151
|
Stoccoro A, Coppedè F. Role of epigenetics in Alzheimer's disease pathogenesis. Neurodegener Dis Manag 2018; 8:181-193. [PMID: 29888987 DOI: 10.2217/nmt-2018-0004] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Advances in molecular biology technologies have allowed uncovering the role of epigenetic regulation in several complex diseases, such as cancer and neurodegenerative disorders. Although the role of epigenetic mechanisms in Alzheimer's disease is still little understood, recent findings clearly show that such mechanisms are dysregulated during disease progression, already in its early stages. However, it is not clear if the observed epigenetic changes represent a cause or a consequence of the disease. Promising results are emerging from studies performed in peripheral blood DNA that could provide early biomarkers of the pathology. Moreover, given the dynamic nature of the epigenetic marks, intense research is carried out to investigate the therapeutic efficacy of compounds exerting epigenetic properties.
Collapse
Affiliation(s)
- Andrea Stoccoro
- Department of Translational Research & New Technologies in Medicine & Surgery, Section of Medical Genetics, University of Pisa, Via Roma 55, 56126 Pisa, Italy.,Department of Medical Biotechnologies, Doctoral School in Genetics, Oncology & Clinical Medicine, University of Siena, Siena, Italy
| | - Fabio Coppedè
- Department of Translational Research & New Technologies in Medicine & Surgery, Section of Medical Genetics, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| |
Collapse
|
152
|
Wang ZT, Zhong XL, Tan MS, Wang HF, Tan CC, Zhang W, Zheng ZJ, Kong LL, Tan L, Sun L. Association of lectin-like oxidized low density lipoprotein receptor 1 ( OLR1) polymorphisms with late-onset Alzheimer disease in Han Chinese. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:172. [PMID: 29951494 DOI: 10.21037/atm.2018.04.31] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background Lectin-like oxidized low density lipoprotein receptor 1 (OLR1) locates within the area of chromosome 12p, which has been identified as the AD-susceptible region, and plays a role in lipid metabolism. Therefore, it has been suggested to be a good candidate gene for Alzheimer's disease (AD). Several SNPs within OLR1 have been reported to have association with AD among Caucasians. Methods We selected and genotyped three SNPs (rs1050283, rs1050286, rs17808009) in OLR1 to investigate its possible relationship with the onset of late-onset Alzheimer disease(LOAD) in 984 LOAD cases and 1,354 healthy controls among northern Han Chinese. Results No significant association was found between the OLR1 (rs1050283, rs1050286, rs17808009) polymorphisms and LOAD, even after adjustment for gender and age and stratification for apolipoprotein E (APOE) status. Conclusions Our study showed that the SNPs (rs1050283, rs1050286, rs17808009) located in the 3'UTR of OLR1 may not involve in the mechanism of LOAD in Han Chinese population.
Collapse
Affiliation(s)
- Zuo-Teng Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Xiao-Ling Zhong
- Department of Neurology, Qingdao Central Hospital, Qingdao University, Qingdao 266042, China
| | - Meng-Shan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Hui-Fu Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Wei Zhang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Zhan-Jie Zheng
- Department of Geriatric, Qingdao Mental Health Center, Qingdao 266034, China
| | - Ling-Li Kong
- Department of Geriatric, Qingdao Mental Health Center, Qingdao 266034, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Li Sun
- Department of Neurology, Qingdao Central Hospital, Qingdao University, Qingdao 266042, China
| |
Collapse
|
153
|
Bai B. U1 snRNP Alteration and Neuronal Cell Cycle Reentry in Alzheimer Disease. Front Aging Neurosci 2018; 10:75. [PMID: 29628886 PMCID: PMC5876301 DOI: 10.3389/fnagi.2018.00075 10.12075/j.issn.1004-4051.2018.08.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/06/2018] [Indexed: 06/29/2024] Open
Abstract
The aberrancy of U1 small nuclear ribonucleoprotein (snRNP) complex and RNA splicing has been demonstrated in Alzheimer's disease (AD). Importantly, the U1 proteopathy is AD-specific, widespread and early-occurring, thus providing a very unique clue to the AD pathogenesis. The prominent feature of U1 histopathology is its nuclear depletion and redistribution in the neuronal cytoplasm. According to the preliminary data, the initial U1 cytoplasmic distribution pattern is similar to the subcellular translocation of the spliceosome in cells undergoing mitosis. This implies that the U1 mislocalization might reflect the neuronal cell cycle-reentry (CCR) which has been extensively evidenced in AD brains. The CCR phenomenon explains the major molecular and cellular events in AD brains, such as Tau and amyloid precursor protein (APP) phosphorylation, and the possible neuronal death through mitotic catastrophe (MC). Furthermore, the CCR might be mechanistically linked to inflammation, a critical factor in the AD etiology according to the genetic evidence. Therefore, the discovery of U1 aberrancy might strengthen the involvement of CCR in the AD neuronal degeneration.
Collapse
Affiliation(s)
- Bing Bai
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| |
Collapse
|
154
|
Bai B. U1 snRNP Alteration and Neuronal Cell Cycle Reentry in Alzheimer Disease. Front Aging Neurosci 2018; 10:75. [PMID: 29628886 PMCID: PMC5876301 DOI: 10.3389/fnagi.2018.00075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/06/2018] [Indexed: 12/12/2022] Open
Abstract
The aberrancy of U1 small nuclear ribonucleoprotein (snRNP) complex and RNA splicing has been demonstrated in Alzheimer’s disease (AD). Importantly, the U1 proteopathy is AD-specific, widespread and early-occurring, thus providing a very unique clue to the AD pathogenesis. The prominent feature of U1 histopathology is its nuclear depletion and redistribution in the neuronal cytoplasm. According to the preliminary data, the initial U1 cytoplasmic distribution pattern is similar to the subcellular translocation of the spliceosome in cells undergoing mitosis. This implies that the U1 mislocalization might reflect the neuronal cell cycle-reentry (CCR) which has been extensively evidenced in AD brains. The CCR phenomenon explains the major molecular and cellular events in AD brains, such as Tau and amyloid precursor protein (APP) phosphorylation, and the possible neuronal death through mitotic catastrophe (MC). Furthermore, the CCR might be mechanistically linked to inflammation, a critical factor in the AD etiology according to the genetic evidence. Therefore, the discovery of U1 aberrancy might strengthen the involvement of CCR in the AD neuronal degeneration.
Collapse
Affiliation(s)
- Bing Bai
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| |
Collapse
|
155
|
Zang G, Fang L, Chen L, Wang C. Ameliorative effect of nicergoline on cognitive function through the PI3K/AKT signaling pathway in mouse models of Alzheimer's disease. Mol Med Rep 2018; 17:7293-7300. [PMID: 29568940 DOI: 10.3892/mmr.2018.8786] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 09/26/2017] [Indexed: 11/05/2022] Open
Abstract
Alzheimer's disease is one of the most common age‑associated diseases that frequently leads to memory disorders, cognitive decline and dementia. Evidence suggests that nicergoline serves an important role in the apoptosis of hippocampal cells, memory recovery, cognitive function and neuronal survival. However, the signaling pathway affected by nicergoline treatment remains to be elucidated. The purpose of the present study was to investigate the role of nicergoline in the cognitive competence of a mouse model of Alzheimer's disease. The apoptosis rates of hippocampal cells were studied in mice with Alzheimer's disease treated with nicergoline compared with the negative control. Apoptosis‑associated gene expression levels in hippocampal cells, and hippocampus area, were analyzed in the experimental mice. Visual attention and inhibitory control were assessed and neural counting was performed in brain regions of interest. The phosphatidylinositol 3‑kinase (PI3K)/RAC‑α serine/threonine‑protein kinase (AKT) signaling pathway was additionally analyzed in hippocampal cells following treatment with nicergoline. The results of the present study demonstrated that nicergoline ameliorated apoptosis in hippocampal cells and hippocampus tissue in 3xTg‑AD mice with Alzheimer's disease. The data indicated that apoptosis‑associated genes, including caspase‑3, BCL2 associated X, BH3 interacting domain death agonist and caspase‑9, were downregulated in hippocampal cells isolated from nicergoline-treated experimental mice. In addition, the expression levels of inflammatory factors, in addition to oxidative stress, were decreased in hippocampal cells treated with nicergoline. Additionally, amyloid precursor protein accumulation was cleared in the hippocampal area in nicergoline‑treated mice. Nicergoline inhibited neuronal loss and prevented cognitive impairment through the restoration of learning/memory ability. It was additionally demonstrated in the present study that nicergoline improved motor attention impairment and cognitive competence in hippocampal cells by acting on the PI3K/AKT signaling pathway. Therefore, memory recovery, cognitive function and neuronal survival were repaired by nicergoline via inhibition of the PI3K/AKT signaling pathway, suggesting that nicergoline may be an efficient drug for the clinical treatment of patients with Alzheimer's disease.
Collapse
Affiliation(s)
- Guoyao Zang
- Department of General Practice, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Lizheng Fang
- Department of General Practice, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Liying Chen
- Department of General Practice, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Chenyao Wang
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, P.R. China
| |
Collapse
|
156
|
Serum Exosomal miR-223 Serves as a Potential Diagnostic and Prognostic Biomarker for Dementia. Neuroscience 2018; 379:167-176. [PMID: 29559383 DOI: 10.1016/j.neuroscience.2018.03.016] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/03/2018] [Accepted: 03/12/2018] [Indexed: 01/23/2023]
Abstract
The aims of this study were to examine the levels of serum and exosomal miR-137, miR-155 and miR-223, three neuroinflammation-related miRNAs, in dementia patients and to explore the value of these miRNAs for the diagnosis and prognostic evaluation of dementia. Thirty-two patients with dementia were enrolled, and sixteen volunteers without dementia served as controls. Serum exosomes were isolated by precipitation with ExoQuick and characterized by western blotting, nanoparticle-tracking analysis and immunofluorescence microscopy. The levels of both total serum miRNAs and serum exosomal miRNAs were determined by real-time quantitative PCR. Total serum miRNAs and serum exosomal miRNAs were both detected to be down-regulated. The median level of serum exosomal miR-223 was significantly decreased in dementia patients (p < 0.01). The level of miR-223 was significantly correlated with Mini-Mental State Examination (MMSE) scores, Clinical Dementia Rating (CDR) scores, magnetic resonance spectroscopy (MRS) spectral ratios and serum concentrations of IL-1β, IL-6, TNF-α, and CRP. The diagnostic utility of exosomal miR-233 was evaluated by the area under the receiver operating characteristic (ROC) curve, and the area under the curve (AUC) was 0.875. This study suggests that serum exosomal miR-223 is a promising biomarker for diagnosing dementia and evaluating the progression of disease.
Collapse
|
157
|
Omais S, Jaafar C, Ghanem N. "Till Death Do Us Part": A Potential Irreversible Link Between Aberrant Cell Cycle Control and Neurodegeneration in the Adult Olfactory Bulb. Front Neurosci 2018; 12:144. [PMID: 29593485 PMCID: PMC5854681 DOI: 10.3389/fnins.2018.00144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/22/2018] [Indexed: 12/13/2022] Open
Abstract
Adult neurogenesis (AN) is an ongoing developmental process that generates newborn neurons in the olfactory bulb (OB) and the hippocampus (Hi) throughout life and significantly contributes to brain plasticity. Adult neural stem and progenitor cells (aNSPCs) are relatively limited in number and fate and are spatially restricted to the subventricular zone (SVZ) and the subgranular zone (SGZ). During AN, the distinct roles played by cell cycle proteins extend beyond cell cycle control and constitute key regulatory mechanisms involved in neuronal maturation and survival. Importantly, aberrant cell cycle re-entry (CCE) in post-mitotic neurons has been strongly linked to the abnormal pathophysiology in rodent models of neurodegenerative diseases with potential implications on the etiology and progression of such diseases in humans. Here, we present an overview of AN in the SVZ-OB and olfactory epithelium (OE) in mice and humans followed by a comprehensive update of the distinct roles played by cell cycle proteins including major tumors suppressor genes in various steps during neurogenesis. We also discuss accumulating evidence underlining a strong link between abnormal cell cycle control, olfactory dysfunction and neurodegeneration in the adult and aging brain. We emphasize that: (1) CCE in post-mitotic neurons due to loss of cell cycle suppression and/or age-related insults as well as DNA damage can anticipate the development of neurodegenerative lesions and protein aggregates, (2) the age-related decline in SVZ and OE neurogenesis is associated with compensatory pro-survival mechanisms in the aging OB which are interestingly similar to those detected in Alzheimer's disease and Parkinson's disease in humans, and (3) the OB represents a well suitable model to study the early manifestation of age-related defects that may eventually progress into the formation of neurodegenerative lesions and, possibly, spread to the rest of the brain. Such findings may provide a novel approach to the modeling of neurodegenerative diseases in humans from early detection to progression and treatment as well.
Collapse
Affiliation(s)
- Saad Omais
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Carine Jaafar
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Noël Ghanem
- Department of Biology, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
158
|
Upadhyay A, Mishra A. Amyloids of multiple species: are they helpful in survival? Biol Rev Camb Philos Soc 2018; 93:1363-1386. [DOI: 10.1111/brv.12399] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 01/13/2018] [Accepted: 01/18/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Arun Upadhyay
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan 342011 India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan 342011 India
| |
Collapse
|
159
|
Mauney SA, Woo TUW, Sonntag KC. Cell Type-Specific Laser Capture Microdissection for Gene Expression Profiling in the Human Brain. Methods Mol Biol 2018; 1723:203-221. [PMID: 29344862 DOI: 10.1007/978-1-4939-7558-7_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Cell type-specific laser microdissection technologies in combination with molecular techniques to determine gene expression profiles have become powerful tools to gain insight into the neurobiological basis of neural circuit disturbances in various neurologic or psychiatric diseases. To identify specific cell populations in human postmortem brain tissue, one can use the inherent properties of the cells, such as pigmentation and morphology or their structural composition through immunohistochemistry (IHC). Here, we describe the isolation of homogeneous neurons and oligodendrocytes and the extraction of high-quality RNA from these cells in human postmortem brain using a combination of rapid IHC, Nissl staining, or simple morphology with Laser Capture Microdissection (LCM), or Laser Microdissection (LMD).
Collapse
Affiliation(s)
- Sarah A Mauney
- Laboratory of Cellular Neuropathology, McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Basic Neuroscience Division, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Tsung-Ung W Woo
- Laboratory of Cellular Neuropathology, McLean Hospital, Harvard Medical School, Belmont, MA, USA.
- Basic Neuroscience Division, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA.
| | - Kai C Sonntag
- Basic Neuroscience Division, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA.
| |
Collapse
|
160
|
Hu X, Song C, Fang M, Li C. Simvastatin inhibits the apoptosis of hippocampal cells in a mouse model of Alzheimer's disease. Exp Ther Med 2017; 15:1795-1802. [PMID: 29434767 PMCID: PMC5776644 DOI: 10.3892/etm.2017.5620] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 03/24/2017] [Indexed: 01/28/2023] Open
Abstract
Alzheimer's disease is associated with cognitive impairments that affect memory and executive functions. Simvastatin is a cholesterol-lowering statin drug that is used to control levels of cholesterol in the blood, particularly in cases of hypercholesterolemia, and may be used in the treatment of aneurysmal subarachnoid hemorrhage. Previous results have indicated that the apoptosis of hippocampal cells may serve a critical role in the progression of Alzheimer's disease. In the present study, it was determined whether Simvastatin inhibited the apoptosis of hippocampal cells in vitro and in vivo. The therapeutic effects of Simvastatin were evaluated in 24-month-old triple-transgenic Alzheimer's disease (3×Tg-AD) mice, and the efficacy of Simvastatin in attenuating memory and cognitive impairment was investigated. Levels of apoptosis-related gene expression in the hippocampus and hippocampal cells of experimental mice were also detected. In addition, neuron excitability was assessed in the functionally relevant brain regions in the hippocampus. The data indicated that Simvastatin significantly suppressed the apoptosis of hippocampal cells in 3×Tg-AD model mice compared with controls (P<0.01). Furthermore, treatment with Simvastatin improved the dementia status of 3×Tg-AD mice, as determined by a learning task in which mice exhibited significantly reduced attention impairment, impulsivity and compulsivity (P<0.01). In addition, results demonstrated that Simvastatin significantly inhibited hippocampal damage and significantly improved neuronal loss in hippocampal structures classically associated with attentional performance when compared with untreated mice (P<0.01). Thus, Simvastatin prevented cognitive impairment by decreasing hippocampal cell apoptosis and improving learning-memory ability. Simvastatin treatment also increased the expression of anti-apoptotic genes and decreased the expression pro-apoptotic genes (P<0.01), which may have been associated with improved motor attention and cognitive competence in 3×Tg-AD mice. Collectively, these preclinical data indicated that Simvastatin was efficient in attenuating memory lapse and hippocampal cell apoptosis in a 3×Tg-AD mouse model. Thus, Simvastatin may be useful in improving the clinical outcome of patients with Alzheimer's disease.
Collapse
Affiliation(s)
- Xiaoqin Hu
- Department of Neurology, Remnin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Chengwei Song
- Department of Neurology, The First Hospital of Yichang, The Gorges University College of Medicine, Yichang, Hubei 443000, P.R. China
| | - Ming Fang
- Department of Neurology, The First Hospital of Yichang, The Gorges University College of Medicine, Yichang, Hubei 443000, P.R. China
| | - Chengyan Li
- Department of Neurology, Remnin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
161
|
An F, Gong G, Wang Y, Bian M, Yu L, Wei C. MiR-124 acts as a target for Alzheimer's disease by regulating BACE1. Oncotarget 2017; 8:114065-114071. [PMID: 29371969 PMCID: PMC5768386 DOI: 10.18632/oncotarget.23119] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 11/03/2017] [Indexed: 12/23/2022] Open
Abstract
Although large numbers of microRNAs (miRNAs) expressed in Alzheimer disease (AD) have been detected, their functions and mechanisms of regulation remain to be fully clarified. Beta-site Amyloid precursor protein Cleaving Enzyme 1 (BACE1) has been one of the prime therapeutic targets for AD. Here, we identified that miR-124 levels are gradually decreased in AD. In addition, we demonstrated that miR-124 suppresses BACE1 expression by directly targeting the 3′UTR of Bace1 mRNA in vitro. Inhibition of miR-124 significantly increased BACE1 levels in neuronal cells. In contrast, miR-124 overexpression significantly suppressed BACE1 expression in cells. And finally we determined that downregulation of miR-124 alleviated Aβ-induced viability inhibition and decreased apoptosis in SH-SY5Y cells. Our results demonstrated that miR-124 is a potent negative regulator of BACE1 in the cellular AD phenotype and might be involved in the pathogenesis of AD.
Collapse
Affiliation(s)
- Fengmao An
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for The Nationalities, Tongliao, Inner Mongolia, P.R. China.,Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, P.R. China
| | - Guohua Gong
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for The Nationalities, Tongliao, Inner Mongolia, P.R. China.,Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, P.R. China.,First Clinical Medical of Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia, P.R. China
| | - Yu Wang
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for The Nationalities, Tongliao, Inner Mongolia, P.R. China.,Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, P.R. China
| | - Ming Bian
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for The Nationalities, Tongliao, Inner Mongolia, P.R. China.,Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, P.R. China
| | - Lijun Yu
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for The Nationalities, Tongliao, Inner Mongolia, P.R. China.,Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, P.R. China
| | - Chengxi Wei
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for The Nationalities, Tongliao, Inner Mongolia, P.R. China.,Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, P.R. China
| |
Collapse
|
162
|
Zhou F, Zhang C, Guan Y, Chen Y, Lu Q, Jie L, Gao H, Du H, Zhang H, Liu Y, Wang X. Screening the expression characteristics of several miRNAs in G93A-SOD1
transgenic mouse: altered expression of miRNA-124 is associated with astrocyte differentiation by targeting Sox2 and Sox9. J Neurochem 2017; 145:51-67. [DOI: 10.1111/jnc.14229] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/18/2017] [Accepted: 09/23/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Fenghua Zhou
- Department of Pathology; Weifang Medical University; Weifang Shandong China
| | - Caixia Zhang
- Department of Histology and Embryology; Weifang Medical University; Weifang Shandong China
| | - Yingjun Guan
- Department of Histology and Embryology; Weifang Medical University; Weifang Shandong China
| | - Yanchun Chen
- Department of Histology and Embryology; Weifang Medical University; Weifang Shandong China
- Department of Neurosurgery; Brigham and Women's Hospital; Harvard Medical School; Boston Massachusetts USA
| | - Qiang Lu
- Department of Pathology; Weifang Medical University; Weifang Shandong China
| | - Linlin Jie
- Department of Histology and Embryology; Weifang Medical University; Weifang Shandong China
| | - Hailing Gao
- Department of Histology and Embryology; Weifang Medical University; Weifang Shandong China
| | - Hongmei Du
- Department of Histology and Embryology; Weifang Medical University; Weifang Shandong China
| | - Haoyun Zhang
- Department of Histology and Embryology; Weifang Medical University; Weifang Shandong China
| | - Yongxin Liu
- Department of Histology and Embryology; Weifang Medical University; Weifang Shandong China
| | - Xin Wang
- Department of Histology and Embryology; Weifang Medical University; Weifang Shandong China
- Department of Neurosurgery; Brigham and Women's Hospital; Harvard Medical School; Boston Massachusetts USA
| |
Collapse
|
163
|
MicroRNA-125b promotes neurons cell apoptosis and Tau phosphorylation in Alzheimer’s disease. Neurosci Lett 2017; 661:57-62. [DOI: 10.1016/j.neulet.2017.09.043] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 09/18/2017] [Accepted: 09/22/2017] [Indexed: 12/21/2022]
|
164
|
Arshad AR, Sulaiman SA, Saperi AA, Jamal R, Mohamed Ibrahim N, Abdul Murad NA. MicroRNAs and Target Genes As Biomarkers for the Diagnosis of Early Onset of Parkinson Disease. Front Mol Neurosci 2017; 10:352. [PMID: 29163029 PMCID: PMC5671573 DOI: 10.3389/fnmol.2017.00352] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/13/2017] [Indexed: 12/21/2022] Open
Abstract
Among the neurodegenerative disorders, Parkinson's disease (PD) ranks as the second most common disorder with a higher prevalence in individuals aged over 60 years old. Younger individuals may also be affected with PD which is known as early onset PD (EOPD). Despite similarities between the characteristics of EOPD and late onset PD (LODP), EOPD patients experience much longer disease manifestations and poorer quality of life. Although some individuals are more prone to have EOPD due to certain genetic alterations, the molecular mechanisms that differentiate between EOPD and LOPD remains unclear. Recent findings in PD patients revealed that there were differences in the genetic profiles of PD patients compared to healthy controls, as well as between EOPD and LOPD patients. There were variants identified that correlated with the decline of cognitive and motor symptoms as well as non-motor symptoms in PD. There were also specific microRNAs that correlated with PD progression, and since microRNAs have been shown to be involved in the maintenance of neuronal development, mitochondrial dysfunction and oxidative stress, there is a strong possibility that these microRNAs can be potentially used to differentiate between subsets of PD patients. PD is mainly diagnosed at the late stage, when almost majority of the dopaminergic neurons are lost. Therefore, identification of molecular biomarkers for early detection of PD is important. Given that miRNAs are crucial in controlling the gene expression, these regulatory microRNAs and their target genes could be used as biomarkers for early diagnosis of PD. In this article, we discussed the genes involved and their regulatory miRNAs, regarding their roles in PD progression, based on the findings of significantly altered microRNAs in EOPD studies. We also discussed the potential of these miRNAs as molecular biomarkers for early diagnosis.
Collapse
Affiliation(s)
- Ahmad R. Arshad
- UKM Medical Centre, UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Malaysia
| | - Siti A. Sulaiman
- UKM Medical Centre, UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Malaysia
| | - Amalia A. Saperi
- UKM Medical Centre, UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Malaysia
| | - Rahman Jamal
- UKM Medical Centre, UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Malaysia
| | - Norlinah Mohamed Ibrahim
- Department of Medicine, Faculty of Medicine, UKM Medical Centre, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Malaysia
| | - Nor Azian Abdul Murad
- UKM Medical Centre, UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Malaysia
| |
Collapse
|
165
|
Rivera-Barahona A, Fulgencio-Covián A, Pérez-Cerdá C, Ramos R, Barry MA, Ugarte M, Pérez B, Richard E, Desviat LR. Dysregulated miRNAs and their pathogenic implications for the neurometabolic disease propionic acidemia. Sci Rep 2017; 7:5727. [PMID: 28720782 PMCID: PMC5516006 DOI: 10.1038/s41598-017-06420-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/13/2017] [Indexed: 12/19/2022] Open
Abstract
miRNome expression profiling was performed in a mouse model of propionic acidemia (PA) and in patients’ plasma samples to investigate the role of miRNAs in the pathophysiology of the disease and to identify novel biomarkers and therapeutic targets. PA is a potentially lethal neurometabolic disease with patients developing neurological deficits and cardiomyopathy in the long-term, among other complications. In the PA mouse liver we identified 14 significantly dysregulated miRNAs. Three selected miRNAs, miR-34a-5p, miR-338-3p and miR-350, were found upregulated in brain and heart tissues. Predicted targets involved in apoptosis, stress-signaling and mitochondrial function, were inversely found down-regulated. Functional analysis with miRNA mimics in cellular models confirmed these findings. miRNA profiling in plasma samples from neonatal PA patients and age-matched control individuals identified a set of differentially expressed miRNAs, several were coincident with those identified in the PA mouse, among them miR-34a-5p and miR-338-3p. These two miRNAs were also found dysregulated in childhood and adult PA patients’ cohorts. Taken together, the results reveal miRNA signatures in PA useful to identify potential biomarkers, to refine the understanding of the molecular mechanisms of this rare disease and, eventually, to improve the management of patients.
Collapse
Affiliation(s)
- Ana Rivera-Barahona
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma, Madrid, Spain.,Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), ISCIII, Madrid, Spain
| | - Alejandro Fulgencio-Covián
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma, Madrid, Spain.,Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), ISCIII, Madrid, Spain
| | - Celia Pérez-Cerdá
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), ISCIII, Madrid, Spain
| | - Ricardo Ramos
- Genomic Facility, Parque Científico de Madrid, Madrid, Spain
| | | | - Magdalena Ugarte
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), ISCIII, Madrid, Spain
| | - Belén Pérez
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma, Madrid, Spain.,Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), ISCIII, Madrid, Spain
| | - Eva Richard
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma, Madrid, Spain.,Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), ISCIII, Madrid, Spain
| | - Lourdes R Desviat
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma, Madrid, Spain. .,Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Madrid, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain. .,Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), ISCIII, Madrid, Spain.
| |
Collapse
|
166
|
Rivera-Barahona A, Pérez B, Richard E, Desviat LR. Role of miRNAs in human disease and inborn errors of metabolism. J Inherit Metab Dis 2017; 40:471-480. [PMID: 28229250 DOI: 10.1007/s10545-017-0018-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/11/2017] [Accepted: 01/16/2017] [Indexed: 01/03/2023]
Abstract
MicroRNAs (miRNAs) are short, noncoding RNAs that regulate gene expression posttranscriptionally by base pairing with target messenger RNAs (mRNAs). They are estimated to target ∼60% of all human protein-coding genes and are involved in regulating key physiological processes and intracellular signaling pathways. They also exhibit tissue specificity, and their dysregulation is linked to the progression of pathology. Identifying disease associated miRNAs and their respective targets provides novel molecular insight into disease, enabling the design of new therapeutic strategies. Notably, miRNAs are present in stable form in biological fluids, making them amenable to routine clinical processing and analysis, which has paved the way for their use as novel biomarkers of disease and response to therapy. One of the most relevant findings in miRNA research concerns the therapeutic modulation of specific miRNA levels in vitro and in vivo, which has led to miRNA-based drugs entering clinical trials. Most studies relative to miRNA profiling, association with pathology, and therapeutical modulation have been conducted for cancer, cardiovascular and neurodegenerative diseases. However, for different monogenic diseases, including inborn errors of metabolism (IEM), research contributing to alterations to physiopathology caused by miRNAs is steadily increasing. Herein, we review the biogenesis pathway and mode of miRNA action, their known roles in disease states, and use of circulating miRNAs as biomarkers, describing the available research tools for basic and clinical studies. In addition, we summarize recent literature on miRNA studies in inherited metabolic diseases.
Collapse
Affiliation(s)
- Ana Rivera-Barahona
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), CIBERER, IdiPaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Belén Pérez
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), CIBERER, IdiPaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Eva Richard
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), CIBERER, IdiPaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Lourdes R Desviat
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), CIBERER, IdiPaz, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
167
|
Ma X, Shang F, Zhang Q, Lin Q, Han S, Shan Y, Du J, Ling F, Zhang H, Xu G. MicroRNA-322 attenuates aluminum maltolate-induced apoptosis in the human SH-SY5Y neuroblastoma cell line. Mol Med Rep 2017; 16:2199-2204. [PMID: 28656195 DOI: 10.3892/mmr.2017.6809] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 04/06/2017] [Indexed: 11/06/2022] Open
Abstract
Aluminum-maltolate (Al‑Malt) is a potent apoptosis inductor, which has been widely reported as an etiologic factor in Alzheimer's disease (AD). MicroRNA-322 (miR‑322) is a vital regulator in various biological processes. The aim of the current study was to identify the role and possible underlying mechanism of miR‑322 in Al‑Malt‑induced apoptosis. Eight concentrations of Al‑Malt were prepared and used for treating the human neuroblastoma cell line, SH‑SY5Y. Subsequent to treatment with Al‑Malt for 3 days, cell viability, apoptosis and the expression levels of apoptosis‑associated factors were measured. In addition, the mRNA expression level of miR‑322 was monitored. Furthermore, cells were transfected with an miR‑322 mimic and/or treated with Al‑Malt, and cell viability, apoptosis and the expression levels of apoptosis‑associated factors were measured again. Al‑Malt significantly inhibited cell viability, but promoted apoptosis. The apoptosis‑associated factors, V‑Myc avian myelocytomatosis viral oncogene homolog (c‑Myc), Bcl-2-associated X protein, caspase‑3 and cleaved caspase‑3 were markedly upregulated by Al‑Malt. The mRNA expression level of miR‑322 was negatively regulated by Al‑Malt. Furthermore, miR‑322 attenuated the apoptosis induced by Al‑Malt and recovered the expression changes of these four factors. Thus, miR‑322 may attenuate Al‑Malt‑induced apoptosis by recovering the expression change of c‑Myc. Furthermore, miR‑322 may be involved in the pathogenesis of Al‑Malt‑associated AD.
Collapse
Affiliation(s)
- Xinlong Ma
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Feng Shang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Qiuxia Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, P.R. China
| | - Qingtang Lin
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Shuo Han
- Human Anatomy Division, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Yongzhi Shan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Jianxin Du
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Feng Ling
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Hongqi Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Geng Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| |
Collapse
|
168
|
Millan MJ. Linking deregulation of non-coding RNA to the core pathophysiology of Alzheimer's disease: An integrative review. Prog Neurobiol 2017; 156:1-68. [PMID: 28322921 DOI: 10.1016/j.pneurobio.2017.03.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 03/09/2017] [Accepted: 03/09/2017] [Indexed: 02/06/2023]
Abstract
The human genome encodes a vast repertoire of protein non-coding RNAs (ncRNA), some specific to the brain. MicroRNAs, which interfere with the translation of target mRNAs, are of particular interest since their deregulation has been implicated in neurodegenerative disorders like Alzheimer's disease (AD). However, it remains challenging to link the complex body of observations on miRNAs and AD into a coherent framework. Using extensive graphical support, this article discusses how a diverse panoply of miRNAs convergently and divergently impact (and are impacted by) core pathophysiological processes underlying AD: neuroinflammation and oxidative stress; aberrant generation of β-amyloid-42 (Aβ42); anomalies in the production, cleavage and post-translational marking of Tau; impaired clearance of Aβ42 and Tau; perturbation of axonal organisation; disruption of synaptic plasticity; endoplasmic reticulum stress and the unfolded protein response; mitochondrial dysfunction; aberrant induction of cell cycle re-entry; and apoptotic loss of neurons. Intriguingly, some classes of miRNA provoke these cellular anomalies, whereas others act in a counter-regulatory, protective mode. Moreover, changes in levels of certain species of miRNA are a consequence of the above-mentioned anomalies. In addition to miRNAs, circular RNAs, piRNAs, long non-coding RNAs and other types of ncRNA are being increasingly implicated in AD. Overall, a complex mesh of deregulated and multi-tasking ncRNAs reciprocally interacts with core pathophysiological mechanisms underlying AD. Alterations in ncRNAs can be detected in CSF and the circulation as well as the brain and are showing promise as biomarkers, with the ultimate goal clinical exploitation as targets for novel modes of symptomatic and course-altering therapy.
Collapse
Affiliation(s)
- Mark J Millan
- Centre for Therapeutic Innovation in Neuropsychiatry, institut de recherche Servier, 125 chemin de ronde, 78290 Croissy sur Seine, France.
| |
Collapse
|
169
|
Olsen LC, O'Reilly KC, Liabakk NB, Witter MP, Sætrom P. MicroRNAs contribute to postnatal development of laminar differences and neuronal subtypes in the rat medial entorhinal cortex. Brain Struct Funct 2017; 222:3107-3126. [PMID: 28260163 PMCID: PMC5585308 DOI: 10.1007/s00429-017-1389-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 02/13/2017] [Indexed: 01/23/2023]
Abstract
The medial entorhinal cortex (MEC) is important in spatial navigation and memory formation and its layers have distinct neuronal subtypes, connectivity, spatial properties, and disease susceptibility. As little is known about the molecular basis for the development of these laminar differences, we analyzed microRNA (miRNA) and messenger RNA (mRNA) expression differences between rat MEC layer II and layers III–VI during postnatal development. We identified layer and age-specific regulation of gene expression by miRNAs, which included processes related to neuron specialization and locomotor behavior. Further analyses by retrograde labeling and expression profiling of layer II stellate neurons and in situ hybridization revealed that the miRNA most up-regulated in layer II, miR-143, was enriched in stellate neurons, whereas the miRNA most up-regulated in deep layers, miR-219-5p, was expressed in ependymal cells, oligodendrocytes and glia. Bioinformatics analyses of predicted mRNA targets with negatively correlated expression patterns to miR-143 found that miR-143 likely regulates the Lmo4 gene, which is known to influence hippocampal-based spatial learning.
Collapse
Affiliation(s)
- Lene C Olsen
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kally C O'Reilly
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University for Science and Technology, Trondheim, Norway
| | - Nina B Liabakk
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University for Science and Technology, Trondheim, Norway
| | - Pål Sætrom
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway. .,Department of Computer and Information Science, Norwegian University for Science and Technology, Trondheim, Norway. .,Bioinformatics core facility-BioCore, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
170
|
Prasad KN. Oxidative stress and pro-inflammatory cytokines may act as one of the signals for regulating microRNAs expression in Alzheimer’s disease. Mech Ageing Dev 2017; 162:63-71. [DOI: 10.1016/j.mad.2016.12.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 12/08/2016] [Accepted: 12/08/2016] [Indexed: 12/20/2022]
|
171
|
Reddy PH, Tonk S, Kumar S, Vijayan M, Kandimalla R, Kuruva CS, Reddy AP. A critical evaluation of neuroprotective and neurodegenerative MicroRNAs in Alzheimer's disease. Biochem Biophys Res Commun 2017; 483:1156-1165. [PMID: 27524239 PMCID: PMC5343756 DOI: 10.1016/j.bbrc.2016.08.067] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 08/10/2016] [Indexed: 12/31/2022]
Abstract
Currently, 5.4 million Americans suffer from AD, and these numbers are expected to increase up to 16 million by 2050. Despite tremendous research efforts, we still do not have drugs or agents that can delay, or prevent AD and its progression, and we still do not have early detectable biomarkers for AD. Multiple cellular changes have been implicated in AD, including synaptic damage, mitochondrial damage, production and accumulation of Aβ and phosphorylated tau, inflammatory response, deficits in neurotransmitters, deregulation of the cell cycle, and hormonal imbalance. Research into AD has revealed that miRNAs are involved in each of these cellular changes and interfere with gene regulation and translation. Recent discoveries in molecular biology have also revealed that microRNAs play a major role in post-translational regulation of gene expression. The purpose of this article is to review research that has assessed neuroprotective and neurodegenerative characteristics of microRNAs in brain samples from AD transgenic mouse models and patients with AD.
Collapse
Affiliation(s)
- P Hemachandra Reddy
- Garrison Institute on Aging Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Cell Biology & Biochemistry Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Neuroscience & Pharmacology Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Neurology Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Speech, Language and Hearing Sciences Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, 6630 S. Quaker Suite E, MS 7495, Lubbock, TX 79413, United States.
| | - Sahil Tonk
- Garrison Institute on Aging Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| | - Subodh Kumar
- Garrison Institute on Aging Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| | - Murali Vijayan
- Garrison Institute on Aging Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| | - Ramesh Kandimalla
- Garrison Institute on Aging Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| | - Chandra Sekhar Kuruva
- Garrison Institute on Aging Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| | - Arubala P Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, 3601 Fourth Street, MS 9424, Lubbock, TX 79430, United States.
| |
Collapse
|
172
|
Reddy PH, Williams J, Smith F, Bhatti JS, Kumar S, Vijayan M, Kandimalla R, Kuruva CS, Wang R, Manczak M, Yin X, Reddy AP. MicroRNAs, Aging, Cellular Senescence, and Alzheimer's Disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 146:127-171. [PMID: 28253983 DOI: 10.1016/bs.pmbts.2016.12.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Aging is a normal process of living being. It has been reported that multiple cellular changes, including oxidative damage/mitochondrial dysfunction, telomere shortening, inflammation, may accelerate the aging process, leading to cellular senescence. These cellular changes induce age-related human diseases, including Alzheimer's, Parkinson's, multiple sclerosis, amyotrophic lateral sclerosis, cardiovascular, cancer, and skin diseases. Changes in somatic and germ-line DNA and epigenetics are reported to play large roles in accelerating the onset of human diseases. Cellular mechanisms of aging and age-related diseases are not completely understood. However, recent discoveries in molecular biology have revealed that microRNAs (miRNAs) are potential indicators of aging, cellular senescence, and Alzheimer's disease (AD). The purpose of our chapter is to highlight recent advancements in miRNAs and their involvement in cellular changes in aging, cellular senescence, and AD. This chapter also critically evaluates miRNA-based therapeutic drug targets for aging and age-related diseases, particularly Alzheimer's.
Collapse
Affiliation(s)
- P H Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States; Texas Tech University Health Sciences Center, Lubbock, TX, United States.
| | - J Williams
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - F Smith
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - J S Bhatti
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States; Department of Biotechnology, Sri Guru Gobind Singh College, Chandigarh, India
| | - S Kumar
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - M Vijayan
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - R Kandimalla
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - C S Kuruva
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - R Wang
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - M Manczak
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - X Yin
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - A P Reddy
- Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
173
|
Vijayan M, Kumar S, Bhatti JS, Reddy PH. Molecular Links and Biomarkers of Stroke, Vascular Dementia, and Alzheimer's Disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 146:95-126. [PMID: 28253992 DOI: 10.1016/bs.pmbts.2016.12.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Stroke is a very common neurological disease, and it occurs when the blood supply to part of the brain is interrupted and the subsequent shortage of oxygen and nutrients causes damage to the brain tissue. Stroke is the second leading cause of death and the third leading cause of disability-adjusted life years. The occurrence of stroke increases with age, but anyone at any age can suffer a stroke. Stroke can be broadly classified in two major clinical types: ischemic stroke (IS) and hemorrhagic stroke. Research also revealed that stroke, vascular dementia (VaD), and Alzheimer's disease (AD) increase with a number of modifiable factors, and most strokes can be prevented and/or controlled through pharmacological or surgical interventions and lifestyle changes. The pathophysiology of stroke, VaD, and AD is complex, and recent molecular and postmortem brain studies have revealed that multiple cellular changes have been implicated, including inflammatory responses, microRNA alterations, and marked changes in brain proteins. These molecular and cellular changes provide new information for developing therapeutic strategies for stroke and related vascular disorders treatment. IS is the major risk factor for VaD and AD. This chapter summarizes the (1) links among stroke-VaD-AD; (2) updates the latest developments of research in identifying protein biomarkers in peripheral and central nervous system tissues; and (3) critically evaluates miRNA profile and function in human blood samples, animal, and postmortem brains.
Collapse
Affiliation(s)
- M Vijayan
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States.
| | - S Kumar
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - J S Bhatti
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States; Department of Biotechnology, Sri Guru Gobind Singh College, Chandigarh, India
| | - P H Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States; Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
174
|
Hara N, Kikuchi M, Miyashita A, Hatsuta H, Saito Y, Kasuga K, Murayama S, Ikeuchi T, Kuwano R. Serum microRNA miR-501-3p as a potential biomarker related to the progression of Alzheimer's disease. Acta Neuropathol Commun 2017; 5:10. [PMID: 28137310 PMCID: PMC5282710 DOI: 10.1186/s40478-017-0414-z] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 01/26/2017] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) are attractive molecules to utilize as one of the blood-based biomarkers for neurodegenerative disorders such as Alzheimer’s disease (AD) because miRNAs are relatively stable in biofluid, including serum or plasma. To determine blood miRNA biomarkers for AD with next-generation sequencing genome-wide, we first surveyed 45 serum samples. These came from 27 AD patients and 18 controls (discovery set) that underwent autopsy within two weeks after their serum sampling and were neuropathologically diagnosed. We found that three miRNAs, hsa-miR-501-3p, hsa-let-7f-5p, and hsa-miR-26b-5p, were significantly deregulated between the AD samples and the controls. The deregulation for hsa-miR-501-3p was further confirmed by quantitative reverse transcription polymerase chain reaction (PCR) in a validation set composed of 36 clinically diagnosed AD patients and 22 age-matched cognitively normal controls with a sensitivity and specificity of 53% and 100%, respectively (area under the curve = 0.82). Serum hsa-miR-501-3p levels were downregulated in AD patients, and its lower levels significantly correlated with lower Mini-Mental State Examination scores. Contrary to its serum levels, we found that hsa-miR-501-3p was remarkably upregulated in the same donors’ AD brains obtained at autopsy from the discovery set. The hsa-miR-501-3p overexpression in cultured cells, which mimicked the hsa-miR-501-3p upregulation in the AD brains, induced significant downregulation of 128 genes that overrepresented the Gene Ontology terms, DNA replication, and the mitotic cell cycle. Our results suggest that hsa-miR-501-3p is a novel serum biomarker that presumably corresponds to pathological events occurring in AD brains.
Collapse
|
175
|
Viswambharan V, Thanseem I, Vasu MM, Poovathinal SA, Anitha A. miRNAs as biomarkers of neurodegenerative disorders. Biomark Med 2017; 11:151-167. [PMID: 28125293 DOI: 10.2217/bmm-2016-0242] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neurodegenerative diseases (NDDs) are the result of progressive deterioration of neurons, ultimately leading to disabilities. There is no effective cure for NDDs at present; ongoing therapies are mainly aimed at treating the most bothersome symptoms. Since early treatment is crucial in NDDs, there is an urgent need for specific and sensitive biomarkers that can aid in early diagnosis of these disorders. Recently, altered expression of miRNAs has been implicated in several neurological disorders, including NDDs. miRNA expression has been extensively investigated in the cells, tissues and body fluids of patients with different types of NDDs. The aim of this review is to provide a comprehensive overview of miRNAs as biomarkers and therapeutic targets for NDDs.
Collapse
Affiliation(s)
- Vijitha Viswambharan
- Department of Neurogenetics, Institute for Communicative & Cognitive Neurosciences (ICCONS), Shoranur, Palakkad 679 523, Kerala, India
| | - Ismail Thanseem
- Department of Neurogenetics, Institute for Communicative & Cognitive Neurosciences (ICCONS), Shoranur, Palakkad 679 523, Kerala, India
| | - Mahesh M Vasu
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431 3192, Japan
| | - Suresh A Poovathinal
- Department of Neurology, Institute for Communicative & Cognitive Neurosciences (ICCONS), Shoranur, Palakkad 679 523, Kerala, India
| | - Ayyappan Anitha
- Department of Neurogenetics, Institute for Communicative & Cognitive Neurosciences (ICCONS), Shoranur, Palakkad 679 523, Kerala, India
| |
Collapse
|
176
|
Sharma R, Kumar D, Jha NK, Jha SK, Ambasta RK, Kumar P. Re-expression of cell cycle markers in aged neurons and muscles: Whether cells should divide or die? Biochim Biophys Acta Mol Basis Dis 2017; 1863:324-336. [DOI: 10.1016/j.bbadis.2016.09.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/01/2016] [Accepted: 09/13/2016] [Indexed: 02/08/2023]
|
177
|
|
178
|
Wang Y, Veremeyko T, Wong AHK, El Fatimy R, Wei Z, Cai W, Krichevsky AM. Downregulation of miR-132/212 impairs S-nitrosylation balance and induces tau phosphorylation in Alzheimer's disease. Neurobiol Aging 2016; 51:156-166. [PMID: 28089352 DOI: 10.1016/j.neurobiolaging.2016.12.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 12/16/2016] [Accepted: 12/18/2016] [Indexed: 01/31/2023]
Abstract
MicroRNA-132 is markedly downregulated in Alzheimer's disease (AD) and related tauopathies, and its levels are closely associated with tau pathology in AD. Whether and how miR-132 contributes to pathology in these neurodegenerative diseases remains unclear. Here, we show that miR-132 and its paralogue miR-212 directly regulate the expression of neuronal nitric oxide synthase (NOS1) through the primate-specific binding site. Inhibition of miR-132 in primary human neurons and neural cells leads to increased NOS1 levels and triggers excessive production of nitric oxide, followed by aberrant S-nitrosylation (SNO) of specific proteins associated with neurodegeneration and tau pathology, such as cyclin-dependent kinase 5, dynamin-related protein 1, and glyceraldehyde-3-phosphate dehydrogenase. This, in turn, increases tau phosphorylation at disease associated Ser396, Ser404, and Ser202 sites, and impairs neural viability. Our findings indicate that downregulation of miR-132/212 disturbs the balance of S-nitrosylation and induces tau phosphorylation in a NOS1-dependent way, and thereby may contribute to the pathogenesis of AD and other tauopathies.
Collapse
Affiliation(s)
- Yang Wang
- Department of Pediatric Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tatiana Veremeyko
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andus Hon-Kit Wong
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rachid El Fatimy
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhiyun Wei
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wei Cai
- Department of Pediatric Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anna M Krichevsky
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
179
|
Systematic Identification and Bioinformatic Analysis of MicroRNAs in Response to Infections of Coxsackievirus A16 and Enterovirus 71. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4302470. [PMID: 27843944 PMCID: PMC5098103 DOI: 10.1155/2016/4302470] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/29/2016] [Indexed: 12/18/2022]
Abstract
Hand, foot, and mouth disease (HFMD), mainly caused by coxsackievirus A16 (CVA16) and enterovirus 71 (EV71) infections, remains a serious public health issue with thousands of newly diagnostic cases each year since 2008 in China. The mechanisms underlying viral infection, however, are elusive to date. In the present study, we systematically investigated the host cellular microRNA (miRNA) expression patterns in response to CVA16 and EV71 infections. Through microarray examination, 27 miRNAs (15 upregulated and 12 downregulated) were found to be coassociated with the replication process of two viruses, while the expression levels of 15 and 5 miRNAs were significantly changed in CVA16- and EV71-infected cells, respectively. A great number of target genes of 27 common differentially expressed miRNAs were predicted by combined use of two computational target prediction algorithms, TargetScan and MiRanda. Comprehensive bioinformatic analysis of target genes in GO categories and KEGG pathways indicated the involvement of diverse biological functions and signaling pathways during viral infection. These results provide an overview of the roles of miRNAs in virus-host interaction, which will contribute to further understanding of HFMD pathological mechanisms.
Collapse
|
180
|
Jamal S, Goyal S, Shanker A, Grover A. Integrating network, sequence and functional features using machine learning approaches towards identification of novel Alzheimer genes. BMC Genomics 2016; 17:807. [PMID: 27756223 PMCID: PMC5070370 DOI: 10.1186/s12864-016-3108-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/20/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a complex progressive neurodegenerative disorder commonly characterized by short term memory loss. Presently no effective therapeutic treatments exist that can completely cure this disease. The cause of Alzheimer's is still unclear, however one of the other major factors involved in AD pathogenesis are the genetic factors and around 70 % risk of the disease is assumed to be due to the large number of genes involved. Although genetic association studies have revealed a number of potential AD susceptibility genes, there still exists a need for identification of unidentified AD-associated genes and therapeutic targets to have better understanding of the disease-causing mechanisms of Alzheimer's towards development of effective AD therapeutics. RESULTS In the present study, we have used machine learning approach to identify candidate AD associated genes by integrating topological properties of the genes from the protein-protein interaction networks, sequence features and functional annotations. We also used molecular docking approach and screened already known anti-Alzheimer drugs against the novel predicted probable targets of AD and observed that an investigational drug, AL-108, had high affinity for majority of the possible therapeutic targets. Furthermore, we performed molecular dynamics simulations and MM/GBSA calculations on the docked complexes to validate our preliminary findings. CONCLUSIONS To the best of our knowledge, this is the first comprehensive study of its kind for identification of putative Alzheimer-associated genes using machine learning approaches and we propose that such computational studies can improve our understanding on the core etiology of AD which could lead to the development of effective anti-Alzheimer drugs.
Collapse
Affiliation(s)
- Salma Jamal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
- Department of Bioscience and Biotechnology, Banasthali University, Tonk, Rajasthan 304022 India
| | - Sukriti Goyal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
- Department of Bioscience and Biotechnology, Banasthali University, Tonk, Rajasthan 304022 India
| | - Asheesh Shanker
- Bioinformatics Programme, Centre for Biological Sciences, Central University of South Bihar, BIT Campus, Patna, Bihar India
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| |
Collapse
|
181
|
Mufson EJ, Ikonomovic MD, Counts SE, Perez SE, Malek-Ahmadi M, Scheff SW, Ginsberg SD. Molecular and cellular pathophysiology of preclinical Alzheimer's disease. Behav Brain Res 2016; 311:54-69. [PMID: 27185734 PMCID: PMC4931948 DOI: 10.1016/j.bbr.2016.05.030] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/12/2016] [Accepted: 05/12/2016] [Indexed: 12/19/2022]
Abstract
Although the two pathological hallmarks of Alzheimer's disease (AD), senile plaques composed of amyloid-β (Aβ) peptides and neurofibrillary tangles (NFTs) consisting of hyperphosphorylated tau, have been studied extensively in postmortem AD and relevant animal and cellular models, the pathogenesis of AD remains unknown, particularly in the early stages of the disease where therapies presumably would be most effective. We and others have demonstrated that Aβ plaques and NFTs are present in varying degrees before the onset and throughout the progression of dementia. In this regard, aged people with no cognitive impairment (NCI), mild cognitive impairment (MCI, a presumed prodromal AD transitional state, and AD all present at autopsy with varying levels of pathological hallmarks. Cognitive decline, a requisite for the clinical diagnosis of dementia associated with AD, generally correlates better with NFTs than Aβ plaques. However, correlations are even higher between cognitive decline and synaptic loss. In this review, we illustrate relevant clinical pathological research in preclinical AD and throughout the progression of dementia in several areas including Aβ and tau pathobiology, single population expression profiling of vulnerable hippocampal and basal forebrain neurons, neuroplasticity, neuroimaging, cerebrospinal fluid (CSF) biomarker studies and their correlation with antemortem cognitive endpoints. In each of these areas, we provide evidence for the importance of studying the pathological hallmarks of AD not in isolation, but rather in conjunction with other molecular, cellular, and imaging markers to provide a more systematic and comprehensive assessment of the multiple changes that occur during the transition from NCI to MCI to frank AD.
Collapse
Affiliation(s)
- Elliott J Mufson
- Departments of Neurobiology and Neurology, Barrow Neurological Institute, Phoenix, AZ, United States.
| | - Milos D Ikonomovic
- Departments of Neurology and Psychiatry, University of Pittsburgh, and Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States
| | - Scott E Counts
- Department of Translational Science and Molecular Medicine, Department of Family Medicine, Hauenstien Neuroscience Institute, Mercy Health Saint Mary's Hospital, Grand Rapids, MI, United States
| | - Sylvia E Perez
- Departments of Neurobiology and Neurology, Barrow Neurological Institute, Phoenix, AZ, United States
| | | | - Stephen W Scheff
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Department of Psychiatry, Department of Neuroscience & Physiology, New York University Langone Medical Center, Orangeburg, NY, United States
| |
Collapse
|
182
|
Li W, Li X, Xin X, Kan PC, Yan Y. MicroRNA-613 regulates the expression of brain-derived neurotrophic factor in Alzheimer's disease. Biosci Trends 2016; 10:372-377. [PMID: 27545218 DOI: 10.5582/bst.2016.01127] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive loss of memory and other cognitive functions and presents an increasing clinical challenge in terms of diagnosis and treatment. Brain-derived neurotrophic factor (BDNF) plays an important role in neuronal survival and proliferation. In the present study, the mRNA and protein expression level of BDNF was detected in serum, and cerebrospinal fluid (CSF) of patients with mild cognitive impairment (MCI), dementia of Alzheimer's type (DAT), and hippocampus in APP/PS1 mice. A significant decrease of BDNF mRNA and protein expression was observed in serum and CSF of patients and hippocampus in APP/PS1 mice compared with the corresponding controls. miR-613, which is predicted to target the 3'-UTR of BDNF, was also detected in patients and the mouse model. Opposite to the alteration of BDNF, miR-613 expression in serum, CSF and hippocampus were obviously increased compared to the controls. In conclusion, these findings showed that miR-613 may function in the development of AD and may provide new insights in diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Wei Li
- Department of Clinical Laboratory, Tianjin Huan Hu Hospital
| | | | | | | | | |
Collapse
|
183
|
Liu W, Zhao J, Lu G. miR-106b inhibits tau phosphorylation at Tyr18 by targeting Fyn in a model of Alzheimer's disease. Biochem Biophys Res Commun 2016; 478:852-7. [PMID: 27520374 DOI: 10.1016/j.bbrc.2016.08.037] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 08/06/2016] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by β-amyloid deposits and neurofibrillary tangles consisting of hyperphosphorylated tau protein. Increasing evidence has revealed that microRNAs (miRNAs) are implicated in the pathogenesis of AD. However, the effect of miRNAs on abnormal tau phosphorylation remains largely unclear so far. In this study, we investigated the role of miR-106b in tau phosphorylation and identified a new molecular mechanism of the hyperphosphorylation of tau. The results of qRT-PCR showed that the expression level of miR-106b was decreased, but Fyn was increased in the temporal cortex of AD patients. Overexpression of miR-106b inhibited Aβ1-42-induced tau phosphorylation at Tyr18 in SH-SY5Y cells stably expressing tau (SH-SY5Y/tau), whereas no changes were observed in tau phosphorylation at Ser396/404. Dual-luciferase reporter gene assay validated that Fyn was a direct target gene of miR-106b. In addition, western blot analysis revealed that Fyn protein expression was suppressed when SH-SY5Y cells were transfected with miR-106b mimics. Endogenous Fyn expression was knockdown by transfection with a small interfering RNA specific for Fyn (si-Fyn). The phosphorylation level of tau at Tyr 18 was decreased in the si-Fyn group compared with the negative control group, but the inhibitory effect of si-Fyn on tau phosphorylation was attenuated when miR-106b expression was inhibited. Taken together, these data suggest that miR-106b inhibits Aβ1-42-induced tau phosphorylation at Tyr18 by targeting Fyn. Our findings extend the knowledge about the regulation of tau phosphorylation and the regulatory mechanism of Fyn gene expression.
Collapse
Affiliation(s)
- Wei Liu
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - Jingya Zhao
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - Guangxiu Lu
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng 475000, China.
| |
Collapse
|
184
|
Lafourcade C, Ramírez JP, Luarte A, Fernández A, Wyneken U. MiRNAs in Astrocyte-Derived Exosomes as Possible Mediators of Neuronal Plasticity. J Exp Neurosci 2016; 10:1-9. [PMID: 27547038 PMCID: PMC4978198 DOI: 10.4137/jen.s39916] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/07/2016] [Accepted: 07/09/2016] [Indexed: 12/21/2022] Open
Abstract
Astrocytes use gliotransmitters to modulate neuronal function and plasticity. However, the role of small extracellular vesicles, called exosomes, in astrocyte-to-neuron signaling is mostly unknown. Exosomes originate in multivesicular bodies of parent cells and are secreted by fusion of the multivesicular body limiting membrane with the plasma membrane. Their molecular cargo, consisting of RNA species, proteins, and lipids, is in part cell type and cell state specific. Among the RNA species transported by exosomes, microRNAs (miRNAs) are able to modify gene expression in recipient cells. Several miRNAs present in astrocytes are regulated under pathological conditions, and this may have far-reaching consequences if they are loaded in exosomes. We propose that astrocyte-derived miRNA-loaded exosomes, such as miR-26a, are dysregulated in several central nervous system diseases; thus potentially controlling neuronal morphology and synaptic transmission through validated and predicted targets. Unraveling the contribution of this new signaling mechanism to the maintenance and plasticity of neuronal networks will impact our understanding on the physiology and pathophysiology of the central nervous system.
Collapse
Affiliation(s)
- Carlos Lafourcade
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de los Andes, Chile
| | - Juan Pablo Ramírez
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de los Andes, Chile
| | - Alejandro Luarte
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de los Andes, Chile
| | - Anllely Fernández
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de los Andes, Chile
| | - Ursula Wyneken
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de los Andes, Chile
| |
Collapse
|
185
|
Zhang SG, Wang XS, Zhang YD, Di Q, Shi JP, Qian M, Xu LG, Lin XJ, Lu J. Indirubin-3'-monoxime suppresses amyloid-beta-induced apoptosis by inhibiting tau hyperphosphorylation. Neural Regen Res 2016; 11:988-93. [PMID: 27482230 PMCID: PMC4962599 DOI: 10.4103/1673-5374.184500] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Indirubin-3′-monoxime is an effective inhibitor of cyclin-dependent protein kinases, and may play an obligate role in neuronal apoptosis in Alzheimer's disease. Here, we found that indirubin-3′-monoxime improved the morphology and increased the survival rate of SH-SY5Y cells exposed to amyloid-beta 25–35 (Aβ25–35), and also suppressed apoptosis by reducing tau phosphorylation at Ser199 and Thr205. Furthermore, indirubin-3′-monoxime inhibited phosphorylation of glycogen synthase kinase-3β (GSK-3β). Our results suggest that indirubin-3′-monoxime reduced Aβ25–35-induced apoptosis by suppressing tau hyperphosphorylation via a GSK-3β-mediated mechanism. Indirubin-3′-monoxime is a promising drug candidate for Alzheimer's disease.
Collapse
Affiliation(s)
- Shu-Gang Zhang
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiao-Shan Wang
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ying-Dong Zhang
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China; Department of Neurology, Affiliated Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Qing Di
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jing-Ping Shi
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Min Qian
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Li-Gang Xu
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xing-Jian Lin
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jie Lu
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
186
|
Karnati HK, Panigrahi MK, Gutti RK, Greig NH, Tamargo IA. miRNAs: Key Players in Neurodegenerative Disorders and Epilepsy. J Alzheimers Dis 2016; 48:563-80. [PMID: 26402105 DOI: 10.3233/jad-150395] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are endogenous, ∼22 nucleotide, non-coding RNA molecules that function as post-transcriptional regulators of gene expression. miRNA dysregulation has been observed in cancer and in neurodegenerative disorders such as Alzheimer's, Parkinson's, and Huntington's diseases, amyotrophic lateral sclerosis, and the neurological disorder, epilepsy. Neuronal degradation and death are important hallmarks of neurodegenerative disorders. Additionally, abnormalities in metabolism, synapsis and axonal transport have been associated with Alzheimer's disease, Parkinson's disease, and frontotemporal dementia. A number of recently published studies have demonstrated the importance of miRNAs in the nervous system and have contributed to the growing body of evidence on miRNA dysregulation in neurological disorders. Knowledge of the expressions and activities of such miRNAs may aid in the development of novel therapeutics. In this review, we discuss the significance of miRNA dysregulation in the development of neurodegenerative disorders and the use of miRNAs as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Hanuma Kumar Karnati
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, Telangana, India
| | - Manas Kumar Panigrahi
- Department of Neurosurgery, Krishna Institute of Medical Sciences (KIMS), Hyderabad, Telangana, India
| | - Ravi Kumar Gutti
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, Telangana, India
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Ian A Tamargo
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
187
|
Zhang B, Wang LL, Ren RJ, Dammer EB, Zhang YF, Huang Y, Chen SD, Wang G. MicroRNA-146a represses LRP2 translation and leads to cell apoptosis in Alzheimer's disease. FEBS Lett 2016; 590:2190-200. [PMID: 27241555 DOI: 10.1002/1873-3468.12229] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/10/2016] [Accepted: 05/24/2016] [Indexed: 12/17/2022]
Abstract
MicroRNA regulation of transcript expression has been reported in patients with Alzheimer's disease (AD). Here, we investigate the role of microRNA-146a (miRNA-146a), a brain-enriched miRNA, which is upregulated in AD patients. Through analysis of predicted targets of miRNA-146a, low-density lipoprotein receptor-related protein-2 (Lrp2), a member of the LDLR family that is known to play a protective role in AD, was identified. Overexpression of miRNA-146a in SH-SY5Y cells significantly decreased Lrp2 expression, resulting in a reduction of Akt activation and induction of proapoptotic caspase-3, thereby increasing cell apoptosis. Thus, specific miRNA-146a regulation may contribute to AD by downregulating the Lrp2/Akt pathway.
Collapse
Affiliation(s)
- Bei Zhang
- Department of Neurology & Neuroscience Institute, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China.,Laboratory of Neurodegenerative Diseases, Institute of Health Science, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, China
| | - Li-Ling Wang
- Department of Neurology & Neuroscience Institute, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Ru-Jing Ren
- Department of Neurology & Neuroscience Institute, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Eric B Dammer
- Department of Biochemistry and Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Yong-Fang Zhang
- Research Laboratory of Cell Regulation, Shanghai Jiao Tong University School of Medicine, China
| | - Yue Huang
- School of Medical Sciences, The University of New South Wales, Randwick, Australia
| | - Sheng-Di Chen
- Department of Neurology & Neuroscience Institute, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China.,Laboratory of Neurodegenerative Diseases, Institute of Health Science, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, China
| | - Gang Wang
- Department of Neurology & Neuroscience Institute, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
188
|
Li X, Bao X, Wang R. Neurogenesis-based epigenetic therapeutics for Alzheimer's disease (Review). Mol Med Rep 2016; 14:1043-53. [DOI: 10.3892/mmr.2016.5390] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 04/14/2016] [Indexed: 11/06/2022] Open
|
189
|
Cao DD, Li L, Chan WY. MicroRNAs: Key Regulators in the Central Nervous System and Their Implication in Neurological Diseases. Int J Mol Sci 2016; 17:E842. [PMID: 27240359 PMCID: PMC4926376 DOI: 10.3390/ijms17060842] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 01/03/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small, well-conserved noncoding RNAs that regulate gene expression post-transcriptionally. They have been demonstrated to regulate a lot of biological pathways and cellular functions. Many miRNAs are dynamically regulated during central nervous system (CNS) development and are spatially expressed in adult brain indicating their essential roles in neural development and function. In addition, accumulating evidence strongly suggests that dysfunction of miRNAs contributes to neurological diseases. These observations, together with their gene regulation property, implicated miRNAs to be the key regulators in the complex genetic network of the CNS. In this review, we first focus on the ways through which miRNAs exert the regulatory function and how miRNAs are regulated in the CNS. We then summarize recent findings that highlight the versatile roles of miRNAs in normal CNS physiology and their association with several types of neurological diseases. Subsequently we discuss the limitations of miRNAs research based on current studies as well as the potential therapeutic applications and challenges of miRNAs in neurological disorders. We endeavor to provide an updated description of the regulatory roles of miRNAs in normal CNS functions and pathogenesis of neurological diseases.
Collapse
Affiliation(s)
- Dan-Dan Cao
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong-Chinese Academy of Sciences Guangzhou Institute of Biomedicine and Health Joint Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, SAR, China.
| | - Lu Li
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong-Chinese Academy of Sciences Guangzhou Institute of Biomedicine and Health Joint Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, SAR, China.
| | - Wai-Yee Chan
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong-Chinese Academy of Sciences Guangzhou Institute of Biomedicine and Health Joint Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, SAR, China.
| |
Collapse
|
190
|
MicroRNAs in Hyperglycemia Induced Endothelial Cell Dysfunction. Int J Mol Sci 2016; 17:518. [PMID: 27070575 PMCID: PMC4848974 DOI: 10.3390/ijms17040518] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/17/2016] [Accepted: 03/22/2016] [Indexed: 01/15/2023] Open
Abstract
Hyperglycemia is closely associated with prediabetes and Type 2 Diabetes Mellitus. Hyperglycemia increases the risk of vascular complications such as diabetic retinopathy, diabetic nephropathy, peripheral vascular disease and cerebro/cardiovascular diseases. Under hyperglycemic conditions, the endothelial cells become dysfunctional. In this study, we investigated the miRNA expression changes in human umbilical vein endothelial cells exposed to different glucose concentrations (5, 10, 25 and 40 mM glucose) and at various time intervals (6, 12, 24 and 48 h). miRNA microarray analyses showed that there is a correlation between hyperglycemia induced endothelial dysfunction and miRNA expression. In silico pathways analyses on the altered miRNA expression showed that the majority of the affected biological pathways appeared to be associated to endothelial cell dysfunction and apoptosis. We found the expression of ten miRNAs (miR-26a-5p, -26b-5p, 29b-3p, -29c-3p, -125b-1-3p, -130b-3p, -140-5p, -192-5p, -221-3p and -320a) to increase gradually with increasing concentration of glucose. These miRNAs were also found to be involved in endothelial dysfunction. At least seven of them, miR-29b-3p, -29c-3p, -125b-1-3p, -130b-3p, -221-3p, -320a and -192-5p, can be correlated to endothelial cell apoptosis.
Collapse
|
191
|
Abstract
microRNAs (miRNAs) are small noncoding RNAs that regulate gene expression post-transcriptionally. Prior studies have shown that they regulate numerous physiological processes critical for normal development, cellular growth control, and organismal behavior. Here, we systematically surveyed 134 different miRNAs for roles in olfactory learning and memory formation using "sponge" technology to titrate their activity broadly in the Drosophila melanogaster central nervous system. We identified at least five different miRNAs involved in memory formation or retention from this large screen, including miR-9c, miR-31a, miR-305, miR-974, and miR-980. Surprisingly, the titration of some miRNAs increased memory, while the titration of others decreased memory. We performed more detailed experiments on two miRNAs, miR-974 and miR-31a, by mapping their roles to subpopulations of brain neurons and testing the functional involvement in memory of potential mRNA targets through bioinformatics and a RNA interference knockdown approach. This screen offers an important first step toward the comprehensive identification of all miRNAs and their potential targets that serve in gene regulatory networks important for normal learning and memory.
Collapse
|
192
|
Liu J, Tu F, Yao W, Li X, Xie Z, Liu H, Li Q, Pan Z. Conserved miR-26b enhances ovarian granulosa cell apoptosis through HAS2-HA-CD44-Caspase-3 pathway by targeting HAS2. Sci Rep 2016; 6:21197. [PMID: 26887530 PMCID: PMC4758074 DOI: 10.1038/srep21197] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/19/2016] [Indexed: 12/17/2022] Open
Abstract
The hyaluronan synthase 2 (HAS2)-hyaluronic acid (HA)-CD44-Caspase-3 pathway is involved in ovarian granulosa cell (GC) functions in mammals. HAS2 is a key enzyme required for HA synthesis and is the key factor in this pathway. However, the regulation of HAS2 and the HAS2-mediated pathway by microRNAs in GCs is poorly understood. Here, we report that miR-26b regulates porcine GC (pGC) apoptosis through the HAS2-HA-CD44-Caspase-3 pathway by binding directly to the 3′- untranslated region of HAS2 mRNA. Knockdown of miR-26b reduced pGC apoptosis. Luciferase reporter assays demonstrated that HAS2 is a direct target of miR-26b in pGCs. Knockdown and overexpression of miR-26b increased and decreased, respectively, HA content, and HAS2 and CD44 expression in pGCs. At the same time, inhibition and overexpression of miR-26b decreased and increased the expression of Caspase-3, a downstream factor in the HAS2-HA-CD44 pathway. Moreover, knockdown of HAS2 enhanced pGC apoptosis, reduced the inhibitory effects of a miR-26b inhibitor on pGC apoptosis, repressed HA content and CD44 expression, and promoted Caspase-3 expression. In addition, overexpression of HAS2 has a opposite effect. Collectively, miR-26b positively regulates pGC apoptosis via a novel HAS2-HA-CD44-Caspase-3 pathway by targeting the HAS2 gene.
Collapse
Affiliation(s)
- Jiying Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Fei Tu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Wang Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xinyu Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zhuang Xie
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zengxiang Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| |
Collapse
|
193
|
Hu YB, Li CB, Song N, Zou Y, Chen SD, Ren RJ, Wang G. Diagnostic Value of microRNA for Alzheimer's Disease: A Systematic Review and Meta-Analysis. Front Aging Neurosci 2016; 8:13. [PMID: 26903857 PMCID: PMC4746262 DOI: 10.3389/fnagi.2016.00013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/15/2016] [Indexed: 01/12/2023] Open
Abstract
Sound evidence indicates that microRNAs (miRNAs) are aberrantly expressed in Alzheimer's disease (AD) patients. We performed a systematic review and meta-analysis to investigate the role of miRNA in AD pathogenesis and their clinical diagnostic value; a systematic review of literature and meta-analysis of clinical trials were performed. In the systematic review, 236 papers were included, and we reviewed the dysregulated miRNA expression in different parts of AD patients in order to identify the relationship between aberrantly expressed miRNAs and AD pathology. In the subsequent meta-analysis, seven studies were statistically analyzed with the following results: pooled sensitivity 0.86 (95%CI 0.79-0.90), pooled specificity 0.87 (95%CI 0.72-0.95), diagnostic odds ratio (28.29), and the area under the curve (0.87). In conclusion, our review indicated that aberrant expression of various miRNAs plays an important role in the pathological process of AD, and statistical analysis of quantitative studies reveal the potential value of specific miRNAs in the diagnosis of AD.
Collapse
Affiliation(s)
- Yong-Bo Hu
- Department of Neurology, Neuroscience Institute, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Chun-Bo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Ning Song
- St George Hospital , Sydney, NSW , Australia
| | - Yang Zou
- Department of Neurology, Neuroscience Institute, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Sheng-Di Chen
- Department of Neurology, Neuroscience Institute, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Ru-Jing Ren
- Department of Neurology, Neuroscience Institute, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Gang Wang
- Department of Neurology, Neuroscience Institute, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| |
Collapse
|
194
|
LIU HONG, CHU WENZHENG, GONG LI, GAO XIAOYU, WANG WEI. MicroRNA-26b is upregulated in a double transgenic mouse model of Alzheimer's disease and promotes the expression of amyloid-β by targeting insulin-like growth factor 1. Mol Med Rep 2016; 13:2809-14. [DOI: 10.3892/mmr.2016.4860] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 12/18/2015] [Indexed: 11/05/2022] Open
|
195
|
Zhang C, Lu J, Liu B, Cui Q, Wang Y. Primate-specific miR-603 is implicated in the risk and pathogenesis of Alzheimer's disease. Aging (Albany NY) 2016; 8:272-290. [PMID: 26856603 PMCID: PMC4789582 DOI: 10.18632/aging.100887] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 01/20/2016] [Indexed: 06/05/2023]
Abstract
Alzheimer's disease (AD) is a serious neurodegenerative disease, and microRNAs (miRNAs) have been linked to its pathogenesis. miR-603, a novel primate-specific miRNA and an intronic miRNA of a human brain highly expressed gene KIAA1217, is implicated in the risk and pathogenesis of AD. The rs11014002 single nucleotide polymorphism (SNP) (C/U), which locates in miR-603 precursor (pre-miR-603), exhibits a protective effect towards AD risk. Additionally, the rs11014002 SNP promotes the biogenesis of mature miR-603. miR-603 downregulates LRPAP1 mRNA and protein levels through directly binding the 3' untranslated region (3'UTR) of LRPAP1. Moreover, miR-603 increases LRP1 protein expression. LRPAP1 and LRP1, playing opposite roles, are involved in Aβ clearance and pathogenesis of AD. Strikingly, miR-603 exhibits a relatively higher expression and there is a loss of a negative correlation between miR-603 and LRPAP1/RND1 mRNA levels in the hippocampi of patients with AD. In addition, miR-603 directly downregulates a key neuronal apoptotic component-E2F1, and prevents HeLa cells from undergoing H2O2-induced apoptosis. This work suggests that miR-603 may be a novel AD-relevant miRNA and that its rs11014002 SNP may serve as a protective factor against AD.
Collapse
Affiliation(s)
- Chi Zhang
- Neuroscience Research Institute and Department of Neurobiology, Key Laboratory for Neuroscience of Ministry of Education, National Health and Family Planning Commission, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jie Lu
- Neuroscience Research Institute and Department of Neurobiology, Key Laboratory for Neuroscience of Ministry of Education, National Health and Family Planning Commission, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Bing Liu
- Brainnetome Center, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qinghua Cui
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yun Wang
- Neuroscience Research Institute and Department of Neurobiology, Key Laboratory for Neuroscience of Ministry of Education, National Health and Family Planning Commission, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| |
Collapse
|
196
|
Keller A, Backes C, Haas J, Leidinger P, Maetzler W, Deuschle C, Berg D, Ruschil C, Galata V, Ruprecht K, Stähler C, Würstle M, Sickert D, Gogol M, Meder B, Meese E. Validating Alzheimer's disease micro RNAs using next‐generation sequencing. Alzheimers Dement 2016; 12:565-76. [DOI: 10.1016/j.jalz.2015.12.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/24/2015] [Accepted: 12/04/2015] [Indexed: 01/28/2023]
Affiliation(s)
- Andreas Keller
- Clinical Bioinformatics Saarland University Saarbrücken Germany
| | | | - Jan Haas
- Internal Medicine Heidelberg University Heidelberg Germany
| | - Petra Leidinger
- Department for Human Genetics Saarland University Hospital Homburg Germany
| | - Walter Maetzler
- Department of Neurodegeneration and Hertie‐Institute of Clinical Brain Research of the Eberhard‐Karls‐University German Center for Neurodegenerative Diseases Tübingen Germany
| | - Christian Deuschle
- Department of Neurodegeneration and Hertie‐Institute of Clinical Brain Research of the Eberhard‐Karls‐University German Center for Neurodegenerative Diseases Tübingen Germany
| | - Daniela Berg
- Department of Neurodegeneration and Hertie‐Institute of Clinical Brain Research of the Eberhard‐Karls‐University German Center for Neurodegenerative Diseases Tübingen Germany
| | - Christoph Ruschil
- Department of Neurodegeneration and Hertie‐Institute of Clinical Brain Research of the Eberhard‐Karls‐University German Center for Neurodegenerative Diseases Tübingen Germany
| | | | - Klemens Ruprecht
- Department of Neurology Charité ‐ Universitätsmedizin Berlin Berlin Germany
| | | | | | | | | | - Benjamin Meder
- Internal Medicine Heidelberg University Heidelberg Germany
| | - Eckart Meese
- Department for Human Genetics Saarland University Hospital Homburg Germany
| |
Collapse
|
197
|
Potter H, Granic A, Caneus J. Role of Trisomy 21 Mosaicism in Sporadic and Familial Alzheimer's Disease. Curr Alzheimer Res 2016; 13:7-17. [PMID: 26651340 PMCID: PMC5570437 DOI: 10.2174/156720501301151207100616] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/13/2015] [Accepted: 08/30/2015] [Indexed: 02/07/2023]
Abstract
Trisomy 21 and the consequent extra copy of the amyloid precursor protein (APP) gene and increased beta-amyloid (Aβ) peptide production underlie the universal development of Alzheimer's disease (AD) pathology and high risk of AD dementia in people with Down syndrome (DS). Trisomy 21 and other forms of aneuploidy also arise among neurons and peripheral cells in both sporadic and familial AD and in mouse and cell models thereof, reinforcing the conclusion that AD and DS are two sides of the same coin. The demonstration that 90% of the neurodegeneration in AD can be attributed to the selective loss of aneuploid neurons generated over the course of the disease indicates that aneuploidy is an essential feature of the pathogenic pathway leading to the depletion of neuronal cell populations. Trisomy 21 mosaicism also occurs in neurons and other cells from patients with Niemann-Pick C1 disease and from patients with familial or sporadic frontotemporal lobar degeneration (FTLD), as well as in their corresponding mouse and cell models. Biochemical studies have shown that Aβ induces mitotic spindle defects, chromosome mis-segregation, and aneuploidy in cultured cells by inhibiting specific microtubule motors required for mitosis. These data indicate that neuronal trisomy 21 and other types of aneuploidy characterize and likely contribute to multiple neurodegenerative diseases and are a valid target for therapeutic intervention. For example, reducing extracellular calcium or treating cells with lithium chloride (LiCl) blocks the induction of trisomy 21 by Aβ. The latter finding is relevant in light of recent reports of a lowered risk of dementia in bipolar patients treated with LiCl and in the stabilization of cognition in AD patients treated with LiCl.
Collapse
Affiliation(s)
- Huntington Potter
- Department of Neurology and Linda Crnic Institute for Down Syndrome, 12700 E. 19th Ave room 4010, mail stop 8608, Aurora CO 80045, USA.
| | | | | |
Collapse
|
198
|
Brites D, Fernandes A. Neuroinflammation and Depression: Microglia Activation, Extracellular Microvesicles and microRNA Dysregulation. Front Cell Neurosci 2015; 9:476. [PMID: 26733805 PMCID: PMC4681811 DOI: 10.3389/fncel.2015.00476] [Citation(s) in RCA: 427] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/23/2015] [Indexed: 12/21/2022] Open
Abstract
Patients with chronic inflammation are often associated with the emergence of depression symptoms, while diagnosed depressed patients show increased levels of circulating cytokines. Further studies revealed the activation of the brain immune cell microglia in depressed patients with a greater magnitude in individuals that committed suicide, indicating a crucial role for neuroinflammation in depression brain pathogenesis. Rapid advances in the understanding of microglial and astrocytic neurobiology were obtained in the past 15–20 years. Indeed, recent data reveal that microglia play an important role in managing neuronal cell death, neurogenesis, and synaptic interactions, besides their involvement in immune-response generating cytokines. The communication between microglia and neurons is essential to synchronize these diverse functions with brain activity. Evidence is accumulating that secreted extracellular vesicles (EVs), comprising ectosomes and exosomes with a size ranging from 0.1–1 μm, are key players in intercellular signaling. These EVs may carry specific proteins, mRNAs and microRNAs (miRNAs). Transfer of exosomes to neurons was shown to be mediated by oligodendrocytes, microglia and astrocytes that may either be supportive to neurons, or instead disseminate the disease. Interestingly, several recent reports have identified changes in miRNAs in depressed patients, which target not only crucial pathways associated with synaptic plasticity, learning and memory but also the production of neurotrophic factors and immune cell modulation. In this article, we discuss the role of neuroinflammation in the emergence of depression, namely dynamic alterations in the status of microglia response to stimulation, and how their activation phenotypes may have an etiological role in neurodegeneneration, in particular in depressive-like behavior. We will overview the involvement of miRNAs, exosomes, ectosomes and microglia in regulating critical pathways associated with depression and how they may contribute to other brain disorders including amyotrophic lateral sclerosis (ALS), Alzheimer’s disease (AD) and Parkinson’s disease (PD), which share several neuroinflammatory-associated processes. Specific reference will be made to EVs as potential biomarkers and disease monitoring approaches, focusing on their potentialities as drug delivery vehicles, and on putative therapeutic strategies using autologous exosome-based delivery systems to treat neurodegenerative and psychiatric disorders.
Collapse
Affiliation(s)
- Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal; Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal
| | - Adelaide Fernandes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal; Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal
| |
Collapse
|
199
|
Cdk5-mediated inhibition of APC/C-Cdh1 switches on the cyclin D1-Cdk4-pRb pathway causing aberrant S-phase entry of postmitotic neurons. Sci Rep 2015; 5:18180. [PMID: 26658992 PMCID: PMC4674757 DOI: 10.1038/srep18180] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/16/2015] [Indexed: 12/15/2022] Open
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase that regulates cell cycle progression in proliferating cells. To enter the S-phase, APC/C must be inactivated by phosphorylation of its cofactor, Cdh1. In post-mitotic cells such as neurons APC/C-Cdh1 complex is highly active and responsible for the continuous degradation of mitotic cyclins. However, the specific molecular pathway that determines neuronal cell cycle blockade in post-mitotic neurons is unknown. Here, we show that activation of glutamatergic receptors in rat cortical primary neurons endogenously triggers cyclin-dependent kinase-5 (Cdk5)-mediated phosphorylation of Cdh1 leading to its cytoplasmic accumulation and disassembly from the APC3 core protein, causing APC/C inactivation. Conversely, pharmacological or genetic inhibition of Cdk5 promotes Cdh1 ubiquitination and proteasomal degradation. Furthermore, we show that Cdk5-mediated phosphorylation and inactivation of Cdh1 leads to p27 depletion, which switches on the cyclin D1-cyclin-dependent kinase-4 (Cdk4)-retinoblastoma protein (pRb) pathway to allow the S-phase entry of neurons. However, neurons do not proceed through the cell cycle and die by apoptosis. These results indicate that APC/C-Cdh1 actively suppresses an aberrant cell cycle entry and death of neurons, highlighting its critical function in neuroprotection.
Collapse
|
200
|
Abstract
Neurons are usually regarded as postmitotic cells that undergo apoptosis in response to cell cycle reactivation. Nevertheless, recent evidence indicates the existence of a defined developmental program that induces DNA replication in specific populations of neurons, which remain in a tetraploid state for the rest of their adult life. Similarly, de novo neuronal tetraploidization has also been described in the adult brain as an early hallmark of neurodegeneration. The aim of this review is to integrate these recent developments in the context of cell cycle regulation and apoptotic cell death in neurons. We conclude that a variety of mechanisms exists in neuronal cells for G1/S and G2/M checkpoint regulation. These mechanisms, which are connected with the apoptotic machinery, can be modulated by environmental signals and the neuronal phenotype itself, thus resulting in a variety of outcomes ranging from cell death at the G1/S checkpoint to full proliferation of differentiated neurons.
Collapse
Key Words
- AD, Alzheimer disease
- BDNF, brain-derived neurotrophic factor
- BrdU, 5-bromo-2′-deoxyuridine
- CKI, Cdk-inhibitor
- CNS, central nervous system
- Cdk, cyclin-dependent kinase
- Cip/Kip, cyclin inhibitor protein/kinase inhibitor protein
- G0, quiescent state
- G1, growth phase 1
- G2, growth phase 2
- Ink, inhibitor of kinase
- Mcm2, minichromosome maintenance 2
- PCNA, proliferating cell nuclear antigen
- PD, Parkinson disease
- RGCs, retinal ganglion cells
- Rb, Retinoblastoma
- S-phase
- S-phase, synthesis phase.
- apoptosis
- cell cycle re-entry
- mitosis
- neuron
- p38MAPK, p38 mitogen-activated protein kinase
- p75NTR, neurotrophin receptor p75
- tetraploid
Collapse
Affiliation(s)
- José M Frade
- a Department of Molecular, Cellular and Developmental Neurobiology; Instituto Cajal; Consejo Superior de Investigaciones Científicas (IC-CSIC) ; Madrid , Spain
| | | |
Collapse
|