151
|
Ross KG, Omuro KC, Taylor MR, Munday RK, Hubert A, King RS, Zayas RM. Novel monoclonal antibodies to study tissue regeneration in planarians. BMC DEVELOPMENTAL BIOLOGY 2015; 15:2. [PMID: 25604901 PMCID: PMC4307677 DOI: 10.1186/s12861-014-0050-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 12/22/2014] [Indexed: 12/31/2022]
Abstract
Background Planarians are an attractive model organism for studying stem cell-based regeneration due to their ability to replace all of their tissues from a population of adult stem cells. The molecular toolkit for planarian studies currently includes the ability to study gene function using RNA interference (RNAi) and observe gene expression via in situ hybridizations. However, there are few antibodies available to visualize protein expression, which would greatly enhance analysis of RNAi experiments as well as allow further characterization of planarian cell populations using immunocytochemistry and other immunological techniques. Thus, additional, easy-to-use, and widely available monoclonal antibodies would be advantageous to study regeneration in planarians. Results We have created seven monoclonal antibodies by inoculating mice with formaldehyde-fixed cells isolated from dissociated 3-day regeneration blastemas. These monoclonal antibodies can be used to label muscle fibers, axonal projections in the central and peripheral nervous systems, two populations of intestinal cells, ciliated cells, a subset of neoblast progeny, and discrete cells within the central nervous system as well as the regeneration blastema. We have tested these antibodies using eight variations of a formaldehyde-based fixation protocol and determined reliable protocols for immunolabeling whole planarians with each antibody. We found that labeling efficiency for each antibody varies greatly depending on the addition or removal of tissue processing steps that are used for in situ hybridization or immunolabeling techniques. Our experiments show that a subset of the antibodies can be used alongside markers commonly used in planarian research, including anti-SYNAPSIN and anti-SMEDWI, or following whole-mount in situ hybridization experiments. Conclusions The monoclonal antibodies described in this paper will be a valuable resource for planarian research. These antibodies have the potential to be used to better understand planarian biology and to characterize phenotypes following RNAi experiments. In addition, we present alterations to fixation protocols and demonstrate how these changes can increase the labeling efficiencies of antibodies used to stain whole planarians. Electronic supplementary material The online version of this article (doi:10.1186/s12861-014-0050-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kelly G Ross
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA.
| | - Kerilyn C Omuro
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA.
| | - Matthew R Taylor
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA.
| | - Roma K Munday
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA.
| | - Amy Hubert
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA. .,Present address: Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, 62026, USA.
| | - Ryan S King
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., Urbana, IL, 61801, USA. .,Present address: Department of Biology, St. Norbert College, De Pere, WI, 54115, USA.
| | - Ricardo M Zayas
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA.
| |
Collapse
|
152
|
Wheeler NJ, Agbedanu PN, Kimber MJ, Ribeiro P, Day TA, Zamanian M. Functional analysis of Girardia tigrina transcriptome seeds pipeline for anthelmintic target discovery. Parasit Vectors 2015; 8:34. [PMID: 25600302 PMCID: PMC4304616 DOI: 10.1186/s13071-014-0622-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/23/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neglected diseases caused by helminth infections impose a massive hindrance to progress in the developing world. While basic research on parasitic flatworms (platyhelminths) continues to expand, researchers have yet to broadly adopt a free-living model to complement the study of these important parasites. METHODS We report the high-coverage sequencing (RNA-Seq) and assembly of the transcriptome of the planarian Girardia tigrina across a set of dynamic conditions. The assembly was annotated and extensive orthology analysis was used to seed a pipeline for the rational prioritization and validation of putative anthelmintic targets. A small number of targets conserved between parasitic and free-living flatworms were comparatively interrogated. RESULTS 240 million paired-end reads were assembled de novo to produce a strictly filtered predicted proteome consisting of over 22,000 proteins. Gene Ontology annotations were extended to 16,467 proteins. 2,693 sequences were identified in orthology groups spanning flukes, tapeworms and planaria, with 441 highlighted as belonging to druggable protein families. Chemical inhibitors were used on three targets in pharmacological screens using both planaria and schistosomula, revealing distinct motility phenotypes that were shown to correlate with planarian RNAi phenotypes. CONCLUSIONS This work provides the first comprehensive and annotated sequence resource for the model planarian G. tigrina, alongside a prioritized list of candidate drug targets conserved among parasitic and free-living flatworms. As proof of principle, we show that a simple RNAi and pharmacology pipeline in the more convenient planarian model system can inform parasite biology and serve as an efficient screening tool for the identification of lucrative anthelmintic targets.
Collapse
Affiliation(s)
- Nicolas J Wheeler
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50010, USA.
| | - Prince N Agbedanu
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50010, USA.
| | - Michael J Kimber
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50010, USA.
| | - Paula Ribeiro
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, QC, H9X 3V9, Canada.
| | - Tim A Day
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50010, USA.
| | - Mostafa Zamanian
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50010, USA. .,Institute of Parasitology, McGill University, Ste. Anne de Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|
153
|
Thermosensory signaling by TRPM is processed by brain serotonergic neurons to produce planarian thermotaxis. J Neurosci 2015; 34:15701-14. [PMID: 25411498 DOI: 10.1523/jneurosci.5379-13.2014] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
For most organisms, sensitive recognition of even slight changes in environmental temperature is essential for adjusting their behavioral strategies to ensure homeostasis and survival. However, much remains to be understood about the molecular and cellular processes that regulate thermosensation and the corresponding behavioral responses. Planarians display clear thermotaxis, although they have a relatively simple brain. Here, we devised a quantitative thermotaxis assay and unraveled a neural pathway involved in planarian thermotaxis by combinatory behavioral assays and RNAi analysis. We found that thermosensory neurons that expressed a planarian Dugesia japonica homolog of the Transient Receptor Potential Melastatin family a (DjTRPMa) gene were required for the thermotaxis. Interestingly, although these thermosensory neurons are distributed throughout their body, planarians with a dysfunctional brain due to regeneration-dependent conditional gene knockdown (Readyknock) of the synaptotagmin gene completely lost their thermotactic behavior. These results suggest that brain function is required as a central processor for the thermosensory response. Therefore, we investigated the type(s) of brain neurons involved in processing the thermal signals by gene knockdown of limiting enzymes for neurotransmitter biosynthesis in the brain. We found that serotonergic neurons with dendrites that were elongated toward DjTRPMa-expressing thermosensory neurons might be required for the processing of signals from thermosensory neurons that results in thermotaxis. These results suggest that serotonergic neurons in the brain may interact with thermosensory neurons activated by TRPM ion channels to produce thermotaxis in planarians.
Collapse
|
154
|
Jékely G, Paps J, Nielsen C. The phylogenetic position of ctenophores and the origin(s) of nervous systems. EvoDevo 2015; 6:1. [PMID: 25905000 PMCID: PMC4406211 DOI: 10.1186/2041-9139-6-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/17/2014] [Indexed: 12/19/2022] Open
Abstract
Ctenophores have traditionally been treated as eumetazoans, but some recent whole genome studies have revived the idea that they are, rather, the sister group to all other metazoans. This deep branching position implies either that nervous systems have evolved twice, in Ctenophora and in Eumetazoa, or that an ancestral metazoan nervous system has been lost in sponges and placozoans. We caution, however, that phylogenetic-tree construction artifacts may have placed ctenophores too deep in the metazoan tree. We discuss nervous system origins under these alternative phylogenies and in light of comparative data of ctenophore and eumetazoan nervous systems. We argue that characters like neuropeptide signaling, ciliary photoreceptors, gap junctions and presynaptic molecules are consistent with a shared ancestry of nervous systems. However, if ctenophores are the sister group to all other metazoans, this ancestral nervous system was likely very simple. Further studies are needed to resolve the deep phylogeny of metazoans and to have a better understanding of the early steps of nervous system evolution.
Collapse
Affiliation(s)
- Gáspár Jékely
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Jordi Paps
- Department of Zoology, University of Oxford, South Parks Rd, Oxford, OX13PS UK
| | - Claus Nielsen
- The Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| |
Collapse
|
155
|
Forsthoefel DJ, Waters FA, Newmark PA. Generation of cell type-specific monoclonal antibodies for the planarian and optimization of sample processing for immunolabeling. BMC DEVELOPMENTAL BIOLOGY 2014; 14:45. [PMID: 25528559 PMCID: PMC4299570 DOI: 10.1186/s12861-014-0045-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 12/10/2014] [Indexed: 12/16/2022]
Abstract
BACKGROUND Efforts to elucidate the cellular and molecular mechanisms of regeneration have required the application of methods to detect specific cell types and tissues in a growing cohort of experimental animal models. For example, in the planarian Schmidtea mediterranea, substantial improvements to nucleic acid hybridization and electron microscopy protocols have facilitated the visualization of regenerative events at the cellular level. By contrast, immunological resources have been slower to emerge. Specifically, the repertoire of antibodies recognizing planarian antigens remains limited, and a more systematic approach is needed to evaluate the effects of processing steps required during sample preparation for immunolabeling. RESULTS To address these issues and to facilitate studies of planarian digestive system regeneration, we conducted a monoclonal antibody (mAb) screen using phagocytic intestinal cells purified from the digestive tracts of living planarians as immunogens. This approach yielded ten antibodies that recognized intestinal epitopes, as well as markers for the central nervous system, musculature, secretory cells, and epidermis. In order to improve signal intensity and reduce non-specific background for a subset of mAbs, we evaluated the effects of fixation and other steps during sample processing. We found that fixative choice, treatments to remove mucus and bleach pigment, as well as methods for tissue permeabilization and antigen retrieval profoundly influenced labeling by individual antibodies. These experiments led to the development of a step-by-step workflow for determining optimal specimen preparation for labeling whole planarians as well as unbleached histological sections. CONCLUSIONS We generated a collection of monoclonal antibodies recognizing the planarian intestine and other tissues; these antibodies will facilitate studies of planarian tissue morphogenesis. We also developed a protocol for optimizing specimen processing that will accelerate future efforts to generate planarian-specific antibodies, and to extend functional genetic studies of regeneration to post-transcriptional aspects of gene expression, such as protein localization or modification. Our efforts demonstrate the importance of systematically testing multiple approaches to species-specific idiosyncracies, such as mucus removal and pigment bleaching, and may serve as a template for the development of immunological resources in other emerging model organisms.
Collapse
Affiliation(s)
- David J Forsthoefel
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, B107 Chemical and Life Sciences Laboratory, 601 S. Goodwin Ave., Urbana, IL, 61801, USA.
| | - Forrest A Waters
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, B107 Chemical and Life Sciences Laboratory, 601 S. Goodwin Ave., Urbana, IL, 61801, USA.
| | - Phillip A Newmark
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, B107 Chemical and Life Sciences Laboratory, 601 S. Goodwin Ave., Urbana, IL, 61801, USA.
| |
Collapse
|
156
|
Cowles MW, Omuro KC, Stanley BN, Quintanilla CG, Zayas RM. COE loss-of-function analysis reveals a genetic program underlying maintenance and regeneration of the nervous system in planarians. PLoS Genet 2014; 10:e1004746. [PMID: 25356635 PMCID: PMC4214590 DOI: 10.1371/journal.pgen.1004746] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 09/10/2014] [Indexed: 12/17/2022] Open
Abstract
Members of the COE family of transcription factors are required for central nervous system (CNS) development. However, the function of COE in the post-embryonic CNS remains largely unknown. An excellent model for investigating gene function in the adult CNS is the freshwater planarian. This animal is capable of regenerating neurons from an adult pluripotent stem cell population and regaining normal function. We previously showed that planarian coe is expressed in differentiating and mature neurons and that its function is required for proper CNS regeneration. Here, we show that coe is essential to maintain nervous system architecture and patterning in intact (uninjured) planarians. We took advantage of the robust phenotype in intact animals to investigate the genetic programs coe regulates in the CNS. We compared the transcriptional profiles of control and coe RNAi planarians using RNA sequencing and identified approximately 900 differentially expressed genes in coe knockdown animals, including 397 downregulated genes that were enriched for nervous system functional annotations. Next, we validated a subset of the downregulated transcripts by analyzing their expression in coe-deficient planarians and testing if the mRNAs could be detected in coe+ cells. These experiments revealed novel candidate targets of coe in the CNS such as ion channel, neuropeptide, and neurotransmitter genes. Finally, to determine if loss of any of the validated transcripts underscores the coe knockdown phenotype, we knocked down their expression by RNAi and uncovered a set of coe-regulated genes implicated in CNS regeneration and patterning, including orthologs of sodium channel alpha-subunit and pou4. Our study broadens the knowledge of gene expression programs regulated by COE that are required for maintenance of neural subtypes and nervous system architecture in adult animals. COE transcription factors are conserved across widely divergent animals and are crucial for organismal development. COE genes also play roles in adult animals and have been implicated in central nervous system (CNS) diseases; however, the function of COE in the post-embryonic CNS remains poorly understood. Planarian regeneration provides an excellent model to study the function of transcription factors in cell differentiation and in terminally differentiated cells. In planarians, coe is expressed in differentiating and mature neurons, and its function is required for CNS regeneration. In this study, we show that coe is required to maintain structure and function of the CNS in uninjured planarians. We took advantage of this phenotype to identify genes regulated by coe by comparing global gene expression changes between control and coe mRNA-deficient planarians. This approach revealed downregulated genes downstream of coe with biological roles in CNS function. Expression analysis of downregulated genes uncovered previously unknown candidate targets of coe in the CNS. Furthermore, functional analysis of downstream targets identified coe-regulated genes required for CNS regeneration. These results demonstrate that the roles of COE in stem cell specification and neuronal function are active and indispensable during CNS renewal in adult animals.
Collapse
Affiliation(s)
- Martis W. Cowles
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Kerilyn C. Omuro
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Brianna N. Stanley
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Carlo G. Quintanilla
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Ricardo M. Zayas
- Department of Biology, San Diego State University, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
157
|
A lophotrochozoan-specific nuclear hormone receptor is required for reproductive system development in the planarian. Dev Biol 2014; 396:150-7. [PMID: 25278423 DOI: 10.1016/j.ydbio.2014.09.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/19/2014] [Accepted: 09/21/2014] [Indexed: 11/24/2022]
Abstract
Germ cells of sexually reproducing organisms receive an array of cues from somatic tissues that instruct developmental processes. Although the nature of these signals differs amongst organisms, the importance of germline-soma interactions is a common theme. Recently, peptide hormones from the nervous system have been shown to regulate germ cell development in the planarian Schmidtea mediterranea; thus, we sought to investigate a second class of hormones with a conserved role in reproduction, the lipophilic hormones. In order to study these signals, we identified a set of putative lipophilic hormone receptors, known as nuclear hormone receptors, and analyzed their functions in reproductive development. We found one gene, nhr-1, belonging to a small class of functionally uncharacterized lophotrochozoan-specific receptors, to be essential for the development of differentiated germ cells. Upon nhr-1 knockdown, germ cells in the testes and ovaries fail to mature, and remain as undifferentiated germline stem cells. Further analysis revealed that nhr-1 mRNA is expressed in the accessory reproductive organs and is required for their development, suggesting that this transcription factor functions cell non-autonomously in regulating germ cell development. Our studies identify a role for nuclear hormone receptors in planarian reproductive maturation and reinforce the significance of germline-soma interactions in sexual reproduction across metazoans.
Collapse
|
158
|
Harrath AH, Semlali A, Mansour L, Ahmed M, Sirotkin AV, Al Omar SY, Arfah M, Al Anazi MS, Alhazza IM, Nyengaard JR, Alwasel S. Infertility in the hyperplasic ovary of freshwater planarians: the role of programmed cell death. Cell Tissue Res 2014; 358:607-20. [PMID: 25107610 DOI: 10.1007/s00441-014-1971-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 07/14/2014] [Indexed: 11/28/2022]
Abstract
Ex-fissiparous planarians produce infertile cocoons or, in very rare cases, cocoons with very low fertility. Here, we describe the features of programmed cell death (PCD) occurring in the hyperplasic ovary of the ex-fissiparous freshwater planarian Dugesia arabica that may explain this infertility. Based on TEM results, we demonstrate a novel extensive co-clustering of cytoplasmic organelles, such as lysosomes and microtubules, and their fusion with autophagosomes during the early stage of oocyte cell death occurring through an autophagic pattern. During a later stage of cell death, the generation of apoptotic vesicles in the cytoplasm can be observed. The immunohistochemical labeling supports the ultrastructural results because it has been shown that the proapoptotic protein bax was more highly expressed in the hyperplasic ovary than in the normal one, whereas the anti-apoptotic protein bcl2 was slightly more highly expressed in the normal ovary compared to the hyperplasic one. TUNEL analysis of the hyperplasic ovary confirmed that the nuclei of the majority of differentiating oocytes were TUNEL-positive, whereas the nuclei of oogonia and young oocytes were TUNEL-negative; in the normal ovary, oocytes are TUNEL-negative. Considering all of these data, we suggest that the cell death mechanism of differentiating oocytes in the hyperplasic ovary of freshwater planarians is one of the most important factors that cause ex-fissiparous planarian infertility. We propose that autophagy precedes apoptosis during oogenesis, whereas apoptotic features can be observed later.
Collapse
Affiliation(s)
- Abdel Halim Harrath
- Zoology Department College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Talbot JA, Currie KW, Pearson BJ, Collins EMS. Smed-dynA-1 is a planarian nervous system specific dynamin 1 homolog required for normal locomotion. Biol Open 2014; 3:627-34. [PMID: 24950970 PMCID: PMC4154299 DOI: 10.1242/bio.20147583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dynamins are GTPases that are required for separation of vesicles from the plasma membrane and thus are key regulators of endocytosis in eukaryotic cells. This role for dynamin proteins is especially crucial for the proper function of neurons, where they ensure that synaptic vesicles and their neurotransmitter cargo are recycled in the presynaptic cell. Here we have characterized the dynamin protein family in the freshwater planarian Schmidtea mediterranea and showed that it possesses six dynamins with tissue specific expression profiles. Of these six planarian homologs, two are necessary for normal tissue homeostasis, and the loss of another, Smed-dynA-1, leads to an abnormal behavioral phenotype, which we have quantified using automated center of mass tracking. Smed-dynA-1 is primarily expressed in the planarian nervous system and is a functional homolog of the mammalian Dynamin I. The distinct expression profiles of the six dynamin genes makes planarians an interesting new system to reveal novel dynamin functions, which may be determined by their differential tissue localization. The observed complexity of neurotransmitter regulation combined with the tools of quantitative behavioral assays as a functional readout for neuronal activity, renders planarians an ideal system for studying how the nervous system controls behavior.
Collapse
Affiliation(s)
- Jared A Talbot
- Lewis-Sigler Institute for Integrative Genomics, Carl C. Icahn Laboratory, Princeton University, Princeton, NJ 08544, USA
| | - Ko W Currie
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Bret J Pearson
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Eva-Maria S Collins
- Lewis-Sigler Institute for Integrative Genomics, Carl C. Icahn Laboratory, Princeton University, Princeton, NJ 08544, USA Physics Department, University of California at San Diego, La Jolla, CA 92093, USA Division of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
160
|
Rouhana L, Weiss JA, King RS, Newmark PA. PIWI homologs mediate histone H4 mRNA localization to planarian chromatoid bodies. Development 2014; 141:2592-601. [PMID: 24903754 DOI: 10.1242/dev.101618] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The well-known regenerative abilities of planarian flatworms are attributed to a population of adult stem cells called neoblasts that proliferate and differentiate to produce all cell types. A characteristic feature of neoblasts is the presence of large cytoplasmic ribonucleoprotein granules named chromatoid bodies, the function of which has remained largely elusive. This study shows that histone mRNAs are a common component of chromatoid bodies. Our experiments also demonstrate that accumulation of histone mRNAs, which is typically restricted to the S phase of eukaryotic cells, is extended during the cell cycle of neoblasts. The planarian PIWI homologs SMEDWI-1 and SMEDWI-3 are required for proper localization of germinal histone H4 (gH4) mRNA to chromatoid bodies. The association between histone mRNA and chromatoid body components extends beyond gH4 mRNA, since transcripts of other core histone genes were also found in these structures. Additionally, piRNAs corresponding to loci of every core histone type have been identified. Altogether, this work provides evidence that links PIWI proteins and chromatoid bodies to histone mRNA regulation in planarian stem cells. The molecular similarities between neoblasts and undifferentiated cells of other organisms raise the possibility that PIWI proteins might also regulate histone mRNAs in stem cells and germ cells of other metazoans.
Collapse
Affiliation(s)
- Labib Rouhana
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., Urbana, IL 61801, USA
| | - Jennifer A Weiss
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., Urbana, IL 61801, USA
| | - Ryan S King
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., Urbana, IL 61801, USA
| | - Phillip A Newmark
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., Urbana, IL 61801, USA
| |
Collapse
|
161
|
Adler CE, Seidel CW, McKinney SA, Sánchez Alvarado A. Selective amputation of the pharynx identifies a FoxA-dependent regeneration program in planaria. eLife 2014; 3:e02238. [PMID: 24737865 PMCID: PMC3985184 DOI: 10.7554/elife.02238] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/07/2014] [Indexed: 01/08/2023] Open
Abstract
Planarian flatworms regenerate every organ after amputation. Adult pluripotent stem cells drive this ability, but how injury activates and directs stem cells into the appropriate lineages is unclear. Here we describe a single-organ regeneration assay in which ejection of the planarian pharynx is selectively induced by brief exposure of animals to sodium azide. To identify genes required for pharynx regeneration, we performed an RNAi screen of 356 genes upregulated after amputation, using successful feeding as a proxy for regeneration. We found that knockdown of 20 genes caused a wide range of regeneration phenotypes and that RNAi of the forkhead transcription factor FoxA, which is expressed in a subpopulation of stem cells, specifically inhibited regrowth of the pharynx. Selective amputation of the pharynx therefore permits the identification of genes required for organ-specific regeneration and suggests an ancient function for FoxA-dependent transcriptional programs in driving regeneration. DOI: http://dx.doi.org/10.7554/eLife.02238.001.
Collapse
Affiliation(s)
- Carolyn E Adler
- Stowers Institute for Medical Research, Kansas City, United States
| | - Chris W Seidel
- Stowers Institute for Medical Research, Kansas City, United States
| | - Sean A McKinney
- Stowers Institute for Medical Research, Kansas City, United States
| | - Alejandro Sánchez Alvarado
- Stowers Institute for Medical Research, Kansas City, United States
- Howard Hughes Medical Institute, Stowers Institute for Medical Research, Kansas City, United States
| |
Collapse
|
162
|
Chan JD, Agbedanu PN, Zamanian M, Gruba SM, Haynes CL, Day TA, Marchant JS. 'Death and axes': unexpected Ca²⁺ entry phenologs predict new anti-schistosomal agents. PLoS Pathog 2014; 10:e1003942. [PMID: 24586156 PMCID: PMC3930560 DOI: 10.1371/journal.ppat.1003942] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 01/06/2014] [Indexed: 11/19/2022] Open
Abstract
Schistosomiasis is a parasitic flatworm disease that infects 200 million people worldwide. The drug praziquantel (PZQ) is the mainstay therapy but the target of this drug remains ambiguous. While PZQ paralyses and kills parasitic schistosomes, in free-living planarians PZQ caused an unusual axis duplication during regeneration to yield two-headed animals. Here, we show that PZQ activation of a neuronal Ca2+ channel modulates opposing dopaminergic and serotonergic pathways to regulate ‘head’ structure formation. Surprisingly, compounds with efficacy for either bioaminergic network in planarians also displayed antischistosomal activity, and reciprocally, agents first identified as antischistocidal compounds caused bipolar regeneration in the planarian bioassay. These divergent outcomes (death versus axis duplication) result from the same Ca2+ entry mechanism, and comprise unexpected Ca2+ phenologs with meaningful predictive value. Surprisingly, basic research into axis patterning mechanisms provides an unexpected route for discovering novel antischistosomal agents. Schistosomiasis (Bilharzia) is one of the most burdensome parasitic worm infections, encumbering third world economies with an annual loss of several million disability-adjusted life years. The key treatment for schistosome infections is the drug praziquantel but the mechanism of action of this drug remains controversial hampering targeted development of next generation antischistosomal agents. Here we provide fresh insight into the signaling pathways engaged by PZQ, by resolving commonalities in the action of PZQ with the process of regenerative signaling in free-living planarian flatworms. A similar calcium-dependent network is engaged in both model systems, but with divergent phenotypic outcomes. This relationship provides predictive insight such that basic research on signaling pathways involved in tissue regeneration reveals novel drug leads for schistosomiasis, and reciprocally schistosomal drug screens reveal targets involved in regenerative signaling. We believe this phenology will be helpful for uncovering new antischistosomal drug targets by exploiting broader vulnerabilities within the PZQ interactome.
Collapse
Affiliation(s)
- John D. Chan
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Prince N. Agbedanu
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Mostafa Zamanian
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Sarah M. Gruba
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Christy L. Haynes
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Timothy A. Day
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Jonathan S. Marchant
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, United States of America
- The Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
163
|
Maezawa T, Tanaka H, Nakagawa H, Ono M, Aoki M, Matsumoto M, Ishida T, Horiike K, Kobayashi K. Planarian D-amino acid oxidase is involved in ovarian development during sexual induction. Mech Dev 2014; 132:69-78. [PMID: 24434168 DOI: 10.1016/j.mod.2013.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/18/2013] [Accepted: 12/28/2013] [Indexed: 10/25/2022]
Abstract
To elucidate the molecular mechanisms underlying switching from asexual to sexual reproduction, namely sexual induction, we developed an assay system for sexual induction in the hermaphroditic planarian species Dugesia ryukyuensis. Ovarian development is the initial and essential step in sexual induction, and it is followed by the formation of other reproductive organs, including the testes. Here, we report a function of a planarian D-amino acid oxidase, Dr-DAO, in the control of ovarian development in planarians. Asexual worms showed significantly more widespread expression of Dr-DAO in the parenchymal space than did sexual worms. Inhibition of Dr-DAO by RNAi caused the formation of immature ovaries. In addition, we found that feeding asexual worms 5 specific D-amino acids could induce the formation of immature ovaries that are similar to those observed in Dr-DAO knockdown worms, suggesting that Dr-DAO inhibits the formation of immature ovaries by degrading these D-amino acids. Following sexual induction, Dr-DAO expression was observed in the ovaries. The knockdown of Dr-DAO during sexual induction delayed the maturation of the other reproductive organs, as well as ovary. These findings suggest that Dr-DAO acts to promote ovarian maturation and that complete sexual induction depends on the production of mature ovaries. We propose that Dr-DAO produced in somatic cells prevents the onset of sexual induction in the asexual state, and then after sexual induction, the female germ cells specifically produce Dr-DAO to induce full maturation. Therefore, Dr-DAO produced in somatic and female germline cells may play different roles in sexual induction.
Collapse
Affiliation(s)
- Takanobu Maezawa
- Division of General Education and Research, Tsuyama National College of Technology, 624-1 Numa, Tsuyama, Okayama 708-8509, Japan
| | - Hiroyuki Tanaka
- Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Seta, Ohtsu, Shiga 520-2192, Japan
| | - Haruka Nakagawa
- Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Mizuki Ono
- Department of Biological Sciences and Informatics, Keio University, 3-14-1, Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan
| | - Manabu Aoki
- Department of Biological Sciences and Informatics, Keio University, 3-14-1, Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan
| | - Midori Matsumoto
- Department of Biological Sciences and Informatics, Keio University, 3-14-1, Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan
| | - Tetsuo Ishida
- Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Seta, Ohtsu, Shiga 520-2192, Japan
| | - Kihachiro Horiike
- Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Seta, Ohtsu, Shiga 520-2192, Japan
| | - Kazuya Kobayashi
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan.
| |
Collapse
|
164
|
Chong T, Collins JJ, Brubacher JL, Zarkower D, Newmark PA. A sex-specific transcription factor controls male identity in a simultaneous hermaphrodite. Nat Commun 2013; 4:1814. [PMID: 23652002 PMCID: PMC3674237 DOI: 10.1038/ncomms2811] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 03/26/2013] [Indexed: 12/26/2022] Open
Abstract
Evolutionary transitions between hermaphroditic and dioecious reproductive states are found in many groups of animals. To understand such transitions, it is important to characterize diverse modes of sex determination utilized by metazoans. Currently, little is known about how simultaneous hermaphrodites specify and maintain male and female organs in a single individual. Here we show that a sex-specific gene, Smed-dmd-1 encoding a predicted doublesex/male-abnormal-3 (DM) domain transcription factor, is required for specification of male germ cells in a simultaneous hermaphrodite, the planarian Schmidtea mediterranea. dmd-1 has a male-specific role in the maintenance and regeneration of the testes and male accessory reproductive organs. In addition, a homologue of dmd-1 exhibits male-specific expression in Schistosoma mansoni, a derived, dioecious flatworm. These results demonstrate conservation of the role of DM domain genes in sexual development in lophotrochozoans and suggest one means by which modulation of sex-specific pathways can drive the transition from hermaphroditism to dioecy. Hermaphrodites develop and maintain male and female reproductive organs in a single individual. Chong et al. show that a DM domain transcription factor is required for male germ cell regeneration and maintains ‘maleness’ in a hermaphrodite, the planarian flatworm Schmidtea mediterranea.
Collapse
Affiliation(s)
- Tracy Chong
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 South Goodwin Avenue, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
165
|
Conzelmann M, Williams EA, Krug K, Franz-Wachtel M, Macek B, Jékely G. The neuropeptide complement of the marine annelid Platynereis dumerilii. BMC Genomics 2013; 14:906. [PMID: 24359412 PMCID: PMC3890597 DOI: 10.1186/1471-2164-14-906] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 12/17/2013] [Indexed: 11/30/2022] Open
Abstract
Background The marine annelid Platynereis dumerilii is emerging as a powerful lophotrochozoan experimental model for evolutionary developmental biology (evo-devo) and neurobiology. Recent studies revealed the presence of conserved neuropeptidergic signaling in Platynereis, including vasotocin/neurophysin, myoinhibitory peptide and opioid peptidergic systems. Despite these advances, comprehensive peptidome resources have yet to be reported. Results The present work describes the neuropeptidome of Platynereis. We established a large transcriptome resource, consisting of stage-specific next-generation sequencing datasets and 77,419 expressed sequence tags. Using this information and a combination of bioinformatic searches and mass spectrometry analyses, we increased the known proneuropeptide (pNP) complement of Platynereis to 98. Based on sequence homology to metazoan pNPs, Platynereis pNPs were grouped into ancient eumetazoan, bilaterian, protostome, lophotrochozoan, and annelid families, and pNPs only found in Platynereis. Compared to the planarian Schmidtea mediterranea, the only other lophotrochozoan with a large-scale pNP resource, Platynereis has a remarkably full complement of conserved pNPs, with 53 pNPs belonging to ancient eumetazoan or bilaterian families. Our comprehensive search strategy, combined with analyses of sequence conservation, also allowed us to define several novel lophotrochozoan and annelid pNP families. The stage-specific transcriptome datasets also allowed us to map changes in pNP expression throughout the Platynereis life cycle. Conclusion The large repertoire of conserved pNPs in Platynereis highlights the usefulness of annelids in comparative neuroendocrinology. This work establishes a reference dataset for comparative peptidomics in lophotrochozoans and provides the basis for future studies of Platynereis peptidergic signaling.
Collapse
Affiliation(s)
- Markus Conzelmann
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076, Tübingen, Germany.
| | | | | | | | | | | |
Collapse
|
166
|
Wang S, Luo X, Zhang S, Yin C, Dou Y, Cai X. Identification of putative insulin-like peptides and components of insulin signaling pathways in parasitic platyhelminths by the use of genome-wide screening. FEBS J 2013; 281:877-93. [PMID: 24286276 DOI: 10.1111/febs.12655] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/31/2013] [Accepted: 11/21/2013] [Indexed: 11/28/2022]
Abstract
No endogenous insulin-like peptides in parasitic flatworms have been reported. Insulin receptors from flukes and tapeworms have been shown to interact directly with the host-derived insulin molecule, which suggests the exploitation of host-derived insulin. In this study, a strategy of genome-wide searches followed by comprehensive analyses of strictly conserved features of the insulin family was used to demonstrate the presence of putative insulin-like peptides in the genomes of six tapeworms and two flukes. In addition, whole insulin signaling pathways were annotated on a genome-wide scale. Two putative insulin-like peptide genes in each genome of tapeworms and one insulin-like peptide gene in each genome of flukes were identified. The comprehensive analyses revealed that all of these peptides showed the common features shared by other members of the insulin family, and the phylogenetic analysis implied a putative gene duplication event in the Cestoda during the evolution of insulin-like peptide genes. The quantitative expression analysis and immunolocalization results suggested a putative role of these peptides in reproduction. Entire sets of major components of the classic insulin signaling pathway were successfully identified, suggesting that this pathway in parasitic flatworms might also regulate many other important biological activities. We believe that the identification of the insulin-like peptides gives us a better understanding of the insulin signaling pathway in these parasites, as well as host-parasite interactions.
Collapse
Affiliation(s)
- Shuai Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | | | | | | | | | | |
Collapse
|
167
|
Wang Y, Pan L, Moens CB, Appel B. Notch3 establishes brain vascular integrity by regulating pericyte number. Development 2013; 141:307-17. [PMID: 24306108 DOI: 10.1242/dev.096107] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Brain pericytes are important regulators of brain vascular integrity, permeability and blood flow. Deficiencies of brain pericytes are associated with neonatal intracranial hemorrhage in human fetuses, as well as stroke and neurodegeneration in adults. Despite the important functions of brain pericytes, the mechanisms underlying their development are not well understood and little is known about how pericyte density is regulated across the brain. The Notch signaling pathway has been implicated in pericyte development, but its exact roles remain ill defined. Here, we report an investigation of the Notch3 receptor using zebrafish as a model system. We show that zebrafish brain pericytes express notch3 and that notch3 mutant zebrafish have a deficit of brain pericytes and impaired blood-brain barrier function. Conditional loss- and gain-of-function experiments provide evidence that Notch3 signaling positively regulates brain pericyte proliferation. These findings establish a new role for Notch signaling in brain vascular development whereby Notch3 signaling promotes expansion of the brain pericyte population.
Collapse
Affiliation(s)
- Yuying Wang
- Departments of Pediatrics and Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | | | | |
Collapse
|
168
|
Kao D, Felix D, Aboobaker A. The planarian regeneration transcriptome reveals a shared but temporally shifted regulatory program between opposing head and tail scenarios. BMC Genomics 2013; 14:797. [PMID: 24238224 PMCID: PMC4046745 DOI: 10.1186/1471-2164-14-797] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 11/11/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Planarians can regenerate entire animals from a small fragment of the body. The regenerating fragment is able to create new tissues and remodel existing tissues to form a complete animal. Thus different fragments with very different starting components eventually converge on the same solution. In this study, we performed an extensive RNA-seq time-course on regenerating head and tail fragments to observe the differences and similarities of the transcriptional landscape between head and tail fragments during regeneration. RESULTS We have consolidated existing transcriptomic data for S. mediterranea to generate a high confidence set of transcripts for use in genome wide expression studies. We performed a RNA-seq time-course on regenerating head and tail fragments from 0 hours to 3 days. We found that the transcriptome profiles of head and tail regeneration were very different at the start of regeneration; however, an unexpected convergence of transcriptional profiles occurred at 48 hours when head and tail fragments are still morphologically distinct. By comparing differentially expressed transcripts at various time-points, we revealed that this divergence/convergence pattern is caused by a shared regulatory program that runs early in heads and later in tails.Additionally, we also performed RNA-seq on smed-prep(RNAi) tail fragments which ultimately fail to regenerate anterior structures. We find the gene regulation program in response to smed-prep(RNAi) to display the opposite regulatory trend compared to the previously mentioned share regulatory program during regeneration. Using annotation data and comparative approaches, we also identified a set of approximately 4,800 triclad specific transcripts that were enriched amongst the genes displaying differential expression during the regeneration time-course. CONCLUSION The regeneration transcriptome of head and tail regeneration provides us with a rich resource for investigating the global expression changes that occurs during regeneration. We show that very different regenerative scenarios utilize a shared core regenerative program. Furthermore, our consolidated transcriptome and annotations allowed us to identity triclad specific transcripts that are enriched within this core regulatory program. Our data support the hypothesis that both conserved aspects of animal developmental programs and recent evolutionarily innovations work in concert to control regeneration.
Collapse
Affiliation(s)
- Damian Kao
- />School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Daniel Felix
- />Fundación CNIC Carlos III- Centro Nacional de Investigaciones Cardiovasculares, Melchor Fernández Almagro, 3, Madrid, Código Postal 28029 Spain
| | - Aziz Aboobaker
- />Department of Zoology, University of Oxford, The Tinbergen Building, South Parks Road, Oxford, OX1 3PS UK
| |
Collapse
|
169
|
Rangiah K, Palakodeti D. Comprehensive analysis of neurotransmitters from regenerating planarian extract using an ultrahigh-performance liquid chromatography/mass spectrometry/selected reaction monitoring method. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:2439-2452. [PMID: 24097401 DOI: 10.1002/rcm.6706] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 08/01/2013] [Accepted: 08/09/2013] [Indexed: 06/02/2023]
Abstract
RATIONALE Absolute quantification of neurotransmitters (NTs) from biological systems is imperative to track how changes in concentration of active neurochemicals may affect biological behavior. A sensitive method for the absolute quantification of multiple NTs in a single method is highly needed. METHODS A stable-isotope dilution ultrahigh-performance liquid chromatography/mass spectrometry/selected reaction monitoring (UHPLC/MS/SRM) assay has been developed for a sensitive and quantitative assessment of NTs in planaria. We used this method for the simultaneous quantification of 16 NTs. All analytes showed a linear relationship between concentrations (0.78-50 ng/mL), regression coefficients higher than 0.97, accuracy (91-109%) and low coefficients of variation (CVs). The inter-day CVs for the lowest quality controls (1.56 ng/mL) were in the range between 2-11%. RESULTS The levels of most of the NTs were similar in both sexual and asexual planarians except for glutamic acid, which was about two-fold higher in asexual compared to sexual planarians. We identified high levels of serotonin and failed to detect tryptamine suggesting that the pathway essential for the conversion of tryptophan into tryptamine is absent in planarians. Interestingly, we also found high levels of dopamine and L-DOPA in regenerating planarians suggesting their possible role in regeneration. CONCLUSIONS For the first time, we developed novel methodology based on UHPLC/MS/SRM and quantified 16 NTs with high sensitivity and specificity from sexual and asexual strains of planarian Schmidtea mediterranea. This method will also have great application in quantifying various NTs with great precision in different model systems.
Collapse
Affiliation(s)
- Kannan Rangiah
- Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bangalore, 560065, India
| | | |
Collapse
|
170
|
Liu X, Zhang Y, Zhou Z, Zhao Z, Liu X. Cloning and sequence analysis of neuropeptide F from the oriental tobacco budworm Helicoverpa assulta (Guenée). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2013; 84:115-129. [PMID: 24105726 DOI: 10.1002/arch.21119] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Neuropeptide F (NPF), the invertebrate homolog of neuropeptide Y (NPY) in vertebrates, shares similarity of structure and function with NPY. However, a few NPYs were also found in some insect species. In this paper, two neuropeptide genes encoding a NPF and a NPY were cloned from a tobacco budworm Helicoverpa assulta cDNA library. The npf1 gene further produces two splicing variants of rnRNAs, i.e. npf1a (lacks the 120 bp segment) and npf1b (includes a 120 bp segment). These two splicing variants form two mature peptides, NPF1a and NPF1b by modification of transcripts. NPF and NPY co-exist in H. assulta.
Collapse
Affiliation(s)
- Xiaoguang Liu
- Department of Entomology, China Agricultural University, Beijing, China
| | | | | | | | | |
Collapse
|
171
|
Cowles MW, Brown DDR, Nisperos SV, Stanley BN, Pearson BJ, Zayas RM. Genome-wide analysis of the bHLH gene family in planarians identifies factors required for adult neurogenesis and neuronal regeneration. Development 2013; 140:4691-702. [PMID: 24173799 DOI: 10.1242/dev.098616] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In contrast to most well-studied model organisms, planarians have a remarkable ability to completely regenerate a functional nervous system from a pluripotent stem cell population. Thus, planarians provide a powerful model to identify genes required for adult neurogenesis in vivo. We analyzed the basic helix-loop-helix (bHLH) family of transcription factors, many of which are crucial for nervous system development and have been implicated in human diseases. However, their potential roles in adult neurogenesis or central nervous system (CNS) function are not well understood. We identified 44 planarian bHLH homologs, determined their patterns of expression in the animal and assessed their functions using RNAi. We found nine bHLHs expressed in stem cells and neurons that are required for CNS regeneration. Our analyses revealed that homologs of coe, hes (hesl-3) and sim label progenitors in intact planarians, and following amputation we observed an enrichment of coe(+) and sim(+) progenitors near the wound site. RNAi knockdown of coe, hesl-3 or sim led to defects in CNS regeneration, including failure of the cephalic ganglia to properly pattern and a loss of expression of distinct neuronal subtype markers. Together, these data indicate that coe, hesl-3 and sim label neural progenitor cells, which serve to generate new neurons in uninjured or regenerating animals. Our study demonstrates that this model will be useful to investigate how stem cells interpret and respond to genetic and environmental cues in the CNS and to examine the role of bHLH transcription factors in adult tissue regeneration.
Collapse
Affiliation(s)
- Martis W Cowles
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | | | | | | | | | | |
Collapse
|
172
|
Currie KW, Pearson BJ. Transcription factors lhx1/5-1 and pitx are required for the maintenance and regeneration of serotonergic neurons in planarians. Development 2013; 140:3577-88. [PMID: 23903188 DOI: 10.1242/dev.098590] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In contrast to most adult organisms, freshwater planarians can regenerate any injured body part, including their entire nervous system. This allows for the analysis of genes required for both the maintenance and regeneration of specific neural subtypes. In addition, the loss of specific neural subtypes may uncover previously unknown behavioral roles for that neural population in the context of the adult animal. Here we show that two homeodomain transcription factor homologs, Smed-lhx1/5-1 and Smed-pitx, are required for the maintenance and regeneration of serotonergic neurons in planarians. When either lhx1/5-1 or pitx was knocked down by RNA interference, the expression of multiple canonical markers for serotonergic neurons was lost. Surprisingly, the loss of serotonergic function uncovered a role for these neurons in the coordination of motile cilia on the ventral epidermis of planarians that are required for their nonmuscular gliding locomotion. Finally, we show that in addition to its requirement in serotonergic neurons, Smed-pitx is required for proper midline patterning during regeneration, when it is required for the expression of the midline-organizing molecules Smed-slit in the anterior and Smed-wnt1 in the posterior.
Collapse
Affiliation(s)
- Ko W Currie
- Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON, Canada
| | | |
Collapse
|
173
|
Wang B, Collins JJ, Newmark PA. Functional genomic characterization of neoblast-like stem cells in larval Schistosoma mansoni. eLife 2013; 2:e00768. [PMID: 23908765 PMCID: PMC3728622 DOI: 10.7554/elife.00768] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/20/2013] [Indexed: 02/06/2023] Open
Abstract
Schistosomes infect hundreds of millions of people in the developing world. Transmission of these parasites relies on a stem cell-driven, clonal expansion of larvae inside a molluscan intermediate host. How this novel asexual reproductive strategy relates to current models of stem cell maintenance and germline specification is unclear. Here, we demonstrate that this proliferative larval cell population (germinal cells) shares some molecular signatures with stem cells from diverse organisms, in particular neoblasts of planarians (free-living relatives of schistosomes). We identify two distinct germinal cell lineages that differ in their proliferation kinetics and expression of a nanos ortholog. We show that a vasa/PL10 homolog is required for proliferation and maintenance of both populations, whereas argonaute2 and a fibroblast growth factor receptor-encoding gene are required only for nanos-negative cells. Our results suggest that an ancient stem cell-based developmental program may have enabled the evolution of the complex life cycle of parasitic flatworms. DOI:http://dx.doi.org/10.7554/eLife.00768.001 Schistosomiasis—a disease caused by parasitic flatworms known as schistosomes—affects more than 200 million people worldwide, mainly in tropical regions, and in public health importance is second only to malaria (according to the World Health Organization). Chronic infection leads to damage to internal organs, and the disease is responsible for roughly 250,000 deaths each year. The schistosome parasite has a complex life cycle, and the worms are capable of infecting mammals during just one stage of this cycle. Infection occurs through contact with contaminated freshwater, with the infectious form of the parasite burrowing through skin. Once inside the body, the parasites mature into adults, before reproducing sexually and laying eggs that are excreted by their host back into the water supply. However, to generate the form of the parasite that can infect mammals, schistosomes must first infect an intermediate host, namely a freshwater snail. When the larval form of the parasite—which cannot infect mammals—enters the snail, the larvae undergo an unusual type of asexual embryogenesis. This results in thousands of parasites that are capable of infecting mammals. Studies suggest that a population of cells known as germinal cells are responsible for this transformation and replication process, but little is known about these cells at the molecular level. Here, Wang et al. report the gene expression profile of these cells in a species of schistosome, and use RNA-mediated silencing techniques to explore the functions of the genes. This analysis revealed that the germinal cells have a molecular signature similar to that of neoblasts—adult pluripotent stem cells found in free-living flatworms such as planarians. Neoblasts can develop into any cell type in the body, enabling planarians to repair or even replace damaged body parts. The similarity between neoblasts and germinal cells led Wang et al. to suggest that schistosomes may have evolved their parasitic life cycle partly by adapting a program of development based on stem cells in non-parasitic worms. DOI:http://dx.doi.org/10.7554/eLife.00768.002
Collapse
Affiliation(s)
- Bo Wang
- Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign , Urbana , United States ; Institute for Genomic Biology , University of Illinois at Urbana-Champaign , Urbana , United States
| | | | | |
Collapse
|
174
|
Restoration of anterior regeneration in a planarian with limited regenerative ability. Nature 2013; 500:77-80. [PMID: 23883929 PMCID: PMC3812084 DOI: 10.1038/nature12403] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 06/21/2013] [Indexed: 12/12/2022]
Abstract
Variability of regenerative potential among animals has long perplexed biologists. On the basis of their exceptional regenerative abilities, planarians have become important models for understanding the molecular basis of regeneration. However, planarian species with limited regenerative abilities are also found. Despite the importance of understanding the differences between closely related, regenerating and non-regenerating organisms, few studies have focused on the evolutionary loss of regeneration, and the molecular mechanisms leading to such regenerative loss remain obscure. Here we examine Procotyla fluviatilis, a planarian with restricted ability to replace missing tissues, using next-generation sequencing to define the gene expression programs active in regeneration-permissive and regeneration-deficient tissues. We found that Wnt signalling is aberrantly activated in regeneration-deficient tissues. Notably, downregulation of canonical Wnt signalling in regeneration-deficient regions restores regenerative abilities: blastemas form and new heads regenerate in tissues that normally never regenerate. This work reveals that manipulating a single signalling pathway can reverse the evolutionary loss of regenerative potential.
Collapse
|
175
|
Affiliation(s)
- James J. Collins
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Phillip A. Newmark
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
176
|
Zeng A, Li YQ, Wang C, Han XS, Li G, Wang JY, Li DS, Qin YW, Shi Y, Brewer G, Jing Q. Heterochromatin protein 1 promotes self-renewal and triggers regenerative proliferation in adult stem cells. ACTA ACUST UNITED AC 2013; 201:409-25. [PMID: 23629965 PMCID: PMC3639387 DOI: 10.1083/jcb.201207172] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Adult stem cells (ASCs) capable of self-renewal and differentiation confer the potential of tissues to regenerate damaged parts. Epigenetic regulation is essential for driving cell fate decisions by rapidly and reversibly modulating gene expression programs. However, it remains unclear how epigenetic factors elicit ASC-driven regeneration. In this paper, we report that an RNA interference screen against 205 chromatin regulators identified 12 proteins essential for ASC function and regeneration in planarians. Surprisingly, the HP1-like protein SMED-HP1-1 (HP1-1) specifically marked self-renewing, pluripotent ASCs, and HP1-1 depletion abrogated self-renewal and promoted differentiation. Upon injury, HP1-1 expression increased and elicited increased ASC expression of Mcm5 through functional association with the FACT (facilitates chromatin transcription) complex, which consequently triggered proliferation of ASCs and initiated blastema formation. Our observations uncover an epigenetic network underlying ASC regulation in planarians and reveal that an HP1 protein is a key chromatin factor controlling stem cell function. These results provide important insights into how epigenetic mechanisms orchestrate stem cell responses during tissue regeneration.
Collapse
Affiliation(s)
- An Zeng
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao-Tong University School of Medicine, 200025 Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Zhang D, Liu X, Chan JD, Marchant JS. Characterization of a flatworm inositol (1,4,5) trisphosphate receptor (IP₃R) reveals a role in reproductive physiology. Cell Calcium 2013; 53:307-14. [PMID: 23481272 PMCID: PMC3665645 DOI: 10.1016/j.ceca.2013.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 01/22/2013] [Accepted: 01/29/2013] [Indexed: 11/15/2022]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP₃Rs) are intracellular Ca²⁺ channels that elevate cytoplasmic Ca²⁺ in response to the second messenger IP3. Here, we describe the identification and in vivo functional characterization of the planarian IP₃R, the first intracellular Ca²⁺ channel to be defined in flatworms. A single IP₃R gene in Dugesia japonica encoded a 2666 amino acid protein (Dj.IP₃R) that shared well conserved structural features with vertebrate IP₃R counterparts. Expression of an NH₂-terminal Dj.IP₃R region (amino acid residues 223-585) recovered high affinity ³H-IP₃ binding (0.9±0.1 nM) which was abolished by a single point mutation of an arginine residue (R495L) important for IP₃ coordination. In situ hybridization revealed that Dj.IP₃R mRNA was most strongly expressed in the pharynx and optical nerve system as well as the reproductive system in sexualized planarians. Consistent with this observed tissue distribution, in vivo RNAi of Dj.IP₃R resulted in a decreased egg-laying behavior suggesting Dj.IP₃R plays an upstream role in planarian reproductive physiology.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Pharmacology, University of Minnesota Medical School, MN 55455, USA
| | - Xiaolong Liu
- Department of Pharmacology, University of Minnesota Medical School, MN 55455, USA
| | - John D. Chan
- Department of Pharmacology, University of Minnesota Medical School, MN 55455, USA
| | - Jonathan S. Marchant
- Department of Pharmacology, University of Minnesota Medical School, MN 55455, USA
- The Stem Cell Institute, University of Minnesota Medical School, MN 55455, USA
| |
Collapse
|
178
|
Elliott SA, Sánchez Alvarado A. The history and enduring contributions of planarians to the study of animal regeneration. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2013; 2:301-26. [PMID: 23799578 PMCID: PMC3694279 DOI: 10.1002/wdev.82] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Having an almost unlimited capacity to regenerate tissues lost to age and injury, planarians have long fascinated naturalists. In the Western hemisphere alone, their documented history spans more than 200 years. Planarians were described in the early 19th century as being 'immortal under the edge of the knife', and initial investigation of these remarkable animals was significantly influenced by studies of regeneration in other organisms and from the flourishing field of experimental embryology in the late 19th and early 20th centuries. This review strives to place the study of planarian regeneration into a broader historical context by focusing on the significance and evolution of knowledge in this field. It also synthesizes our current molecular understanding of the mechanisms of planarian regeneration uncovered since this animal's relatively recent entrance into the molecular-genetic age.
Collapse
Affiliation(s)
- Sarah A Elliott
- Howard Hughes Medical Institute and Stowers Institute for Medical Research, Kansas City, MO, USA.
| | | |
Collapse
|
179
|
Rouhana L, Weiss JA, Forsthoefel DJ, Lee H, King RS, Inoue T, Shibata N, Agata K, Newmark PA. RNA interference by feeding in vitro-synthesized double-stranded RNA to planarians: methodology and dynamics. Dev Dyn 2013; 242:718-30. [PMID: 23441014 DOI: 10.1002/dvdy.23950] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 02/13/2013] [Accepted: 02/14/2013] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The ability to assess gene function is essential for understanding biological processes. Currently, RNA interference (RNAi) is the only technique available to assess gene function in planarians, in which it has been induced by means of injection of double-stranded RNA (dsRNA), soaking, or ingestion of bacteria expressing dsRNA. RESULTS We describe a simple and robust RNAi protocol, involving in vitro synthesis of dsRNA that is fed to the planarians. Advantages of this protocol include the ability to produce dsRNA from any vector without subcloning, resolution of ambiguities in quantity and quality of input dsRNA, as well as time and ease of application. We have evaluated the logistics of inducing RNAi in planarians using this methodology in careful detail, from the ingestion and processing of dsRNA in the intestine, to timing and efficacy of knockdown in neoblasts, germline, and soma. We also present systematic comparisons of effects of amount, frequency, and mode of dsRNA delivery. CONCLUSIONS This method gives robust and reproducible results and is amenable to high-throughput studies. Overall, this RNAi methodology provides a significant advance by combining the strengths of current protocols available for dsRNA delivery in planarians and has the potential to benefit RNAi methods in other systems.
Collapse
Affiliation(s)
- Labib Rouhana
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
180
|
King RS, Newmark PA. In situ hybridization protocol for enhanced detection of gene expression in the planarian Schmidtea mediterranea. BMC DEVELOPMENTAL BIOLOGY 2013; 13:8. [PMID: 23497040 PMCID: PMC3610298 DOI: 10.1186/1471-213x-13-8] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 02/27/2013] [Indexed: 02/07/2023]
Abstract
Background The freshwater planarian Schmidtea mediterranea has emerged as a powerful model for studies of regenerative, stem cell, and germ cell biology. Whole-mount in situ hybridization (WISH) and whole-mount fluorescent in situ hybridization (FISH) are critical methods for determining gene expression patterns in planarians. While expression patterns for a number of genes have been elucidated using established protocols, determining the expression patterns for particularly low-abundance transcripts remains a challenge. Results We show here that a short bleaching step in formamide dramatically enhances signal intensity of WISH and FISH. To further improve signal sensitivity we optimized blocking conditions for multiple anti-hapten antibodies, developed a copper sulfate quenching step that virtually eliminates autofluorescence, and enhanced signal intensity through iterative rounds of tyramide signal amplification. For FISH on regenerating planarians, we employed a heat-induced antigen retrieval step that provides a better balance between permeabilization of mature tissues and preservation of regenerating tissues. We also show that azide most effectively quenches peroxidase activity between rounds of development for multicolor FISH experiments. Finally, we apply these modifications to elucidate the expression patterns of a few low-abundance transcripts. Conclusion The modifications we present here provide significant improvements in signal intensity and signal sensitivity for WISH and FISH in planarians. Additionally, these modifications might be of widespread utility for whole-mount FISH in other model organisms.
Collapse
Affiliation(s)
- Ryan S King
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 South Goodwin Avenue, Urbana, IL 61801, USA
| | | |
Collapse
|
181
|
Adult somatic stem cells in the human parasite Schistosoma mansoni. Nature 2013; 494:476-9. [PMID: 23426263 PMCID: PMC3586782 DOI: 10.1038/nature11924] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 01/18/2013] [Indexed: 12/13/2022]
Abstract
Schistosomiasis is among the most prevalent human parasitic diseases, affecting more than 200 million people worldwide1. The etiological agents of this disease are trematode flatworms (Schistosoma) that live and lay eggs within the vasculature of the host. These eggs lodge in host tissues, causing inflammatory responses that are the primary cause of morbidity. Because these parasites can live and reproduce within human hosts for decades2, elucidating the mechanisms that promote their longevity is of fundamental importance. Although adult pluripotent stem cells, called neoblasts, drive long-term homeostatic tissue maintenance in long-lived free-living flatworms3,4 (e.g., planarians), and neoblast-like cells have been described in some parasitic tapeworms5, little is known about whether similar cell types exist in any trematode species. Here, we describe a population of neoblast-like cells in the trematode Schistosoma mansoni. These cells resemble planarian neoblasts morphologically and share their ability to proliferate and differentiate into derivatives of multiple germ layers. Capitalizing on available genomic resources6,7 and RNAseq-based gene expression profiling, we find that these schistosome neoblast-like cells express a fibroblast growth factor receptor ortholog. Using RNA interference we demonstrate that this gene is required for the maintenance of these neoblast-like cells. Our observations suggest that adaptation of developmental strategies shared by free-living ancestors to modern-day schistosomes likely contributed to the success of these animals as long-lived obligate parasites. We expect that future studies deciphering the function of these neoblast-like cells will have important implications for understanding the biology of these devastating parasites.
Collapse
|
182
|
Follistatin antagonizes activin signaling and acts with notum to direct planarian head regeneration. Proc Natl Acad Sci U S A 2013; 110:1363-8. [PMID: 23297191 DOI: 10.1073/pnas.1214053110] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Animals establish their body plans in embryogenesis, but only a few animals can recapitulate this signaling milieu for regeneration after injury. In planarians, a pluripotent stem cell population and perpetual signaling of polarity axes collaborate to direct a steady replacement of cells during homeostasis and to power robust regeneration after even severe injuries. Several studies have documented the roles of conserved signaling pathways in maintaining and resetting axial polarity in planarians, but it is unclear how planarians reestablish polarity signaling centers after injury and whether these centers serve to influence identity decisions of stem cell progeny during their differentiation. Here we find that a planarian Follistatin homolog directs regeneration of anterior identity by opposing an Activin/ActR-1/Smad2/3 signaling pathway. Follistatin and Notum, a Wnt inhibitor, are mutually required to reestablish an anterior signaling center that expresses both cues. Furthermore, we show that the direction of cells down particular differentiation paths requires regeneration of this anterior signaling center. Just as its amphibian counterpart in the organizer signals body plan and cell fate during embryogenesis, planarian Follistatin promotes reestablishment of anterior polarity during regeneration and influences specification of cell types in the head and beyond.
Collapse
|
183
|
Sharma A. Transgenerational epigenetic inheritance: focus on soma to germline information transfer. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2012; 113:439-46. [PMID: 23257323 DOI: 10.1016/j.pbiomolbio.2012.12.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 11/30/2012] [Accepted: 12/06/2012] [Indexed: 01/29/2023]
Abstract
In trangenerational epigenetic inheritance, phenotypic information not encoded in DNA sequence is transmitted across generations. In germline-dependent mode, memory of environmental exposure in parental generation is transmitted through gametes, leading to appearance of phenotypes in the unexposed future generations. The memory is considered to be encoded in epigenetic factors like DNA methylation, histone modifications and regulatory RNAs. Environmental exposure may cause epigenetic modifications in the germline either directly or indirectly through primarily affecting the soma. The latter possibility is most intriguing because it contradicts the established dogma that hereditary information flows only from germline to soma, not in reverse. As such, identification of the factor(s) mediating soma to germline information transfer in transgenerational epigenetic inheritance would be pathbreaking. Regulatory RNAs and hormone have previously been implicated or proposed to play a role in soma to germline communication in epigenetic inheritance. This review examines the recent examples of gametogenic transgenerational inheritance in plants and animals in order to assess if evidence of regulatory RNAs and hormones as mediators of information transfer is supported. Overall, direct evidence for both mobile regulatory RNAs and hormones is found to exist in plants. In animals, although involvement of mobile RNAs seems imminent, direct evidence of RNA-mediated soma to germline information transfer in transgenerational epigenetic inheritance is yet to be obtained. Direct evidence is also lacking for hormones in animals. However, detailed examination of recently reported examples of transgenerational inheritance reveals circumstantial evidence supporting a role of hormones in information transmission.
Collapse
Affiliation(s)
- Abhay Sharma
- CSIR-Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Delhi University Campus, Mall Road, Delhi 110007, India.
| |
Collapse
|
184
|
Chan JD, Zarowiecki M, Marchant JS. Ca²⁺ channels and praziquantel: a view from the free world. Parasitol Int 2012; 62:619-28. [PMID: 23246536 DOI: 10.1016/j.parint.2012.12.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 12/06/2012] [Indexed: 01/22/2023]
Abstract
Targeting the cellular Ca(2+) channels and pumps that underpin parasite Ca(2+) homeostasis may realize novel antihelmintic agents. Indeed, the antischistosomal drug praziquantel (PZQ) is a key clinical agent that has been proposed to work in this manner. Heterologous expression data has implicated an action of PZQ on voltage-operated Ca(2+) channels, although the relevant in vivo target of this drug has remained undefined over three decades of clinical use. The purpose of this review is to bring new perspective to this issue by discussing the potential utility of free-living planarian flatworms for providing new insight into the mechanism of PZQ action. First, we discuss in vivo functional genetic data from the planarian system that broadly supports the molecular data collected in heterologous systems and the 'Ca(2+) hypothesis' of PZQ action. On the basis of these similarities we highlight our current knowledge of platyhelminth voltage operated Ca(2+) channels, their unique molecular pharmacology and the downstream functional PZQ interactome engaged by dysregulation of Ca(2+) influx that has potential to yield novel antischistosomal targets. Overall the broad dataset underscores a common theme of PZQ-evoked disruptions of Ca(2+) homeostasis in trematodes, cestodes and turbellarians, and showcases the utility of the planarian model for deriving insight into drug action and targets in parasitic flatworms.
Collapse
Affiliation(s)
- John D Chan
- Department of Pharmacology, University of Minnesota Medical School, MN 55455, USA; The Stem Cell Institute, University of Minnesota Medical School, MN 55455, USA
| | | | | |
Collapse
|
185
|
Hubert A, Henderson JM, Ross KG, Cowles MW, Torres J, Zayas RM. Epigenetic regulation of planarian stem cells by the SET1/MLL family of histone methyltransferases. Epigenetics 2012; 8:79-91. [PMID: 23235145 PMCID: PMC3549883 DOI: 10.4161/epi.23211] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chromatin regulation is a fundamental mechanism underlying stem cell pluripotency, differentiation, and the establishment of cell type-specific gene expression profiles. To examine the role of chromatin regulation in stem cells in vivo, we study regeneration in the freshwater planarian Schmidtea mediterranea. These animals possess a high concentration of pluripotent stem cells, which are capable of restoring any damaged or lost tissues after injury or amputation. Here, we identify the S. mediterranea homologs of the SET1/MLL family of histone methyltransferases and COMPASS and COMPASS-like complex proteins and investigate their role in stem cell function during regeneration. We identified six S. mediterranea homologs of the SET1/MLL family (set1, mll1/2, trr-1, trr-2, mll5–1 and mll5–2), characterized their patterns of expression in the animal, and examined their function by RNAi. All members of this family are expressed in the stem cell population and differentiated tissues. We show that set1, mll1/2, trr-1, and mll5–2 are required for regeneration and that set1, trr-1 and mll5–2 play roles in the regulation of mitosis. Most notably, knockdown of the planarian set1 homolog leads to stem cell depletion. A subset of planarian homologs of COMPASS and COMPASS-like complex proteins are also expressed in stem cells and implicated in regeneration, but the knockdown phenotypes suggest that some complex members also function in other aspects of planarian biology. This work characterizes the function of the SET1/MLL family in the context of planarian regeneration and provides insight into the role of these enzymes in adult stem cell regulation in vivo.
Collapse
Affiliation(s)
- Amy Hubert
- Department of Biology, San Diego State University, San Diego, CA, USA
| | | | | | | | | | | |
Collapse
|
186
|
Hou X, Xie F, Sweedler JV. Relative quantitation of neuropeptides over a thousand-fold concentration range. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:2083-93. [PMID: 22993045 PMCID: PMC3515743 DOI: 10.1007/s13361-012-0481-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/16/2012] [Accepted: 08/17/2012] [Indexed: 05/23/2023]
Abstract
Neuropeptides are essential cell-to-cell signaling molecules that influence diverse regulatory and behavioral functions within biological systems. Differing in their amino acid sequences and post-translational modifications, hundreds of neuropeptides are produced via a series of enzymatic processing steps, and their levels vary with location, time, and physiological condition. Due to their wide range of endogenous concentrations and inherent chemical complexity, using mass spectrometry (MS) to accurately quantify changes in peptide levels can be challenging. Here we evaluate three different MS systems for their ability to accurately measure neuropeptide levels: capillary liquid chromatography-electrospray ionization-ion trap (CapLC-ESI-IT) MS, ultraperformance liquid chromatography-electrospray ionization-quadrupole-time-of-flight (UPLC-LC-ESI-Q-TOF) MS, and matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) MS. Specifically, eight sample mixtures composed of five neuropeptide standards, with four technical replicates of each, were labeled with H(4)/D(4)-succinic anhydride, followed by relative peptide quantitation using the three MS platforms. For these samples, the CapLC-ESI-IT MS platform offered the most robust ability to accurately quantify peptides over a concentration range of 1200-fold, although it required larger sample sizes than the other two platforms. Both the UPLC-ESI-Q-TOF MS and the MALDI-TOF MS systems had lower limits of quantification, with the MALDI-TOF having the lowest. By implementing several data acquisition schemes and optimizing the data analysis approaches, we were able to accurately quantify peptides over a three orders of magnitude concentration range using either the UPLC or MALDI-TOF platforms. Overall these results increase our understanding of both the capabilities and limits of using MS-based approaches to measure peptides.
Collapse
Affiliation(s)
| | | | - Jonathan V. Sweedler
- Address reprint requests to: Jonathan V. Sweedler, Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, 63-5, Urbana, Il 61801, Ph: 217-244-7359, Fax: 217-265-6290,
| |
Collapse
|
187
|
McVeigh P, Atkinson L, Marks NJ, Mousley A, Dalzell JJ, Sluder A, Hammerland L, Maule AG. Parasite neuropeptide biology: Seeding rational drug target selection? Int J Parasitol Drugs Drug Resist 2012; 2:76-91. [PMID: 24533265 PMCID: PMC3862435 DOI: 10.1016/j.ijpddr.2011.10.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 10/25/2011] [Accepted: 10/28/2011] [Indexed: 01/16/2023]
Abstract
The rationale for identifying drug targets within helminth neuromuscular signalling systems is based on the premise that adequate nerve and muscle function is essential for many of the key behavioural determinants of helminth parasitism, including sensory perception/host location, invasion, locomotion/orientation, attachment, feeding and reproduction. This premise is validated by the tendency of current anthelmintics to act on classical neurotransmitter-gated ion channels present on helminth nerve and/or muscle, yielding therapeutic endpoints associated with paralysis and/or death. Supplementary to classical neurotransmitters, helminth nervous systems are peptide-rich and encompass associated biosynthetic and signal transduction components - putative drug targets that remain to be exploited by anthelmintic chemotherapy. At this time, no neuropeptide system-targeting lead compounds have been reported, and given that our basic knowledge of neuropeptide biology in parasitic helminths remains inadequate, the short-term prospects for such drugs remain poor. Here, we review current knowledge of neuropeptide signalling in Nematoda and Platyhelminthes, and highlight a suite of 19 protein families that yield deleterious phenotypes in helminth reverse genetics screens. We suggest that orthologues of some of these peptidergic signalling components represent appealing therapeutic targets in parasitic helminths.
Collapse
Affiliation(s)
- Paul McVeigh
- Molecular Biosciences–Parasitology, Institute of Agri-Food and Land Use, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Louise Atkinson
- Molecular Biosciences–Parasitology, Institute of Agri-Food and Land Use, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Nikki J. Marks
- Molecular Biosciences–Parasitology, Institute of Agri-Food and Land Use, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Angela Mousley
- Molecular Biosciences–Parasitology, Institute of Agri-Food and Land Use, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Johnathan J. Dalzell
- Molecular Biosciences–Parasitology, Institute of Agri-Food and Land Use, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Ann Sluder
- Scynexis Inc., P.O. Box 12878, Research Triangle Park, NC 27709-2878, USA
| | | | - Aaron G. Maule
- Molecular Biosciences–Parasitology, Institute of Agri-Food and Land Use, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
188
|
Romanova EV, Sasaki K, Alexeeva V, Vilim FS, Jing J, Richmond TA, Weiss KR, Sweedler JV. Urotensin II in invertebrates: from structure to function in Aplysia californica. PLoS One 2012; 7:e48764. [PMID: 23144960 PMCID: PMC3493602 DOI: 10.1371/journal.pone.0048764] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 10/05/2012] [Indexed: 02/07/2023] Open
Abstract
Neuropeptides are ancient signaling molecules that are involved in many aspects of organism homeostasis and function. Urotensin II (UII), a peptide with a range of hormonal functions, previously has been reported exclusively in vertebrates. Here, we provide the first direct evidence that UII-like peptides are also present in an invertebrate, specifically, the marine mollusk Aplysia californica. The presence of UII in the central nervous system (CNS) of Aplysia implies a more ancient gene lineage than vertebrates. Using representational difference analysis, we identified an mRNA of a protein precursor that encodes a predicted neuropeptide, we named Aplysia urotensin II (apUII), with a sequence and structural similarity to vertebrate UII. With in-situ hybridization and immunohistochemistry, we mapped the expression of apUII mRNA and its prohormone in the CNS and localized apUII-like immunoreactivity to buccal sensory neurons and cerebral A-cluster neurons. Mass spectrometry performed on individual isolated neurons, and tandem mass spectrometry on fractionated peptide extracts, allowed us to define the posttranslational processing of the apUII neuropeptide precursor and confirm the highly conserved cyclic nature of the mature neuropeptide apUII. Electrophysiological analysis of the central effects of a synthetic apUII suggests it plays a role in satiety and/or aversive signaling in feeding behaviors. Finding the homologue of vertebrate UII in the numerically small CNS of an invertebrate animal model is important for gaining insights into the molecular mechanisms and pathways mediating the bioactivity of UII in the higher metazoan.
Collapse
Affiliation(s)
- Elena V. Romanova
- Beckman Institute for Advanced Science and Technology and the Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Kosei Sasaki
- Department of Neuroscience, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Vera Alexeeva
- Department of Neuroscience, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Ferdinand S. Vilim
- Department of Neuroscience, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Jian Jing
- Department of Neuroscience, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Timothy A. Richmond
- Beckman Institute for Advanced Science and Technology and the Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Klaudiusz R. Weiss
- Department of Neuroscience, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Jonathan V. Sweedler
- Beckman Institute for Advanced Science and Technology and the Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
189
|
Abstract
Tissue regeneration has been studied for hundreds of years, yet remains one of the less understood topics in developmental biology. The recent Keystone Symposium on Mechanisms of Whole Organ Regeneration brought together biologists, clinicians and bioengineers representing an impressive breadth of model systems and perspectives. Members of the growing regeneration community discussed classic and new ideas on mechanisms of regeneration and how these can be applied to regenerative medicine.
Collapse
Affiliation(s)
- Gregory Nachtrab
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
190
|
Nodono H, Ishino Y, Hoshi M, Matsumoto M. Stem cells from innate sexual but not acquired sexual planarians have the capability to form a sexual individual. Mol Reprod Dev 2012; 79:757-66. [PMID: 22968921 DOI: 10.1002/mrd.22109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/27/2012] [Indexed: 11/10/2022]
Abstract
Planarian species may harbor as many as three populations with different reproductive strategies. Animals from innate asexual (AS) and innate sexual (InS) populations reproduce only by fission and cross-fertilization, respectively, whereas the third population switches seasonally between the two reproductive modes. AS worms can be experimentally sexualized by feeding them with minced InS worms; we termed the resulting animals "acquired sexual" (AqS) worms. Both AqS and InS worms exhibit sexualizing activity when used as feed, suggesting that they maintain their sexual state via endogenous sexualizing substances, although the mechanisms underlying determination of reproductive strategy and sexual switching in these metazoans remain enigmatic. Therefore, we compared the endogenous sexualizing activity of InS worms and AqS worms. First, we amputated mature worms and assessed if they could re-enter a sexual state. Regenerants of InS worms, but not AqS worms, were only sexual, indicating that sexual state regulation comprises two steps: (1) autonomous initiation of sexualizing substance production and (2) maintenance of the sexual state by continuous production of sexualizing substances. Next, InS neoblasts were characterized by transplantation, finding that they successfully engrafted, proliferated, and replaced all recipient cells. Under such conditions, the AS recipients of InS worm neoblasts, but not those of AqS worms, became sexual. These results clearly show that there is a neoblast-autonomous determination of reproductive strategy in planarians.
Collapse
Affiliation(s)
- Hanae Nodono
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, Japan
| | | | | | | |
Collapse
|
191
|
Lapan SW, Reddien PW. Transcriptome analysis of the planarian eye identifies ovo as a specific regulator of eye regeneration. Cell Rep 2012; 2:294-307. [PMID: 22884275 DOI: 10.1016/j.celrep.2012.06.018] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 05/12/2012] [Accepted: 06/22/2012] [Indexed: 11/24/2022] Open
Abstract
Among the millions of invertebrate species with visual systems, the genetic basis of eye development and function is well understood only in Drosophila melanogaster. We describe an eye transcriptome for the planarian Schmidtea mediterranea. Planarian photoreceptors expressed orthologs of genes required for phototransduction and microvillus structure in Drosophila and vertebrates, and optic pigment cells expressed solute transporters and melanin synthesis enzymes similar to those active in the vertebrate retinal pigment epithelium. Orthologs of several planarian eye genes, such as bestrophin-1 and Usher syndrome genes, cause eye defects in mammals when perturbed and were not previously described to have roles in invertebrate eyes. Five previously undescribed planarian eye transcription factors were required for normal eye formation during head regeneration. In particular, a conserved, transcription-factor-encoding ovo gene was expressed from the earliest stages of eye regeneration and was required for regeneration of all cell types of the eye.
Collapse
Affiliation(s)
- Sylvain W Lapan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | |
Collapse
|
192
|
Park D, Hou X, Sweedler JV, Taghert PH. Therapeutic peptide production in Drosophila. Peptides 2012; 36:251-6. [PMID: 22595312 PMCID: PMC3402651 DOI: 10.1016/j.peptides.2012.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/07/2012] [Accepted: 05/07/2012] [Indexed: 11/23/2022]
Abstract
Bioactive peptides are important therapeutic drugs, yet conventional methods of peptide synthesis are challenged to meet increasing demand. We developed a novel and efficient means of metabolic engineering: therapeutic peptide production in Drosophila and as a proof of concept, we demonstrate production of fully matured human insulin. This in vivo system offers an innovative means to produce valuable bioactive peptides for therapies, its inherent flexibility facilitates drug development, and its ease of producing fully processed peptides simplifies metabolic engineering of new peptide products.
Collapse
Affiliation(s)
| | - Xiaowen Hou
- Department of Chemistry and the Beckman Institute, University of Illinois, 600 S. Mathews Ave., 63-5, Urbana, IL 61801 USA
| | - Jonathan V. Sweedler
- Department of Chemistry and the Beckman Institute, University of Illinois, 600 S. Mathews Ave., 63-5, Urbana, IL 61801 USA
| | - Paul H. Taghert
- Corresponding author. Paul H. Taghert, Ph.D. Tel: (314) 362-3641 Fax: (314) 362-3446
| |
Collapse
|
193
|
Zamanian M, Agbedanu PN, Wheeler NJ, McVeigh P, Kimber MJ, Day TA. Novel RNAi-mediated approach to G protein-coupled receptor deorphanization: proof of principle and characterization of a planarian 5-HT receptor. PLoS One 2012; 7:e40787. [PMID: 22815820 PMCID: PMC3399857 DOI: 10.1371/journal.pone.0040787] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 06/13/2012] [Indexed: 11/18/2022] Open
Abstract
G protein-coupled receptors (GPCRs) represent the largest known superfamily of membrane proteins extending throughout the Metazoa. There exists ample motivation to elucidate the functional properties of GPCRs given their role in signal transduction and their prominence as drug targets. In many target organisms, these efforts are hampered by the unreliable nature of heterologous receptor expression platforms. We validate and describe an alternative loss-of-function approach for ascertaining the ligand and G protein coupling properties of GPCRs in their native cell membrane environment. Our efforts are focused on the phylum Platyhelminthes, given the heavy health burden exacted by pathogenic flatworms, as well as the role of free-living flatworms as model organisms for the study of developmental biology. RNA interference (RNAi) was used in conjunction with a biochemical endpoint assay to monitor cAMP modulation in response to the translational suppression of individual receptors. As proof of principle, this approach was used to confirm the neuropeptide GYIRFamide as the cognate ligand for the planarian neuropeptide receptor GtNPR-1, while revealing its endogenous coupling to Gαi/o. The method was then extended to deorphanize a novel Gαs-coupled planarian serotonin receptor, DtSER-1. A bioinformatics protocol guided the selection of receptor candidates mediating 5-HT-evoked responses. These results provide functional data on a neurotransmitter central to flatworm biology, while establishing the great potential of an RNAi-based deorphanization protocol. Future work can help optimize and adapt this protocol for higher-throughput platforms as well as other phyla.
Collapse
Affiliation(s)
- Mostafa Zamanian
- Neuroscience Program, Iowa State University, Ames, Iowa, United States of America.
| | | | | | | | | | | |
Collapse
|
194
|
Wilson RA. The cell biology of schistosomes: a window on the evolution of the early metazoa. PROTOPLASMA 2012; 249:503-518. [PMID: 21976269 DOI: 10.1007/s00709-011-0326-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 09/26/2011] [Indexed: 05/31/2023]
Abstract
This review of schistosome cell biology has a dual purpose; its intent is to alert two separate research communities to the activities of the other. Schistosomes are by far and away the best-characterised platyhelminths, due to their medical and economic importance, but seem to be almost totally ignored by researchers on the free-living lower metazoans. Equally, in their enthusiasm for the parasitic way of life, schistosome researchers seldom pay attention to the work on free-living animals that could inform their molecular investigations. The publication of transcriptomes and/or genomes for Schistosoma mansoni and Schistosoma japonicum, the sponge Archimedon, the cnidarians Nematostella and Hydra and the planarian Schmidtea provide the raw material for comparisons. Apart from interrogation of the databases for molecular similarities, there have been differences in technical approach to these lower metazoans; widespread application of whole mount in situ hybridisation to Schmidtea contrasts with the application of targeted proteomics to schistosomes. Using schistosome cell biology as the template, the key topics of cell adhesion, development, signalling pathways, nerve and muscle, and epithelia, are reviewed, where possible interspersing comparisons with the sponge, cnidarian and planarian data. The biggest jump in the evolution of cellular capabilities appears to be in the transition from a diploblast to triploblast level of organisation associated with development of a mobile and plastic body form.
Collapse
Affiliation(s)
- R Alan Wilson
- Centre for Immunology and Infection, Department of Biology, University of York, York YO10 5DD, UK.
| |
Collapse
|
195
|
Abstract
Regeneration of complex structures after injury requires dramatic changes in cellular behavior. Regenerating tissues initiate a program that includes diverse processes such as wound healing, cell death, dedifferentiation, and stem (or progenitor) cell proliferation; furthermore, newly regenerated tissues must integrate polarity and positional identity cues with preexisting body structures. Gene knockdown approaches and transgenesis-based lineage and functional analyses have been instrumental in deciphering various aspects of regenerative processes in diverse animal models for studying regeneration.
Collapse
Affiliation(s)
- Ryan S King
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
196
|
Cowles MW, Hubert A, Zayas RM. A Lissencephaly-1 homologue is essential for mitotic progression in the planarian Schmidtea mediterranea. Dev Dyn 2012; 241:901-10. [PMID: 22411224 DOI: 10.1002/dvdy.23775] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2012] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Planarians are renowned for their capacity to replace lost tissues from adult pluripotent stem cells (neoblasts). Here we report that Lissencephaly-1 (lis1), which has roles in cellular processes such as mitotic spindle apparatus orientation and in signal regulation required for stem cell self-renewal, is required for stem cell maintenance in the planarian Schmidtea mediterranea. RESULTS In planarians, lis1 is expressed in differentiated tissues and stem cells. lis1 RNAi leads to head regression, ventral curling, and death by lysis. By labeling the neoblasts and proliferating cells, we found lis1 knockdown animals show a dramatic increase in the number of mitotic cells, followed by depletion of the stem cell pool. Analysis of the mitotic spindles in dividing neoblasts revealed that defective spindle positioning is correlated with cells arrested at metaphase. In addition, we show that inhibiting a planarian homologue of nudE, predicted to encode a LIS-1 interacting protein, also leads to cell cycle progression defects. CONCLUSIONS Our results provide evidence for a conserved role of LIS1 and NUDE in regulating the function of the mitotic spindle apparatus in a representative Lophotrochozoan and that planarians will be useful organisms in which to investigate LIS1 regulation of signaling events underlying stem cell self-renewal.
Collapse
Affiliation(s)
- Martis W Cowles
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | | | | |
Collapse
|
197
|
Rouhana L, Vieira AP, Roberts-Galbraith RH, Newmark PA. PRMT5 and the role of symmetrical dimethylarginine in chromatoid bodies of planarian stem cells. Development 2012; 139:1083-94. [PMID: 22318224 DOI: 10.1242/dev.076182] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Planarian flatworms contain a population of adult stem cells (neoblasts) that proliferate and generate cells of all tissues during growth, regeneration and tissue homeostasis. A characteristic feature of neoblasts is the presence of chromatoid bodies, large cytoplasmic ribonucleoprotein (RNP) granules morphologically similar to structures present in the germline of many organisms. This study aims to reveal the function, and identify additional components, of planarian chromatoid bodies. We uncover the presence of symmetrical dimethylarginine (sDMA) on chromatoid body components and identify the ortholog of protein arginine methyltransferase PRMT5 as the enzyme responsible for sDMA modification in these proteins. RNA interference-mediated depletion of planarian PRMT5 results in defects in homeostasis and regeneration, reduced animal size, reduced number of neoblasts, fewer chromatoid bodies and increased levels of transposon and repetitive-element transcripts. Our results suggest that PIWI family member SMEDWI-3 is one sDMA-containing chromatoid body protein for which methylation depends on PRMT5. Additionally, we discover an RNA localized to chromatoid bodies, germinal histone H4. Our results reveal new components of chromatoid bodies and their function in planarian stem cells, and also support emerging studies indicative of sDMA function in stabilization of RNP granules and the Piwi-interacting RNA pathway.
Collapse
Affiliation(s)
- Labib Rouhana
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
198
|
Opposing roles of voltage-gated Ca2+ channels in neuronal control of regenerative patterning. J Neurosci 2011; 31:15983-95. [PMID: 22049441 DOI: 10.1523/jneurosci.3029-11.2011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
There is intense interest in developing methods to regulate proliferation and differentiation of stem cells into neuronal fates for the purposes of regenerative medicine. One way to do this is through in vivo pharmacological engineering using small molecules. However, a key challenge is identification of relevant signaling pathways and therein druggable targets to manipulate stem cell behavior efficiently in vivo. Here, we use the planarian flatworm as a simple chemical-genetic screening model for nervous system regeneration to show that the isoquinoline drug praziquantel (PZQ) acts as a small molecule neurogenic to produce two-headed animals with integrated CNSs following regeneration. Characterization of the entire family of planarian voltage-operated Ca(2+) channel α subunits (Ca(v)α), followed by in vivo RNAi of specific Ca(v) subunits, revealed that PZQ subverted regeneration by activation of a specific voltage-gated Ca(2+) channel isoform (Ca(v)1A). PZQ-evoked Ca(2+) entry via Ca(v)1A served to inhibit neuronally derived Hedgehog signals, as evidenced by data showing that RNAi of Ca(v)1A prevented PZQ-evoked bipolarity, Ca(2+) entry, and decreases in wnt1 and wnt11-5 levels. Surprisingly, the action of PZQ was opposed by Ca(2+) influx through a closely related neuronal Ca(v) isoform (Ca(v)1B), establishing a novel interplay between specific Ca(v)1 channel isoforms, Ca(2+) entry, and neuronal Hedgehog signaling. These data map PZQ efficacy to specific neuronal Ca(v) complexes in vivo and underscore that both activators (Ca(v)1A) and inhibitors (Ca(v)1B) of Ca(2+) influx can act as small molecule neurogenics in vivo on account of the unique coupling of Ca(2+) channels to neuronally derived polarity cues.
Collapse
|
199
|
Zamanian M, Kimber MJ, McVeigh P, Carlson SA, Maule AG, Day TA. The repertoire of G protein-coupled receptors in the human parasite Schistosoma mansoni and the model organism Schmidtea mediterranea. BMC Genomics 2011; 12:596. [PMID: 22145649 PMCID: PMC3261222 DOI: 10.1186/1471-2164-12-596] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 12/06/2011] [Indexed: 12/31/2022] Open
Abstract
Background G protein-coupled receptors (GPCRs) constitute one of the largest groupings of eukaryotic proteins, and represent a particularly lucrative set of pharmaceutical targets. They play an important role in eukaryotic signal transduction and physiology, mediating cellular responses to a diverse range of extracellular stimuli. The phylum Platyhelminthes is of considerable medical and biological importance, housing major pathogens as well as established model organisms. The recent availability of genomic data for the human blood fluke Schistosoma mansoni and the model planarian Schmidtea mediterranea paves the way for the first comprehensive effort to identify and analyze GPCRs in this important phylum. Results Application of a novel transmembrane-oriented approach to receptor mining led to the discovery of 117 S. mansoni GPCRs, representing all of the major families; 105 Rhodopsin, 2 Glutamate, 3 Adhesion, 2 Secretin and 5 Frizzled. Similarly, 418 Rhodopsin, 9 Glutamate, 21 Adhesion, 1 Secretin and 11 Frizzled S. mediterranea receptors were identified. Among these, we report the identification of novel receptor groupings, including a large and highly-diverged Platyhelminth-specific Rhodopsin subfamily, a planarian-specific Adhesion-like family, and atypical Glutamate-like receptors. Phylogenetic analysis was carried out following extensive gene curation. Support vector machines (SVMs) were trained and used for ligand-based classification of full-length Rhodopsin GPCRs, complementing phylogenetic and homology-based classification. Conclusions Genome-wide investigation of GPCRs in two platyhelminth genomes reveals an extensive and complex receptor signaling repertoire with many unique features. This work provides important sequence and functional leads for understanding basic flatworm receptor biology, and sheds light on a lucrative set of anthelmintic drug targets.
Collapse
Affiliation(s)
- Mostafa Zamanian
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA.
| | | | | | | | | | | |
Collapse
|
200
|
Chong T, Stary JM, Wang Y, Newmark PA. Molecular markers to characterize the hermaphroditic reproductive system of the planarian Schmidtea mediterranea. BMC DEVELOPMENTAL BIOLOGY 2011; 11:69. [PMID: 22074376 PMCID: PMC3224759 DOI: 10.1186/1471-213x-11-69] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Accepted: 11/10/2011] [Indexed: 12/05/2022]
Abstract
Background The freshwater planarian Schmidtea mediterranea exhibits two distinct reproductive modes. Individuals of the sexual strain are cross-fertilizing hermaphrodites with reproductive organs that develop post-embryonically. By contrast, individuals of the asexual strain reproduce exclusively by transverse fission and fail to develop reproductive organs. These different reproductive strains are associated with distinct karyotypes, making S. mediterranea a useful model for studying germline development and sexual differentiation. Results To identify genes expressed differentially between these strains, we performed microarray analyses and identified >800 genes that were upregulated in the sexual planarian. From these, we characterized 24 genes by fluorescent in situ hybridization (FISH), revealing their expression in male germ cells or accessory reproductive organs. To identify additional markers of the planarian reproductive system, we also used immuno- and fluorescent lectin staining, identifying several antibodies and lectins that labeled structures associated with reproductive organs. Conclusions Collectively, these cell-type specific markers will enable future efforts to characterize genes that are important for reproductive development in the planarian.
Collapse
Affiliation(s)
- Tracy Chong
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | | | | | |
Collapse
|