151
|
Parums DV. Editorial: The World Health Organization (WHO) Fungal Priority Pathogens List in Response to Emerging Fungal Pathogens During the COVID-19 Pandemic. Med Sci Monit 2022; 28:e939088. [PMID: 36453055 PMCID: PMC9724454 DOI: 10.12659/msm.939088] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 07/29/2023] Open
Abstract
The COVID-19 pandemic, climate change, increased resistance to antifungal drugs, and an increased number of immunocompromised patients have driven a recent global surge in pathogenic fungal infections, including aspergillosis, candidiasis, and mucormycosis. On 25 October 2022, the World Health Organization (WHO) released a list of 19 fungal priority pathogens identified as having the greatest threat to public health. The WHO Fungal Priority Pathogens List represents the first global response to identify and prioritize fungal pathogens and their impact on global public health and to consider the unmet research and development needs. The WHO has grouped the priority fungal pathogens into those of critical, high, and medium priority. This Editorial aims to highlight the importance of identifying and prioritizing fungal pathogens and identifying emerging fungal pathogens and the global factors driving changing patterns of infection.
Collapse
Affiliation(s)
- Dinah V Parums
- Science Editor, Medical Science Monitor, International Scientific Information, Inc., Melville, NY, USA
| |
Collapse
|
152
|
Miguel GA, Carlsen S, Arneborg N, Saerens SM, Laulund S, Knudsen GM. Non-Saccharomyces yeasts for beer production: Insights into safety aspects and considerations. Int J Food Microbiol 2022; 383:109951. [DOI: 10.1016/j.ijfoodmicro.2022.109951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/14/2022] [Accepted: 09/22/2022] [Indexed: 11/05/2022]
|
153
|
Hoenigl M. When disaster strikes fungi take control. THE LANCET. RESPIRATORY MEDICINE 2022; 10:1104-1106. [PMID: 36029798 PMCID: PMC9401974 DOI: 10.1016/s2213-2600(22)00268-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Martin Hoenigl
- Division of Infectious Diseases, Excellence Center for Medical Mycology, Medical University of Graz, Graz 8036, Austria; BioTechMed Graz, Graz, Austria; Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
154
|
Tazerji SS, Nardini R, Safdar M, Shehata AA, Duarte PM. An Overview of Anthropogenic Actions as Drivers for Emerging and Re-Emerging Zoonotic Diseases. Pathogens 2022; 11:1376. [PMID: 36422627 PMCID: PMC9692567 DOI: 10.3390/pathogens11111376] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/05/2022] [Accepted: 11/15/2022] [Indexed: 08/05/2023] Open
Abstract
Population growth and industrialization have led to a race for greater food and supply productivity. As a result, the occupation and population of forest areas, contact with wildlife and their respective parasites and vectors, the trafficking and consumption of wildlife, the pollution of water sources, and the accumulation of waste occur more frequently. Concurrently, the agricultural and livestock production for human consumption has accelerated, often in a disorderly way, leading to the deforestation of areas that are essential for the planet's climatic and ecological balance. The effects of human actions on other ecosystems such as the marine ecosystem cause equally serious damage, such as the pollution of this habitat, and the reduction of the supply of fish and other animals, causing the coastal population to move to the continent. The sum of these factors leads to an increase in the demands such as housing, basic sanitation, and medical assistance, making these populations underserved and vulnerable to the effects of global warming and to the emergence of emerging and re-emerging diseases. In this article, we discuss the anthropic actions such as climate changes, urbanization, deforestation, the trafficking and eating of wild animals, as well as unsustainable agricultural intensification which are drivers for emerging and re-emerging of zoonotic pathogens such as viral (Ebola virus, hantaviruses, Hendravirus, Nipah virus, rabies, and severe acute respiratory syndrome coronavirus disease-2), bacterial (leptospirosis, Lyme borreliosis, and tuberculosis), parasitic (leishmaniasis) and fungal pathogens, which pose a substantial threat to the global community. Finally, we shed light on the urgent demand for the implementation of the One Health concept as a collaborative global approach to raise awareness and educate people about the science behind and the battle against zoonotic pathogens to mitigate the threat for both humans and animals.
Collapse
Affiliation(s)
- Sina Salajegheh Tazerji
- Department of Clinical Science, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran P.O. Box. 1477893855, Iran
- Young Researchers and Elites Club Science and Research Branch, Islamic Azad University; Tehran P.O. Box. 1477893855, Iran
| | - Roberto Nardini
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, 00178 Rome, Italy
| | - Muhammad Safdar
- Department of Breeding and Genetics, Cholistan University of Veterinary & Animal Sciences, Bahawalpur 63100, Pakistan
| | - Awad A. Shehata
- Avian and Rabbit Diseases Department, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
- Research and Development Section, PerNaturam GmbH, 56290 Gödenroth, Germany
- Prophy-Institute for Applied Prophylaxis, 59159 Bönen, Germany
| | - Phelipe Magalhães Duarte
- Postgraduate Program in Animal Bioscience, Federal Rural University of Pernambuco (UFRPE), Recife, Pernambuco 52171-900, Brazil
| |
Collapse
|
155
|
Chen KH, Marcón F, Duringer J, Blount A, Mackowiak C, Liao HL. Leaf Mycobiome and Mycotoxin Profile of Warm-Season Grasses Structured by Plant Species, Geography, and Apparent Black-Stroma Fungal Structure. Appl Environ Microbiol 2022; 88:e0094222. [PMID: 36226941 PMCID: PMC9642016 DOI: 10.1128/aem.00942-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/20/2022] [Indexed: 11/20/2022] Open
Abstract
Grasses harbor diverse fungi, including some that produce mycotoxins or other secondary metabolites. Recently, Florida cattle farmers reported cattle illness, while the cattle were grazing on warm-season grass pastures, that was not attributable to common causes, such as nutritional imbalances or nitrate toxicity. To understand correlations between grass mycobiome and mycotoxin production, we investigated the mycobiomes associated with five prominent, perennial forage and weed grasses [Paspalum notatum Flügge, Cynodon dactylon (L.) Pers., Paspalum nicorae Parodi, Sporobolus indicus (L.) R. Br., and Andropogon virginicus (L.)] collected from six Florida pastures actively grazed by livestock. Black fungal stromata of Myriogenospora and Balansia were observed on P. notatum and S. indicus leaves and were investigated. High-throughput amplicon sequencing was applied to delineate leaf mycobiomes. Mycotoxins from P. notatum leaves were inspected using liquid chromatography-mass spectrometry (LC-MS/MS). Grass species, cultivars, and geographic localities interactively affected fungal community assemblies of asymptomatic leaves. Among the grass species, the greatest fungal richness was detected in the weed S. indicus. The black fungal structures of P. notatum leaves were dominated by the genus Myriogenospora, while those of S. indicus were codominated by the genus Balansia and a hypermycoparasitic fungus of the genus Clonostachys. When comparing mycotoxins detected in P. notatum leaves with and without M. atramentosa, emodin, an anthraquinone, was the only compound which was significantly different (P < 0.05). Understanding the leaf mycobiome and the mycotoxins it may produce in warm-season grasses has important implications for how these associations lead to secondary metabolite production and their subsequent impact on animal health. IMPORTANCE The leaf mycobiome of forage grasses can have a major impact on their mycotoxin contents of forage and subsequently affect livestock health. Despite the importance of the cattle industry in warm-climate regions, such as Florida, studies have been primarily limited to temperate forage systems. Our study provides a holistic view of leaf fungi considering epibiotic, endophytic, and hypermycoparasitic associations with five perennial, warm-season forage and weed grasses. We highlight that plant identity and geographic location interactively affect leaf fungal community composition. Yeasts appeared to be an overlooked fungal group in healthy forage mycobiomes. Furthermore, we detected high emodin quantities in the leaves of a widely planted forage species (P. notatum) whenever epibiotic fungi occurred. Our study demonstrated the importance of identifying fungal communities, ecological roles, and secondary metabolites in perennial, warm-season grasses and their potential for interfering with livestock health.
Collapse
Affiliation(s)
- Ko-Hsuan Chen
- The University of Florida, North Florida Research and Education Center, Quincy, Florida, USA
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Florencia Marcón
- Department of Agronomy, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Jennifer Duringer
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, USA
| | - Ann Blount
- The University of Florida, North Florida Research and Education Center, Quincy, Florida, USA
| | - Cheryl Mackowiak
- The University of Florida, North Florida Research and Education Center, Quincy, Florida, USA
- Soil, Water and Ecosystem Sciences Department, University of Florida, Gainesville, Florida, USA
| | - Hui-Ling Liao
- The University of Florida, North Florida Research and Education Center, Quincy, Florida, USA
- Soil, Water and Ecosystem Sciences Department, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
156
|
Rasouli H, Nayeri FD, Khodarahmi R. May phytophenolics alleviate aflatoxins-induced health challenges? A holistic insight on current landscape and future prospects. Front Nutr 2022; 9:981984. [PMID: 36386916 PMCID: PMC9649842 DOI: 10.3389/fnut.2022.981984] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/26/2022] [Indexed: 12/24/2022] Open
Abstract
The future GCC-connected environmental risk factors expedited the progression of nCDs. Indeed, the emergence of AFs is becoming a global food security concern. AFs are lethal carcinogenic mycotoxins, causing damage to the liver, kidney, and gastrointestinal organs. Long-term exposure to AFs leads to liver cancer. Almost a variety of food commodities, crops, spices, herbaceous materials, nuts, and processed foods can be contaminated with AFs. In this regard, the primary sections of this review aim to cover influencing factors in the occurrence of AFs, the role of AFs in progression of nCDs, links between GCC/nCDs and exposure to AFs, frequency of AFs-based academic investigations, and world distribution of AFs. Next, the current trends in the application of PPs to alleviate AFs toxicity are discussed. Nearly, more than 20,000 published records indexed in scientific databases have been screened to find recent trends on AFs and application of PPs in AFs therapy. Accordingly, shifts in world climate, improper infrastructures for production/storage of food commodities, inconsistency of global polices on AFs permissible concentration in food/feed, and lack of the public awareness are accounting for a considerable proportion of AFs damages. AFs exhibited their toxic effects by triggering the progression of inflammation and oxidative/nitrosative stress, in turn, leading to the onset of nCDs. PPs could decrease AFs-associated oxidative stress, genotoxic, mutagenic, and carcinogenic effects by improving cellular antioxidant balance, regulation of signaling pathways, alleviating inflammatory responses, and modification of gene expression profile in a dose/time-reliant fashion. The administration of PPs alone displayed lower biological properties compared to co-treatment of these metabolites with AFs. This issue might highlight the therapeutic application of PPs than their preventative content. Flavonoids such as quercetin and oxidized tea phenolics, curcumin and resveratrol were the most studied anti-AFs PPs. Our literature review clearly disclosed that considering PPs in antioxidant therapies to alleviate complications of AFs requires improvement in their bioavailability, pharmacokinetics, tissue clearance, and off-target mode of action. Due to the emergencies in the elimination of AFs in food/feedstuffs, further large-scale clinical assessment of PPs to decrease the consequences of AFs is highly required.
Collapse
Affiliation(s)
- Hassan Rasouli
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Dehghan Nayeri
- Department of Biotechnology, Faculty of Agricultural and Natural Sciences, Imam Khomeini International University (IKIU), Qazvin, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
157
|
Tiedje JM, Bruns MA, Casadevall A, Criddle CS, Eloe-Fadrosh E, Karl DM, Nguyen NK, Zhou J. Microbes and Climate Change: a Research Prospectus for the Future. mBio 2022; 13:e0080022. [PMID: 35438534 PMCID: PMC9239095 DOI: 10.1128/mbio.00800-22] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2022] [Indexed: 11/20/2022] Open
Abstract
Climate change is the most serious challenge facing humanity. Microbes produce and consume three major greenhouse gases-carbon dioxide, methane, and nitrous oxide-and some microbes cause human, animal, and plant diseases that can be exacerbated by climate change. Hence, microbial research is needed to help ameliorate the warming trajectory and cascading effects resulting from heat, drought, and severe storms. We present a brief summary of what is known about microbial responses to climate change in three major ecosystems: terrestrial, ocean, and urban. We also offer suggestions for new research directions to reduce microbial greenhouse gases and mitigate the pathogenic impacts of microbes. These include performing more controlled studies on the climate impact on microbial processes, system interdependencies, and responses to human interventions, using microbes and their carbon and nitrogen transformations for useful stable products, improving microbial process data for climate models, and taking the One Health approach to study microbes and climate change.
Collapse
Affiliation(s)
- James M. Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, USA
| | - Mary Ann Bruns
- Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Craig S. Criddle
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California, USA
| | - Emiley Eloe-Fadrosh
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - David M. Karl
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai‘i at Mānoa, Honolulu, Hawaii, USA
| | - Nguyen K. Nguyen
- American Academy of Microbiology, American Society for Microbiology, Washington, DC, USA
| | - Jizhong Zhou
- Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
158
|
Carpouron JE, de Hoog S, Gentekaki E, Hyde KD. Emerging Animal-Associated Fungal Diseases. J Fungi (Basel) 2022; 8:611. [PMID: 35736094 PMCID: PMC9225262 DOI: 10.3390/jof8060611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/23/2022] Open
Abstract
The Global Action Fund for Fungal Infections (GAFFI) estimates that fungal diseases kill around 150 people each hour, and yet they are globally overlooked and neglected. Histoplasma and Talaromyces, which are associated with wildlife, cause systemic infections that are often lethal in patients with impaired cellular immunity. Dermatophytes that cause outbreaks in human hosts are often associated with domesticated animals. Changes in human behavior have been identified as a main cause of the emergence of animal-associated fungal diseases in humans, sometimes caused by the disturbance of natural habitats. An understanding of ecology and the transmission modes of causative agents is therefore essential. Here, we focus on fungal diseases contracted from wildlife and domesticated animals, their habitats, feces and carcasses. We discuss some basic fungal lifestyles and the risk of transmission to humans and illustrate these with examples from emerging and established diseases.
Collapse
Affiliation(s)
- Julia Eva Carpouron
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (J.E.C.); (E.G.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Sybren de Hoog
- Centre of Expertise in Mycology, Radboud University Medical Centre/Canisius Wilhelmina Hospital, 6525 GA Nijmegen, The Netherlands;
| | - Eleni Gentekaki
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (J.E.C.); (E.G.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Kevin David Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (J.E.C.); (E.G.)
- Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Haizhu District, Guangzhou 510225, China
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| |
Collapse
|
159
|
Rokas A. Evolution of the human pathogenic lifestyle in fungi. Nat Microbiol 2022; 7:607-619. [PMID: 35508719 PMCID: PMC9097544 DOI: 10.1038/s41564-022-01112-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 03/25/2022] [Indexed: 02/07/2023]
Abstract
Fungal pathogens cause more than a billion human infections every year, resulting in more than 1.6 million deaths annually. Understanding the natural history and evolutionary ecology of fungi is helping us understand how disease-relevant traits have repeatedly evolved. Different types and mechanisms of genetic variation have contributed to the evolution of fungal pathogenicity and specific genetic differences distinguish pathogens from non-pathogens. Insights into the traits, genetic elements, and genetic and ecological mechanisms that contribute to the evolution of fungal pathogenicity are crucial for developing strategies to both predict emergence of fungal pathogens and develop drugs to combat them.
Collapse
Affiliation(s)
- Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
160
|
Corrêa-Moreira D, de Lima Neto RG, da Costa GL, de Moraes Borba C, Oliveira MME. Purpureocillium lilacinum an emergent pathogen: antifungal susceptibility of environmental and clinical strains. Lett Appl Microbiol 2022; 75:45-50. [PMID: 35342967 DOI: 10.1111/lam.13707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 11/30/2022]
Abstract
Purpureocillium lilacinum is a filamentous and hyaline fungus cosmopolitan, saprophytic, largely used in the biological control of plant-parasitic nematodes and insects, also considered an emerging and opportunistic human pathogen. The standard treatment for hyalohyphomycosis caused by P. lilacinum is not yet defined, since this fungus is resistant to different antifungals, in vitro and in vivo. The aim of this study was to evaluate and compare in vitro antifungal activity against environmental and clinical P. lilacinum isolates and our results demonstrated that these isolates can be resistant to newer generation triazoles, such as voriconazole, and to caspofungin, a drug of the echinocandin class. In summary, we highlight the importance of knowing the different susceptibility profiles of P. lilacinum isolates, and besides that, the emergence of uncommon human and animal opportunistic fungi, such P. lilacinum, especially during COVID-19, highlight the need for antifungal susceptibility testing of isolates since empirical therapy with different treatment schedules failed in great number of patients.
Collapse
|
161
|
Global Warming Favors the Development of a Rich and Heterogeneous Mycobiota on Alien Vines in a Boreal City under Continental Climate. FORESTS 2022. [DOI: 10.3390/f13020323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The species richness and composition of macro- and microfungi on vine species in the parks of Ekaterinburg City (the Ural macroregion, Russia) located in the southern boreal vegetation subzone in a continental climate was studied. The average annual air temperature has increased by 3.1 °C since the beginning of the 20th century; therefore, the conditions for the growth of vines have improved. These conditions include warmer winters and, consequently, less frost damage to perennial plants. Due to the warmer climate, the area of vines grown in the city has increased five times over half a century, and the yield of grapes has grown 3.7 times. The alien East Asian vines are the most dominate vine species cultivated, while European, North American, and native plant species, including archaeophytes, together only represent a handful of the species cultivated. At the same time, 65% of the area of woody vines in the city is covered by a North American species, namely Parthenocissus quinquefolia. An increase in the number of vine species, their biomass, and covered areas contributes to an increase in the number of fungal species growing on these vine species. In total, 81 species of phytopathogenic and 87 species of saprobic macro- and microfungi have been recorded during the century-long history of mycological research in Ekaterinburg City. Mycobiota of vines in Ekaterinburg City is biogeographically heterogeneous and 1.1‒3.2 times richer in comparison with ones of the regions located on the northern limit of natural ranges of the vines. Recorded macrofungi (Basidiomycota) are predominantly present on native boreal species; however, some exotic tropical and subtropical East Asian fungal species (that have not ever been recorded on other substrates in the natural forests of the Urals and Siberia) are found here too. Recorded microfungi are highly specialized vine-associated species (mainly Ascomycota) that are widespread within the natural ranges of the vines and absent in the boreal zone of Eurasia: there are 63 vine-associated species (15 macro- and 48 microfungi) in Ekaterinburg that are not found in the Urals on other substrates. Many of these species have been recorded for the first time in this study, so we consider that they invaded Ekaterinburg City in the last 20 years, likely due to the warming climate observed over the last decades in the region. There are 19 and 32 species of phytopathogenic fungi collected in the families Cucurbitaceae and Vitaceae, respectively. During the past 40 years, the recorded fungal species richness has increased by 16% on Cucurbitaceae, as well as 37% on grapes. In this study, the distribution of vine-associated fungi, including phytopathogenic fungal species, from the nearest regions of ancient vine culture (Southern European Russia and the Caucasus, Central Asia, the south of Russian Far East) to the boreal regions of the Urals were investigated. The increase in the range of these phytopathogenic fungal species can lead to significant economic losses to the regional agricultural sector.
Collapse
|
162
|
Wanasinghe DN, Mortimer PE, Bezerra JDP. Editorial: Fungal Systematics and Biogeography. Front Microbiol 2022; 12:827725. [PMID: 35145501 PMCID: PMC8822041 DOI: 10.3389/fmicb.2021.827725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/31/2021] [Indexed: 01/27/2023] Open
Affiliation(s)
- Dhanushka N Wanasinghe
- Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Peter E Mortimer
- Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jadson D P Bezerra
- Setor de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública (IPTSP), Universidade Federal de Goiás (UFG), Goiânia, Brazil
| |
Collapse
|
163
|
Dopavogui L, Polizzi A, Fougerat A, Gourbeyre P, Terciolo C, Klement W, Pinton P, Laffite J, Cossalter AM, Bailly JD, Puel O, Lippi Y, Naylies C, Guillou H, Oswald IP, Loiseau N. Tissular Genomic Responses to Oral FB1 Exposure in Pigs. Toxins (Basel) 2022; 14:toxins14020083. [PMID: 35202111 PMCID: PMC8875869 DOI: 10.3390/toxins14020083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
Fumonisin B1 (FB1) is a widespread mycotoxin produced by fungal Fusarium species—mainly in maize, one of the plants most commonly used for food and feed. Pigs and horses are the animal species most susceptible to this mycotoxin. FB1 exposure can cause highly diverse clinical symptoms, including hepatotoxicity, immunotoxicity, and intestinal barrier function disturbance. Inhibition of ceramide synthetase is a well-understood ubiquitous molecular mechanism of FB1 toxicity, but other more tissue-specific effects remain to be elucidated. To investigate the effects of FB1 in different exposed tissues, we cross-analyzed the transcriptomes of fours organs: liver, jejunum, jejunal Peyer’s patches, and spleen. During a four-week study period, pigs were fed a control diet or a FB1-contaminated diet (10 mg/kg feed). In response to oral FB1 exposure, we observed common biological processes in the four organs, including predominant and recurrent processes (extracellular matrix organization, integrin activation, granulocyte chemotaxis, neutrophil migration, and lipid and sterol homeostasis), as well as more tissue-specific processes that appeared to be related to lipid outcomes (cell cycle regulation in jejunum, and gluconeogenesis in liver).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Nicolas Loiseau
- Correspondence: (I.P.O.); (N.L.); Tel.: +33-582-066-303 (N.L.)
| |
Collapse
|
164
|
Hauser N, Conlon KC, Desai A, Kobziar LN. Climate Change and Infections on the Move in North America. Infect Drug Resist 2022; 14:5711-5723. [PMID: 35002262 PMCID: PMC8722568 DOI: 10.2147/idr.s305077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 11/12/2021] [Indexed: 12/18/2022] Open
Abstract
Climate change is increasingly recognized for its impacts on human health, including how biotic and abiotic factors are driving shifts in infectious disease. Changes in ecological conditions and processes due to temperature and precipitation fluctuations and intensified disturbance regimes are affecting infectious pathogen transmission, habitat, hosts, and the characteristics of pathogens themselves. Understanding the relationships between climate change and infectious diseases can help clinicians broaden the scope of differential diagnoses when interviewing, diagnosing, and treating patients presenting with infections lacking obvious agents or transmission pathways. Here, we highlight key examples of how the mechanisms of climate change affect infectious diseases associated with water, fire, land, insects, and human transmission pathways in the hope of expanding the analytical framework for infectious disease diagnoses. Increased awareness of these relationships can help prepare both clinical physicians and epidemiologists for continued impacts of climate change on infectious disease in the future.
Collapse
Affiliation(s)
- Naomi Hauser
- Department of Medicine, Division of Infectious Disease, University of California Davis Health, Sacramento, CA, USA.,Climate Adaptation Research Center, University of California, Davis, CA, USA
| | - Kathryn C Conlon
- Climate Adaptation Research Center, University of California, Davis, CA, USA.,Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, CA, USA.,Department of Veterinary Medicine & Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Angel Desai
- Department of Medicine, Division of Infectious Disease, University of California Davis Health, Sacramento, CA, USA
| | - Leda N Kobziar
- Department of Natural Resources and Society, University of Idaho, Coeur d'Alene, ID, USA
| |
Collapse
|
165
|
Brancini GTP, Hallsworth JE, Corrochano LM, Braga GÚL. Photobiology of the keystone genus Metarhizium. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 226:112374. [PMID: 34954528 DOI: 10.1016/j.jphotobiol.2021.112374] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/12/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Metarhizium fungi are soil-inhabiting ascomycetes which are saprotrophs, symbionts of plants, pathogens of insects, and participate in other trophic/ecological interactions, thereby performing multiple essential ecosystem services. Metarhizium species are used to control insect pests of crop plants and insects that act as vectors of human and animal diseases. To fulfil their functions in the environment and as biocontrol agents, these fungi must endure cellular stresses imposed by the environment, one of the most potent of which is solar ultraviolet (UV) radiation. Here, we examine the cellular stress biology of Metarhizium species in context of their photobiology, showing how photobiology facilitates key aspects of their ecology as keystone microbes and as mycoinsectides. The biophysical basis of UV-induced damage to Metarhizium, and mechanistic basis of molecular and cellular responses to effect damage repair, are discussed and interpreted in relation to the solar radiation received on Earth. We analyse the interplay between UV and visible light and how the latter increases cellular tolerance to the former via expression of a photolyase gene. By integrating current knowledge, we propose the mechanism through which Metarhizium species use the visible fraction of (low-UV) early-morning light to mitigate potentially lethal damage from intense UV radiation later in the day. We also show how this mechanism could increase Metarhizium environmental persistence and improve its bioinsecticide performance. We discuss the finding that visible light modulates stress biology in the context of further work needed on Metarhizium ecology in natural and agricultural ecosystems, and as keystone microbes that provide essential services within Earth's biosphere.
Collapse
Affiliation(s)
- Guilherme T P Brancini
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-903, Brazil.
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, Northern Ireland, UK
| | - Luis M Corrochano
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Gilberto Ú L Braga
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-903, Brazil.
| |
Collapse
|
166
|
Savarirajan D, Ramesh VM, Muthaiyan A. In vitro antidermatophytic activity of bioactive compounds from selected medicinal plants. J Anal Sci Technol 2021; 12:53. [PMID: 34745684 PMCID: PMC8563824 DOI: 10.1186/s40543-021-00304-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
Fungal infections are among the most difficult diseases to manage in humans. Eukaryotic fungal pathogens share many similarities with their host cells, which impairs the development of antifungal compounds. Therefore, it is desirable to harness the pharmaceutical potential of medicinal plants for antifungal drug discovery. In this study, the antifungal activity of sixteen plant extracts was investigated against selected dermatophytic fungi. Of the sixteen plants, the cladode (leaf) of Asparagus racemosus, and seed extract of Cassia occidentalis showed antifungal activity against Microsporum gypseum, Microsporum nanum, Trichophyton mentagrophytes and Trichophyton terrestre. The plant antifungal compounds were located by direct bioassay against Cladosporium herbarum. IR and NMR spectrometry analyses of these compounds identified the presence of saponin (in A. racemosus) and hydroxy anthraquinone (in C. occidentalis) in these antifungal compounds. The antidermatophytic activity of plant anthraquinone and saponins with reports of little or no hemolytic activity, makes these compounds ideal for alternative antifungal therapy and warrants further in-depth investigation in vivo.
Collapse
Affiliation(s)
- Daisy Savarirajan
- Centre for Advanced Studies in Botany, University of Madras, Chennai, 600025 India.,College of Science, Engineering and Technology, Grand Canyon University, 3300 W. Camelback Rd, Phoenix, AZ 85017 USA
| | - V M Ramesh
- Centre for Advanced Studies in Botany, University of Madras, Chennai, 600025 India.,College of Science, Engineering and Technology, Grand Canyon University, 3300 W. Camelback Rd, Phoenix, AZ 85017 USA
| | | |
Collapse
|
167
|
De Vivo M, Wang WH, Chen KH, Huang JP. First detection of Colletotrichumfructicola (Ascomycota) on horsehair worms (Nematomorpha). Biodivers Data J 2021; 9:e72798. [PMID: 34690520 PMCID: PMC8484196 DOI: 10.3897/bdj.9.e72798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/06/2021] [Indexed: 11/12/2022] Open
Abstract
Fungal members of Colletotrichum (Ascomycota) were found to be associated with Chordodesformosanus, one of the three currently known horsehair worm (Nematomorpha) species in Taiwan. The fungi were identified as Colletotrichumfructicola, which is mostly known as a plant pathogen, through the use of the nuclear ribosomal internal transcribed spacer and partial large subunit (nrITS + nrLSU) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) DNA sequences. To our knowledge, this report represents both the first records for Colletotrichum associated with hairworms and for fungi on Nematomorpha. These findings expand the knowledge on the ecological relationships of both clades.
Collapse
Affiliation(s)
- Mattia De Vivo
- Biodiversity Research Center, Academia Sinica, Taipei, TaiwanBiodiversity Research Center, Academia SinicaTaipeiTaiwan
- Department of Life Science, National Taiwan Normal University, Taipei, TaiwanDepartment of Life Science, National Taiwan Normal UniversityTaipeiTaiwan
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, TaiwanBiodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal UniversityTaipeiTaiwan
| | - Wen-Hong Wang
- Biodiversity Research Center, Academia Sinica, Taipei, TaiwanBiodiversity Research Center, Academia SinicaTaipeiTaiwan
| | - Ko-Hsuan Chen
- Biodiversity Research Center, Academia Sinica, Taipei, TaiwanBiodiversity Research Center, Academia SinicaTaipeiTaiwan
| | - Jen-Pan Huang
- Biodiversity Research Center, Academia Sinica, Taipei, TaiwanBiodiversity Research Center, Academia SinicaTaipeiTaiwan
| |
Collapse
|
168
|
Developing Functional Genomics Platforms for Fungi. mSystems 2021; 6:e0073021. [PMID: 34427501 PMCID: PMC8407244 DOI: 10.1128/msystems.00730-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fungi are responsible for diseases that result in the deaths of over a million individuals each year and devastating crop infestations that threaten global food supplies. However, outside of a select few model organisms, the majority of fungal genes are uncharacterized. The roles of these genes in the biology of the organism, pathogenesis, and mediating interactions with the environment and other microbes are unknown. Historically, fungal gene characterization has primarily relied on classical genetic screens. However, advances in sequencing technology have enabled more rapid methods of gene functional characterization. Large-scale transcriptional profiling projects are one solution to generating hypotheses about fungal gene function. Together with other 'omics techniques and newer tools that enable massively parallel mutant screens, knowledge of fungal gene function will be substantially improved. Understanding the function of fungal genes will be instrumental in increasing global food security, protecting ecosystems, and improving health outcomes.
Collapse
|
169
|
Silva VKA, Bhattacharya S, Oliveira NK, Savitt AG, Zamith-Miranda D, Nosanchuk JD, Fries BC. Replicative Aging Remodels the Cell Wall and Is Associated with Increased Intracellular Trafficking in Human Pathogenic Yeasts. mBio 2021; 13:e0019022. [PMID: 35164553 PMCID: PMC8844920 DOI: 10.1128/mbio.00190-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 01/08/2023] Open
Abstract
Replicative aging is an underexplored field of research in medical mycology. Cryptococcus neoformans (Cn) and Candida glabrata (Cg) are dreaded fungal pathogens that cause fatal invasive infections. The fungal cell wall is essential for yeast viability and pathogenesis. In this study, we provide data characterizing age-associated modifications to the cell wall of Cn and Cg. Here, we report that old yeast cells upregulate genes of cell wall biosynthesis, leading to cell wall reorganization and increased levels of all major components, including glucan, chitin, and its derivatives, as well as mannan. This results in a significant thickening of the cell wall in aged cells. Old-generation yeast cells exhibited drastic ultrastructural changes, including the presence of abundant vesicle-like particles in the cytoplasm, and enlarged vacuoles with altered pH homeostasis. Our findings suggest that the cell wall modifications could be enabled by augmented intracellular trafficking. This work furthers our understanding of the cell phenotype that emerges during aging. It highlights differences in these two fungal pathogens and elucidates mechanisms that explain the enhanced resistance of old cells to antifungals and phagocytic attacks. IMPORTANCE Cryptococcus neoformans and Candida glabrata are two opportunistic human fungal pathogens that cause life-threatening diseases. During infection, both microorganisms have the ability to persist for long periods, and treatment failure can occur even if standard testing identifies the yeasts to be sensitive to antifungals. Replicative life span is a trait that is measured by the number of divisions a cell undergoes before death. Aging in fungi is associated with enhanced tolerance to antifungals and resistance to phagocytosis, and characterization of old cells may help identify novel antifungal targets. The cell wall remains an attractive target for new therapies because it is essential for fungi and is not present in humans. This study shows that the organization of the fungal cell wall changes remarkably during aging and becomes thicker and is associated with increased intracellular trafficking as well as the alteration of vacuole morphology and pH homeostasis.
Collapse
Affiliation(s)
- Vanessa K. A. Silva
- Division of Infectious Diseases, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Somanon Bhattacharya
- Division of Infectious Diseases, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Natalia Kronbauer Oliveira
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Anne G. Savitt
- Division of Infectious Diseases, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Daniel Zamith-Miranda
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Joshua D. Nosanchuk
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Bettina C. Fries
- Division of Infectious Diseases, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
- Veterans Administration Medical Center, Northport, New York, USA
| |
Collapse
|