151
|
Gallardo G, Holtzman DM. Antibody Therapeutics Targeting Aβ and Tau. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a024331. [PMID: 28062555 DOI: 10.1101/cshperspect.a024331] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The astonishing findings that active and passive immunization against amyloid-β (Aβ) in mouse models of Alzheimer's disease (AD) dramatically decreased amyloid burden led to a rapid initiation of human clinical trials with much enthusiasm. However, methodological issues and adverse effects relating to these clinical trials arose, challenging the effectiveness and safety of these reagents. Efforts are now underway to develop safer immunotherapeutic approaches toward Aβ and the treatment of individuals at risk for AD before or in the earliest stages of cognitive decline with new hopes. Furthermore, several studies have shown tau as a potential immunotherapeutic target for the treatment of tauopathy-related diseases including frontotemporal lobar dementia (FTLD). Both active and passive immunization targeting tau in mouse models of tauopathy effectively decreased tau pathology while improving cognitive performance. These preclinical studies have highlighted tau as an alternative target with much anticipation of clinical trials to be undertaken.
Collapse
Affiliation(s)
- Gilbert Gallardo
- Department of Neurology, Hope Center for Neurological Disorders, and Knight Alzheimer's Disease Research Center, Washington University, St. Louis, Missouri 63110
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, and Knight Alzheimer's Disease Research Center, Washington University, St. Louis, Missouri 63110
| |
Collapse
|
152
|
Nizynski B, Dzwolak W, Nieznanski K. Amyloidogenesis of Tau protein. Protein Sci 2017; 26:2126-2150. [PMID: 28833749 DOI: 10.1002/pro.3275] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/16/2017] [Accepted: 08/16/2017] [Indexed: 11/08/2022]
Abstract
The role of microtubule-associated protein Tau in neurodegeneration has been extensively investigated since the discovery of Tau amyloid aggregates in the brains of patients with Alzheimer's disease (AD). The process of formation of amyloid fibrils is known as amyloidogenesis and attracts much attention as a potential target in the prevention and treatment of neurodegenerative conditions linked to protein aggregation. Cerebral deposition of amyloid aggregates of Tau is observed not only in AD but also in numerous other tauopathies and prion diseases. Amyloidogenesis of intrinsically unstructured monomers of Tau can be triggered by mutations in the Tau gene, post-translational modifications, or interactions with polyanionic molecules and aggregation-prone proteins/peptides. The self-assembly of amyloid fibrils of Tau shares a number of characteristic features with amyloidogenesis of other proteins involved in neurodegenerative diseases. For example, in vitro experiments have demonstrated that the nucleation phase, which is the rate-limiting stage of Tau amyloidogenesis, is shortened in the presence of fragmented preformed Tau fibrils acting as aggregation templates ("seeds"). Accordingly, Tau aggregates released by tauopathy-affected neurons can spread the neurodegenerative process in the brain through a prion-like mechanism, originally described for the pathogenic form of prion protein. Moreover, Tau has been shown to form amyloid strains-structurally diverse self-propagating aggregates of potentially various pathological effects, resembling in this respect prion strains. Here, we review the current literature on Tau aggregation and discuss mechanisms of propagation of Tau amyloid in the light of the prion-like paradigm.
Collapse
Affiliation(s)
- Bartosz Nizynski
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, 2C Banacha Str, Warsaw, 02-097, Poland.,Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 1 Pasteur Str, Warsaw, 02-093, Poland
| | - Wojciech Dzwolak
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 1 Pasteur Str, Warsaw, 02-093, Poland
| | - Krzysztof Nieznanski
- Department of Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str, Warsaw, 02-093, Poland
| |
Collapse
|
153
|
Panza F, Solfrizzi V, Seripa D, Imbimbo BP, Lozupone M, Santamato A, Tortelli R, Galizia I, Prete C, Daniele A, Pilotto A, Greco A, Logroscino G. Tau-based therapeutics for Alzheimer's disease: active and passive immunotherapy. Immunotherapy 2017; 8:1119-34. [PMID: 27485083 DOI: 10.2217/imt-2016-0019] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pharmacological manipulation of tau protein in Alzheimer's disease included microtubule-stabilizing agents, tau protein kinase inhibitors, tau aggregation inhibitors, active and passive immunotherapies and, more recently, inhibitors of tau acetylation. Animal studies have shown that both active and passive approaches can remove tau pathology and, in some cases, improve cognitive function. Two active vaccines targeting either nonphosphorylated (AAD-vac1) and phosphorylated tau (ACI-35) have entered Phase I testing. Notwithstanding, the recent discontinuation of the monoclonal antibody RG7345 for Alzheimer's disease, two other antitau antibodies, BMS-986168 and C2N-8E12, are also currently in Phase I testing for progressive supranuclear palsy. After the recent impressive results in animal studies obtained by salsalate, the dimer of salicylic acid, inhibitors of tau acetylation are being actively pursued.
Collapse
Affiliation(s)
- Francesco Panza
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, & Sense Organs, University of Bari Aldo Moro, Bari, Italy.,Department of Clinical Research in Neurology, University of Bari Aldo Moro, 'Pia Fondazione Cardinale G. Panico,' Tricase, Lecce, Italy.,Geriatric Unit & Laboratory of Gerontology & Geriatrics, Department of Medical Sciences, IRCCS 'Casa Sollievo della Sofferenza,' San Giovanni Rotondo, Foggia, Italy
| | - Vincenzo Solfrizzi
- Geriatric Medicine-Memory Unit & Rare Disease Centre, University of Bari Aldo Moro, Bari, Italy
| | - Davide Seripa
- Geriatric Unit & Laboratory of Gerontology & Geriatrics, Department of Medical Sciences, IRCCS 'Casa Sollievo della Sofferenza,' San Giovanni Rotondo, Foggia, Italy
| | - Bruno P Imbimbo
- Research & Development Department, Chiesi Farmaceutici, Parma, Italy
| | - Madia Lozupone
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, & Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Andrea Santamato
- Physical Medicine & Rehabilitation Section, 'OORR' Hospital, University of Foggia, Foggia, Italy
| | - Rosanna Tortelli
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, & Sense Organs, University of Bari Aldo Moro, Bari, Italy.,Department of Clinical Research in Neurology, University of Bari Aldo Moro, 'Pia Fondazione Cardinale G. Panico,' Tricase, Lecce, Italy
| | - Ilaria Galizia
- Psychiatric Unit, Department of Basic Medicine, Neuroscience, & Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Camilla Prete
- Department of OrthoGeriatrics, Rehabilitation & Stabilization, Frailty Area, E.O. Galliera NR-HS Hospital, Genova, Italy
| | - Antonio Daniele
- Institute of Neurology, Catholic University of Sacred Heart, Rome, Italy
| | - Alberto Pilotto
- Department of OrthoGeriatrics, Rehabilitation & Stabilization, Frailty Area, E.O. Galliera NR-HS Hospital, Genova, Italy
| | - Antonio Greco
- Geriatric Unit & Laboratory of Gerontology & Geriatrics, Department of Medical Sciences, IRCCS 'Casa Sollievo della Sofferenza,' San Giovanni Rotondo, Foggia, Italy
| | - Giancarlo Logroscino
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, & Sense Organs, University of Bari Aldo Moro, Bari, Italy.,Department of Clinical Research in Neurology, University of Bari Aldo Moro, 'Pia Fondazione Cardinale G. Panico,' Tricase, Lecce, Italy.,Institute of Neurology, Catholic University of Sacred Heart, Rome, Italy
| |
Collapse
|
154
|
Schroeder S, Joly-Amado A, Soliman A, Sengupta U, Kayed R, Gordon MN, Morgan D. Oligomeric tau-targeted immunotherapy in Tg4510 mice. ALZHEIMERS RESEARCH & THERAPY 2017; 9:46. [PMID: 28655349 PMCID: PMC5488475 DOI: 10.1186/s13195-017-0274-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/02/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Finding ways to reverse or prevent the consequences of pathogenic tau in the brain is of considerable importance for treatment of Alzheimer's disease and other tauopathies. Immunotherapy against tau has shown promise in several mouse models. In particular, an antibody with selectivity for oligomeric forms of tau, tau oligomer monoclonal antibody (TOMA), has shown rescue of the behavioral phenotype in several murine models of tau deposition. METHODS In this study, we examined the capacity of TOMA to rescue the behavioral, histological, and neurochemical consequences of tau deposition in the aggressive Tg4510 model. We treated mice biweekly with 60 μg TOMA i.p. from 3.5 to 8 months of age. RESULTS Near the end of the treatment, we found that oligomeric tau was elevated in both the CSF and in plasma. Further, we could detect mouse IgG in Tg4510 mouse brain after TOMA treatment, but not after injection with mouse IgG1 as control. However, we did not find significant reductions in behavioral deficits or tau deposits by either histological or biochemical measurements. CONCLUSIONS These data suggest that there is some exposure of the Tg4510 mouse brain to TOMA, but it was inadequate to affect the phenotype in these mice at the doses used. These data are consistent with other observations that the rapidly depositing Tg4510 mouse is a challenging model in which to demonstrate efficacy of tau-lowering treatments compared to some other preclinical models of tau deposition/overexpression.
Collapse
Affiliation(s)
- Sulana Schroeder
- Byrd Alzheimer's Institute and Department of Molecular Pharmacology and Physiology, University of South Florida, 4001 E. Fletcher Ave, Tampa, FL, 33613, USA
| | - Aurelie Joly-Amado
- Byrd Alzheimer's Institute and Department of Molecular Pharmacology and Physiology, University of South Florida, 4001 E. Fletcher Ave, Tampa, FL, 33613, USA
| | - Ahlam Soliman
- Byrd Alzheimer's Institute and Department of Molecular Pharmacology and Physiology, University of South Florida, 4001 E. Fletcher Ave, Tampa, FL, 33613, USA
| | - Urmi Sengupta
- George P. and Cynthia Woods Mitchell Center for Neurodegenerative Diseases, Departments of Neurology, and Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Rakiz Kayed
- George P. and Cynthia Woods Mitchell Center for Neurodegenerative Diseases, Departments of Neurology, and Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Marcia N Gordon
- Byrd Alzheimer's Institute and Department of Molecular Pharmacology and Physiology, University of South Florida, 4001 E. Fletcher Ave, Tampa, FL, 33613, USA
| | - David Morgan
- Byrd Alzheimer's Institute and Department of Molecular Pharmacology and Physiology, University of South Florida, 4001 E. Fletcher Ave, Tampa, FL, 33613, USA. .,Department of Psychiatry and Behavioral Neuroscience, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
155
|
Yanamandra K, Patel TK, Jiang H, Schindler S, Ulrich JD, Boxer AL, Miller BL, Kerwin DR, Gallardo G, Stewart F, Finn MB, Cairns NJ, Verghese PB, Fogelman I, West T, Braunstein J, Robinson G, Keyser J, Roh J, Knapik SS, Hu Y, Holtzman DM. Anti-tau antibody administration increases plasma tau in transgenic mice and patients with tauopathy. Sci Transl Med 2017; 9:9/386/eaal2029. [PMID: 28424326 DOI: 10.1126/scitranslmed.aal2029] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 10/14/2016] [Accepted: 01/13/2017] [Indexed: 11/02/2022]
Abstract
Tauopathies are a group of disorders in which the cytosolic protein tau aggregates and accumulates in cells within the brain, resulting in neurodegeneration. A promising treatment being explored for tauopathies is passive immunization with anti-tau antibodies. We previously found that administration of an anti-tau antibody to human tau transgenic mice increased the concentration of plasma tau. We further explored the effects of administering an anti-tau antibody on plasma tau. After peripheral administration of an anti-tau antibody to human patients with tauopathy and to mice expressing human tau in the central nervous system, there was a dose-dependent increase in plasma tau. In mouse plasma, we found that tau had a short half-life of 8 min that increased to more than 3 hours after administration of anti-tau antibody. As tau transgenic mice accumulated insoluble tau in the brain, brain soluble and interstitial fluid tau decreased. Administration of anti-tau antibody to tau transgenic mice that had decreased brain soluble tau and interstitial fluid tau resulted in an increase in plasma tau, but this increase was less than that observed in tau transgenic mice without these brain changes. Tau transgenic mice subjected to acute neuronal injury using 3-nitropropionic acid showed increased interstitial fluid tau and plasma tau. These data suggest that peripheral administration of an anti-tau antibody results in increased plasma tau, which correlates with the concentration of extracellular and soluble tau in the brain.
Collapse
Affiliation(s)
- Kiran Yanamandra
- Hope Center for Neurological Disorders and Knight Alzheimer's Disease Research Center, Department of Neurology, Washington University, St. Louis, MO 63110,USA.,AbbVie Inc. Foundational Neuroscience Center, Cambridge, MA 02139, USA
| | - Tirth K Patel
- Hope Center for Neurological Disorders and Knight Alzheimer's Disease Research Center, Department of Neurology, Washington University, St. Louis, MO 63110,USA
| | - Hong Jiang
- Hope Center for Neurological Disorders and Knight Alzheimer's Disease Research Center, Department of Neurology, Washington University, St. Louis, MO 63110,USA
| | - Suzanne Schindler
- Hope Center for Neurological Disorders and Knight Alzheimer's Disease Research Center, Department of Neurology, Washington University, St. Louis, MO 63110,USA
| | - Jason D Ulrich
- Hope Center for Neurological Disorders and Knight Alzheimer's Disease Research Center, Department of Neurology, Washington University, St. Louis, MO 63110,USA
| | - Adam L Boxer
- Clinical Trials Program, Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bruce L Miller
- Clinical Trials Program, Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Diana R Kerwin
- Texas Alzheimer's and Memory Disorders, Texas Health Presbyterian Hospital Dallas, Dallas, TX 75231, USA
| | - Gilbert Gallardo
- Hope Center for Neurological Disorders and Knight Alzheimer's Disease Research Center, Department of Neurology, Washington University, St. Louis, MO 63110,USA
| | - Floy Stewart
- Hope Center for Neurological Disorders and Knight Alzheimer's Disease Research Center, Department of Neurology, Washington University, St. Louis, MO 63110,USA
| | - Mary Beth Finn
- Hope Center for Neurological Disorders and Knight Alzheimer's Disease Research Center, Department of Neurology, Washington University, St. Louis, MO 63110,USA
| | - Nigel J Cairns
- Hope Center for Neurological Disorders and Knight Alzheimer's Disease Research Center, Department of Neurology, Washington University, St. Louis, MO 63110,USA
| | - Philip B Verghese
- C2N Diagnostics, Center for Emerging Technologies, 4041 Forest Park Avenue, St. Louis, MO 63108, USA
| | - Ilana Fogelman
- C2N Diagnostics, Center for Emerging Technologies, 4041 Forest Park Avenue, St. Louis, MO 63108, USA
| | - Tim West
- C2N Diagnostics, Center for Emerging Technologies, 4041 Forest Park Avenue, St. Louis, MO 63108, USA
| | - Joel Braunstein
- C2N Diagnostics, Center for Emerging Technologies, 4041 Forest Park Avenue, St. Louis, MO 63108, USA
| | - Grace Robinson
- Hope Center for Neurological Disorders and Knight Alzheimer's Disease Research Center, Department of Neurology, Washington University, St. Louis, MO 63110,USA
| | - Jennifer Keyser
- Hope Center for Neurological Disorders and Knight Alzheimer's Disease Research Center, Department of Neurology, Washington University, St. Louis, MO 63110,USA
| | - Joseph Roh
- Hope Center for Neurological Disorders and Knight Alzheimer's Disease Research Center, Department of Neurology, Washington University, St. Louis, MO 63110,USA
| | - Stephanie S Knapik
- C2N Diagnostics, Center for Emerging Technologies, 4041 Forest Park Avenue, St. Louis, MO 63108, USA
| | - Yan Hu
- C2N Diagnostics, Center for Emerging Technologies, 4041 Forest Park Avenue, St. Louis, MO 63108, USA
| | - David M Holtzman
- Hope Center for Neurological Disorders and Knight Alzheimer's Disease Research Center, Department of Neurology, Washington University, St. Louis, MO 63110,USA.
| |
Collapse
|
156
|
Tau interactome mapping based identification of Otub1 as Tau deubiquitinase involved in accumulation of pathological Tau forms in vitro and in vivo. Acta Neuropathol 2017; 133:731-749. [PMID: 28083634 PMCID: PMC5390007 DOI: 10.1007/s00401-016-1663-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/23/2016] [Accepted: 12/23/2016] [Indexed: 12/29/2022]
Abstract
Dysregulated proteostasis is a key feature of a variety of neurodegenerative disorders. In Alzheimer’s disease (AD), progression of symptoms closely correlates with spatiotemporal progression of Tau aggregation, with “early” oligomeric Tau forms rather than mature neurofibrillary tangles (NFTs) considered to be pathogenetic culprits. The ubiquitin–proteasome system (UPS) controls degradation of soluble normal and abnormally folded cytosolic proteins. The UPS is affected in AD and is identified by genomewide association study (GWAS) as a risk pathway for AD. The UPS is determined by balanced regulation of ubiquitination and deubiquitination. In this work, we performed isobaric tags for relative and absolute quantitation (iTRAQ)-based Tau interactome mapping to gain unbiased insight into Tau pathophysiology and to identify novel Tau-directed therapeutic targets. Focusing on Tau deubiquitination, we here identify Otub1 as a Tau-deubiquitinating enzyme. Otub1 directly affected Lys48-linked Tau deubiquitination, impairing Tau degradation, dependent on its catalytically active cysteine, but independent of its noncanonical pathway modulated by its N-terminal domain in primary neurons. Otub1 strongly increased AT8-positive Tau and oligomeric Tau forms and increased Tau-seeded Tau aggregation in primary neurons. Finally, we demonstrated that expression of Otub1 but not its catalytically inactive form induced pathological Tau forms after 2 months in Tau transgenic mice in vivo, including AT8-positive Tau and oligomeric Tau forms. Taken together, we here identified Otub1 as a Tau deubiquitinase in vitro and in vivo, involved in formation of pathological Tau forms, including small soluble oligomeric forms. Otub1 and particularly Otub1 inhibitors, currently under development for cancer therapies, may therefore yield interesting novel therapeutic avenues for Tauopathies and AD.
Collapse
|
157
|
Castillo-Carranza DL, Nilson AN, Van Skike CE, Jahrling JB, Patel K, Garach P, Gerson JE, Sengupta U, Abisambra J, Nelson P, Troncoso J, Ungvari Z, Galvan V, Kayed R. Cerebral Microvascular Accumulation of Tau Oligomers in Alzheimer's Disease and Related Tauopathies. Aging Dis 2017; 8:257-266. [PMID: 28580182 PMCID: PMC5440106 DOI: 10.14336/ad.2017.0112] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/12/2017] [Indexed: 12/28/2022] Open
Abstract
The importance of vascular contributions to cognitive impairment and dementia (VCID) associated with Alzheimer's disease (AD) and related neurodegenerative diseases is increasingly recognized, however, the underlying mechanisms remain obscure. There is growing evidence that in addition to Aβ deposition, accumulation of hyperphosphorylated oligomeric tau contributes significantly to AD etiology. Tau oligomers are toxic and it has been suggested that they propagate in a "prion-like" fashion, inducing endogenous tau misfolding in cells. Their role in VCID, however, is not yet understood. The present study was designed to determine the severity of vascular deposition of oligomeric tau in the brain in patients with AD and related tauopathies, including dementia with Lewy bodies (DLB) and progressive supranuclear palsy (PSP). Further, we examined a potential link between vascular deposition of fibrillar Aβ and that of tau oligomers in the Tg2576 mouse model. We found that tau oligomers accumulate in cerebral microvasculature of human patients with AD and PSP, in association with vascular endothelial and smooth muscle cells. Cerebrovascular deposition of tau oligomers was also found in DLB patients. We also show that tau oligomers accumulate in cerebral microvasculature of Tg2576 mice, partially in association with cerebrovascular Aβ deposits. Thus, our findings add to the growing evidence for multifaceted microvascular involvement in the pathogenesis of AD and other neurodegenerative diseases. Accumulation of tau oligomers may represent a potential novel mechanism by which functional and structural integrity of the cerebral microvessels is compromised.
Collapse
Affiliation(s)
- Diana L Castillo-Carranza
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ashley N Nilson
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Candice E Van Skike
- Department of Cellular and Integrative Physiology and The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, TX 78245, USA
| | - Jordan B Jahrling
- Department of Cellular and Integrative Physiology and The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, TX 78245, USA
| | - Kishan Patel
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Prajesh Garach
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Julia E Gerson
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Urmi Sengupta
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jose Abisambra
- Sanders-Brown Center on Aging and Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Peter Nelson
- Division of Neuropathology and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Juan Troncoso
- Clinical and Neuropathology Core, Department of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Zoltan Ungvari
- Department of Geriatric Medicine and Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Veronica Galvan
- Department of Cellular and Integrative Physiology and The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, TX 78245, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
158
|
Nobuhara CK, DeVos SL, Commins C, Wegmann S, Moore BD, Roe AD, Costantino I, Frosch MP, Pitstick R, Carlson GA, Hock C, Nitsch RM, Montrasio F, Grimm J, Cheung AE, Dunah AW, Wittmann M, Bussiere T, Weinreb PH, Hyman BT, Takeda S. Tau Antibody Targeting Pathological Species Blocks Neuronal Uptake and Interneuron Propagation of Tau in Vitro. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1399-1412. [PMID: 28408124 DOI: 10.1016/j.ajpath.2017.01.022] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 01/31/2017] [Indexed: 12/20/2022]
Abstract
The clinical progression of Alzheimer disease (AD) is associated with the accumulation of tau neurofibrillary tangles, which may spread throughout the cortex by interneuronal tau transfer. If so, targeting extracellular tau species may slow the spreading of tau pathology and possibly cognitive decline. To identify suitable target epitopes, we tested the effects of a panel of tau antibodies on neuronal uptake and aggregation in vitro. Immunodepletion was performed on brain extract from tau-transgenic mice and postmortem AD brain and added to a sensitive fluorescence resonance energy transfer-based tau uptake assay to assess blocking efficacy. The antibodies reduced tau uptake in an epitope-dependent manner: N-terminal (Tau13) and middomain (6C5 and HT7) antibodies successfully prevented uptake of tau species, whereas the distal C-terminal-specific antibody (Tau46) had little effect. Phosphorylation-dependent (40E8 and p396) and C-terminal half (4E4) tau antibodies also reduced tau uptake despite removing less total tau by immunodepletion, suggesting specific interactions with species involved in uptake. Among the seven antibodies evaluated, 6C5 most efficiently blocked uptake and subsequent aggregation. More important, 6C5 also blocked neuron-to-neuron spreading of tau in a unique three-chamber microfluidic device. Furthermore, 6C5 slowed down the progression of tau aggregation even after uptake had begun. Our results imply that not all antibodies/epitopes are equally robust in terms of blocking tau uptake of human AD-derived tau species.
Collapse
Affiliation(s)
- Chloe K Nobuhara
- Alzheimer's Disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Sarah L DeVos
- Alzheimer's Disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Caitlin Commins
- Alzheimer's Disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Susanne Wegmann
- Alzheimer's Disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Benjamin D Moore
- Alzheimer's Disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Allyson D Roe
- Alzheimer's Disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Isabel Costantino
- Alzheimer's Disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Matthew P Frosch
- Alzheimer's Disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | | | | | - Christoph Hock
- Neurimmune, Schlieren, Switzerland; Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Roger M Nitsch
- Neurimmune, Schlieren, Switzerland; Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | - Bradley T Hyman
- Alzheimer's Disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts.
| | - Shuko Takeda
- Alzheimer's Disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts.
| |
Collapse
|
159
|
Shafiei SS, Guerrero-Muñoz MJ, Castillo-Carranza DL. Tau Oligomers: Cytotoxicity, Propagation, and Mitochondrial Damage. Front Aging Neurosci 2017; 9:83. [PMID: 28420982 PMCID: PMC5378766 DOI: 10.3389/fnagi.2017.00083] [Citation(s) in RCA: 223] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 03/16/2017] [Indexed: 11/13/2022] Open
Abstract
Aging has long been considered as the main risk factor for several neurodegenerative disorders including a large group of diseases known as tauopathies. Even though neurofibrillary tangles (NFTs) have been examined as the main histopathological hallmark, they do not seem to play a role as the toxic entities leading to disease. Recent studies suggest that an intermediate form of tau, prior to NFT formation, the tau oligomer, is the true toxic species. However, the mechanisms by which tau oligomers trigger neurodegeneration remain unknown. This review summarizes recent findings regarding the role of tau oligomers in disease, including release from cells, propagation from affected to unaffected brain regions, uptake into cells, and toxicity via mitochondrial dysfunction. A greater understanding of tauopathies may lead to future advancements in regards to prevention and treatment.
Collapse
Affiliation(s)
- Scott S Shafiei
- Department of Neurology, Neuroscience and Cell Biology, University of Texas Medical BranchGalveston, TX, USA
| | | | | |
Collapse
|
160
|
Sengupta U, Portelius E, Hansson O, Farmer K, Castillo‐Carranza D, Woltjer R, Zetterberg H, Galasko D, Blennow K, Kayed R. Tau oligomers in cerebrospinal fluid in Alzheimer's disease. Ann Clin Transl Neurol 2017; 4:226-235. [PMID: 28382304 PMCID: PMC5376754 DOI: 10.1002/acn3.382] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/26/2016] [Accepted: 11/18/2016] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE With an increasing incidence of Alzheimer's disease (AD) and neurodegenerative tauopathies, there is an urgent need to develop reliable biomarkers for the diagnosis and monitoring of the disease, such as the recently discovered toxic tau oligomers. Here, we aimed to demonstrate the presence of tau oligomers in the cerebrospinal fluid (CSF) of patients with cognitive deficits, and to determine whether tau oligomers could serve as a potential biomarker for AD. METHODS A multicentric collaborative study involving a double-blinded analysis with a total of 98 subjects with moderate to severe AD (N = 41), mild AD (N = 31), and nondemented control subjects (N = 26), and two pilot studies of 33 total patients with AD (N = 19) and control (N = 14) subjects were performed. We carried out biochemical assays to measure oligomeric tau from CSF of these patients with various degrees of cognitive impairment as well as cognitively normal controls. RESULTS Using a highly reproducible indirect ELISA method, we found elevated levels of tau oligomers in AD patients compared to age-matched controls. Western blot analysis confirmed the presence of oligomeric forms of tau in CSF. In addition, the ratio of oligomeric to total tau increased in the order: moderate to severe AD, mild AD, and controls. CONCLUSION These assays are suitable for the analysis of human CSF samples. These results here suggest that CSF tau oligomer measurements could be optimized and added to the panel of CSF biomarkers for the accurate and early detection of AD.
Collapse
Affiliation(s)
- Urmi Sengupta
- Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexas
- Department of Neurology, and Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexas
| | - Erik Portelius
- Clinical Neurochemistry LaboratoryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at University of GothenburgMölndalSweden
| | - Oskar Hansson
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityLundSweden
- Memory ClinicSkåne University HospitalLund Sweden
| | - Kathleen Farmer
- Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexas
- Department of Neurology, and Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexas
| | - Diana Castillo‐Carranza
- Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexas
- Department of Neurology, and Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexas
| | - Randall Woltjer
- Department of Department of PathologyOregon Health & Science UniversityPortlandOregon
| | - Henrik Zetterberg
- Clinical Neurochemistry LaboratoryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at University of GothenburgMölndalSweden
- Department of Molecular NeuroscienceUCL Institute of NeurologyQueen SquareLondonWC1N 3BGUnited Kingdom
| | - Douglas Galasko
- Department of NeuroscienceUniversity of California San DiegoSan DiagoCalifornia
| | - Kaj Blennow
- Clinical Neurochemistry LaboratoryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at University of GothenburgMölndalSweden
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexas
- Department of Neurology, and Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexas
| |
Collapse
|
161
|
MultiTEP platform-based DNA epitope vaccine targeting N-terminus of tau induces strong immune responses and reduces tau pathology in THY-Tau22 mice. Vaccine 2017; 35:2015-2024. [PMID: 28320590 DOI: 10.1016/j.vaccine.2017.03.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/31/2017] [Accepted: 03/08/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND By the time clinical symptoms of Alzheimer's disease (AD) manifest in patients there is already substantial tau pathology in the brain. Recent evidence also suggests that tau pathology can become self-propagating, further accelerating disease progression. Over the last decade several groups have tested the efficacy of protein-based anti-tau immunotherapeutics in various animal models of tauopathy. Here we report on the immunological and therapeutic potency of the first anti-tau DNA vaccine based on the MultiTEP platform, AV-1980D, in THY-Tau22 transgenic mice. METHODS Starting at 3months of age, mice were immunized intramuscularly with AV-1980D vaccine targeting a tau B cell epitope spanning aa2-18 followed by electroporation (EP). Humoral and cellular immune responses in vaccinated animals were analyzed by ELISA and ELISpot, respectively. Neuropathological changes in the brains of experimental and control mice were then analyzed by biochemical (WB and ELISA) and immunohistochemical (IHC) methods at 9months of age. RESULTS EP-mediated AV-1980D vaccinations of THY-Tau22 mice induced activation of Th cells specific to the MultiTEP vaccine platform and triggered robust humoral immunity response specific to tau. Importantly, no activation of potentially harmful autoreactive Th cell responses specific to endogenous tau species was detected. The maximum titers of anti-tau antibodies were reached after two immunizations and remained slightly lower, but steady during five subsequent monthly immunizations. Vaccinations with AV-1980D followed by EP significantly reduced total tau and pS199 and AT180 phosphorylated tau levels in the brains extracts of vaccinated mice, but produced on subtle non-significant effects on other phosphorylated tau species. CONCLUSIONS These data demonstrate that MultiTEP-based DNA epitope vaccination targeting the N-terminus of tau is highly immunogenic and therapeutically potent in the THY-Tau22 mouse model of tauopathy and indicate that EP-mediated DNA immunization is an attractive alternative to protein-based adjuvanted vaccines for inducing high concentrations of anti-tau antibodies.
Collapse
|
162
|
The release and trans-synaptic transmission of Tau via exosomes. Mol Neurodegener 2017; 12:5. [PMID: 28086931 PMCID: PMC5237256 DOI: 10.1186/s13024-016-0143-y] [Citation(s) in RCA: 488] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/16/2016] [Indexed: 01/08/2023] Open
Abstract
Background Tau pathology in AD spreads in a hierarchical pattern, whereby it first appears in the entorhinal cortex, then spreads to the hippocampus and later to the surrounding areas. Based on this sequential appearance, AD can be classified into six stages (“Braak stages”). The mechanisms and agents underlying the progression of Tau pathology are a matter of debate. Emerging evidence indicates that the propagation of Tau pathology may be due to the transmission of Tau protein, but the underlying pathways and Tau species are not well understood. In this study we investigated the question of Tau spreading via small extracellular vesicles called exosomes. Methods Exosomes from different sources were analyzed by biochemical methods and electron microscopy (EM) and cryo-EM. Microfluidic devices that allow the culture of cell populations in different compartments were used to investigate the spreading of Tau. Results We show that Tau protein is released by cultured primary neurons or by N2a cells overexpressing different Tau constructs via exosomes. Neuron-derived exosomal Tau is hypo-phosphorylated, compared with cytosolic Tau. Depolarization of neurons promotes release of Tau-containing exosomes, highlighting the importance of neuronal activity. Using microfluidic devices we show that exosomes mediate trans-neuronal transfer of Tau depending on synaptic connectivity. Tau spreading is achieved by direct transmission of exosomes between neurons. In organotypic hippocampal slices, Tau-containing exosomes in conditioned medium are taken up by neurons and microglia, not astrocytes. In N2a cells, Tau assemblies are released via exosomes. They can induce inclusions of other Tau molecules in N2a cells expressing mutant human Tau. We also studied exosomes from cerebrospinal fluid in AD and control subjects containing monomeric and oligomeric Tau. Split-luciferase complementation reveals that exosomes from CSF can promote Tau aggregation in cultured cells. Conclusion Our study demonstrates that exosomes contribute to trans-synaptic Tau transmission, and thus offer new approches to control the spreading of pathology in AD and other tauopathies. Electronic supplementary material The online version of this article (doi:10.1186/s13024-016-0143-y) contains supplementary material, which is available to authorized users.
Collapse
|
163
|
Gerson JE, Sengupta U, Kayed R. Tau Oligomers as Pathogenic Seeds: Preparation and Propagation In Vitro and In Vivo. Methods Mol Biol 2017; 1523:141-157. [PMID: 27975249 DOI: 10.1007/978-1-4939-6598-4_9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Tau oligomers have been shown to be the main toxic tau species in a number of neurodegenerative disorders. In order to study tau oligomers both in vitro and in vivo, we have established methods for the reliable preparation, isolation, and detection of tau oligomers. Methods for the seeding of tau oligomers, isolation of tau oligomers from tissue, and detection of tau oligomers using tau oligomer-specific antibodies by biochemical and immunohistochemical methods are detailed below.
Collapse
Affiliation(s)
- Julia E Gerson
- George P. and Cynthia Woods Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Departments of Neurology, and Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555-1045, USA
| | - Urmi Sengupta
- George P. and Cynthia Woods Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Departments of Neurology, and Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555-1045, USA
| | - Rakez Kayed
- George P. and Cynthia Woods Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Departments of Neurology, and Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
- University of Texas Medical Branch, 301 University Boulevard, Medical Research Building, Room 10.138C, Galveston, TX, 77555-1045, USA.
| |
Collapse
|
164
|
Petry FR, Nicholls SB, Hébert SS, Planel E. A Simple Method to Avoid Nonspecific Signal When Using Monoclonal Anti-Tau Antibodies in Western Blotting of Mouse Brain Proteins. Methods Mol Biol 2017; 1523:263-272. [PMID: 27975255 DOI: 10.1007/978-1-4939-6598-4_15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In Alzheimer's disease and other tauopathies, tau displays several abnormal post-translation modifications such as hyperphosphorylation, truncation, conformation, and oligomerization. Mouse monoclonal antibodies have been raised against such tau modifications for research, diagnostic, and therapeutic purposes. However, many of these primary antibodies are at risk of giving nonspecific signals in common Western blotting procedures. Not because they are unspecific, but because the secondary antibodies used to detect them will also detect the heavy chain of endogenous mouse immunoglobulins (Igs), and give a nonspecific signal at the same molecular weight than tau protein (around 50 kDa). Here, we propose the use of anti-light chain secondary antibodies as a simple and efficient technique to prevent nonspecific Igs signals at around 50 kDa. We demonstrate the efficacy of this method by removing artifactual signals when using monoclonal antibodies directed at tau phosphorylation (AT100, 12E8, AT270), tau truncation (TauC3), tau oligomerization (TOMA), or tau abnormal conformation (Alz50), in wild-type, 3×Tg-AD, and tau knockout mice.
Collapse
Affiliation(s)
- Franck R Petry
- Département de psychiatrie et neurosciences, Université Laval, Québec, QC, Canada
| | - Samantha B Nicholls
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Alzheimer's Disease Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Sébastien S Hébert
- Département de psychiatrie et neurosciences, Université Laval, Québec, QC, Canada
- Centre de Recherche du CHU de Québec, Neurosciences, Québec, QC, Canada
| | - Emmanuel Planel
- Département de psychiatrie et neurosciences, Université Laval, Québec, QC, Canada.
- Centre de Recherche du CHU de Québec, Neurosciences, Québec, QC, Canada.
- Centre Hospitalier de l'Université Laval (CHUL), P0-9800, 2705 Boulevard Laurier, Québec, QC, Canada, G1V 4G2.
| |
Collapse
|
165
|
Nilson AN, English KC, Gerson JE, Barton Whittle T, Nicolas Crain C, Xue J, Sengupta U, Castillo-Carranza DL, Zhang W, Gupta P, Kayed R. Tau Oligomers Associate with Inflammation in the Brain and Retina of Tauopathy Mice and in Neurodegenerative Diseases. J Alzheimers Dis 2017; 55:1083-1099. [PMID: 27716675 PMCID: PMC5147514 DOI: 10.3233/jad-160912] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2016] [Indexed: 12/13/2022]
Abstract
It is well-established that inflammation plays an important role in Alzheimer's disease (AD) and frontotemporal lobar dementia (FTLD). Inflammation and synapse loss occur in disease prior to the formation of larger aggregates, but the contribution of tau to inflammation has not yet been thoroughly investigated. Tau pathologically aggregates to form large fibrillar structures known as tangles. However, evidence suggests that smaller soluble aggregates, called oligomers, are the most toxic species and form prior to tangles. Furthermore, tau oligomers can spread to neighboring cells and between anatomically connected brain regions. In addition, recent evidence suggests that inspecting the retina may be a window to brain pathology. We hypothesized that there is a relationship between tau oligomers and inflammation, which are hallmarks of early disease. We conducted immunofluorescence and biochemical analyses on tauopathy mice, FTLD, and AD subjects. We showed that oligomers co-localize with astrocytes, microglia, and HMGB1, a pro-inflammatory cytokine. Additionally, we show that tau oligomers are present in the retina and are associated with inflammatory cells suggesting that the retina may be a valid non-invasive biomarker for brain pathology. These results suggest that there may be a toxic relationship between tau oligomers and inflammation. Therefore, the ability of tau oligomers to spread may initiate a feed-forward cycle in which tau oligomers induce inflammation, leading to neuronal damage, and thus more inflammation. Further mechanistic studies are warranted in order to understand this relationship, which may have critical implications for improving the treatment of tauopathies.
Collapse
Affiliation(s)
- Ashley N. Nilson
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Kelsey C. English
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Julia E. Gerson
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - T. Barton Whittle
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - C. Nicolas Crain
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Judy Xue
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Urmi Sengupta
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Diana L. Castillo-Carranza
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Wenbo Zhang
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Praveena Gupta
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
166
|
Abstract
Alzheimer’s disease (AD) is characterised by a progressive loss of cognitive functions. Histopathologically, AD is defined by the presence of extracellular amyloid plaques containing Aβ and intracellular neurofibrillary tangles composed of hyperphosphorylated tau proteins. According to the now well-accepted amyloid cascade hypothesis is the Aβ pathology the primary driving force of AD pathogenesis, which then induces changes in tau protein leading to a neurodegenerative cascade during the progression of disease. Since many earlier drug trials aiming at preventing Aβ pathology failed to demonstrate efficacy, tau and microtubules have come into focus as prominent downstream targets. The article aims to develop the current concept of the involvement of tau in the neurodegenerative triad of synaptic loss, cell death and dendritic simplification. The function of tau as a microtubule-associated protein and versatile interaction partner will then be introduced and the rationale and progress of current tau-directed therapy will be discussed in the biological context.
Collapse
Affiliation(s)
- Lidia Bakota
- Department of Neurobiology, University of Osnabrück, Barbarastrasse 11, 49076, Osnabrück, Germany
| | - Roland Brandt
- Department of Neurobiology, University of Osnabrück, Barbarastrasse 11, 49076, Osnabrück, Germany.
| |
Collapse
|
167
|
Seripa D, Solfrizzi V, Imbimbo BP, Daniele A, Santamato A, Lozupone M, Zuliani G, Greco A, Logroscino G, Panza F. Tau-directed approaches for the treatment of Alzheimer's disease: focus on leuco-methylthioninium. Expert Rev Neurother 2016; 16:259-77. [PMID: 26822031 DOI: 10.1586/14737175.2016.1140039] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Small molecular weight compounds able to inhibit formation of tau oligomers and fibrils have already been tested for Alzheimer's disease (AD) treatment. The most advanced tau aggregation inhibitor (TAI) is methylthioninium (MT), a drug existing in equilibrium between a reduced (leuco-methylthioninium) and oxidized form (MT(+)). MT chloride (also known as methylene blue) was investigated in a 24-week Phase II study in 321 mild-to-moderate AD patients at the doses of 69, 138, and 228 mg/day. This trial failed to show significant positive effects of MT in the overall patient population. The dose of 138 mg/day showed potential benefits on cognitive performance of moderately affected patients and cerebral blood flow in mildly affected patients. A follow-up compound (TRx0237) claimed to be more bioavailable and less toxic than MT, is now being developed. Phase III clinical trials on this novel TAI in AD and in the behavioral variant of frontotemporal dementia are underway.
Collapse
Affiliation(s)
- Davide Seripa
- a Geriatric Unit & Laboratory of Gerontology and Geriatrics, Department of Medical Sciences , IRCCS 'Casa Sollievo della Sofferenza' , San Giovanni Rotondo , Foggia , Italy
| | - Vincenzo Solfrizzi
- b Geriatric Medicine-Memory Unit and Rare Disease Centre , University of Bari Aldo Moro , Bari , Italy
| | - Bruno P Imbimbo
- c Research & Development Department , Chiesi Farmaceutici , Parma , Italy
| | - Antonio Daniele
- d Institute of Neurology , Catholic University of Sacred Heart , Rome , Italy
| | - Andrea Santamato
- e Physical Medicine and Rehabilitation Section, 'OORR' Hospital , University of Foggia , Foggia , Italy
| | - Madia Lozupone
- f Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs , University of Bari Aldo Moro , Bari , Italy
| | - Giovanni Zuliani
- g Department of Medical Science, Section of Internal and Cardiopulmonary Medicine , University of Ferrara
| | - Antonio Greco
- a Geriatric Unit & Laboratory of Gerontology and Geriatrics, Department of Medical Sciences , IRCCS 'Casa Sollievo della Sofferenza' , San Giovanni Rotondo , Foggia , Italy
| | - Giancarlo Logroscino
- f Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs , University of Bari Aldo Moro , Bari , Italy.,h Department of Clinical Research in Neurology , University of Bari Aldo Moro, 'Pia Fondazione Cardinale G. Panico' , Tricase , Lecce , Italy
| | - Francesco Panza
- a Geriatric Unit & Laboratory of Gerontology and Geriatrics, Department of Medical Sciences , IRCCS 'Casa Sollievo della Sofferenza' , San Giovanni Rotondo , Foggia , Italy.,f Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs , University of Bari Aldo Moro , Bari , Italy.,h Department of Clinical Research in Neurology , University of Bari Aldo Moro, 'Pia Fondazione Cardinale G. Panico' , Tricase , Lecce , Italy
| |
Collapse
|
168
|
Cox K, Combs B, Abdelmesih B, Morfini G, Brady ST, Kanaan NM. Analysis of isoform-specific tau aggregates suggests a common toxic mechanism involving similar pathological conformations and axonal transport inhibition. Neurobiol Aging 2016; 47:113-126. [PMID: 27574109 PMCID: PMC5075521 DOI: 10.1016/j.neurobiolaging.2016.07.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/01/2016] [Accepted: 07/21/2016] [Indexed: 12/14/2022]
Abstract
Misfolded tau proteins are characteristic of tauopathies, but the isoform composition of tau inclusions varies by tauopathy. Using aggregates of the longest tau isoform (containing 4 microtubule-binding repeats and 4-repeat tau), we recently described a direct mechanism of toxicity that involves exposure of the N-terminal phosphatase-activating domain (PAD) in tau, which triggers a signaling pathway that disrupts axonal transport. However, the impact of aggregation on PAD exposure for other tau isoforms was unexplored. Here, results from immunochemical assays indicate that aggregation-induced increases in PAD exposure and oligomerization are common features among all tau isoforms. The extent of PAD exposure and oligomerization was larger for tau aggregates composed of 4-repeat isoforms compared with those made of 3-repeat isoforms. Most important, aggregates of all isoforms exhibited enough PAD exposure to significantly impair axonal transport in the squid axoplasm. We also show that PAD exposure and oligomerization represent common pathological characteristics in multiple tauopathies. Collectively, these results suggest a mechanism of toxicity common to each tau isoform that likely contributes to degeneration in different tauopathies.
Collapse
Affiliation(s)
- Kristine Cox
- Department of Translational Science and Molecular Medicine, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA; Marine Biological Laboratory, Woods Hole, MA, USA; California National Primate Research Center, University of California, Davis, CA, USA
| | - Benjamin Combs
- Department of Translational Science and Molecular Medicine, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA; Marine Biological Laboratory, Woods Hole, MA, USA
| | | | - Gerardo Morfini
- Marine Biological Laboratory, Woods Hole, MA, USA; Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Scott T Brady
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA; Marine Biological Laboratory, Woods Hole, MA, USA
| | - Nicholas M Kanaan
- Department of Translational Science and Molecular Medicine, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA; Neuroscience Program, Michigan State University, East Lansing, MI, USA; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI, USA.
| |
Collapse
|
169
|
Naturally Occurring Autoantibodies against Tau Protein Are Reduced in Parkinson's Disease Dementia. PLoS One 2016; 11:e0164953. [PMID: 27802290 PMCID: PMC5089716 DOI: 10.1371/journal.pone.0164953] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/04/2016] [Indexed: 11/23/2022] Open
Abstract
Background and Objective Altered levels of naturally occurring autoantibodies (nAbs) against disease-associated neuronal proteins have been reported for neurodegenerative diseases, such as Alzheimer's (AD) and Parkinson's disease (PD). Recent histopathologic studies suggest a contribution of both Lewy body- and AD-related pathology to Parkinson's disease dementia (PDD). Therefore, we explored nAbs against alpha-synuclein (αS), tau and β-amyloid (Aβ) in PDD compared to cognitively normal PD patients. Materials and Methods We established three different ELISAs to quantify the nAbs-tau, nAbs-αS, and nAbs-Aβ levels and avidity towards their specific antigen in serum samples of 18 non-demented (PDND) and 18 demented PD patients (PDD), which were taken from an ongoing multi-center cohort study (DEMPARK/LANDSCAPE). Results PDD patients had significantly decreased nAbs-tau serum levels compared to PDND patients (p = 0.007), whereas the serum titers of nAbs-αS and nAbs-Aβ were unchanged. For all three nAbs, no significant differences in avidity were found between PDD and PDND cohorts. However, within both patient groups, nAbs-tau showed lowest avidity to their antigen, followed by nAbs-αS, and nAbs-Aβ. Though, due to a high interassay coefficient of variability and the exclusion of many samples below the limit of detection, conclusions for nAbs-Aβ are only conditionally possible. Conclusion We detected a significantly decreased nAbs-tau serum level in PDD patients, indicating a potential linkage between nAbs-tau serum titer and cognitive deficits in PD. Thus, further investigation in larger samples is justified to confirm our findings.
Collapse
|
170
|
Gerson JE, Mudher A, Kayed R. Potential mechanisms and implications for the formation of tau oligomeric strains. Crit Rev Biochem Mol Biol 2016; 51:482-496. [PMID: 27650389 PMCID: PMC5285467 DOI: 10.1080/10409238.2016.1226251] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The culmination of many years of increasing research into the toxicity of tau aggregation in neurodegenerative disease has led to the consensus that soluble, oligomeric forms of tau are likely the most toxic entities in disease. While tauopathies overlap in the presence of tau pathology, each disease has a unique combination of symptoms and pathological features; however, most study into tau has grouped tau oligomers and studied them as a homogenous population. Established evidence from the prion field combined with the most recent tau and amyloidogenic protein research suggests that tau is a prion-like protein, capable of seeding the spread of pathology throughout the brain. Thus, it is likely that tau may also form prion-like strains or diverse conformational structures that may differ by disease and underlie some of the differences in symptoms and pathology in neurodegenerative tauopathies. The development of techniques and new technology for the detection of tau oligomeric strains may, therefore, lead to more efficacious diagnostic and treatment strategies for neurodegenerative disease. [Formula: see text].
Collapse
Affiliation(s)
- Julia E. Gerson
- George P. and Cynthia Woods Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555-1045, USA
- Departments of Neurology, and Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-1045, USA
| | - Amrit Mudher
- Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Rakez Kayed
- George P. and Cynthia Woods Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555-1045, USA
- Departments of Neurology, and Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-1045, USA
| |
Collapse
|
171
|
Congdon EE, Lin Y, Rajamohamedsait HB, Shamir DB, Krishnaswamy S, Rajamohamedsait WJ, Rasool S, Gonzalez V, Levenga J, Gu J, Hoeffer C, Sigurdsson EM. Affinity of Tau antibodies for solubilized pathological Tau species but not their immunogen or insoluble Tau aggregates predicts in vivo and ex vivo efficacy. Mol Neurodegener 2016; 11:62. [PMID: 27578006 PMCID: PMC5006503 DOI: 10.1186/s13024-016-0126-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/04/2016] [Indexed: 11/10/2022] Open
Abstract
Background A few tau immunotherapies are now in clinical trials with several more likely to be initiated in the near future. A priori, it can be anticipated that an antibody which broadly recognizes various pathological tau aggregates with high affinity would have the ideal therapeutic properties. Tau antibodies 4E6 and 6B2, raised against the same epitope region but of varying specificity and affinity, were tested for acutely improving cognition and reducing tau pathology in transgenic tauopathy mice and neuronal cultures. Results Surprisingly, we here show that one antibody, 4E6, which has low affinity for most forms of tau acutely improved cognition and reduced soluble phospho-tau, whereas another antibody, 6B2, which has high affinity for various tau species was ineffective. Concurrently, we confirmed and clarified these efficacy differences in an ex vivo model of tauopathy. Alzheimer’s paired helical filaments (PHF) were toxic to the neurons and increased tau levels in remaining neurons. Both toxicity and tau seeding were prevented by 4E6 but not by 6B2. Furthermore, 4E6 reduced PHF spreading between neurons. Interestingly, 4E6’s efficacy relates to its high affinity binding to solubilized PHF, whereas the ineffective 6B2 binds mainly to aggregated PHF. Blocking 4E6's uptake into neurons prevented its protective effects if the antibody was administered after PHF had been internalized. When 4E6 and PHF were administered at the same time, the antibody was protective extracellularly. Conclusions Overall, these findings indicate that high antibody affinity for solubilized PHF predicts efficacy, and that acute antibody-mediated improvement in cognition relates to clearance of soluble phospho-tau. Importantly, both intra- and extracellular clearance pathways are in play. Together, these results have major implications for understanding the pathogenesis of tauopathies and for development of immunotherapies. Electronic supplementary material The online version of this article (doi:10.1186/s13024-016-0126-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Erin E Congdon
- Departments of Neuroscience and Physiology, New York University School of Medicine, Medical Science Building, MSB459, 550 First Avenue, New York, NY, 10016, USA
| | - Yan Lin
- Departments of Neuroscience and Physiology, New York University School of Medicine, Medical Science Building, MSB459, 550 First Avenue, New York, NY, 10016, USA
| | - Hameetha B Rajamohamedsait
- Departments of Neuroscience and Physiology, New York University School of Medicine, Medical Science Building, MSB459, 550 First Avenue, New York, NY, 10016, USA
| | - Dov B Shamir
- Departments of Neuroscience and Physiology, New York University School of Medicine, Medical Science Building, MSB459, 550 First Avenue, New York, NY, 10016, USA
| | - Senthilkumar Krishnaswamy
- Departments of Neuroscience and Physiology, New York University School of Medicine, Medical Science Building, MSB459, 550 First Avenue, New York, NY, 10016, USA
| | - Wajitha J Rajamohamedsait
- Departments of Neuroscience and Physiology, New York University School of Medicine, Medical Science Building, MSB459, 550 First Avenue, New York, NY, 10016, USA
| | - Suhail Rasool
- Departments of Neuroscience and Physiology, New York University School of Medicine, Medical Science Building, MSB459, 550 First Avenue, New York, NY, 10016, USA
| | - Veronica Gonzalez
- Departments of Neuroscience and Physiology, New York University School of Medicine, Medical Science Building, MSB459, 550 First Avenue, New York, NY, 10016, USA
| | - Josien Levenga
- Departments of Neuroscience and Physiology, New York University School of Medicine, Medical Science Building, MSB459, 550 First Avenue, New York, NY, 10016, USA.,Department of Integrative Physiology, Institute for Behavioral Genetics, University of Colorado, Boulder, CO, 80309, USA
| | - Jiaping Gu
- Departments of Neuroscience and Physiology, New York University School of Medicine, Medical Science Building, MSB459, 550 First Avenue, New York, NY, 10016, USA
| | - Charles Hoeffer
- Departments of Neuroscience and Physiology, New York University School of Medicine, Medical Science Building, MSB459, 550 First Avenue, New York, NY, 10016, USA.,Department of Integrative Physiology, Institute for Behavioral Genetics, University of Colorado, Boulder, CO, 80309, USA
| | - Einar M Sigurdsson
- Departments of Neuroscience and Physiology, New York University School of Medicine, Medical Science Building, MSB459, 550 First Avenue, New York, NY, 10016, USA. .,Departments of Psychiatry, New York University School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
172
|
Levenson JM, Schroeter S, Carroll JC, Cullen V, Asp E, Proschitsky M, Chung CHY, Gilead S, Nadeem M, Dodiya HB, Shoaga S, Mufson EJ, Tsubery H, Krishnan R, Wright J, Solomon B, Fisher R, Gannon KS. NPT088 reduces both amyloid-β and tau pathologies in transgenic mice. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2016; 2:141-155. [PMID: 29067301 PMCID: PMC5651359 DOI: 10.1016/j.trci.2016.06.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Introduction Alzheimer's disease (AD) is characterized by appearance of both extracellular senile plaques and intracellular neurofibrillary tangles, comprised of aggregates of misfolded amyloid-β (Aβ) and hyper-phosphorylated tau, respectively. In a previous study, we demonstrated that g3p, a capsid protein from bacteriophage M13, binds to and remodels misfolded aggregates of proteins that assume an amyloid conformation. We engineered a fusion protein (“NPT088”) consisting of the active fragment of g3p and human-IgG1-Fc. Methods Aged Tg2576 mice or rTg4510 mice received NPT088 weekly via IP injection. Cognitive and/or functional motor endpoints were monitored during dosing. Pathology was quantified biochemically and immunohistochemically. Results NPT088-lowered Aβ plaque and improved cognitive performance of aged Tg2576 mice. Moreover, NPT088 reduced phospho-tau pathology, reduced brain atrophy, and improved cognition in rTg4510 mice. Discussion These observations establish NPT088 as a novel therapeutic approach and potential drug class that targets both Aβ and tau, the hallmark pathologies of AD. NPT088 binds to and remodels misfolded aggregates of both Aβ and tau. Systemic administration of NPT088 improves cognition, reduces levels of Aβ42 and lowers fibrillar Aβ plaque in aged Tg2576 hAPP mice. NPT088 does not increase levels of Aβ in CSF. Systemic administration of NPT088 improves cognition, improves motor function, reduces phospho-tau and reduces brain atrophy in rTg4510 tau mice.
Collapse
Affiliation(s)
| | | | | | | | - Eva Asp
- NeuroPhage Pharmaceuticals, Inc., Cambridge, MA, USA
| | | | | | - Sharon Gilead
- NeuroPhage Pharmaceuticals, Inc., Cambridge, MA, USA
| | - Muhammad Nadeem
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Hemraj B Dodiya
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Shadiyat Shoaga
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Elliott J Mufson
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Haim Tsubery
- NeuroPhage Pharmaceuticals, Inc., Cambridge, MA, USA
| | | | - Jason Wright
- NeuroPhage Pharmaceuticals, Inc., Cambridge, MA, USA
| | - Beka Solomon
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | | | | |
Collapse
|
173
|
Tsai RM, Boxer AL. Therapy and clinical trials in frontotemporal dementia: past, present, and future. J Neurochem 2016; 138 Suppl 1:211-21. [PMID: 27306957 DOI: 10.1111/jnc.13640] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/06/2016] [Accepted: 04/08/2016] [Indexed: 12/12/2022]
Abstract
Frontotemporal dementia (FTD) is a common form of dementia with heterogeneous clinical presentations and distinct clinical syndromes. This article will review currently available therapies for FTD, its related disorders and their clinical evidence. It will also discuss recent advancements in FTD pathophysiology, treatment development, biomarker advancement and their relation to recently completed or currently ongoing clinical trials as well as future implications. Frontotemporal dementia (FTD) is a type of dementia with distinct clinical syndromes. Current treatments involve off-label use of medications for symptomatic management and cannot modify disease course. Advancements in FTD pathophysiology, genetics, and biomarkers have led to development of small molecules targeting the underlying pathology in hopes of achieving a disease-modifying effect. This article will review current therapies for FTD, discuss advancements in FTD pathophysiology, therapy development, biomarker advancement, their relation to recent clinical trials and future implications. This article is part of the Frontotemporal Dementia special issue.
Collapse
Affiliation(s)
- Richard M Tsai
- Assistant Adjunct Professor of Neurology, University of California San Francisco Department of Neurology, San Francisco, California, USA
| | - Adam L Boxer
- Associate Professor of Neurology, University of California San Francisco Department of Neurology, San Francisco, California, USA
| |
Collapse
|
174
|
Strømland Ø, Jakubec M, Furse S, Halskau Ø. Detection of misfolded protein aggregates from a clinical perspective. J Clin Transl Res 2016; 2:11-26. [PMID: 30873457 PMCID: PMC6410640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 03/22/2016] [Accepted: 03/22/2016] [Indexed: 11/29/2022] Open
Abstract
Neurodegenerative Protein Misfolding Diseases (PMDs), such as Alzheimer's (AD), Parkinson's (PD) and prion diseases, are generally difficult to diagnose before irreversible damage to the central nervous system damage has occurred. Detection of the misfolded proteins that ultimately lead to these conditions offers a means for providing early detection and diagnosis of this class of disease. In this review, we discuss recent developments surrounding protein misfolding diseases with emphasis on the cytotoxic oligomers implicated in their aetiology. We also discuss the relationship of misfolded proteins with biological membranes. Finally, we discuss how far techniques for providing early diagnoses for PMDs have advanced and describe promising clinical approaches. We conclude that antibodies with specificity towards oligomeric species of AD and PD and lectins with specificity for particular glycosylation, show promise. However, it is not clear which approach may yield a reliable clinical test first. Relevance for patients: Individuals suffering from protein misfolding diseases will likely benefit form earlier, less- or even non-invasive diagnosis techniques. The current state and possible future directions for these are subject of this review.
Collapse
Affiliation(s)
- Øyvind Strømland
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Martin Jakubec
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Samuel Furse
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Øyvind Halskau
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| |
Collapse
|
175
|
Marciani DJ. A retrospective analysis of the Alzheimer's disease vaccine progress - The critical need for new development strategies. J Neurochem 2016; 137:687-700. [PMID: 26990863 DOI: 10.1111/jnc.13608] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 12/16/2022]
Abstract
The promising results obtained with aducanumab and solanezumab against Alzheimer's disease (AD) strengthen the vaccine approach to prevent AD, despite of the many clinical setbacks. It has been problematic to use conjugated peptides with Th1/Th2 adjuvants to induce immune responses against conformational epitopes formed by Aβ oligomers, which is critical to induce protective antibodies. Hence, vaccination should mimic natural immunity by using whole or if possible conjugated antigens, but biasing the response to Th2 with anti-inflammatory adjuvants. Also, selection of the carrier and cross-linking agents is important to prevent suppression of the immune response against the antigen. That certain compounds having phosphorylcholine or fucose induce a sole Th2 immunity would allow antigens with T-cell epitopes without inflammatory autoimmune reactions to be used. Another immunization method is DNA vaccines combined with antigenic ones, which favors the clonal selection and expansion of high affinity antibodies needed for immune protection, but this also requires Th2 immunity. Since AD transgenic mouse models have limited value for immunogen selection as shown by the clinical studies, screening may require the use of validated antibodies and biophysical methods to identify the antigens that would be most likely recognized by the human immune system and thus capable to stimulate a protective antibody response. To induce an anti-Alzheimer's disease protective immunity and prevent possible damage triggered by antigens having B-cell epitopes-only, whole antigens might be used; while inducing Th2 immunity with sole anti-inflammatory fucose-based adjuvants. This approach would avert a damaging systemic inflammatory immunity and the suppression of immunoresponse against the antigen because of carrier and cross-linkers; immune requirements that extend to DNA vaccines.
Collapse
|
176
|
Ando K, Maruko-Otake A, Ohtake Y, Hayashishita M, Sekiya M, Iijima KM. Stabilization of Microtubule-Unbound Tau via Tau Phosphorylation at Ser262/356 by Par-1/MARK Contributes to Augmentation of AD-Related Phosphorylation and Aβ42-Induced Tau Toxicity. PLoS Genet 2016; 12:e1005917. [PMID: 27023670 PMCID: PMC4811436 DOI: 10.1371/journal.pgen.1005917] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/15/2016] [Indexed: 12/31/2022] Open
Abstract
Abnormal accumulation of the microtubule-interacting protein tau is associated with neurodegenerative diseases including Alzheimer’s disease (AD). β-amyloid (Aβ) lies upstream of abnormal tau behavior, including detachment from microtubules, phosphorylation at several disease-specific sites, and self-aggregation into toxic tau species in AD brains. To prevent the cascade of events leading to neurodegeneration in AD, it is essential to elucidate the mechanisms underlying the initial events of tau mismetabolism. Currently, however, these mechanisms remain unclear. In this study, using transgenic Drosophila co-expressing human tau and Aβ, we found that tau phosphorylation at AD-related Ser262/356 stabilized microtubule-unbound tau in the early phase of tau mismetabolism, leading to neurodegeneration. Aβ increased the level of tau detached from microtubules, independent of the phosphorylation status at GSK3-targeted SP/TP sites. Such mislocalized tau proteins, especially the less phosphorylated species, were stabilized by phosphorylation at Ser262/356 via PAR-1/MARK. Levels of Ser262 phosphorylation were increased by Aβ42, and blocking this stabilization of tau suppressed Aβ42-mediated augmentation of tau toxicity and an increase in the levels of tau phosphorylation at the SP/TP site Thr231, suggesting that this process may be involved in AD pathogenesis. In contrast to PAR-1/MARK, blocking tau phosphorylation at SP/TP sites by knockdown of Sgg/GSK3 did not reduce tau levels, suppress tau mislocalization to the cytosol, or diminish Aβ-mediated augmentation of tau toxicity. These results suggest that stabilization of microtubule-unbound tau by phosphorylation at Ser262/356 via the PAR-1/MARK may act in the initial steps of tau mismetabolism in AD pathogenesis, and that such tau species may represent a potential therapeutic target for AD. Alzheimer’s disease (AD) is the most common cause of dementia resulting from progressive neuron loss. Two proteins, β-amyloid (Aβ) and tau, accumulate in AD brains and are involved in AD pathogenesis. In healthy neurons, tau binds to microtubules to regulate its stability; in AD brains, however, tau is detached from microtubules and phosphorylated at multiple sites. Such abnormal tau behavior, which is likely to be triggered by Aβ, results in generation of pathological tau species that mediate neuron loss. However, the detailed mechanisms underlying this event remain incompletely understood. Using transgenic flies expressing human tau and Aβ as a model system, we found that tau phosphorylation at specific AD-related sites stabilized microtubule-unbound tau in the early phase of tau mismetabolism to generate toxic tau species. Moreover, this process is critical for Aβ to promote subsequent tau phosphorylation and neurodegeneration. Our results reveal a critical step in the initiation of tau mismetabolism, and this process may represent a potential therapeutic target for AD.
Collapse
Affiliation(s)
- Kanae Ando
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail: (KA); (KMI)
| | - Akiko Maruko-Otake
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Yosuke Ohtake
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Motoki Hayashishita
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Michiko Sekiya
- Department of Alzheimer’s Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Koichi M. Iijima
- Department of Alzheimer’s Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
- * E-mail: (KA); (KMI)
| |
Collapse
|
177
|
Shamir DB, Rosenqvist N, Rasool S, Pedersen JT, Sigurdsson EM. Internalization of tau antibody and pathological tau protein detected with a flow cytometry multiplexing approach. Alzheimers Dement 2016; 12:1098-1107. [PMID: 27016263 DOI: 10.1016/j.jalz.2016.01.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 01/18/2016] [Accepted: 01/26/2016] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Tau immunotherapy has emerged as a promising approach to clear tau aggregates from the brain. Our previous findings suggest that tau antibodies may act outside and within neurons to promote such clearance. METHODS We have developed an approach using flow cytometry, a human neuroblastoma cell model overexpressing tau with the P301L mutation, and paired helical filament (PHF)-enriched pathologic tau to effectively screen uptake and retention of tau antibodies in conjunction with PHF. RESULTS The flow cytometry approach correlates well with Western blot analysis to detect internalized antibodies in naïve and transfected SH-SY5Y cells (r2 = 0.958, and r2 = 0.968, P = .021 and P = .016, respectively). In transfected cells, more antibodies are taken up/retained as pathologic tau load increases, both under co-treated conditions and when the cells are pretreated with PHF before antibody administration (r2 = 0.999 and r2 = 0.999, P = .013 and P = .011, respectively). DISCUSSION This approach allows rapid in vitro screening of antibody uptake and retention in conjunction with pathologic tau protein before more detailed studies in animals or other more complex model systems.
Collapse
Affiliation(s)
- Dov B Shamir
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | | | - Suhail Rasool
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | | | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA; Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
178
|
Gratuze M, Cisbani G, Cicchetti F, Planel E. Is Huntington's disease a tauopathy? Brain 2016; 139:1014-25. [DOI: 10.1093/brain/aww021] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/08/2016] [Indexed: 11/12/2022] Open
|
179
|
Schroeder SK, Joly-Amado A, Gordon MN, Morgan D. Tau-Directed Immunotherapy: A Promising Strategy for Treating Alzheimer's Disease and Other Tauopathies. J Neuroimmune Pharmacol 2016; 11:9-25. [PMID: 26538351 PMCID: PMC4746105 DOI: 10.1007/s11481-015-9637-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 10/16/2015] [Indexed: 12/14/2022]
Abstract
Immunotherapy directed against tau is a promising treatment strategy for Alzheimer's Disease (AD) and tauopathies. We review initial studies on tau-directed immunotherapy, and present data from our laboratory testing antibodies using the rTg4510 mouse model, which deposits tau in forebrain neurons. Numerous antibodies have been tested for their efficacy in treating both pathology and cognitive function, in different mouse models, by different routes of administration, and at different ages or durations. We report, here, that the conformation-specific antibody MC-1 produces some degree of improvement to both cognition and pathology in rTg4510. Pathological improvements as measured by Gallyas staining for fully formed tangles and phosphorylated tau appeared 4 days after intracranial injection into the hippocampus. We also examined markers for microglial activation, which did not appear impacted from treatment. Behavioral effects were noted after continuous infusion of antibodies into the lateral ventricle for approximately 2 weeks. We examined basic motor skills, which were not impacted by treatment, but did note cognitive improvements with both novel object and radial arm water maze testing. Our results support earlier reports in the initial review presented here, and collectively show promise for this strategy of treatment. The general absence of extracellular tau deposits may avoid the opsonization and phagocytosis mechanisms activated by antibodies against amyloid, and make anti tau approaches a safer method of immunotherapy for Alzheimer's disease.
Collapse
Affiliation(s)
- Sulana K Schroeder
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Byrd Alzheimer's Institute, 4001 E. Fletcher Avenue, Tampa, FL, 33613, USA
| | - Aurelie Joly-Amado
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Byrd Alzheimer's Institute, 4001 E. Fletcher Avenue, Tampa, FL, 33613, USA
| | - Marcia N Gordon
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Byrd Alzheimer's Institute, 4001 E. Fletcher Avenue, Tampa, FL, 33613, USA
| | - Dave Morgan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Byrd Alzheimer's Institute, 4001 E. Fletcher Avenue, Tampa, FL, 33613, USA.
| |
Collapse
|
180
|
Valera E, Spencer B, Masliah E. Immunotherapeutic Approaches Targeting Amyloid-β, α-Synuclein, and Tau for the Treatment of Neurodegenerative Disorders. Neurotherapeutics 2016; 13:179-89. [PMID: 26494242 PMCID: PMC4720672 DOI: 10.1007/s13311-015-0397-z] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Disease-modifying alternatives are sorely needed for the treatment of neurodegenerative disorders, a group of diseases that afflict approximately 50 million Americans annually. Immunotherapy is one of the most developed approaches in this direction. Vaccination against amyloid-β, α-synuclein, or tau has been extensively explored, specially as the discovery that these proteins may propagate cell-to-cell and be accessible to antibodies when embedded into the plasma membrane or in the extracellular space. Likewise, the use of passive immunization approaches with specific antibodies against abnormal conformations of these proteins has also yielded promising results. The clinical development of immunotherapies for Alzheimer’s disease, Parkinson’s disease, frontotemporal dementia, dementia with Lewy bodies, and other neurodegenerative disorders is a field in constant evolution. Results to date suggest that immunotherapy is a promising therapeutic approach for neurodegenerative diseases that progress with the accumulation and prion-like propagation of toxic protein aggregates. Here we provide an overview of the most novel and relevant immunotherapeutic advances targeting amyloid-β in Alzheimer’s disease, α-synuclein in Alzheimer’s disease and Parkinson’s disease, and tau in Alzheimer’s disease and frontotemporal dementia.
Collapse
Affiliation(s)
- Elvira Valera
- grid.266100.30000000121074242Department of Neurosciences, University of California, La Jolla, San Diego, CA 92093 USA
| | - Brian Spencer
- grid.266100.30000000121074242Department of Neurosciences, University of California, La Jolla, San Diego, CA 92093 USA
| | - Eliezer Masliah
- grid.266100.30000000121074242Department of Neurosciences, University of California, La Jolla, San Diego, CA 92093 USA
- grid.266100.30000000121074242Department of Pathology, University of California, La Jolla, San Diego, CA 92093 USA
| |
Collapse
|
181
|
Lasagna-Reeves CA, Rousseaux MW, Guerrero-Munoz MJ, Vilanova-Velez L, Park J, See L, Jafar-Nejad P, Richman R, Orr HT, Kayed R, Zoghbi HY. Ataxin-1 oligomers induce local spread of pathology and decreasing them by passive immunization slows Spinocerebellar ataxia type 1 phenotypes. eLife 2015; 4. [PMID: 26673892 PMCID: PMC4821792 DOI: 10.7554/elife.10891] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/15/2015] [Indexed: 11/29/2022] Open
Abstract
Previously, we reported that ATXN1 oligomers are the primary drivers of toxicity in Spinocerebellar ataxia type 1 (SCA1; Lasagna-Reeves et al., 2015). Here we report that polyQ ATXN1 oligomers can propagate locally in vivo in mice predisposed to SCA1 following intracerebral oligomeric tissue inoculation. Our data also show that targeting these oligomers with passive immunotherapy leads to some improvement in motor coordination in SCA1 mice and to a modest increase in their life span. These findings provide evidence that oligomer propagation is regionally limited in SCA1 and that immunotherapy targeting extracellular oligomers can mildly modify disease phenotypes. DOI:http://dx.doi.org/10.7554/eLife.10891.001
Collapse
Affiliation(s)
- Cristian A Lasagna-Reeves
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
| | - Maxime Wc Rousseaux
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
| | | | - Luis Vilanova-Velez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
| | - Jeehye Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
| | - Lauren See
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
| | - Paymaan Jafar-Nejad
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
| | - Ronald Richman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States
| | - Harry T Orr
- Institute for Translational Neuroscience, University of Minnesota, Minnesota, United States
| | - Rakez Kayed
- Department of Neurology, University of Texas Medical Branch, Galveston, United States
| | - Huda Y Zoghbi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, United states
| |
Collapse
|
182
|
Bodani RU, Sengupta U, Castillo-Carranza DL, Guerrero-Muñoz MJ, Gerson JE, Rudra J, Kayed R. Antibody against Small Aggregated Peptide Specifically Recognizes Toxic Aβ-42 Oligomers in Alzheimer's Disease. ACS Chem Neurosci 2015; 6:1981-9. [PMID: 26448453 DOI: 10.1021/acschemneuro.5b00231] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Amyloid-beta (Aβ) oligomers have emerged as the most toxic species in Alzheimer's disease (AD) and other amyloid pathologies. Also, Aβ-42 peptide is more aggregation-prone compared to other Aβ isoforms. Thus, we synthesized a small peptide of repeated sequence containing the last three amino acids, Val-40, Ile-41, and Ala-42 of Aβ-42 that was subsequently aggregated and used to generate a novel antibody, VIA. In this study, we examined human AD and Tg2576 mouse brain samples using VIA in combination with other amyloid-specific antibodies and confirmed the specificity of VIA to oligomeric Aβ-42. Moreover, we found that VIA does not recognize classic amyloid plaques composed of fibrillar Aβ or Aβ-40 ex vivo. Since VIA recognizes a distinct epitope specific to Aβ-42 oligomers, it may have broad use for examining the accumulation of these oligomers in AD and other neurodegenerative diseases. VIA may also be used in immunotherapy studies to prevent neurodegenerative effects associated with Aβ-42 oligomers.
Collapse
Affiliation(s)
- Riddhi U. Bodani
- Mitchell Center for Neurodegenerative
Diseases, ‡Departments
of Neurology and Neuroscience and Cell Biology, §Department of Pharmacology
and Toxicology, and ∥Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Urmi Sengupta
- Mitchell Center for Neurodegenerative
Diseases, ‡Departments
of Neurology and Neuroscience and Cell Biology, §Department of Pharmacology
and Toxicology, and ∥Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Diana L. Castillo-Carranza
- Mitchell Center for Neurodegenerative
Diseases, ‡Departments
of Neurology and Neuroscience and Cell Biology, §Department of Pharmacology
and Toxicology, and ∥Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Marcos J. Guerrero-Muñoz
- Mitchell Center for Neurodegenerative
Diseases, ‡Departments
of Neurology and Neuroscience and Cell Biology, §Department of Pharmacology
and Toxicology, and ∥Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Julia E. Gerson
- Mitchell Center for Neurodegenerative
Diseases, ‡Departments
of Neurology and Neuroscience and Cell Biology, §Department of Pharmacology
and Toxicology, and ∥Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jai Rudra
- Mitchell Center for Neurodegenerative
Diseases, ‡Departments
of Neurology and Neuroscience and Cell Biology, §Department of Pharmacology
and Toxicology, and ∥Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative
Diseases, ‡Departments
of Neurology and Neuroscience and Cell Biology, §Department of Pharmacology
and Toxicology, and ∥Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
183
|
Abstract
In 1975, tau protein was isolated as a microtubule-associated factor from the porcine brain. In the previous year, a paired helical filament (PHF) protein had been identified in neurofibrillary tangles in the brains of individuals with Alzheimer disease (AD), but it was not until 1986 that the PHF protein and tau were discovered to be one and the same. In the AD brain, tau was found to be abnormally hyperphosphorylated, and it inhibited rather than promoted in vitro microtubule assembly. Almost 80 disease-causing exonic missense and intronic silent mutations in the tau gene have been found in familial cases of frontotemporal dementia but, to date, no such mutation has been found in AD. The first phase I clinical trial of an active tau immunization vaccine in patients with AD was recently completed. Assays for tau levels in cerebrospinal fluid and plasma are now available, and tau radiotracers for PET are under development. In this article, we provide an overview of the pivotal discoveries in the tau research field over the past 40 years. We also review the current status of the field, including disease mechanisms and therapeutic approaches.
Collapse
Affiliation(s)
- Khalid Iqbal
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Inge Grundke-Iqbal Research Floor, 1050 Forest Hill Road, Staten Island, New York 10314, USA
| | - Fei Liu
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Inge Grundke-Iqbal Research Floor, 1050 Forest Hill Road, Staten Island, New York 10314, USA
| | - Cheng-Xin Gong
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Inge Grundke-Iqbal Research Floor, 1050 Forest Hill Road, Staten Island, New York 10314, USA
| |
Collapse
|
184
|
Abstract
Tau is a microtubule-associated protein that has a role in stabilizing neuronal microtubules and thus in promoting axonal outgrowth. Structurally, tau is a natively unfolded protein, is highly soluble and shows little tendency for aggregation. However, tau aggregation is characteristic of several neurodegenerative diseases known as tauopathies. The mechanisms underlying tau pathology and tau-mediated neurodegeneration are debated, but considerable progress has been made in the field of tau research in recent years, including the identification of new physiological roles for tau in the brain. Here, we review the expression, post-translational modifications and functions of tau in physiology and in pathophysiology.
Collapse
Affiliation(s)
- Yipeng Wang
- German Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany.,CAESAR Research Center, 53175 Bonn, Germany
| | - Eckhard Mandelkow
- German Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany.,CAESAR Research Center, 53175 Bonn, Germany.,Max Planck Institute for Metabolism Research, Hamburg Outstation, c/o DESY, Hamburg, Germany
| |
Collapse
|
185
|
Cowan CM, Quraishe S, Hands S, Sealey M, Mahajan S, Allan DW, Mudher A. Rescue from tau-induced neuronal dysfunction produces insoluble tau oligomers. Sci Rep 2015; 5:17191. [PMID: 26608845 PMCID: PMC4660438 DOI: 10.1038/srep17191] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 10/12/2015] [Indexed: 12/18/2022] Open
Abstract
Aggregation of highly phosphorylated tau is a hallmark of Alzheimer’s
disease and other tauopathies. Nevertheless, animal models demonstrate that
tau-mediated dysfunction/toxicity may not require large tau aggregates but instead
may be caused by soluble hyper-phosphorylated tau or by small tau oligomers.
Challenging this widely held view, we use multiple techniques to show that insoluble
tau oligomers form in conditions where tau-mediated dysfunction is rescued in
vivo. This shows that tau oligomers are not necessarily always toxic.
Furthermore, their formation correlates with increased tau levels, caused
intriguingly, by either pharmacological or genetic inhibition of tau kinase
glycogen-synthase-kinase-3beta (GSK-3β). Moreover, contrary to common
belief, these tau oligomers were neither highly phosphorylated, and nor did they
contain beta-pleated sheet structure. This may explain their lack of toxicity. Our
study makes the novel observation that tau also forms non-toxic insoluble oligomers
in vivo in addition to toxic oligomers, which have been reported by
others. Whether these are inert or actively protective remains to be established.
Nevertheless, this has wide implications for emerging therapeutic strategies such as
those that target dissolution of tau oligomers as they may be ineffective or even
counterproductive unless they act on the relevant toxic oligomeric tau species.
Collapse
Affiliation(s)
- Catherine M Cowan
- Centre for Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Shmma Quraishe
- Centre for Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Sarah Hands
- Centre for Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Megan Sealey
- Centre for Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Sumeet Mahajan
- Institute of Life Sciences and Department of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Douglas W Allan
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Amritpal Mudher
- Centre for Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
186
|
Li YQ, Tan MS, Yu JT, Tan L. Frontotemporal Lobar Degeneration: Mechanisms and Therapeutic Strategies. Mol Neurobiol 2015; 53:6091-6105. [PMID: 26537902 DOI: 10.1007/s12035-015-9507-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/20/2015] [Indexed: 12/11/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) is characterized by progressive deterioration of frontal and anterior temporal lobes of the brain and often exhibits frontotemporal dementia (FTD) on clinic, in <65-year-old patients at the time of diagnosis. Interdisciplinary approaches combining genetics, molecular and cell biology, and laboratory animal science have revealed some of its potential molecular mechanisms. Although there is still no effective treatment to delay, prevent, and reverse the progression of FTD, emergence of agents targeting molecular mechanisms has been beginning to promote potential pharmaceutical development. Our review summarizes the latest new findings of FTLD and challenges in FTLD therapy.
Collapse
Affiliation(s)
- Ya-Qing Li
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Meng-Shan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China. .,Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA.
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
187
|
Eisele YS, Monteiro C, Fearns C, Encalada SE, Wiseman RL, Powers ET, Kelly JW. Targeting protein aggregation for the treatment of degenerative diseases. Nat Rev Drug Discov 2015; 14:759-80. [PMID: 26338154 PMCID: PMC4628595 DOI: 10.1038/nrd4593] [Citation(s) in RCA: 302] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The aggregation of specific proteins is hypothesized to underlie several degenerative diseases, which are collectively known as amyloid disorders. However, the mechanistic connection between the process of protein aggregation and tissue degeneration is not yet fully understood. Here, we review current and emerging strategies to ameliorate aggregation-associated degenerative disorders, with a focus on disease-modifying strategies that prevent the formation of and/or eliminate protein aggregates. Persuasive pharmacological and genetic evidence now supports protein aggregation as the cause of postmitotic tissue dysfunction or loss. However, a more detailed understanding of the factors that trigger and sustain aggregate formation and of the structure-activity relationships underlying proteotoxicity is needed to develop future disease-modifying therapies.
Collapse
Affiliation(s)
- Yvonne S. Eisele
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Cecilia Monteiro
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Colleen Fearns
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Sandra E. Encalada
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037, USA
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, California 92037, USA
| | - R. Luke Wiseman
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Evan T. Powers
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Jeffery W. Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
188
|
Hromadkova L, Kolarova M, Jankovicova B, Bartos A, Ricny J, Bilkova Z, Ripova D. Identification and characterization of natural antibodies against tau protein in an intravenous immunoglobulin product. J Neuroimmunol 2015; 289:121-9. [PMID: 26616881 DOI: 10.1016/j.jneuroim.2015.10.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/21/2015] [Accepted: 10/24/2015] [Indexed: 12/24/2022]
Abstract
The latest therapeutic approaches to Alzheimer disease are using intravenous immunoglobulin (IVIG) products. Therefore, the detailed characterization of target-specific antibodies naturally occurring in IVIG products is beneficial. We have focused on characterization of antibodies isolated against tau protein, a biomarker of Alzheimer's disease, from Flebogamma IVIG product. The analysis of IgG subclass distribution indicated skewing toward IgG3 in anti-tau-enriched IgG fraction. The evaluation of their reactivity and avidity with several recombinant tau forms was performed by ELISA and blotting techniques. Truncated non-phosphorylated tau protein (amino acids 155-421) demonstrated the highest reactivity and avidity index. We provide the first detailed insight into the reactivity of isolated natural antibodies against tau protein.
Collapse
Affiliation(s)
- Lenka Hromadkova
- Department of Neurobiology, AD Center, National Institute of Mental Health, Klecany, Czech Republic; Faculty of Science, Charles University in Prague, Prague, Czech Republic; Department of Biological and Biochemical Sciences, University of Pardubice, Pardubice, Czech Republic
| | - Michala Kolarova
- Department of Neurobiology, AD Center, National Institute of Mental Health, Klecany, Czech Republic; Third Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.
| | - Barbora Jankovicova
- Department of Biological and Biochemical Sciences, University of Pardubice, Pardubice, Czech Republic
| | - Ales Bartos
- Department of Neurobiology, AD Center, National Institute of Mental Health, Klecany, Czech Republic; Third Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Jan Ricny
- Department of Neurobiology, AD Center, National Institute of Mental Health, Klecany, Czech Republic
| | - Zuzana Bilkova
- Department of Biological and Biochemical Sciences, University of Pardubice, Pardubice, Czech Republic
| | - Daniela Ripova
- Department of Neurobiology, AD Center, National Institute of Mental Health, Klecany, Czech Republic
| |
Collapse
|
189
|
Asai H, Ikezu S, Tsunoda S, Medalla M, Luebke J, Haydar T, Wolozin B, Butovsky O, Kügler S, Ikezu T. Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat Neurosci 2015; 18:1584-93. [PMID: 26436904 DOI: 10.1038/nn.4132] [Citation(s) in RCA: 1200] [Impact Index Per Article: 120.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/08/2015] [Indexed: 12/12/2022]
Abstract
Accumulation of pathological tau protein is a major hallmark of Alzheimer's disease. Tau protein spreads from the entorhinal cortex to the hippocampal region early in the disease. Microglia, the primary phagocytes in the brain, are positively correlated with tau pathology, but their involvement in tau propagation is unknown. We developed an adeno-associated virus-based model exhibiting rapid tau propagation from the entorhinal cortex to the dentate gyrus in 4 weeks. We found that depleting microglia dramatically suppressed the propagation of tau and reduced excitability in the dentate gyrus in this mouse model. Moreover, we demonstrate that microglia spread tau via exosome secretion, and inhibiting exosome synthesis significantly reduced tau propagation in vitro and in vivo. These data suggest that microglia and exosomes contribute to the progression of tauopathy and that the exosome secretion pathway may be a therapeutic target.
Collapse
Affiliation(s)
- Hirohide Asai
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Seiko Ikezu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Satoshi Tsunoda
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Maria Medalla
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jennifer Luebke
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Tarik Haydar
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Benjamin Wolozin
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA.,Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA.,Alzheimer's Disease Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Oleg Butovsky
- Department of Neurology, Center of Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Sebastian Kügler
- Center of Nanoscale Microscopy and Physiology of the Brain at Department of Neurology, University Medicine Göttingen, Göttingen, Germany
| | - Tsuneya Ikezu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA.,Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA.,Alzheimer's Disease Center, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
190
|
Deger JM, Gerson JE, Kayed R. The interrelationship of proteasome impairment and oligomeric intermediates in neurodegeneration. Aging Cell 2015; 14:715-24. [PMID: 26053162 PMCID: PMC4568959 DOI: 10.1111/acel.12359] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2015] [Indexed: 01/07/2023] Open
Abstract
Various neurodegenerative diseases are characterized by the accumulation of amyloidogenic proteins such as tau, α-synuclein, and amyloid-β. Prior to the formation of these stable aggregates, intermediate species of the respective proteins-oligomers-appear. Recently acquired data have shown that oligomers may be the most toxic and pathologically significant to neurodegenerative diseases such as Alzheimer's and Parkinson's. The covalent modification of these oligomers may be critically important for biological processes in disease. Ubiquitin and small ubiquitin-like modifiers are the commonly used tags for degradation. While the modification of large amyloid aggregates by ubiquitination is well established, very little is known about the role ubiquitin may play in oligomer processing and the importance of the more recently discovered sumoylation. Many proteins involved in neurodegeneration have been found to be sumoylated, notably tau protein in brains afflicted with Alzheimer's. This evidence suggests that while the cell may not have difficulty recognizing dangerous proteins, in brains afflicted with neurodegenerative disease, the proteasome may be unable to properly digest the tagged proteins. This would allow toxic aggregates to develop, leading to even more proteasome impairment in a snowball effect that could explain the exponential progression in most neurodegenerative diseases. A better understanding of the covalent modifications of oligomers could have a huge impact on the development of therapeutics for neurodegenerative diseases. This review will focus on the proteolysis of tau and other amyloidogenic proteins induced by covalent modification, and recent findings suggesting a relationship between tau oligomers and sumoylation.
Collapse
Affiliation(s)
- Jennifer M. Deger
- Departments of Neurology, Neuroscience and Cell Biology Mitchell Center for Neurodegenerative Diseases University of Texas Medical Branch 301 University Building, Medical Research Building Galveston TX 77555‐1045 USA
| | - Julia E. Gerson
- Departments of Neurology, Neuroscience and Cell Biology Mitchell Center for Neurodegenerative Diseases University of Texas Medical Branch 301 University Building, Medical Research Building Galveston TX 77555‐1045 USA
| | - Rakez Kayed
- Departments of Neurology, Neuroscience and Cell Biology Mitchell Center for Neurodegenerative Diseases University of Texas Medical Branch 301 University Building, Medical Research Building Galveston TX 77555‐1045 USA
| |
Collapse
|
191
|
Violet M, Chauderlier A, Delattre L, Tardivel M, Chouala MS, Sultan A, Marciniak E, Humez S, Binder L, Kayed R, Lefebvre B, Bonnefoy E, Buée L, Galas MC. Prefibrillar Tau oligomers alter the nucleic acid protective function of Tau in hippocampal neurons in vivo. Neurobiol Dis 2015; 82:540-551. [PMID: 26385829 DOI: 10.1016/j.nbd.2015.09.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 07/09/2015] [Accepted: 09/13/2015] [Indexed: 01/05/2023] Open
Abstract
The accumulation of DNA and RNA oxidative damage is observed in cortical and hippocampal neurons from Alzheimer's disease (AD) brains at early stages of pathology. We recently reported that Tau is a key nuclear player in the protection of neuronal nucleic acid integrity in vivo under physiological conditions and hyperthermia, a strong inducer of oxidative stress. In a mouse model of tauopathy (THY-Tau22), we demonstrate that hyperthermia selectively induces nucleic acid oxidative damage and nucleic acid strand breaks in the nucleus and cytoplasm of hippocampal neurons that display early Tau phosphorylation but no Tau fibrils. Nucleic acid-damaged neurons were exclusively immunoreactive for prefibrillar Tau oligomers. A similar association between prefibrillar Tau oligomers and nucleic acid oxidative damage was observed in AD brains. Pretreatment with Methylene Blue (MB), a Tau aggregation inhibitor and a redox cycler, reduced hyperthermia-induced Tau oligomerization as well as nucleic acid damage. This study clearly highlights the existence of an early and critical time frame for hyperthermia-induced Tau oligomerization, which most likely occurs through increased oxidative stress, and nucleic acid vulnerability during the progression of Tau pathology. These results suggest that at early stages of AD, Tau oligomerization triggers the loss of the nucleic acid protective function of monomeric Tau. This study highlights the existence of a short therapeutic window in which to prevent the formation of pathological forms of Tau and their harmful consequences on nucleic acid integrity during the progression of Tau pathology.
Collapse
Affiliation(s)
- Marie Violet
- Inserm, UMRS1172, JPArc, Alzheimer & Tauopathies, 1 rue Polonovski, 59045 Lille, France; Université de Lille, Faculté de Médecine, Lille, France; CHRU, Memory Clinic, Lille, France
| | - Alban Chauderlier
- Inserm, UMRS1172, JPArc, Alzheimer & Tauopathies, 1 rue Polonovski, 59045 Lille, France; Université de Lille, Faculté de Médecine, Lille, France; CHRU, Memory Clinic, Lille, France
| | - Lucie Delattre
- Inserm, UMRS1172, JPArc, Alzheimer & Tauopathies, 1 rue Polonovski, 59045 Lille, France; Université de Lille, Faculté de Médecine, Lille, France; CHRU, Memory Clinic, Lille, France
| | - Meryem Tardivel
- Inserm, UMRS1172, JPArc, Alzheimer & Tauopathies, 1 rue Polonovski, 59045 Lille, France; Université de Lille, Faculté de Médecine, Lille, France; CHRU, Memory Clinic, Lille, France
| | - Meliza Sendid Chouala
- Inserm, UMRS1172, JPArc, Alzheimer & Tauopathies, 1 rue Polonovski, 59045 Lille, France; Université de Lille, Faculté de Médecine, Lille, France; CHRU, Memory Clinic, Lille, France
| | - Audrey Sultan
- Inserm, UMRS1172, JPArc, Alzheimer & Tauopathies, 1 rue Polonovski, 59045 Lille, France; Université de Lille, Faculté de Médecine, Lille, France; CHRU, Memory Clinic, Lille, France
| | - Elodie Marciniak
- Inserm, UMRS1172, JPArc, Alzheimer & Tauopathies, 1 rue Polonovski, 59045 Lille, France; Université de Lille, Faculté de Médecine, Lille, France; CHRU, Memory Clinic, Lille, France
| | - Sandrine Humez
- Inserm, UMRS1172, JPArc, Alzheimer & Tauopathies, 1 rue Polonovski, 59045 Lille, France; Université de Lille, Faculté de Médecine, Lille, France; CHRU, Memory Clinic, Lille, France
| | - Lester Binder
- Department of Translational Science & Molecular Medicine, College of Human Medicine, Michigan State University, 333 Bostwick Ave. NE, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Rakez Kayed
- Department of Neurology, George and Cynthia Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Medical Research Building, Room 10.138C, Galveston, TX 77555-1045, USA; Department of Neuroscience & Cell Biology, George and Cynthia Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Medical Research Building, Room 10.138C, Galveston, TX 77555-1045, USA
| | - Bruno Lefebvre
- Inserm, UMRS1172, JPArc, Alzheimer & Tauopathies, 1 rue Polonovski, 59045 Lille, France; Université de Lille, Faculté de Médecine, Lille, France; CHRU, Memory Clinic, Lille, France
| | - Eliette Bonnefoy
- Inserm UMRS 1007, Université Paris Descartes, 45 rue des Saints Pères, 75006 Paris Cedex 06, France
| | - Luc Buée
- Inserm, UMRS1172, JPArc, Alzheimer & Tauopathies, 1 rue Polonovski, 59045 Lille, France; Université de Lille, Faculté de Médecine, Lille, France; CHRU, Memory Clinic, Lille, France
| | - Marie-Christine Galas
- Inserm, UMRS1172, JPArc, Alzheimer & Tauopathies, 1 rue Polonovski, 59045 Lille, France; Université de Lille, Faculté de Médecine, Lille, France; CHRU, Memory Clinic, Lille, France.
| |
Collapse
|
192
|
Grüninger F. Invited review: Drug development for tauopathies. Neuropathol Appl Neurobiol 2015; 41:81-96. [PMID: 25354646 DOI: 10.1111/nan.12192] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/27/2014] [Indexed: 12/18/2022]
Abstract
Many different approaches to treating tauopathies are currently being explored, with a few compounds already in clinical development (including small molecules such as anti-aggregation compound LMTX and active vaccines AADvac1 and ACI-35). This review aims to summarize the status of the clinical candidates and to highlight the emerging areas of research that hold promise for drug development. Tau is post-translationally modified in several different ways (phosphorylated, acetylated, glycosylated and truncated). The extent of these modifications can be manipulated to influence tau aggregation state and pathogenesis and the enzymes involved provide tractable targets for drug intervention. In addition, modulation of tau expression levels is an attractive therapeutic approach. Finally, the recently described prion-like spreading of tau between cells opens up novel avenues from the tau drug development perspective. The review compares the merits of small-molecule and antibody-based therapies and emphasizes the need for amenable clinical biomarkers for drug development, particularly PET imaging.
Collapse
Affiliation(s)
- F Grüninger
- Pharmaceutical Research and Early Development, NORD Disease & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, CH-4070, Basel, Switzerland
| |
Collapse
|
193
|
Marciani DJ. Alzheimer's disease vaccine development: A new strategy focusing on immune modulation. J Neuroimmunol 2015; 287:54-63. [PMID: 26439962 DOI: 10.1016/j.jneuroim.2015.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 12/31/2022]
Abstract
Despite significant advances in the development of Alzheimer's disease (AD) vaccines effective in animal models, these prototypes have been clinically unsuccessful; apparently the result of using immunogens modified to prevent inflammation. Hence, a new paradigm is needed that uses entire AD-associated immunogens, a notion supported by recent successful passive immunotherapy results, with adjuvants that induce Th2-only while inhibiting without abrogating Th1 immunity. Here, we discuss the obstacles to AD vaccine development and Th2-adjuvants that by acting on dendritic and T cells, would elicit regardless of the antigen a safe and effective antibody response, while preventing damaging neuroinflammation and ameliorating immunosenescence.
Collapse
Affiliation(s)
- Dante J Marciani
- Qantu Therapeutics, Inc., 612 E. Main Street, Lewisville, TX 75057, USA.
| |
Collapse
|
194
|
Tarasoff-Conway JM, Carare RO, Osorio RS, Glodzik L, Butler T, Fieremans E, Axel L, Rusinek H, Nicholson C, Zlokovic BV, Frangione B, Blennow K, Ménard J, Zetterberg H, Wisniewski T, de Leon MJ. Clearance systems in the brain-implications for Alzheimer disease. Nat Rev Neurol 2015; 11:457-70. [PMID: 26195256 PMCID: PMC4694579 DOI: 10.1038/nrneurol.2015.119] [Citation(s) in RCA: 1150] [Impact Index Per Article: 115.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Accumulation of toxic protein aggregates-amyloid-β (Aβ) plaques and hyperphosphorylated tau tangles-is the pathological hallmark of Alzheimer disease (AD). Aβ accumulation has been hypothesized to result from an imbalance between Aβ production and clearance; indeed, Aβ clearance seems to be impaired in both early and late forms of AD. To develop efficient strategies to slow down or halt AD, it is critical to understand how Aβ is cleared from the brain. Extracellular Aβ deposits can be removed from the brain by various clearance systems, most importantly, transport across the blood-brain barrier. Findings from the past few years suggest that astroglial-mediated interstitial fluid (ISF) bulk flow, known as the glymphatic system, might contribute to a larger portion of extracellular Aβ (eAβ) clearance than previously thought. The meningeal lymphatic vessels, discovered in 2015, might provide another clearance route. Because these clearance systems act together to drive eAβ from the brain, any alteration to their function could contribute to AD. An understanding of Aβ clearance might provide strategies to reduce excess Aβ deposits and delay, or even prevent, disease onset. In this Review, we describe the clearance systems of the brain as they relate to proteins implicated in AD pathology, with the main focus on Aβ.
Collapse
Affiliation(s)
| | - Roxana O Carare
- University of Southampton, Faculty of Medicine, Institute for Life Sciences, Southampton General Hospital, Southampton Hampshire, SO16 6YD, UK
| | - Ricardo S Osorio
- New York University School of Medicine, 145 East 32nd Street, New York, NY 10016, USA
| | - Lidia Glodzik
- New York University School of Medicine, 145 East 32nd Street, New York, NY 10016, USA
| | - Tracy Butler
- New York University School of Medicine, 145 East 32nd Street, New York, NY 10016, USA
| | - Els Fieremans
- New York University School of Medicine, 660 First Avenue, New York, NY 10016, USA
| | - Leon Axel
- New York University School of Medicine, 660 First Avenue, New York, NY 10016, USA
| | - Henry Rusinek
- New York University School of Medicine, 145 East 32nd Street, New York, NY 10016, USA
| | - Charles Nicholson
- New York University School of Medicine, 660 First Avenue, New York, NY 10016, USA
| | - Berislav V Zlokovic
- Zilkha Neurogenetic Institute at Keck School of Medicine of University of Southern California, 1501 San Pablo Street Los Angeles, CA 90089, USA
| | - Blas Frangione
- New York University School of Medicine, 145 East 32nd Street, New York, NY 10016, USA
| | - Kaj Blennow
- The Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden
| | - Joël Ménard
- Université Paris-Descartes, 12 Rue de l'École de Médecine, 75006 Paris, France
| | - Henrik Zetterberg
- The Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden
| | - Thomas Wisniewski
- New York University School of Medicine, 145 East 32nd Street, New York, NY 10016, USA
| | - Mony J de Leon
- New York University School of Medicine, 145 East 32nd Street, New York, NY 10016, USA
| |
Collapse
|
195
|
Kanmert D, Cantlon A, Muratore CR, Jin M, O'Malley TT, Lee G, Young-Pearse TL, Selkoe DJ, Walsh DM. C-Terminally Truncated Forms of Tau, But Not Full-Length Tau or Its C-Terminal Fragments, Are Released from Neurons Independently of Cell Death. J Neurosci 2015; 35:10851-65. [PMID: 26224867 PMCID: PMC6605107 DOI: 10.1523/jneurosci.0387-15.2015] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 06/08/2015] [Accepted: 06/22/2015] [Indexed: 11/21/2022] Open
Abstract
Recent evidence suggests that tau aggregation may spread via extracellular release and subsequent uptake by synaptically connected neurons, but little is known about the processes by which tau is released or the molecular forms of extracellular tau. To gain insight into the nature of extracellular tau, we used highly sensitive ELISAs, which, when used in tandem, are capable of differentiating between full-length (FL) tau, mid-region-bearing fragments, and C-terminal (CT) fragments. We applied these assays to the systematic study of the conditioned media of N2a cells, induced pluripotent stem cell-derived human cortical neurons, and primary rat cortical neurons, each of which was carefully assessed for viability. In all three neuronal models, the bulk of extracellular tau was free-floating and unaggregated and <0.2% was encapsulated in exosomes. Although most intracellular tau was FL, the majority of extracellular tau was CT truncated and appeared to be released both actively by living neurons and passively by dead cells. In contrast, only a small amount of extracellular tau was aggregation-competent tau (i.e., contained the microtubule-binding regions) and this material appears to be released solely due to a low level of cell death that occurs in all cell culture systems. Importantly, amyloid β-protein (Aβ)-induced neuronal compromise significantly increased the quantity of all forms of extracellular tau, but the presence of Aβ before detectable cell compromise did not increase extracellular tau. Collectively, these results suggest that factors that induce neuronal death are likely to be necessary to initiate the extracellular spread of tau aggregation. SIGNIFICANCE STATEMENT Recent studies suggest that the transfer of tau between neurons underlies the characteristic spatiotemporal progression of neurofibrillary pathology. We searched for tau in the conditioned medium of N2a cells, induced pluripotent stem cell-derived human cortical neurons, and primary rat cortical neurons and analyzed the material present using four different tau ELISAs. We demonstrate that the majority of tau released from healthy neurons is C-terminally truncated and lacks the microtubule-binding region (MTBR) thought necessary for self-aggregation. A small amount of MTBR-containing tau is present outside of cells, but this appears to be solely due to cell death. Therefore, if propagation of tau aggregation is mediated by extracellular tau, our findings suggest that neuronal compromise is required to facilitate this process.
Collapse
Affiliation(s)
- Daniel Kanmert
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Institutes of Medicine, Boston, Massachusetts 02115
| | - Adam Cantlon
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Institutes of Medicine, Boston, Massachusetts 02115, School of Bimolecular and Biomedical Science, University College Dublin, Dublin 4, Republic of Ireland, and
| | - Christina R Muratore
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Institutes of Medicine, Boston, Massachusetts 02115
| | - Ming Jin
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Institutes of Medicine, Boston, Massachusetts 02115
| | - Tiernan T O'Malley
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Institutes of Medicine, Boston, Massachusetts 02115
| | - Gloria Lee
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| | - Tracy L Young-Pearse
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Institutes of Medicine, Boston, Massachusetts 02115
| | - Dennis J Selkoe
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Institutes of Medicine, Boston, Massachusetts 02115
| | - Dominic M Walsh
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Institutes of Medicine, Boston, Massachusetts 02115,
| |
Collapse
|
196
|
Agadjanyan MG, Petrovsky N, Ghochikyan A. A fresh perspective from immunologists and vaccine researchers: active vaccination strategies to prevent and reverse Alzheimer's disease. Alzheimers Dement 2015; 11:1246-59. [PMID: 26192465 DOI: 10.1016/j.jalz.2015.06.1884] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 12/30/2022]
Abstract
Traditional vaccination against infectious diseases relies on generation of cellular and humoral immune responses that act to protect the host from overt disease even though they do not induce sterilizing immunity. More recently, attempts have been made with mixed success to generate therapeutic vaccines against a wide range of noninfectious diseases including neurodegenerative disorders. After the exciting first report of successful vaccine prevention of progression of an Alzheimer's disease (AD) animal model in 1999, various epitope-based vaccines targeting amyloid beta (Aβ) have proceeded to human clinical trials, with varied results. More recently, AD vaccines based on tau protein have advanced into clinical testing too. This review seeks to put perspective to the mixed results obtained so far in clinical trials of AD vaccines and discusses the many pitfalls and misconceptions encountered on the path to a successful AD vaccine, including better standardization of immunologic efficacy measures of antibodies, immunogenicity of platform/carrier and adjuvants.
Collapse
Affiliation(s)
- Michael G Agadjanyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA; The Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA.
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, Flinders Medical Centre, Adelaide, South Australia; Flinders Medical Centre and Flinders University, Adelaide, South Australia
| | - Anahit Ghochikyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| |
Collapse
|
197
|
Opportunities for Conformation-Selective Antibodies in Amyloid-Related Diseases. Antibodies (Basel) 2015. [DOI: 10.3390/antib4030170] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
198
|
Tau immunotherapy modulates both pathological tau and upstream amyloid pathology in an Alzheimer's disease mouse model. J Neurosci 2015; 35:4857-68. [PMID: 25810517 DOI: 10.1523/jneurosci.4989-14.2015] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In Alzheimer's disease (AD), the pathological accumulation of tau appears to be a downstream effect of amyloid β protein (Aβ). However, the relationship between these two proteins and memory loss is unclear. In this study, we evaluated the specific removal of pathological tau oligomers in aged Tg2576 mice by passive immunotherapy using tau oligomer-specific monoclonal antibody. Removal of tau oligomers reversed memory deficits and accelerated plaque deposition in the brain. Surprisingly, Aβ*56 levels decreased, suggesting a link between tau and Aβ oligomers in the promotion of cognitive decline. The results suggest that tau oligomerization is not only a consequence of Aβ pathology but also a critical mediator of the toxic effects observed afterward in AD. Overall, these findings support the potential of tau oligomers as a therapeutic target for AD.
Collapse
|
199
|
Pedersen JT, Sigurdsson EM. Tau immunotherapy for Alzheimer's disease. Trends Mol Med 2015; 21:394-402. [DOI: 10.1016/j.molmed.2015.03.003] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/11/2015] [Accepted: 03/13/2015] [Indexed: 11/27/2022]
|
200
|
Stancu IC, Vasconcelos B, Ris L, Wang P, Villers A, Peeraer E, Buist A, Terwel D, Baatsen P, Oyelami T, Pierrot N, Casteels C, Bormans G, Kienlen-Campard P, Octave JN, Moechars D, Dewachter I. Templated misfolding of Tau by prion-like seeding along neuronal connections impairs neuronal network function and associated behavioral outcomes in Tau transgenic mice. Acta Neuropathol 2015; 129:875-94. [PMID: 25862635 PMCID: PMC4436846 DOI: 10.1007/s00401-015-1413-4] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 12/11/2022]
Abstract
Prion-like seeding and propagation of Tau-pathology have been demonstrated experimentally and may underlie the stereotyped progression of neurodegenerative Tauopathies. However, the involvement of templated misfolding of Tau in neuronal network dysfunction and behavioral outcomes remains to be explored in detail. Here we analyzed the repercussions of prion-like spreading of Tau-pathology via neuronal connections on neuronal network function in TauP301S transgenic mice. Spontaneous and GABA(A)R-antagonist-induced neuronal network activity were affected following templated Tau-misfolding using synthetic preformed Tau fibrils in cultured primary neurons. Electrophysiological analysis in organotypic hippocampal slices of Tau transgenic mice demonstrated impaired synaptic transmission and impaired long-term potentiation following Tau-seed induced Tau-aggregation. Intracerebral injection of Tau-seeds in TauP301S mice, caused prion-like spreading of Tau-pathology through functionally connected neuroanatomical pathways. Electrophysiological analysis revealed impaired synaptic plasticity in hippocampal CA1 region 6 months after Tau-seeding in entorhinal cortex (EC). Furthermore, templated Tau aggregation impaired cognitive function, measured in the object recognition test 6 months post-seeding. In contrast, Tau-seeding in basal ganglia and subsequent spreading through functionally connected neuronal networks involved in motor control, resulted in motoric deficits reflected in clasping and impaired inverted grid hanging, not significantly affected following Tau-seeding in EC. Immunostaining, biochemical and electron microscopic analysis in the different models suggested early pathological forms of Tau, including Tau-oligomers, rather than fully mature neurofibrillary tangles (NFTs) as culprits of neuronal dysfunction. We here demonstrate for the first time using in vitro, ex vivo and in vivo models, that prion-like spreading of Tau-misfolding by Tau seeds, along unique neuronal connections, causes neuronal network dysfunction and associated behavioral dysfunction. Our data highlight the potential relevance of this mechanism in the symptomatic progression in Tauopathies. We furthermore demonstrate that the initial site of Tau-seeding thereby determines the behavioral outcome, potentially underlying the observed heterogeneity in (familial) Tauopathies, including in TauP301 mutants.
Collapse
Affiliation(s)
- Ilie-Cosmin Stancu
- />Alzheimer Dementia Group, Institute of Neuroscience, Catholic University of Louvain, 1200 Brussels, Belgium
| | - Bruno Vasconcelos
- />Alzheimer Dementia Group, Institute of Neuroscience, Catholic University of Louvain, 1200 Brussels, Belgium
| | - Laurence Ris
- />Department of Neurosciences, University of Mons, 7000 Mons, Belgium
| | - Peng Wang
- />Alzheimer Dementia Group, Institute of Neuroscience, Catholic University of Louvain, 1200 Brussels, Belgium
| | - Agnès Villers
- />Department of Neurosciences, University of Mons, 7000 Mons, Belgium
| | - Eve Peeraer
- />Department of Neuroscience, Janssen Research and Development, A Division of Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Arjan Buist
- />Department of Neuroscience, Janssen Research and Development, A Division of Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Dick Terwel
- />reMYND nv, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Peter Baatsen
- />VIB11 vzw Center for the Biology of Disease, KU Leuven, 3000 Leuven, Belgium
| | - Tutu Oyelami
- />Department of Neuroscience, Janssen Research and Development, A Division of Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Nathalie Pierrot
- />Alzheimer Dementia Group, Institute of Neuroscience, Catholic University of Louvain, 1200 Brussels, Belgium
| | - Cindy Casteels
- />MoSAIC-Molecular Small Animal Imaging Centre, KU Leuven, 3000 Leuven, Belgium
| | - Guy Bormans
- />MoSAIC-Molecular Small Animal Imaging Centre, KU Leuven, 3000 Leuven, Belgium
| | - Pascal Kienlen-Campard
- />Alzheimer Dementia Group, Institute of Neuroscience, Catholic University of Louvain, 1200 Brussels, Belgium
| | - Jean-Nöel Octave
- />Alzheimer Dementia Group, Institute of Neuroscience, Catholic University of Louvain, 1200 Brussels, Belgium
| | - Diederik Moechars
- />Department of Neuroscience, Janssen Research and Development, A Division of Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Ilse Dewachter
- />Alzheimer Dementia Group, Institute of Neuroscience, Catholic University of Louvain, 1200 Brussels, Belgium
| |
Collapse
|