentiation and a parallel increase in adipogenic differentiation. Mechanistically, TNSALP directly interacted with LRP6 and regulated the phosphorylation of GSK3β, subsequently resulting in lineage switching of BMMSCs. Re-phosphorylation of GSK3β induced by LiCl treatment restored differentiation of BMMSCs and attenuated skeletal deformities in Alpl+/- mice. Conclusion: Based on our findings, TNSALP acts as a signal regulator to control lineage switching of BMMSCs by regulating the LRP6/GSK3β cascade.
Collapse
Affiliation(s)
- Wenjia Liu
- MS-State Key Laboratory & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, 710032, China
| | - Liqiang Zhang
- MS-State Key Laboratory & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, 710032, China
| | - Kun Xuan
- MS-State Key Laboratory & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Chenghu Hu
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, 710032, China
| | - Liya Li
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, 710032, China
| | - Yongjie Zhang
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, 710032, China
| | - Fang Jin
- MS-State Key Laboratory & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Yan Jin
- MS-State Key Laboratory & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, 710032, China
| |
Collapse
|
152
|
Takafuji Y, Tatsumi K, Ishida M, Kawao N, Okada K, Matsuo O, Kaji H. Plasminogen activator inhibitor-1 deficiency suppresses osteoblastic differentiation of mesenchymal stem cells in mice. J Cell Physiol 2018; 234:9687-9697. [PMID: 30387130 DOI: 10.1002/jcp.27655] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/02/2018] [Indexed: 12/12/2022]
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is known as an inhibitor of fibrinolytic system. Previous studies suggest that PAI-1 is involved in the pathogenesis of osteoporosis induced by ovariectomy, diabetes, and glucocorticoid excess in mice. However, the roles of PAI-1 in early-stage osteogenic differentiation have remained unknown. In the current study, we investigated the roles of PAI-1 in osteoblastic differentiation of mesenchymal stem cells (MSCs) using wild-type (WT) and PAI-1-deficient (PAI-1 KO) mice. PAI-1 mRNA levels were increased with time during osteoblastic differentiation of MSCs or mesenchymal ST-2 cells. However, the increased PAI-1 levels declined at the mineralization phase in the experiment using MC3T3-E1 cells. PAI-1 deficiency significantly blunted the expression of osteogenic gene, such as osterix and alkaline phosphatase enhanced by bone morphogenetic protein (BMP)-2 in bone marrow-derived MSCs (BM-MSCs), adipose-tissue-derived MSCs (AD-MSCs), and bone marrow stromal cells of mice. Moreover, a reduction in endogenous PAI-1 levels by small interfering RNA significantly suppressed the expression of osteogenic gene in ST-2 cells. Plasmin did not affect osteoblastic differentiation of AD-MSCs induced by BMP-2 with or without PAI-1 deficiency. PAI-1 deficiency and a reduction in endogenous PAI-1 levels did not affect the phosphorylations of receptor-specific Smads by BMP-2 and transforming growth factor-β in AD-MSCs and ST-2 cells, respectively. In conclusion, we first showed that PAI-1 is crucial for the differentiation of MSCs into osteoblasts in mice.
Collapse
Affiliation(s)
- Yoshimasa Takafuji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kohei Tatsumi
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | - Masayoshi Ishida
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | - Naoyuki Kawao
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kiyotaka Okada
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | - Osamu Matsuo
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| |
Collapse
|
153
|
Elseweidy MM, Mohamed HE, Elrashidy RA, Atteia HH, Elnagar GM. Inhibition of Aortic Calcification by Policosanol in Dyslipidemic Rabbits Is Enhanced by Pentoxifylline: Potential Role of PCSK9. J Cardiovasc Pharmacol Ther 2018; 23:551-560. [PMID: 29742924 DOI: 10.1177/1074248418775377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Policosanol (POL) is a hypocholesterolemic drug of natural origin and has been shown to reduce circulating levels of proprotein convertase subtilisin/kexin type 9 (PCSK9) in healthy participants. Recently, we have reported that POL can attenuate aortic calcification in diabetic dyslipidemic rats; however, the underlying mechanism is not fully elucidated. We aimed to investigate the effect of POL on aortic calcification and whether PCSK9 has a contributory role and also to examine whether the combination of POL with pentoxifylline (PTX) as anti-tumor necrosis factor α would offer additional benefits. Thirty adult male New Zealand rabbits weighing 1.5 to 2 kg were randomly assigned to 5 groups. One group received standard chow diet and served as normal control group (NC). The other 4 groups received 0.5% wt/wt cholesterol-rich diet for 12 weeks and concurrently treated with placebo, POL, PTX, or a combination of POL and PTX. Sera samples and aortic tissue were collected for biochemical measurements and histological assessment. Rabbits fed a cholesterol-rich diet demonstrated dyslipidemia, increased inflammatory state, and elevated serum levels of PCSK9, compared to the NC group. Aortic calcification was evident in dyslipidemic rabbits, represented by increased calcium deposition and osteopontin expression in aortic tissue, along with elevated serum levels of alkaline phosphatase and osteocalcin. Dyslipidemic rabbits showed a significant upregulation of wingless-type MMTV integration site family 3A and bone morphogenetic protein 2 genes in their aortic tissue. Policosanol significantly reduced circulating PCSK9 levels, suppressed calcification markers, and attenuated aortic calcification. Combination of POL with PTX alleviated aortic calcification to a greater extent than either monotherapy, which may be attributed to further suppression of PCSK9 and calcification markers. These findings suggested that POL exerted anticalcifying effect partly via inhibition of PCSK9. Combination of POL and PTX offered additional benefits and might represent a promising therapeutic option for aortic calcification.
Collapse
Affiliation(s)
- Mohamed M Elseweidy
- 1 Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Hoda E Mohamed
- 1 Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Rania A Elrashidy
- 1 Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Hebatallah H Atteia
- 1 Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Gehad M Elnagar
- 1 Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
154
|
Kawai S, Yamauchi M, Amano A. Zinc-finger transcription factor Odd-skipped related 1 regulates cranial bone formation. J Bone Miner Metab 2018; 36:640-647. [PMID: 29234951 DOI: 10.1007/s00774-017-0885-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 11/15/2017] [Indexed: 11/25/2022]
Abstract
Knowledge of the molecular mechanisms of bone formation has been advanced by novel findings related to genetic control. Odd-skipped related 1 (Osr1) is known to play important roles in embryonic, heart, and urogenital development. To elucidate the in vivo function of Osr1 in bone formation, we generated transgenic mice overexpressing full-length Osr1 under control of its 2.8-kb promoter, which were smaller than their wild-type littermates. Notably, abnormalities in the skull of Osr1 transgenic mice were revealed by analysis of X-ray, skeletal preparation, and morphological findings, including round skull and cranial dysraphism. Furthermore, primary calvarial cells obtained from these mice showed increased proliferation and expression of chondrocyte markers, while expression of osteoblast markers was decreased. BMP2 reduced Osr1 expression and Osr1 knockdown by siRNA-induced alkaline phosphatase and osteocalcin expression in mesenchymal and osteoblastic cells. Together, our results suggest that Osr1 plays a coordinating role in appropriate skull closure and cranial bone formation by negative regulation.
Collapse
Affiliation(s)
- Shinji Kawai
- Challenge to Intractable Oral Diseases, Center for Frontier Oral Science, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Masashi Yamauchi
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Atsuo Amano
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
155
|
Kato T, Khanh VC, Sato K, Kimura K, Yamashita T, Sugaya H, Yoshioka T, Mishima H, Ohneda O. Elevated Expression of Dkk-1 by Glucocorticoid Treatment Impairs Bone Regenerative Capacity of Adipose Tissue-Derived Mesenchymal Stem Cells. Stem Cells Dev 2018; 27:85-99. [PMID: 29084466 DOI: 10.1089/scd.2017.0199] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Glucocorticoids are steroid hormones used as anti-inflammatory treatments. However, this strong immunomodulation causes undesirable side effects that impair bones, such as osteoporosis. Glucocorticoid therapy is a major risk factor for developing steroid-induced osteonecrosis of the femur head (ONFH). Since ONFH is incurable, therapy with mesenchymal stem cells (MSCs) that can differentiate into osteoblasts are a first-line choice. Bone marrow-derived MSCs (BM-MSCs) are often used as a source of stem cell therapy for ONFH, but their proliferative activity is impaired after steroid treatment. Adipose tissue-derived MSCs (AT-MSCs) may be an attractive alternative source; however, it is unknown whether AT-MSCs from steroid-induced ONFH (sAT-MSCs) have the same differentiation ability as BM-MSCs or normal AT-MSCs (nAT-MSCs). In this study, we demonstrate that nAT-MSCs chronically exposed to glucocorticoids show lower alkaline phosphatase activity leading to reduced osteogenic differentiation ability. This impaired osteogenesis is mediated by high expression of Dickkopf1 (Dkk-1) that inhibits wnt/β-catenin signaling. Increased Dkk-1 also causes impaired osteogenesis along with reductions in bone regenerative capacity in sAT-MSCs. Of note, plasma Dkk-1 levels are elevated in steroid-induced ONFH patients. Collectively, our findings suggest that glucocorticoid-induced expression of Dkk-1 could be a key factor in modulating the differentiation ability of MSCs used for ONFH and other stem cell therapies.
Collapse
Affiliation(s)
- Toshiki Kato
- 1 Laboratory of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba , Tsukuba, Japan .,2 School of Integrative Global Majors, University of Tsukuba , Tsukuba, Japan
| | - Vuong Cat Khanh
- 1 Laboratory of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba , Tsukuba, Japan
| | - Kazutoshi Sato
- 1 Laboratory of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba , Tsukuba, Japan
| | - Kenichi Kimura
- 1 Laboratory of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba , Tsukuba, Japan
| | - Toshiharu Yamashita
- 1 Laboratory of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba , Tsukuba, Japan
| | - Hisashi Sugaya
- 3 Department of Orthopedic Surgery, Graduate School of Comprehensive Human Sciences, University of Tsukuba , Tsukuba, Japan .,4 Division of Regenerative Medicine for Musculoskeletal System, Department of Orthopedic Surgery, Faculty of Medicine, University of Tsukuba , Tsukuba, Japan
| | - Tomokazu Yoshioka
- 3 Department of Orthopedic Surgery, Graduate School of Comprehensive Human Sciences, University of Tsukuba , Tsukuba, Japan .,4 Division of Regenerative Medicine for Musculoskeletal System, Department of Orthopedic Surgery, Faculty of Medicine, University of Tsukuba , Tsukuba, Japan
| | - Hajime Mishima
- 3 Department of Orthopedic Surgery, Graduate School of Comprehensive Human Sciences, University of Tsukuba , Tsukuba, Japan
| | - Osamu Ohneda
- 1 Laboratory of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba , Tsukuba, Japan
| |
Collapse
|
156
|
Angiogenic and Osteogenic Synergy of Human Mesenchymal Stem Cells and Human Umbilical Vein Endothelial Cells Cocultured on a Nanomatrix. Sci Rep 2018; 8:15749. [PMID: 30356078 PMCID: PMC6200728 DOI: 10.1038/s41598-018-34033-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 10/08/2018] [Indexed: 11/12/2022] Open
Abstract
To date, bone tissue regeneration strategies lack an approach that effectively provides an osteogenic and angiogenic environment conducive to bone growth. In the current study, we evaluated the osteogenic and angiogenic response of human mesenchymal stem cells (hMSCs) and green fluorescent protein-expressing human umbilical vein endothelial cells (GFP-HUVECs) cocultured on a self-assembled, peptide amphiphile nanomatrix functionalized with the cell adhesive ligand RGDS (PA-RGDS). Analysis of alkaline phosphatase activity, von Kossa staining, Alizarin Red quantification, and osteogenic gene expression, indicates a significant synergistic effect between the PA-RGDS nanomatrix and coculture that promoted hMSC osteogenesis. In addition, coculturing on PA-RGDS resulted in enhanced HUVEC network formation and upregulated vascular endothelial growth factor gene and protein expression. Though PA-RGDS and coculturing hMSCs with HUVECs were each previously reported to individually enhance hMSC osteogenesis, this study is the first to demonstrate a synergistic promotion of HUVEC angiogenesis and hMSC osteogenesis by integrating coculturing with the PA-RGDS nanomatrix. We believe that using the combination of hMSC/HUVEC coculture and PA-RGDS substrate is an efficient method for promoting osteogenesis and angiogenesis, which has immense potential as an efficacious, engineered platform for bone tissue regeneration.
Collapse
|
157
|
Knight C, James S, Kuntin D, Fox J, Newling K, Hollings S, Pennock R, Genever P. Epidermal growth factor can signal via β-catenin to control proliferation of mesenchymal stem cells independently of canonical Wnt signalling. Cell Signal 2018; 53:256-268. [PMID: 30287279 PMCID: PMC6293317 DOI: 10.1016/j.cellsig.2018.09.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/26/2018] [Accepted: 09/28/2018] [Indexed: 12/27/2022]
Abstract
Bone marrow mesenchymal stem/stromal cells (MSCs) maintain bone homeostasis and repair through the ability to expand in response to mitotic stimuli and differentiate into skeletal lineages. Signalling mechanisms that enable precise control of MSC function remain unclear. Here we report that by initially examining differences in signalling pathway expression profiles of individual MSC clones, we identified a previously unrecognised signalling mechanism regulated by epidermal growth factor (EGF) in primary human MSCs. We demonstrate that EGF is able to activate β-catenin, a key component of the canonical Wnt signalling pathway. EGF is able to induce nuclear translocation of β-catenin in human MSCs but does not drive expression of Wnt target genes or T cell factor (TCF) activity in MSC reporter cell lines. Using an efficient Design of Experiments (DoE) statistical analysis, with different combinations and concentrations of EGF and Wnt ligands, we were able to confirm that EGF does not influence the Wnt/β-catenin pathway in MSCs. We show that the effects of EGF on MSCs are temporally regulated to initiate early “classical” EGF signalling mechanisms (e.g via mitogen activated protein kinase) with delayed activation of β-catenin. By RNA-sequencing, we identified gene sets that were exclusively regulated by the EGF/β-catenin pathway, which were distinct from classical EGF-regulated genes. However, subsets of classical EGF gene targets were significantly influenced by EGF/β-catenin activation. These signalling pathways cooperate to enable EGF-mediated proliferation of MSCs by alleviating the suppression of cell cycle pathways induced by classical EGF signalling. Epidermal growth factor (EGF) controls mesenchymal stem cell (MSC) proliferation. EGF signals through β-catenin in MSCs but not in related fibroblastic cells. Classical EGF and EGF/β-catenin cooperatively regulate distinct gene sets in MSCs. EGF/β-catenin enables MSC proliferation by alleviating cell cycle suppression.
Collapse
Affiliation(s)
- Charlotte Knight
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Sally James
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - David Kuntin
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - James Fox
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Katherine Newling
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Sam Hollings
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Rebecca Pennock
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Paul Genever
- Department of Biology, University of York, York YO10 5DD, United Kingdom.
| |
Collapse
|
158
|
Carlisle P, Guda T, Silliman DT, Burdette AJ, Talley AD, Alvarez R, Tucker D, Hale RG, Guelcher SA, BrownBaer PR. Localized low-dose rhBMP-2 is effective at promoting bone regeneration in mandibular segmental defects. J Biomed Mater Res B Appl Biomater 2018; 107:1491-1503. [PMID: 30265782 DOI: 10.1002/jbm.b.34241] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 08/11/2018] [Accepted: 08/18/2018] [Indexed: 12/29/2022]
Abstract
At least 26% of recent battlefield injuries are to the craniomaxillofacial (CMF) region. Recombinant human bone morphogenetic protein 2 (rhBMP-2) is used to treat CMF open fractures, but several complications have been associated with its use. This study tested the efficacy and safety of a lower (30% recommended) dose of rhBMP-2 to treat mandibular fractures. rhBMP-2 delivered via a polyurethane (PUR) and hydroxyapatite/β-tricalcium phosphate (Mastergraft®) scaffold was evaluated in a 2 cm segmental mandibular defect in minipigs. Bone regeneration was analyzed at 4, 8, and 12 weeks postsurgery using clinical computed tomography (CT) and rhBMP-2, and inflammatory marker concentrations were analyzed in serum and surgery-site drain effluent. CT scans revealed that pigs treated with PUR-Mastergraft® + rhBMP-2 had complete bone bridging, while the negative control group showed incomplete bone-bridging (n = 6). Volumetric analysis of regenerated bone showed that the PUR-Mastergraft® + rhBMP-2 treatment generated significantly more bone than control by 4 weeks, a trend that continued through 12 weeks. Variations in inflammatory analytes were detected in drain effluent samples and saliva but not in serum, suggesting a localized healing response. Importantly, the rhBMP-2 group did not exhibit an excessive increase in inflammatory analytes compared to control. Treatment with low-dose rhBMP-2 increases bone regeneration capacity in pigs with mandibular continuity defects and restores bone quality. Negative complications from rhBMP-2, such as excessive inflammatory analyte levels, were not observed. Together, these results suggest that treatment with low-dose rhBMP-2 is efficacious and may improve safety when treating CMF open fractures. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1491-1503, 2019.
Collapse
Affiliation(s)
- Patricia Carlisle
- Department of Craniomaxillofacial Regenerative Medicine, Dental and Trauma Research Detachment, Fort Sam Houston, Texas, 78234
| | - Teja Guda
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas, 78249
| | - David T Silliman
- Department of Craniomaxillofacial Regenerative Medicine, Dental and Trauma Research Detachment, Fort Sam Houston, Texas, 78234
| | - Alexander J Burdette
- United States Naval Medical Research Unit-San Antonio, Fort Sam Houston, Texas, 78234
| | - Anne D Talley
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235
| | - Rene Alvarez
- United States Naval Medical Research Unit-San Antonio, Fort Sam Houston, Texas, 78234
| | - David Tucker
- Department of Craniomaxillofacial Regenerative Medicine, Dental and Trauma Research Detachment, Fort Sam Houston, Texas, 78234
| | - Robert G Hale
- Department of Craniomaxillofacial Regenerative Medicine, Dental and Trauma Research Detachment, Fort Sam Houston, Texas, 78234
| | - Scott A Guelcher
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235
| | - Pamela R BrownBaer
- Department of Craniomaxillofacial Regenerative Medicine, Dental and Trauma Research Detachment, Fort Sam Houston, Texas, 78234
| |
Collapse
|
159
|
Xi J, Li Q, Luo X, Wang Y, Li J, Guo L, Wu G. Celastrol inhibits glucocorticoid‑induced osteoporosis in rat via the PI3K/AKT and Wnt signaling pathways. Mol Med Rep 2018; 18:4753-4759. [PMID: 30221712 DOI: 10.3892/mmr.2018.9436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 12/05/2017] [Indexed: 11/06/2022] Open
Abstract
Modern pharmacological studies revealed that Celastrol exhibits anti‑inflammation, anti‑bacteria, anti‑virus, anti‑fertility, insect‑resistance functions and has been used for the treatment of rheumatism, rheumatoid arthritis, blood diseases, skin diseases and agricultural insecticide. The present study aimed to investigate the effects of Celastrol on glucocorticoid‑induced osteoporosis (GIOP) and the underlying molecular mechanisms. The findings of the current study revealed that Celastrol reduced body weight, urine calcium/creatinine, tartrate‑resistant acid phosphatase 5b, C‑terminal telopeptide of type I collagen, and induced osteocalcin in GIOP rats. In addition, alkaline phosphatase, triiodothyronine receptor auxiliary protein and cathepsin K mRNA expression levels were effectively suppressed, and osteocalcin, bone morphogenetic protein 2, type I collagen and runt‑related transcription factor 2 mRNA expression levels were effectively induced in osteoporosis rats treated with Celastrol. Celastrol inhibited prostaglandin E2 and caspase‑3 protein expression levels, and induced phosphoinositol 3‑kinase (PI3K), phosphorylated‑protein kinase B (AKT) and glycogen synthase kinase‑3 phosphorylation, Wnt and β‑catenin protein expression in GIOP rats. The present study demonstrated that Celastrol may inhibit GIOP in rats via the PI3K/AKT and Wnt signaling pathways.
Collapse
Affiliation(s)
- Jiancheng Xi
- Department of Minimally Invasive Spine Surgery, The 309th Hospital of the People's Liberation Army, Beijing 100091, P.R. China
| | - Qinggui Li
- Department of Orthopaedics, The Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Xiaobo Luo
- Department of Minimally Invasive Spine Surgery, The 309th Hospital of the People's Liberation Army, Beijing 100091, P.R. China
| | - Yipeng Wang
- Department of Minimally Invasive Spine Surgery, The 309th Hospital of the People's Liberation Army, Beijing 100091, P.R. China
| | - Jinlong Li
- Department of Minimally Invasive Spine Surgery, The 309th Hospital of the People's Liberation Army, Beijing 100091, P.R. China
| | - Lixin Guo
- Department of Minimally Invasive Spine Surgery, The 309th Hospital of the People's Liberation Army, Beijing 100091, P.R. China
| | - Guangsen Wu
- Department of Minimally Invasive Spine Surgery, The 309th Hospital of the People's Liberation Army, Beijing 100091, P.R. China
| |
Collapse
|
160
|
Xue W, Yu J, Chen W. Plants and Their Bioactive Constituents in Mesenchymal Stem Cell-Based Periodontal Regeneration: A Novel Prospective. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7571363. [PMID: 30175141 PMCID: PMC6098897 DOI: 10.1155/2018/7571363] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 06/12/2018] [Accepted: 07/04/2018] [Indexed: 12/24/2022]
Abstract
Periodontitis is a common chronic inflammatory disease, which causes the destruction of both the soft and mineralized tissues. However, current treatments such as bone graft materials, barrier membranes, and protein products all have difficulties in regenerating the complete periodontal tissue structure. Stem cell-based tissue engineering has now emerged as one of the most effective treatments for the patients suffering from periodontal diseases. Plants not only can be substrates for life processes, but also contain hormones or functional molecules. Numbers of preclinical studies have revealed that products from plant can be successfully applied in modulating proliferation and differentiation of human mesenchymal stem cells. Plant-derived substances can induce stem cells osteogenic differentiation, and they also possess angiogenic potency. Furthermore, in the field of tissue engineering, plant-derived compounds or plant extracts can be incorporated with biomaterials or utilized as biomaterials for cell transplantation. So it is speculated that botanical products may become a new perspective in stem cell-based periodontal regeneration. However, the lack of achieving predict clinical efficacy and quality control has been the major impediment to its extensive application. This review gives an overview of the prospect of applying different plant-derived substances in various human mesenchymal stem cells-based periodontal regeneration.
Collapse
Affiliation(s)
- Wenqing Xue
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China
- Department of Periodontics, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu 210029, China
| | - Jinhua Yu
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China
- Department of Endodontics, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu 210029, China
| | - Wu Chen
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China
- Department of Periodontics, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, Jiangsu 210029, China
| |
Collapse
|
161
|
Bover J, Ureña P, Aguilar A, Mazzaferro S, Benito S, López-Báez V, Ramos A, daSilva I, Cozzolino M. Alkaline Phosphatases in the Complex Chronic Kidney Disease-Mineral and Bone Disorders. Calcif Tissue Int 2018; 103:111-124. [PMID: 29445837 DOI: 10.1007/s00223-018-0399-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/29/2018] [Indexed: 12/16/2022]
Abstract
Alkaline phosphatases (APs) remove the phosphate (dephosphorylation) needed in multiple metabolic processes (from many molecules such as proteins, nucleotides, or pyrophosphate). Therefore, APs are important for bone mineralization but paradoxically they can also be deleterious for other processes, such as vascular calcification and the increasingly known cross-talk between bone and vessels. A proper balance between beneficial and harmful activities is further complicated in the context of chronic kidney disease (CKD). In this narrative review, we will briefly update the complexity of the enzyme, including its different isoforms such as the bone-specific alkaline phosphatase or the most recently discovered B1x. We will also analyze the correlations and potential discrepancies with parathyroid hormone and bone turnover and, most importantly, the valuable recent associations of AP's with cardiovascular disease and/or vascular calcification, and survival. Finally, a basic knowledge of the synthetic and degradation pathways of APs promises to open new therapeutic strategies for the treatment of the CKD-Mineral and Bone Disorder (CKD-MBD) in the near future, as well as for other processes such as sepsis, acute kidney injury, inflammation, endothelial dysfunction, metabolic syndrome or, in diabetes, cardiovascular complications. However, no studies have been done using APs as a primary therapeutic target for clinical outcomes, and therefore, AP's levels cannot yet be used alone as an isolated primary target in the treatment of CKD-MBD. Nonetheless, its diagnostic and prognostic potential should be underlined.
Collapse
Affiliation(s)
- Jordi Bover
- Department of Nephrology, Fundació Puigvert, IIB Sant Pau, RedinRen, C. Cartagena, Catalonia, 340-350, Barcelona, Spain.
| | - Pablo Ureña
- Department of Nephrology and Dialysis, Clinique du Landy and Department of Renal Physiology, Necker Hospital, University of Paris Descartes, Paris, France
| | - Armando Aguilar
- Department of Nephrology, Fundació Puigvert, IIB Sant Pau, RedinRen, C. Cartagena, Catalonia, 340-350, Barcelona, Spain
| | - Sandro Mazzaferro
- Department of Cardiovascular, Respiratory, Nephrologic and Geriatric Sciences, Sapienza University of Rome, Rome, Italy
| | - Silvia Benito
- Department of Nephrology, Fundació Puigvert, IIB Sant Pau, RedinRen, C. Cartagena, Catalonia, 340-350, Barcelona, Spain
| | - Víctor López-Báez
- Department of Nephrology, Fundació Puigvert, IIB Sant Pau, RedinRen, C. Cartagena, Catalonia, 340-350, Barcelona, Spain
| | - Alejandra Ramos
- Department of Nephrology, Fundació Puigvert, IIB Sant Pau, RedinRen, C. Cartagena, Catalonia, 340-350, Barcelona, Spain
| | - Iara daSilva
- Department of Nephrology, Fundació Puigvert, IIB Sant Pau, RedinRen, C. Cartagena, Catalonia, 340-350, Barcelona, Spain
| | - Mario Cozzolino
- Laboratory of Experimental Nephrology, Renal Division,San Paolo Hospital, DiSS University of Milan, Milan, Italy
| |
Collapse
|
162
|
Kida J, Hata K, Nakamura E, Yagi H, Takahata Y, Murakami T, Maeda Y, Nishimura R. Interaction of LEF1 with TAZ is necessary for the osteoblastogenic activity of Wnt3a. Sci Rep 2018; 8:10375. [PMID: 29991769 PMCID: PMC6039525 DOI: 10.1038/s41598-018-28711-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 06/28/2018] [Indexed: 02/07/2023] Open
Abstract
Canonical Wnt signalling plays an important role in osteoblast differentiation and bone formation. However, the molecular mechanisms by which canonical Wnt signalling exerts its osteoblastogenic effect remain elusive. Here, we investigated the relationship between lymphoid enhancer-binding factor 1 (LEF1) and transcriptional co-activator with PDZ-binding motif (TAZ), both of which are transcriptional regulators that mediate canonical Wnt signalling during osteoblast differentiation. Reporter assay and co-immunoprecipitation experiments revealed functional and physical interaction between LEF1 and TAZ. Overexpression of dominant-negative forms of either LEF1 or TAZ markedly inhibited Wnt3a-dependent osteoblast differentiation. Moreover, we found that LEF1 and TAZ formed a transcriptional complex with runt-related transcription factor 2 (Runx2) and that inhibition of LEF1 or TAZ by their dominant-negative forms dramatically suppressed the osteoblastogenic activity of Ruxn2. Additionally, Wnt3a enhanced osteoblast differentiation induced by bone morphogenetic protein 2 (BMP2), which stimulates osteoblast differentiation by regulating Runx2. Collectively, these findings suggest that interaction between LEF1 and TAZ is crucial for the osteoblastogenic activity of Wnt3a and that LEF1 and TAZ contribute to the cooperative effect of Wnt3a and BMP2 on osteoblast differentiation through association with Runx2.
Collapse
Affiliation(s)
- Jumpei Kida
- Department of Molecular & Cellular Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Prosthodontics and Oral Rehabilitation, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kenji Hata
- Department of Molecular & Cellular Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eriko Nakamura
- Department of Molecular & Cellular Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroko Yagi
- Department of Molecular & Cellular Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshifumi Takahata
- Department of Molecular & Cellular Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomohiko Murakami
- Department of Molecular & Cellular Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshinobu Maeda
- Department of Prosthodontics and Oral Rehabilitation, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Riko Nishimura
- Department of Molecular & Cellular Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
163
|
Li FF, Zhang B, Cui JH, Chen FL, Ding Y, Feng X. Alterations in β‑catenin/E‑cadherin complex formation during the mechanotransduction of Saos‑2 osteoblastic cells. Mol Med Rep 2018; 18:1495-1503. [PMID: 29901167 PMCID: PMC6072157 DOI: 10.3892/mmr.2018.9146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 10/24/2017] [Indexed: 11/16/2022] Open
Abstract
Mechanical load application promotes bone formation, while reduced load leads to bone loss. However, the underlying mechanisms that regulate new bone formation are not fully understood. Wnt/β-catenin signaling has an important role in bone formation, bone growth and remodeling. The aim of the present study was to investigate whether mechanical stimuli regulated bone formation through the Wnt/β-catenin signaling pathway. Saos-2 osteoblastic cells were subjected to mechanical strain using a Flexcell strain loading system. The results demonstrated that 12% cyclical tensile stress significantly stimulated Saos-2 cell proliferation, increased the activity of alkaline phosphatase and promoted the formation of mineralized nodules, as determined by MTT and p-nitrophenyl phosphate assays and Alizarin Red S staining, respectively. Furthermore, western blot analysis demonstrated that, following mechanical strain, increased phosphorylation of glycogen synthase kinase-3β and nuclear β-catenin expression was observed in cells, compared with static control culture cells. Results of reporter gene and reverse transcription-polymerase chain reaction assays also demonstrated that mechanical strain significantly increased T-cell factor reporter gene activity and the mRNA expression of cyclooxygenase (COX)-2, cyclin D1, c-fos and c-Jun in Saos-2 cells. Co-immunoprecipitation analysis revealed that elongation mechanical strain activated Wnt/β-catenin signaling and reduced β-catenin and E-cadherin interaction in Saos-2 cells. In conclusion, the results of the current study indicate that mechanical strain may have an important role in the proliferation and differentiation of osteoblasts. The disassociation of the β-catenin/E-cadherin complex in the osteoblast membrane under stretch loading and the subsequent translocation of β-catenin into the nucleus may be an intrinsic mechanical signal transduction mechanism.
Collapse
Affiliation(s)
- Fei-Fei Li
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Bo Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Ji-Hong Cui
- Laboratory of Tissue Engineering, Department of Biosciences, Faculty of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Fu-Lin Chen
- Laboratory of Tissue Engineering, Department of Biosciences, Faculty of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Yin Ding
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xue Feng
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
164
|
Klar RM. The Induction of Bone Formation: The Translation Enigma. Front Bioeng Biotechnol 2018; 6:74. [PMID: 29938204 PMCID: PMC6002665 DOI: 10.3389/fbioe.2018.00074] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/22/2018] [Indexed: 11/25/2022] Open
Abstract
A paradigmatic shift in the way of thinking is what bone tissue engineering science requires to decrypt the translation conundrum from animal models into human. The deductive work of Urist (1965), who discerned the principle of bone induction from the pioneering works of Senn, Huggins, Lacroix, Levander, and other bone regenerative scientists, provided the basis that has assisted future bone tissue regenerative scientists to extend the bone tissue engineering field and its potential uses for bone regenerative medicine in humans. However, major challenges remain that are preventing the formation of bone by induction clinically. Growing experimental evidence is indicating that bone inductive studies are non-translatable from animal models into a clinical environment. This is preventing bone tissue engineering from reaching the next phase in development. Countless studies are trying to discern how the formation of bone by induction functions mechanistically, so as to try and solve this enigmatic problem. However, are the correct questions being asked? Why do bone inductive animal studies not translate into humans? Why do bone induction principles not yield the same extent of bone formation as an autogenous bone graft? What are bone tissue engineering scientists missing? By critically re-assessing the past and present discoveries of the bone induction field, this review article attempts to re-discover the field of bone formation by induction, identifying some key features that may have been missed. These include a detailed library of all proteins in bones and their arrangement in the 3D superstructure of the bone together with some other important criteria not considered by tissue engineering scientists. The review therefore not only re-iterates possible avenues of research that need to be re-explored but also seeks to guide present and future scientists in how they assess their own research in light of experimental design and results. By addressing these issues bone formation by induction without autografts might finally become clinically viable.
Collapse
Affiliation(s)
- Roland M. Klar
- Laboratory of Biomechanics and Experimental Orthopaedics, Department of Orthopaedic Surgery, Physical Medicine and Rehabilitation, University Hospital of Munich (LMU), Munich, Germany
| |
Collapse
|
165
|
The Bioactive Substance Secreted by MSC Retards Mouse Aortic Vascular Smooth Muscle Cells Calcification. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6053567. [PMID: 29967775 PMCID: PMC6008760 DOI: 10.1155/2018/6053567] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/07/2018] [Indexed: 12/13/2022]
Abstract
Background Vascular calcification, which is associated with low-level chronic inflammation, is a complication that occurs during aging, atherosclerosis, chronic kidney disease, diabetes mellitus, and hyperlipaemia. In this study, we used conditioned media from mesenchymal stem cells (MSC-CM), a source of autologous cytokines, to test the hypothesis that MSC-CM inhibits vascular smooth muscle cell (VSMC) calcification by suppressing inflammation and apoptosis. Methods VSMCs were treated with β-glycerophosphate (β-GP) to induce calcification and MSC-CM was used as a treatment. Calcium deposition was evaluated using alizarin red and von Kossa staining after a 7-day induction period. Intracellular calcium contents were measured via the o-cresolphthalein complexone method, and alkaline phosphatase (ALP) activity was determined using the para-nitrophenyl phosphate method. The expressions of specific-osteogenic markers, inflammatory cytokines, and apoptosis-associated genes/proteins were examined by real-time polymerase chain reaction or western blotting. Results MSC-CM inhibited β-GP-induced calcium deposition in VSMCs and decreased intracellular calcium content and ALP activity. Additionally, MSC-CM suppressed the β-GP-induced increases in BMP2, Msx2, Runx2, and osteocalcin expression. Additionally, MSC-CM decreased the expression of TNF-α, IL-1β, and IL-6 in VSMC. MSC-CM also partly blocked β-GP-induced VSMC apoptosis, which was associated with an increase in the Bcl-2/Bax expression ratio and a decrease in caspase-3 expression. Conclusion Our study results suggest that MSC-CM can inhibit VSMC calcification. This suggests a potential novel clinical application for MSCs in the treatment of vascular calcification and associated diseases.
Collapse
|
166
|
Overexpression of miR-182 inhibits ossification of ligamentum flavum cells by targeting NAMPT. Exp Cell Res 2018; 367:119-131. [DOI: 10.1016/j.yexcr.2018.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 12/31/2022]
|
167
|
Terauchi M, Tamura A, Yamaguchi S, Yui N. Enhanced cellular uptake and osteogenic differentiation efficiency of melatonin by inclusion complexation with 2-hydroxypropyl β-cyclodextrin. Int J Pharm 2018; 547:53-60. [PMID: 29803791 DOI: 10.1016/j.ijpharm.2018.05.063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/02/2018] [Accepted: 05/24/2018] [Indexed: 01/13/2023]
Abstract
Melatonin (MLT), a hormone secreted from the pineal gland, is recognized as a potential candidate for stimulation of bone regeneration. However, because of its hydrophobicity, the administration of MLT to stimulate bone regeneration is difficult. In this study, an inclusion complex of MLT with 2-hydroxypropyl β-cyclodextrin (HP-β-CD) was prepared to improve the water solubility, and the osteogenic differentiation ability of the inclusion complex was investigated in MC3T3-E1 cells. The formation of HP-β-CD/MLT inclusion complex was confirmed by 1H and 13C nuclear magnetic resonance spectroscopy and wide-angle X-ray diffraction. The water solubility of MLT increased linearly upon addition of HP-β-CD because of the formation of the inclusion complex. Additionally, treatment of the cells with HP-β-CD/MLT inclusion complex showed higher uptake amount of MLT than that treated with free MLT. In addition, treatment of MC3T3-E1 cells with HP-β-CD/MLT inclusion complex increased alkaline phosphatase activity and mineralized matrix deposition, compared to that in free MLT-treated and untreated cells. Furthermore, cells treated with HP-β-CD/MLT inclusion complex exhibited higher expression levels of osteogenic differentiation genes than those in the untreated and free MLT-treated cells. Accordingly, these results suggested that inclusion complexation of MLT with HP-β-CD would be a potential formulation for bone regeneration because of its improved solubility and enhanced osteogenic differentiation efficiency.
Collapse
Affiliation(s)
- Masahiko Terauchi
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan; Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan.
| | - Satoshi Yamaguchi
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| |
Collapse
|
168
|
Fushimi S, Nohno T, Nagatsuka H, Katsuyama H. Involvement of miR-140-3p in Wnt3a and TGFβ3 signaling pathways during osteoblast differentiation in MC3T3-E1 cells. Genes Cells 2018; 23:517-527. [PMID: 29740905 DOI: 10.1111/gtc.12591] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 04/02/2018] [Indexed: 12/21/2022]
Abstract
The Wnt/β-catenin signaling and TGFβ signaling pathways play a key role in osteoblast differentiation. The miRNAs play important roles in regulating gene expression at the post-transcriptional level through fine-tuning of protein-encoding gene expression. However, involvement of miRNAs is not established for Wnt3a and TGFβ signaling pathways in osteoblast differentiation. Here, we examined the role of miRNAs expressed differentially after Wnt3a expression during osteoblast differentiation. Over-expression of the Wnt3a gene increased ALP transcription, but decreased Col1, Runx2, and OCN transcription in osteoblastic MC3T3-E1 cells. Expression profiling and quantitative PCR for miRNAs showed that miR-140-3p decreased in Wnt3a-over-expressing osteoblastic cells. Wnt3a over-expression increased TGFβ3 expression, whereas transfection of the miR-140-3p mimic into MC3T3-E1 cells significantly inhibited TGFβ3 expression. Luciferase assay for the TGFβ3 transcript showed that TGFβ3 was a direct target of miR-140-3p. miR-140-3p mimic transfection resulted in significantly increased OCN transcription, but did not affect ALP, Col1, and Runx2 transcription in MC3T3-E1 cells. rTGFβ3 treatment decreased OCN transcription in MC3T3-E1 cells. These results suggest that the miR-140-3p is involved in osteoblast differentiation as a critical regulatory factor between Wnt3a and TGFβ3 signaling pathways.
Collapse
Affiliation(s)
- Shigeko Fushimi
- Department of Public Health, Kawasaki Medical School, Kurashiki, Japan.,Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Tsutomu Nohno
- Department of Public Health, Kawasaki Medical School, Kurashiki, Japan.,Department of Molecular and Developmental Biology, Kawasaki Medical School, Kurashiki, Japan
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | | |
Collapse
|
169
|
Grafe I, Alexander S, Peterson JR, Snider TN, Levi B, Lee B, Mishina Y. TGF-β Family Signaling in Mesenchymal Differentiation. Cold Spring Harb Perspect Biol 2018; 10:a022202. [PMID: 28507020 PMCID: PMC5932590 DOI: 10.1101/cshperspect.a022202] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) can differentiate into several lineages during development and also contribute to tissue homeostasis and regeneration, although the requirements for both may be distinct. MSC lineage commitment and progression in differentiation are regulated by members of the transforming growth factor-β (TGF-β) family. This review focuses on the roles of TGF-β family signaling in mesenchymal lineage commitment and differentiation into osteoblasts, chondrocytes, myoblasts, adipocytes, and tenocytes. We summarize the reported findings of cell culture studies, animal models, and interactions with other signaling pathways and highlight how aberrations in TGF-β family signaling can drive human disease by affecting mesenchymal differentiation.
Collapse
Affiliation(s)
- Ingo Grafe
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Stefanie Alexander
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Jonathan R Peterson
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Taylor Nicholas Snider
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Benjamin Levi
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
170
|
He H, Wang C, Tang Q, Yang F, Xu Y. Possible mechanisms of prednisolone-induced osteoporosis in zebrafish larva. Biomed Pharmacother 2018; 101:981-987. [PMID: 29635908 DOI: 10.1016/j.biopha.2018.02.082] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/06/2018] [Accepted: 02/19/2018] [Indexed: 11/19/2022] Open
Abstract
Glucocorticoid-induced osteoporosis (GIOP) is a serious clinical bone disease that results from the long-term consumption of glucocorticoids or glucocorticoid-like drugs. Although many studies have attempted to determine the mechanisms of GIOP, they are still unclear. In this study, we established a zebrafish model of glucocorticoid-like drug-induced osteoporosis by treating larvae with prednisolone. We then quantified the expression of a selection of extracellular matrix (ECM)-, osteoblast-, and osteoclast-related genes. Our results showed that at 15 days post fertilization, zebrafish larvae treated with 25 μM prednisolone are a suitable model for GIOP, not only owing to the decrease in robust bone mass but also because of significant alterations in gene expression. The quantification of the expression of ECM-, osteoblast-, and osteoclast- related genes revealed that mmp9 and mmp13 were significantly upregulated and entpd5a, acp5a, and sost were significantly downregulated. These genes may be a target for future research into GIOP. Our study thus provides new insights into GIOP.
Collapse
Affiliation(s)
- Hanliang He
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Chunqing Wang
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Qifeng Tang
- The Benq Medical Center of Suzhou, Suzhou 215000, China
| | - Fan Yang
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Youjia Xu
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China.
| |
Collapse
|
171
|
Jung JI, Park KY, Lee Y, Park M, Kim J. Vitamin C-linker-conjugated tripeptide AHK stimulates BMP-2-induced osteogenic differentiation of mouse myoblast C2C12 cells. Differentiation 2018; 101:1-7. [PMID: 29567599 DOI: 10.1016/j.diff.2018.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/24/2018] [Accepted: 03/14/2018] [Indexed: 12/31/2022]
Abstract
Vitamin C-linker-conjugated Ala-His-Lys tripeptide (Vit C-AHK) is a derivative of Vitamin C-conjugated tripeptides, which were originally developed as a component of a product for collagen synthesis enhancement or human dermal fibroblast growth. Here, we investigated the effect of Vit C-AHK on bone morphogenetic protein (BMP)-2-induced osteoblast differentiation in a cell culture model. Vit C-AHK enhanced proliferation of C2C12 cells and induction of BMP-2-induced alkaline phosphatase, a typical marker of osteoblast differentiation. Vit C-AHK also stimulated the phosphorylation and translocation of Smad1/5/8 to the nucleus and phosphorylation of mitogen-activated protein kinases (MAPKs) including ERK1/2 and p38. In addition, Vit C-AHK enhanced the BMP-2-induced mRNA expression of osteoblast differentiation-related genes such as ALP, BMP-2, Osteocalcin, and Runx2. Our results suggest that Vit C-AHK exerts an enhancing effect on osteoblast proliferation and differentiation through activation of Smad1/5/8 and MAPK ERK1/2 and p38 signaling and without significant cytotoxicity. These results provide important data for the development of peptide-based bone-regenerative agents and treatment of bone-related disorders.
Collapse
Affiliation(s)
- Jung-Il Jung
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University, Daejeon 34824, Republic of Korea.
| | - Kyeong-Yong Park
- Department of Integrated Material's Development, CHA Meditech Co., Ltd, Daejeon 34025, Republic of Korea.
| | - Yura Lee
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea.
| | - Mira Park
- Department of Preventive Medicine, School of Medicine, Eulji University, Daejeon 34824, Republic of Korea.
| | - Jiyeon Kim
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University, Daejeon 34824, Republic of Korea.
| |
Collapse
|
172
|
Clough BH, Zeitouni S, Krause U, Chaput CD, Cross LM, Gaharwar AK, Gregory CA. Rapid Osteogenic Enhancement of Stem Cells in Human Bone Marrow Using a Glycogen-Synthease-Kinase-3-Beta Inhibitor Improves Osteogenic Efficacy In Vitro and In Vivo. Stem Cells Transl Med 2018; 7:342-353. [PMID: 29405665 PMCID: PMC5866944 DOI: 10.1002/sctm.17-0229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/06/2017] [Accepted: 12/26/2017] [Indexed: 12/12/2022] Open
Abstract
Non‐union defects of bone are a major problem in orthopedics, especially for patients with a low healing capacity. Fixation devices and osteoconductive materials are used to provide a stable environment for osteogenesis and an osteogenic component such as autologous human bone marrow (hBM) is then used, but robust bone formation is contingent on the healing capacity of the patients. A safe and rapid procedure for improvement of the osteoanabolic properties of hBM is, therefore, sought after in the field of orthopedics, especially if it can be performed within the temporal limitations of the surgical procedure, with minimal manipulation, and at point‐of‐care. One way to achieve this goal is to stimulate canonical Wingless (cWnt) signaling in bone marrow‐resident human mesenchymal stem cells (hMSCs), the presumptive precursors of osteoblasts in bone marrow. Herein, we report that the effects of cWnt stimulation can be achieved by transient (1–2 hours) exposure of osteoprogenitors to the GSK3β‐inhibitor (2′Z,3′E)‐6‐bromoindirubin‐3′‐oxime (BIO) at a concentration of 800 nM. Very‐rapid‐exposure‐to‐BIO (VRE‐BIO) on either hMSCs or whole hBM resulted in the long‐term establishment of an osteogenic phenotype associated with accelerated alkaline phosphatase activity and enhanced transcription of the master regulator of osteogenesis, Runx2. When VRE‐BIO treated hBM was tested in a rat spinal fusion model, VRE‐BIO caused the formation of a denser, stiffer, fusion mass as compared with vehicle treated hBM. Collectively, these data indicate that the VRE‐BIO procedure may represent a rapid, safe, and point‐of‐care strategy for the osteogenic enhancement of autologous hBM for use in clinical orthopedic procedures. stemcellstranslationalmedicine2018;7:342–353
Collapse
Affiliation(s)
- Bret H Clough
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Suzanne Zeitouni
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Ulf Krause
- Institute for Transfusion Medicine and Transplant Immunology, University Hospital Muenster, Muenster, Germany
| | - Christopher D Chaput
- Department of Orthopedic Surgery, Baylor Scott and White Hospital, Temple, Texas, USA
| | - Lauren M Cross
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Akhilesh K Gaharwar
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA.,Department of Material Sciences, College Station, Texas, USA.,Center for Remote Health Technologies and Systems, Texas A&M University, College Station, Texas, USA
| | - Carl A Gregory
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| |
Collapse
|
173
|
Charoenphandhu N, Suntornsaratoon P, Sa-Nguanmoo P, Tanajak P, Teerapornpuntakit J, Aeimlapa R, Chattipakorn N, Chattipakorn S. Dipeptidyl Peptidase-4 Inhibitor, Vildagliptin, Improves Trabecular Bone Mineral Density and Microstructure in Obese, Insulin-Resistant, Pre-diabetic Rats. Can J Diabetes 2018; 42:545-552. [PMID: 29606326 DOI: 10.1016/j.jcjd.2018.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 01/18/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Obese insulin resistance and type 2 diabetes mellitus profoundly impair bone mechanical properties and bone quality. However, because several antidiabetes drugs, especially thiazolidinediones, further aggravate bone loss in individuals with diabetes, diabetic osteopathy should not be treated by using simply any glucose-lowering agents. Recently, incretins have been reported to affect osteoblast function positively. The present study aimed to investigate the effects of vildagliptin, an inhibitor of dipeptidyl peptidase-4, on bone of rats with high-fat-diet-induced prediabetes. METHODS Male rats were fed a high-fat diet for 12 weeks to induce obese insulin resistance and then treated with vildagliptin for 4 weeks. The effects of the drug on bone were determined by microcomputed tomography and bone histomorphometry. RESULTS Vildagliptin markedly improved insulin resistance in these obese insulin-resistant rats. It also significantly increased volumetric bone mineral density. Specifically, vildagliptin-treated obese insulin-resistant rats exhibited higher trabecular volumetric bone mineral density than vehicle-treated obese insulin-resistant rats, whereas cortical volumetric bone mineral density, cortical thickness and area were not changed. Bone histomorphometric analysis in a trabecular-rich area (i.e. tibial metaphysis) revealed greater trabecular bone volume and number and less trabecular separation without change in trabecular thickness, osteocyte lacunar area or cortical thickness in the vildagliptin-treated group. CONCLUSIONS Vildagliptin had a beneficial effect on the bone of obese insulin-resistant rats with prediabetes, particularly at the trabecular site. Such benefit probably results from enhanced bone formation rather than from suppressed bone resorption.
Collapse
Affiliation(s)
- Narattaphol Charoenphandhu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand; Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Panan Suntornsaratoon
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Piangkwan Sa-Nguanmoo
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pongpan Tanajak
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Jarinthorn Teerapornpuntakit
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Ratchaneevan Aeimlapa
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
174
|
Lee J, Kee HJ, Min S, Park KC, Park S, Hwang TH, Ryu DH, Hwang GS, Cheong JH. Integrated omics-analysis reveals Wnt-mediated NAD+ metabolic reprogramming in cancer stem-like cells. Oncotarget 2018; 7:48562-48576. [PMID: 27391070 PMCID: PMC5217038 DOI: 10.18632/oncotarget.10432] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 05/22/2016] [Indexed: 12/15/2022] Open
Abstract
Abnormal tumor cell metabolism is a consequence of alterations in signaling pathways that provide critical selective advantage to cancer cells. However, a systematic characterization of the metabolic and signaling pathways altered in cancer stem-like cells (CSCs) is currently lacking. Using nuclear magnetic resonance and mass spectrometry, we profiled the whole-cell metabolites of a pair of parental (P-231) and stem-like cancer cells (S-231), and then integrated with whole transcriptome profiles. We identified elevated NAAD+ in S-231 along with a coordinated increased expression of genes in Wnt/calcium signaling pathway, reflecting the correlation between metabolic reprogramming and altered signaling pathways. The expression of CD38 and ALP, upstream NAAD+ regulatory enzymes, was oppositely regulated between P- and S-231; high CD38 strongly correlated with NAADP in P-231 while high ALP with NAAD+ levels in S-231. Antagonizing Wnt activity by dnTCF4 transfection reversed the levels of NAAD+ and ALP expression in S-231. Of note, elevated NAAD+ caused a decrease of cytosolic Ca2+ levels preventing calcium-induced apoptosis in nutrient-deprived conditions. Reprograming of NAD+ metabolic pathway instigated by Wnt signaling prevented cytosolic Ca2+ overload thereby inhibiting calcium-induced apoptosis in S-231. These results suggest that “oncometabolites” resulting from cross talk between the deranged core cancer signaling pathway and metabolic network provide a selective advantage to CSCs.
Collapse
Affiliation(s)
- Jueun Lee
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03760, Republic of Korea.,Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyun Jung Kee
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Soonki Min
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03760, Republic of Korea.,Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ki Cheong Park
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sunho Park
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tae Hyun Hwang
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Do Hyun Ryu
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03760, Republic of Korea.,Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jae-Ho Cheong
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.,Department of Biochemistry & Molecular Biology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.,BK21 PLUS Projects for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.,Open NBI Convergence Technology Research Laboratory, Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
175
|
Sindhavajiva PR, Sastravaha P, Arksornnukit M, Pavasant P. Intermittent compressive force induces human mandibular-derived osteoblast differentiation via WNT/β-catenin signaling. J Cell Biochem 2018; 119:3474-3485. [PMID: 29143994 DOI: 10.1002/jcb.26519] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/13/2017] [Indexed: 02/02/2023]
Abstract
Mechanical force induces an efflux of ATP that regulates osteoblast differentiation. However, the effect of mechanical force-induced ATP efflux on WNT/β-catenin signaling remains unclarified. The aim of this study was to investigate the effect of intermittent compressive force (ICF) and ICF-induced extracellular ATP on osteoblast differentiation via WNT/β-catenin signaling in human mandibular-derived osteoblast precursors (hMOBPs). The hMOBPs were subjected to ICF (1.5 g/cm2 , 0.3 Hz) for 20 h. To investigate the role of ATP, Apyrase (0.5 units/mL), an enzyme that hydrolyzes ATP, was added 30 min before ICF was applied. The extracellular ATP levels were measured immediately after ICF was removed. The mRNA expression of osteogenic related genes, including WNT was evaluated via quantitative real time polymerase chain reaction. In vitro mineralization was determined by Alizarin Red S staining. The localization of β-catenin was detected using immunofluorescence staining and lentiviral-TOP-dGFP reporter assay. The results demonstrated that ICF increased ATP efflux and in vitro mineralization by hMOBPs. In addition, OSX, ALP, and WNT3A mRNA expression and β-catenin nuclear translocation increased when ICF was applied. The upregulation of these genes was reduced by Apyrase, suggesting the role of ICF-induced ATP on osteoblast differentiation. Notably, ICF altered the mRNA expression of purinergic 2X receptors (P2XRs). A P2X1R antagonist (NF449) downregulated ICF-induced WNT3A, OSX, and ALP mRNA expression. Moreover, when 25 μM α, β-meATP, a P2X1R agonist, was added, WNT3A, and OSX expression increased. In conclusion, our results demonstrate that ICF-induced ATP enhanced hMOBP differentiation. This enhancement was associated with WNT/β-catenin signaling and P2X1R activation.
Collapse
Affiliation(s)
- Pimrumpai R Sindhavajiva
- Graduate Program in Prosthodontics, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Mineralized Tissue Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Panunn Sastravaha
- Department of Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Mansuang Arksornnukit
- Department of Prosthodontics, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Prasit Pavasant
- Mineralized Tissue Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
176
|
Li Z, Xu Z, Duan C, Liu W, Sun J, Han B. Role of TCF/LEF Transcription Factors in Bone Development and Osteogenesis. Int J Med Sci 2018; 15:1415-1422. [PMID: 30275770 PMCID: PMC6158667 DOI: 10.7150/ijms.26741] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/29/2018] [Indexed: 11/05/2022] Open
Abstract
Bone formation occurs by two distinct mechanisms, namely, periosteal ossification and endochondral ossification. In both mechanisms, osteoblasts play an important role in the secretion and mineralization of bone-specific extracellular matrix. Differentiation and maturation of osteoblasts is a prerequisite to bone formation and is regulated by many factors. Recent experiments have shown that transcription factors play an important role in regulating osteoblast differentiation, proliferation, and function. Osteogenesis related transcription factors are the central targets and key mediators of the function of growth factors, such as cytokines. Transcription factors play a key role in the transformation of mesenchymal progenitor cells into functional osteoblasts. These transcription factors are closely linked with each other and in conjunction with bone-related signaling pathways form a complex network that regulates osteoblast differentiation and bone formation. In this paper, we discuss the structure of T-cell factor/lymphoid enhancer factor (TCF/LEF) and its role in embryonic skeletal development and the crosstalk with related signaling pathways and factors.
Collapse
Affiliation(s)
- Zhengqiang Li
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Jilin University, Changchun 130021, China.,Stomatological Hospital of Southern Medical University & Guangdong Provincial Stomatological Hospital, Guangzhou 510280, China
| | - Zhimin Xu
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Jilin University, Changchun 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Congcong Duan
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Jilin University, Changchun 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Weiwei Liu
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Jilin University, Changchun 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Jingchun Sun
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Jilin University, Changchun 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Bing Han
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Jilin University, Changchun 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| |
Collapse
|
177
|
Miyaguchi N, Kajiya H, Yamaguchi M, Sato A, Yasunaga M, Toshimitu T, Yanagi T, Matsumoto A, Kido H, Ohno J. Bone Morphogenetic Protein-2 Accelerates Osteogenic Differentiation in Spheroid-Derived Mesenchymal Stem Cells. J HARD TISSUE BIOL 2018. [DOI: 10.2485/jhtb.27.343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Naoyuki Miyaguchi
- Section of Oral Implantology, Department of Oral Rehabilitation, Fukuoka Dental College
- Research Center for Regenerative Medicine, Fukuoka Dental College
| | - Hiroshi Kajiya
- Research Center for Regenerative Medicine, Fukuoka Dental College
- Section of Cellular Physiology, Department of Physiological Science and Molecular Biology, Fukuoka Dental College
| | - Masahiro Yamaguchi
- Research Center for Regenerative Medicine, Fukuoka Dental College
- Section of Geriatric Dentistry, Department of General Dentistry, Fukuoka Dental College
| | - Ayako Sato
- Section of Oral Implantology, Department of Oral Rehabilitation, Fukuoka Dental College
- Research Center for Regenerative Medicine, Fukuoka Dental College
| | - Madoka Yasunaga
- Research Center for Regenerative Medicine, Fukuoka Dental College
- Section of Orthodontics, Department of Oral Growth and Development, Fukuoka Dental College
| | - Takuya Toshimitu
- Research Center for Regenerative Medicine, Fukuoka Dental College
- Dentistry for the Disabled, Department of Oral Growth and Development, Fukuoka Dental College
| | - Tsukasa Yanagi
- Section of Oral Implantology, Department of Oral Rehabilitation, Fukuoka Dental College
- Research Center for Regenerative Medicine, Fukuoka Dental College
| | - Ayako Matsumoto
- Section of Oral Implantology, Department of Oral Rehabilitation, Fukuoka Dental College
- Research Center for Regenerative Medicine, Fukuoka Dental College
| | - Hirofumi Kido
- Section of Oral Implantology, Department of Oral Rehabilitation, Fukuoka Dental College
| | - Jun Ohno
- Research Center for Regenerative Medicine, Fukuoka Dental College
| |
Collapse
|
178
|
Wang X, Luo E, Bi R, Ye B, Hu J, Zou S. Wnt/β-catenin signaling is required for distraction osteogenesis in rats. Connect Tissue Res 2018; 59:45-54. [PMID: 28346008 DOI: 10.1080/03008207.2017.1300154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OVERVIEW The Wnt signaling pathway plays crucial roles in embryonic skeletal development and postnatal bone regeneration. However, mechanisms of Wnt signaling functioning in distraction osteogenesis (DO) haven't been well characterized. MATERIALS AND METHODS We established a DO model using Sprague-Dawley rat tibia. And a Wnt signaling blocking agent, recombinant rat Dickkopf-related protein 1 (rrDkk1), was locally applied in the distracted gap to study the role of Wnt signaling during DO process. Animals in the experimental group received rrDkk1 injections (dose = 25 μg/kg) once daily during distraction period and every third day during consolidation stage (n = 48). Animals in the control group received saline under the same injection strategy (n = 48). Animals at different time points during DO process (1, 3, 6, 12 days after distraction, 10 days and 6 weeks after consolidation) were killed and tissues in the distraction region were harvested for radiography, dual energy X-ray absorptiometry, micro-computed tomography (micro-CT), and histological analyses. RESULTS Most Wnt ligands, cofactors, receptors, and antagonists were widely expressed in the distraction callus and were significantly upregulated during DO process. After rrDkk1 administration, the majority of these factors were downregulated at the mRNA level, except sFRP and GSK-3β. At the protein level, both β-catenin and Lef-1 were also suppressed by rrDkk1. In the long term, restricted bone healing was observed in the distracted callus in the rrDkk1 injection group. These findings were confirmed by histological and micro-CT analyses. CONCLUSIONS Our findings suggest that Wnt signaling participates in the process of DO, and clinical therapeutic approaches of DO may do well to avoid Wnt pathway suppression.
Collapse
Affiliation(s)
- Xuemei Wang
- a State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases , West China Hospital of Stomatology, Sichuan University , Chengdu , China
| | - En Luo
- a State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases , West China Hospital of Stomatology, Sichuan University , Chengdu , China
| | - Ruiye Bi
- a State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases , West China Hospital of Stomatology, Sichuan University , Chengdu , China
| | - Bin Ye
- a State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases , West China Hospital of Stomatology, Sichuan University , Chengdu , China
| | - Jing Hu
- a State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases , West China Hospital of Stomatology, Sichuan University , Chengdu , China
| | - Shujuan Zou
- a State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases , West China Hospital of Stomatology, Sichuan University , Chengdu , China
| |
Collapse
|
179
|
|
180
|
Jing D, Yan Z, Cai J, Tong S, Li X, Guo Z, Luo E. Low-1 level mechanical vibration improves bone microstructure, tissue mechanical properties and porous titanium implant osseointegration by promoting anabolic response in type 1 diabetic rabbits. Bone 2018; 106:11-21. [PMID: 28982588 DOI: 10.1016/j.bone.2017.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/14/2017] [Accepted: 10/01/2017] [Indexed: 12/31/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is associated with reduced bone mass, increased fracture risk, and impaired bone defect regeneration potential. These skeletal complications are becoming important clinical challenges due to the rapidly increasing T1DM population, which necessitates developing effective treatment for T1DM-associated osteopenia/osteoporosis and bone trauma. This study aims to investigate the effects of whole-body vibration (WBV), an easy and non-invasive biophysical method, on bone microstructure, tissue-level mechanical properties and porous titanium (pTi) osseointegration in alloxan-diabetic rabbits. Six non-diabetic and twelve alloxan-treated diabetic rabbits were equally assigned to the Control, DM, and DM with WBV stimulation (WBV) groups. A cylindrical drill-hole defect was established on the left femoral lateral condyle of all rabbits and filled with a novel non-toxic Ti2448 pTi. Rabbits in the WBV group were exposed to 1h/day WBV (0.3g, 30Hz) for 8weeks. After sacrifice, the left femoral condyles were harvested for histological, histomorphometric and nanoindentation analyses. The femoral sample with 2-cm height above the defect was used for qRT-PCR analysis. The right distal femora were scanned with μCT. We found that all alloxan-treated rabbits exhibited hyperglycemia throughout the experimental period. WBV inhibited the deterioration of cancellous and cortical bone architecture and tissue-level mechanical properties via μCT, histological and nanoindentation examinations. T1DM-induced reduction of bone formation was inhibited by WBV, as evidenced by elevated serum OCN and increased mineral apposition rate (MAR), whereas no alteration was observed in bone resorption marker TRACP5b. WBV also stimulated more adequate ingrowths of mineralized bone tissue into pTi pore spaces, and improved peri-implant bone tissue-level mechanical properties and MAR in T1DM bone defects. WBV mitigated the reductions in femoral BMP2, OCN, Wnt3a, Lrp6, and β-catenin and inhibited Sost mRNA expression but did not alter RANKL or RANK gene expression in T1DM rabbits. Our findings demonstrated that WBV improved bone architecture, tissue-level mechanical properties, and pTi osseointegration by promoting canonical Wnt signaling-mediated skeletal anabolic response. This study not only advances our understanding of T1DM skeletal sensitivity in response to external mechanical cues but also offers new treatment alternatives for T1DM-associated osteopenia/osteoporosis and osseous defects in an economic and highly efficient manner.
Collapse
Affiliation(s)
- Da Jing
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China; Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Zedong Yan
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Jing Cai
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Shichao Tong
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Xiaokang Li
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zheng Guo
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Erping Luo
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
181
|
Kokabu S, Rosen V. BMP3 expression by osteoblast lineage cells is regulated by canonical Wnt signaling. FEBS Open Bio 2017; 8:168-176. [PMID: 29435407 PMCID: PMC5794463 DOI: 10.1002/2211-5463.12347] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/28/2017] [Accepted: 11/02/2017] [Indexed: 12/19/2022] Open
Abstract
Bone morphogenetic protein (BMP) and canonical Wnt (cWnt) signaling factors are both known to regulate bone mass, fracture risk, fracture repair, and osteoblastogenesis. BMP3 is the most abundant BMP and negatively regulates osteoblastogenesis and bone mass. Thus, identifying the mechanism by which BMP3 acts to depress bone formation may allow for the development of new therapeutics useful in the treatment for osteopenia and osteoporosis. Here, we report that cWnt signaling stimulates BMP3 expression in osteoblast (OB) lineage cells. The expression of BMP3 increases with OB differentiation. Treatment of cells with various cWnt proteins stimulated BMP3 expression. Mice with enhanced cWnt signaling had high expression levels of BMP3. Our data suggest that reduction in BMP3 levels may contribute beneficially to the positive effect of cWnt agonists on bone mass.
Collapse
Affiliation(s)
- Shoichiro Kokabu
- Department of Developmental Biology Harvard School of Dental Medicine Boston MA USA.,Division of Molecular Signaling and Biochemistry Department of Health Promotion Kyushu Dental University Kitakyushu Japan.,Department of Oral and Maxillofacial Surgery Faculty of Medicine Saitama Medical University Moroyama-machiIruma-gun Japan
| | - Vicki Rosen
- Department of Developmental Biology Harvard School of Dental Medicine Boston MA USA
| |
Collapse
|
182
|
Lee W, Ko KR, Kim HK, Lim S, Kim S. Dehydrodiconiferyl alcohol promotes BMP-2-induced osteoblastogenesis through its agonistic effects on estrogen receptor. Biochem Biophys Res Commun 2017; 495:2242-2248. [PMID: 29253565 DOI: 10.1016/j.bbrc.2017.12.079] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/14/2017] [Indexed: 12/11/2022]
Abstract
Estrogen deficiency results in an imbalance between the levels of bone-resorping osteoclasts and bone-forming osteoblasts, eventually leading to overall bone loss. Dehydrodiconiferyl alcohol (DHCA), a lignan compound originally isolated from Cucurbita moschata, has been shown to bind to estrogen receptor, and indeed exhibits various activities of estrogen, such as anti-inflammatory and anti-oxidative stress effects. In this study, we tested whether synthetic DHCA could affect the BMP-2-induced osteoblastogenesis in vitro. In MC3T3-E1 cells, DHCA promoted BMP-2-induced differentiation of osteoblasts. Consistently, the expression of three osteoblastogenic genes known to be induced by BMP-2, ALP, osteocalcin and OPG, was up-regulated by DHCA treatment. DHCA was also shown to activate the production of RUNX2 by activating Smad1/5/9 and AMPK. Data from transient transfection assays suggested that DHCA might activate the estrogen receptor signaling pathway. Effects of DHCA on BMP-2-induced osteoblastogenesis were reduced when cells were treated with a specific siRNA to ERα or ERβ. Taken together, our results suggest that DHCA may be developed as an efficient therapeutic for osteoporosis by regulating osteoblastogenesis through its estrogenic effects.
Collapse
Affiliation(s)
- Wonwoo Lee
- Department of Biological Sciences, Seoul National University, Seoul 151-742, South Korea; ViroMed Co., Ltd., Seoul 151-747, South Korea
| | - Kyeong Ryang Ko
- Department of Biological Sciences, Seoul National University, Seoul 151-742, South Korea; ViroMed Co., Ltd., Seoul 151-747, South Korea
| | - Hyun-Keun Kim
- Department of Biological Sciences, Seoul National University, Seoul 151-742, South Korea
| | - Seonung Lim
- Department of Biological Sciences, Seoul National University, Seoul 151-742, South Korea
| | - Sunyoung Kim
- Department of Biological Sciences, Seoul National University, Seoul 151-742, South Korea; ViroMed Co., Ltd., Seoul 151-747, South Korea.
| |
Collapse
|
183
|
Mao L, Wang N, Wang M, Xia G, Yu Z, Wang J, Xue C. Sialoglycoprotein isolated from Carassius auratus
eggs promotes osteoblast differentiation via targeting the p38 mitogen-activated protein kinase-dependent Wnt/β-catenin and BMP2/Smads pathways. J Food Biochem 2017. [DOI: 10.1111/jfbc.12465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Lei Mao
- College of Food Science and Engineering; Ocean University of China; Qingdao Shandong Province China
| | - Na Wang
- College of Food Science and Engineering; Ocean University of China; Qingdao Shandong Province China
| | - Meiling Wang
- College of Food Science and Engineering; Ocean University of China; Qingdao Shandong Province China
| | - Guanghua Xia
- College of Food Science and Engineering; Ocean University of China; Qingdao Shandong Province China
| | - Zhe Yu
- College of Food Science and Engineering; Ocean University of China; Qingdao Shandong Province China
| | - Jingfeng Wang
- College of Food Science and Engineering; Ocean University of China; Qingdao Shandong Province China
| | - Changhu Xue
- College of Food Science and Engineering; Ocean University of China; Qingdao Shandong Province China
| |
Collapse
|
184
|
Tan X, Huang D, Zhou W, Yan L, Yue J, Lu W, Song D, Zhou X, Ye L, Zhang L. Dickkopf-1 may regulate bone coupling by attenuating wnt/β-catenin signaling in chronic apical periodontitis. Arch Oral Biol 2017; 86:94-100. [PMID: 29216526 DOI: 10.1016/j.archoralbio.2017.11.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 11/20/2017] [Accepted: 11/27/2017] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Alveolar bone loss is a common outcome of chronic apical periodontitis. In this study, we investigated the involvement of the Dickkopf-1-Wnt/β-catenin signaling pathway in the attenuation of osteogenic differentiation induced by Escherichia coli lipopolysaccharide, and we evaluated the use of Dickkopf-1 inhibitor and Dickkopf-1 recombinant protein to reverse bone loss in different phases of osteogenic differentiation. METHODS MC3T3-E1 cells grown in osteogenic medium were treated with Escherichia coli lipopolysaccharide for 24h during osteogenic induction on days 0, 1, 7, 14 and 21. Dickkopf-1 siRNA was added on days 0 and 1, and Dickkopf-1 recombinant was added on days 7, 14, and 21. Quantitative real-time PCR, Western blotting and alkaline phosphatase activity assays were performed to measure osteogenic marker expression and Wnt/β-catenin signaling. A rat apical periodontitis model was used to further evaluate the function of Dickkopf-1 in relation to bone loss. RESULTS MC3T3-E1 cells treated with Escherichia coli lipopolysaccharide showed decreased mRNA expression of osteogenic markers. Wnt/β-catenin signaling was also inhibited, and Dickkopf-1 showed corresponding variations as quantified by Western blotting. Using Dickkopf-1 inhibitor or Dickkopf-1 recombinant protein at different phases of osteogenic differentiation in vitro partially reversed the decrease in osteogenic marker expression. The rat apical periodontitis model indicated that the Dickkopf-1 inhibitor could restore bone loss in the periapical area in vivo. CONCLUSIONS Dickkopf-1 may play a key regulatory role in determining the outcome for bone in inflammatory environments, and modulating the Wnt/β-catenin signaling pathway via Dickkopf-1 inhibitor or recombinant protein may provide a potential therapeutic option to prevent bone destruction in endodontic disease.
Collapse
Affiliation(s)
- Xuelian Tan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, 14# 3rd Section, Renmin South Road, Chengdu, Sichuan Province, 610041, China
| | - Dingming Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, 14# 3rd Section, Renmin South Road, Chengdu, Sichuan Province, 610041, China.
| | - Wei Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, 14# 3rd Section, Renmin South Road, Chengdu, Sichuan Province, 610041, China
| | - Li Yan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, 14# 3rd Section, Renmin South Road, Chengdu, Sichuan Province, 610041, China
| | - Junli Yue
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, 14# 3rd Section, Renmin South Road, Chengdu, Sichuan Province, 610041, China
| | - WanLu Lu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, 14# 3rd Section, Renmin South Road, Chengdu, Sichuan Province, 610041, China
| | - Dongzhe Song
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, 14# 3rd Section, Renmin South Road, Chengdu, Sichuan Province, 610041, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, 14# 3rd Section, Renmin South Road, Chengdu, Sichuan Province, 610041, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, 14# 3rd Section, Renmin South Road, Chengdu, Sichuan Province, 610041, China
| | - Lan Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, 14# 3rd Section, Renmin South Road, Chengdu, Sichuan Province, 610041, China.
| |
Collapse
|
185
|
Zhang L, Tang Y, Zhu X, Tu T, Sui L, Han Q, Yu L, Meng S, Zheng L, Valverde P, Tang J, Murray D, Zhou X, Drissi H, Dard MM, Tu Q, Chen J. Overexpression of MiR-335-5p Promotes Bone Formation and Regeneration in Mice. J Bone Miner Res 2017; 32:2466-2475. [PMID: 28846804 PMCID: PMC5732062 DOI: 10.1002/jbmr.3230] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 07/10/2017] [Accepted: 07/27/2017] [Indexed: 02/05/2023]
Abstract
MicroRNAs (miRNAs) and the Wnt signaling pathway play critical roles in regulating bone development and homeostasis. Our previous study revealed high expression of miR-335-5p in osteoblasts and hypertrophic chondrocytes in mouse embryos and the ability of miR-335-5p to promote osteogenic differentiation by downregulating Wnt antagonist Dickkopf-1 (DKK1). The purpose of this study was to investigate the effects of miR-335-5p constitutive overexpression on bone formation and regeneration in vivo. To that end, we generated a transgenic mouse line specifically overexpressing miR-335-5p in osteoblasts lineage by the osterix promoter and characterized its bone phenotype. Bone histomorphometry and μCT analysis revealed higher bone mass and increased parameters of bone formation in transgenic mice than in wild-type littermates. Increased bone mass in transgenic mice bones also correlated with enhanced expression of osteogenic differentiation markers. Upon osteogenic induction, bone marrow stromal cells (BMSCs) isolated from transgenic mice displayed higher mRNA expression of osteogenic markers than wild-type mice BMSCs cultures. Protein expression of Runx2 and Osx was also upregulated in BMSC cultures of transgenic mice upon osteogenic induction, whereas that of DKK1 was downregulated. Most important, BMSCs from transgenic mice were able to repair craniofacial bone defects as shown by μCT analysis, H&E staining, and osteocalcin (OCN) immunohistochemistry of newly formed bone in defects treated with BMSCs. Taken together, our results demonstrate constitutive overexpression of miR-335-5p driven by an osterix promoter in the osteoblast lineage induces osteogenic differentiation and bone formation in mice and support the potential application of miR-335-5p-modified BMSCs in craniofacial bone regeneration. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Lan Zhang
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, USA.,Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yin Tang
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, USA.,Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiaofang Zhu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, USA
| | - Tianchi Tu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, USA
| | - Lei Sui
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, USA
| | - Qianqian Han
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, USA
| | - Liming Yu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, USA
| | - Shu Meng
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, USA.,Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Leilei Zheng
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, USA
| | - Paloma Valverde
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, USA
| | - Jean Tang
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, USA
| | - Dana Murray
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, USA
| | - Xuedong Zhou
- Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Hicham Drissi
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, CT, USA
| | - Michel M Dard
- Periodontology and Implant Dentistry, New York University College of Dentistry, New York, NY, USA
| | - Qisheng Tu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, USA
| | - Jake Chen
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, USA.,Department of Anatomy and Cell Biology, Tufts University School of Medicine, Sackler School of Graduate Biomedical Sciences, Boston, MA, USA
| |
Collapse
|
186
|
Fawzy El-Sayed KM, Dörfer CE. Animal Models for Periodontal Tissue Engineering: A Knowledge-Generating Process. Tissue Eng Part C Methods 2017; 23:900-925. [DOI: 10.1089/ten.tec.2017.0130] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Karim M. Fawzy El-Sayed
- Department of Oral Medicine and Periodontology, Faculty of Oral and Dental Medicine, Cairo University, Giza, Egypt
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| | - Christof E. Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| |
Collapse
|
187
|
O’Neill WC. Understanding the pathogenesis of vascular calcification: timing is everything. Kidney Int 2017; 92:1316-1318. [DOI: 10.1016/j.kint.2017.07.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 01/12/2023]
|
188
|
Sebastian A, Hum NR, Murugesh DK, Hatsell S, Economides AN, Loots GG. Wnt co-receptors Lrp5 and Lrp6 differentially mediate Wnt3a signaling in osteoblasts. PLoS One 2017; 12:e0188264. [PMID: 29176883 PMCID: PMC5703471 DOI: 10.1371/journal.pone.0188264] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/05/2017] [Indexed: 01/10/2023] Open
Abstract
Wnt3a is a major regulator of bone metabolism however, very few of its target genes are known in bone. Wnt3a preferentially signals through transmembrane receptors Frizzled and co-receptors Lrp5/6 to activate the canonical signaling pathway. Previous studies have shown that the canonical Wnt co-receptors Lrp5 and Lrp6 also play an essential role in normal postnatal bone homeostasis, yet, very little is known about specific contributions by these co-receptors in Wnt3a-dependent signaling. We used high-throughput sequencing technology to identify target genes regulated by Wnt3a in osteoblasts and to elucidate the role of Lrp5 and Lrp6 in mediating Wnt3a signaling. Our study identified 782 genes regulated by Wnt3a in primary calvarial osteoblasts. Wnt3a up-regulated the expression of several key regulators of osteoblast proliferation/ early stages of differentiation while inhibiting genes expressed in later stages of osteoblastogenesis. We also found that Lrp6 is the key mediator of Wnt3a signaling in osteoblasts and Lrp5 played a less significant role in mediating Wnt3a signaling.
Collapse
Affiliation(s)
- Aimy Sebastian
- Lawrence Livermore National Laboratories, Physical and Life Sciences Directorate, Livermore, CA, United States of America
- UC Merced, School of Natural Sciences, Merced, CA, United States of America
| | - Nicholas R. Hum
- Lawrence Livermore National Laboratories, Physical and Life Sciences Directorate, Livermore, CA, United States of America
- UC Merced, School of Natural Sciences, Merced, CA, United States of America
| | - Deepa K. Murugesh
- Lawrence Livermore National Laboratories, Physical and Life Sciences Directorate, Livermore, CA, United States of America
| | - Sarah Hatsell
- Regeneron Pharmaceuticals, Tarrytown, NY, United States of America
| | | | - Gabriela G. Loots
- Lawrence Livermore National Laboratories, Physical and Life Sciences Directorate, Livermore, CA, United States of America
- UC Merced, School of Natural Sciences, Merced, CA, United States of America
- * E-mail:
| |
Collapse
|
189
|
Taketomi T, Onimura T, Yoshiga D, Muratsu D, Sanui T, Fukuda T, Kusukawa J, Nakamura S. Sprouty2 is involved in the control of osteoblast proliferation and differentiation through the FGF and BMP signaling pathways. Cell Biol Int 2017; 42:1106-1114. [PMID: 28921936 DOI: 10.1002/cbin.10876] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 09/14/2017] [Indexed: 12/12/2022]
Abstract
Fibroblast growth factor (FGF) and bone morphogenetic protein (BMP) play essential roles in bone formation and osteoblast activity through the extracellular signal-regulated kinase 1/2 (ERK1/2) and Smad pathways. Sprouty family members are intracellular inhibitors of the FGF signaling pathway, and four orthologs of Sprouty have been identified in mammals. In vivo analyses have revealed that Sprouty2 is associated with bone formation. However, the mechanism by which the Sprouty family controls bone formation has not been clarified. In this study, we investigated the involvement of Sprouty2 in osteoblast proliferation and differentiation. We examined Sprouty2 expression in MC3T3-E1 cells, and found that high levels of Sprouty2 expression were induced by basic FGF stimulation. Overexpression of Sprouty2 in MC3T3-E1 cells resulted in suppressed proliferation compared with control cells. Sprouty2 negatively regulated the phosphorylation of ERK1/2 after basic FGF stimulation, and of Smad1/5/8 after BMP stimulation. Furthermore, Sprouty2 suppressed the expression of osterix, alkaline phosphatase, and osteocalcin mRNA, which are markers of osteoblast differentiation. Additionally, Sprouty2 inhibited osteoblast matrix mineralization. These results suggest that Sprouty2 is involved in the control of osteoblast proliferation and differentiation by downregulating the FGF-ERK1/2 and BMP-Smad pathways, and suppresses the induction of markers of osteoblast differentiation.
Collapse
Affiliation(s)
- Takaharu Taketomi
- Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Tomohiro Onimura
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Daigo Yoshiga
- Division of Oral and Maxillofacial Reconstructive Surgery, Kyushu Dental College, Kitakyushu, Fukuoka, Japan
| | - Daichi Muratsu
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Terukazu Sanui
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takao Fukuda
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Jingo Kusukawa
- Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Seiji Nakamura
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
190
|
Amirhosseini M, Madsen RV, Escott KJ, Bostrom MP, Ross FP, Fahlgren A. GSK-3β inhibition suppresses instability-induced osteolysis by a dual action on osteoblast and osteoclast differentiation. J Cell Physiol 2017; 233:2398-2408. [PMID: 28731198 DOI: 10.1002/jcp.26111] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/20/2017] [Indexed: 01/17/2023]
Abstract
Currently, there are no medications available to treat aseptic loosening of orthopedic implants. Using osteoprotegerin fusion protein (OPG-Fc), we previously blocked instability-induced osteoclast differentiation and peri-prosthetic osteolysis. Wnt/β-catenin signaling, which regulates OPG secretion from osteoblasts, also modulates the bone tissue response to mechanical loading. We hypothesized that activating Wnt/β-catenin signaling by inhibiting glycogen synthase kinase-3β (GSK-3β) would reduce instability-induced bone loss through regulation of both osteoblast and osteoclast differentiation. We examined effects of GSK-3β inhibition on regulation of RANKL and OPG in a rat model of mechanical instability-induced peri-implant osteolysis. The rats were treated daily with a GSK-3β inhibitor, AR28 (20 mg/kg bw), for up to 5 days. Bone tissue and blood serum were assessed by qRT-PCR, immunohistochemistry, and ELISA on days 3 and 5, and by micro-CT on day 5. After 3 days of treatment with AR28, mRNA levels of β-catenin, Runx2, Osterix, Col1α1, and ALP were increased leading to higher osteoblast numbers compared to vehicle-treated animals. BMP-2 and Wnt16 mRNA levels were downregulated by mechanical instability and this was rescued by GSK-3β inhibition. Osteoclast numbers were decreased significantly after 3 days of GSK-3β inhibition, which correlated with enhanced OPG mRNA expression. This was accompanied by decreased serum levels of TRAP5b on days 3 and 5. Treatment with AR28 upregulated osteoblast differentiation, while osteoclastogenesis was blunted, leading to increased bone mass by day 5. These data suggest that GSK-3β inactivation suppresses osteolysis through regulating both osteoblast and osteoclast differentiation in a rat model of instability-induced osteolysis.
Collapse
Affiliation(s)
- Mehdi Amirhosseini
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Rune V Madsen
- Adult Reconstruction and Joint Replacement Service, Hospital for Special Surgery, New York, New York
| | - K Jane Escott
- Scientific Partnering & Alliances, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Melbourn, UK
| | - Mathias P Bostrom
- Adult Reconstruction and Joint Replacement Service, Hospital for Special Surgery, New York, New York
| | - F Patrick Ross
- Adult Reconstruction and Joint Replacement Service, Hospital for Special Surgery, New York, New York
| | - Anna Fahlgren
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
191
|
Li F, Li Q, Huang X, Wang Y, Ge C, Qi Y, Guo W, Sun H. Psoralen stimulates osteoblast proliferation through the activation of nuclear factor-κB-mitogen-activated protein kinase signaling. Exp Ther Med 2017; 14:2385-2391. [PMID: 28962172 PMCID: PMC5609190 DOI: 10.3892/etm.2017.4771] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 03/23/2017] [Indexed: 12/31/2022] Open
Abstract
Osteoporosis is a systemic skeletal disease that leads to increased bone fragility and susceptibility to fracture. Approximately 50% of postmenopausal women develop osteoporosis as a result of postmenopausal estrogen deficiency. To reduce fractures related to osteoporosis in women, previous studies have focused on therapeutic strategies that aim to increase bone formation or decrease bone resorption. However, pharmacological agents that aim to improve bone fracture susceptibility exhibit side effects. Current studies are investigating natural alternatives that possess the benefits of selective estrogen receptor modulators (SERMs) without the adverse effects. Recent studies have indicated that phytoestrogen may be an ideal natural SERM for the treatment of osteoporosis. In Chinese herbal medicine, psoralen, as the predominant substance of Psoralea corylifolia, is considered to be a phytoestrogen and is used as a remedy for osteoporosis. A number of studies have demonstrated the efficacy of psoralen in bone formation. However, the pathways and underlying molecular mechanisms that participate in psoralen-induced osteoblast formation are not well understood. In the present study, hFOB1.19 cells were treated with psoralen at different concentrations (0, 5, 10, 15 and 20 µM) for 0, 24, 36, 48 and 72 h, respectively. Reverse transcription-quantitative polymerase chain reaction and western blot assays were performed to detect glucose transporter 3 (GLUT3) expression. A cell counting kit-8 assay was used to analyze cell proliferation. In addition the effects of mitogen activated protein kinase inhibitors on extracellular signal-regulated kinase (ERK), phosphorylated (p)-ERK, p38, p-p38, c-Jun N-terminal kinase (JNK) and p-JNK expressions and cell proliferation were measured, as was the effect of nuclear factor (NF)-κB inhibitor on P65 and GLUT3 expressions and cell proliferation. The results indicated that psoralen stimulates hFOB1.19 cell proliferation in a dose-dependent manner (P<0.05). Phospho-ERK, p38 and JNK were markedly increased by psoralen compared with the control group (P<0.05), and the specific inhibitors of ERK (SCH772984), p38 (SB203580) and JNK (SP600125) reversed the stimulatory effects of psoralen on signal marker phosphorylation (P<0.05). The rate of psoralen-induced cell proliferation was significantly suppressed by inhibitors of ERK, JNK and p38 compared with psoralen treatment alone (P<0.05). In addition, psoralen stimulated osteoblast proliferation via the NF-κB signaling pathway. Therefore, the present findings suggest that psoralen may be a potential natural alternative to SERMs in the treatment of osteoporosis and fractures.
Collapse
Affiliation(s)
- Feimeng Li
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Qihuo Li
- Fourth Department of Orthopedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Xiaoqing Huang
- Department of Chinese Medicine, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Yunting Wang
- Fourth Department of Orthopedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Chana Ge
- Fourth Department of Orthopedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Yong Qi
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Wei Guo
- Fourth Department of Orthopedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Hongtao Sun
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| |
Collapse
|
192
|
Dohle E, El Bagdadi K, Sader R, Choukroun J, James Kirkpatrick C, Ghanaati S. Platelet-rich fibrin-based matrices to improve angiogenesis in an in vitro co-culture model for bone tissue engineering. J Tissue Eng Regen Med 2017; 12:598-610. [PMID: 28509340 PMCID: PMC5888144 DOI: 10.1002/term.2475] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 12/19/2022]
Abstract
In the context of prevascularization strategies for tissue‐engineering purposes, co‐culture systems consisting of outgrowth endothelial cells (OECs) and primary osteoblasts (pOBs) have been established as a promising in vitro tool to study regeneration mechanisms and to identify factors that might positively influence repair processes such as wound healing or angiogenesis. The development of autologous injectable platelet‐rich fibrin (PRF), which can be generated from peripheral blood in a minimal invasive procedure, fulfils several requirements for clinically applicable cell‐based tissue‐engineering strategies. During this study, the established co‐culture system of OECs and pOBs was mixed with injectable PRF and was cultivated in vitro for 24 h or 7 days. The aim of this study was to analyse whether PRF might have a positive effect on wound healing processes and angiogenic activation of OECs in the co‐culture with regard to proinflammatory factors, adhesion molecules and proangiogenic growth factor expression. Histological cell detection revealed the formation of lumina and microvessel‐like structures in the PRF/co‐culture complexes after 7 days of complex cultivation. Interestingly, the angiogenic activation of OECs was accompanied by an upregulation of wound healing‐associated factors, as well as by a higher expression of the proangiogenic factor vascular endothelial growth factor, which was evaluated both on the mRNA level as well as on the protein level. Thus, PRF might positively influence wound healing processes, in particular angiogenesis, in the in vitro co‐culture, making autologous PRF‐based matrices a beneficial therapeutic tool for tissue‐engineering purposes by simply profiting from the PRF, which contains blood plasma, platelets and leukocytes.
Collapse
Affiliation(s)
- Eva Dohle
- FORM, Frankfurt Oral Regenerative Medicine, Clinic for Maxillofacial and Plastic Surgery, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Karima El Bagdadi
- FORM, Frankfurt Oral Regenerative Medicine, Clinic for Maxillofacial and Plastic Surgery, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Robert Sader
- FORM, Frankfurt Oral Regenerative Medicine, Clinic for Maxillofacial and Plastic Surgery, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Joseph Choukroun
- FORM, Frankfurt Oral Regenerative Medicine, Clinic for Maxillofacial and Plastic Surgery, Johann Wolfgang Goethe University, Frankfurt am Main, Germany.,Pain Therapy Center, Nice, France
| | - C James Kirkpatrick
- FORM, Frankfurt Oral Regenerative Medicine, Clinic for Maxillofacial and Plastic Surgery, Johann Wolfgang Goethe University, Frankfurt am Main, Germany.,Department of Biomaterials, Gothenburg, Sweden
| | - Shahram Ghanaati
- FORM, Frankfurt Oral Regenerative Medicine, Clinic for Maxillofacial and Plastic Surgery, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
193
|
Wehmeyer C, Pap T, Buckley CD, Naylor AJ. The role of stromal cells in inflammatory bone loss. Clin Exp Immunol 2017; 189:1-11. [PMID: 28419440 PMCID: PMC5461090 DOI: 10.1111/cei.12979] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2017] [Indexed: 12/26/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation, local and systemic bone loss and a lack of compensatory bone repair. Fibroblast-like synoviocytes (FLS) are the most abundant cells of the stroma and a key population in autoimmune diseases such as RA. An increasing body of evidence suggests that these cells play not only an important role in chronic inflammation and synovial hyperplasia, but also impact bone remodelling. Under inflammatory conditions FLS release inflammatory cytokines, regulate bone destruction and formation and communicate with immune cells to control bone homeostasis. Other stromal cells, such as osteoblasts and terminally differentiated osteoblasts, termed osteocytes, are also involved in the regulation of bone homeostasis and are dysregulated during inflammation. This review highlights our current understanding of how stromal cells influence the balance between bone formation and bone destruction. Increasing our understanding of these processes is critical to enable the development of novel therapeutic strategies with which to treat bone loss in RA.
Collapse
Affiliation(s)
- C. Wehmeyer
- Institute of Inflammation and Ageing (IIA), University of Birmingham, Queen Elizabeth HospitalBirminghamUK
| | - T. Pap
- Institute of Experimental Musculoskeletal Medicine, University Hospital MuensterMuensterGermany
| | - C. D. Buckley
- Institute of Inflammation and Ageing (IIA), University of Birmingham, Queen Elizabeth HospitalBirminghamUK
| | - A. J. Naylor
- Institute of Inflammation and Ageing (IIA), University of Birmingham, Queen Elizabeth HospitalBirminghamUK
| |
Collapse
|
194
|
Qiao R, Zhong R, Chang Q, Teng J, Pei J, Han B, Chu T. Serum dickkopf-1 as a clinical and prognostic factor in non-small cell lung cancer patients with bone metastases. Oncotarget 2017; 8:79469-79479. [PMID: 29108326 PMCID: PMC5668059 DOI: 10.18632/oncotarget.18446] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/23/2017] [Indexed: 12/18/2022] Open
Abstract
Background The study was designed to evaluate the association between serum dickkopf-1 (DKK1) and non-small cell lung cancer (NSCLC) bone metastases. Materials and Methods Serum DKK1 levels were quantified in 470 NSCLC patients, 140 with osseous metastases, 178 with extraosseous metastases, and 152 with early stage in complete remission. The Receiver Operating Characteristic (ROC) curve enabled us to identify a threshold value to distinguish patients with bone metastases. Results Serum DKK1 levels in patients with osseous metastases were significantly higher than in the other 2 groups (P < 0.001). ROC curves showed that the optimum cutoff was 311.8 pg/ml (area under curve 0.791, 95% confidence interval 0.739–0.843, sensitivity 77.1% and specificity 71.4%). Of interest, serum DKK1 correlated with the number of bone lesions (P = 0.042) and associated with the poor survival in NSCLC patients with osseous metastases (P = 0.029). Conclusions Our data shows that serum DKK1 can be used for the detection of NSCLC bone metastases. More importantly this is the first report to show that serum DKK1 is a good predictor of poor prognosis in NSCLC patients with bone metastases.
Collapse
Affiliation(s)
- Rong Qiao
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Runbo Zhong
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Qing Chang
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Jiajun Teng
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Jun Pei
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Baohui Han
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Tianqing Chu
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| |
Collapse
|
195
|
Wang F, Zhao Y, Liu Y, Yu P, Yu Z, Wang J, Xue C. Peptides from Antarctic krill (Euphausia superba
) ameliorate senile osteoporosis via activating osteogenesis related BMP2/Smads and Wnt/β-catenin pathway. J Food Biochem 2017. [DOI: 10.1111/jfbc.12381] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fei Wang
- College of Food Science and Engineering; Ocean University of China; Qingdao Shandong Province 266003 China
| | - Yanlei Zhao
- College of Food Science and Engineering; Ocean University of China; Qingdao Shandong Province 266003 China
| | - Yuntao Liu
- Shandong Oriental Ocean Sci-tech Co., Ltd.; Yantai Shandong Province 264003 China
| | - Peng Yu
- College of Food Science and Engineering; Ocean University of China; Qingdao Shandong Province 266003 China
| | - Zhe Yu
- College of Food Science and Engineering; Ocean University of China; Qingdao Shandong Province 266003 China
| | - Jingfeng Wang
- College of Food Science and Engineering; Ocean University of China; Qingdao Shandong Province 266003 China
| | - Changhu Xue
- College of Food Science and Engineering; Ocean University of China; Qingdao Shandong Province 266003 China
| |
Collapse
|
196
|
Bayraktar S, Jungbluth P, Deenen R, Grassmann J, Schneppendahl J, Eschbach D, Scholz A, Windolf J, Suschek CV, Grotheer V. Molecular- and microarray-based analysis of diversity among resting and osteogenically induced porcine mesenchymal stromal cells of several tissue origin. J Tissue Eng Regen Med 2017; 12:114-128. [PMID: 27966263 PMCID: PMC5811815 DOI: 10.1002/term.2375] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 11/12/2016] [Accepted: 12/06/2016] [Indexed: 12/25/2022]
Abstract
Mesenchymal stromal cells (MSCs) play a pivotal role in modern therapeutic approaches in bone‐healing disorders. Although bone marrow‐derived MSCs are most frequently used, the knowledge that many other adult tissues represent promising sources for potent MSCs has gained acceptance. In the present study, the osteogenic differentiation potential of porcine skin fibroblasts (FBs), as well as bone marrow‐ (BMSCs), adipose tissue‐ (ASCs) and dental pulp‐derived stromal cells (DSCs) were evaluated. However, additional application of BMP‐2 significantly elevated the delayed osteogenic differentiation capacity of ASC and FB cultures, and in DSC cultures the supplementation of platelet‐rich plasma increased osteogenic differentiation potential to a comparable level of the good differentiable BMSCs. Furthermore, microarray gene expression performed in an exemplary manner for ASCs and BMSCs revealed that ASCs and BMSCs use different gene expression patterns for osteogenic differentiation under standard media conditions, as diverse MSCs are imprinted dependent from their tissue niche. However, after increasing the differentiation potential of ASCs to a comparable level as shown in BMSCs, a small subset of identical key molecules was used to differentiate in the osteogenic lineage. Until now, the importance of identified genes seems to be underestimated for osteogenic differentiation. Apparently, the regulation of transmembrane protein 229A, interleukin‐33 and the fibroblast growth factor receptor‐2 in the early phase of osteogenic differentiation is needed for optimum results. Based on these results, bone regeneration strategies of MSCs have to be adjusted, and in vivo studies on the osteogenic capacities of the different types of MCSs are warranted. Copyright © 2016 The Authors Tissue Engineering and Regenerative Medicine published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Samet Bayraktar
- Department of Trauma and Hand Surgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Pascal Jungbluth
- Department of Trauma and Hand Surgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - René Deenen
- Biological and Medical Research Center (BMFZ), Genomics and Transcriptomics Laboratory (GTL), Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jan Grassmann
- Department of Trauma and Hand Surgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Johannes Schneppendahl
- Department of Trauma and Hand Surgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Daphne Eschbach
- Department of Trauma-, Hand- and Reconstructive Surgery, University of Giessen and Marburg, Location Marburg, 35033, Marburg, Germany
| | - Armin Scholz
- Department of Trauma and Hand Surgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Joachim Windolf
- Department of Trauma and Hand Surgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Christoph V Suschek
- Department of Trauma and Hand Surgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Vera Grotheer
- Department of Trauma and Hand Surgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
197
|
Gao H, Zhai M, Wang P, Zhang X, Cai J, Chen X, Shen G, Luo E, Jing D. Low-level mechanical vibration enhances osteoblastogenesis via a canonical Wnt signaling-associated mechanism. Mol Med Rep 2017; 16:317-324. [DOI: 10.3892/mmr.2017.6608] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 11/23/2016] [Indexed: 11/05/2022] Open
|
198
|
Liu J, Ren X, Zhang M, Lei Y, Chen Y, He H. Roles of Wnt3a and Dkk1 in experimental periodontitis. J Dent Sci 2017; 12:220-225. [PMID: 30895054 PMCID: PMC6400003 DOI: 10.1016/j.jds.2016.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 11/09/2016] [Accepted: 11/14/2016] [Indexed: 12/20/2022] Open
Abstract
Background/purpose Periodontitis is an inflammatory, destructive disease caused by periodontal bacteria, and its molecular mechanism remains unclear. The aims of this study are to evaluate the expressions of Wnt3a and Dkk1 in experimental periodontitis (EP) and preliminarily explore their roles in periodontal diseases. Materials and methods A total of 64 six-week-old male Sprague–Dawley rats were randomly divided into a normal group and an EP group. The EP group was prepared by using silk ligature combined with intraoral bacteria inoculation. To assess the periodontal inflammation and bone destruction extent, hematoxylin and eosin staining and tartrate-resistant acid phosphatase staining was performed 2 weeks, 4 weeks, and 6 weeks after the modeling, respectively, and immunohistochemistry and enzyme-linked immunosorbent assay were also performed to detect the changes of Wnt3a and Dkk1 in periodontal tissue and plasma. Results Wnt3a expression was significantly decreased in the EP group when compared with the normal group (P < 0.05). Meanwhile, Dkk1 expression was significantly increased in the EP group when compared with the normal group (P < 0.05). Conclusion The expression of Wnt3a and Dkk1 was well correlated with EP. It is suggested that Wnt3a and Dkk1 may be involved in periodontal diseases.
Collapse
Affiliation(s)
- Jianqi Liu
- Department of Dentistry, the Affiliated Yan'an Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xiaobin Ren
- Department of Periodontology, the Affiliated Stomatological Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Mingzhu Zhang
- Department of Periodontology, the Affiliated Stomatological Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yayan Lei
- Department of Endodontology, the Affiliated Stomatological Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yuhua Chen
- Department of Dentistry, Wuxi Mental Health Center, Jiang Su, China
| | - Hongbing He
- Department of Periodontology, the Affiliated Stomatological Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
199
|
Alteration of osteoblast arrangement via direct attack by cancer cells: New insights into bone metastasis. Sci Rep 2017; 7:44824. [PMID: 28303941 PMCID: PMC5356003 DOI: 10.1038/srep44824] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/15/2017] [Indexed: 11/09/2022] Open
Abstract
Intact bone tissue exhibits a characteristic anisotropic microstructure derived from collagen fiber alignment and the related c-axis orientation of apatite crystals, which govern the mechanical properties of bone tissue. In contrast, tumor-invaded bone exhibits a disorganized, less-aligned microstructure that results in severely disrupted mechanical function. Despite its importance both in basic principle and in therapeutic applications, the classical understanding of bone metastasis is limited to alterations in bone mass regulated by metastatic cancer cells. In this study, we demonstrate a novel mechanism underlying the disruption of bone tissue anisotropy in metastasized bone. We observed that direct attack by cancer cells on osteoblasts induces the less-organized osteoblast arrangement. Importantly, the crystallographic anisotropy of bone tissue is quantitatively determined by the level of osteoblast arrangement. Osteoblast arrangement was significantly disrupted by physical contact with cancer cells such as osteolytic melanoma B16F10, breast cancer MDA-MB-231, and osteoblastic prostate cancer MDA-PCa-2b cells. The present findings demonstrate that the abnormal arrangement of osteoblasts induced by physical contact with cancer cells facilitates the disorganized microstructure of metastasized bone.
Collapse
|
200
|
M JC, Reardon PJT, Konwarh R, Knowles JC, Mandal BB. Mimicking Hierarchical Complexity of the Osteochondral Interface Using Electrospun Silk-Bioactive Glass Composites. ACS APPLIED MATERIALS & INTERFACES 2017; 9:8000-8013. [PMID: 28181432 DOI: 10.1021/acsami.6b16590] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The anatomical complexity and slow regeneration capacity of hyaline cartilage at the osteochondral interface pose a great challenge in the repair of osteochondral defects (OCD). In this study, we utilized the processing feasibility offered by the sol derived 70S bioactive glass and silk fibroin (mulberry Bombyx mori and endemic Indian non-mulberry Antheraea assama), in fabricating a well-integrated, biomimetic scaffolding matrix with a coherent interface. Differences in surface properties such as wettability and amorphousness between the two silk groups resulted in profound variations in cell attachment and extracellular matrix protein deposition. Mechanical assessment showed that the biphasic composites exhibited both an elastic region pertinent for cartilage tissue and a stiff compression resistant region simulating the bone phase. In vitro biological studies revealed that the biphasic mats presented spatial confinement for the growth and maturation of both osteoblasts and chondrocytes, marked by increased alkaline phosphatase (ALP) activity, osteopontin (OPN), sulfated glycosaminoglycan (sGAG) and collagen secretion in the cocultured mats. The non-mulberry silk based biphasic composite mats performed better than their mulberry counterpart, as evidenced by enhanced expression levels of key cartilage and bone specific marker genes. Therefore, the developed biphasic scaffold show great promise for improving the current clinical strategies for osteochondral tissue repair.
Collapse
Affiliation(s)
- Joseph Christakiran M
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati , Guwahati 781039, Assam, India
| | - Philip J T Reardon
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London , 256 Gray's Inn Road, London WC1X 8LD, U.K
| | - Rocktotpal Konwarh
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati , Guwahati 781039, Assam, India
| | - Jonathan C Knowles
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London , 256 Gray's Inn Road, London WC1X 8LD, U.K
| | - Biman B Mandal
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati , Guwahati 781039, Assam, India
| |
Collapse
|