151
|
Mo J, Liang Z, Lu M, Wang H. Protonation-Suppression-Free LC-MS/MS Analysis for Profiling of DNA Cytosine Modifications in Adult Mice. Anal Chem 2020; 92:7430-7436. [PMID: 32353227 DOI: 10.1021/acs.analchem.0c00962] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA cytosine modifications are important epigenetic marks. To elucidate their roles by a large scale of comparative studies, it is important to quantify the abundance of DNA cytosine modifications accurately. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is a golden option. The performance of LC-MS/MS is heavily dependent on the ionization or protonation of target analytes. Initially, we found that two factors, DNA hydrolysate buffer and residual coeluted nucleosides, might greatly suppress the protonation of 5-(hydroxymethyl)-2'-deoxycytidine (5hmdC). Surprisingly, ammonium bicarbonate can eliminate the suppression caused by both factors. Mechanistically, ammonium bicarbonate increases the protonation capacity in the gas phase and facilitates proton transfer to the target nucleosides. Benefiting from these findings, we developed a suppression-free, sensitive, and robust ultrahigh-performance LC-MS/MS assay for massive detection of three DNA cytosine modifications, including 5-methyl-2'-deoxycytidine (5mdC), 5hmdC, and 5-formyl-2'-deoxycytidine (5fdC). In 30 consecutive analyses, the relative standard deviation (RSD) of the 5hmdC and 5fdC peak areas is 2.0% and 3.2%, respectively. In this case, no stable isotope-labeled standard is required for internal calibration. We further performed a comprehensive profiling of DNA cytosine modifications in 26 tissues of age-different C57BL/6N mice. Interestingly, we found that only liver 5hmdC abundance increases with the increasing age of adult mice, suggesting that liver 5hmdC might be a potential indicator of age in adulthood.
Collapse
Affiliation(s)
- Jiezhen Mo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziyu Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meiling Lu
- Greater China Market Division, Agilent Technologies, Beijing 100102, China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
| |
Collapse
|
152
|
Kochmanski J, Bernstein AI. The Impact of Environmental Factors on 5-Hydroxymethylcytosine in the Brain. Curr Environ Health Rep 2020; 7:109-120. [PMID: 32020534 PMCID: PMC7809708 DOI: 10.1007/s40572-020-00268-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW The aims of this review are to evaluate the methods used to measure 5-hydroxymethylcytosine (5-hmC), and then summarize the available data investigating the impact of environmental factors on 5-hydroxymethylcytosine (5-hmC) in the brain. RECENT FINDINGS Recent research has shown that some environmental factors, including exposure to exogenous chemicals, stress, altered diet, and exercise, are all associated with 5-hmC variation in the brain. However, due to a lack of specificity in the methods used to generate a majority of the available data, it cannot be determined whether environment-induced changes in 5-hmC occur in specific biological pathways. Environment appears to shape 5-hmC levels in the brain, but the available literature is hampered by limitations in measurement methods. The field of neuroepigenetics needs to adopt new tools to increase the specificity of its data and enhance biological interpretation of exposure-related changes in 5-hmC. This will help improve understanding of the potential roles for environmental factors and 5-hmC in neurological disease.
Collapse
Affiliation(s)
- Joseph Kochmanski
- Department of Translational Neuroscience, Grand Rapids Research Center, Michigan State University College of Human Medicine, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA
| | - Alison I Bernstein
- Department of Translational Neuroscience, Grand Rapids Research Center, Michigan State University College of Human Medicine, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
153
|
Hong JY, Davaa G, Yoo H, Hong K, Hyun JK. Ascorbic Acid Promotes Functional Restoration after Spinal Cord Injury Partly by Epigenetic Modulation. Cells 2020; 9:cells9051310. [PMID: 32466098 PMCID: PMC7290865 DOI: 10.3390/cells9051310] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/09/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
Axonal regeneration after spinal cord injury (SCI) is difficult to achieve, and no fundamental treatment can be applied in clinical settings. DNA methylation has been suggested to play a role in regeneration capacity and neuronal growth after SCI by controlling the expression of regeneration-associated genes (RAGs). The aim of this study was to examine changes in neuronal DNA methylation status after SCI and to determine whether modulation of DNA methylation with ascorbic acid can enhance neuronal regeneration or functional restoration after SCI. Changes in epigenetic marks (5-hydroxymethylcytosine (5hmC) and 5-methylcytosine (5mC)); the expression of Ten-eleven translocation (Tet) family genes; and the expression of genes related to inflammation, regeneration, and degeneration in the brain motor cortex were determined following SCI. The 5hmC level within the brain was increased after SCI, especially in the acute and subacute stages, and the mRNA levels of Tet gene family members (Tet1, Tet2, and Tet3) were also increased. Administration of ascorbic acid (100 mg/kg) to SCI rats enhanced 5hmC levels; increased the expression of the Tet1, Tet2, and Tet3 genes within the brain motor cortex; promoted axonal sprouting within the lesion cavity of the spinal cord; and enhanced recovery of locomotor function until 12 weeks. In conclusion, we found that epigenetic status in the brain motor cortex is changed after SCI and that epigenetic modulation using ascorbic acid may contribute to functional recovery after SCI.
Collapse
Affiliation(s)
- Jin Young Hong
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea; (J.Y.H.); (G.D.)
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
| | - Ganchimeg Davaa
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea; (J.Y.H.); (G.D.)
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
| | - Hyunjin Yoo
- Department of Stem Cell & Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea;
| | - Kwonho Hong
- Department of Stem Cell & Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea;
- Correspondence: (K.H.); (J.K.H.); Tel.: +82-10-3678-7189 (K.H.); +81-10-2293-3415 (J.K.H.)
| | - Jung Keun Hyun
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea; (J.Y.H.); (G.D.)
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Department of Rehabilitation Medicine, College of Medicine, Dankook University, Cheonan 31116, Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Korea
- Wiregene, Co., Ltd., Cheonan 31116, Korea
- Correspondence: (K.H.); (J.K.H.); Tel.: +82-10-3678-7189 (K.H.); +81-10-2293-3415 (J.K.H.)
| |
Collapse
|
154
|
Appleby-Mallinder C, Schaber E, Kirby J, Shaw PJ, Cooper-Knock J, Heath PR, Highley JR. TDP43 proteinopathy is associated with aberrant DNA methylation in human amyotrophic lateral sclerosis. Neuropathol Appl Neurobiol 2020; 47:61-72. [PMID: 32365404 DOI: 10.1111/nan.12625] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/09/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by motor neurone (MN) degeneration and death. ALS can be sporadic (sALS) or familial, with a number of associated gene mutations, including C9orf72 (C9ALS). DNA methylation is an epigenetic mechanism whereby a methyl group is attached to a cytosine (5mC), resulting in gene expression repression. 5mC can be further oxidized to 5-hydroxymethylcytosine (5hmC). DNA methylation has been studied in other neurodegenerative diseases, but little work has been conducted in ALS. AIMS To assess differences in DNA methylation in individuals with ALS and the relationship between DNA methylation and TDP43 pathology. METHODS Post mortem tissue from controls, sALS cases and C9ALS cases were assessed by immunohistochemistry for 5mC and 5hmC in spinal cord, motor cortex and prefrontal cortex. LMNs were extracted from a subset of cases using laser capture microdissection. DNA from these underwent analysis using the MethylationEPIC array to determine which molecular processes were most affected. RESULTS There were higher levels of 5mC and 5hmC in sALS and C9ALS in the residual lower motor neurones (LMNs) of the spinal cord. Importantly, in LMNs with TDP43 pathology there was less nuclear 5mC and 5hmC compared to the majority of residual LMNs that lacked TDP43 pathology. Enrichment analysis of the array data suggested RNA metabolism was particularly affected. CONCLUSIONS DNA methylation is a contributory factor in ALS LMN pathology. This is not so for glia or neocortical neurones.
Collapse
Affiliation(s)
- C Appleby-Mallinder
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - E Schaber
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - J Kirby
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - P J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - J Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - P R Heath
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - J R Highley
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom.,Department of Cellular Pathology, Hull Royal Infirmary, Hull, United Kingdom
| |
Collapse
|
155
|
Gibas P, Narmontė M, Staševskij Z, Gordevičius J, Klimašauskas S, Kriukienė E. Precise genomic mapping of 5-hydroxymethylcytosine via covalent tether-directed sequencing. PLoS Biol 2020; 18:e3000684. [PMID: 32275660 PMCID: PMC7176277 DOI: 10.1371/journal.pbio.3000684] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 04/22/2020] [Accepted: 03/27/2020] [Indexed: 01/20/2023] Open
Abstract
5-hydroxymethylcytosine (5hmC) is the most prevalent intermediate on the oxidative DNA demethylation pathway and is implicated in regulation of embryogenesis, neurological processes, and cancerogenesis. Profiling of this relatively scarce genomic modification in clinical samples requires cost-effective high-resolution techniques that avoid harsh chemical treatment. Here, we present a bisulfite-free approach for 5hmC profiling at single-nucleotide resolution, named hmTOP-seq (5hmC-specific tethered oligonucleotide–primed sequencing), which is based on direct sequence readout primed at covalently labeled 5hmC sites from an in situ tethered DNA oligonucleotide. Examination of distinct conjugation chemistries suggested a structural model for the tether-directed nonhomologous polymerase priming enabling theoretical evaluation of suitable tethers at the design stage. The hmTOP-seq procedure was optimized and validated on a small model genome and mouse embryonic stem cells, which allowed construction of single-nucleotide 5hmC maps reflecting subtle differences in strand-specific CG hydroxymethylation. Collectively, hmTOP-seq provides a new valuable tool for cost-effective and precise identification of 5hmC in characterizing its biological role and epigenetic changes associated with human disease. This study describes hmTOP-seq, a bisulfite-free approach for profiling of the epigenetic mark 5-hydroxymethylcytosine (5hmC) at single-nucleotide resolution, based on direct sequence readout primed at an in situ tethered DNA oligonucleotide.
Collapse
Affiliation(s)
- Povilas Gibas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Milda Narmontė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Zdislav Staševskij
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Juozas Gordevičius
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Saulius Klimašauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- * E-mail: (SK); (EK)
| | - Edita Kriukienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- * E-mail: (SK); (EK)
| |
Collapse
|
156
|
Martínez-Iglesias O, Carrera I, Carril JC, Fernández-Novoa L, Cacabelos N, Cacabelos R. DNA Methylation in Neurodegenerative and Cerebrovascular Disorders. Int J Mol Sci 2020; 21:ijms21062220. [PMID: 32210102 PMCID: PMC7139499 DOI: 10.3390/ijms21062220] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 02/08/2023] Open
Abstract
DNA methylation is an epigenetic mechanism by which methyl groups are added to DNA, playing a crucial role in gene expression regulation. The aim of the present study is to compare methylation status of healthy subjects with that of patients with Alzheimer’s, Parkinson’s or Cerebrovascular diseases. We also analyze methylation status of a transgenic Alzheimer’s disease mouse model (3xTg-AD). Our results show that both global methylation (n = 141) and hydroxymethylation (n = 131) levels are reduced in DNA samples from buffy coats of patients with neurodegenerative disorders and age-related cerebrovascular disease. The importance of methylation and hydroxymethylation reduction is stressed by the finding that DNMT3a mRNA levels are also downregulated in buffy coats of patients with Dementia (n = 25). Global methylation is also reduced in brain, liver and serum samples of 3xTg-AD vs. wild type mice, such as DNMT3a mRNA levels that are also decreased in the brain of 3xTg-AD (n = 10). These results suggest that the use of global methylation and hydroxymethylation levels, together with the study of DNMT3a expression, could be useful as a new diagnostic biomarker for these prevalent disorders.
Collapse
|
157
|
Li Y, Ren Q, Wu D, Zhang M, Wang X, Zhu H, Sun S, Feng F. Combined 5-hydroxymethylcytosine content of human leucocyte antigen-B and human leucocyte antigen-DQB1 as novel biomarker for anti-tuberculosis drug-induced liver injury. Basic Clin Pharmacol Toxicol 2020; 127:234-240. [PMID: 32180347 DOI: 10.1111/bcpt.13401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/27/2022]
Abstract
This study investigated the diagnostic value of 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) contents of human leucocyte antigen (HLA)-B and HLA-DQB1 in anti-tuberculosis drug-induced liver injury (ADLI). In total, 110 ADLI patients and 120 patients without ADLI controls were enrolled. Enzyme-linked immunosorbent assay (ELISA) was used to detect the 5-mC and 5-hmC content in DNA from peripheral blood leucocytes. The univariate analysis showed that smoking, drinking, and 5-mC and 5-hmC content of HLA-B and HLA-DQB1 were significantly associated with ADLI. After adjusting for drinking and smoking, we found that 5-mC content of HLA-B and HLA-DQB1 were associated with ADLI (odds ratio [OR] = 0.251 and 0.347, respectively) and 5-hmC contents of HLA-B and HLA-DQB1 were also associated with ADLI (OR = 1.848 and 4.705, respectively). Receiver operating characteristic (ROC) analysis indicated that the 5-hmC contents of both HLA-B and HLA-DQB1 were more clinically significant than the 5-mC contents were. The combined 5-hmC level of HLA-B and HLA-DQB1 was the best diagnostic biomarker for ADLI, with the highest areas under the curve (AUC) for 0.953, sensitivity for 0.900 and specificity for 0.875. Therefore, combined 5-hmC levels of HLA-B and HLA-DQB1 could be significant evidence for diagnosis of ADLI.
Collapse
Affiliation(s)
- Yuhong Li
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Qi Ren
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Dongxue Wu
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Mi Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Xue Wang
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Hanyu Zhu
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Shufeng Sun
- College of Nursing and Rehabilitation, North China University of Science and Technology, Tangshan, China
| | - Fumin Feng
- School of Public Health, North China University of Science and Technology, Tangshan, China.,College of Life Sciences, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
158
|
Tillotson R, Bird A. The Molecular Basis of MeCP2 Function in the Brain. J Mol Biol 2020; 432:1602-1623. [PMID: 31629770 DOI: 10.1016/j.jmb.2019.10.004] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 12/14/2022]
Abstract
MeCP2 is a reader of the DNA methylome that occupies a large proportion of the genome due to its high abundance and the frequency of its target sites. It has been the subject of extensive study because of its link with 'MECP2-related disorders', of which Rett syndrome is the most prevalent. This review integrates evidence from patient mutation data with results of experimental studies using mouse models, cell lines and in vitro systems to critically evaluate our understanding of MeCP2 protein function. Recent evidence challenges the idea that MeCP2 is a multifunctional hub that integrates diverse processes to underpin neuronal function, suggesting instead that its primary role is to recruit the NCoR1/2 co-repressor complex to methylated sites in the genome, leading to dampening of gene expression.
Collapse
Affiliation(s)
- Rebekah Tillotson
- Genetics and Genome Biology Program, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON M5G 0A4, Canada; Medical Research Council (MRC) Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK
| | - Adrian Bird
- Wellcome Centre for Cell Biology, University of Edinburgh, The Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
159
|
Pensold D, Reichard J, Van Loo KMJ, Ciganok N, Hahn A, Bayer C, Liebmann L, Groß J, Tittelmeier J, Lingner T, Salinas-Riester G, Symmank J, Halfmann C, González-Bermúdez L, Urbach A, Gehrmann J, Costa I, Pieler T, Hübner CA, Vatter H, Kampa B, Becker AJ, Zimmer-Bensch G. DNA Methylation-Mediated Modulation of Endocytosis as Potential Mechanism for Synaptic Function Regulation in Murine Inhibitory Cortical Interneurons. Cereb Cortex 2020; 30:3921-3937. [PMID: 32147726 PMCID: PMC7264686 DOI: 10.1093/cercor/bhaa009] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/14/2019] [Accepted: 01/10/2020] [Indexed: 12/25/2022] Open
Abstract
The balance of excitation and inhibition is essential for cortical information processing, relying on the tight orchestration of the underlying subcellular processes. Dynamic transcriptional control by DNA methylation, catalyzed by DNA methyltransferases (DNMTs), and DNA demethylation, achieved by ten–eleven translocation (TET)-dependent mechanisms, is proposed to regulate synaptic function in the adult brain with implications for learning and memory. However, focus so far is laid on excitatory neurons. Given the crucial role of inhibitory cortical interneurons in cortical information processing and in disease, deciphering the cellular and molecular mechanisms of GABAergic transmission is fundamental. The emerging relevance of DNMT and TET-mediated functions for synaptic regulation irrevocably raises the question for the targeted subcellular processes and mechanisms. In this study, we analyzed the role dynamic DNA methylation has in regulating cortical interneuron function. We found that DNMT1 and TET1/TET3 contrarily modulate clathrin-mediated endocytosis. Moreover, we provide evidence that DNMT1 influences synaptic vesicle replenishment and GABAergic transmission, presumably through the DNA methylation-dependent transcriptional control over endocytosis-related genes. The relevance of our findings is supported by human brain sample analysis, pointing to a potential implication of DNA methylation-dependent endocytosis regulation in the pathophysiology of temporal lobe epilepsy, a disease characterized by disturbed synaptic transmission.
Collapse
Affiliation(s)
- Daniel Pensold
- Institute of Human Genetics, University Hospital Jena, 07743 Jena, Germany.,Division of Functional Epigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, 52074 Aachen, Germany
| | - Julia Reichard
- Institute of Human Genetics, University Hospital Jena, 07743 Jena, Germany.,Division of Functional Epigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, 52074 Aachen, Germany.,Research Training Group 2416 Multi Senses-Multi Scales, RWTH Aachen University, 52074 Aachen, Germany
| | - Karen M J Van Loo
- Department of Neuropathology, Section for Translational Epilepsy Research, University of Bonn Medical Center, 53105 Bonn, Germany
| | - Natalja Ciganok
- Division of Systems Neurophysiology, Institute of Zoology (Biology 2), RWTH Aachen University, 52074 Aachen, Germany
| | - Anne Hahn
- Institute of Human Genetics, University Hospital Jena, 07743 Jena, Germany
| | - Cathrin Bayer
- Institute of Human Genetics, University Hospital Jena, 07743 Jena, Germany.,Division of Functional Epigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, 52074 Aachen, Germany
| | - Lutz Liebmann
- Institute of Human Genetics, University Hospital Jena, 07743 Jena, Germany
| | - Jonas Groß
- Institute of Human Genetics, University Hospital Jena, 07743 Jena, Germany
| | | | - Thomas Lingner
- Department of Developmental Biochemistry, Transcriptome and Genome Analysis Laboratory (TAL), University of Goettingen, 37077 Goettingen, Germany
| | - Gabriela Salinas-Riester
- Department of Developmental Biochemistry, Transcriptome and Genome Analysis Laboratory (TAL), University of Goettingen, 37077 Goettingen, Germany
| | - Judit Symmank
- Institute of Human Genetics, University Hospital Jena, 07743 Jena, Germany
| | - Claas Halfmann
- Division of Systems Neurophysiology, Institute of Zoology (Biology 2), RWTH Aachen University, 52074 Aachen, Germany
| | | | - Anja Urbach
- Clinic for Neurology, University Hospital Jena, 07743 Jena, Germany
| | - Julia Gehrmann
- Institute for Computational Genomics, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Ivan Costa
- Institute for Computational Genomics, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Tomas Pieler
- Department of Developmental Biochemistry, Centre for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Goettingen, 37077 Goettingen, Germany
| | - Christian A Hübner
- Institute of Human Genetics, University Hospital Jena, 07743 Jena, Germany
| | - Hartmut Vatter
- Clinic for Neurosurgery, University of Bonn Medical Center, 53105 Bonn, Germany
| | - Björn Kampa
- Division of Systems Neurophysiology, Institute of Zoology (Biology 2), RWTH Aachen University, 52074 Aachen, Germany.,JARA BRAIN, Institute for Neuroscience and Medicine, Forschungszentrum Jülich, 52425, Germany
| | - Albert J Becker
- Department of Neuropathology, Section for Translational Epilepsy Research, University of Bonn Medical Center, 53105 Bonn, Germany
| | - Geraldine Zimmer-Bensch
- Institute of Human Genetics, University Hospital Jena, 07743 Jena, Germany.,Division of Functional Epigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, 52074 Aachen, Germany.,Research Training Group 2416 Multi Senses-Multi Scales, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
160
|
Maternal Folic Acid Supplementation Mediates Offspring Health via DNA Methylation. Reprod Sci 2020; 27:963-976. [PMID: 32124397 DOI: 10.1007/s43032-020-00161-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 10/24/2022]
Abstract
The clinical significance of periconceptional folic acid supplementation (FAS) in the prevention of neonatal neural tube defects (NTDs) has been recognized for decades. Epidemiological data and experimental findings have consistently been indicating an association between folate deficiency in the first trimester of pregnancy and poor fetal development as well as offspring health (i.e., NTDs, isolated orofacial clefts, neurodevelopmental disorders). Moreover, compelling evidence has suggested adverse effects of folate overload during perinatal period on offspring health (i.e., immune diseases, autism, lipid disorders). In addition to several single-nucleotide polymorphisms (SNPs) in genes related to folate one-carbon metabolism (FOCM), folate concentrations in maternal serum/plasma/red blood cells must be considered when counseling FAS. Epigenetic information encoded by 5-methylcytosines (5mC) plays a critical role in fetal development and offspring health. S-adenosylmethionine (SAM), a methyl donor for 5mC, could be derived from FOCM. As such, folic acid plays a double-edged sword role in offspring health via mediating DNA methylation. However, the underlying epigenetic mechanism is still largely unclear. In this review, we summarized the link across DNA methylation, maternal FAS, and offspring health to provide more evidence for clinical guidance in terms of precise FAS dosage and time point. Future studies are, therefore, required to set up the reference intervals of folate concentrations at different trimesters of pregnancy for different populations and to clarify the epigenetic mechanism for specific offspring diseases.
Collapse
|
161
|
Schneider M, Trummer C, Stengl A, Zhang P, Szwagierczak A, Cardoso MC, Leonhardt H, Bauer C, Antes I. Systematic analysis of the binding behaviour of UHRF1 towards different methyl- and carboxylcytosine modification patterns at CpG dyads. PLoS One 2020; 15:e0229144. [PMID: 32084194 PMCID: PMC7034832 DOI: 10.1371/journal.pone.0229144] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/30/2020] [Indexed: 01/24/2023] Open
Abstract
The multi-domain protein UHRF1 is essential for DNA methylation maintenance and binds DNA via a base-flipping mechanism with a preference for hemi-methylated CpG sites. We investigated its binding to hemi- and symmetrically modified DNA containing either 5-methylcytosine (mC), 5-hydroxymethylcytosine (hmC), 5-formylcytosine (fC), or 5-carboxylcytosine (caC). Our experimental results indicate that UHRF1 binds symmetrically carboxylated and hybrid methylated/carboxylated CpG dyads in addition to its previously reported substrates. Complementary molecular dynamics simulations provide a possible mechanistic explanation of how the protein could differentiate between modification patterns. First, we observe different local binding modes in the nucleotide binding pocket as well as the protein's NKR finger. Second, both DNA modification sites are coupled through key residues within the NKR finger, suggesting a communication pathway affecting protein-DNA binding for carboxylcytosine modifications. Our results suggest a possible additional function of the hemi-methylation reader UHRF1 through binding of carboxylated CpG sites. This opens the possibility of new biological roles of UHRF1 beyond DNA methylation maintenance and of oxidised methylcytosine derivates in epigenetic regulation.
Collapse
Affiliation(s)
- Markus Schneider
- Center for Integrated Protein Science Munich at the TUM School of Life Sciences, Technische Universität München, Freising, Germany
| | - Carina Trummer
- Center for Integrated Protein Science Munich at the Department of Biology II, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| | - Andreas Stengl
- Center for Integrated Protein Science Munich at the Department of Biology II, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| | - Peng Zhang
- Center for Integrated Protein Science Munich at the Department of Biology II, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
- Cell Biology and Epigenetics at the Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Aleksandra Szwagierczak
- Center for Integrated Protein Science Munich at the Department of Biology II, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| | - M. Cristina Cardoso
- Cell Biology and Epigenetics at the Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Heinrich Leonhardt
- Center for Integrated Protein Science Munich at the Department of Biology II, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| | - Christina Bauer
- Center for Integrated Protein Science Munich at the Department of Biology II, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| | - Iris Antes
- Center for Integrated Protein Science Munich at the TUM School of Life Sciences, Technische Universität München, Freising, Germany
- * E-mail:
| |
Collapse
|
162
|
UHRF1-repressed 5'-hydroxymethylcytosine is essential for the male meiotic prophase I. Cell Death Dis 2020; 11:142. [PMID: 32081844 PMCID: PMC7035279 DOI: 10.1038/s41419-020-2333-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 12/23/2022]
Abstract
5’-hydroxymethylcytosine (5hmC), an important 5’-cytosine modification, is altered highly in order in male meiotic prophase. However, the regulatory mechanism of this dynamic change and the function of 5hmC in meiosis remain largely unknown. Using a knockout mouse model, we showed that UHRF1 regulated male meiosis. UHRF1 deficiency led to failure of meiosis and male infertility. Mechanistically, the deficiency of UHRF1 altered significantly the meiotic gene profile of spermatocytes. Uhrf1 knockout induced an increase of the global 5hmC level. The enrichment of hyper-5hmC at transcriptional start sites (TSSs) was highly associated with gene downregulation. In addition, the elevated level of the TET1 enzyme might have contributed to the higher 5hmC level in the Uhrf1 knockout spermatocytes. Finally, we reported Uhrf1, a key gene in male meiosis, repressed hyper-5hmC by downregulating TET1. Furthermore, UHRF1 facilitated RNA polymerase II (RNA-pol2) loading to promote gene transcription. Thus our study demonstrated a potential regulatory mechanism of 5hmC dynamic change and its involvement in epigenetic regulation in male meiosis.
Collapse
|
163
|
Sanstead PJ, Ashwood B, Dai Q, He C, Tokmakoff A. Oxidized Derivatives of 5-Methylcytosine Alter the Stability and Dehybridization Dynamics of Duplex DNA. J Phys Chem B 2020; 124:1160-1174. [PMID: 31986043 PMCID: PMC7136776 DOI: 10.1021/acs.jpcb.9b11511] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The naturally occurring nucleobase 5-methylcytosine (mC) and its oxidized derivatives 5-hydroxymethylcytosine (hmC), 5-formylcytosine (fC), and 5-carboxylcytosine (caC) play important roles in epigenetic regulation and, along with cytosine (C), represent nucleobases currently implicated in the active cytosine demethylation pathway. Despite considerable interest in these modified bases, their impact on the thermodynamic stability of double-stranded DNA (dsDNA) remains ambiguous and their influence on hybridization kinetics and dynamics is even less well-understood. To address these unknowns, we employ steady-state and time-resolved infrared spectroscopy to measure the influence of cytosine modification on the thermodynamics and kinetics of hybridization by assessing the impact on local base pairing dynamics, shifts in the stability of the duplex state, and changes to the hybridization transition state. Modification with mC leads to more tightly bound base pairing below the melting transition and stabilizes the duplex relative to canonical DNA, but the free energy barrier to dehybridization at physiological temperature is nevertheless reduced slightly. Both hmC and fC lead to an increase in local base pair fluctuations, a reduction in the cooperativity of duplex melting, and a lowering of the dissociation barrier, but these effects are most pronounced when the 5-position is formylated. The caC nucleobase demonstrates little impact on dsDNA under neutral conditions, but we find that this modification can dynamically switch between C-like and fC-like behavior depending on the protonation state of the 5-position carboxyl group. Our results provide a consistent thermodynamic and kinetic framework with which to describe the modulation of the physical properties of double-stranded DNA containing these modified nucleobases.
Collapse
Affiliation(s)
- Paul J. Sanstead
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Brennan Ashwood
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Qing Dai
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, United States
- Howard Hughes Medical Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Andrei Tokmakoff
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
164
|
Asadi-Atoi P, Barraud P, Tisne C, Kellner S. Benefits of stable isotope labeling in RNA analysis. Biol Chem 2020; 400:847-865. [PMID: 30893050 DOI: 10.1515/hsz-2018-0447] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/11/2019] [Indexed: 02/07/2023]
Abstract
RNAs are key players in life as they connect the genetic code (DNA) with all cellular processes dominated by proteins. They contain a variety of chemical modifications and many RNAs fold into complex structures. Here, we review recent progress in the analysis of RNA modification and structure on the basis of stable isotope labeling techniques. Mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy are the key tools and many breakthrough developments were made possible by the analysis of stable isotope labeled RNA. Therefore, we discuss current stable isotope labeling techniques such as metabolic labeling, enzymatic labeling and chemical synthesis. RNA structure analysis by NMR is challenging due to two major problems that become even more salient when the size of the RNA increases, namely chemical shift overlaps and line broadening leading to complete signal loss. Several isotope labeling strategies have been developed to provide solutions to these major issues, such as deuteration, segmental isotope labeling or site-specific labeling. Quantification of modified nucleosides in RNA by MS is only possible through the application of stable isotope labeled internal standards. With nucleic acid isotope labeling coupled mass spectrometry (NAIL-MS), it is now possible to analyze the dynamic processes of post-transcriptional RNA modification and demodification. The trend, in both NMR and MS RNA analytics, is without doubt shifting from the analysis of snapshot moments towards the development and application of tools capable of analyzing the dynamics of RNA structure and modification profiles.
Collapse
Affiliation(s)
- Paria Asadi-Atoi
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| | - Pierre Barraud
- Institut de Biologie Physico-Chimique (IBPC), UMR 8261, CNRS, Université Paris Diderot, 13 rue Pierre et Marie Curie, F-75005 Paris, France
| | - Carine Tisne
- Institut de Biologie Physico-Chimique (IBPC), UMR 8261, CNRS, Université Paris Diderot, 13 rue Pierre et Marie Curie, F-75005 Paris, France
| | - Stefanie Kellner
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| |
Collapse
|
165
|
Beck DB, Petracovici A, He C, Moore HW, Louie RJ, Ansar M, Douzgou S, Sithambaram S, Cottrell T, Santos-Cortez RLP, Prijoles EJ, Bend R, Keren B, Mignot C, Nougues MC, Õunap K, Reimand T, Pajusalu S, Zahid M, Saqib MAN, Buratti J, Seaby EG, McWalter K, Telegrafi A, Baldridge D, Shinawi M, Leal SM, Schaefer GB, Stevenson RE, Banka S, Bonasio R, Fahrner JA. Delineation of a Human Mendelian Disorder of the DNA Demethylation Machinery: TET3 Deficiency. Am J Hum Genet 2020; 106:234-245. [PMID: 31928709 DOI: 10.1016/j.ajhg.2019.12.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022] Open
Abstract
Germline pathogenic variants in chromatin-modifying enzymes are a common cause of pediatric developmental disorders. These enzymes catalyze reactions that regulate epigenetic inheritance via histone post-translational modifications and DNA methylation. Cytosine methylation (5-methylcytosine [5mC]) of DNA is the quintessential epigenetic mark, yet no human Mendelian disorder of DNA demethylation has yet been delineated. Here, we describe in detail a Mendelian disorder caused by the disruption of DNA demethylation. TET3 is a methylcytosine dioxygenase that initiates DNA demethylation during early zygote formation, embryogenesis, and neuronal differentiation and is intolerant to haploinsufficiency in mice and humans. We identify and characterize 11 cases of human TET3 deficiency in eight families with the common phenotypic features of intellectual disability and/or global developmental delay; hypotonia; autistic traits; movement disorders; growth abnormalities; and facial dysmorphism. Mono-allelic frameshift and nonsense variants in TET3 occur throughout the coding region. Mono-allelic and bi-allelic missense variants localize to conserved residues; all but one such variant occur within the catalytic domain, and most display hypomorphic function in an assay of catalytic activity. TET3 deficiency and other Mendelian disorders of the epigenetic machinery show substantial phenotypic overlap, including features of intellectual disability and abnormal growth, underscoring shared disease mechanisms.
Collapse
Affiliation(s)
- David B Beck
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ana Petracovici
- Graduate Group in Genetics and Epigenetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Chongsheng He
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Current address: Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082 Hunan, P.R. China
| | | | | | - Muhammad Ansar
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, 45320 Islamabad, Pakistan
| | - Sofia Douzgou
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester M13 9WL, UK
| | - Sivagamy Sithambaram
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester M13 9WL, UK
| | - Trudie Cottrell
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester M13 9WL, UK
| | | | | | - Renee Bend
- Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Boris Keren
- Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Département de Génétique, Paris 75013, France
| | - Cyril Mignot
- Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Département de Génétique, Paris 75013, France; Centre de Référence Déficiences Intellectuelles de Causes Rares, Paris 75013, France
| | - Marie-Christine Nougues
- Assistance Publique-Hôpitaux de Paris, Armand Trousseau Hospital, Department of Neuropediatrics, Paris 75012, France
| | - Katrin Õunap
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu 50406, Estonia; Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu 50406, Estonia
| | - Tiia Reimand
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu 50406, Estonia; Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu 50406, Estonia; Chair of Human Genetics, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50406, Estonia
| | - Sander Pajusalu
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu 50406, Estonia; Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu 50406, Estonia; Yale University School of Medicine, Department of Genetics, New Haven, CT 06510, USA
| | - Muhammad Zahid
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, 45320 Islamabad, Pakistan
| | | | - Julien Buratti
- Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Département de Génétique, Paris 75013, France
| | - Eleanor G Seaby
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | - Dustin Baldridge
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marwan Shinawi
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Suzanne M Leal
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, Taub Institute for Alzheimer's D disease and the Aging Brain, Department of Neurology, Columbia University Medical Center, 630 W 168th St, New York, NY 10032, USA
| | | | | | - Siddharth Banka
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester M13 9WL, UK
| | - Roberto Bonasio
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jill A Fahrner
- Department of Pediatrics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
166
|
Lenaerts L, Tuveri S, Jatsenko T, Amant F, Vermeesch JR. Detection of incipient tumours by screening of circulating plasma DNA: hype or hope? Acta Clin Belg 2020; 75:9-18. [PMID: 31578135 DOI: 10.1080/17843286.2019.1671653] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background: The last half-decade has been marked by a rapid expansion of research efforts in the field of so-called liquid biopsies, thereby investigating the potential of blood-derived cell-free tumour DNA (ctDNA) markers for application in clinical oncological management. The analysis of cfDNA appears to be particularly attractive for therapy monitoring purposes, while in terms of early cancer diagnosis and screening the potentials are just starting to be explored. Challenges, both of biological and technical nature, need to be addressed. One such challenge is to overcome the low levels of ctDNA in the circulation, intrinsic to many early-stage cancers. Methods: Here, we give an overview of the features of ctDNA and the approaches that are currently being applied with the ultimate aim to detect tumours in a presymptomatic stage. Conclusion: Although many studies report encouraging results, further technical development and larger studies are warranted before application of ctDNA analysis may find its place in clinic.
Collapse
Affiliation(s)
| | | | | | - Frédéric Amant
- Department of Oncology, KU Leuven, Leuven, Belgium
- Gynecology and Obstetrics, University Hospitals Leuven, Leuven, Belgium
- Center for Gynecological Oncology Amsterdam, Academic Medical Centre Amsterdam-University of Amsterdam and The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Joris Robert Vermeesch
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Centre of Human Genetics, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
167
|
Liu L, Zhang Y, Liu M, Wei W, Yi C, Peng J. Structural Insights into the Specific Recognition of 5-methylcytosine and 5-hydroxymethylcytosine by TAL Effectors. J Mol Biol 2020; 432:1035-1047. [DOI: 10.1016/j.jmb.2019.11.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/12/2019] [Accepted: 11/27/2019] [Indexed: 01/02/2023]
|
168
|
Maier HB, Neyazi M, Neyazi A, Hillemacher T, Pathak H, Rhein M, Bleich S, Goltseker K, Sadot-Sogrin Y, Even-Chen O, Frieling H, Barak S. Alcohol consumption alters Gdnf promoter methylation and expression in rats. J Psychiatr Res 2020; 121:1-9. [PMID: 31710958 DOI: 10.1016/j.jpsychires.2019.10.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/07/2019] [Accepted: 10/28/2019] [Indexed: 11/17/2022]
Abstract
Alcohol use disorder is one of the most disabling diseases worldwide. Glial-cell derived neurotrophic factor (Gdnf) shows promising results concerning the inhibition of alcohol consumption in rodent models. We investigated the epigenetic regulation of Gdnf following ethanol consumption and withdrawal in a rat model. 32 Wistar rats underwent 7 weeks of intermittent access to alcohol in a 2-bottle choice (IA2BC). Whole blood, Nucleus Accumbens (NAc) and Ventral Tegmental Area (VTA) were collected immediately after the last 24 h of an alcohol-drinking session (alcohol group, AG) or 24 h after withdrawal (withdrawal group, WG). MRNA levels were measured using real-time quantitative PCR. Bisulfite-conversion of DNA and capillary sequencing was used to determine methylation levels of the core promoter (CP) and the negative regulatory element (NRE). The CP of the AG in the NAc was significantly less methylated compared to controls (p < 0.05). In the NAc, mRNA expression was significantly higher in the WG (p < 0.05). In the WG, mRNA expression levels in the VTA were significantly lower (p < 0.05) and showed significantly less methylation in the NRE in the VTA (p < 0.001) and the NAc (p < 0.01) compared to controls. Changes in the cerebral mRNA expression correspond to alterations in DNA methylation of the Gdnf promoter in a rodent model. Our results hold clinical relevance since differences in Gdnf mRNA expression and DNA methylation could be a target for pharmacological interventions.
Collapse
Affiliation(s)
- Hannah Benedictine Maier
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany.
| | - Meraj Neyazi
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Alexandra Neyazi
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Thomas Hillemacher
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany; Department of Psychiatry and Psychotherapy, Paracelsus Medical University, Nuremberg, Germany
| | - Hansi Pathak
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Mathias Rhein
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Stefan Bleich
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Koral Goltseker
- School of Psychological Sciences, The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Yossi Sadot-Sogrin
- School of Psychological Sciences, The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Oren Even-Chen
- School of Psychological Sciences, The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Helge Frieling
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Segev Barak
- School of Psychological Sciences, The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
169
|
Yu S, Yin Y, Hong S, Cao S, Huang Y, Chen S, Liu Y, Guan H, Zhang Q, Li Y, Xiao H. TET1 is a Tumor Suppressor That Inhibits Papillary Thyroid Carcinoma Cell Migration and Invasion. Int J Endocrinol 2020; 2020:3909610. [PMID: 32089682 PMCID: PMC7031722 DOI: 10.1155/2020/3909610] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/09/2019] [Accepted: 12/18/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Ten-eleven translocation (TET) enzymes catalyze the oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) promoting demethylation in cells. However, the expression pattern and biologic significance of TET in papillary thyroid carcinoma (PTC) remain unclear. This study aimed to elucidate the biological functions of TET1 and the miRNA and mRNA expression levels in PTC cells with downregulated TET1. METHODS The expression of the TET family in 49 PTC tissues and corresponding tumor-adjacent tissues, as well as PTC cell lines (BCPAP, K1, and TPC-1) and the normal thyroid epithelial cell line (Nthy-ori 3-1), were detected using quantitative real-time polymerase chain reaction. The 5hmC level was detected in PTC tissues and cell lines using immunohistochemistry and dot blot assay, respectively. After silencing the TET1 gene with siRNAs in BCPAP and TPC-1 cells, cell proliferation was detected using EdU assay. Transwell assay was used to investigate cell migration and invasion. miRNA and mRNA expression arrays were conducted in TET1-depleted BCPAP cells. RESULTS The expression level of TET1 decreased in PTC tissues and cell lines and was consistent with the reduction in the 5hmC level. The knockdown of the TET1 gene with siRNAs in BCPAP and TPC-1 cells, cell proliferation was detected using EdU assay. Transwell assay was used to investigate cell migration and invasion. miRNA and mRNA expression arrays were conducted in TET1-depleted BCPAP cells. WNT4, FZD4, CDK6, MCF2L, and EDN1 was upregulated as potential target genes of dysregulated miRNAs. CONCLUSION The study showed that TET1 dysfunction inhibited the migration and invasion of BCPAP cells and might have a potential role in the pathogenesis of PTC.
Collapse
Affiliation(s)
- Shuang Yu
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Yali Yin
- Department of Endocrinology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Shubin Hong
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Siting Cao
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Yanrui Huang
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Shuwei Chen
- Department of Head and Neck Surgery, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, China
| | - Yujie Liu
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Hongyu Guan
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Quan Zhang
- Department of Head and Neck Surgery, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Yanbing Li
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Haipeng Xiao
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
170
|
Piccolo FM, Liu Z, Dong P, Hsu CL, Stoyanova EI, Rao A, Tjian R, Heintz N. MeCP2 nuclear dynamics in live neurons results from low and high affinity chromatin interactions. eLife 2019; 8:51449. [PMID: 31868585 PMCID: PMC6957317 DOI: 10.7554/elife.51449] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/22/2019] [Indexed: 01/08/2023] Open
Abstract
Methyl-CpG-binding-Protein 2 (MeCP2) is an abundant nuclear protein highly enriched in neurons. Here we report live-cell single-molecule imaging studies of the kinetic features of mouse MeCP2 at high spatial-temporal resolution. MeCP2 displays dynamic features that are distinct from both highly mobile transcription factors and immobile histones. Stable binding of MeCP2 in living neurons requires its methyl-binding domain and is sensitive to DNA modification levels. Diffusion of unbound MeCP2 is strongly constrained by weak, transient interactions mediated primarily by its AT-hook domains, and varies with the level of chromatin compaction and cell type. These findings extend previous studies of the role of the MeCP2 MBD in high affinity DNA binding to living neurons, and identify a new role for its AT-hooks domains as critical determinants of its kinetic behavior. They suggest that limited nuclear diffusion of MeCP2 in live neurons contributes to its local impact on chromatin structure and gene expression.
Collapse
Affiliation(s)
- Francesco M Piccolo
- Laboratory of Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Zhe Liu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Peng Dong
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Ching-Lung Hsu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Elitsa I Stoyanova
- Laboratory of Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Anjana Rao
- La Jolla Institute for Allergy and Immunology, La Jolla, United States
| | - Robert Tjian
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of Excellence, University of California, Howard Hughes Medical Institute, Berkeley, United States
| | - Nathaniel Heintz
- Laboratory of Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| |
Collapse
|
171
|
Yuan F, Yu Y, Zhou YL, Zhang XX. 5hmC-MIQuant: Ultrasensitive Quantitative Detection of 5-Hydroxymethylcytosine in Low-Input Cell-Free DNA Samples. Anal Chem 2019; 92:1605-1610. [DOI: 10.1021/acs.analchem.9b04920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Fang Yuan
- Beijing National Laboratory
for Molecular Sciences,
MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yue Yu
- Beijing National Laboratory
for Molecular Sciences,
MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ying-Lin Zhou
- Beijing National Laboratory
for Molecular Sciences,
MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xin-Xiang Zhang
- Beijing National Laboratory
for Molecular Sciences,
MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
172
|
Armstrong MJ, Jin Y, Allen EG, Jin P. Diverse and dynamic DNA modifications in brain and diseases. Hum Mol Genet 2019; 28:R241-R253. [PMID: 31348493 PMCID: PMC6872432 DOI: 10.1093/hmg/ddz179] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 12/17/2022] Open
Abstract
DNA methylation is a class of epigenetic modification essential for coordinating gene expression timing and magnitude throughout normal brain development and for proper brain function following development. Aberrant methylation changes are associated with changes in chromatin architecture, transcriptional alterations and a host of neurological disorders and diseases. This review highlights recent advances in our understanding of the methylome's functionality and covers potential new roles for DNA methylation, their readers, writers, and erasers. Additionally, we examine novel insights into the relationship between the methylome, DNA-protein interactions, and their contribution to neurodegenerative diseases. Lastly, we outline the gaps in our knowledge that will likely be filled through the widespread use of newer technologies that provide greater resolution into how individual cell types are affected by disease and the contribution of each individual modification site to disease pathogenicity.
Collapse
Affiliation(s)
- Matthew J Armstrong
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Yulin Jin
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Emily G Allen
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Peng Jin
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
173
|
Lardenoije R, van den Hove DL, Jung SE, Havermans M, Blackburn P, Liu B, Rutten BP, Lemere CA. Active Amyloid-β Vaccination Results in Epigenetic Changes in the Hippocampus of an Alzheimer’s Disease-Like Mouse Model. Curr Alzheimer Res 2019; 16:861-870. [DOI: 10.2174/1567205016666190827122009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/09/2019] [Accepted: 08/21/2019] [Indexed: 12/17/2022]
Abstract
Background:
While evidence accumulates for a role of epigenetic modifications in the
pathophysiological cascade of Alzheimer’s disease (AD), amyloid-β (Aβ)-targeted active immunotherapy
approaches are under investigation to prevent or slow the progression of AD. The impact of Aβ active
vaccines on epigenetic markers has not been studied thus far.
Objective:
The current study aims to establish the relationship between active immunotherapy with a
MER5101-based vaccine (consisting of Aβ1-15 copies conjugated with a 7 aa spacer to the diphtheria
toxoid carrier protein, formulated in a Th2-biased adjuvant) and epigenetic DNA modifications in the
hippocampus of APPswe/PS1dE9 mice.
Methods:
As we previously reported, immunotherapy started when the mice were 10 months of age and
behavioral testing occurred at 14 months of age, after which the mice were sacrificed for further analysis
of their brains. In this add-on study, global levels of DNA methylation and hydroxymethylation, and
DNA methyltransferase 3A (DNMT3A) were determined using quantitative immunohistochemistry, and
compared to our previously analyzed immunization-induced changes in AD-related neuropathology and
cognition.
Results:
Active immunization did not affect global DNA methylation levels but instead, resulted in decreased
DNA hydroxymethylation and DNMT3A levels. Independent of immunization, inverse correlations
with behavioral performance were observed for levels of DNA methylation and hydroxymethylation,
as well as DNMT3A, while Aβ pathology and synaptic markers did not correlate with DNA methylation
levels but did positively correlate with DNA hydroxymethylation and levels of DNMT3A.
Conclusion:
Our results indicate that active Aβ vaccination has significant effects on the epigenome in
the hippocampus of APPswe/PS1dE9 mice, and suggest that DNA methylation and hydroxymethylation
may be involved in cognitive functioning.
Collapse
Affiliation(s)
- Roy Lardenoije
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Daniël L.A. van den Hove
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht 6200MD, Netherlands
| | - Sophie E. Jung
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht 6200MD, Netherlands
| | - Monique Havermans
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht 6200MD, Netherlands
| | | | - Bin Liu
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Bart P.F. Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht 6200MD, Netherlands
| | - Cynthia A. Lemere
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
174
|
Tiane A, Schepers M, Rombaut B, Hupperts R, Prickaerts J, Hellings N, van den Hove D, Vanmierlo T. From OPC to Oligodendrocyte: An Epigenetic Journey. Cells 2019; 8:E1236. [PMID: 31614602 PMCID: PMC6830107 DOI: 10.3390/cells8101236] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022] Open
Abstract
Oligodendrocytes provide metabolic and functional support to neuronal cells, rendering them key players in the functioning of the central nervous system. Oligodendrocytes need to be newly formed from a pool of oligodendrocyte precursor cells (OPCs). The differentiation of OPCs into mature and myelinating cells is a multistep process, tightly controlled by spatiotemporal activation and repression of specific growth and transcription factors. While oligodendrocyte turnover is rather slow under physiological conditions, a disruption in this balanced differentiation process, for example in case of a differentiation block, could have devastating consequences during ageing and in pathological conditions, such as multiple sclerosis. Over the recent years, increasing evidence has shown that epigenetic mechanisms, such as DNA methylation, histone modifications, and microRNAs, are major contributors to OPC differentiation. In this review, we discuss how these epigenetic mechanisms orchestrate and influence oligodendrocyte maturation. These insights are a crucial starting point for studies that aim to identify the contribution of epigenetics in demyelinating diseases and may thus provide new therapeutic targets to induce myelin repair in the long run.
Collapse
Affiliation(s)
- Assia Tiane
- Department of Immunology, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium.
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
| | - Melissa Schepers
- Department of Immunology, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium.
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
| | - Ben Rombaut
- Department of Immunology, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium.
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
| | - Raymond Hupperts
- Department of Neurology, Zuyderland Medical Center, Sittard-Geleen 6130 MB, The Netherlands.
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
| | - Jos Prickaerts
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
| | - Niels Hellings
- Department of Immunology, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium.
| | - Daniel van den Hove
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg 97080, Germany.
| | - Tim Vanmierlo
- Department of Immunology, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium.
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
| |
Collapse
|
175
|
Tran KA, Dillingham CM, Sridharan R. Coordinated removal of repressive epigenetic modifications during induced reversal of cell identity. EMBO J 2019; 38:e101681. [PMID: 31583744 DOI: 10.15252/embj.2019101681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 09/03/2019] [Accepted: 09/12/2019] [Indexed: 01/20/2023] Open
Abstract
Epigenetic modifications operate in concert to maintain cell identity, yet how these interconnected networks suppress alternative cell fates remains unknown. Here, we uncover a link between the removal of repressive histone H3K9 methylation and DNA methylation during the reprogramming of somatic cells to pluripotency. The H3K9me2 demethylase, Kdm3b, transcriptionally controls DNA hydroxymethylase Tet1 expression. Unexpectedly, in the absence of Kdm3b, loci that must be DNA demethylated are trapped in an intermediate hydroxymethylated (5hmC) state and do not resolve to unmethylated cytosine. Ectopic 5hmC trapping precludes the chromatin association of master pluripotency factor, POU5F1, and pluripotent gene activation. Increased Tet1 expression is important for the later intermediates of the reprogramming process. Taken together, coordinated removal of distinct chromatin modifications appears to be an important mechanism for altering cell identity.
Collapse
Affiliation(s)
- Khoa A Tran
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Caleb M Dillingham
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Rupa Sridharan
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.,Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
176
|
Saare M, Krigul KL, Laisk-Podar T, Ponandai-Srinivasan S, Rahmioglu N, Lalit Kumar PG, Zondervan K, Salumets A, Peters M. DNA methylation alterations-potential cause of endometriosis pathogenesis or a reflection of tissue heterogeneity? Biol Reprod 2019; 99:273-282. [PMID: 29796617 DOI: 10.1093/biolre/ioy067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/20/2018] [Indexed: 01/10/2023] Open
Abstract
Alterations in the DNA methylation pattern of endometriotic lesions and endometrium of endometriosis patients have been proposed as one potential factor accompanying the endometriosis development. Although many differentially methylated genes have been associated with the pathogenesis of this disease, the overlap between the results of different studies has remained small. Among other potential confounders, the impact of tissue heterogeneity on the outcome of DNA methylation studies should be considered, as tissues are mixtures of different cell types with their own specific DNA methylation signatures. This review focuses on the results of DNA methylation studies in endometriosis from the cellular heterogeneity perspective. We consider both the studies using highly heterogeneous whole-lesion biopsies and endometrial tissue, as well as pure cell fractions isolated from lesions and endometrium to understand the potential impact of the cellular composition to the results of endometriosis DNA methylation studies. Also, future perspectives on how to diminish the impact of tissue heterogeneity in similar studies are provided.
Collapse
Affiliation(s)
- Merli Saare
- Competence Centre on Health Technologies, Tartu, Estonia.,Institute of Clinical Medicine, Department of Obstetrics and Gynecology, University of Tartu, Tartu, Estonia
| | - Kertu Liis Krigul
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Triin Laisk-Podar
- Competence Centre on Health Technologies, Tartu, Estonia.,Institute of Clinical Medicine, Department of Obstetrics and Gynecology, University of Tartu, Tartu, Estonia
| | | | - Nilufer Rahmioglu
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.,Endometriosis CaRe Centre, Nuffield Department of Obstetrics & Gynaecology, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Parameswaran Grace Lalit Kumar
- Division of Obstetrics and Gynecology, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Krina Zondervan
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.,Endometriosis CaRe Centre, Nuffield Department of Obstetrics & Gynaecology, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Andres Salumets
- Competence Centre on Health Technologies, Tartu, Estonia.,Institute of Clinical Medicine, Department of Obstetrics and Gynecology, University of Tartu, Tartu, Estonia.,Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Insitute of Bio- and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Maire Peters
- Competence Centre on Health Technologies, Tartu, Estonia.,Institute of Clinical Medicine, Department of Obstetrics and Gynecology, University of Tartu, Tartu, Estonia
| |
Collapse
|
177
|
Kurinomaru T, Kojima N, Kurita R. Sequential Assessment of Multiple Epigenetic Modifications of Cytosine in Whole Genomic DNA by Surface Plasmon Resonance. Anal Chem 2019; 91:13933-13939. [PMID: 31525025 DOI: 10.1021/acs.analchem.9b03423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Since the discovery of the active DNA demethylation pathway in mammals, numerous efforts have been made to distinguish epigenetic cytosine variants, including 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). However, the rapid discrimination of multiple cytosine variants in DNA remains challenging because the conventional assays require time-consuming DNA pretreatments, such as enzymatical digestion and chemical conversion. Here we demonstrated the high-throughput discrimination of four cytosine variants in DNA by using a sequential surface-plasmon-resonance (SPR)-based immunochemical assay. The target DNAs were biotinylated in one step with a bifunctional linker 1 and robustly immobilized on a streptavidin-coated sensor surface to hold them in place during an alkali washing designed to remove residual antibodies. By repeating the injection of antibodies and washing, we achieved a sequential assessment of cytosine variants in identical DNA and identified the yield of in vitro 5mC oxidation in genomic DNA by the ten-eleven translocation 1 (TET1) enzyme. These results demonstrated that our sequential SPR-based immunochemical assay was effective for evaluating multiple epigenetic modifications in a whole genome with a single row operation without time-consuming DNA pretreatments.
Collapse
Affiliation(s)
- Takaaki Kurinomaru
- Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , 1-8-31 Midorigaoka , Ikeda , Osaka 563-8577 , Japan
| | - Naoshi Kojima
- Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) and DAILAB/DAICENTER , Tsukuba Central 6, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8566 , Japan
| | - Ryoji Kurita
- Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) and DAILAB/DAICENTER , Tsukuba Central 6, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8566 , Japan
| |
Collapse
|
178
|
Yu Y, Yuan F, Zhang XH, Zhao MZ, Zhou YL, Zhang XX. Ultrasensitive Determination of Rare Modified Cytosines Based on Novel Hydrazine Labeling Reagents. Anal Chem 2019; 91:13047-13053. [DOI: 10.1021/acs.analchem.9b03227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yue Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Fang Yuan
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiao-Hui Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Ming-Zhe Zhao
- Capital Normal University High School, No. 33 Beiwa Road, Haidian District, Beijing, 100048, China
| | - Ying-Lin Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xin-Xiang Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
179
|
Mutirangura A. A Hypothesis to Explain How the DNA of Elderly People Is Prone to Damage: Genome-Wide Hypomethylation Drives Genomic Instability in the Elderly by Reducing Youth-Associated Gnome-Stabilizing DNA Gaps. Epigenetics 2019. [DOI: 10.5772/intechopen.83372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
180
|
Kochmanski J, Savonen C, Bernstein AI. A Novel Application of Mixed Effects Models for Reconciling Base-Pair Resolution 5-Methylcytosine and 5-Hydroxymethylcytosine Data in Neuroepigenetics. Front Genet 2019; 10:801. [PMID: 31552098 PMCID: PMC6748167 DOI: 10.3389/fgene.2019.00801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/31/2019] [Indexed: 12/01/2022] Open
Abstract
Epigenetic marks operate at multiple chromosomal levels to regulate gene expression, from direct covalent modification of DNA to three-dimensional chromosomal structure. Research has shown that 5-methylcytosine (5-mC) and its oxidized form, 5-hydroxymethylcytosine (5-hmC), are stable epigenetic marks with distinct genomic distributions and separate regulatory functions. In addition, recent data indicate that 5-hmC plays a critical regulatory role in the mammalian brain, emphasizing the importance of considering this alternative DNA modification in the context of neuroepigenetics. Traditional bisulfite (BS) treatment-based methods to measure the methylome are not able to distinguish between 5-mC and 5-hmC, meaning much of the existing literature does not differentiate these two DNA modifications. Recently developed methods, including Tet-assisted bisulfite treatment and oxidative bisulfite treatment, allow for differentiation of 5-hmC and/or 5-mC levels at base-pair resolution when combined with next-generation sequencing or methylation arrays. Despite these technological advances, there remains a lack of clarity regarding the appropriate statistical methods for integration of 5-mC and 5-hmC data. As a result, it can be difficult to determine the effects of an experimental treatment on 5-mC and 5-hmC dynamics. Here, we propose a statistical approach involving mixed effects to simultaneously model paired 5-mC and 5-hmC data as repeated measures. We tested this approach using publicly available BS/oxidative bisulfite-450K array data and showed that our new approach detected far more CpG probes with paired changes in 5-mC and 5-hmC by Alzheimer’s disease status (n = 14,183 probes) compared with the overlapping differential probes generated from separate models for each epigenetic mark (n = 68). Of note, all 68 of the overlapping probe IDs from the separate models were also significant in our new modeling approach, supporting the sensitivity of our new analysis method. Using the proposed approach, it will be possible to determine the effects of an experimental treatment on both 5-mC and 5-hmC at the base-pair level.
Collapse
Affiliation(s)
- Joseph Kochmanski
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Candace Savonen
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Alison I Bernstein
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| |
Collapse
|
181
|
Giehr P, Kyriakopoulos C, Lepikhov K, Wallner S, Wolf V, Walter J. Two are better than one: HPoxBS - hairpin oxidative bisulfite sequencing. Nucleic Acids Res 2019; 46:e88. [PMID: 29912476 PMCID: PMC6125676 DOI: 10.1093/nar/gky422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/13/2018] [Indexed: 12/30/2022] Open
Abstract
The controlled and stepwise oxidation of 5mC to 5hmC, 5fC and 5caC by Tet enzymes is influencing the chemical and biological properties of cytosine. Besides direct effects on gene regulation, oxidised forms influence the dynamics of demethylation and re-methylation processes. So far, no combined methods exist which allow to precisely determine the strand specific localisation of cytosine modifications along with their CpG symmetric distribution. Here we describe a comprehensive protocol combining conventional hairpin bisulfite with oxidative bisulfite sequencing (HPoxBS) to determine the strand specific distribution of 5mC and 5hmC at base resolution. We apply this method to analyse the contribution of local oxidative effects on DNA demethylation in mouse ES cells. Our method includes the HPoxBS workflow and subsequent data analysis using our developed software tools. Besides a precise estimation and display of strand specific 5mC and 5hmC levels at base resolution we apply the data to predict region specific activities of Dnmt and Tet enzymes. Our experimental and computational workflow provides a precise double strand display of 5mC and 5hmC modifications at single base resolution. Based on our data we predict region specific Tet and Dnmt enzyme efficiencies shaping the distinct locus levels and patterns of 5hmC and 5mC.
Collapse
Affiliation(s)
- Pascal Giehr
- Department of Biological Sciences, Saarland University, Campus A2.4, 66123 Saarbrücken, Saarland, Germany
| | | | - Konstantin Lepikhov
- Department of Biological Sciences, Saarland University, Campus A2.4, 66123 Saarbrücken, Saarland, Germany
| | - Stefan Wallner
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Bayern, Germany
| | - Verena Wolf
- Computer Science Department, Saarland University, Campus E1.3, 66123 Saarbrücken, Saarland, Germany
| | - Jörn Walter
- Department of Biological Sciences, Saarland University, Campus A2.4, 66123 Saarbrücken, Saarland, Germany
| |
Collapse
|
182
|
Çelik-Uzuner S. Enhanced immunological detection of epigenetic modifications of DNA in healthy and cancerous cells by fluorescence microscopy. Microsc Res Tech 2019; 82:1962-1972. [PMID: 31429164 DOI: 10.1002/jemt.23365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/21/2022]
Abstract
Epigenetic modifications of DNA, including methylation, hydroxymethylation, formylation, and carboxylation of cytosines, are proposed to function in gene regulation during reproduction and development. Changes in cytosine methylation are associated with a range of diseases, such as cancer. Immunofluorescence uses specific antibodies to quantitatively detect the global amount of cytosine modifications by fluorescence microscopy. The most critical stage of immunofluorescence is the antigen retrieval to remove the protein content around the DNA, allowing specific antibodies to bind to DNA epitopes. Acid treatments have commonly been used for antigen retrieval. Previously, trypsin was added after acid in the protocol, which increased the amount of detectable DNA methylation. In this study, the protocol was further enhanced by the addition of pepsin, which is able to target charged hydrophobic amino acids in proteins, unlike trypsin, which breaks positive hydrophilic amino acids. The global levels of cytosine modifications in CF-1, HeLa, and AR42J cells were compared using this protocol. In all cells, the sequential treatment of trypsin and pepsin increased the specificity of the staining. With the synergistic effect of the two enzymes, it is possible to target different protein groups packaging DNA molecules and removing them effectively. The findings suggest that this revised protocol can be conveniently used for each cytosine modification in the cells examined, and should be optimized for other cells. These new antigen retrieval conditions may more accurately detect the changes in cytosine modifications during development and in diseases.
Collapse
Affiliation(s)
- Selcen Çelik-Uzuner
- Faculty of Science, Department of Molecular Biology and Genetics, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
183
|
Pfeifer GP, Szabó PE, Song J. Protein Interactions at Oxidized 5-Methylcytosine Bases. J Mol Biol 2019:S0022-2836(19)30501-7. [PMID: 31401118 DOI: 10.1016/j.jmb.2019.07.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 07/31/2019] [Indexed: 12/19/2022]
Abstract
5-Methylcytosine (5mC), the major modified DNA base in mammalian cells, can be oxidized enzymatically to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) by the Ten-Eleven-Translocation (TET) family of proteins. Whereas 5fC and 5caC are recognized and removed by base excision repair proteins, the 5hmC base accumulates to substantial levels in certain cell types such as brain-derived neurons and is viewed as a relatively stable DNA base. As such, the existence of "reader" proteins that recognize 5hmC would be a logical assumption, and various searches have been undertaken to identify proteins that specifically bind to 5hmC and the other oxidized 5mC bases. However, the existence of definitive 5hmC "readers" has remained unclear and proteins interacting specifically with 5fC or 5caC are also very few. On the other hand, 5hmC is incapable of interacting with a number of proteins that recognize 5mC at CpG sequences, suggesting that 5hmC is an anti-reader modification that may serve to displace 5mC readers from DNA. In this review article, we discuss candidate proteins that may interact with oxidized 5mC bases.
Collapse
Affiliation(s)
- Gerd P Pfeifer
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA.
| | - Piroska E Szabó
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Jikui Song
- Department of Biochemistry, University of California Riverside, Riverside, CA 92521, USA
| |
Collapse
|
184
|
Cisternas CD, Cortes LR, Bruggeman EC, Yao B, Forger NG. Developmental changes and sex differences in DNA methylation and demethylation in hypothalamic regions of the mouse brain. Epigenetics 2019; 15:72-84. [PMID: 31378140 DOI: 10.1080/15592294.2019.1649528] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
DNA methylation is dynamically modulated during postnatal brain development, and plays a key role in neuronal lineage commitment. This epigenetic mark has also recently been implicated in the development of neural sex differences, many of which are found in the hypothalamus. The level of DNA methylation depends on a balance between the placement of methyl marks by DNA methyltransferases (Dnmts) and their removal, which is catalyzed by ten-eleven translocation (Tet) methylcytosine dioxygenases. Here, we examined developmental changes and sex differences in the expression of Tet and Dnmt enzymes from birth to adulthood in two hypothalamic regions (the preoptic area and ventromedial nucleus) and the hippocampus of mice. We found highest expression of all Tet enzymes (Tet1, Tet2, Tet3) and Dnmts (Dnmt1, Dnmt3a, Dnmt3b) in newborns, despite the fact that global methylation and hydroxymethylation were at their lowest levels at birth. Expression of the Dnmt co-activator, Dnmt3l, followed a pattern opposite to that of the canonical Dnmts (i.e., was very low in newborns and increased with age). Tet enzyme activity was much higher at birth than at weaning in both the hypothalamus and hippocampus, mirroring developmental changes in gene expression. Sex differences in Tet enzyme expression were seen in all brain regions examined during the first week of life, whereas Dnmt expression was more balanced between the sexes. Neonatal testosterone treatment of females only partially masculinized enzyme expression. Thus, Tet expression and activity are elevated during neonatal brain development, and may play important roles in sexual differentiation of the brain.
Collapse
Affiliation(s)
- Carla D Cisternas
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
| | - Laura R Cortes
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
| | - Emily C Bruggeman
- Department of Human Genetics, Emory School of Medicine, Atlanta, GA, USA
| | - Bing Yao
- Department of Human Genetics, Emory School of Medicine, Atlanta, GA, USA
| | - Nancy G Forger
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
185
|
Jonasson NSW, Daumann LJ. 5‐Methylcytosine is Oxidized to the Natural Metabolites of TET Enzymes by a Biomimetic Iron(IV)‐Oxo Complex. Chemistry 2019; 25:12091-12097. [PMID: 31211459 DOI: 10.1002/chem.201902340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/15/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Niko S. W. Jonasson
- Department ChemieLudwig-Maximilians-University München Butenandtstr. 5-13, Haus D Germany
| | - Lena J. Daumann
- Department ChemieLudwig-Maximilians-University München Butenandtstr. 5-13, Haus D Germany
| |
Collapse
|
186
|
Abstract
Maintenance of genome stability requires control over the expression of transposable elements (TEs), whose activity can have substantial deleterious effects on the host. Chemical modification of DNA is a commonly used strategy to achieve this, and it has long been argued that the emergence of 5-methylcytosine (5mC) in many species was driven by the requirement to silence TEs. Potential roles in TE regulation have also been suggested for other DNA modifications, such as N6-methyladenine and oxidation derivatives of 5mC, although the underlying mechanistic relationships are poorly understood. Here, we discuss current evidence implicating DNA modifications and DNA-modifying enzymes in TE regulation across different species.
Collapse
Affiliation(s)
- Özgen Deniz
- Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London, UK
| | - Jennifer M Frost
- Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London, UK
| | - Miguel R Branco
- Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London, UK.
| |
Collapse
|
187
|
Mei XF, Shi W, Zhang YY, Zhu B, Wang YR, Hou LJ, Zhao WP, Li J, Wang DY, Luo HL, Huang WY. DNA methylation and hydroxymethylation profiles reveal possible role of highly methylated TLR signaling on Fasciola gigantica excretory/secretory products (FgESPs) modulation of buffalo dendritic cells. Parasit Vectors 2019; 12:358. [PMID: 31337442 PMCID: PMC6647289 DOI: 10.1186/s13071-019-3615-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/13/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Excretory/secretory products (ESPs) released by parasites influence the development and functions of host dendritic cells (DCs). However, little is known about changes of DNA (hydroxy)methylation on DC development during Fasciola gigantica infection. The present study aimed to investigate whether F. gigantica ESPs (FgESPs) affects the development and functions of buffalo DCs through altering the DNA (hydroxy)methylation of DCs. METHODS Buffalo DCs were prepared from peripheral blood mononuclear cells (PBMCs) and characterized using scanning and transmission electron microscopy (SEM/TEM) and quantitative reverse transcriptional PCR (qRT-RCR). DCs were treated with 200 μg/ml of FgESPs in vitro, following DNA extraction. The DNA methylome and hydroxymethylome were profiled based on (hydroxy)methylated DNA immunoprecipitation sequencing [(h)MeDIP-Seq] and bioinformatics analyses. qRT-RCR was also performed to assess the gene transcription levels of interest. RESULTS FgESPs markedly suppressed DC maturation evidenced by morphological changes and downregulated gene expression of CD1a and MHC II. Totals of 5432 and 360 genes with significant changes in the 5-methylcytosine (5-mC) and the 5-hydroxymethylcytosine (5-hmC) levels, respectively, were identified in buffalo DCs in response to FgESPs challenge. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that these differentially expressed genes were highly enriched in pathways associated with immune response. Some cancer-related pathways were also indicated. There were 111 genes demonstrating changes in both 5-mC and 5-hmC levels, 12 of which were interconnected and enriched in 12 pathways. The transcription of hypermethylated genes TLR2, TLR4 and IL-12B were downregulated or in a decreasing trend, while the mRNA level of high-hydroxymethylated TNF gene was upregulated in buffalo DCs post-exposure to FgESPs in vitro. CONCLUSIONS To our knowledge, the present study provides for the first time a unique genome-wide profile of DNA (hydroxy)methylation for DCs that interact with FgESPs, and suggests a possible mechanism of FgESPs in suppressing DC maturation and functions that are involved in TLR signaling.
Collapse
Affiliation(s)
- Xue-Fang Mei
- School of Animal Science and Technology, Guangxi University, Nanning, People's Republic of China
| | - Wei Shi
- School of Preclinical Medicine, Guangxi Medical University, Nanning, People's Republic of China
| | - Yao-Yao Zhang
- School of Animal Science and Technology, Guangxi University, Nanning, People's Republic of China
| | - Bin Zhu
- School of Animal Science and Technology, Guangxi University, Nanning, People's Republic of China
| | - Yu-Rui Wang
- School of Animal Science and Technology, Guangxi University, Nanning, People's Republic of China
| | - Lin-Jing Hou
- School of Animal Science and Technology, Guangxi University, Nanning, People's Republic of China
| | - Wen-Ping Zhao
- School of Animal Science and Technology, Guangxi University, Nanning, People's Republic of China
| | - Jian Li
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - Dong-Ying Wang
- School of Animal Science and Technology, Guangxi University, Nanning, People's Republic of China.
| | - Hong-Lin Luo
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fishery Sciences, Nanning, People's Republic of China.
| | - Wei-Yi Huang
- School of Animal Science and Technology, Guangxi University, Nanning, People's Republic of China.
| |
Collapse
|
188
|
Global DNA Methylation Patterns in Human Gliomas and Their Interplay with Other Epigenetic Modifications. Int J Mol Sci 2019; 20:ijms20143478. [PMID: 31311166 PMCID: PMC6678179 DOI: 10.3390/ijms20143478] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/04/2019] [Accepted: 07/09/2019] [Indexed: 01/08/2023] Open
Abstract
During the last two decades, several international consortia have been established to unveil the molecular background of human cancers including gliomas. As a result, a huge outbreak of new genetic and epigenetic data appeared. It was not only shown that gliomas share some specific DNA sequence aberrations, but they also present common alterations of chromatin. Many researchers have reported specific epigenetic features, such as DNA methylation and histone modifications being involved in tumor pathobiology. Unlike mutations in DNA, epigenetic changes are more global in nature. Moreover, many studies have shown an interplay between different types of epigenetic changes. Alterations in DNA methylation in gliomas are one of the best described epigenetic changes underlying human pathology. In the following work, we present the state of knowledge about global DNA methylation patterns in gliomas and their interplay with histone modifications that may affect transcription factor binding, global gene expression and chromatin conformation. Apart from summarizing the impact of global DNA methylation on glioma pathobiology, we provide an extract of key mechanisms of DNA methylation machinery.
Collapse
|
189
|
Ringh MV, Hagemann-Jensen M, Needhamsen M, Kular L, Breeze CE, Sjöholm LK, Slavec L, Kullberg S, Wahlström J, Grunewald J, Brynedal B, Liu Y, Almgren M, Jagodic M, Öckinger J, Ekström TJ. Tobacco smoking induces changes in true DNA methylation, hydroxymethylation and gene expression in bronchoalveolar lavage cells. EBioMedicine 2019; 46:290-304. [PMID: 31303497 PMCID: PMC6710853 DOI: 10.1016/j.ebiom.2019.07.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 12/21/2022] Open
Abstract
Background While smoking is known to associate with development of multiple diseases, the underlying mechanisms are still poorly understood. Tobacco smoking can modify the chemical integrity of DNA leading to changes in transcriptional activity, partly through an altered epigenetic state. We aimed to investigate the impact of smoking on lung cells collected from bronchoalveolar lavage (BAL). Methods We profiled changes in DNA methylation (5mC) and its oxidised form hydroxymethylation (5hmC) using conventional bisulphite (BS) treatment and oxidative bisulphite treatment with Illumina Infinium MethylationEPIC BeadChip, and examined gene expression by RNA-seq in healthy smokers. Findings We identified 1667 total 5mC + 5hmC, 1756 5mC and 67 5hmC differentially methylated positions (DMPs) between smokers and non-smokers (FDR-adjusted P <.05, absolute Δβ >0.15). Both 5mC DMPs and to a lesser extent 5mC + 5hmC were predominantly hypomethylated. In contrast, almost all 5hmC DMPs were hypermethylated, supporting the hypothesis that smoking-associated oxidative stress can lead to DNA demethylation, via the established sequential oxidation of which 5hmC is the first step. While we confirmed differential methylation of previously reported smoking-associated 5mC + 5hmC CpGs using former generations of BeadChips in alveolar macrophages, the large majority of identified DMPs, 5mC + 5hmC (1639/1667), 5mC (1738/1756), and 5hmC (67/67), have not been previously reported. Most of these novel smoking-associating sites are specific to the EPIC BeadChip and, interestingly, many of them are associated to FANTOM5 enhancers. Transcriptional changes affecting 633 transcripts were consistent with DNA methylation profiles and converged to alteration of genes involved in migration, signalling and inflammatory response of immune cells. Interpretation Collectively, these findings suggest that tobacco smoke exposure epigenetically modifies BAL cells, possibly involving a continuous active demethylation and subsequent increased activity of inflammatory processes in the lungs. Fund The study was supported by the Swedish Research Council, the Swedish Heart-Lung Foundation, the Stockholm County Council (ALF), the King Gustav's and Queen Victoria's Freemasons' Foundation, Knut and Alice Wallenberg Foundation, Neuro Sweden, and the Swedish MS foundation.
Collapse
Affiliation(s)
- Mikael V Ringh
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Stockholm, Sweden.
| | - Michael Hagemann-Jensen
- Department of Medicine, Karolinska Institutet, Center for Molecular Medicine, Stockholm, Sweden
| | - Maria Needhamsen
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Stockholm, Sweden
| | - Lara Kular
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Stockholm, Sweden
| | - Charles E Breeze
- Altius Institute for Biomedical Sciences, Seattle, USA; UCL Cancer Institute, University College London, London, United Kingdom
| | - Louise K Sjöholm
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Stockholm, Sweden
| | - Lara Slavec
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Stockholm, Sweden
| | - Susanna Kullberg
- Department of Medicine, Karolinska Institutet, Center for Molecular Medicine, Stockholm, Sweden; Department of Respiratory Medicine, Theme Inflammation and Infection, Karolinska University Hospital, Stockholm, Sweden
| | - Jan Wahlström
- Department of Medicine, Karolinska Institutet, Center for Molecular Medicine, Stockholm, Sweden
| | - Johan Grunewald
- Department of Medicine, Karolinska Institutet, Center for Molecular Medicine, Stockholm, Sweden
| | - Boel Brynedal
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Yun Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Malin Almgren
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Stockholm, Sweden
| | - Maja Jagodic
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Stockholm, Sweden
| | - Johan Öckinger
- Department of Medicine, Karolinska Institutet, Center for Molecular Medicine, Stockholm, Sweden
| | - Tomas J Ekström
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Stockholm, Sweden.
| |
Collapse
|
190
|
Abstract
5-Formyl-2'-deoxycytidine (5fdC) is a naturally occurring nucleobase that is broadly distributed in genomic DNA. 5fdC is produced via the oxidation of 5-methylcytosine (5mdC) by ten-eleven translocation enzyme (TET) and can be further converted to 5-carboxylcytosine (5cadC) by TET. Both 5fdC and 5cadC can be restored to dC by TDG-mediated base excision repair and direct deformylation/decarboxylation. Thus, 5fdC is considered an intermediate in the TET-mediated DNA demethylation pathway. 5fdC also alters the structure and stability of genomic DNA and affects genetic expression. This review summarizes the recent research on 5fdC, detailing its formation, detection and distribution, biological functions and transformation in cells. The challenges and future prospects to further explore the function and metabolism of 5fdC are briefly discussed at the end.
Collapse
Affiliation(s)
- Yingqian Zhang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chuanzheng Zhou
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
191
|
Jain N, Shahal T, Gabrieli T, Gilat N, Torchinsky D, Michaeli Y, Vogel V, Ebenstein Y. Global modulation in DNA epigenetics during pro-inflammatory macrophage activation. Epigenetics 2019; 14:1183-1193. [PMID: 31262215 DOI: 10.1080/15592294.2019.1638700] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
DNA methylation patterns create distinct gene-expression profiles. These patterns are maintained after cell division, thus enabling the differentiation and maintenance of multiple cell types from the same genome sequence. The advantage of this mechanism for transcriptional control is that chemical-encoding allows to rapidly establish new epigenetic patterns 'on-demand' through enzymatic methylation and demethylation of DNA. Here we show that this feature is associated with the fast response of macrophages during their pro-inflammatory activation. By using a combination of mass spectroscopy and single-molecule imaging to quantify global epigenetic changes in the genomes of primary macrophages, we followed three distinct DNA marks (methylated, hydroxymethylated and unmethylated), involved in establishing new DNA methylation patterns during pro-inflammatory activation. The observed epigenetic modulation together with gene-expression data generated for the involved enzymatic machinery may suggest that de-methylation upon LPS-activation starts with oxidation of methylated CpGs, followed by excision-repair of these oxidized bases and their replacement with unmodified cytosine.
Collapse
Affiliation(s)
- Nikhil Jain
- Department of Health Sciences and Technology, Laboratory of Applied Mechanobiology, Institute of Translational Medicine, ETH Zurich , Zurich , Switzerland
| | - Tamar Shahal
- Sagol Center for the Epigenetics of Metabolism and Aging, Tel Aviv Sourasky Medical Center , Tel Aviv , Israel.,Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University , Tel Aviv , Israel
| | - Tslil Gabrieli
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University , Tel Aviv , Israel
| | - Noa Gilat
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University , Tel Aviv , Israel
| | - Dmitry Torchinsky
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University , Tel Aviv , Israel
| | - Yael Michaeli
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University , Tel Aviv , Israel
| | - Viola Vogel
- Department of Health Sciences and Technology, Laboratory of Applied Mechanobiology, Institute of Translational Medicine, ETH Zurich , Zurich , Switzerland
| | - Yuval Ebenstein
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University , Tel Aviv , Israel
| |
Collapse
|
192
|
Margalit S, Avraham S, Shahal T, Michaeli Y, Gilat N, Magod P, Caspi M, Loewenstein S, Lahat G, Friedmann-Morvinski D, Kariv R, Rosin-Arbesfeld R, Zirkin S, Ebenstein Y. 5-Hydroxymethylcytosine as a clinical biomarker: Fluorescence-based assay for high-throughput epigenetic quantification in human tissues. Int J Cancer 2019; 146:115-122. [PMID: 31211411 DOI: 10.1002/ijc.32519] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 12/31/2022]
Abstract
Epigenetic transformations may provide early indicators for cancer and other disease. Specifically, the amount of genomic 5-hydroxymethylcytosine (5-hmC) was shown to be globally reduced in a wide range of cancers. The integration of this global biomarker into diagnostic workflows is hampered by the limitations of current 5-hmC quantification methods. Here we present and validate a fluorescence-based platform for high-throughput and cost-effective quantification of global genomic 5-hmC levels. We utilized the assay to characterize cancerous tissues based on their 5-hmC content, and observed a pronounced reduction in 5-hmC level in various cancer types. We present data for glioblastoma, colorectal cancer, multiple myeloma, chronic lymphocytic leukemia and pancreatic cancer, compared to corresponding controls. Potentially, the technique could also be used to follow response to treatment for personalized treatment selection. We present initial proof-of-concept data for treatment of familial adenomatous polyposis.
Collapse
Affiliation(s)
- Sapir Margalit
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Sigal Avraham
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tamar Shahal
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yael Michaeli
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Noa Gilat
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Prerna Magod
- Sagol School of Neuroscience, Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Michal Caspi
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shelly Loewenstein
- Department of Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Guy Lahat
- Department of Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dinorah Friedmann-Morvinski
- Sagol School of Neuroscience, Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Revital Kariv
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Gastroenterology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Rina Rosin-Arbesfeld
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shahar Zirkin
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yuval Ebenstein
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
193
|
Antunes C, Sousa N, Pinto L, Marques CJ. TET enzymes in neurophysiology and brain function. Neurosci Biobehav Rev 2019; 102:337-344. [DOI: 10.1016/j.neubiorev.2019.05.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 02/07/2023]
|
194
|
Sinha N, Biswas A, Nave O, Seger C, Sen A. Gestational Diabetes Epigenetically Reprograms the Cart Promoter in Fetal Ovary, Causing Subfertility in Adult Life. Endocrinology 2019; 160:1684-1700. [PMID: 31150057 DOI: 10.1210/en.2019-00319] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 05/23/2019] [Indexed: 12/26/2022]
Abstract
Intrauterine exposure to various adverse conditions during fetal development can lead to epigenetic changes in fetal tissues, predisposing those tissues to disease conditions later in life. An example is gestational diabetes (GD), where the offspring has a higher risk of developing obesity, metabolic disorders, or cardiovascular disease in adult life. In this study, using two well-established GD (streptozotocin- and high-fat and high-sugar-induced) mouse models, we report that female offspring from GD dams are predisposed toward fertility problems later in life. This predisposition to fertility problems is due to altered ovarian expression of a peptide called cocaine- and amphetamine-regulated transcript (CART), which is known to negatively affect folliculogenesis and is induced by elevated leptin levels. Results show that the underlying cause of this altered expression is due to fetal epigenetic modifications involving glucose- and insulin-induced miRNA, miR-101, and the phosphatidylinositol 3-kinase/Akt pathway. These signaling events regulate Ezh2, a histone methyltransferase that promotes H3K27me3, a gene-repressive mark, and CBP/p300, a histone acetyltransferase that promotes H3K27ac, a transcription activation mark, in the fetal ovary. Moreover, the CART promoter has depleted 5-methylcytosine (5mC) and enriched 5-hydroxymethylcytosine (5hmC) levels. The depletion of H3K27me3 and 5mC repressive marks and subsequent increase in H3K27ac and 5hmC gene-activating marks convert the Cartpt promoter to a "superpromoter." This makes the Cartpt promoter more sensitive to leptin levels that predispose the GD offspring to fertility problems. Therefore, this study provides a mechanistic insight about fetal epigenome reprogramming that manifests to ovarian dysfunction and subfertility later in adult life.
Collapse
Affiliation(s)
- Niharika Sinha
- Reproductive and Developmental Sciences Program, Department of Animal Sciences, Michigan State University, East Lansing, Michigan
| | - Anindita Biswas
- Reproductive and Developmental Sciences Program, Department of Animal Sciences, Michigan State University, East Lansing, Michigan
| | - Olivia Nave
- Reproductive and Developmental Sciences Program, Department of Animal Sciences, Michigan State University, East Lansing, Michigan
| | - Christina Seger
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, New York
| | - Aritro Sen
- Reproductive and Developmental Sciences Program, Department of Animal Sciences, Michigan State University, East Lansing, Michigan
| |
Collapse
|
195
|
Ismail JN, Badini S, Frey F, Abou-Kheir W, Shirinian M. Drosophila Tet Is Expressed in Midline Glia and Is Required for Proper Axonal Development. Front Cell Neurosci 2019; 13:252. [PMID: 31213988 PMCID: PMC6558204 DOI: 10.3389/fncel.2019.00252] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/20/2019] [Indexed: 01/10/2023] Open
Abstract
Ten-Eleven Translocation (TET) proteins are important epigenetic regulators that play a key role in development and are frequently deregulated in cancer. Drosophila melanogaster has a single homologous Tet gene (dTet) that is highly expressed in the central nervous system during development. Here, we examined the expression pattern of dTet in the third instar larval CNS and discovered its presence in a specific set of glia cells: midline glia (MG). Moreover, dTet knockdown resulted in significant lethality, locomotor dysfunction, and alterations in axon patterning in the larval ventral nerve cord. Molecular analyses on dTet knockdown larvae showed a downregulation in genes involved in axon guidance and reduced expression of the axon guidance cue Slit. Our findings point toward a potential role for dTet in midline glial function, specifically the regulation of axon patterning during neurodevelopment.
Collapse
Affiliation(s)
- Joy N Ismail
- Department of Experimental Pathology and Immunology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| | - Shireen Badini
- Department of Experimental Pathology and Immunology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| | - Felice Frey
- Department of Experimental Pathology and Immunology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Margret Shirinian
- Department of Experimental Pathology and Immunology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
196
|
Gadecka A, Bielak-Zmijewska A. Slowing Down Ageing: The Role of Nutrients and Microbiota in Modulation of the Epigenome. Nutrients 2019; 11:nu11061251. [PMID: 31159371 PMCID: PMC6628342 DOI: 10.3390/nu11061251] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 12/13/2022] Open
Abstract
The human population is getting ageing. Both ageing and age-related diseases are correlated with an increased number of senescent cells in the organism. Senescent cells do not divide but are metabolically active and influence their environment by secreting many proteins due to a phenomenon known as senescence associated secretory phenotype (SASP). Senescent cells differ from young cells by several features. They possess more damaged DNA, more impaired mitochondria and an increased level of free radicals that cause the oxidation of macromolecules. However, not only biochemical and structural changes are related to senescence. Senescent cells have an altered chromatin structure, and in consequence, altered gene expression. With age, the level of heterochromatin decreases, and less condensed chromatin is more prone to DNA damage. On the one hand, some gene promoters are easily available for the transcriptional machinery; on the other hand, some genes are more protected (locally increased level of heterochromatin). The structure of chromatin is precisely regulated by the epigenetic modification of DNA and posttranslational modification of histones. The methylation of DNA inhibits transcription, histone methylation mostly leads to a more condensed chromatin structure (with some exceptions) and acetylation plays an opposing role. The modification of both DNA and histones is regulated by factors present in the diet. This means that compounds contained in daily food can alter gene expression and protect cells from senescence, and therefore protect the organism from ageing. An opinion prevailed for some time that compounds from the diet do not act through direct regulation of the processes in the organism but through modification of the physiology of the microbiome. In this review we try to explain the role of some food compounds, which by acting on the epigenetic level might protect the organism from age-related diseases and slow down ageing. We also try to shed some light on the role of microbiome in this process.
Collapse
Affiliation(s)
- Agnieszka Gadecka
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| | - Anna Bielak-Zmijewska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| |
Collapse
|
197
|
Hübel C, Marzi SJ, Breen G, Bulik CM. Epigenetics in eating disorders: a systematic review. Mol Psychiatry 2019; 24:901-915. [PMID: 30353170 PMCID: PMC6544542 DOI: 10.1038/s41380-018-0254-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 08/03/2018] [Accepted: 08/08/2018] [Indexed: 12/11/2022]
Abstract
Eating disorders are complex heritable conditions influenced by both genetic and environmental factors. Given the progress of genomic discovery in anorexia nervosa, with the identification of the first genome-wide significant locus, as well as animated discussion of epigenetic mechanisms in linking environmental factors with disease onset, our goal was to conduct a systematic review of the current body of evidence on epigenetic factors in eating disorders to inform future directions in this area. Following PRISMA guidelines, two independent authors conducted a search within PubMed and Web of Science and identified 18 journal articles and conference abstracts addressing anorexia nervosa (n = 13), bulimia nervosa (n = 6), and binge-eating disorder (n = 1), published between January 2003 and October 2017. We reviewed all articles and included a critical discussion of field-specific methodological considerations. The majority of epigenetic analyses of eating disorders investigated methylation at candidate genes (n = 13), focusing on anorexia and bulimia nervosa in very small samples with considerable sample overlap across published studies. Three studies used microarray-based technologies to examine DNA methylation across the genome of anorexia nervosa and binge-eating disorder patients. Overall, results were inconclusive and were primarily exploratory in nature. The field of epigenetics in eating disorders remains in its infancy. We encourage the scientific community to apply methodologically sound approaches using genome-wide designs including epigenome-wide association studies (EWAS), to increase sample sizes, and to broaden the focus to include all eating disorder types.
Collapse
Affiliation(s)
- Christopher Hübel
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, UK,UK National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre, South London and Maudsley Hospital and King’s College London, London, UK,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Sarah J. Marzi
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, UK,The Blizard Institute, Barts and the London Medical School, Queen Mary University of London, UK
| | - Gerome Breen
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, UK,UK National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre, South London and Maudsley Hospital and King’s College London, London, UK
| | - Cynthia M. Bulik
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden,Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC,Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
198
|
Griñán-Ferré C, Corpas R, Puigoriol-Illamola D, Palomera-Ávalos V, Sanfeliu C, Pallàs M. Understanding Epigenetics in the Neurodegeneration of Alzheimer's Disease: SAMP8 Mouse Model. J Alzheimers Dis 2019; 62:943-963. [PMID: 29562529 PMCID: PMC5870033 DOI: 10.3233/jad-170664] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epigenetics is emerging as the missing link among genetic inheritance, environmental influences, and body and brain health status. In the brain, specific changes in nucleic acids or their associated proteins in neurons and glial cells might imprint differential patterns of gene activation that will favor either cognitive enhancement or cognitive loss for more than one generation. Furthermore, derangement of age-related epigenetic signaling is appearing as a significant risk factor for illnesses of aging, including neurodegeneration and Alzheimer’s disease (AD). In addition, better knowledge of epigenetic mechanisms might provide hints and clues in the triggering and progression of AD. Intense research in experimental models suggests that molecular interventions for modulating epigenetic mechanisms might have therapeutic applications to promote cognitive maintenance through an advanced age. The SAMP8 mouse is a senescence model with AD traits in which the study of epigenetic alterations may unveil epigenetic therapies against the AD.
Collapse
Affiliation(s)
- Christian Griñán-Ferré
- Department of Pharmacology, Toxicology and Therapeutic Chemistry (Pharmacology Section) and Institute of Neuroscience, University of Barcelona and CIBERNED, Barcelona, Spain
| | - Rubén Corpas
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC, IDIBAPS and CIBERESP, Barcelona, Spain
| | - Dolors Puigoriol-Illamola
- Department of Pharmacology, Toxicology and Therapeutic Chemistry (Pharmacology Section) and Institute of Neuroscience, University of Barcelona and CIBERNED, Barcelona, Spain
| | - Verónica Palomera-Ávalos
- Department of Pharmacology, Toxicology and Therapeutic Chemistry (Pharmacology Section) and Institute of Neuroscience, University of Barcelona and CIBERNED, Barcelona, Spain
| | - Coral Sanfeliu
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC, IDIBAPS and CIBERESP, Barcelona, Spain
| | - Mercè Pallàs
- Department of Pharmacology, Toxicology and Therapeutic Chemistry (Pharmacology Section) and Institute of Neuroscience, University of Barcelona and CIBERNED, Barcelona, Spain
| |
Collapse
|
199
|
Lauschke VM, Zhou Y, Ingelman-Sundberg M. Novel genetic and epigenetic factors of importance for inter-individual differences in drug disposition, response and toxicity. Pharmacol Ther 2019; 197:122-152. [PMID: 30677473 PMCID: PMC6527860 DOI: 10.1016/j.pharmthera.2019.01.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Individuals differ substantially in their response to pharmacological treatment. Personalized medicine aspires to embrace these inter-individual differences and customize therapy by taking a wealth of patient-specific data into account. Pharmacogenomic constitutes a cornerstone of personalized medicine that provides therapeutic guidance based on the genomic profile of a given patient. Pharmacogenomics already has applications in the clinics, particularly in oncology, whereas future development in this area is needed in order to establish pharmacogenomic biomarkers as useful clinical tools. In this review we present an updated overview of current and emerging pharmacogenomic biomarkers in different therapeutic areas and critically discuss their potential to transform clinical care. Furthermore, we discuss opportunities of technological, methodological and institutional advances to improve biomarker discovery. We also summarize recent progress in our understanding of epigenetic effects on drug disposition and response, including a discussion of the only few pharmacogenomic biomarkers implemented into routine care. We anticipate, in part due to exciting rapid developments in Next Generation Sequencing technologies, machine learning methods and national biobanks, that the field will make great advances in the upcoming years towards unlocking the full potential of genomic data.
Collapse
Affiliation(s)
- Volker M Lauschke
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Biomedicum 5B, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Yitian Zhou
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Biomedicum 5B, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Magnus Ingelman-Sundberg
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Biomedicum 5B, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
200
|
Isotope-dilution mass spectrometry for exact quantification of noncanonical DNA nucleosides. Nat Protoc 2019; 14:283-312. [PMID: 30559375 DOI: 10.1038/s41596-018-0094-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
DNA contains not only canonical nucleotides but also a variety of modifications of the bases. In particular, cytosine and adenine are frequently modified. Determination of the exact quantity of these noncanonical bases can contribute to the characterization of the state of a biological system, e.g., determination of disease or developmental processes, and is therefore extremely important. Here, we present a workflow that includes detailed description of critical sample preparation steps and important aspects of mass spectrometry analysis and validation. In this protocol, extraction and digestion of DNA by an optimized spin-column and enzyme-based method are described. Isotopically labeled standards are added in the course of DNA digestion, which allows exact quantification by isotope dilution mass spectrometry. To overcome the major bottleneck of such analyses, we developed a short (~14-min-per-sample) ultra-HPLC (UHPLC) and triple quadrupole mass spectrometric (QQQ-MS) method. Easy calculation of the modification abundance in the genome is possible with the provided evaluation sheets. Compared to alternative methods, the quantification procedure presented here allows rapid, ultrasensitive (low femtomole range) and highly reproducible quantification of different nucleosides in parallel. Including sample preparation and evaluation, quantification of DNA modifications can be achieved in less than a week.
Collapse
|