151
|
Fowler CF, Goerzen D, Devenyi GA, Madularu D, Chakravarty MM, Near J. OUP accepted manuscript. Brain Commun 2022; 4:fcac072. [PMID: 35434622 PMCID: PMC9007326 DOI: 10.1093/braincomms/fcac072] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/12/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Caitlin F. Fowler
- Department of Biological and Biomedical Engineering, McGill University, Duff Medical Building, Montreal, Canada H3A 2B4
- Centre d’Imagerie Cérébrale, Douglas Mental Health University Institute, Verdun, Canada H4H 1R3
- Correspondence to: Caitlin F. Fowler, CIC Pavilion Office GH-2113 Douglas Mental Health University Institute 6875 Boulevard LaSalle Montreal, Canada H4H 1R3 E-mail:
| | - Dana Goerzen
- Centre d’Imagerie Cérébrale, Douglas Mental Health University Institute, Verdun, Canada H4H 1R3
| | - Gabriel A. Devenyi
- Centre d’Imagerie Cérébrale, Douglas Mental Health University Institute, Verdun, Canada H4H 1R3
- Department of Psychiatry, McGill University, Montreal, Canada H3A 1A1
| | - Dan Madularu
- Centre for Translational NeuroImaging, Northeastern University, Boston, USA
| | - M. Mallar Chakravarty
- Department of Biological and Biomedical Engineering, McGill University, Duff Medical Building, Montreal, Canada H3A 2B4
- Centre d’Imagerie Cérébrale, Douglas Mental Health University Institute, Verdun, Canada H4H 1R3
- Department of Psychiatry, McGill University, Montreal, Canada H3A 1A1
| | - Jamie Near
- Department of Biological and Biomedical Engineering, McGill University, Duff Medical Building, Montreal, Canada H3A 2B4
- Centre d’Imagerie Cérébrale, Douglas Mental Health University Institute, Verdun, Canada H4H 1R3
- Department of Psychiatry, McGill University, Montreal, Canada H3A 1A1
- Physical Studies Research Platform, Sunnybrook Research Institute, Toronto, Canada M4N 3M5
- Department of Medical Biophysics, University of Toronto, Toronto, Canada M5G 1L7
| |
Collapse
|
152
|
Broussard JI, Redell JB, Maynard ME, Zhao J, Moore A, Mills RW, Hood KN, Underwood E, Roysam B, Dash PK. Impaired Experience-Dependent Refinement of Place Cells in a Rat Model of Alzheimer's Disease. J Alzheimers Dis 2022; 86:1907-1916. [PMID: 35253742 PMCID: PMC9850819 DOI: 10.3233/jad-215023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Hippocampal place cells play an integral role in generating spatial maps. Impaired spatial memory is a characteristic pathology of Alzheimer's disease (AD), yet it remains unclear how AD influences the properties of hippocampal place cells. OBJECTIVE To record electrophysiological activity in hippocampal CA1 neurons in freely-moving 18-month-old male TgF344-AD and age-matched wild-type (WT) littermates to examine place cell properties. METHODS We implanted 32-channel electrode arrays into the CA1 subfield of 18-month-old male WT and TgF344-AD (n = 6/group) rats. Ten days after implantation, single unit activity in an open field arena was recorded across days. The spatial information content, in-field firing rate, and stability of each place cell was compared across groups. Pathology was assessed by immunohistochemical staining, and a deep neural network approach was used to count cell profiles. RESULTS Aged TgF344-AD rats exhibited hippocampal amyloid-β deposition, and a significant increase in Iba1 immunoreactivity and microglia cell counts. Place cells from WT and TgF344-AD rat showed equivalent spatial information, in-field firing rates, and place field stability when initially exposed to the arena. However, by day 3, the place cells in aged WT rats showed characteristic spatial tuning as evidenced by higher spatial information content, stability, and in-field firing rates, an effect not seen in TgF344-AD rats. CONCLUSION These findings support the notion that altered electrophysiological properties of place cells may contribute to the learning and memory deficits observed in AD.
Collapse
Affiliation(s)
- John I. Broussard
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas 77030,To whom correspondence should be addressed: JI Broussard, Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, 6431 Fannin, St., Suite 7.011, Houston, TX 77030, Phone: (713) 500-5545,
| | - John B. Redell
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas 77030
| | - Mark E. Maynard
- Department of Electrical and Computer Engineering, Cullen College of Engineering, University of Houston, Houston, TX, 77204, USA
| | - Jing Zhao
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas 77030
| | - Anthony Moore
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas 77030
| | - Rachel W. Mills
- Department of Electrical and Computer Engineering, Cullen College of Engineering, University of Houston, Houston, TX, 77204, USA
| | - Kimberly N. Hood
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas 77030
| | - Erica Underwood
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas 77030
| | - Badrinath Roysam
- Department of Electrical and Computer Engineering, Cullen College of Engineering, University of Houston, Houston, TX, 77204, USA
| | - Pramod K. Dash
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas 77030
| |
Collapse
|
153
|
Zhang Y, Chen H, Long X, Xu T. Three-dimensional-engineered bioprinted in vitro human neural stem cell self-assembling culture model constructs of Alzheimer's disease. Bioact Mater 2021; 11:192-205. [PMID: 34938923 PMCID: PMC8665263 DOI: 10.1016/j.bioactmat.2021.09.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/26/2021] [Accepted: 09/16/2021] [Indexed: 12/31/2022] Open
Abstract
The pathogenic cascade of Alzheimer's disease (AD) characterized by amyloid-β protein accumulation is still poorly understood, partially owing to the limitations of relevant models without in vivo neural tissue microenvironment to recapitulate cell-cell interactions. To better mimic neural tissue microenvironment, three-dimensional (3D) core-shell AD model constructs containing human neural progenitor cells (NSCs) with 2% matrigel as core bioink and 2% alginate as shell bioink have been bioprinted by a co-axial bioprinter, with a suitable shell thickness for nutrient exchange and barrier-free cell interaction cores. These constructs exhibit cell self-clustering and -assembling properties and engineered reproducibility with long-term cell viability and self-renewal, and a higher differentiation level compared to 2D and 3D MIX models. The different effects of 3D bioprinted, 2D, and MIX microenvironments on the growth of NSCs are mainly related to biosynthesis of amino acids and glyoxylate and dicarboxylate metabolism on day 2 and ribosome, biosynthesis of amino acids and proteasome on day 14. Particularly, the model constructs demonstrated Aβ aggregation and higher expression of Aβ and tau isoform genes compared to 2D and MIX controls. AD model constructs will provide a promising strategy to facilitate the development of a 3D in vitro AD model for neurodegeneration research.
Collapse
Affiliation(s)
- Yi Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Haiyan Chen
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xiaoyan Long
- East China Institute of Digital Medical Engineering, Shangrao, 334000, China
| | - Tao Xu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| |
Collapse
|
154
|
Mckean NE, Handley RR, Snell RG. A Review of the Current Mammalian Models of Alzheimer's Disease and Challenges That Need to Be Overcome. Int J Mol Sci 2021; 22:13168. [PMID: 34884970 PMCID: PMC8658123 DOI: 10.3390/ijms222313168] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 01/04/2023] Open
Abstract
Alzheimer's disease (AD) is one of the looming health crises of the near future. Increasing lifespans and better medical treatment for other conditions mean that the prevalence of this disease is expected to triple by 2050. The impact of AD includes both the large toll on individuals and their families as well as a large financial cost to society. So far, we have no way to prevent, slow, or cure the disease. Current medications can only alleviate some of the symptoms temporarily. Many animal models of AD have been created, with the first transgenic mouse model in 1995. Mouse models have been beset by challenges, and no mouse model fully captures the symptomatology of AD without multiple genetic mutations and/or transgenes, some of which have never been implicated in human AD. Over 25 years later, many mouse models have been given an AD-like disease and then 'cured' in the lab, only for the treatments to fail in clinical trials. This review argues that small animal models are insufficient for modelling complex disorders such as AD. In order to find effective treatments for AD, we need to create large animal models with brains and lifespan that are closer to humans, and underlying genetics that already predispose them to AD-like phenotypes.
Collapse
Affiliation(s)
- Natasha Elizabeth Mckean
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, 3a Symonds Street, Auckland 1010, New Zealand; (N.E.M.); (R.R.H.)
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Renee Robyn Handley
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, 3a Symonds Street, Auckland 1010, New Zealand; (N.E.M.); (R.R.H.)
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Russell Grant Snell
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, 3a Symonds Street, Auckland 1010, New Zealand; (N.E.M.); (R.R.H.)
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
155
|
Ni R. Magnetic Resonance Imaging in Animal Models of Alzheimer's Disease Amyloidosis. Int J Mol Sci 2021; 22:12768. [PMID: 34884573 PMCID: PMC8657987 DOI: 10.3390/ijms222312768] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023] Open
Abstract
Amyloid-beta (Aβ) plays an important role in the pathogenesis of Alzheimer's disease. Aberrant Aβ accumulation induces neuroinflammation, cerebrovascular alterations, and synaptic deficits, leading to cognitive impairment. Animal models recapitulating the Aβ pathology, such as transgenic, knock-in mouse and rat models, have facilitated the understanding of disease mechanisms and the development of therapeutics targeting Aβ. There is a rapid advance in high-field MRI in small animals. Versatile high-field magnetic resonance imaging (MRI) sequences, such as diffusion tensor imaging, arterial spin labeling, resting-state functional MRI, anatomical MRI, and MR spectroscopy, as well as contrast agents, have been developed for preclinical imaging in animal models. These tools have enabled high-resolution in vivo structural, functional, and molecular readouts with a whole-brain field of view. MRI has been used to visualize non-invasively the Aβ deposits, synaptic deficits, regional brain atrophy, impairment in white matter integrity, functional connectivity, and cerebrovascular and glymphatic system in animal models of Alzheimer's disease amyloidosis. Many of the readouts are translational toward clinical MRI applications in patients with Alzheimer's disease. In this review, we summarize the recent advances in MRI for visualizing the pathophysiology in amyloidosis animal models. We discuss the outstanding challenges in brain imaging using MRI in small animals and propose future outlook in visualizing Aβ-related alterations in the brains of animal models.
Collapse
Affiliation(s)
- Ruiqing Ni
- Institute for Biomedical Engineering, ETH Zurich & University of Zurich, 8093 Zurich, Switzerland;
- Institute for Regenerative Medicine, University of Zurich, 8952 Zurich, Switzerland
| |
Collapse
|
156
|
Viel C, Brandtner AT, Weißhaar A, Lehto A, Fuchs M, Klein J. Effects of Magnesium Orotate, Benfotiamine and a Combination of Vitamins on Mitochondrial and Cholinergic Function in the TgF344-AD Rat Model of Alzheimer's Disease. Pharmaceuticals (Basel) 2021; 14:ph14121218. [PMID: 34959619 PMCID: PMC8705522 DOI: 10.3390/ph14121218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 02/07/2023] Open
Abstract
Glucose hypometabolism, mitochondrial dysfunction, and cholinergic deficits have been reported in early stages of Alzheimer’s disease (AD). Here, we examine these parameters in TgF344-AD rats, an Alzheimer model that carries amyloid precursor protein and presenilin-1 mutations, and of wild type F344 rats. In mitochondria isolated from rat hippocampi, we found reductions of complex I and oxidative phosphorylation in transgenic rats. Further impairments, also of complex II, were observed in aged (wild-type and transgenic) rats. Treatment with a “cocktail” containing magnesium orotate, benfotiamine, folic acid, cyanocobalamin, and cholecalciferol did not affect mitochondrial activities in wild-type rats but restored diminished activities in transgenic rats to wild-type levels. Glucose, lactate, and pyruvate levels were unchanged by age, genetic background, or treatment. Using microdialysis, we also investigated extracellular concentrations of acetylcholine that were strongly reduced in transgenic animals. Again, ACh levels in wild-type rats did not change upon treatment with nutrients, whereas the cocktail increased hippocampal acetylcholine levels under physiological stimulation. We conclude that TgF344-AD rats display a distinct mitochondrial and cholinergic dysfunction not unlike the findings in patients suffering from AD. This dysfunction can be partially corrected by the application of the “cocktail” which is particularly active in aged rats. We suggest that the TgF344-AD rat is a promising model to further investigate mitochondrial and cholinergic dysfunction and potential treatment approaches for AD.
Collapse
Affiliation(s)
- Christian Viel
- Institute of Pharmacology and Clinical Pharmacy, College of Pharmacy, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; (C.V.); (A.T.B.); (A.W.); (A.L.); (M.F.)
| | - Adrian T. Brandtner
- Institute of Pharmacology and Clinical Pharmacy, College of Pharmacy, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; (C.V.); (A.T.B.); (A.W.); (A.L.); (M.F.)
- Institute of Physiology I, Rheinische Friedrich-Wilhelms-Universität, Sigmund-Freud-Straße 25, Venusberg-Campus 1, 53105 Bonn, Germany
| | - Alexander Weißhaar
- Institute of Pharmacology and Clinical Pharmacy, College of Pharmacy, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; (C.V.); (A.T.B.); (A.W.); (A.L.); (M.F.)
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Alina Lehto
- Institute of Pharmacology and Clinical Pharmacy, College of Pharmacy, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; (C.V.); (A.T.B.); (A.W.); (A.L.); (M.F.)
| | - Marius Fuchs
- Institute of Pharmacology and Clinical Pharmacy, College of Pharmacy, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; (C.V.); (A.T.B.); (A.W.); (A.L.); (M.F.)
| | - Jochen Klein
- Institute of Pharmacology and Clinical Pharmacy, College of Pharmacy, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; (C.V.); (A.T.B.); (A.W.); (A.L.); (M.F.)
- Correspondence: ; Tel.: +49-6979-829-366
| |
Collapse
|
157
|
Quercetin exhibits potent antioxidant activity, restores motor and non-motor deficits induced by rotenone toxicity. PLoS One 2021; 16:e0258928. [PMID: 34767546 PMCID: PMC8589152 DOI: 10.1371/journal.pone.0258928] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 10/10/2021] [Indexed: 02/06/2023] Open
Abstract
The rotenone-induced animal model of Parkinson's disease (PD) has been used to investigate the pathogenesis of PD. Oxidative stress is one of the main contributors of neurodegeneration in PD. Flavonoids have the potential to modulate neuronal function and combat various neurodegenerative diseases. The pre- and post-supplementation of quercetin (50 mg/kg, p.o) was done in rats injected with rotenone (1.5 mg/kg, s.c). After the treatment, behavioral activities were monitored for motor activity, depression-like behavior, and cognitive changes. Rats were decapitated after behavioral analysis and the brain samples were dissected out for neurochemical and biochemical estimation. Results showed that supplementation of quercetin significantly (p<0.01) restored rotenone-induced motor and non-motor deficits (depression and cognitive impairments), enhanced antioxidant enzyme activities (p<0.01), and attenuated neurotransmitter alterations (p<0.01). It is suggested that quercetin supplementation improves neurotransmitter levels by mitigating oxidative stress via increasing antioxidant enzyme activity and hence improves motor activity, cognitive functions, and reduces depressive behavior. The results of the present study showed that quercetin pre-supplementation produced more significant results as compared to post-supplementation. These findings show that quercetin can be a potential therapeutic agent to reduce the risk and progression of PD.
Collapse
|
158
|
Filip T, Mairinger S, Neddens J, Sauberer M, Flunkert S, Stanek J, Wanek T, Okamura N, Langer O, Hutter-Paier B, Kuntner C. Characterization of an APP/tau rat model of Alzheimer's disease by positron emission tomography and immunofluorescent labeling. Alzheimers Res Ther 2021; 13:175. [PMID: 34656177 PMCID: PMC8522096 DOI: 10.1186/s13195-021-00916-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/05/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND To better understand the etiology and pathomechanisms of Alzheimer's disease, several transgenic animal models that overexpress human tau or human amyloid-beta (Aβ) have been developed. In the present study, we generated a novel transgenic rat model by cross-breeding amyloid precursor protein (APP) rats with tau rats. We characterized this model by performing positron emission tomography scans combined with immunofluorescent labeling and cerebrospinal fluid analyses. METHODS APP/Tau rats were generated by cross-breeding male McGill-R-Thy1-APP transgenic rats with female hTau-40/P301L transgenic rats. APP/Tau double transgenic rats and non-transgenic (ntg) littermates aged 7, 13, and 21 months were subjected to dynamic [11C] PiB scan and dynamic [18F]THK-5317 scans. For regional brain analysis, a template was generated from anatomical MR images of selected animals, which was co-registered with the PET images. Regional analysis was performed by application of the simplified reference tissue model ([11C]PiB data), whereas [18F]THK-5317 data were analyzed using a 2-tissue compartment model and Logan graphical analysis. In addition, immunofluorescent labeling (tau, amyloid) and cerebrospinal fluid analyses were performed. RESULTS [11C]PiB binding potential (BPND) and [18F]THK-5317 volume of distribution (VT) showed an increase with age in several brain regions in the APP/Tau group but not in the ntg control group. Immunohistochemical analysis of brain slices of PET-scanned animals revealed a positive correlation between Aβ labeling and [11C]PiB regional BPND. Tau staining yielded a trend towards higher levels in the cortex and hippocampus of APP/Tau rats compared with ntg littermates, but without reaching statistical significance. No correlation was found between tau immunofluorescence labeling results and the respective [18F]THK-5317 VT values. CONCLUSIONS We thoroughly characterized a novel APP/Tau rat model using combined PET imaging and immunofluorescence analysis. We observed an age-related increase in [11C]PiB and [18F]THK-5317 binding in several brain regions in the APP/Tau group but not in the ntg group. Although we were able to reveal a positive correlation between amyloid labeling and [11C]PiB regional brain uptake, we observed relatively low human tau and amyloid fibril expression levels and a somewhat unstable brain pathology which questions the utility of this animal model for further studies.
Collapse
Affiliation(s)
- Thomas Filip
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444, Seibersdorf, Austria
- Department of Biomedical Research, Medical University Vienna, Vienna, Austria
| | - Severin Mairinger
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444, Seibersdorf, Austria
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Joerg Neddens
- Neuropharmacology, QPS Austria GmbH, Grambach, Austria
| | - Michael Sauberer
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444, Seibersdorf, Austria
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | - Johann Stanek
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444, Seibersdorf, Austria
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Thomas Wanek
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444, Seibersdorf, Austria
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Nobuyuki Okamura
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Oliver Langer
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444, Seibersdorf, Austria
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | - Claudia Kuntner
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444, Seibersdorf, Austria.
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
159
|
Xu H, Liu X, Li W, Xi Y, Su P, Meng B, Shao X, Tang B, Yang Q, Mao Z. p38 MAPK-mediated loss of nuclear RNase III enzyme Drosha underlies amyloid beta-induced neuronal stress in Alzheimer's disease. Aging Cell 2021; 20:e13434. [PMID: 34528746 PMCID: PMC8521488 DOI: 10.1111/acel.13434] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/26/2021] [Accepted: 07/03/2021] [Indexed: 12/30/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs ubiquitously expressed in the brain and regulate gene expression at the post‐transcriptional level. The nuclear RNase III enzyme Drosha initiates the maturation process of miRNAs in the nucleus. Strong evidence suggests that dysregulation of miRNAs is involved in many neurological disorders including Alzheimer's disease (AD). Dysfunction of miRNA biogenesis components may be involved in the processes of those diseases. However, the role of Drosha in AD remains unknown. By using immunohistochemistry, biochemistry, and subcellular fractionation methods, we show here that the level of Drosha protein was significantly lower in the postmortem brain of human AD patients as well as in the transgenic rat model of AD. Interestingly, Drosha level was specifically reduced in neurons of the cortex and hippocampus but not in the cerebellum in the AD brain samples. In primary cortical neurons, amyloid‐beta (Aβ) oligomers caused a p38 MAPK‐dependent phosphorylation of Drosha, leading to its redistribution from the nucleus to the cytoplasm and a decrease in its level. This loss of Drosha function preceded Aβ‐induced neuronal death. Importantly, inhibition of p38 MAPK activity or overexpression of Drosha protected neurons from Aβ oligomers‐induced apoptosis. Taken together, these results establish a role for p38 MAPK‐Drosha pathway in modulating neuronal viability under Aβ oligomers stress condition and implicate loss of Drosha as a key molecular change in the pathogenesis of AD.
Collapse
Affiliation(s)
- Haidong Xu
- Department of Pharmacology and Chemical Biology Emory University School of Medicine Atlanta Georgia USA
| | - Xiaolei Liu
- Department of Pharmacology and Chemical Biology Emory University School of Medicine Atlanta Georgia USA
| | - Wenming Li
- Department of Pharmacology and Chemical Biology Emory University School of Medicine Atlanta Georgia USA
| | - Ye Xi
- Department of Pharmacology and Chemical Biology Emory University School of Medicine Atlanta Georgia USA
| | - Peng Su
- Department of Pharmacology and Chemical Biology Emory University School of Medicine Atlanta Georgia USA
| | - Bo Meng
- Department of Pharmacology and Chemical Biology Emory University School of Medicine Atlanta Georgia USA
| | - Xiaoyun Shao
- Department of Pharmacology and Chemical Biology Emory University School of Medicine Atlanta Georgia USA
| | - Beisha Tang
- Department of Neurology Xiangya Hospital Central South University Changsha China
| | - Qian Yang
- Department of Neurosurgery Tangdu Hospital The Fourth Military Medical University Xi'an China
| | - Zixu Mao
- Department of Pharmacology and Chemical Biology Emory University School of Medicine Atlanta Georgia USA
- Department of Neurology Emory University School of Medicine Atlanta Georgia USA
| |
Collapse
|
160
|
Proskauer Pena SL, Mallouppas K, Oliveira AMG, Zitricky F, Nataraj A, Jezek K. Early Spatial Memory Impairment in a Double Transgenic Model of Alzheimer's Disease TgF-344 AD. Brain Sci 2021; 11:brainsci11101300. [PMID: 34679365 PMCID: PMC8533693 DOI: 10.3390/brainsci11101300] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
Before the course of Alzheimer’s disease fully manifests itself and largely impairs a patient’s cognitive abilities, its progression has already lasted for a considerable time without being noticed. In this project, we mapped the development of spatial orientation impairment in an active place avoidance task—a highly sensitive test for mild hippocampal damage. We tested vision, anxiety and spatial orientation performance at four age levels of 4, 6, 9, and 12 months across male and female TgF-344 AD rats carrying human genes for presenilin-1 and amyloid precursor protein. We found a progressive deterioration of spatial navigation in transgenic animals, beginning already at the age of 4 months, that fully developed at 6 months of age across both male and female groups, compared to their age-matched controls. In addition, we described the gradual vision impairment that was accentuated in females at the age of 12 months. These results indicate a rather early onset of cognitive impairment in the TgF-344 AD Alzheimer’s disease model, starting earlier than shown to date, and preceding the reported development of amyloid plaques.
Collapse
|
161
|
Tournier BB, Tsartsalis S, Ceyzériat K, Fraser BH, Grégoire MC, Kövari E, Millet P. Astrocytic TSPO Upregulation Appears Before Microglial TSPO in Alzheimer's Disease. J Alzheimers Dis 2021; 77:1043-1056. [PMID: 32804124 PMCID: PMC7683091 DOI: 10.3233/jad-200136] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background: In vivo PET/SPECT imaging of neuroinflammation is primarily based on the estimation of the 18 kDa-translocator-protein (TSPO). However, TSPO is expressed by different cell types which complicates the interpretation. Objective: The present study evaluates the cellular origin of TSPO alterations in Alzheimer’s disease (AD). Methods: The TSPO cell origin was evaluated by combining radioactive imaging approaches using the TSPO radiotracer [125I]CLINDE and fluorescence-activated cell sorting, in a rat model of AD (TgF344-AD) and in AD subjects. Results: In the hippocampus of TgF344-AD rats, TSPO overexpression not only concerns glial cells but the increase is visible at 12 and 24 months in astrocytes and only at 24 months in microglia. In the temporal cortex of AD subjects, TSPO upregulation involved only glial cells. However, the mechanism of this upregulation appears different with an increase in the number of TSPO binding sites per cell without cell proliferation in the rat, and a microglial cell population expansion with a constant number of binding sites per cell in human AD. Conclusion: These data indicate an earlier astrocyte intervention than microglia and that TSPO in AD probably is an exclusive marker of glial activity without interference from other TSPO-expressing cells. This observation indicates that the interpretation of TSPO imaging depends on the stage of the pathology, and highlights the particular role of astrocytes.
Collapse
Affiliation(s)
- Benjamin B Tournier
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Switzerland
| | - Stergios Tsartsalis
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Switzerland
| | - Kelly Ceyzériat
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Switzerland.,Division of Nuclear medicine, University Hospitals of Geneva, Switzerland
| | - Ben H Fraser
- ANSTO LifeSciences, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Sydney, NSW, Australia
| | - Marie-Claude Grégoire
- ANSTO LifeSciences, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Sydney, NSW, Australia
| | - Enikö Kövari
- Division of Geriatric Psychiatry, Department of Mental Health and Psychiatry, University Hospitals of Geneva, Switzerland.,Department of Psychiatry, University of Geneva, Switzerland
| | - Philippe Millet
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Switzerland.,Department of Psychiatry, University of Geneva, Switzerland
| |
Collapse
|
162
|
Ratner MH, Downing SS, Guo O, Odamah KE, Stewart TM, Kumaresan V, Robitsek RJ, Xia W, Farb DH. Prodromal dysfunction of α5GABA-A receptor modulated hippocampal ripples occurs prior to neurodegeneration in the TgF344-AD rat model of Alzheimer's disease. Heliyon 2021; 7:e07895. [PMID: 34568591 PMCID: PMC8449175 DOI: 10.1016/j.heliyon.2021.e07895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 11/20/2022] Open
Abstract
Decades of research attempting to slow the onset of Alzheimer's disease (AD) indicates that a better understanding of memory will be key to the discovery of effective therapeutic approaches. Here, we ask whether prodromal neural network dysfunction might occur in the hippocampal trisynaptic circuit by using α5IA (an established memory enhancer and selective negative allosteric modulator of extrasynaptic tonically active α5GABA-A receptors) as a probe drug in TgF344-AD transgenic rats, a model for β-amyloid induced early onset AD. The results demonstrate that orally bioavailable α5IA increases CA1 pyramidal cell mean firing rates during foraging and peak ripple amplitude during wakeful immobility in wild type F344 rats in a familiar environment. We further demonstrate that CA1 ripples in TgF344-AD rats are nonresponsive to α5IA by 9 months of age, prior to the onset of AD-like pathology and memory dysfunction. TgF344-AD rats express human β-amyloid precursor protein (with the Swedish mutation) and human presenilin-1 (with a Δ exon 9 mutation) and we found high serum Aβ42 and Aβ40 levels by 3 months of age. When taken together, this demonstrates, to the best of our knowledge, the first evidence for prodromal α5GABA-A receptor dysfunction in the ripple-generating hippocampal trisynaptic circuit of AD-like transgenic rats. As α5GABA-A receptors are found at extrasynaptic and synaptic contacts, we posit that negative modulation of α5GABA-A receptor mediated tonic as well as phasic inhibition augments CA1 ripples and memory consolidation but that this modulatory mechanism is lost at an early stage of AD onset.
Collapse
Affiliation(s)
- Marcia H. Ratner
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Scott S. Downing
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Ouyang Guo
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - KathrynAnn E. Odamah
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Tara M. Stewart
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Vidhya Kumaresan
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - R. Jonathan Robitsek
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Weiming Xia
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA
- Geriatric Research Education and Clinical Center, Bedford Veterans Administration Healthcare System, Bedford, Massachusetts, USA
| | - David H. Farb
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
163
|
Fontaine D, Santucci S. Deep brain stimulation in Alzheimer's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 159:69-87. [PMID: 34446251 DOI: 10.1016/bs.irn.2021.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Benefits from symptomatic and etiologic treatments in Alzheimer's Disease (AD), the most frequent dementia, are still insufficient. During the last decade, several studies showed that electrical stimulation of memory circuits could enhance memory in humans without memory impairment. First, improvement of verbal recollection was reported after deep brain stimulation (DBS) of the fornix in the hypothalamus in a patient treated for morbid obesity. Several studies in epileptic patients explored by deep electrodes reported that visuo-spatial memorization was facilitated by electrical stimulation of the entorhinal cortex or theta burst stimulation of the fornix. Recent studies suggested that DBS could be useful to modulate memory circuits in patients with cognitive decline. Phase I and II studies (about 50 patients) showed that chronic fornix DBS was safe and could achieved to stabilize or slow the memory decline of some patients with mild to moderate AD, especially older ones with less severe and/or advanced disease. DBS of the cholinergic nucleus of Meynert also has been explored in phase I studies in AD and Parkinson-related dementia. Growing experimental data suggest several mechanisms of action: restoration of hippocampal theta rhythms, enhanced long term potentiation, increase of hippocampal neurogenesis, neuroprotection by release of neurotrophic factors, diffuse reactivation of hypoactive neocortical associative regions. However, DBS in AD is still investigational and numerous issues remain to be solved before envisaging its use in clinical practice, including optimal anatomical DBS target, stimulation modalities (continuous, intermittent, theta-bursts, closed loop stimulation), best candidate patients, relevant targeted symptoms, ethical considerations.
Collapse
Affiliation(s)
- Denys Fontaine
- Department of Neurosurgery, Université Côte d'Azur, CHU de Nice, Nice, France.
| | - Serena Santucci
- Department of Neurosurgery, Université Côte d'Azur, CHU de Nice, Nice, France
| |
Collapse
|
164
|
Cacabelos R, Carrera I, Martínez-Iglesias O, Cacabelos N, Naidoo V. What is the gold standard model for Alzheimer's disease drug discovery and development? Expert Opin Drug Discov 2021; 16:1415-1440. [PMID: 34330186 DOI: 10.1080/17460441.2021.1960502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Introduction: Alzheimer's disease models (ADMs) are currently used for drug development (DD). More than 20,000 molecules were screened for AD treatment over decades, with only one drug (Aducanumab)FDA-approved over the past 18 years. A revision of pathogenic concepts and ADMs are needed.Areas covered: The authors discuss herein preclinical models including: (i) in vitro models (cell lines, primary neuron cell cultures, iPSC-derived brain cells), (ii) ex vivo models, and (iii) in vivo models (artificial, transgenic, non-transgenic and induced).Expert opinion: The following types of ADMs have been reported: Mouse models (45.08%), Rat models (15.04%), Non-human Primate models (0.76%), Rabbit models (0.46%), Cat models (0.53%), Pig models (0.30%), Guinea pig models (0.15%), Octodon degu models (0.02%), Dog models (0.54%), Drosophila melanogaster models (1.79%), Zebrafish models (0.50%), Caenorhabditis elegans (1.21%), Cell culture models (3.31%), Cholinergic models (8.26%), Neurotoxic models (6.79%), Neuroinflammation models (6.92%), Neurovascular models (7.88%), and Microbiome models (0.45%).No single ADM faithfully reproduces all the pathogenic events in the human AD phenotype spectrum. ADMs should be different for (i) pathogenic studies vs basic DD, and (ii) preventive interventions vs symptomatic treatments. There cannot be an ideal ADM for DD, because AD is a spectrum of syndromes. DD can integrate pathogenic, mechanistic, metabolic, transporter and pleiotropic genes in a multisystem model.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Departments of Genomic Medicine, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Bergondo, Spain
| | - Iván Carrera
- Health Biotechnology, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Bergondo, Spain
| | - Olaia Martínez-Iglesias
- Medical Epigenetics, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Bergondo, Spain
| | - Natalia Cacabelos
- Medical Documentation, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Bergondo, Spain
| | - Vinogran Naidoo
- Basic Neuroscience, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Bergondo, Spain
| |
Collapse
|
165
|
Biechele G, Blume T, Deussing M, Zott B, Shi Y, Xiang X, Franzmeier N, Kleinberger G, Peters F, Ochs K, Focke C, Sacher C, Wind K, Schmidt C, Lindner S, Gildehaus FJ, Eckenweber F, Beyer L, von Ungern-Sternberg B, Bartenstein P, Baumann K, Dorostkar MM, Rominger A, Cumming P, Willem M, Adelsberger H, Herms J, Brendel M. Pre-therapeutic microglia activation and sex determine therapy effects of chronic immunomodulation. Theranostics 2021; 11:8964-8976. [PMID: 34522221 PMCID: PMC8419052 DOI: 10.7150/thno.64022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/06/2021] [Indexed: 12/21/2022] Open
Abstract
Modulation of the innate immune system is emerging as a promising therapeutic strategy against Alzheimer's disease (AD). However, determinants of a beneficial therapeutic effect are ill-understood. Thus, we investigated the potential of 18 kDa translocator protein positron-emission-tomography (TSPO-PET) for assessment of microglial activation in mouse brain before and during chronic immunomodulation. Methods: Serial TSPO-PET was performed during five months of chronic microglia modulation by stimulation of the peroxisome proliferator-activated receptor (PPAR)-γ with pioglitazone in two different mouse models of AD (PS2APP, AppNL-G-F ). Using mixed statistical models on longitudinal TSPO-PET data, we tested for effects of therapy and sex on treatment response. We tested correlations of baseline with longitudinal measures of TSPO-PET, and correlations between PET results with spatial learning performance and β-amyloid accumulation of individual mice. Immunohistochemistry was used to determine the molecular source of the TSPO-PET signal. Results: Pioglitazone-treated female PS2APP and AppNL-G-F mice showed attenuation of the longitudinal increases in TSPO-PET signal when compared to vehicle controls, whereas treated male AppNL-G-F mice showed the opposite effect. Baseline TSPO-PET strongly predicted changes in microglial activation in treated mice (R = -0.874, p < 0.0001) but not in vehicle controls (R = -0.356, p = 0.081). Reduced TSPO-PET signal upon pharmacological treatment was associated with better spatial learning despite higher fibrillar β-amyloid accumulation. Immunohistochemistry confirmed activated microglia to be the source of the TSPO-PET signal (R = 0.952, p < 0.0001). Conclusion: TSPO-PET represents a sensitive biomarker for monitoring of immunomodulation and closely reflects activated microglia. Sex and pre-therapeutic assessment of baseline microglial activation predict individual immunomodulation effects and may serve for responder stratification.
Collapse
Affiliation(s)
- Gloria Biechele
- Dept. of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Tanja Blume
- Dept. of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
- DZNE - German Center for Neurodegenerative Diseases, Munich, Germany
| | - Maximilian Deussing
- Dept. of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Benedikt Zott
- Institute of Neuroscience, Technical University of Munich, Munich, Germany
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Yuan Shi
- DZNE - German Center for Neurodegenerative Diseases, Munich, Germany
| | - Xianyuan Xiang
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
| | | | - Finn Peters
- DZNE - German Center for Neurodegenerative Diseases, Munich, Germany
| | - Katharina Ochs
- DZNE - German Center for Neurodegenerative Diseases, Munich, Germany
| | - Carola Focke
- Dept. of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Christian Sacher
- Dept. of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Karin Wind
- Dept. of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Claudio Schmidt
- Dept. of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Simon Lindner
- Dept. of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Franz-Josef Gildehaus
- Dept. of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Florian Eckenweber
- Dept. of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Leonie Beyer
- Dept. of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | | | - Peter Bartenstein
- Dept. of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
- SyNergy, University of Munich, Munich, Germany
| | - Karlheinz Baumann
- Roche Pharma Research and Early Development, Neuroscience Discovery, Roche, Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Mario M. Dorostkar
- DZNE - German Center for Neurodegenerative Diseases, Munich, Germany
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Axel Rominger
- Dept. of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
- SyNergy, University of Munich, Munich, Germany
- Dept. of Nuclear Medicine, Inselspital Bern, Bern, Switzerland
| | - Paul Cumming
- Dept. of Nuclear Medicine, Inselspital Bern, Bern, Switzerland
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia
| | - Michael Willem
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Jochen Herms
- DZNE - German Center for Neurodegenerative Diseases, Munich, Germany
- SyNergy, University of Munich, Munich, Germany
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Matthias Brendel
- Dept. of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
- SyNergy, University of Munich, Munich, Germany
| |
Collapse
|
166
|
Vignon A, Salvador-Prince L, Lehmann S, Perrier V, Torrent J. Deconstructing Alzheimer's Disease: How to Bridge the Gap between Experimental Models and the Human Pathology? Int J Mol Sci 2021; 22:8769. [PMID: 34445475 PMCID: PMC8395727 DOI: 10.3390/ijms22168769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023] Open
Abstract
Discovered more than a century ago, Alzheimer's disease (AD) is not only still present in our societies but has also become the most common dementia, with 50 million people worldwide affected by the disease. This number is expected to double in the next generation, and no cure is currently available to slow down or stop the disease progression. Recently, some advances were made due to the approval of the aducanumab treatment by the American Food and Drug Administration. The etiology of this human-specific disease remains poorly understood, and the mechanisms of its development have not been completely clarified. Several hypotheses concerning the molecular mechanisms of AD have been proposed, but the existing studies focus primarily on the two main markers of the disease: the amyloid β peptides, whose aggregation in the brain generates amyloid plaques, and the abnormally phosphorylated tau proteins, which are responsible for neurofibrillary tangles. These protein aggregates induce neuroinflammation and neurodegeneration, which, in turn, lead to cognitive and behavioral deficits. The challenge is, therefore, to create models that best reproduce this pathology. This review aims at gathering the different existing AD models developed in vitro, in cellulo, and in vivo. Many models have already been set up, but it is necessary to identify the most relevant ones for our investigations. The purpose of the review is to help researchers to identify the most pertinent disease models, from the most often used to the most recently generated and from simple to complex, explaining their specificities and giving concrete examples.
Collapse
Affiliation(s)
- Anaïs Vignon
- INM, University of Montpellier, INSERM, 34095 Montpellier, France; (A.V.); (L.S.-P.)
| | - Lucie Salvador-Prince
- INM, University of Montpellier, INSERM, 34095 Montpellier, France; (A.V.); (L.S.-P.)
| | - Sylvain Lehmann
- INM, University of Montpellier, INSERM, CHU Montpellier, 34095 Montpellier, France;
| | - Véronique Perrier
- INM, University of Montpellier, INSERM, CNRS, 34095 Montpellier, France
| | - Joan Torrent
- INM, University of Montpellier, INSERM, 34095 Montpellier, France; (A.V.); (L.S.-P.)
| |
Collapse
|
167
|
Neurocognitive Assessment and Retinal Thickness Alterations in Alzheimer Disease: Is There a Correlation? J Neuroophthalmol 2021; 40:370-377. [PMID: 31453919 DOI: 10.1097/wno.0000000000000831] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The relation of retinal thickness to neuropsychological indexes of cognitive impairment in patients with Alzheimer disease (AD) remains an area of investigation. The scope of this investigation was to compare volume and thickness changes of neuronal retinal layers in subjects with AD with those of age-matched healthy controls and to estimate the relation between cognitive functioning evaluated by neuropsychological assessment and thickness changes of the retina. METHODS This was a prospective single-site study where we evaluated 25 subjects with probable AD matched for age, sex, and education to 17 healthy control subjects (HC). All participants underwent a full medical evaluation, neuropsychological assessment, and optical coherence tomography (OCT) to evaluate the peripapillary retinal nerve fiber layer (pRNFL) thickness, ganglion cell complex (GCC) thickness, and macular volume. RESULTS The pRNFL thickness of AD patients showed a significant overall reduction compared with healthy controls (P = <0.0001). Furthermore, pRNFL was reduced in each retinal quadrant, particularly the inferior, nasal, and superior quadrants. GCC thickness and macular volume were reduced in AD patients in comparison with HC (P = 0.004; P = 0.001). Of particular interest was the correlation between OCT findings and neuropsychological assessment; we did not find a significant association of retinal thinning with worse MMSE score, but reduction of macular volume was associated with worse constructional praxis performance. Impairment of semantic-lexical and processing speed was associated with attenuation of macular GCC thickness. CONCLUSIONS OCT can show early thickness changes in AD patients with subtle memory disturbances. These results suggest that correlations between retinal thinning and cognitive performance warrant further investigation.
Collapse
|
168
|
Ceyzériat K, Zilli T, Fall AB, Millet P, Koutsouvelis N, Dipasquale G, Frisoni GB, Tournier BB, Garibotto V. Treatment by low-dose brain radiation therapy improves memory performances without changes of the amyloid load in the TgF344-AD rat model. Neurobiol Aging 2021; 103:117-127. [PMID: 33895629 DOI: 10.1016/j.neurobiolaging.2021.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/27/2021] [Accepted: 03/13/2021] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition affecting memory performance. This pathology is characterized by intracerebral amyloid plaques and tau tangles coupled with neuroinflammation. During the last century, numerous therapeutic trials unfortunately failed highlighting the need to find new therapeutic approaches. Low-dose brain radiotherapy (LD-RT) showed efficacy to reduce amyloid load and inflammation in patients with peripheral diseases. In this study, the therapeutic potential of 2 LD-RT schedules was tested on the TgF344-AD rat model of AD. Fifteen-month-old rats were irradiated with 5 fractions of 2 Gy delivered either daily or weekly. The daily treatment induced an improvement of memory performance in the Y-maze. In contrast, the weekly treatment increased the microglial reactivity in the hippocampus. A lack of effect of both regimens on amyloid pathology was unexpectedly observed. The positive effect on cognition encourages to further evaluate the LD-RT therapeutic potential and highlights the impact of the design choice of the LD-RT regimen.
Collapse
Affiliation(s)
- Kelly Ceyzériat
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland; Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospitals, and NimtLab, Faculty of Medicine, Geneva University, Geneva, Switzerland; Division of Radiation Oncology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland; Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Thomas Zilli
- Division of Radiation Oncology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland; Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Aïda B Fall
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland
| | - Philippe Millet
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland; Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Nikolaos Koutsouvelis
- Division of Radiation Oncology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
| | - Giovanna Dipasquale
- Division of Radiation Oncology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
| | - Giovanni B Frisoni
- Memory Center, Geneva University Hospitals, and LANVIE, Faculty of Medicine, Geneva University, Geneva, Switzerland; IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Benjamin B Tournier
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland; Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospitals, and NimtLab, Faculty of Medicine, Geneva University, Geneva, Switzerland.
| |
Collapse
|
169
|
Dickie BR, Boutin H, Parker GJM, Parkes LM. Alzheimer's disease pathology is associated with earlier alterations to blood-brain barrier water permeability compared with healthy ageing in TgF344-AD rats. NMR IN BIOMEDICINE 2021; 34:e4510. [PMID: 33723901 PMCID: PMC11475392 DOI: 10.1002/nbm.4510] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/06/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
The effects of Alzheimer's disease (AD) and ageing on blood-brain barrier (BBB) breakdown are investigated in TgF344-AD and wild-type rats aged 13, 18 and 21 months. Permeability surface area products of the BBB to water (PSw ) and gadolinium-based contrast agent (PSg ) were measured in grey matter using multiflip angle multiecho dynamic contrast-enhanced MRI. At 13 months of age, there was no significant difference in PSw between TgF344-AD and wild-types (p = 0.82). Between 13 and 18 months, PSw increased in TgF344-AD rats (p = 0.027), but not in wild-types (p = 0.99), leading to significantly higher PSw in TgF344-AD rats at 18 months, as previously reported (p = 0.012). Between 18 and 21 months, PSw values increased in wild-types (p = 0.050), but not in TgF344-AD rats (p = 0.50). These results indicate that BBB water permeability is affected by both AD pathology and ageing, but that changes occur earlier in the presence of AD pathology. There were no significant genotype or ageing effects on PSg (p > 0.05). In conclusion, we detected increases in BBB water permeability with age in TgF344-AD and wild-type rats, and found that changes occurred at an earlier age in rats with AD pathology.
Collapse
Affiliation(s)
- Ben R. Dickie
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine, and Health, Stopford BuildingUniversity of ManchesterManchesterUK
- Geoffrey Jefferson Brain Research CentreManchester Academic Health Science CentreManchesterUK
| | - Hervé Boutin
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine, and Health, Stopford BuildingUniversity of ManchesterManchesterUK
- Geoffrey Jefferson Brain Research CentreManchester Academic Health Science CentreManchesterUK
- Wolfson Molecular Imaging Centre, Faculty of Biology, Medicine, and HealthUniversity of ManchesterManchesterUK
| | - Geoff J. M. Parker
- Bioxydyn LtdManchesterUK
- Centre for Medical Image Computing, Department of Computer Science and Department of NeuroinflammationUniversity College LondonLondonUK
| | - Laura M. Parkes
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine, and Health, Stopford BuildingUniversity of ManchesterManchesterUK
- Geoffrey Jefferson Brain Research CentreManchester Academic Health Science CentreManchesterUK
| |
Collapse
|
170
|
Goodman AM, Langner BM, Jackson N, Alex C, McMahon LL. Heightened Hippocampal β-Adrenergic Receptor Function Drives Synaptic Potentiation and Supports Learning and Memory in the TgF344-AD Rat Model during Prodromal Alzheimer's Disease. J Neurosci 2021; 41:5747-5761. [PMID: 33952633 PMCID: PMC8244969 DOI: 10.1523/jneurosci.0119-21.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/23/2021] [Accepted: 04/28/2021] [Indexed: 01/27/2023] Open
Abstract
The central noradrenergic (NA) system is critical for the maintenance of attention, behavioral flexibility, spatial navigation, and learning and memory, those cognitive functions lost first in early Alzheimer's disease (AD). In fact, the locus coeruleus (LC), the sole source of norepinephrine (NE) for >90% of the brain, is the first site of pathologic tau accumulation in human AD with axon loss throughout forebrain, including hippocampus. The dentate gyrus is heavily innervated by LC-NA axons, where released NE acts on β-adrenergic receptors (ARs) at excitatory synapses from entorhinal cortex to facilitate long-term synaptic plasticity and memory formation. These synapses experience dysfunction in early AD before cognitive impairment. In the TgF344-AD rat model of AD, degeneration of LC-NA axons in hippocampus recapitulates human AD, providing a preclinical model to investigate synaptic and behavioral consequences. Using immunohistochemistry, Western blot analysis, and brain slice electrophysiology in 6- to 9-month-old wild-type and TgF344-AD rats, we discovered that the loss of LC-NA axons coincides with the heightened β-AR function at medial perforant path-dentate granule cell synapses that is responsible for the increase in LTP magnitude at these synapses. Furthermore, novel object recognition is facilitated in TgF344-AD rats that requires β-ARs, and pharmacological blockade of β-ARs unmasks a deficit in extinction learning only in TgF344-AD rats, indicating a greater reliance on β-ARs in both behaviors. Thus, a compensatory increase in β-AR function during prodromal AD in TgF344-AD rats heightens synaptic plasticity and preserves some forms of learning and memory.SIGNIFICANCE STATEMENT The locus coeruleus (LC), a brain region located in the brainstem which is responsible for attention and arousal, is damaged first by Alzheimer's disease (AD) pathology. The LC sends axons to hippocampus where released norepinephrine (NE) modulates synaptic function required for learning and memory. How degeneration of LC axons and loss of NE in hippocampus in early AD impacts synaptic function and learning and memory is not well understood despite the importance of LC in cognitive function. We used a transgenic AD rat model with LC axon degeneration mimicking human AD and found that heightened function of β-adrenergic receptors in the dentate gyrus increased synaptic plasticity and preserved learning and memory in early stages of the disease.
Collapse
Affiliation(s)
- Anthoni M Goodman
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0006
| | - Bethany M Langner
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0006
| | - Nateka Jackson
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0006
| | - Capri Alex
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0006
| | - Lori L McMahon
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0006
| |
Collapse
|
171
|
Bandyopadhyay S. Role of Neuron and Glia in Alzheimer's Disease and Associated Vascular Dysfunction. Front Aging Neurosci 2021; 13:653334. [PMID: 34211387 PMCID: PMC8239194 DOI: 10.3389/fnagi.2021.653334] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022] Open
Abstract
Amyloidogenicity and vascular dysfunction are the key players in the pathogenesis of Alzheimer’s disease (AD), involving dysregulated cellular interactions. An intricate balance between neurons, astrocytes, microglia, oligodendrocytes and vascular cells sustains the normal neuronal circuits. Conversely, cerebrovascular diseases overlap neuropathologically with AD, and glial dyshomeostasis promotes AD-associated neurodegenerative cascade. While pathological hallmarks of AD primarily include amyloid-β (Aβ) plaques and neurofibrillary tangles, microvascular disorders, altered cerebral blood flow (CBF), and blood-brain barrier (BBB) permeability induce neuronal loss and synaptic atrophy. Accordingly, microglia-mediated inflammation and astrogliosis disrupt the homeostasis of the neuro-vascular unit and stimulate infiltration of circulating leukocytes into the brain. Large-scale genetic and epidemiological studies demonstrate a critical role of cellular crosstalk for altered immune response, metabolism, and vasculature in AD. The glia associated genetic risk factors include APOE, TREM2, CD33, PGRN, CR1, and NLRP3, which correlate with the deposition and altered phagocytosis of Aβ. Moreover, aging-dependent downregulation of astrocyte and microglial Aβ-degrading enzymes limits the neurotrophic and neurogenic role of glial cells and inhibits lysosomal degradation and clearance of Aβ. Microglial cells secrete IGF-1, and neurons show a reduced responsiveness to the neurotrophic IGF-1R/IRS-2/PI3K signaling pathway, generating amyloidogenic and vascular dyshomeostasis in AD. Glial signals connect to neural stem cells, and a shift in glial phenotype over the AD trajectory even affects adult neurogenesis and the neurovascular niche. Overall, the current review informs about the interaction of neuronal and glial cell types in AD pathogenesis and its critical association with cerebrovascular dysfunction.
Collapse
Affiliation(s)
- Sanghamitra Bandyopadhyay
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
172
|
In vivo multi-parametric manganese-enhanced MRI for detecting amyloid plaques in rodent models of Alzheimer's disease. Sci Rep 2021; 11:12419. [PMID: 34127752 PMCID: PMC8203664 DOI: 10.1038/s41598-021-91899-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/28/2021] [Indexed: 12/14/2022] Open
Abstract
Amyloid plaques are a hallmark of Alzheimer's disease (AD) that develop in its earliest stages. Thus, non-invasive detection of these plaques would be invaluable for diagnosis and the development and monitoring of treatments, but this remains a challenge due to their small size. Here, we investigated the utility of manganese-enhanced MRI (MEMRI) for visualizing plaques in transgenic rodent models of AD across two species: 5xFAD mice and TgF344-AD rats. Animals were given subcutaneous injections of MnCl2 and imaged in vivo using a 9.4 T Bruker scanner. MnCl2 improved signal-to-noise ratio but was not necessary to detect plaques in high-resolution images. Plaques were visible in all transgenic animals and no wild-types, and quantitative susceptibility mapping showed that they were more paramagnetic than the surrounding tissue. This, combined with beta-amyloid and iron staining, indicate that plaque MR visibility in both animal models was driven by plaque size and iron load. Longitudinal relaxation rate mapping revealed increased manganese uptake in brain regions of high plaque burden in transgenic animals compared to their wild-type littermates. This was limited to the rhinencephalon in the TgF344-AD rats, while it was most significantly increased in the cortex of the 5xFAD mice. Alizarin Red staining suggests that manganese bound to plaques in 5xFAD mice but not in TgF344-AD rats. Multi-parametric MEMRI is a simple, viable method for detecting amyloid plaques in rodent models of AD. Manganese-induced signal enhancement can enable higher-resolution imaging, which is key to visualizing these small amyloid deposits. We also present the first in vivo evidence of manganese as a potential targeted contrast agent for imaging plaques in the 5xFAD model of AD.
Collapse
|
173
|
Ceyzériat K, Zilli T, Millet P, Frisoni GB, Garibotto V, Tournier BB. Learning from the Past: A Review of Clinical Trials Targeting Amyloid, Tau and Neuroinflammation in Alzheimer's Disease. Curr Alzheimer Res 2021; 17:112-125. [PMID: 32129164 DOI: 10.2174/1567205017666200304085513] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 02/11/2020] [Accepted: 03/01/2020] [Indexed: 12/31/2022]
Abstract
Alzheimer's Disease (AD) is the most common neurodegenerative disease and cause of dementia. Characterized by amyloid plaques and neurofibrillary tangles of hyperphosphorylated Tau, AD pathology has been intensively studied during the last century. After a long series of failed trials of drugs targeting amyloid or Tau deposits, currently, hope lies in the positive results of one Phase III trial, highly debated, and on other ongoing trials. In parallel, some approaches target neuroinflammation, another central feature of AD. Therapeutic strategies are initially evaluated on animal models, in which the various drugs have shown effects on the target (decreasing amyloid, Tau and neuroinflammation) and sometimes on cognitive impairment. However, it is important to keep in mind that rodent models have a less complex brain than humans and that the pathology is generally not fully represented. Although they are indispensable tools in the drug discovery process, results obtained from animal models must be viewed with caution. In this review, we focus on the current status of disease-modifying therapies targeting amyloid, Tau and neuroinflammation with particular attention on the discrepancy between positive preclinical results on animal models and failures in clinical trials.
Collapse
Affiliation(s)
- Kelly Ceyzériat
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland.,Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University and Geneva University Hospitals, Geneva, Switzerland.,Division of Radiation Oncology, Department of Oncology, Geneva University and Geneva University Hospitals, Geneva, Switzerland
| | - Thomas Zilli
- Division of Radiation Oncology, Department of Oncology, Geneva University and Geneva University Hospitals, Geneva, Switzerland
| | - Philippe Millet
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland
| | - Giovanni B Frisoni
- Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University and Geneva University Hospitals, Geneva, Switzerland.,IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University and Geneva University Hospitals, Geneva, Switzerland
| | - Benjamin B Tournier
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
174
|
Selvarani R, Mohammed S, Richardson A. Effect of rapamycin on aging and age-related diseases-past and future. GeroScience 2021; 43:1135-1158. [PMID: 33037985 PMCID: PMC8190242 DOI: 10.1007/s11357-020-00274-1] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022] Open
Abstract
In 2009, rapamycin was reported to increase the lifespan of mice when implemented later in life. This observation resulted in a sea-change in how researchers viewed aging. This was the first evidence that a pharmacological agent could have an impact on aging when administered later in life, i.e., an intervention that did not have to be implemented early in life before the negative impact of aging. Over the past decade, there has been an explosion in the number of reports studying the effect of rapamycin on various diseases, physiological functions, and biochemical processes in mice. In this review, we focus on those areas in which there is strong evidence for rapamycin's effect on aging and age-related diseases in mice, e.g., lifespan, cardiac disease/function, central nervous system, immune system, and cell senescence. We conclude that it is time that pre-clinical studies be focused on taking rapamycin to the clinic, e.g., as a potential treatment for Alzheimer's disease.
Collapse
Affiliation(s)
- Ramasamy Selvarani
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sabira Mohammed
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Arlan Richardson
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma City VA Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
175
|
Tobey H, Lucas T, Paul S, Berr SS, Mehrkens B, Brolinson PG, Klein BG, Costa BM. Mechanoceutics Alters Alzheimer's Disease Phenotypes in Transgenic Rats: A Pilot Study. J Alzheimers Dis 2021; 74:421-427. [PMID: 32039851 DOI: 10.3233/jad-191071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Current advancements in neurovascular biology relates a mechanoceutics treatment, known as cranial osteopathic manipulation (COM), Alzheimer's disease (AD). COM could be used as an evidence-based treatment strategy to improve the symptoms of AD if molecular mechanisms, which currently remain unclear, are elucidated. In the present pilot study, using transgenic rats, we have identified COM mediated changes in behavioral and biochemical parameters associated with AD phenotypes. We expect these changes may have functional implications that might account for improved clinical outcomes of COM treatment. Further investigations on COM will be helpful to establish an adjunct treatment for AD.
Collapse
Affiliation(s)
- Hope Tobey
- Edward Via Virginia College of Osteopathic Medicine, Blacksburg, VA, USA
| | - Tyler Lucas
- Edward Via Virginia College of Osteopathic Medicine, Blacksburg, VA, USA
| | - Soumen Paul
- Department of Radiology and Medical Imaging, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Stuart S Berr
- Department of Radiology and Medical Imaging, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Brittney Mehrkens
- Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | | | - Bradley G Klein
- Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Blaise M Costa
- Edward Via Virginia College of Osteopathic Medicine, Blacksburg, VA, USA.,Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
176
|
Pentkowski NS, Rogge-Obando KK, Donaldson TN, Bouquin SJ, Clark BJ. Anxiety and Alzheimer's disease: Behavioral analysis and neural basis in rodent models of Alzheimer's-related neuropathology. Neurosci Biobehav Rev 2021; 127:647-658. [PMID: 33979573 DOI: 10.1016/j.neubiorev.2021.05.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/28/2021] [Accepted: 05/05/2021] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease (AD) pathology is commonly associated with cognitive decline but is also composed of neuropsychiatric symptoms including psychological distress and alterations in mood, including anxiety and depression. Emotional dysfunction in AD is frequently modeled using tests of anxiety-like behavior in transgenic rodents. These tests often include the elevated plus-maze, light/dark test and open field test. In this review, we describe prototypical behavioral paradigms used to examine emotional dysfunction in transgenic models of AD, specifically anxiety-like behavior. Next, we summarize the results of studies examining anxiety-like behavior in transgenic rodents, noting that the behavioral outcomes using these paradigms have produced inconsistent results. We suggest that future research will benefit from using a battery of tests to examine emotional behavior in transgenic AD models. We conclude by discussing putative, overlapping neurobiological mechanisms underlying AD-related neuropathology, stress and anxiety-like behavior reported in AD models.
Collapse
Affiliation(s)
- Nathan S Pentkowski
- Department of Psychology, University of New Mexico, Albuquerque, NM, 87109, Mexico.
| | | | - Tia N Donaldson
- Department of Psychology, University of New Mexico, Albuquerque, NM, 87109, Mexico
| | - Samuel J Bouquin
- Department of Psychology, University of New Mexico, Albuquerque, NM, 87109, Mexico
| | - Benjamin J Clark
- Department of Psychology, University of New Mexico, Albuquerque, NM, 87109, Mexico.
| |
Collapse
|
177
|
Chaney AM, Lopez-Picon FR, Serrière S, Wang R, Bochicchio D, Webb SD, Vandesquille M, Harte MK, Georgiadou C, Lawrence C, Busson J, Vercouillie J, Tauber C, Buron F, Routier S, Reekie T, Snellman A, Kassiou M, Rokka J, Davies KE, Rinne JO, Salih DA, Edwards FA, Orton LD, Williams SR, Chalon S, Boutin H. Prodromal neuroinflammatory, cholinergic and metabolite dysfunction detected by PET and MRS in the TgF344-AD transgenic rat model of AD: a collaborative multi-modal study. Am J Cancer Res 2021; 11:6644-6667. [PMID: 34093845 PMCID: PMC8171096 DOI: 10.7150/thno.56059] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/15/2021] [Indexed: 12/25/2022] Open
Abstract
Mouse models of Alzheimer's disease (AD) are valuable but do not fully recapitulate human AD pathology, such as spontaneous Tau fibril accumulation and neuronal loss, necessitating the development of new AD models. The transgenic (TG) TgF344-AD rat has been reported to develop age-dependent AD features including neuronal loss and neurofibrillary tangles, despite only expressing APP and PSEN1 mutations, suggesting an improved modelling of AD hallmarks. Alterations in neuronal networks as well as learning performance and cognition tasks have been reported in this model, but none have combined a longitudinal, multimodal approach across multiple centres, which mimics the approaches commonly taken in clinical studies. We therefore aimed to further characterise the progression of AD-like pathology and cognition in the TgF344-AD rat from young-adults (6 months (m)) to mid- (12 m) and advanced-stage (18 m, 25 m) of the disease. Methods: TgF344-AD rats and wild-type (WT) littermates were imaged at 6 m, 12 m and 18 m with [18F]DPA-714 (TSPO, neuroinflammation), [18F]Florbetaben (Aβ) and [18F]ASEM (α7-nicotinic acetylcholine receptor) and with magnetic resonance spectroscopy (MRS) and with (S)-[18F]THK5117 (Tau) at 15 and 25 m. Behaviour tests were also performed at 6 m, 12 m and 18 m. Immunohistochemistry (CD11b, GFAP, Aβ, NeuN, NeuroChrom) and Tau (S)-[18F]THK5117 autoradiography, immunohistochemistry and Western blot were also performed. Results: [18F]DPA-714 positron emission tomography (PET) showed an increase in neuroinflammation in TG vs wildtype animals from 12 m in the hippocampus (+11%), and at the advanced-stage AD in the hippocampus (+12%), the thalamus (+11%) and frontal cortex (+14%). This finding coincided with strong increases in brain microgliosis (CD11b) and astrogliosis (GFAP) at these time-points as assessed by immunohistochemistry. In vivo [18F]ASEM PET revealed an age-dependent increase uptake in the striatum and pallidum/nucleus basalis of Meynert in WT only, similar to that observed with this tracer in humans, resulting in TG being significantly lower than WT by 18 m. In vivo [18F]Florbetaben PET scanning detected Aβ accumulation at 18 m, and (S)-[18F]THK5117 PET revealed subsequent Tau accumulation at 25m in hippocampal and cortical regions. Aβ plaques were low but detectable by immunohistochemistry from 6 m, increasing further at 12 and 18 m with Tau-positive neurons adjacent to Aβ plaques at 18 m. NeuroChrom (a pan neuronal marker) immunohistochemistry revealed a loss of neuronal staining at the Aβ plaques locations, while NeuN labelling revealed an age-dependent decrease in hippocampal neuron number in both genotypes. Behavioural assessment using the novel object recognition task revealed that both WT & TgF344-AD animals discriminated the novel from familiar object at 3 m and 6 m of age. However, low levels of exploration observed in both genotypes at later time-points resulted in neither genotype successfully completing the task. Deficits in social interaction were only observed at 3 m in the TgF344-AD animals. By in vivo MRS, we showed a decrease in neuronal marker N-acetyl-aspartate in the hippocampus at 18 m (-18% vs age-matched WT, and -31% vs 6 m TG) and increased Taurine in the cortex of TG (+35% vs age-matched WT, and +55% vs 6 m TG). Conclusions: This multi-centre multi-modal study demonstrates, for the first time, alterations in brain metabolites, cholinergic receptors and neuroinflammation in vivo in this model, validated by robust ex vivo approaches. Our data confirm that, unlike mouse models, the TgF344-AD express Tau pathology that can be detected via PET, albeit later than by ex vivo techniques, and is a useful model to assess and longitudinally monitor early neurotransmission dysfunction and neuroinflammation in AD.
Collapse
|
178
|
Patten KT, Valenzuela AE, Wallis C, Berg EL, Silverman JL, Bein KJ, Wexler AS, Lein PJ. The Effects of Chronic Exposure to Ambient Traffic-Related Air Pollution on Alzheimer's Disease Phenotypes in Wildtype and Genetically Predisposed Male and Female Rats. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:57005. [PMID: 33971107 PMCID: PMC8110309 DOI: 10.1289/ehp8905] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
BACKGROUND Epidemiological data link traffic-related air pollution (TRAP) to increased risk of Alzheimer's disease (AD). Preclinical data corroborating this association are largely from studies of male animals exposed acutely or subchronically to high levels of isolated fractions of TRAP. What remains unclear is whether chronic exposure to ambient TRAP modifies AD risk and the influence of sex on this interaction. OBJECTIVES This study sought to assess effects of chronic exposure to ambient TRAP on the time to onset and severity of AD phenotypes in a preclinical model and to determine whether sex or genetic susceptibility influences outcomes. METHODS Male and female TgF344-AD rats that express human AD risk genes and wildtype littermates were housed in a vivarium adjacent to a heavily trafficked tunnel in Northern California and exposed for up to 14 months to filtered air (FA) or TRAP drawn from the tunnel and delivered to animals unchanged in real time. Refractive particles in the brain and AD phenotypes were quantified in 3-, 6-, 10-, and 15-month-old animals using hyperspectral imaging, behavioral testing, and neuropathologic measures. RESULTS Particulate matter (PM) concentrations in TRAP exposure chambers fluctuated with traffic flow but remained below 24-h PM with aerodynamic diameter less than or equal to 2.5 micrometers (PM2.5) U.S. National Ambient Air Quality Standards limits. Ultrafine PM was a predominant component of TRAP. Nano-sized refractive particles were detected in the hippocampus of TRAP animals. TRAP-exposed animals had more amyloid plaque deposition, higher hyperphosphorylated tau levels, more neuronal cell loss, and greater cognitive deficits in an age-, genotype-, and sex-dependent manner. TRAP-exposed animals also had more microglial cell activation, but not astrogliosis. DISCUSSION These data demonstrate that chronic exposure to ambient TRAP promoted AD phenotypes in wildtype and genetically susceptible rats. TRAP effects varied according to age, sex, and genotype, suggesting that AD progression depends on complex interactions between environment and genetics. These findings suggest current PM2.5 regulations are insufficient to protect the aging brain. https://doi.org/10.1289/EHP8905.
Collapse
Affiliation(s)
- Kelley T. Patten
- Department of Molecular Biosciences, University of California Davis (UC Davis) School of Veterinary Medicine, Davis, California, USA
| | - Anthony E. Valenzuela
- Department of Molecular Biosciences, University of California Davis (UC Davis) School of Veterinary Medicine, Davis, California, USA
| | | | - Elizabeth L. Berg
- Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, Sacramento, California, USA
| | - Jill L. Silverman
- Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, Sacramento, California, USA
- The MIND Institute, UC Davis School of Medicine, Sacramento, California, USA
| | - Keith J. Bein
- Air Quality Research Center, UC Davis, Davis, California, USA
- Center for Health and the Environment, UC Davis, Davis, California, USA
| | - Anthony S. Wexler
- Air Quality Research Center, UC Davis, Davis, California, USA
- Mechanical and Aerospace Engineering, Civil and Environmental Engineering, and Land, Air and Water Resources, UC Davis, Davis, California, USA
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California Davis (UC Davis) School of Veterinary Medicine, Davis, California, USA
- The MIND Institute, UC Davis School of Medicine, Sacramento, California, USA
| |
Collapse
|
179
|
Pereira JB, Janelidze S, Ossenkoppele R, Kvartsberg H, Brinkmalm A, Mattsson-Carlgren N, Stomrud E, Smith R, Zetterberg H, Blennow K, Hansson O. Untangling the association of amyloid-β and tau with synaptic and axonal loss in Alzheimer's disease. Brain 2021; 144:310-324. [PMID: 33279949 PMCID: PMC8210638 DOI: 10.1093/brain/awaa395] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/04/2020] [Accepted: 09/21/2020] [Indexed: 01/10/2023] Open
Abstract
It is currently unclear how amyloid-β and tau deposition are linked to changes in
synaptic function and axonal structure over the course of Alzheimer’s disease. Here, we
assessed these relationships by measuring presynaptic (synaptosomal-associated protein 25,
SNAP25; growth-associated protein 43, GAP43), postsynaptic (neurogranin, NRGN) and axonal
(neurofilament light chain) markers in the CSF of individuals with varying levels of
amyloid-β and tau pathology based on 18F-flutemetamol PET and
18F-flortaucipir PET. In addition, we explored the relationships between
synaptic and axonal markers with cognition as well as functional and anatomical brain
connectivity markers derived from resting-state functional MRI and diffusion tensor
imaging. We found that the presynaptic and postsynaptic markers SNAP25, GAP43 and NRGN are
elevated in early Alzheimer’s disease i.e. in amyloid-β-positive individuals without
evidence of tau pathology. These markers were associated with greater amyloid-β pathology,
worse memory and functional changes in the default mode network. In contrast,
neurofilament light chain was abnormal in later disease stages, i.e. in individuals with
both amyloid-β and tau pathology, and correlated with more tau and worse global cognition.
Altogether, these findings support the hypothesis that amyloid-β and tau might have
differential downstream effects on synaptic and axonal function in a stage-dependent
manner, with amyloid-related synaptic changes occurring first, followed by tau-related
axonal degeneration.
Collapse
Affiliation(s)
- Joana B Pereira
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.,Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Rik Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.,Department of Neurology and Alzheimer Center, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Hlin Kvartsberg
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Ann Brinkmalm
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Niklas Mattsson-Carlgren
- Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden.,Department of Neurology, Skåne University Hospital, Lund University, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Ruben Smith
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.,Department of Neurology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
180
|
Luo Y, Sun Y, Tian X, Zheng X, Wang X, Li W, Wu X, Shu B, Hou W. Deep Brain Stimulation for Alzheimer's Disease: Stimulation Parameters and Potential Mechanisms of Action. Front Aging Neurosci 2021; 13:619543. [PMID: 33776742 PMCID: PMC7990787 DOI: 10.3389/fnagi.2021.619543] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/19/2021] [Indexed: 12/19/2022] Open
Abstract
Deep brain stimulation (DBS) is a neurosurgical technique that regulates neuron activity by using internal pulse generators to electrodes in specific target areas of the brain. As a blind treatment, DBS is widely used in the field of mental and neurological diseases, although its mechanism of action is still unclear. In the past 10 years, DBS has shown a certain positive effect in animal models and patients with Alzheimer's disease (AD), but there are also different results that may be related to the stimulation parameters of DBS. Based on this, determining the optimal stimulation parameters for DBS in AD and understanding its mechanism of action are essential to promote the clinical application of DBS in AD. This review aims to explore the therapeutic effect of DBS in AD, and to analyze its stimulation parameters and potential mechanism of action. The keywords "Deep brain stimulation" and "Alzheimer's Disease" were used for systematic searches in the literature databases of Web of Science and PubMed (from 1900 to September 29, 2020). All human clinical studies and animal studies were reported in English, including individual case studies and long-term follow-up studies, were included. These studies described the therapeutic effects of DBS in AD. The results included 16 human clinical studies and 14 animal studies, of which 28 studies clearly demonstrated the positive effect of DBS in AD. We analyzed the current stimulation parameters of DBS in AD from stimulation target, stimulation frequency, stimulation start time, stimulation duration, unilateral/bilateral treatment and current intensity, etc., and we also discussed its potential mechanism of action from multiple aspects, including regulating related neural networks, promoting nerve oscillation, reducing β-amyloid and tau levels, reducing neuroinflammation, regulating the cholinergic system, inducing the synthesis of nerve growth factor.
Collapse
Affiliation(s)
- Yinpei Luo
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China
| | - Yuwei Sun
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China
| | - Xuelong Tian
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China.,Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, China
| | - Xiaolin Zheng
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China.,Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, China
| | - Xing Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China.,Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, China
| | - Weina Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoying Wu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China.,Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, China
| | - Bin Shu
- Department of Rehabilitation Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Wensheng Hou
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China.,Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, China
| |
Collapse
|
181
|
Ceyzériat K, Gloria Y, Tsartsalis S, Fossey C, Cailly T, Fabis F, Millet P, Tournier BB. Alterations in dopamine system and in its connectivity with serotonin in a rat model of Alzheimer's disease. Brain Commun 2021; 3:fcab029. [PMID: 34286270 PMCID: PMC8287930 DOI: 10.1093/braincomms/fcab029] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/20/2022] Open
Abstract
Dopamine pathways alterations are reported in Alzheimer’s disease. However, it is
difficult in humans to establish when these deficits appear and their impact in the course
of Alzheimer’s disease. In the TgF344-Alzheimer’s disease rat model at the age of
6 months, we showed a reduction in in vivo release of striatal dopamine
due to serotonin 5HT2A-receptor blockade, in the absence of alterations in
5HT2A-receptor binding, suggesting a reduction in
5HT2A-receptor-dopamine system connectivity. In addition, a functional
hypersensitivity of postsynaptic dopamine D2-receptors and
D2-autoreceptors was also reported without any change in D2-receptor
density and in the absence of amyloid plaques or overexpression of the 18 kDa translocator
protein (an inflammatory marker) in areas of the dopamine system. Citalopram, a selective
serotonin reuptake inhibitor, induced functional
5HT2A-receptor−D2-receptor connectivity changes but had no effect on
D2-autoreceptor hypersensitivity. In older rats, dopamine cell bodies
overexpressed translocator protein and dopamine projection sites accumulated amyloid.
Interestingly, the 5HT2A-receptor density is decreased in the accumbens
subdivisions and the substantia nigra pars compacta. This reduction in the striatum is
related to the astrocytic expression of 5HT2A-receptor. Our results indicate
that both serotonin/dopamine connectivity and dopamine signalling pathways are
dysregulated and potentially represent novel early diagnostic and therapeutic avenues.
Collapse
Affiliation(s)
- Kelly Ceyzériat
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, 1206 Geneva, Switzerland.,Division of Nuclear medicine, Diagnostic Department, University Hospitals and Geneva University of Geneva, 1206 Geneva, Switzerland.,Division of Radiation Oncology, Department of Oncology, University Hospitals of Geneva, 1206 Geneva, Switzerland
| | - Yesica Gloria
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, 1206 Geneva, Switzerland
| | - Stergios Tsartsalis
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, 1206 Geneva, Switzerland
| | - Christine Fossey
- Normandie University, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), 14000 Caen, France
| | - Thomas Cailly
- Normandie University, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), 14000 Caen, France.,Department of Nuclear Medicine, CHU Cote de Nacre, 14000 Caen, France.,Normandie University, UNICAEN, IMOGERE, 14000 Caen, France
| | - Frédéric Fabis
- Normandie University, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), 14000 Caen, France
| | - Philippe Millet
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, 1206 Geneva, Switzerland.,Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Benjamin B Tournier
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, 1206 Geneva, Switzerland.,Department of Psychiatry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
182
|
Cerebrovascular damage after midlife transient hypertension in non-transgenic and Alzheimer's disease rats. Brain Res 2021; 1758:147369. [PMID: 33582120 DOI: 10.1016/j.brainres.2021.147369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/03/2021] [Accepted: 02/07/2021] [Indexed: 12/20/2022]
Abstract
Hypertension, including transient events, is a major risk factor for developing late-onset dementia and Alzheimer's disease (AD). Anti-hypertensive drugs facilitate restoration of normotension without amelioration of increased dementia risk suggesting that transient hypertensive insults cause irreversible damage. This study characterized the contribution of transient hypertension to sustained brain damage as a function of normal aging and AD. To model transient hypertension, we treated F344TgAD and non-transgenic littermate rats with L-NG-Nitroarginine methyl ester (L-NAME) for one month, ceased treatment and allowed for a month of normotensive recovery. We then examined the changes in the structure and function of the cerebrovasculature, integrity of white matter, and progression of AD pathology. As independent factors, both transient hypertension and AD compromised structural and functional integrity across the vascular bed, while combined effects of hypertension and AD yielded the largest deficits. Combined effects of transient hypertension and AD genotype resulted in loss of cortical myelin particularly in the cingulate cortex which is crucial for cognitive function. Increased cerebral amyloid angiopathy, a prominent pathology of AD, was detected after transient hypertension as were up- and down-regulation of proteins associated with cerebrovascular remodeling - osteopontin, ROCK1 and ROCK2, in F344TgAD rats even 30 days after restoration of normotension. In conclusion, transient hypertension caused permanent cerebrovasculature and brain parenchymal damage in both normal aging and AD. Our results corroborate human studies that have found close correlation between transient hypertension in midlife and white matter lesions later in life outlining vascular pathologies as pathological links to increased risk of dementia.
Collapse
|
183
|
Potential of Caffeine in Alzheimer's Disease-A Review of Experimental Studies. Nutrients 2021; 13:nu13020537. [PMID: 33562156 PMCID: PMC7915779 DOI: 10.3390/nu13020537] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia leading to progressive memory loss and cognitive impairment. Considering that pharmacological treatment options for AD are few and not satisfactory, increasing attention is being paid to dietary components that may affect the development of the disease. Such a dietary component may be caffeine contained in coffee, tea or energy drinks. Although epidemiological data suggest that caffeine intake may counteract the development of cognitive impairment, results of those studies are not conclusive. The aim of the present study is to review the existing experimental studies on the efficacy of caffeine against AD and AD-related cognitive impairment, focusing on the proposed protective mechanisms of action. In conclusion, the reports of studies on experimental AD models generally supported the notion that caffeine may exert some beneficial effects in AD. However, further studies are necessary to elucidate the role of caffeine in the effects of its sources on cognition and possibly AD risk.
Collapse
|
184
|
Ly H, Verma N, Sharma S, Kotiya D, Despa S, Abner EL, Nelson PT, Jicha GA, Wilcock DM, Goldstein LB, Guerreiro R, Brás J, Hanson AJ, Craft S, Murray AJ, Biessels GJ, Troakes C, Zetterberg H, Hardy J, Lashley T, AESG, Despa F. The association of circulating amylin with β-amyloid in familial Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 7:e12130. [PMID: 33521236 PMCID: PMC7816817 DOI: 10.1002/trc2.12130] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/13/2020] [Accepted: 11/25/2020] [Indexed: 01/11/2023]
Abstract
INTRODUCTION This study assessed the hypothesis that circulating human amylin (amyloid-forming) cross-seeds with amyloid beta (Aβ) in early Alzheimer's disease (AD). METHODS Evidence of amylin-AD pathology interaction was tested in brains of 31 familial AD mutation carriers and 20 cognitively unaffected individuals, in cerebrospinal fluid (CSF) (98 diseased and 117 control samples) and in genetic databases. For functional testing, we genetically manipulated amylin secretion in APP/PS1 and non-APP/PS1 rats. RESULTS Amylin-Aβ cross-seeding was identified in AD brains. High CSF amylin levels were associated with decreased CSF Aβ42 concentrations. AD risk and amylin gene are not correlated. Suppressed amylin secretion protected APP/PS1 rats against AD-associated effects. In contrast, hypersecretion or intravenous injection of human amylin in APP/PS1 rats exacerbated AD-like pathology through disruption of CSF-brain Aβ exchange and amylin-Aβ cross-seeding. DISCUSSION These findings strengthened the hypothesis of circulating amylin-AD interaction and suggest that modulation of blood amylin levels may alter Aβ-related pathology/symptoms.
Collapse
Affiliation(s)
- Han Ly
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKentuckyUSA,The Research Center for Healthy MetabolismUniversity of KentuckyLexingtonKentuckyUSA
| | - Nirmal Verma
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKentuckyUSA,The Research Center for Healthy MetabolismUniversity of KentuckyLexingtonKentuckyUSA
| | - Savita Sharma
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKentuckyUSA
| | - Deepak Kotiya
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKentuckyUSA,The Research Center for Healthy MetabolismUniversity of KentuckyLexingtonKentuckyUSA
| | - Sanda Despa
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKentuckyUSA,The Research Center for Healthy MetabolismUniversity of KentuckyLexingtonKentuckyUSA
| | - Erin L. Abner
- Department of EpidemiologyCollege of Public HealthUniversity of KentuckyLexingtonKentuckyUSA,Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
| | - Peter T. Nelson
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
| | - Gregory A. Jicha
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA,Department of NeurologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Donna M. Wilcock
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA,Department of PhysiologyUniversity of KentuckyLexingtonKentuckyUSA
| | | | - Rita Guerreiro
- Center for Neurodegenerative ScienceVan Andel Research InstituteGrand RapidsMichiganUSA
| | - José Brás
- Center for Neurodegenerative ScienceVan Andel Research InstituteGrand RapidsMichiganUSA
| | - Angela J. Hanson
- Memory & Brain Wellness CenterUniversity of WashingtonSeattleWashingtonUSA
| | - Suzanne Craft
- Department of Gerontology and Geriatric MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Andrew J. Murray
- Department of PhysiologyDevelopment and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Geert Jan Biessels
- Department of NeurologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Claire Troakes
- Basic and Clinical Neuroscience DepartmentKing's College LondonLondonUK
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden,Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden,Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyQueen Square, LondonUK,UK Dementia Research Institute at UCL and Department of Neurodegenerative DiseaseUCL Institute of NeurologyUniversity College LondonLondonUK
| | - John Hardy
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyQueen Square, LondonUK,UK Dementia Research Institute at UCL and Department of Neurodegenerative DiseaseUCL Institute of NeurologyUniversity College LondonLondonUK,Reta Lila Weston InstituteUCL Queen Square Institute of NeurologyLondonUK,UCL Movement Disorders CentreUniversity College LondonLondonUK,Institute for Advanced StudyThe Hong Kong University of Science and TechnologyHong Kong SARChina
| | - Tammaryn Lashley
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyQueen Square, LondonUK,Queen Square Brain Bank for Neurological DisordersDepartment of Clinical and Movement NeuroscienceUCL Queen Square Institute of NeurologyLondonUK
| | - AESG
- Alzheimer's disease Exome Sequencing Group: Guerreiro R, Brás J, Sassi C, Gibbs JR, Hernandez D, Lupton MK, Brown K, Morgan K, Powell J, Singleton A, Hardy J.
| | - Florin Despa
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKentuckyUSA,The Research Center for Healthy MetabolismUniversity of KentuckyLexingtonKentuckyUSA,Department of NeurologyUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
185
|
Dabaghian Y. From Topological Analyses to Functional Modeling: The Case of Hippocampus. Front Comput Neurosci 2021; 14:593166. [PMID: 33505262 PMCID: PMC7829363 DOI: 10.3389/fncom.2020.593166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 12/02/2020] [Indexed: 11/13/2022] Open
Abstract
Topological data analyses are widely used for describing and conceptualizing large volumes of neurobiological data, e.g., for quantifying spiking outputs of large neuronal ensembles and thus understanding the functions of the corresponding networks. Below we discuss an approach in which convergent topological analyses produce insights into how information may be processed in mammalian hippocampus—a brain part that plays a key role in learning and memory. The resulting functional model provides a unifying framework for integrating spiking data at different timescales and following the course of spatial learning at different levels of spatiotemporal granularity. This approach allows accounting for contributions from various physiological phenomena into spatial cognition—the neuronal spiking statistics, the effects of spiking synchronization by different brain waves, the roles played by synaptic efficacies and so forth. In particular, it is possible to demonstrate that networks with plastic and transient synaptic architectures can encode stable cognitive maps, revealing the characteristic timescales of memory processing.
Collapse
Affiliation(s)
- Yuri Dabaghian
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX, United States
| |
Collapse
|
186
|
Kolinko Y, Marsalova L, Proskauer Pena S, Kralickova M, Mouton PR. Stereological Changes in Microvascular Parameters in Hippocampus of a Transgenic Rat Model of Alzheimer's Disease. J Alzheimers Dis 2021; 84:249-260. [PMID: 34542078 PMCID: PMC8609684 DOI: 10.3233/jad-210738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND Microcirculatory factors play an important role in amyloid-β (Aβ)-related neuropathology in Alzheimer's disease (AD). Transgenic (Tg) rat models of mutant Aβ deposition can enhance our understanding of this microvascular pathology. OBJECTIVE Here we report stereology-based quantification and comparisons (between- and within-group) of microvessel length and number and associated parameters in hippocampal subregions in Tg model of AD in Fischer 344 rats and non-Tg littermates. METHODS Systematic-random samples of tissue sections were processed and laminin immunostained to visualize microvessels through the entire hippocampus in Tg and non-Tg rats. A computer-assisted stereology system was used to quantify microvessel parameters including total number, total length, and associated densities in dentate gyrus (DG) and cornu ammonis (CA) subregions. RESULTS Thin hair-like capillaries are common near Aβ plaques in hippocampal subregions of Tg rats. There are a 53% significant increase in average length per capillary across entire hippocampus (p≤0.04) in Tg compared to non-Tg rats; 49% reduction in capillary length in DG (p≤0.02); and, higher microvessel density in principal cell layers (p≤0.03). Furthermore, within-group comparisons confirm Tg but not non-Tg rats have significant increase in number density (p≤0.01) and potential diffusion distance (p≤0.04) of microvessels in principal cell layers of hippocampal subregions. CONCLUSION We show the Tg deposition of human Aβ mutations in rats disrupts the wild-type microanatomy of hippocampal microvessels. Stereology-based microvascular parameters could promote the development of novel strategies for protection and the therapeutic management of AD.
Collapse
Affiliation(s)
- Yaroslav Kolinko
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Lucie Marsalova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | | | - Milena Kralickova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Peter R. Mouton
- SRC Biosciences, Tampa, FL, USA
- University of South Florida, Tampa, FL, USA
| |
Collapse
|
187
|
Yang L, Wu C, Tucker L, Dong Y, Li Y, Xu P, Zhang Q. Photobiomodulation Therapy Attenuates Anxious-Depressive-Like Behavior in the TgF344 Rat Model. J Alzheimers Dis 2021; 83:1415-1429. [PMID: 34219711 DOI: 10.3233/jad-201616] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Anxious-depressive-like behavior has been recognized as an early endophenotype in Alzheimer's disease (AD). Recent studies support early treatment of anxious-depressive-like behavior as a potential target to alleviate memory loss and reduce the risk of developing dementia. We hypothesize that photobiomodulation (PBM) could be an effective method to alleviate depression and anxiety at the early stage of AD pathogenesis. OBJECTIVE To analyze the effect of PBM treatment on anxious-depressive-like behavior at the early stage of AD. METHODS Using a novel transgenic AD rat model, animals were divided into wild-type, AD+sham PBM, and AD+PBM groups. Two-minute daily PBM (irradiance: 25 mW/cm2 and fluence: 3 J/cm2 at the cortical level) was applied transcranially to the brain of AD animals from 2 months of age to 10 months of age. After completing PBM treatment at 10 months of age, behavioral tests were performed to measure learning, memory, and anxious-depressive-like behavior. Neuronal apoptosis, neuronal degeneration, neuronal damage, mitochondrial function, neuroinflammation, and oxidative stress were measured to test the effects of PBM on AD animals. RESULTS Behavioral tests showed that: 1) no spatial memory deficits were detected in TgF344 rats at 10 months of age; 2) PBM alleviated anxious-depressive-like behavior in TgF344 rats; 3) PBM attenuated neuronal damage, degeneration, and apoptosis; and 4) PBM suppresses neuroinflammation and oxidative stress. CONCLUSION Our findings support our hypothesis that PBM could be an effective method to alleviate depression and anxiety during the early stage of AD development. The mechanism underlying these beneficial effects may be due to the improvement of mitochondria function and integrity and the inhibition of neuroinflammation and oxidative stress.
Collapse
Affiliation(s)
- Luodan Yang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Chongyun Wu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Lorelei Tucker
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Yan Dong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Yong Li
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Peisheng Xu
- Department of Discovery and Biomedical Sciences College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
188
|
Dallagi Y, Rahali D, Perrotte M, Dkhili H, Korsan A, El May MV, El Fazaa S, Ramassamy C, El Golli N. Date seeds alleviate behavioural and neuronal complications of metabolic syndrome in rats. Arch Physiol Biochem 2020; 129:582-596. [PMID: 33290103 DOI: 10.1080/13813455.2020.1849311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Unhealthy dietary habits can play a crucial role in metabolic damages, promoting alteration of neural functions through the lifespan. Recently, dietary change has been perceived as the first line intervention in prevention and/or treatment of metabolic damages and related diseases. In this context, our study was designed to assess the eventual therapeutic effect of date seeds administration on memory and learning and on neuronal markers in a rat Metabolic Syndrome model. For this purpose, 32 adult male Wistar rats were fed with standard diet or high-fat high-sugar diet during ten weeks. After this, 16 rats were sacrified and the remaining rats received an oral administration of 300 mg of date seeds/kg of body weight during four supplementary weeks. Before sacrifice, we evaluate cognitive performances by the Barnes maze test. Afterwards, neuronal, astrocytic, microtubular and oxidative markers were investigated by immunoblotting methods. In Metabolic syndrome rats, results showed impairment of spatial memory and histological alterations. We identified neuronal damages in hippocampus, marked by a decrease of NeuN and an increase of GFAP and pTau396. Finally, we recorded an increase in protein oxidation and lipid peroxidation, respectively identified by an up-regulation of protein carbonyls and 4-HNe. Interestingly, date seeds administration improved these behavioural, histological, neuronal and oxidative damages highlighting the neuroprotective effect of this natural compound. Liquid Chromatography-Mass Spectrometry (LC-MS) identified, in date seeds, protocatechuic acid, caffeoylshikimic acid and vanillic acid, that could potentially prevent the progression of neurodegenerative diseases, acting through their antioxidant properties.
Collapse
Affiliation(s)
- Yosra Dallagi
- Laboratory of Neurophysiology, Cellular physiopathology and Biomolecule valorization, Faculty of Sciences of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Dalila Rahali
- Laboratory of Neurophysiology, Cellular physiopathology and Biomolecule valorization, Faculty of Sciences of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Morgane Perrotte
- INRS-Institute Armand Frappier, boul. des Prairies, Laval, Canada
| | - Houssem Dkhili
- Laboratory of Neurophysiology, Cellular physiopathology and Biomolecule valorization, Faculty of Sciences of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Asma Korsan
- Laboratory of Microorganisms and Active Biomolecules, Department of Biology, Faculty of Sciences, University of Tunis El Manar, Tunis, Tunisia
| | - Michele Veronique El May
- Laboratory of Histology Faculty of Medicine of Tunis, University of Tunis, El Manar, Tunis, Tunisia
| | - Saloua El Fazaa
- Laboratory of Neurophysiology, Cellular physiopathology and Biomolecule valorization, Faculty of Sciences of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Charles Ramassamy
- INRS-Institute Armand Frappier, boul. des Prairies, Laval, Canada
- Institute of Nutrition and Functional Food (INAF), Laval University, Quebec, Canada
| | - Narges El Golli
- Laboratory of Neurophysiology, Cellular physiopathology and Biomolecule valorization, Faculty of Sciences of Tunis, University Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
189
|
Sleep/Wake Behavior and EEG Signatures of the TgF344-AD Rat Model at the Prodromal Stage. Int J Mol Sci 2020; 21:ijms21239290. [PMID: 33291462 PMCID: PMC7730237 DOI: 10.3390/ijms21239290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/26/2020] [Accepted: 12/02/2020] [Indexed: 12/27/2022] Open
Abstract
Transgenic modification of the two most common genes (APPsw, PS1ΔE9) related to familial Alzheimer's disease (AD) in rats has produced a rodent model that develops pathognomonic signs of AD without genetic tau-protein modification. We used 17-month-old AD rats (n = 8) and age-matched controls (AC, n = 7) to evaluate differences in sleep behavior and EEG features during wakefulness (WAKE), non-rapid eye movement sleep (NREM), and rapid eye movement sleep (REM) over 24-h EEG recording (12:12h dark-light cycle). We discovered that AD rats had more sleep-wake transitions and an increased probability of shorter REM and NREM bouts. AD rats also expressed a more uniform distribution of the relative spectral power. Through analysis of information content in the EEG using entropy of difference, AD animals demonstrated less EEG information during WAKE, but more information during NREM. This seems to indicate a limited range of changes in EEG activity that could be caused by an AD-induced change in inhibitory network function as reflected by increased GABAAR-β2 expression but no increase in GAD-67 in AD animals. In conclusion, this transgenic rat model of Alzheimer's disease demonstrates less obvious EEG features of WAKE during wakefulness and less canonical features of sleep during sleep.
Collapse
|
190
|
Mampay M, Velasco-Estevez M, Rolle SO, Chaney AM, Boutin H, Dev KK, Moeendarbary E, Sheridan GK. Spatiotemporal immunolocalisation of REST in the brain of healthy ageing and Alzheimer's disease rats. FEBS Open Bio 2020; 11:146-163. [PMID: 33185010 PMCID: PMC7780110 DOI: 10.1002/2211-5463.13036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/25/2020] [Accepted: 11/04/2020] [Indexed: 12/30/2022] Open
Abstract
In the brain, REST (Repressor Element‐1 Silencing Transcription factor) is a key regulator of neuron cell‐specific gene expression. Nuclear translocation of neuronal REST has been shown to be neuroprotective in a healthy ageing context. In contrast, inability to upregulate nuclear REST is thought to leave ageing neurons vulnerable to neurodegenerative stimuli, such as Alzheimer’s disease (AD) pathology. Hippocampal and cortical neurons are known to be particularly susceptible to AD‐associated neurodegeneration. However, REST expression has not been extensively characterised in the healthy ageing brain. Here, we examined the spatiotemporal immunolocalisation of REST in the brains of healthy ageing wild‐type Fischer‐344 and transgenic Alzheimer’s disease rats (TgF344‐AD). Nuclear expression of REST increased from 6 months to 18 months of age in the hippocampus, frontal cortex and subiculum of wild‐type rats, but not in TgF344‐AD rats. No changes in REST were measured in more posterior cortical regions or in the thalamus. Interestingly, levels of the presynaptic marker synaptophysin, a known gene target of REST, were lower in CA1 hippocampal neurons of 18‐month TgF344‐AD rats compared to 18‐month wild‐types, suggesting that elevated nuclear REST may protect against synapse loss in the CA1 of 18‐month wild‐type rats. High REST expression in ageing wild‐type rats did not, however, protect against axonal loss nor against astroglial reactivity in the hippocampus. Taken together, our data confirm that changes in nuclear REST expression are context‐, age‐ and brain region‐specific. Moreover, key brain structures involved in learning and memory display elevated REST expression in healthy ageing wild‐type rats but not TgF344‐AD rats.
Collapse
Affiliation(s)
- Myrthe Mampay
- School of Pharmacy and Biomolecular Sciences, University of Brighton, UK
| | - María Velasco-Estevez
- Drug Development, Department of Physiology, School of Medicine, Trinity College Dublin, Ireland
| | - Sara O Rolle
- The Sainsbury Welcome Centre for Neural Circuits and Behaviour, University College London, UK
| | - Aisling M Chaney
- Faculty of Biology, Medicine and Health, School of Health Sciences, Division of Informatics, Imaging and Data Sciences, University of Manchester, UK
| | - Hervé Boutin
- Wolfson Molecular Imaging Centre, University of Manchester, UK.,Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, UK
| | - Kumlesh K Dev
- Drug Development, Department of Physiology, School of Medicine, Trinity College Dublin, Ireland
| | | | - Graham K Sheridan
- School of Life Sciences, Queens Medical Centre, University of Nottingham, UK
| |
Collapse
|
191
|
Sarkar S, Raymick J, Cuevas E, Rosas-Hernandez H, Hanig J. Modification of methods to use Congo-red stain to simultaneously visualize amyloid plaques and tangles in human and rodent brain tissue sections. Metab Brain Dis 2020; 35:1371-1383. [PMID: 32852699 DOI: 10.1007/s11011-020-00608-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/11/2020] [Indexed: 10/23/2022]
Abstract
Although there are multiple histochemical tracers available to label plaques and tangles in the brain to evaluate neuropathology in Alzheimer disease (AD), few of them are versatile in nature and compatible with immunohistochemical procedures. Congo Red (CR) is an anisotropic organic stain discovered to label amyloid beta (Aβ) plaques in the brain. Unfortunately, its use is underappreciated due to its low resolution and brightness as stated in previous studies using bright field microscopy. Here, we modified a previous method to localize both plaques and tangles in brains from humans and a transgenic rodent model of AD for fluorescence microscopic visualization. The plaque staining affinities displayed by CR were compared with fibrillar pattern labeling seen with Thioflavin S. This study summarizes the optimization of protocols in which various parameters have been finetuned. To determine the target CR potentially binds, we have performed double labeling with different antibodies against Aβ as well as phosphorylated Tau. The plaque staining affinities exhibited by CR are compared with those associated with the diffuse pattern of labeling seen with antibodies directed against different epitopes of Aβ. Neither CP13, TNT2 or TOC1 binds all the neurofibrillary tangles as revealed by CR labeling in the human brain. Additionally, we also evaluated double labeling with AT8, AT180, and PHF1. Interestingly, PHF-1 shows 40% colocalization and AT8 shows 15% colocalization with NFT. Thus, CR is a much better marker to detect AD pathologies in human and rodent brains with higher fluorescence intensity relative to other conventional fluorescence markers.
Collapse
Affiliation(s)
- Sumit Sarkar
- Division of Neurotoxicology, National Center for Toxicological Research/US FDA, HFT-132, Jefferson, AR, 72079, USA.
| | - James Raymick
- Division of Neurotoxicology, National Center for Toxicological Research/US FDA, HFT-132, Jefferson, AR, 72079, USA
| | - Elvis Cuevas
- Division of Neurotoxicology, National Center for Toxicological Research/US FDA, HFT-132, Jefferson, AR, 72079, USA
| | - Hector Rosas-Hernandez
- Division of Neurotoxicology, National Center for Toxicological Research/US FDA, HFT-132, Jefferson, AR, 72079, USA
| | - Joseph Hanig
- Office of Testing & Research, Center for Drug Evaluation Research/FDA, Silver Spring, MD, USA
| |
Collapse
|
192
|
Wyatt-Johnson SK, Brutkiewicz RR. The Complexity of Microglial Interactions With Innate and Adaptive Immune Cells in Alzheimer's Disease. Front Aging Neurosci 2020; 12:592359. [PMID: 33328972 PMCID: PMC7718034 DOI: 10.3389/fnagi.2020.592359] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
In the naïve mouse brain, microglia and astrocytes are the most abundant immune cells; however, there is a complexity of other immune cells present including monocytes, neutrophils, and lymphocytic cells, such as natural killer (NK) cells, T cells, and B cells. In Alzheimer’s disease (AD), there is high inflammation, reactive microglia, and astrocytes, leaky blood–brain barrier, the buildup of amyloid-beta (Aβ) plaques, and neurofibrillary tangles which attract infiltrating peripheral immune cells that are interacting with the resident microglia. Limited studies have analyzed how these infiltrating immune cells contribute to the neuropathology of AD and even fewer have analyzed their interactions with the resident microglia. Understanding the complexity and dynamics of how these immune cells interact in AD will be important for identifying new and novel therapeutic targets. Thus, this review will focus on discussing our current understanding of how macrophages, neutrophils, NK cells, T cells, and B cells, alongside astrocytes, are altered in AD and what this means for the disorder, as well as how these cells are affected relative to the resident microglia.
Collapse
Affiliation(s)
- Season K Wyatt-Johnson
- Department of Microbiology and Immunology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Randy R Brutkiewicz
- Department of Microbiology and Immunology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
193
|
Koulousakis P, van den Hove D, Visser-Vandewalle V, Sesia T. Cognitive Improvements After Intermittent Deep Brain Stimulation of the Nucleus Basalis of Meynert in a Transgenic Rat Model for Alzheimer's Disease: A Preliminary Approach. J Alzheimers Dis 2020; 73:461-466. [PMID: 31868670 DOI: 10.3233/jad-190919] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Deep brain stimulation (DBS) of the nucleus basalis of Meynert (NBM) has been shown to exert promising therapeutical effects in a pilot study with patients suffering from Alzheimer's disease (AD). We aimed at comparing the cognitive effects of intermittent and continuous NBM stimulation paradigms in an animal model for AD. In this exploratory study, aged Tgf344-AD rats were behaviorally tested pre-, and post implantation, while being stimulated with unilateral- or bilateral-intermittent and bilateral-continuous patterns. Bilateral-intermittent NBM DBS lead to supernormal performance in a spatial memory task. These findings suggest that NBM DBS could be further refined, thereby improving patient care.
Collapse
Affiliation(s)
- Philippos Koulousakis
- Department of Stereotactic and Functional Neurosurgery, University Hospital Cologne, Cologne, Germany.,European Graduate School of Neuroscience (EURON), AZ, Maastricht, The Netherlands.,Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Daniel van den Hove
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands.,Department of Psychiatry, Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, University Hospital Cologne, Cologne, Germany.,European Graduate School of Neuroscience (EURON), AZ, Maastricht, The Netherlands
| | - Thibaut Sesia
- Department of Stereotactic and Functional Neurosurgery, University Hospital Cologne, Cologne, Germany.,European Graduate School of Neuroscience (EURON), AZ, Maastricht, The Netherlands
| |
Collapse
|
194
|
Tournier BB, Barca C, Fall AB, Gloria Y, Meyer L, Ceyzériat K, Millet P. Spatial reference learning deficits in absence of dysfunctional working memory in the TgF344-AD rat model of Alzheimer's disease. GENES BRAIN AND BEHAVIOR 2020; 20:e12712. [PMID: 33150709 DOI: 10.1111/gbb.12712] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is characterized by cognitive disorders and alterations of behavioral traits such as anhedonia and anxiety. Contribution of nonphysiological forms of amyloid and tau peptides to the onset of neurological dysfunctions remains unclear because most preclinical models only present one of those pathological AD-related biomarkers. A more recently developed model, the TgF344-AD rat has the advantage of overexpressing amyloid and naturally developing tauopathy, thus making it close to human familial forms of AD. We showed the presence of a learning dysfunction in a reference memory test, without spatial working memory impairment but with an increase in anxiety levels and a decrease in motivation to participate in the test. In the sucrose preference test, TgF344-AD rats did not show signs of anhedonia but did not increase the volume of liquid consumed when the water was replaced by sucrose solution. These behavioral phenomena were observed at an age when tau accumulation are absent, and where amyloid deposits are predominant in the hippocampus and the entorhinal cortex. Within the hippocampus itself, amyloid accumulation is heterogenous between the subiculum, the dorsal hippocampus and the ventral hippocampus. Thus, our data demonstrated heterogeneity in the appearance of various behavioral and neurochemical markers in the TgF344-AD rat. This multivariate analysis will therefore make it possible to define the stage of the pathology, to measure its evolution and the effects of future therapeutic treatments.
Collapse
Affiliation(s)
- Benjamin B Tournier
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland.,Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Cristina Barca
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - Aïda B Fall
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - Yesica Gloria
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - Léa Meyer
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - Kelly Ceyzériat
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland.,Division of Nuclear Medicine and Molecular Imaging, University Hospitals of Geneva, Geneva, Switzerland.,Division of Radiation Oncology, Department of Oncology, University Hospitals of Geneva, Geneva, Switzerland
| | - Philippe Millet
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland.,Department of Psychiatry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
195
|
Shukla R, Singh TR. Identification of small molecules against cyclin dependent kinase-5 using chemoinformatics approach for Alzheimer's disease and other tauopathies. J Biomol Struct Dyn 2020; 40:2815-2827. [PMID: 33155527 DOI: 10.1080/07391102.2020.1844050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial complex and wide spreading global disease. It is a chronic neurodegenerative disorder characterized by amyloid beta (Aβ) and neurofibrillary tangles (NFTs). Several enzymes are involved in which CDK5 is a major tau phosphorylation enzyme. We have screened (n = 5,36,801) compounds against CDK5 and 392 compounds were selected for pharmacokinetics analysis. In the pharmacokinetics analysis, various descriptors were used for filtering the compounds. After that 16 compounds with the control compound Z3R were employed for the redocking using Autodock Vina and Autodock. Lastly, four compounds were selected and employed for 100 ns MDS studies. On the basis of various MD analysis like RMSD, RMSF, Rg, SASA, Number of hydrogen bonds, Principal component analysis and binding free energy (CDK5-ZINC6261568: -129.50 kJ.mol-1 and CDK5-ZINC14168360: -191.16 kJ.mol-1), we have found that ZINC6261568 and ZINC14168360 can act as a lead compound against the CDK5.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rohit Shukla
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology (JUIT), Waknaghat, India
| | - Tiratha Raj Singh
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology (JUIT), Waknaghat, India
| |
Collapse
|
196
|
Fang J, Pieper AA, Nussinov R, Lee G, Bekris L, Leverenz JB, Cummings J, Cheng F. Harnessing endophenotypes and network medicine for Alzheimer's drug repurposing. Med Res Rev 2020; 40:2386-2426. [PMID: 32656864 PMCID: PMC7561446 DOI: 10.1002/med.21709] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 06/23/2020] [Accepted: 06/27/2020] [Indexed: 12/16/2022]
Abstract
Following two decades of more than 400 clinical trials centered on the "one drug, one target, one disease" paradigm, there is still no effective disease-modifying therapy for Alzheimer's disease (AD). The inherent complexity of AD may challenge this reductionist strategy. Recent observations and advances in network medicine further indicate that AD likely shares common underlying mechanisms and intermediate pathophenotypes, or endophenotypes, with other diseases. In this review, we consider AD pathobiology, disease comorbidity, pleiotropy, and therapeutic development, and construct relevant endophenotype networks to guide future therapeutic development. Specifically, we discuss six main endophenotype hypotheses in AD: amyloidosis, tauopathy, neuroinflammation, mitochondrial dysfunction, vascular dysfunction, and lysosomal dysfunction. We further consider how this endophenotype network framework can provide advances in computational and experimental strategies for drug-repurposing and identification of new candidate therapeutic strategies for patients suffering from or at risk for AD. We highlight new opportunities for endophenotype-informed, drug discovery in AD, by exploiting multi-omics data. Integration of genomics, transcriptomics, radiomics, pharmacogenomics, and interactomics (protein-protein interactions) are essential for successful drug discovery. We describe experimental technologies for AD drug discovery including human induced pluripotent stem cells, transgenic mouse/rat models, and population-based retrospective case-control studies that may be integrated with multi-omics in a network medicine methodology. In summary, endophenotype-based network medicine methodologies will promote AD therapeutic development that will optimize the usefulness of available data and support deep phenotyping of the patient heterogeneity for personalized medicine in AD.
Collapse
Affiliation(s)
- Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Andrew A Pieper
- Harrington Discovery Institute, University Hospital Case Medical Center; Department of Psychiatry, Case Western Reserve University, Geriatric Research Education and Clinical Centers, Louis Stokes Cleveland VAMC, Cleveland, OH 44106, USA
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Garam Lee
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA
| | - Lynn Bekris
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - James B. Leverenz
- Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jeffrey Cummings
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA
- Department of Brain Health, School of Integrated Health Sciences, UNLV, Las Vegas, NV 89154, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| |
Collapse
|
197
|
Ganglion Cell Layer Thinning in Alzheimer's Disease. ACTA ACUST UNITED AC 2020; 56:medicina56100553. [PMID: 33096909 PMCID: PMC7590216 DOI: 10.3390/medicina56100553] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022]
Abstract
The main advantages of optical retinal imaging may allow researchers to achieve deeper analysis of retinal ganglion cells (GC) in vivo using optical coherence tomography (OCT). Using this device to elucidate the impact of Alzheimer’s disease (AD) on retinal health with the aim to identify a new AD biomarker, a large amount of studies has analyzed GC in different stages of the disease. Our review highlights recent knowledge into measuring retinal morphology in AD making distinctive between whether those studies included patients with clinical dementia stage or also mild cognitive impairment (MCI), which selection criteria were applied to diagnosed patients included, and which device of OCT was employed. Despite several differences, previous works found a significant thinning of GC layer in patients with AD and MCI. In the long term, an important future direction is to achieve a specific ocular biomarker with enough sensitivity to reveal preclinical AD disorder and to monitor progression.
Collapse
|
198
|
Serneels L, T'Syen D, Perez-Benito L, Theys T, Holt MG, De Strooper B. Modeling the β-secretase cleavage site and humanizing amyloid-beta precursor protein in rat and mouse to study Alzheimer's disease. Mol Neurodegener 2020; 15:60. [PMID: 33076948 PMCID: PMC7574558 DOI: 10.1186/s13024-020-00399-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/18/2020] [Indexed: 12/31/2022] Open
Abstract
Background Three amino acid differences between rodent and human APP affect medically important features, including β-secretase cleavage of APP and Aβ peptide aggregation (De Strooper et al., EMBO J 14:4932-38, 1995; Ueno et al., Biochemistry 53:7523-30, 2014; Bush, 2003, Trends Neurosci 26:207–14). Most rodent models for Alzheimer’s disease (AD) are, therefore, based on the human APP sequence, expressed from artificial mini-genes randomly inserted in the rodent genome. While these models mimic rather well various biochemical aspects of the disease, such as Aβ-aggregation, they are also prone to overexpression artifacts and to complex phenotypical alterations, due to genes affected in or close to the insertion site(s) of the mini-genes (Sasaguri et al., EMBO J 36:2473-87, 2017; Goodwin et al., Genome Res 29:494-505, 2019). Knock-in strategies which introduce clinical mutants in a humanized endogenous rodent APP sequence (Saito et al., Nat Neurosci 17:661-3, 2014) represent useful improvements, but need to be compared with appropriate humanized wildtype (WT) mice. Methods Computational modelling of the human β-CTF bound to BACE1 was used to study the differential processing of rodent and human APP. We humanized the three pivotal residues we identified G676R, F681Y and R684H (labeled according to the human APP770 isoform) in the mouse and rat genomes using a CRISPR-Cas9 approach. These new models, termed mouse and rat Apphu/hu, express APP from the endogenous promotor. We also introduced the early-onset familial Alzheimer’s disease (FAD) mutation M139T into the endogenous Rat Psen1 gene. Results We show that introducing these three amino acid substitutions into the rodent sequence lowers the affinity of the APP substrate for BACE1 cleavage. The effect on β-secretase processing was confirmed as both humanized rodent models produce three times more (human) Aβ compared to the original WT strain. These models represent suitable controls, or starting points, for studying the effect of transgenes or knock-in mutations on APP processing (Saito et al., Nat Neurosci 17:661-3, 2014). We introduced the early-onset familial Alzheimer’s disease (FAD) mutation M139T into the endogenous Rat Psen1 gene and provide an initial characterization of Aβ processing in this novel rat AD model. Conclusion The different humanized APP models (rat and mouse) expressing human Aβ and PSEN1 M139T are valuable controls to study APP processing in vivo allowing the use of a human Aβ ELISA which is more sensitive than the equivalent system for rodents. These animals will be made available to the research community.
Collapse
Affiliation(s)
- Lutgarde Serneels
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium.,Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Dries T'Syen
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium.,Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Laura Perez-Benito
- Computational Chemistry, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Tom Theys
- Department of Neurosciences, Research Group Experimental Neurosurgery and Neuroanatomy, KU Leuven, Leuven, Belgium
| | - Matthew G Holt
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium.,Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Bart De Strooper
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium. .,Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium. .,UK Dementia Research Institute at UCL, University College London, London, UK.
| |
Collapse
|
199
|
Kelberman M, Keilholz S, Weinshenker D. What's That (Blue) Spot on my MRI? Multimodal Neuroimaging of the Locus Coeruleus in Neurodegenerative Disease. Front Neurosci 2020; 14:583421. [PMID: 33122996 PMCID: PMC7573566 DOI: 10.3389/fnins.2020.583421] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/16/2020] [Indexed: 01/04/2023] Open
Abstract
The locus coeruleus (LC) has long been underappreciated for its role in the pathophysiology of Alzheimer’s disease (AD), Parkinson’s disease (PD), and other neurodegenerative disorders. While AD and PD are distinct in clinical presentation, both are characterized by prodromal protein aggregation in the LC, late-stage degeneration of the LC, and comorbid conditions indicative of LC dysfunction. Many of these early studies were limited to post-mortem histological techniques due to the LC’s small size and location deep in the brainstem. Thus, there is a growing interest in utilizing in vivo imaging of the LC as a predictor of preclinical neurodegenerative processes and biomarker of disease progression. Simultaneously, neuroimaging in animal models of neurodegenerative disease holds promise for identifying early alterations to LC circuits, but has thus far been underutilized. While still in its infancy, a handful of studies have reported effects of single gene mutations and pathology on LC function in disease using various neuroimaging techniques. Furthermore, combining imaging and optogenetics or chemogenetics allows for interrogation of network connectivity in response to changes in LC activity. The purpose of this article is twofold: (1) to review what magnetic resonance imaging (MRI) and positron emission tomography (PET) have revealed about LC dysfunction in neurodegenerative disease and its potential as a biomarker in humans, and (2) to explore how animal models can be used to test hypotheses derived from clinical data and establish a mechanistic framework to inform LC-focused therapeutic interventions to alleviate symptoms and impede disease progression.
Collapse
Affiliation(s)
- Michael Kelberman
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | - Shella Keilholz
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - David Weinshenker
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| |
Collapse
|
200
|
Gallardo-Toledo E, Tapia-Arellano A, Celis F, Sinai T, Campos M, Kogan MJ, Sintov AC. Intranasal administration of gold nanoparticles designed to target the central nervous system: Fabrication and comparison between nanospheres and nanoprisms. Int J Pharm 2020; 590:119957. [PMID: 33035606 DOI: 10.1016/j.ijpharm.2020.119957] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 01/05/2023]
Abstract
The presence of the blood-brain barrier (BBB) limit gold nanoparticles (GNP) accumulation in central nervous system (CNS) after intravenous (IV) administration. The intranasal (IN) route has been suggested as a good strategy for circumventing the BBB. In this report, we used gold nanoprisms (78 nm) and nanospheres (47 nm), of comparable surface areas (8000 vs 7235 nm2) functionalized with a polyethylene glycol (PEG) and D1 peptide (GNPr-D1 and GNS-D1, respectively) to evaluate their delivery to the CNS after IN administration. Cell viability assay showed that GNPr-D1 and GNS-D1 were not cytotoxic at concentrations ranged between 0.05 and 0.5 nM. IN administration of GNPr-D1 and GNS-D1 demonstrated a significant difference between the two types of GNP, in which the latter reached the CNS in higher levels. Pharmacokinetic study showed that the peak brain level of gold was 0.75 h after IN administration of GNS-D1. After IN and IV administrations of GNS-D1, gold concentrations found in brain were 55 times higher via the IN route compared to IV administration. Data revealed that the IN route is more effective for targeting gold to the brain than IV administration. Finally, no significant difference was observed between the IN and IV routes in the distribution of GNS-D1 in the various brain areas.
Collapse
Affiliation(s)
- Eduardo Gallardo-Toledo
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile; Laboratory for Biopharmaceutics, Department of Biomedical Engineering, Ben Gurion University of the Negev, E.D. Bergmann Campus, Be'er Sheva 84105, Israel; Advanced Center for Chronic Diseases, ACCDis, Santiago 8380494, Chile
| | - Andreas Tapia-Arellano
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile; Advanced Center for Chronic Diseases, ACCDis, Santiago 8380494, Chile
| | - Freddy Celis
- Laboratorio de Procesos Fotónicos y Electroquímicos, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso 2360001, Chile
| | - Tomer Sinai
- Laboratory for Biopharmaceutics, Department of Biomedical Engineering, Ben Gurion University of the Negev, E.D. Bergmann Campus, Be'er Sheva 84105, Israel
| | - Marcelo Campos
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Marcelo J Kogan
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile; Advanced Center for Chronic Diseases, ACCDis, Santiago 8380494, Chile.
| | - Amnon C Sintov
- Laboratory for Biopharmaceutics, Department of Biomedical Engineering, Ben Gurion University of the Negev, E.D. Bergmann Campus, Be'er Sheva 84105, Israel.
| |
Collapse
|