151
|
Franzosa EA, Sirota-Madi A, Avila-Pacheco J, Fornelos N, Haiser HJ, Reinker S, Vatanen T, Hall AB, Mallick H, McIver LJ, Sauk JS, Wilson RG, Stevens BW, Scott JM, Pierce K, Deik AA, Bullock K, Imhann F, Porter JA, Zhernakova A, Fu J, Weersma RK, Wijmenga C, Clish CB, Vlamakis H, Huttenhower C, Xavier RJ. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat Microbiol 2019; 4:293-305. [PMID: 30531976 PMCID: PMC6342642 DOI: 10.1038/s41564-018-0306-4] [Citation(s) in RCA: 1181] [Impact Index Per Article: 196.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 10/25/2018] [Indexed: 12/13/2022]
Abstract
The inflammatory bowel diseases (IBDs), which include Crohn's disease (CD) and ulcerative colitis (UC), are multifactorial chronic conditions of the gastrointestinal tract. While IBD has been associated with dramatic changes in the gut microbiota, changes in the gut metabolome-the molecular interface between host and microbiota-are less well understood. To address this gap, we performed untargeted metabolomic and shotgun metagenomic profiling of cross-sectional stool samples from discovery (n = 155) and validation (n = 65) cohorts of CD, UC and non-IBD control patients. Metabolomic and metagenomic profiles were broadly correlated with faecal calprotectin levels (a measure of gut inflammation). Across >8,000 measured metabolite features, we identified chemicals and chemical classes that were differentially abundant in IBD, including enrichments for sphingolipids and bile acids, and depletions for triacylglycerols and tetrapyrroles. While > 50% of differentially abundant metabolite features were uncharacterized, many could be assigned putative roles through metabolomic 'guilt by association' (covariation with known metabolites). Differentially abundant species and functions from the metagenomic profiles reflected adaptation to oxidative stress in the IBD gut, and were individually consistent with previous findings. Integrating these data, however, we identified 122 robust associations between differentially abundant species and well-characterized differentially abundant metabolites, indicating possible mechanistic relationships that are perturbed in IBD. Finally, we found that metabolome- and metagenome-based classifiers of IBD status were highly accurate and, like the vast majority of individual trends, generalized well to the independent validation cohort. Our findings thus provide an improved understanding of perturbations of the microbiome-metabolome interface in IBD, including identification of many potential diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Eric A Franzosa
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA
| | | | | | | | - Henry J Haiser
- Novartis Institute for Biomedical Research Inc., Cambridge, MA, USA
| | - Stefan Reinker
- Novartis Institute for Biomedical Research Inc., Cambridge, MA, USA
| | - Tommi Vatanen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Himel Mallick
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA
| | - Lauren J McIver
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA
| | - Jenny S Sauk
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Robin G Wilson
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Betsy W Stevens
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Kerry Pierce
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amy A Deik
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kevin Bullock
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Floris Imhann
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Jeffrey A Porter
- Novartis Institute for Biomedical Research Inc., Basel, Switzerland
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Pediatrics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Immunology, K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hera Vlamakis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Curtis Huttenhower
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA.
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
152
|
Segal JP, Mullish BH, Quraishi MN, Acharjee A, Williams HRT, Iqbal T, Hart AL, Marchesi JR. The application of omics techniques to understand the role of the gut microbiota in inflammatory bowel disease. Therap Adv Gastroenterol 2019; 12:1756284818822250. [PMID: 30719076 PMCID: PMC6348496 DOI: 10.1177/1756284818822250] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/23/2018] [Indexed: 02/04/2023] Open
Abstract
The aetiopathogenesis of inflammatory bowel diseases (IBD) involves the complex interaction between a patient's genetic predisposition, environment, gut microbiota and immune system. Currently, however, it is not known if the distinctive perturbations of the gut microbiota that appear to accompany both Crohn's disease and ulcerative colitis are the cause of, or the result of, the intestinal inflammation that characterizes IBD. With the utilization of novel systems biology technologies, we can now begin to understand not only details about compositional changes in the gut microbiota in IBD, but increasingly also the alterations in microbiota function that accompany these. Technologies such as metagenomics, metataxomics, metatranscriptomics, metaproteomics and metabonomics are therefore allowing us a deeper understanding of the role of the microbiota in IBD. Furthermore, the integration of these systems biology technologies through advancing computational and statistical techniques are beginning to understand the microbiome interactions that both contribute to health and diseased states in IBD. This review aims to explore how such systems biology technologies are advancing our understanding of the gut microbiota, and their potential role in delineating the aetiology, development and clinical care of IBD.
Collapse
Affiliation(s)
- Jonathan P. Segal
- Inflammatory Bowel Disease Department, St Mark’s Hospital, Harrow HA1 3UJ, UK
| | - Benjamin H. Mullish
- Division of Integrative Systems Medicine and Digestive Disease, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, UK
| | - Mohammed Nabil Quraishi
- Institute of Immunology and Immunotherapy, University of Birmingham, Department of Gastroenterology, University Hospital, Birmingham, UK
| | - Animesh Acharjee
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, Birmingham, UK
- Institute of Translational Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, Birmingham, UK
| | - Horace R. T. Williams
- Division of Integrative Systems Medicine and Digestive Disease, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, UK
| | - Tariq Iqbal
- Institute of Immunology and Immunotherapy, University of Birmingham, Department of Gastroenterology, University Hospital, Birmingham, UK
| | - Ailsa L. Hart
- Inflammatory Bowel Disease Department, St Mark’s Hospital, Harrow, UK
- Department of Surgery and Cancer, Division of Integrative Systems Medicine and Digestive Disease, Faculty of Medicine, Imperial College, London, UK
| | - Julian R. Marchesi
- Department of Surgery and Cancer, Division of Integrative Systems Medicine and Digestive Disease, Faculty of Medicine, Imperial College, London, UK
- School of Biosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
153
|
Diether NE, Willing BP. Microbial Fermentation of Dietary Protein: An Important Factor in Diet⁻Microbe⁻Host Interaction. Microorganisms 2019; 7:microorganisms7010019. [PMID: 30642098 PMCID: PMC6352118 DOI: 10.3390/microorganisms7010019] [Citation(s) in RCA: 291] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 01/04/2023] Open
Abstract
Protein fermentation by gut microbiota contributes significantly to the metabolite pool in the large intestine and may contribute to host amino acid balance. However, we have a limited understanding of the role that proteolytic metabolites have, both in the gut and in systemic circulation. A review of recent studies paired with findings from previous culture-based experiments suggests an important role for microbial protein fermentation in altering the gut microbiota and generating a diverse range of bioactive molecules which exert wide-ranging host effects. These metabolic products have been shown to increase inflammatory response, tissue permeability, and colitis severity in the gut. They are also implicated in the development of metabolic disease, including obesity, diabetes, and non-alcoholic fatty liver disease (NAFLD). Specific products of proteolytic fermentation such as hydrogen sulfide, ammonia, and p-Cresol may also contribute to the development of colorectal cancer. These findings are in conflict with other studies showing that tryptophan metabolites may improve gut barrier function and attenuate severity in a multiple sclerosis model. Further research examining proteolytic fermentation in the gut may be key to our understanding of how microbial and host metabolism interact affecting health.
Collapse
Affiliation(s)
- Natalie E Diether
- Department of Agriculture, Food & Nutritional Science, University of Alberta, Ag/For Centre, Edmonton Alberta, T6G 2P5, Canada.
| | - Benjamin P Willing
- Department of Agriculture, Food & Nutritional Science, University of Alberta, Ag/For Centre, Edmonton Alberta, T6G 2P5, Canada.
| |
Collapse
|
154
|
High-Throughput Metabolomics Based on Direct Mass Spectrometry Analysis in Biomedical Research. Methods Mol Biol 2019; 1978:27-38. [PMID: 31119655 DOI: 10.1007/978-1-4939-9236-2_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metabolomics based on direct mass spectrometry analysis shows a great potential in biomedical research because of its high-throughput screening capability and wide metabolome coverage. This chapter contains detailed protocols to perform comprehensive metabolomic fingerprinting of multiple biological samples (serum, plasma, urine, brain, liver, spleen, thymus) by using complementary analytical platforms. The most important issues to be considered are discussed, including sample treatment, metabolomic analysis, raw data preprocessing, and data analysis.
Collapse
|
155
|
Alghamdi A, Gerasimidis K, Blackburn G, Akinci D, Edwards C, Russell RK, Watson DG. Untargeted Metabolomics of Extracts from Faecal Samples Demonstrates Distinct Differences between Paediatric Crohn's Disease Patients and Healthy Controls but No Significant Changes Resulting from Exclusive Enteral Nutrition Treatment. Metabolites 2018; 8:E82. [PMID: 30467282 PMCID: PMC6315767 DOI: 10.3390/metabo8040082] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/18/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023] Open
Abstract
Metabolomic profiling using high resolution mass spectrometry with hydrophilic interaction chromatography was applied to 11 faecal extracts from eleven healthy children and to 43 faecal extracts from eleven children undergoing exclusive enteral nutrition for the treatment of active Crohn's disease (CD) at timepoints before, during (15, 30, and 60 days), and after treatment. Differences between the control and CD samples were identified at each timepoint. An orthogonal partial least square-discriminant analysis (OPLS-DA) model identified eight metabolites that were normally distributed according to Q-Q plots. The OPLS-DA model was able to discriminate the CD samples from the controls at every timepoint, but the model was not able to differentiate the CD samples from one another at the different timepoints during treatment with exclusive enteral nutrition. The differentiated metabolites identified in the CD samples included tyrosine, an ornithine isomer, arachidonic acid, eicosatrienoic acid, docosatetraenoic acid, a sphingomyelin, a ceramide, and dimethylsphinganine. Despite successful treatment, underlying differences remained in the metabolome of the CD patients. These differences dominated the separation of the samples when multivariate methods were applied.
Collapse
Affiliation(s)
- Adel Alghamdi
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| | | | - Gavin Blackburn
- Glasgow Polyomics, Translational Cancer Research Centre, University of Glasgow Garscube Campus, Glasgow G61 1QH, UK.
| | - Didem Akinci
- Glasgow Polyomics, Translational Cancer Research Centre, University of Glasgow Garscube Campus, Glasgow G61 1QH, UK.
| | - Christine Edwards
- Glasgow Polyomics, Translational Cancer Research Centre, University of Glasgow Garscube Campus, Glasgow G61 1QH, UK.
| | - Richard K Russell
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Royal Hospital for Children, Glasgow G51 4TF, UK.
| | - David G Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| |
Collapse
|
156
|
Karu N, Deng L, Slae M, Guo AC, Sajed T, Huynh H, Wine E, Wishart DS. A review on human fecal metabolomics: Methods, applications and the human fecal metabolome database. Anal Chim Acta 2018; 1030:1-24. [DOI: 10.1016/j.aca.2018.05.031] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/05/2018] [Accepted: 05/09/2018] [Indexed: 12/19/2022]
|
157
|
GC/MS-Based Metabolomics Reveals Biomarkers in Asthma Murine Model Modulated by Opuntia humifusa. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:1202860. [PMID: 30515230 PMCID: PMC6236801 DOI: 10.1155/2018/1202860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/04/2018] [Accepted: 10/17/2018] [Indexed: 12/26/2022]
Abstract
GC/MS coupled with multivariate statistical analysis was performed to identify marker metabolites in serum of mice after healing ovalbumin- (OVA-) induced asthma using Opuntia humifusa. Principal component analysis (PCA) score plot showed separation among groups, with metabolite profiles of serum showing differences according to various treatments for the asthma murine model. Levels of stearic acid and arachidic acid were significantly lower in the serum from OVA-induced group than those from the control group. Dexamethasone treatment group was characterized by higher serum levels of urea, myristic acid, and palmitic acid along with lower levels of aspartic acid compared to OVA-induced group. O. humifusa treatment mice groups showed dose-proportional higher levels of urea and glycerol than OVA-induced group. These results highlight that GC/MS-based metabolomics is a powerful technique for identifying molecular markers of asthma.
Collapse
|
158
|
Zhang Y, Guo Q, Tan D, He Z, Wang Y, Liu X. Effects of low-levels of three hexabromocyclododecane diastereomers on the metabolic profiles of pak choi leaves using high-throughput untargeted metabolomics approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:1961-1969. [PMID: 30076056 DOI: 10.1016/j.envpol.2018.07.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 07/05/2018] [Accepted: 07/14/2018] [Indexed: 06/08/2023]
Abstract
The ecological toxicity of hexabromocyclododecane (HBCD) on animals, including fish and mice, has been reported, but its effects in plants, particularly its toxic mechanism, have rarely been investigated. An untargeted metabolomics approach for comprehensive assessment was selected to study the alterations in the metabolic profiles in pak choi leaves induced by exposure to trace-level amounts of HBCD diastereomers over 30 days. A supervised orthogonal partial least-squares-discriminant analysis (OPLS-DA) was performed to investigate differences between the HBCD and control groups. The discriminating metabolites were identified using public databases. The results indicated that the toxicity of the HBCD diastereomers was ordered as γ-HBCD > α-HBCD > β-HBCD. 13 metabolites were identified as potential biomarkers to discriminate the presence of HBCD toxicity. The lipid, carbohydrate, nucleotide and amino acid metabolic pathways affected were found in accordance with animals and humans, and also HBCD could induce the interference of the secondary metabolite pathways. The system of the stress defences was activated, including signalling pathway, antioxidant defence system, shikimate and phenylpropanoid metabolism. The carbohydrate and amino acid metabolism were disturbed by HBCD intervention, and the lipid, amino acid and secondary metabolite metabolism were regulated for HBCD stress prevention. These results provide insights into the mechanism and degree of HBCD phytotoxicity.
Collapse
Affiliation(s)
- Yanwei Zhang
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, China
| | - Qiqi Guo
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, China
| | - Dongfei Tan
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, China
| | - Zeying He
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, China
| | - Yuehua Wang
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, China
| | - Xiaowei Liu
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, China.
| |
Collapse
|
159
|
A validated multi-matrix platform for metabolomic fingerprinting of human urine, feces and plasma using ultra-high performance liquid-chromatography coupled to hybrid orbitrap high-resolution mass spectrometry. Anal Chim Acta 2018; 1033:108-118. [DOI: 10.1016/j.aca.2018.06.065] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/20/2018] [Accepted: 06/23/2018] [Indexed: 01/28/2023]
|
160
|
Fecal metabolomic dataset of American ginseng-treated DSS mice: Correlation between ginseng enteric inflammation inhibition and its biological signatures. Data Brief 2018; 21:1403-1408. [PMID: 30456264 PMCID: PMC6234249 DOI: 10.1016/j.dib.2018.10.131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/23/2018] [Accepted: 10/25/2018] [Indexed: 01/05/2023] Open
Abstract
Although anti-inflammatory effects of American ginseng metabolites have been investigated at systemic and cellular levels, the biological signatures of ginseng microbial metabolite-induced bioactivities are still unknown. To fill this knowledge gap and to support the findings published in the companion research article entitled “American ginseng microbial metabolites attenuated DSS-induced colitis and abdominal pain” (Wang et al., 2018), we are here to provide datasets of enteric microbiome biotransformation and fecal metabolomics. For the microbiome biotransformation study, data were obtained from C57BL6 mice treated with a broad-spectrum antibiotic metronidazole. After oral administration of ginseng extract, we observed that compound K (CK) was undetectable in metronidazole-treated mouse stools but was detected in stools from vehicle-treated mice, suggesting biotransformation of CK is gut microbial dependent. In the fecal metabolomic study, three small molecules which were associated with gut inflammation were identified. In the DSS mice, the levels of lactate, linoleic acid, and malic acid increased significantly in the model group. After ginseng treatment, the expressions of these metabolites reduced significantly. Thus, the selective fecal endogenous metabolites could be used as biological signatures reflecting severity of enteric inflammation and ginseng treatment outcomes. Our results showed the enteric microbiome plays a key role for CK conversion, and the effects of CK on enteric inflammation can be demonstrated by the metabolomics data.
Collapse
|
161
|
Harris KG, Chang EB. The intestinal microbiota in the pathogenesis of inflammatory bowel diseases: new insights into complex disease. Clin Sci (Lond) 2018; 132:2013-2028. [PMID: 30232239 PMCID: PMC6907688 DOI: 10.1042/cs20171110] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/30/2018] [Accepted: 09/04/2018] [Indexed: 12/16/2022]
Abstract
Inflammatory bowel diseases (IBD) are a group of chronic diseases of increasing worldwide prevalence characterized by gastrointestinal (GI) inflammation leading to debilitating symptoms and complications. The contribution of the intestinal microbiota to the pathogenesis and etiology of these diseases is an area of active research interest. Here, we discuss key mechanisms underlying the chronic inflammation seen in IBD as well as evidence implicating the intestinal microbiota in the development and potentiation of that inflammation. We also discuss recently published work in areas of interest within the field of microbial involvement in IBD pathogenesis - the importance of proper microecology within the GI tract, the evidence that the intestinal microbiota transduces environmental and genetic risk factors for IBD, and the mechanisms by which microbial products contribute to communication between microbe and host. There is an extensive body of published research on the evidence for microbial involvement in IBD; the goal of this review is to highlight the growing edges of the field where exciting and innovative research is pushing the boundaries of the conceptual framework of the role of the intestinal microbiota in IBD pathogenesis.
Collapse
Affiliation(s)
| | - Eugene B Chang
- Department of Medicine, University of Chicago, Chicago, IL 60637, U.S.A.
| |
Collapse
|
162
|
Karl JP, Hatch AM, Arcidiacono SM, Pearce SC, Pantoja-Feliciano IG, Doherty LA, Soares JW. Effects of Psychological, Environmental and Physical Stressors on the Gut Microbiota. Front Microbiol 2018; 9:2013. [PMID: 30258412 PMCID: PMC6143810 DOI: 10.3389/fmicb.2018.02013] [Citation(s) in RCA: 303] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/09/2018] [Indexed: 12/13/2022] Open
Abstract
Stress, a ubiquitous part of daily human life, has varied biological effects which are increasingly recognized as including modulation of commensal microorganisms residing in the gastrointestinal tract, the gut microbiota. In turn, the gut microbiota influences the host stress response and associated sequelae, thereby implicating the gut microbiota as an important mediator of host health. This narrative review aims to summarize evidence concerning the impact of psychological, environmental, and physical stressors on gut microbiota composition and function. The stressors reviewed include psychological stress, circadian disruption, sleep deprivation, environmental extremes (high altitude, heat, and cold), environmental pathogens, toxicants, pollutants, and noise, physical activity, and diet (nutrient composition and food restriction). Stressors were selected for their direct relevance to military personnel, a population that is commonly exposed to these stressors, often at extremes, and in combination. However, the selected stressors are also common, alone or in combination, in some civilian populations. Evidence from preclinical studies collectively indicates that the reviewed stressors alter the composition, function and metabolic activity of the gut microbiota, but that effects vary across stressors, and can include effects that may be beneficial or detrimental to host health. Translation of these findings to humans is largely lacking at present. This gap precludes concluding with certainty that transient or cumulative exposures to psychological, environmental, and physical stressors have any consistent, meaningful impact on the human gut microbiota. However, provocative preclinical evidence highlights a need for translational research aiming to elucidate the impact of stressors on the human gut microbiota, and how the gut microbiota can be manipulated, for example by using nutrition, to mitigate adverse stress responses.
Collapse
Affiliation(s)
- J. Philip Karl
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Adrienne M. Hatch
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Steven M. Arcidiacono
- Soldier Performance Optimization, Natick Soldier Research, Development and Engineering Center, Natick, MA, United States
| | - Sarah C. Pearce
- Combat Feeding Directorate, Natick Soldier Research, Development and Engineering Center, Natick, MA, United States
| | - Ida G. Pantoja-Feliciano
- Soldier Performance Optimization, Natick Soldier Research, Development and Engineering Center, Natick, MA, United States
| | - Laurel A. Doherty
- Soldier Performance Optimization, Natick Soldier Research, Development and Engineering Center, Natick, MA, United States
| | - Jason W. Soares
- Soldier Performance Optimization, Natick Soldier Research, Development and Engineering Center, Natick, MA, United States
| |
Collapse
|
163
|
Landman C, Grill JP, Mallet JM, Marteau P, Humbert L, Le Balc’h E, Maubert MA, Perez K, Chaara W, Brot L, Beaugerie L, Sokol H, Thenet S, Rainteau D, Seksik P, Quévrain E, on behalf of the Saint Antoine IBD Network. Inter-kingdom effect on epithelial cells of the N-Acyl homoserine lactone 3-oxo-C12:2, a major quorum-sensing molecule from gut microbiota. PLoS One 2018; 13:e0202587. [PMID: 30157234 PMCID: PMC6114859 DOI: 10.1371/journal.pone.0202587] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND AIMS N-acyl homoserine lactones (AHLs), which are autoinducer quorum-sensing molecules involved in the bacterial communication network, also interact with eukaryotic cells. Searching for these molecules in the context of inflammatory bowel disease (IBD) is appealing. The aims of our study were to look for AHL molecules in faecal samples from healthy subjects (HS) and IBD patients to correlate AHL profiles with the microbiome and investigate the effect of AHLs of interest on epithelial cells. METHODS Using mass spectrometry, we characterised AHL profiles in faecal samples from HS (n = 26) and IBD patients in remission (n = 24) and in flare (n = 25) and correlated the presence of AHLs of interest with gut microbiota composition obtained by real-time qPCR and 16S sequencing. We synthesised AHLs of interest to test the inflammatory response after IL1β stimulation and paracellular permeability on Caco-2 cells. RESULTS We observed 14 different AHLs, among which one was prominent. This AHL corresponded to 3-oxo-C12:2 and was found significantly less frequently in IBD patients in flare (16%) and in remission (37.5%) versus HS (65.4%) (p = 0.001). The presence of 3-oxo-C12:2 was associated with significantly higher counts of Firmicutes, especially Faecalbacterium prausnitzii, and lower counts of Escherichia coli. In vitro, 3-oxo-C12:2 exerted an anti-inflammatory effect on Caco-2 cells. Interestingly, although 3-oxo-C12, the well-known AHL from Pseudomonas aeruginosa, increased paracellular permeability, 3-oxo-C12:2 did not. CONCLUSIONS We identified AHLs in the human gut microbiota and discovered a new and prominent AHL, 3-oxo-C12:2, which correlates with normobiosis and exerts a protective effect on gut epithelial cells.
Collapse
Affiliation(s)
- Cécilia Landman
- Sorbonne Université, École normale supérieure, PSL University, CNRS, INSERM, APHP, Hôpital Saint-Antoine, Laboratoire des biomolécules, LBM, Paris, France
| | - Jean-Pierre Grill
- Sorbonne Université, École normale supérieure, PSL University, CNRS, INSERM, APHP, Hôpital Saint-Antoine, Laboratoire des biomolécules, LBM, Paris, France
| | - Jean-Maurice Mallet
- Sorbonne Université, École normale supérieure, PSL University, CNRS, INSERM, APHP, Hôpital Saint-Antoine, Laboratoire des biomolécules, LBM, Paris, France
| | - Philippe Marteau
- Sorbonne Université, École normale supérieure, PSL University, CNRS, INSERM, APHP, Hôpital Saint-Antoine, Laboratoire des biomolécules, LBM, Paris, France
| | - Lydie Humbert
- Sorbonne Université, École normale supérieure, PSL University, CNRS, INSERM, APHP, Hôpital Saint-Antoine, Laboratoire des biomolécules, LBM, Paris, France
| | - Eric Le Balc’h
- Sorbonne Université, École normale supérieure, PSL University, CNRS, INSERM, APHP, Hôpital Saint-Antoine, Laboratoire des biomolécules, LBM, Paris, France
| | - Marie-Anne Maubert
- Sorbonne Université, École normale supérieure, PSL University, CNRS, INSERM, APHP, Hôpital Saint-Antoine, Laboratoire des biomolécules, LBM, Paris, France
| | - Kevin Perez
- Sorbonne Université, École normale supérieure, PSL University, CNRS, INSERM, APHP, Hôpital Saint-Antoine, Laboratoire des biomolécules, LBM, Paris, France
| | - Wahiba Chaara
- Sorbonne Universités, INSERM, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
| | - Loic Brot
- Sorbonne Université, École normale supérieure, PSL University, CNRS, INSERM, APHP, Hôpital Saint-Antoine, Laboratoire des biomolécules, LBM, Paris, France
| | - Laurent Beaugerie
- Sorbonne Université, École normale supérieure, PSL University, CNRS, INSERM, APHP, Hôpital Saint-Antoine, Laboratoire des biomolécules, LBM, Paris, France
| | - Harry Sokol
- Sorbonne Université, École normale supérieure, PSL University, CNRS, INSERM, APHP, Hôpital Saint-Antoine, Laboratoire des biomolécules, LBM, Paris, France
| | - Sophie Thenet
- Sorbonne Universités, Centre de Recherche des Cordeliers, PSL University, EPHE, Paris, France
| | - Dominique Rainteau
- Sorbonne Université, École normale supérieure, PSL University, CNRS, INSERM, APHP, Hôpital Saint-Antoine, Laboratoire des biomolécules, LBM, Paris, France
| | - Philippe Seksik
- Sorbonne Université, École normale supérieure, PSL University, CNRS, INSERM, APHP, Hôpital Saint-Antoine, Laboratoire des biomolécules, LBM, Paris, France
| | - Elodie Quévrain
- Sorbonne Université, École normale supérieure, PSL University, CNRS, INSERM, APHP, Hôpital Saint-Antoine, Laboratoire des biomolécules, LBM, Paris, France
| | | |
Collapse
|
164
|
Roager HM, Licht TR. Microbial tryptophan catabolites in health and disease. Nat Commun 2018; 9:3294. [PMID: 30120222 PMCID: PMC6098093 DOI: 10.1038/s41467-018-05470-4] [Citation(s) in RCA: 1278] [Impact Index Per Article: 182.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/03/2018] [Indexed: 12/15/2022] Open
Abstract
Accumulating evidence implicates metabolites produced by gut microbes as crucial mediators of diet-induced host-microbial cross-talk. Here, we review emerging data suggesting that microbial tryptophan catabolites resulting from proteolysis are influencing host health. These metabolites are suggested to activate the immune system through binding to the aryl hydrocarbon receptor (AHR), enhance the intestinal epithelial barrier, stimulate gastrointestinal motility, as well as secretion of gut hormones, exert anti-inflammatory, anti-oxidative or toxic effects in systemic circulation, and putatively modulate gut microbial composition. Tryptophan catabolites thus affect various physiological processes and may contribute to intestinal and systemic homeostasis in health and disease.
Collapse
Affiliation(s)
- Henrik M Roager
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, DK-1958, Frederiksberg, Denmark.
- National Food Institute, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark.
| | - Tine R Licht
- National Food Institute, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark.
| |
Collapse
|
165
|
Zhou J, Tang L, Shen CL, Wang JS. Green tea polyphenols modify gut-microbiota dependent metabolisms of energy, bile constituents and micronutrients in female Sprague-Dawley rats. J Nutr Biochem 2018; 61:68-81. [PMID: 30189365 DOI: 10.1016/j.jnutbio.2018.07.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/09/2018] [Accepted: 07/25/2018] [Indexed: 12/26/2022]
Abstract
Our recent metagenomics analysis has uncovered remarkable modifying effects of green tea polyphenols (GTP) on gut-microbiota community structure and energy conversion related gene orthologs in rats. How these genomic changes could further influence host health is still unclear. In this work, the alterations of gut-microbiota dependent metabolites were studied in the GTP-treated rats. Six groups of female SD rats (n=12/group) were administered drinking water containing 0%, 0.5%, and 1.5% GTP (wt/vol). Their gut contents were collected at 3 and 6 months and were analyzed via high performance liquid chromatography (HPLC) and gas chromatography (GC)-mass spectrometry (MS). GC-MS based metabolomics analysis captured 2668 feature, and 57 metabolites were imputatively from top 200 differential features identified via NIST fragmentation database. A group of key metabolites were quantitated using standard calibration methods. Compared with control, the elevated components in the GTP-treated groups include niacin (8.61-fold), 3-phenyllactic acid (2.20-fold), galactose (3.13-fold), mannose (2.05-fold), pentadecanoic acid (2.15-fold), lactic acid (2.70-fold), and proline (2.15-fold); the reduced components include cholesterol (0.29-fold), cholic acid (0.62-fold), deoxycholic acid (0.41-fold), trehalose (0.14-fold), glucose (0.46-fold), fructose (0.12-fold), and alanine (0.61-fold). These results were in line with the genomic alterations of gut-microbiome previously discovered by metagenomics analysis. The alterations of these metabolites suggested the reduction of calorific carbohydrates, elevation of vitamin production, decreases of bile constituents, and modified metabolic pattern of amino acids in the GTP-treated animals. Changes in gut-microbiota associated metabolism may be a major contributor to the anti-obesity function of GTP.
Collapse
Affiliation(s)
- Jun Zhou
- Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia; Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia 30602.
| | - Lili Tang
- Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia; Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia 30602.
| | - Chwan-Li Shen
- Department of Pathology, Texas Technology University Health Sciences Center, Lubbock, TX 79430.
| | - Jia-Sheng Wang
- Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia; Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia 30602.
| |
Collapse
|
166
|
Liu MM, Boinett CJ, Chan ACK, Parkhill J, Murphy MEP, Gaynor EC. Investigating the Campylobacter jejuni Transcriptional Response to Host Intestinal Extracts Reveals the Involvement of a Widely Conserved Iron Uptake System. mBio 2018; 9:e01347-18. [PMID: 30087169 PMCID: PMC6083913 DOI: 10.1128/mbio.01347-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 06/27/2018] [Indexed: 12/20/2022] Open
Abstract
Campylobacter jejuni is a pathogenic bacterium that causes gastroenteritis in humans yet is a widespread commensal in wild and domestic animals, particularly poultry. Using RNA sequencing, we assessed C. jejuni transcriptional responses to medium supplemented with human fecal versus chicken cecal extracts and in extract-supplemented medium versus medium alone. C. jejuni exposed to extracts had altered expression of 40 genes related to iron uptake, metabolism, chemotaxis, energy production, and osmotic stress response. In human fecal versus chicken cecal extracts, C. jejuni displayed higher expression of genes involved in respiration (fdhTU) and in known or putative iron uptake systems (cfbpA, ceuB, chuC, and CJJ81176_1649-1655 [here designated 1649-1655]). The 1649-1655 genes and downstream overlapping gene 1656 were investigated further. Uncharacterized homologues of this system were identified in 33 diverse bacterial species representing 6 different phyla, 21 of which are associated with human disease. The 1649 and 1650 (p19) genes encode an iron transporter and a periplasmic iron binding protein, respectively; however, the role of the downstream 1651-1656 genes was unknown. A Δ1651-1656 deletion strain had an iron-sensitive phenotype, consistent with a previously characterized Δp19 mutant, and showed reduced growth in acidic medium, increased sensitivity to streptomycin, and higher resistance to H2O2 stress. In iron-restricted medium, the 1651-1656 and p19 genes were required for optimal growth when using human fecal extracts as an iron source. Collectively, this implicates a function for the 1649-1656 gene cluster in C. jejuni iron scavenging and stress survival in the human intestinal environment.IMPORTANCE Direct comparative studies of C. jejuni infection of a zoonotic commensal host and a disease-susceptible host are crucial to understanding the causes of infection outcome in humans. These studies are hampered by the lack of a disease-susceptible animal model reliably displaying a similar pathology to human campylobacteriosis. In this work, we compared the phenotypic and transcriptional responses of C. jejuni to intestinal compositions of humans (disease-susceptible host) and chickens (zoonotic host) by using human fecal and chicken cecal extracts. The mammalian gut is a complex and dynamic system containing thousands of metabolites that contribute to host health and modulate pathogen activity. We identified C. jejuni genes more highly expressed during exposure to human fecal extracts in comparison to chicken cecal extracts and differentially expressed in extracts compared with medium alone, and targeted one specific iron uptake system for further molecular, genetic, and phenotypic study.
Collapse
Affiliation(s)
- Martha M Liu
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Christine J Boinett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Anson C K Chan
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Julian Parkhill
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Michael E P Murphy
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Erin C Gaynor
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
167
|
Christian SL, Berry MD. Trace Amine-Associated Receptors as Novel Therapeutic Targets for Immunomodulatory Disorders. Front Pharmacol 2018; 9:680. [PMID: 30013475 PMCID: PMC6036138 DOI: 10.3389/fphar.2018.00680] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/05/2018] [Indexed: 12/14/2022] Open
Abstract
Trace amines and their receptors (trace amine-associated receptors; TAARs) are an emerging pharmacological target for the treatment of human disorders. While most studies have focused on their therapeutic potential for neurologic and psychiatric disorders, TAARs are also expressed throughout the periphery, including prominent expression in human leukocytes. Furthermore, recent independent, unbiased metabolomic studies have consistently identified one or more TAAR ligands as potential etiologic factors in inflammatory bowel disease (IBD). The putative role of TAARs in diseases such as IBD that are associated with hyperactive immune responses has not, however, previously been systematically addressed. Here, we review the current state of the knowledge of the effects of TAARs on leukocyte function, in particular in the context of mucosal epithelial cells that interface with the environment; developing a model whereby TAARs may be considered as a novel therapeutic target for disorders associated with dysregulated immune responses to environmental factors. In this model, we hypothesize that altered trace amine homeostasis results in hyperactivity of the immune system. Such loss of homeostasis can occur through many different mechanisms including TAAR polymorphisms and altered trace amine load due to changes in host synthesis and/or degradative enzymes, diet, or microbial dysbiosis. The resulting alterations in TAAR functioning can then lead to a loss of homeostasis of leukocyte chemotaxis, differentiation, and activation, as well as an altered ability of members of the microbiota to adhere to and penetrate the epithelial cell layers. Such changes would generate a pro-inflammatory state at mucosal epithelial barrier layers that can manifest as clinical symptomatology such as that seen in IBD. These alterations may also have the potential to induce systemic effects, which could possibly contribute to immunomodulatory disorders in other systems, including neurological diseases.
Collapse
|
168
|
Abstract
Trace amines are endogenous compounds classically regarded as comprising β-phenylethyalmine, p-tyramine, tryptamine, p-octopamine, and some of their metabolites. They are also abundant in common foodstuffs and can be produced and degraded by the constitutive microbiota. The ability to use trace amines has arisen at least twice during evolution, with distinct receptor families present in invertebrates and vertebrates. The term "trace amine" was coined to reflect the low tissue levels in mammals; however, invertebrates have relatively high levels where they function like mammalian adrenergic systems, involved in "fight-or-flight" responses. Vertebrates express a family of receptors termed trace amine-associated receptors (TAARs). Humans possess six functional isoforms (TAAR1, TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9), whereas some fish species express over 100. With the exception of TAAR1, TAARs are expressed in olfactory epithelium neurons, where they detect diverse ethological signals including predators, spoiled food, migratory cues, and pheromones. Outside the olfactory system, TAAR1 is the most thoroughly studied and has both central and peripheral roles. In the brain, TAAR1 acts as a rheostat of dopaminergic, glutamatergic, and serotonergic neurotransmission and has been identified as a novel therapeutic target for schizophrenia, depression, and addiction. In the periphery, TAAR1 regulates nutrient-induced hormone secretion, suggesting its potential as a novel therapeutic target for diabetes and obesity. TAAR1 may also regulate immune responses by regulating leukocyte differentiation and activation. This article provides a comprehensive review of the current state of knowledge of the evolution, physiologic functions, pharmacology, molecular mechanisms, and therapeutic potential of trace amines and their receptors in vertebrates and invertebrates.
Collapse
Affiliation(s)
- Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| | - Marius C Hoener
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| | - Mark D Berry
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| |
Collapse
|
169
|
Yang XN, Liu XM, Fang JH, Zhu X, Yang XW, Xiao XR, Huang JF, Gonzalez FJ, Li F. PPARα Mediates the Hepatoprotective Effects of Nutmeg. J Proteome Res 2018; 17:1887-1897. [PMID: 29664296 PMCID: PMC6628927 DOI: 10.1021/acs.jproteome.7b00901] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nutmeg is a Traditional Chinese Medicine used to treat gastrointestinal diseases. Some reports have indicated that nutmeg has hepatoprotective activity. In this study, a thioacetamide (TAA)-induced acute liver injury model in mice was used to explore the mechanism of the protective effects of nutmeg extract (NME), including its major bioactive component myrislignan. The results indicated that NME could effectively protect TAA-induced liver damage as assessed by recovery of increased serumtransaminases, decrease in hepatic oxidative stress, and lower hepatic inflammation. Metabolomics analysis further revealed that treatment with NME led to the recovery of a series of lipids including lysophosphatidylcholines that were decreased and a lowering of acylcarnitines that were increased in mouse plasma and liver after TAA exposure. Gene expression analysis demonstrated that the hepatoprotective effect of NME was achieved by modulation of the peroxisome proliferator-activated receptor alpha (PPARα) as well as the decrease in oxidative stress. NME could not protect from TAA-induced liver injury in Ppara-null mice, suggesting that its protective effect was dependent on PPARα. Myrislignan, a representative neolignan in nutmeg, showed potent protective activity against TAA-induced liver toxicity. These data demonstrate that nutmeg alleviates TAA-induced liver injury through the modulation of PPARα and that the lignan compounds in nutmeg such as myrislignan partly contributed to this action.
Collapse
Affiliation(s)
- Xiao-Nan Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xue-Mei Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- College of Pharmacy, Nanchang University, Nanchang 330031, China
| | - Jian-He Fang
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Xu Zhu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiu-Wei Yang
- School of Pharmaceutical Sciences, Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Xue-Rong Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jian-Feng Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Fei Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, Jiangsu, China
| |
Collapse
|
170
|
Bahado-Singh RO, Syngelaki A, Mandal R, Han B, Li L, Bjorndahl TC, Wang N, Maulik D, Dong E, Turkoglu O, Tseng CL, Zeb A, Redman M, Wishart DS, Nicolaides KH. First-trimester metabolomic prediction of stillbirth. J Matern Fetal Neonatal Med 2018; 32:3435-3441. [PMID: 29712497 DOI: 10.1080/14767058.2018.1465552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background: Stillbirth remains a major problem in both developing and developed countries. Omics evaluation of stillbirth has been highlighted as a top research priority. Objective: To identify new putative first-trimester biomarkers in maternal serum for stillbirth prediction using metabolomics-based approach. Methods: Targeted, nuclear magnetic resonance (NMR) and mass spectrometry (MS), and untargeted liquid chromatography-MS (LC-MS) metabolomic analyses were performed on first-trimester maternal serum obtained from 60 cases that subsequently had a stillbirth and 120 matched controls. Metabolites by themselves or in combination with clinical factors were used to develop logistic regression models for stillbirth prediction. Prediction of stillbirths overall, early (<28 weeks and <32 weeks), those related to growth restriction/placental disorder, and unexplained stillbirths were evaluated. Results: Targeted metabolites including glycine, acetic acid, L-carnitine, creatine, lysoPCaC18:1, PCaeC34:3, and PCaeC44:4 predicted stillbirth overall with an area under the curve [AUC, 95% confidence interval (CI)] = 0.707 (0.628-0.785). When combined with clinical predictors the AUC value increased to 0.740 (0.667-0.812). First-trimester targeted metabolites also significantly predicted early, unexplained, and placental-related stillbirths. Untargeted LC-MS features combined with other clinical predictors achieved an AUC (95%CI) = 0.860 (0.793-0.927) for the prediction of stillbirths overall. We found novel preliminary evidence that, verruculotoxin, a toxin produced by common household molds, might be linked to stillbirth. Conclusions: We have identified novel biomarkers for stillbirth using metabolomics and demonstrated the feasibility of first-trimester prediction.
Collapse
Affiliation(s)
- Ray O Bahado-Singh
- a Department of Obstetrics and Gynecology , William Beaumont Health , Royal Oak , MI , USA
| | - Argyro Syngelaki
- b Department of Obstetrics and Gynecology , King's College Hospital , London , England
| | - Rupsari Mandal
- c Departments of Biological Sciences , University of Alberta , Edmonton , Alberta , Canada
| | - BeomSoo Han
- c Departments of Biological Sciences , University of Alberta , Edmonton , Alberta , Canada
| | - Liang Li
- c Departments of Biological Sciences , University of Alberta , Edmonton , Alberta , Canada
| | - Trent C Bjorndahl
- c Departments of Biological Sciences , University of Alberta , Edmonton , Alberta , Canada
| | - Nan Wang
- c Departments of Biological Sciences , University of Alberta , Edmonton , Alberta , Canada
| | - Dev Maulik
- d Department of Obstetrics and Gynecology , University of Missouri , Kansas City , MO , USA
| | - Edison Dong
- c Departments of Biological Sciences , University of Alberta , Edmonton , Alberta , Canada
| | - Onur Turkoglu
- a Department of Obstetrics and Gynecology , William Beaumont Health , Royal Oak , MI , USA
| | - Chiao-Li Tseng
- c Departments of Biological Sciences , University of Alberta , Edmonton , Alberta , Canada
| | - Amna Zeb
- a Department of Obstetrics and Gynecology , William Beaumont Health , Royal Oak , MI , USA
| | - Mark Redman
- a Department of Obstetrics and Gynecology , William Beaumont Health , Royal Oak , MI , USA
| | - David S Wishart
- c Departments of Biological Sciences , University of Alberta , Edmonton , Alberta , Canada.,e Department of Computing Sciences , University of Alberta , Edmonton , Alberta , Canada
| | - Kypros H Nicolaides
- b Department of Obstetrics and Gynecology , King's College Hospital , London , England
| |
Collapse
|
171
|
Le Bastard Q, Ward T, Sidiropoulos D, Hillmann BM, Chun CL, Sadowsky MJ, Knights D, Montassier E. Fecal microbiota transplantation reverses antibiotic and chemotherapy-induced gut dysbiosis in mice. Sci Rep 2018; 8:6219. [PMID: 29670191 PMCID: PMC5906603 DOI: 10.1038/s41598-018-24342-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 03/23/2018] [Indexed: 01/07/2023] Open
Abstract
Fecal microbiota transplantation (FMT) is now widely used to treat recurrent Clostridium difficile infection, but has been less studied as a means to restore microbiome diversity and composition following antibiotic or chemotherapy treatments. The purpose of our study was to assess the efficacy of FMT to reverse antibiotic- and chemotherapy-induced gut dysbiosis in a mouse model. C57BL/6J mice were treated with ampicillin for 1 week and/or received a single intraperitoneal injection of 5-Fluorouracil. Fresh stool was collected and analyzed using shotgun metagenomics and the Illumina sequencing platform. Ampicillin caused a significant and immediate decrease in bacterial species richness and diversity that persisted for one week. In mice that received FMT, disruption of the intestinal microbiota was reversed immediately. Antibiotic and chemotherapy administration caused significant alteration in species distribution, including a decrease in the relative proportions of Clostridium scindens and Faecalibacterium prausnitzii, and an increase in known pathogenic species. In mice receiving FMT, we observed a significant increase in species known to exhibit anti-inflammatory properties. Moreover, chemotherapy led to a critical decrease in key ‘health-promoting’ species and to an altered functional profile, especially when chemotherapy was administered in tandem with antibiotics, and that FMT can ameliorate these effects.
Collapse
Affiliation(s)
- Quentin Le Bastard
- Université de Nantes, Microbiotas Hosts Antibiotics and bacterial Resistances (MiHAR), Nantes, 44000, France
| | - Tonya Ward
- Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, 55108, USA
| | - Dimitri Sidiropoulos
- Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, 55108, USA
| | - Benjamin M Hillmann
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Chan Lan Chun
- Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, 55108, USA.,Department of Civil Engineering and National Resources Research Institute, University of Minnesota Duluth, Duluth, Minnesota, USA
| | - Michael J Sadowsky
- Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, 55108, USA.,Department of Soil Water & Climate, and Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, 55108, USA
| | - Dan Knights
- Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, 55108, USA. .,Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota, 55455, USA.
| | - Emmanuel Montassier
- Université de Nantes, Microbiotas Hosts Antibiotics and bacterial Resistances (MiHAR), Nantes, 44000, France.
| |
Collapse
|
172
|
Ezcurra M. Dissecting cause and effect in host-microbiome interactions using the combined worm-bug model system. Biogerontology 2018; 19:567-578. [PMID: 29557050 PMCID: PMC6223720 DOI: 10.1007/s10522-018-9752-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/07/2018] [Indexed: 12/12/2022]
Abstract
High-throughput molecular studies are greatly advancing our knowledge of the human microbiome and its specific role in governing health and disease states. A myriad of ongoing studies aim at identifying links between microbial community disequilibria (dysbiosis) and human diseases. However, due to the inherent complexity and heterogeneity of the human microbiome we need robust experimental models that allow the systematic manipulation of variables to test the multitude of hypotheses arisen from large-scale ‘meta-omic’ projects. The nematode C. elegans combined with bacterial models offers an avenue to dissect cause and effect in host-microbiome interactions. This combined model allows the genetic manipulation of both host and microbial genetics and the use of a variety of tools, to identify pathways affecting host health. A number of recent high impact studies have used C. elegans to identify microbial pathways affecting ageing and longevity, demonstrating the power of the combined C. elegans-bacterial model. Here I will review the current state of the field, what we have learned from using C. elegans to study gut microbiome and host interactions, and the potential of using this model system in the future.
Collapse
Affiliation(s)
- Marina Ezcurra
- Department of Genetics, Evolution and Environment and Institute of Healthy Ageing, University College London, London, WC1E 6BT, UK. .,School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK.
| |
Collapse
|
173
|
Han L, Maciejewski M, Brockel C, Gordon W, Snapper SB, Korzenik JR, Afzelius L, Altman RB. A probabilistic pathway score (PROPS) for classification with applications to inflammatory bowel disease. Bioinformatics 2018; 34:985-993. [PMID: 29048458 PMCID: PMC5860179 DOI: 10.1093/bioinformatics/btx651] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/25/2017] [Accepted: 10/17/2017] [Indexed: 12/15/2022] Open
Abstract
Summary Gene-based supervised machine learning classification models have been widely used to differentiate disease states, predict disease progression and determine effective treatment options. However, many of these classifiers are sensitive to noise and frequently do not replicate in external validation sets. For complex, heterogeneous diseases, these classifiers are further limited by being unable to capture varying combinations of genes that lead to the same phenotype. Pathway-based classification can overcome these challenges by using robust, aggregate features to represent biological mechanisms. In this work, we developed a novel pathway-based approach, PRObabilistic Pathway Score, which uses genes to calculate individualized pathway scores for classification. Unlike previous individualized pathway-based classification methods that use gene sets, we incorporate gene interactions using probabilistic graphical models to more accurately represent the underlying biology and achieve better performance. We apply our method to differentiate two similar complex diseases, ulcerative colitis (UC) and Crohn's disease (CD), which are the two main types of inflammatory bowel disease (IBD). Using five IBD datasets, we compare our method against four gene-based and four alternative pathway-based classifiers in distinguishing CD from UC. We demonstrate superior classification performance and provide biological insight into the top pathways separating CD from UC. Availability and Implementation PROPS is available as a R package, which can be downloaded at http://simtk.org/home/props or on Bioconductor. Contact rbaltman@stanford.edu. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Lichy Han
- Biomedical Informatics Training Program, Stanford University, Stanford, CA, USA
| | | | | | - William Gordon
- Inflammation & Immunology, Pfizer Inc., Cambridge, MA, USA
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Joshua R Korzenik
- Department of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Russ B Altman
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
174
|
Dinges MM, Lytle C, Larive CK. 1H NMR-Based Identification of Intestinally Absorbed Metabolites by Ussing Chamber Analysis of the Rat Cecum. Anal Chem 2018; 90:4196-4202. [PMID: 29474787 DOI: 10.1021/acs.analchem.8b00393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The large intestine (cecum and colon) is a complex biochemical factory of vital importance to human health. It plays a major role in digestion and absorption by salvaging nutrients from polysaccharides via fermentation initiated by the bacteria that comprise the gut microbiome. We hypothesize that the intestinal epithelium absorbs a limited number of luminal metabolites with bioactive potential while actively excluding those with toxic effects. To explore this concept, we combined 1H NMR detection with Ussing chamber measurements of absorptive transport by rat cecum. Numerous metabolites transported across the epithelium can be measured simultaneously by 1H NMR, a universal detector of organic compounds, alleviating the need for fluorescent or radiolabeled compounds. Our results demonstrate the utility of this approach to delineate the repertoire of fecal solutes that are selectively absorbed by the cecum and to determine their transport rates.
Collapse
Affiliation(s)
- Meredith M Dinges
- Department of Chemistry , University of California , Riverside , California 92521 , United States
| | - Christian Lytle
- School of Medicine , University of California , 900 University Avenue Riverside , California 92521 , United States
| | - Cynthia K Larive
- Department of Chemistry , University of California , Riverside , California 92521 , United States
| |
Collapse
|
175
|
Delhalle S, Bode SFN, Balling R, Ollert M, He FQ. A roadmap towards personalized immunology. NPJ Syst Biol Appl 2018; 4:9. [PMID: 29423275 PMCID: PMC5802799 DOI: 10.1038/s41540-017-0045-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/29/2017] [Accepted: 12/19/2017] [Indexed: 12/30/2022] Open
Abstract
Big data generation and computational processing will enable medicine to evolve from a "one-size-fits-all" approach to precise patient stratification and treatment. Significant achievements using "Omics" data have been made especially in personalized oncology. However, immune cells relative to tumor cells show a much higher degree of complexity in heterogeneity, dynamics, memory-capability, plasticity and "social" interactions. There is still a long way ahead on translating our capability to identify potentially targetable personalized biomarkers into effective personalized therapy in immune-centralized diseases. Here, we discuss the recent advances and successful applications in "Omics" data utilization and network analysis on patients' samples of clinical trials and studies, as well as the major challenges and strategies towards personalized stratification and treatment for infectious or non-communicable inflammatory diseases such as autoimmune diseases or allergies. We provide a roadmap and highlight experimental, clinical, computational analysis, data management, ethical and regulatory issues to accelerate the implementation of personalized immunology.
Collapse
Affiliation(s)
- Sylvie Delhalle
- 1Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29, rue Henri Koch, 4354 Esch-sur-Alzette, Luxembourg
| | - Sebastian F N Bode
- 1Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29, rue Henri Koch, 4354 Esch-sur-Alzette, Luxembourg.,2Center for Pediatrics-Department of General Pediatrics, Adolescent Medicine, and Neonatology, Medical Center, Faculty of Medicine, University of Freiburg, Mathildenstrasse 1, 79106 Freiburg, Germany
| | - Rudi Balling
- 3Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Campus Belval, 6, Avenue du Swing, 4367 Belvaux, Luxembourg
| | - Markus Ollert
- 1Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29, rue Henri Koch, 4354 Esch-sur-Alzette, Luxembourg.,4Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis (ORCA), University of Southern Denmark, 5000 Odense C, Denmark
| | - Feng Q He
- 1Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29, rue Henri Koch, 4354 Esch-sur-Alzette, Luxembourg
| |
Collapse
|
176
|
Grégory D, Chaudet H, Lagier JC, Raoult D. How mass spectrometric approaches applied to bacterial identification have revolutionized the study of human gut microbiota. Expert Rev Proteomics 2018; 15:217-229. [PMID: 29336192 DOI: 10.1080/14789450.2018.1429271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Describing the human hut gut microbiota is one the most exciting challenges of the 21st century. Currently, high-throughput sequencing methods are considered as the gold standard for this purpose, however, they suffer from several drawbacks, including their inability to detect minority populations. The advent of mass-spectrometric (MS) approaches to identify cultured bacteria in clinical microbiology enabled the creation of the culturomics approach, which aims to establish a comprehensive repertoire of cultured prokaryotes from human specimens using extensive culture conditions. Areas covered: This review first underlines how mass spectrometric approaches have revolutionized clinical microbiology. It then highlights the contribution of MS-based methods to culturomics studies, paying particular attention to the extension of the human gut microbiota repertoire through the discovery of new bacterial species. Expert commentary: MS-based approaches have enabled cultivation methods to be resuscitated to study the human gut microbiota and thus to fill in the blanks left by high-throughput sequencing methods in terms of culturing minority populations. Continued efforts to recover new taxa using culture methods, combined with their rapid implementation in genomic databases, would allow for an exhaustive analysis of the gut microbiota through the use of a comprehensive approach.
Collapse
Affiliation(s)
- Dubourg Grégory
- a Aix Marseille Université, Microbes Evolution Phylogeny and Infections (MEPHI), Assistance Publique - Hôpitaux de Marseille - IHU Méditerranée Infection , Marseille , France
| | - Hervé Chaudet
- a Aix Marseille Université, Microbes Evolution Phylogeny and Infections (MEPHI), Assistance Publique - Hôpitaux de Marseille - IHU Méditerranée Infection , Marseille , France
| | - Jean-Christophe Lagier
- a Aix Marseille Université, Microbes Evolution Phylogeny and Infections (MEPHI), Assistance Publique - Hôpitaux de Marseille - IHU Méditerranée Infection , Marseille , France
| | - Didier Raoult
- a Aix Marseille Université, Microbes Evolution Phylogeny and Infections (MEPHI), Assistance Publique - Hôpitaux de Marseille - IHU Méditerranée Infection , Marseille , France
| |
Collapse
|
177
|
Wilkins JM, Trushina E. Application of Metabolomics in Alzheimer's Disease. Front Neurol 2018; 8:719. [PMID: 29375465 PMCID: PMC5770363 DOI: 10.3389/fneur.2017.00719] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/13/2017] [Indexed: 12/22/2022] Open
Abstract
Progress toward the development of efficacious therapies for Alzheimer’s disease (AD) is halted by a lack of understanding early underlying pathological mechanisms. Systems biology encompasses several techniques including genomics, epigenomics, transcriptomics, proteomics, and metabolomics. Metabolomics is the newest omics platform that offers great potential for the diagnosis and prognosis of neurodegenerative diseases as an individual’s metabolome reflects alterations in genetic, transcript, and protein profiles and influences from the environment. Advancements in the field of metabolomics have demonstrated the complexity of dynamic changes associated with AD progression underscoring challenges with the development of efficacious therapeutic interventions. Defining systems-level alterations in AD could provide insights into disease mechanisms, reveal sex-specific changes, advance the development of biomarker panels, and aid in monitoring therapeutic efficacy, which should advance individualized medicine. Since metabolic pathways are largely conserved between species, metabolomics could improve the translation of preclinical research conducted in animal models of AD into humans. A summary of recent developments in the application of metabolomics to advance the AD field is provided below.
Collapse
Affiliation(s)
- Jordan Maximillian Wilkins
- Mitochondrial Neurobiology and Therapeutics Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Eugenia Trushina
- Mitochondrial Neurobiology and Therapeutics Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
178
|
Schaefer AK, Melnyk JE, He Z, Del Rosario F, Grimes CL. Pathogen- and Microbial- Associated Molecular Patterns (PAMPs/MAMPs) and the Innate Immune Response in Crohn’s Disease. IMMUNITY AND INFLAMMATION IN HEALTH AND DISEASE 2018:175-187. [DOI: 10.1016/b978-0-12-805417-8.00014-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
179
|
Almousa AA, Morris M, Fowler S, Jones J, Alcorn J. Elevation of serum pyruvate kinase M2 (PKM2) in IBD and its relationship to IBD indices. Clin Biochem 2017; 53:19-24. [PMID: 29273328 DOI: 10.1016/j.clinbiochem.2017.12.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 12/04/2017] [Accepted: 12/17/2017] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Endoscopy remains the gold standard to diagnose and evaluate inflammatory bowel disease (IBD) activity. Current biomarkers or their combinations cannot adequately predict IBD risk, diagnosis, progression or relapse, and response to therapy. Pyruvate kinase M2 (PKM2) is emerging as a significant mediator of the inflammatory process. We aimed to assess levels of serum PKM2 in healthy and newly diagnosed IBD patients and its relationship with IBD indices and microbiota changes. DESIGN AND METHODS IBD serum samples from newly diagnosed patients were collected and analyzed using a PKM2-ELISA and correlated with disease activity scores, IBD disease type, and intestinal microbiota. Furthermore, we tested the genetic and protein expression of PKM2 in an in vitro intestinal cell model of inflammation. RESULTS Serum PKM2 levels were 6-fold higher in IBD patients compared to healthy controls, with no sensitivity to disease phenotype (Crohn's Disease or Ulcerative Colitis) or localization of inflammation. Serum PKM2 had considerably less interindividual variability than established IBD fecal biomarkers. A positive Pearson correlation (r=0.6121) existed between serum PKM2 and Bacteroidetes fecal levels in Crohn's disease (CD), while a negative (r=-0.6128) correlation was observed with Actinobacteria fecal levels. Furthermore, LPS (500ng/mL) significantly increased PKM2 expression in vitro, which was significantly suppressed by an anti-inflammatory flaxseed bioactive agent. CONCLUSION Our data suggests PKM2 as a putative biomarker for IBD and the dysbiosis of microflora in CD. Investigations involving larger number of clinical patients are necessary to validate its use as a serum biomarker of IBD.
Collapse
Affiliation(s)
- Ahmed A Almousa
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan, Canada
| | - Marc Morris
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan, Canada
| | - Sharyle Fowler
- Department of Gastroenterology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Jennifer Jones
- Division of Digestive Care & Endoscopy, Department of Community Health and Epidemiology, Dalhousie University, Halifax, Canada
| | - Jane Alcorn
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
180
|
The Imbalance between n-6/n-3 Polyunsaturated Fatty Acids and Inflammatory Bowel Disease: A Comprehensive Review and Future Therapeutic Perspectives. Int J Mol Sci 2017; 18:ijms18122619. [PMID: 29206211 PMCID: PMC5751222 DOI: 10.3390/ijms18122619] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 11/29/2017] [Accepted: 11/29/2017] [Indexed: 02/08/2023] Open
Abstract
Eating habits have changed dramatically over the years, leading to an imbalance in the ratio of n-6/n-3 polyunsaturated fatty acids (PUFAs) in favour of n-6 PUFAs, particularly in the Western diet. Meanwhile, the incidence of inflammatory bowel disease (IBD) is increasing worldwide. Recent epidemiological data indicate the potential beneficial effect of n-3 PUFAs in ulcerative colitis (UC) prevention, whereas consumption of a higher ratio of n-6 PUFAs versus n-3 PUFAs has been associated with an increased UC incidence. The long-chain dietary n-3 PUFAs are the major components of n-3 fish oil and have been shown to have anti-inflammatory properties in several chronic inflammatory disorders, being involved in the regulation of immunological and inflammatory responses. Despite experimental evidence implying biological plausibility, clinical data are still controversial, especially in Crohn’s disease. Clinical trials of fish-oil derivatives in IBD have produced mixed results, showing beneficial effects, but failing to demonstrate a clear protective effect in preventing clinical relapse. Such data are insufficient to make a recommendation for the use of n-3 PUFAs in clinical practice. Here, we present the findings of a comprehensive literature search on the role of n-3 PUFAs in IBD development and treatment, and highlight new therapeutic perspectives.
Collapse
|
181
|
Targeted isolation and identification of bioactive compounds lowering cholesterol in the crude extracts of crabapples using UPLC-DAD-MS-SPE/NMR based on pharmacology-guided PLS-DA. J Pharm Biomed Anal 2017; 150:144-151. [PMID: 29232626 DOI: 10.1016/j.jpba.2017.11.061] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/15/2017] [Accepted: 11/26/2017] [Indexed: 11/24/2022]
Abstract
The anti-hyperlipidemic effects of crude crabapple extracts derived from Malus 'Red jade', Malus hupehensis (Pamp.) Rehd. and Malus prunifolia (Willd.) Borkh. were evaluated on high-fat diet induced obese (HF DIO) mice. The results revealed that some of these extracts could lower serum cholesterol levels in HF DIO mice. The same extracts were also parallelly analyzed by LC-MS in both positive and negative ionization modes. Based on the pharmacological results, 22 LC-MS variables were identified to be correlated with the anti-hyperlipidemic effects using partial least square discriminant analysis (PLS-DA) and independent samples t-test. Further, under the guidance of the bioactivity-correlated LC-MS signals, 10 compounds were targetedly isolated and enriched using UPLC-DAD-MS-SPE and identified/elucidated by NMR together with MS/MS as citric acid(1), p-coumaric acid(2), hyperoside(3), myricetin(4), naringenin(5), quercetin(6), kaempferol(7), gentiopicroside(8), ursolic acid(9) and 8-epiloganic acid(10). Among these 10 compounds, 6 compounds, hyperoside(3), myricetin(4), naringenin(5), quercetin(6), kaempferol(7) and ursolic acid(9), were individually studied and reported to indeed have effects on lowering the serum lipid levels. These results demonstrated the efficiency of this strategy for drug discovery. In contrast to traditional routes to discover bioactive compounds in the plant extracts, targeted isolation and identification of bioactive compounds in the crude plant extracts using UPLC-DAD-MS-SPE/NMR based on pharmacology-guided PLS-DA of LC-MS data brings forward a new efficient dereplicated approach to natural products research for drug discovery.
Collapse
|
182
|
Abstract
There are many mechanisms to explain how food may drive and ameliorate inflammation. Although there are no consistent macronutrient associations inflammatory bowel disease (IBD) development, many exclusion diets have been described: IgG-4 guided exclusion diet; semivegetarian diet; low-fat, fiber-limited exclusion diet; Paleolithic diet; Maker's diet; vegan diet; Life without Bread diet; exclusive enteral nutrition (EEN), the Specific Carbohydrate Diet (SCD) and the low FODMAP diet. The literature on diet and IBD is reviewed with a particular focus on EEN, SCD, and low FODMAP diets. Lessons learned from the existing observations and strengths and shortcomings of existing data are presented.
Collapse
|
183
|
Abstract
Dietary fiber, specifically prebiotics, is the primary source of energy for the gut microbiota and thus has the potential to beneficially modify microbiota composition. Prebiotics have been used in both in vitro studies and with animal models of colitis with largely positive results. Human studies are few and have been conducted with only a few select prebiotics, primarily fructan-containing fibers. Although disease activity and inflammatory markers have improved, more needs to be learned about the specific prebiotic compounds and how they can be used to best improve the gut microbiota to counter changes induced by inflammatory bowel disease.
Collapse
Affiliation(s)
- Heather E Rasmussen
- Department of Clinical Nutrition, Rush University Medical Center, 1700 W Van Buren Street, Suite 425, Chicago, IL 60612, USA.
| | - Bruce R Hamaker
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA
| |
Collapse
|
184
|
Habchi B, Alves S, Jouan-Rimbaud Bouveresse D, Appenzeller B, Paris A, Rutledge DN, Rathahao-Paris E. Potential of dynamically harmonized Fourier transform ion cyclotron resonance cell for high-throughput metabolomics fingerprinting: control of data quality. Anal Bioanal Chem 2017; 410:483-490. [DOI: 10.1007/s00216-017-0738-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/23/2017] [Accepted: 10/30/2017] [Indexed: 11/24/2022]
|
185
|
Guo J, Shi W, Chen Q, Deng D, Zhang X, Wei S, Yu N, Giesy JP, Yu H. Extended Virtual Screening Strategies To Link Antiandrogenic Activities and Detected Organic Contaminants in Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:12528-12536. [PMID: 28956905 DOI: 10.1021/acs.est.7b03324] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A tiered screening strategy based on extensive virtual fractionation and elucidation was developed to simplify identification of toxicants in complex environments. In tier1-virtual fractionation, multivariate analysis (MVA) was set up as an alternative of physical fractionation. In tier2-virtual structure elucidation, in-house quantitative structure-retention relationship (QSRR) models and toxicity simulation methods were developed to simplify nontarget identification. The efficiency of the tiered virtual strategy was tentatively verified by soil samples from a chemical park contaminated by antiandrogenic substances. Eight out of 18 sites were detected as antiandrogenic, while none of them exhibited androgenic agonist potencies. Sixty-seven peaks were selected for further identification by MVA, among which over 90% were verified in androgenic fractions in traditional effect-directed analysis (EDA). With 579 tentative structures generated by in silico fragmentation, 74% were elucidated by QSRR and 65% were elucidated by in silico toxicity prediction. All prior peaks were identified at different confidence levels with over 40% of the identified peaks above confidence level 2b, which has been increased over 40% with less than half of the time spent compared to traditional EDA. Such a combination of tiered virtual screening methods provides more efficient and rapid identifications of key toxicants at contaminated sites.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan , Saskatoon, Saskatchewan S7N5B3, Canada
- Department of Zoology and Center for Integrative Toxicology, Michigan State University , East Lansing, Michigan 48824, United States
- School of Biological Sciences, University of Hong Kong , Hong Kong, SAR China
| | | |
Collapse
|
186
|
Impact of Dietary Resistant Starch on the Human Gut Microbiome, Metaproteome, and Metabolome. mBio 2017; 8:mBio.01343-17. [PMID: 29042495 PMCID: PMC5646248 DOI: 10.1128/mbio.01343-17] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Diet can influence the composition of the human microbiome, and yet relatively few dietary ingredients have been systematically investigated with respect to their impact on the functional potential of the microbiome. Dietary resistant starch (RS) has been shown to have health benefits, but we lack a mechanistic understanding of the metabolic processes that occur in the gut during digestion of RS. Here, we collected samples during a dietary crossover study with diets containing large or small amounts of RS. We determined the impact of RS on the gut microbiome and metabolic pathways in the gut, using a combination of “omics” approaches, including 16S rRNA gene sequencing, metaproteomics, and metabolomics. This multiomics approach captured changes in the abundance of specific bacterial species, proteins, and metabolites after a diet high in resistant starch (HRS), providing key insights into the influence of dietary interventions on the gut microbiome. The combined data showed that a high-RS diet caused an increase in the ratio of Firmicutes to Bacteroidetes, including increases in relative abundances of some specific members of the Firmicutes and concurrent increases in enzymatic pathways and metabolites involved in lipid metabolism in the gut. This work was undertaken to obtain a mechanistic understanding of the complex interplay between diet and the microorganisms residing in the intestine. Although it is known that gut microbes play a key role in digestion of the food that we consume, the specific contributions of different microorganisms are not well understood. In addition, the metabolic pathways and resultant products of metabolism during digestion are highly complex. To address these knowledge gaps, we used a combination of molecular approaches to determine the identities of the microorganisms in the gut during digestion of dietary starch as well as the metabolic pathways that they carry out. Together, these data provide a more complete picture of the function of the gut microbiome in digestion, including links between an RS diet and lipid metabolism and novel linkages between specific gut microbes and their metabolites and proteins produced in the gut.
Collapse
|
187
|
Sommer F, Rühlemann MC, Bang C, Höppner M, Rehman A, Kaleta C, Schmitt-Kopplin P, Dempfle A, Weidinger S, Ellinghaus E, Krauss-Etschmann S, Schmidt-Arras D, Aden K, Schulte D, Ellinghaus D, Schreiber S, Tholey A, Rupp J, Laudes M, Baines JF, Rosenstiel P, Franke A. Microbiomarkers in inflammatory bowel diseases: caveats come with caviar. Gut 2017; 66:1734-1738. [PMID: 28733278 PMCID: PMC5595102 DOI: 10.1136/gutjnl-2016-313678] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/07/2017] [Accepted: 06/08/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Felix Sommer
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | | | - Corinna Bang
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Marc Höppner
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Ateequr Rehman
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Christoph Kaleta
- Institute for Experimental Medicine, Christian Albrechts University of Kiel, Kiel, Germany
| | - Phillippe Schmitt-Kopplin
- Helmholtz Zentrum München, Research Unit Analytical BioGeoChemistry, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Astrid Dempfle
- Institute of Medical Informatics and Statistics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Stephan Weidinger
- Department of Dermatology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Eva Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Susanne Krauss-Etschmann
- Institute for Experimental Medicine, Christian Albrechts University of Kiel, Kiel, Germany,Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Dirk Schmidt-Arras
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Konrad Aden
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Dominik Schulte
- Clinic of Internal Medicine I, University Hospital Schleswig-Holstein, Kiel, Germany
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany,Clinic of Internal Medicine I, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Andreas Tholey
- Institute for Experimental Medicine, Christian Albrechts University of Kiel, Kiel, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lubeck, Lubeck, Germany
| | - Matthias Laudes
- Clinic of Internal Medicine I, University Hospital Schleswig-Holstein, Kiel, Germany
| | - John F Baines
- Institute for Experimental Medicine, Christian Albrechts University of Kiel, Kiel, Germany,Evolutionary Genomics, Max Planck Institute for Evolutionary Biology, Plon, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
188
|
McNerney MP, Styczynski MP. Small molecule signaling, regulation, and potential applications in cellular therapeutics. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2017; 10. [PMID: 28960879 DOI: 10.1002/wsbm.1405] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/20/2017] [Accepted: 08/14/2017] [Indexed: 12/19/2022]
Abstract
Small molecules have many important roles across the tree of life: they regulate processes from metabolism to transcription, they enable signaling within and between species, and they serve as the biochemical building blocks for cells. They also represent valuable phenotypic endpoints that are promising for use as biomarkers of disease states. In the context of engineering cell-based therapeutics, they hold particularly great promise for enabling finer control over the therapeutic cells and allowing them to be responsive to extracellular cues. The natural signaling and regulatory functions of small molecules can be harnessed and rewired to control cell activity and delivery of therapeutic payloads, potentially increasing efficacy while decreasing toxicity. To that end, this review considers small molecule-mediated regulation and signaling in bacteria. We first discuss some of the most prominent applications and aspirations for responsive cell-based therapeutics. We then describe the transport, signaling, and regulation associated with three classes of molecules that may be exploited in the engineering of therapeutic bacteria: amino acids, fatty acids, and quorum-sensing signaling molecules. We also present examples of existing engineering efforts to generate cells that sense and respond to levels of different small molecules. Finally, we discuss future directions for how small molecule-mediated regulation could be harnessed for therapeutic applications, as well as some critical considerations for the ultimate success of such endeavors. WIREs Syst Biol Med 2018, 10:e1405. doi: 10.1002/wsbm.1405 This article is categorized under: Biological Mechanisms > Cell Signaling Biological Mechanisms > Metabolism Translational, Genomic, and Systems Medicine > Therapeutic Methods.
Collapse
Affiliation(s)
- Monica P McNerney
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mark P Styczynski
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
189
|
Li Y, Wang C, Li D, Deng P, Shao X, Hu J, Liu C, Jie H, Lin Y, Li Z, Qian X, Zhang H, Zhao Y. 1H-NMR-based metabolic profiling of a colorectal cancer CT-26 lung metastasis model in mice. Oncol Rep 2017; 38:3044-3054. [PMID: 28901465 DOI: 10.3892/or.2017.5954] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 06/26/2017] [Indexed: 02/05/2023] Open
Abstract
Lung metastasis is an important cause for the low 5-year survival rate of colorectal cancer patients. Understanding the metabolic profile of lung metastasis of colorectal cancer is important for developing molecular diagnostic and therapeutic approaches. We carried out the metabonomic profiling of lung tissue samples on a mouse lung metastasis model of colorectal cancer using 1H-nuclear magnetic resonance (1H-NMR). The lung tissues of mice were collected at different intervals after marine colon cancer cell line CT-26 was intravenously injected into BALB/c mice. The distinguishing metabolites of lung tissue were investigated using 1H-NMR-based metabonomic assay, which is a highly sensitive and non-destructive method for biomarker identification. Principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were applied to analyze 1H-NMR profiling data to seek potential biomarkers. All of the 3 analyses achieved excellent separations between the normal and metastasis groups. A total of 42 metabolites were identified, ~12 of which were closely correlated with the process of metastasis from colon to lung. These altered metabolites indicated the disturbance of metabolism in metastatic tumors including glycolysis, TCA cycle, glutaminolysis, choline metabolism and serine biosynthesis. Our findings firstly identified the distinguishing metabolites in mouse colorectal cancer lung metastasis models, and indicated that the metabolite disturbance may be associated with the progression of lung metastasis from colon cancer. The altered metabolites may be potential biomarkers that provide a promising molecular approach for clinical diagnosis and mechanistic study of colorectal cancer with lung metastasis.
Collapse
Affiliation(s)
- Yan Li
- Pharmacodynamics Pharmacokinetics Early Safety Evaluation Model Animals, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, P.R. China
| | - Chunting Wang
- Pharmacodynamics Pharmacokinetics Early Safety Evaluation Model Animals, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, P.R. China
| | - Dandan Li
- Pharmacodynamics Pharmacokinetics Early Safety Evaluation Model Animals, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, P.R. China
| | - Pengchi Deng
- Analytical and Testing Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaoni Shao
- Pharmacodynamics Pharmacokinetics Early Safety Evaluation Model Animals, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, P.R. China
| | - Jing Hu
- Pharmacodynamics Pharmacokinetics Early Safety Evaluation Model Animals, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, P.R. China
| | - Chunqi Liu
- Pharmacodynamics Pharmacokinetics Early Safety Evaluation Model Animals, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, P.R. China
| | - Hui Jie
- Pharmacodynamics Pharmacokinetics Early Safety Evaluation Model Animals, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, P.R. China
| | - Yiyun Lin
- Pharmacodynamics Pharmacokinetics Early Safety Evaluation Model Animals, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, P.R. China
| | - Zhuoling Li
- Pharmacodynamics Pharmacokinetics Early Safety Evaluation Model Animals, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, P.R. China
| | - Xinying Qian
- Pharmacodynamics Pharmacokinetics Early Safety Evaluation Model Animals, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, P.R. China
| | - Huaqin Zhang
- Pharmacodynamics Pharmacokinetics Early Safety Evaluation Model Animals, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, P.R. China
| | - Yinglan Zhao
- Pharmacodynamics Pharmacokinetics Early Safety Evaluation Model Animals, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
190
|
Recent Advances in the Etiopathogenesis of Inflammatory Bowel Disease: The Role of Omics. Mol Diagn Ther 2017; 22:11-23. [DOI: 10.1007/s40291-017-0298-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
191
|
Cross sectional evaluation of the gut-microbiome metabolome axis in an Italian cohort of IBD patients. Sci Rep 2017; 7:9523. [PMID: 28842640 PMCID: PMC5573342 DOI: 10.1038/s41598-017-10034-5] [Citation(s) in RCA: 275] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/01/2017] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract of uncertain origin, which includes ulcerative colitis (UC) and Crohn’s disease (CD). The composition of gut microbiota may change in IBD affected individuals, but whether dysbiosis is the cause or the consequence of inflammatory processes in the intestinal tissue is still unclear. Here, the composition of the microbiota and the metabolites in stool of 183 subjects (82 UC, 50 CD, and 51 healthy controls) were determined. The metabolites content and the microbiological profiles were significantly different between IBD and healthy subjects. In the IBD group, Firmicutes, Proteobacteria, Verrucomicrobia, and Fusobacteria were significantly increased, whereas Bacteroidetes and Cyanobacteria were decreased. At genus level Escherichia, Faecalibacterium, Streptococcus, Sutterella and Veillonella were increased, whereas Bacteroides, Flavobacterium, and Oscillospira decreased. Various metabolites including biogenic amines, amino acids, lipids, were significantly increased in IBD, while others, such as two B group vitamins, were decreased in IBD compared to healthy subjects. This study underlines the potential role of an inter-omics approach in understanding the metabolic pathways involved in IBD. The combined evaluation of metabolites and fecal microbiome can be useful to discriminate between healthy subjects and patients with IBD.
Collapse
|
192
|
Yang Y, Zhang H, Yan B, Zhang T, Gao Y, Shi Y, Le G. Health Effects of Dietary Oxidized Tyrosine and Dityrosine Administration in Mice with Nutrimetabolomic Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6957-6971. [PMID: 28742334 DOI: 10.1021/acs.jafc.7b02003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This study aims to investigate the health effects of long-term dietary oxidized tyrosine (O-Tyr) and its main product (dityrosine) administration on mice metabolism. Mice received daily intragastric administration of either O-Tyr (320 μg/kg body weight), dityrosine (Dityr, 320 μg/kg body weight), or saline for consecutive 6 weeks. Urine and plasma samples were analyzed by NMR-based metabolomics strategies. Body weight, clinical chemistry, oxidative damage indexes, and histopathological data were obtained as complementary information. O-Tyr and Dityr exposure changed many systemic metabolic processes, including reduced choline bioavailability, led to fat accumulation in liver, induced hepatic injury, and renal dysfunction, resulted in changes in gut microbiota functions, elevated risk factor for cardiovascular disease, altered amino acid metabolism, induced oxidative stress responses, and inhibited energy metabolism. These findings implied that it is absolutely essential to reduce the generation of oxidation protein products in food system through improving modern food processing methods.
Collapse
Affiliation(s)
- Yuhui Yang
- The Laboratory of Food Nutrition and Functional Factors, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| | - Hui Zhang
- The Laboratory of Food Nutrition and Functional Factors, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| | - Biao Yan
- The Laboratory of Food Nutrition and Functional Factors, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| | - Tianyu Zhang
- The Laboratory of Food Nutrition and Functional Factors, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| | - Ying Gao
- The Laboratory of Food Nutrition and Functional Factors, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| | - Yonghui Shi
- The Laboratory of Food Nutrition and Functional Factors, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
- The State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| | - Guowei Le
- The Laboratory of Food Nutrition and Functional Factors, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
- The State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| |
Collapse
|
193
|
Melnik AV, da Silva RR, Hyde ER, Aksenov AA, Vargas F, Bouslimani A, Protsyuk I, Jarmusch AK, Tripathi A, Alexandrov T, Knight R, Dorrestein PC. Coupling Targeted and Untargeted Mass Spectrometry for Metabolome-Microbiome-Wide Association Studies of Human Fecal Samples. Anal Chem 2017. [PMID: 28628333 DOI: 10.1021/acs.analchem.7b01381] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Increasing appreciation of the gut microbiome's role in health motivates understanding the molecular composition of human feces. To analyze such complex samples, we developed a platform coupling targeted and untargeted metabolomics. The approach is facilitated through split flow from one UPLC, joint timing triggered by contact closure relays, and a script to retrieve the data. It is designed to detect specific metabolites of interest with high sensitivity, allows for correction of targeted information, enables better quantitation thus providing an advanced analytical tool for exploratory studies. Procrustes analysis revealed that untargeted approach provides a better correlation to microbiome data, associating specific metabolites with microbes that produce or process them. With the subset of over one hundred human fecal samples from the American Gut project, the implementation of the described coupled workflow revealed that targeted analysis using combination of single transition per compound with retention time misidentifies 30% of the targeted data and could lead to incorrect interpretations. At the same time, the targeted analysis extends detection limits and dynamic range, depending on the compounds, by orders of magnitude. A software application has been developed as a part of the workflow to allows for quantitative assessments based on calibration curves. Using this approach, we detect expected microbially modified molecules such as secondary bile acids and unexpected microbial molecules including Pseudomonas-associated quinolones and rhamnolipids in feces, setting the stage for metabolome-microbiome-wide association studies (MMWAS).
Collapse
Affiliation(s)
- Alexey V Melnik
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , La Jolla, California 92093, United States
| | - Ricardo R da Silva
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , La Jolla, California 92093, United States
| | - Embriette R Hyde
- Department of Pediatrics, University of California, San Diego , La Jolla, California 92093, United States
| | - Alexander A Aksenov
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , La Jolla, California 92093, United States
| | - Fernando Vargas
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , La Jolla, California 92093, United States
| | - Amina Bouslimani
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , La Jolla, California 92093, United States
| | - Ivan Protsyuk
- Structural and Computational Biology Unit, European Molecular Biology Laboratory , Heidelberg 69117, Germany
| | - Alan K Jarmusch
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , La Jolla, California 92093, United States
| | - Anupriya Tripathi
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , La Jolla, California 92093, United States.,Department of Pediatrics, University of California, San Diego , La Jolla, California 92093, United States.,UC San Diego Center for Microbiome Innovation, University of California, San Diego , La Jolla, California 92093, United States
| | - Theodore Alexandrov
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , La Jolla, California 92093, United States.,Structural and Computational Biology Unit, European Molecular Biology Laboratory , Heidelberg 69117, Germany
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego , La Jolla, California 92093, United States.,Department of Computer Science & Engineering, University of California, San Diego , La Jolla, California 92093, United States
| | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , La Jolla, California 92093, United States
| |
Collapse
|
194
|
Rojo D, Méndez-García C, Raczkowska BA, Bargiela R, Moya A, Ferrer M, Barbas C. Exploring the human microbiome from multiple perspectives: factors altering its composition and function. FEMS Microbiol Rev 2017; 41:453-478. [PMID: 28333226 PMCID: PMC5812509 DOI: 10.1093/femsre/fuw046] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/15/2016] [Indexed: 02/07/2023] Open
Abstract
Our microbiota presents peculiarities and characteristics that may be altered by multiple factors. The degree and consequences of these alterations depend on the nature, strength and duration of the perturbations as well as the structure and stability of each microbiota. The aim of this review is to sketch a very broad picture of the factors commonly influencing different body sites, and which have been associated with alterations in the human microbiota in terms of composition and function. To do so, first, a graphical representation of bacterial, fungal and archaeal genera reveals possible associations among genera affected by different factors. Then, the revision of sequence-based predictions provides associations with functions that become part of the active metabolism. Finally, examination of microbial metabolite contents and fluxes reveals whether metabolic alterations are a reflection of the differences observed at the level of population structure, and in the last step, link microorganisms to functions under perturbations that differ in nature and aetiology. The utilisation of complementary technologies and methods, with a special focus on metabolomics research, is thoroughly discussed to obtain a global picture of microbiota composition and microbiome function and to convey the urgent need for the standardisation of protocols.
Collapse
Affiliation(s)
- David Rojo
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Montepríncipe, 28668 Madrid, Spain
| | | | - Beata Anna Raczkowska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Rafael Bargiela
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain
| | - Andrés Moya
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Community Public Health (FISABIO), 46020 Valencia, Spain
- Network Research Center for Epidemiology and Public Health (CIBER-ESP), 28029 Madrid, Spain
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, Paterna, 46980 Valencia, Spain
| | - Manuel Ferrer
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Montepríncipe, 28668 Madrid, Spain
| |
Collapse
|
195
|
Barbara G, Scaioli E, Barbaro MR, Biagi E, Laghi L, Cremon C, Marasco G, Colecchia A, Picone G, Salfi N, Capozzi F, Brigidi P, Festi D. Gut microbiota, metabolome and immune signatures in patients with uncomplicated diverticular disease. Gut 2017; 66:1252-1261. [PMID: 27618836 DOI: 10.1136/gutjnl-2016-312377] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/19/2016] [Accepted: 08/20/2016] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The engagement of the gut microbiota in the development of symptoms and complications of diverticular disease has been frequently hypothesised. Our aim was to explore colonic immunocytes, gut microbiota and the metabolome in patients with diverticular disease in a descriptive, cross-sectional, pilot study. DESIGN Following colonoscopy with biopsy and questionnaire phenotyping, patients were classified into diverticulosis or symptomatic uncomplicated diverticular disease; asymptomatic subjects served as controls. Mucosal immunocytes, in the diverticular region and in unaffected sites, were quantified with immunohistochemistry. Mucosa and faecal microbiota were analysed by the phylogenetic platform high taxonomic fingerprint (HTF)-Microbi.Array, while the metabolome was assessed by 1H nuclear magnetic resonance. RESULTS Compared with controls, patients with diverticula, regardless of symptoms, had a >70% increase in colonic macrophages. Their faecal microbiota showed depletion of Clostridium cluster IV. Clostridium cluster IX, Fusobacterium and Lactobacillaceae were reduced in symptomatic versus asymptomatic patients. A negative correlation was found between macrophages and mucosal Clostridium cluster IV and Akkermansia. Urinary and faecal metabolome changes in diverticular disease involved the hippurate and kynurenine pathways. Six urinary molecules allowed to discriminate diverticular disease and control groups with >95% accuracy. CONCLUSIONS Patients with colonic diverticular disease show depletion of microbiota members with anti-inflammatory activity associated with mucosal macrophage infiltration. Metabolome profiles were linked to inflammatory pathways and gut neuromotor dysfunction and showed the ability to discriminate diverticular subgroups and controls. These data pave the way for further large-scale studies specifically aimed at identifying microbiota signatures with a potential diagnostic value in patients with diverticular disease.
Collapse
Affiliation(s)
- Giovanni Barbara
- Department of Medical and Surgical Sciences, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Eleonora Scaioli
- Department of Medical and Surgical Sciences, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Maria Raffaella Barbaro
- Department of Medical and Surgical Sciences, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Elena Biagi
- Department of Pharmacy and Biotechnology, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Luca Laghi
- Department of Agri-Food Sciences and Technologies, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Cesare Cremon
- Department of Medical and Surgical Sciences, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Giovanni Marasco
- Department of Medical and Surgical Sciences, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Antonio Colecchia
- Department of Medical and Surgical Sciences, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Gianfranco Picone
- Department of Agri-Food Sciences and Technologies, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Nunzio Salfi
- Pathology Unit, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Francesco Capozzi
- Department of Agri-Food Sciences and Technologies, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Patrizia Brigidi
- Department of Pharmacy and Biotechnology, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Davide Festi
- Department of Medical and Surgical Sciences, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| |
Collapse
|
196
|
Lee T, Clavel T, Smirnov K, Schmidt A, Lagkouvardos I, Walker A, Lucio M, Michalke B, Schmitt-Kopplin P, Fedorak R, Haller D. Oral versus intravenous iron replacement therapy distinctly alters the gut microbiota and metabolome in patients with IBD. Gut 2017; 66:863-871. [PMID: 26848182 PMCID: PMC5531225 DOI: 10.1136/gutjnl-2015-309940] [Citation(s) in RCA: 223] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 12/02/2015] [Accepted: 12/21/2015] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Iron deficiency is a common complication in patients with IBD and oral iron therapy is suggested to exacerbate IBD symptoms. We performed an open-labelled clinical trial to compare the effects of per oral (PO) versus intravenous (IV) iron replacement therapy (IRT). DESIGN The study population included patients with Crohn's disease (CD; N=31), UC (N=22) and control subjects with iron deficiency (non-inflamed, NI=19). After randomisation, participants received iron sulfate (PO) or iron sucrose (IV) over 3 months. Clinical parameters, faecal bacterial communities and metabolomes were assessed before and after intervention. RESULTS Both PO and IV treatments ameliorated iron deficiency, but higher ferritin levels were observed with IV. Changes in disease activity were independent of iron treatment types. Faecal samples in IBD were characterised by marked interindividual differences, lower phylotype richness and proportions of Clostridiales. Metabolite analysis also showed separation of both UC and CD from control anaemic participants. Major shifts in bacterial diversity occurred in approximately half of all participants after IRT, but patients with CD were most susceptible. Despite individual-specific changes in phylotypes due to IRT, PO treatment was associated with decreased abundances of operational taxonomic units assigned to the species Faecalibacterium prausnitzii, Ruminococcus bromii, Dorea sp. and Collinsella aerofaciens. Clear IV-specific and PO-specific fingerprints were evident at the level of metabolomes, with changes affecting cholesterol-derived host substrates. CONCLUSIONS Shifts in gut bacterial diversity and composition associated with iron treatment are pronounced in IBD participants. Despite similar clinical outcome, oral administration differentially affects bacterial phylotypes and faecal metabolites compared with IV therapy. TRIAL REGISTRATION NUMBER clinicaltrial.gov (NCT01067547).
Collapse
Affiliation(s)
- Thomas Lee
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Canada,Department of Gastroenterology, Wollongong Hospital, Wollongong, NSW, Australia
| | - Thomas Clavel
- ZIEL Institute for Food and Health, Technische Universität München, Freising, Germany
| | - Kirill Smirnov
- Research Unit Analytical BioGeoChemistry, German Research Center for Environmental Health, Neuherberg, Germany
| | - Annemarie Schmidt
- Chair of Nutrition and Immunology, Technische Universität München, Freising, Germany
| | - Ilias Lagkouvardos
- ZIEL Institute for Food and Health, Technische Universität München, Freising, Germany
| | - Alesia Walker
- Research Unit Analytical BioGeoChemistry, German Research Center for Environmental Health, Neuherberg, Germany
| | - Marianna Lucio
- Research Unit Analytical BioGeoChemistry, German Research Center for Environmental Health, Neuherberg, Germany
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, German Research Center for Environmental Health, Neuherberg, Germany
| | - Philippe Schmitt-Kopplin
- ZIEL Institute for Food and Health, Technische Universität München, Freising, Germany,Research Unit Analytical BioGeoChemistry, German Research Center for Environmental Health, Neuherberg, Germany
| | - Richard Fedorak
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Dirk Haller
- ZIEL Institute for Food and Health, Technische Universität München, Freising, Germany,Chair of Nutrition and Immunology, Technische Universität München, Freising, Germany
| |
Collapse
|
197
|
Martinez KB, Leone V, Chang EB. Microbial metabolites in health and disease: Navigating the unknown in search of function. J Biol Chem 2017; 292:8553-8559. [PMID: 28389566 DOI: 10.1074/jbc.r116.752899] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The gut microbiota has been implicated in the development of a number of chronic gastrointestinal and systemic diseases. These include inflammatory bowel diseases, irritable bowel syndrome, and metabolic (i.e. obesity, non-alcoholic fatty liver disease, and diabetes) and neurological diseases. The advanced understanding of host-microbe interactions has largely been due to new technologies such as 16S rRNA sequencing to identify previously unknown microbial communities and, more importantly, their functional characteristics through metagenomic sequencing and other multi-omic technologies, such as metatranscriptomics, metaproteomics, and metabolomics. Given the vast array of newly acquired knowledge in the field and technological advances, it is expected that mechanisms underlying several disease states involving the interactions between microbes, their metabolites, and the host will be discovered. The identification of these mechanisms will allow for the development of more precise therapies to prevent or manage chronic disease. This review discusses the functional characterization of the microbiome, highlighting the advances in identifying bioactive microbial metabolites that have been directly linked to gastrointestinal and peripheral diseases.
Collapse
Affiliation(s)
- Kristina B Martinez
- From the Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, Illinois 60637
| | - Vanessa Leone
- From the Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, Illinois 60637
| | - Eugene B Chang
- From the Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
198
|
Lopez-Siles M, Duncan SH, Garcia-Gil LJ, Martinez-Medina M. Faecalibacterium prausnitzii: from microbiology to diagnostics and prognostics. THE ISME JOURNAL 2017; 11:841-852. [PMID: 28045459 PMCID: PMC5364359 DOI: 10.1038/ismej.2016.176] [Citation(s) in RCA: 525] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/15/2016] [Accepted: 11/10/2016] [Indexed: 12/13/2022]
Abstract
There is an increasing interest in Faecalibacterium prausnitzii, one of the most abundant bacterial species found in the gut, given its potentially important role in promoting gut health. Although some studies have phenotypically characterized strains of this species, it remains a challenge to determine which factors have a key role in maintaining the abundance of this bacterium in the gut. Besides, phylogenetic analysis has shown that at least two different F. prausnitzii phylogroups can be found within this species and their distribution is different between healthy subjects and patients with gut disorders. It also remains unknown whether or not there are other phylogroups within this species, and also if other Faecalibacterium species exist. Finally, many studies have shown that F. prausnitzii abundance is reduced in different intestinal disorders. It has been proposed that F. prausnitzii monitoring may therefore serve as biomarker to assist in gut diseases diagnostics. In this mini-review, we aim to serve as an overview of F. prausnitzii phylogeny, ecophysiology and diversity. In addition, strategies to modulate the abundance of F. prausnitzii in the gut as well as its application as a biomarker for diagnostics and prognostics of gut diseases are discussed. This species may be a useful potential biomarker to assist in ulcerative colitis and Crohn's disease discrimination.
Collapse
Affiliation(s)
- Mireia Lopez-Siles
- Laboratori de Microbiologia Molecular, Departament de Biologia, Universitat de Girona, Girona, Spain
| | - Sylvia H Duncan
- Microbiology Group, Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, UK
| | - L Jesús Garcia-Gil
- Laboratori de Microbiologia Molecular, Departament de Biologia, Universitat de Girona, Girona, Spain
| | - Margarita Martinez-Medina
- Laboratori de Microbiologia Molecular, Departament de Biologia, Universitat de Girona, Girona, Spain
| |
Collapse
|
199
|
Gabbani T, Deiana S, Marocchi M, Annese V. Genetic risk variants as therapeutic targets for Crohn's disease. Expert Opin Ther Targets 2017; 21:381-390. [PMID: 28281904 DOI: 10.1080/14728222.2017.1296431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/14/2017] [Indexed: 02/06/2023]
Abstract
The pathogenesis of Inflammatory bowel diseases (IBD) is multifactorial, with interactions between genetic and environmental factors. Despite the existence of genetic factors being largely demonstrated by epidemiological data and several genetic studies, only a few findings have been useful in term of disease prediction, disease progression and targeting therapy. Areas covered: This review summarizes the results of genome-wide association studies in Crohn's disease, the role of epigenetics and the recent discovery by genetic studies of new pathogenetic pathways. Furthermore, it focuses on the importance of applying genetic data to clinical practice, and more specifically how to better target therapy and predict potential drug-related toxicity. Expert opinion: Some genetic markers identified in Crohn`s disease have allowed investigators to hypothesize about, and in some cases, prove the usefulness of new specific therapeutic agents. However, the heterogeneity and complexity of this disease has so far limited the daily clinical use of genetic information. Finally, the study of the implications of genetics on therapy, either to predict efficacy or avoid toxicity, is considered still to be in its infancy.
Collapse
Affiliation(s)
- Tommaso Gabbani
- a Gastroenterology UO , Azienda Unita Sanitaria Locale della Romagna , Forlì , Italy
| | - Simona Deiana
- b Division of Gastroenterology , AOU Careggi University Hospital , Florence , Italy
| | - Margherita Marocchi
- c Division of Gastroenterology , AOU Modena University Hospital , Modena , Italy
| | - Vito Annese
- d Department of Gastroenterology , Valiant Clinic , Dubai , UAE
| |
Collapse
|
200
|
Li Y, Jin Y, Yang S, Zhang W, Zhang J, Zhao W, Chen L, Wen Y, Zhang Y, Lu K, Zhang Y, Zhou J, Yang S. Strategy for comparative untargeted metabolomics reveals honey markers of different floral and geographic origins using ultrahigh-performance liquid chromatography-hybrid quadrupole-orbitrap mass spectrometry. J Chromatogr A 2017; 1499:78-89. [PMID: 28390668 DOI: 10.1016/j.chroma.2017.03.071] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/01/2017] [Accepted: 03/25/2017] [Indexed: 01/13/2023]
Abstract
Honey discrimination based on floral and geographic origins is limited by the ability to determine reliable markers because developing hypothetical substances in advance considerably limits the throughput of metabolomics studies. Here, we present a novel approach to screen and elucidate honey markers based on comparative untargeted metabolomics using ultrahigh-performance liquid chromatography-hybrid quadrupole-orbitrap mass spectrometry (UHPLC-Q-Orbitrap). To reduce metabolite information losses during sample preparation, the honey samples were dissolved in water and centrifuged to remove insoluble particles prior to UHPLC-Q-Orbitrap analysis in positive and negative electrospray ionization modes. The data were pretreated using background subtraction, chromatographic peak extraction, normalization, transformation and scaling to remove interferences from unwanted biases and variance in the experimental data. The pretreated data were further processed using principal component analysis (PCA) and a three-stage approach (t-test, volcano plot and variable importance in projection (VIP) plot) to ensure marker authenticity. A correlation between the molecular and fragment ions with a mass accuracy of less than 1.0ppm was used to annotate and elucidate the marker structures, and the marker responses in real samples were used to confirm the effectiveness of the honey discrimination. Moreover, we evaluated the data quality using blank and quality control (QC) samples based on PCA clustering, retention times, normalized levels and peak areas. This strategy will help guide standardized, comparative untargeted metabolomics studies of honey and other agro-products from different floral and geographic origins.
Collapse
Affiliation(s)
- Yi Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China; Laboratory of Risk Assessment for Quality and Safety of Bee Products, Ministry of Agriculture, Beijing 100093, PR China; Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Yue Jin
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China; Laboratory of Risk Assessment for Quality and Safety of Bee Products, Ministry of Agriculture, Beijing 100093, PR China
| | - Shupeng Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China; Laboratory of Risk Assessment for Quality and Safety of Bee Products, Ministry of Agriculture, Beijing 100093, PR China; Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture, Beijing 100093, PR China
| | - Wenwen Zhang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China
| | - Jinzhen Zhang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China; Laboratory of Risk Assessment for Quality and Safety of Bee Products, Ministry of Agriculture, Beijing 100093, PR China; Bee Product Quality Supervision and Testing Centre, Ministry of Agriculture, Beijing 100093, PR China
| | - Wen Zhao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China; Laboratory of Risk Assessment for Quality and Safety of Bee Products, Ministry of Agriculture, Beijing 100093, PR China; Bee Product Quality Supervision and Testing Centre, Ministry of Agriculture, Beijing 100093, PR China
| | - Lanzhen Chen
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China; Laboratory of Risk Assessment for Quality and Safety of Bee Products, Ministry of Agriculture, Beijing 100093, PR China
| | - Yaqin Wen
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China
| | - Yongxin Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Kaizhi Lu
- Thermo Fisher Scientific Co., Ltd., Shanghai 201206, PR China
| | - Yaping Zhang
- Thermo Fisher Scientific Co., Ltd., Shanghai 201206, PR China
| | - Jinhui Zhou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China; Laboratory of Risk Assessment for Quality and Safety of Bee Products, Ministry of Agriculture, Beijing 100093, PR China; Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture, Beijing 100093, PR China; Bee Product Quality Supervision and Testing Centre, Ministry of Agriculture, Beijing 100093, PR China.
| | - Shuming Yang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|