151
|
Chen BY, Wang X, Wang ZY, Wang YZ, Chen LW, Luo ZJ. Brain-derived neurotrophic factor stimulates proliferation and differentiation of neural stem cells, possibly by triggering the Wnt/β-catenin signaling pathway. J Neurosci Res 2012; 91:30-41. [DOI: 10.1002/jnr.23138] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 07/27/2012] [Accepted: 08/01/2012] [Indexed: 12/11/2022]
|
152
|
Zai GCM, Zai CCH, Chowdhury NI, Tiwari AK, Souza RP, Lieberman JA, Meltzer HY, Potkin SG, Müller DJ, Kennedy JL. The role of brain-derived neurotrophic factor (BDNF) gene variants in antipsychotic response and antipsychotic-induced weight gain. Prog Neuropsychopharmacol Biol Psychiatry 2012; 39:96-101. [PMID: 22642961 DOI: 10.1016/j.pnpbp.2012.05.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/17/2012] [Accepted: 05/19/2012] [Indexed: 12/22/2022]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) has extensive effects on the nervous system including cell survival, differentiation, neuronal growth and maintenance, as well as cell death. Moreover, it promotes synaptic plasticity and interacts with dopaminergic and serotonergic neurons, suggesting an important role on the alteration of brain function with antipsychotic medications and induced weight gain in schizophrenia patients. The differential effects of BDNF gene variants could lead to changes in brain circuitry that would in turn cause variable response to antipsychotic medication. Therefore, we hypothesized that genetic variation in this candidate gene helps in explaining the inter-individual variation observed in antipsychotic drug treatment with respect to response and induced weight gain. METHOD We examined four single-nucleotide polymorphisms across the BDNF gene, including Val66Met (rs6265). Prospective BPRS change scores and weight change after six weeks were obtained from a total of 257 schizophrenia patients of European ancestry. RESULTS The markers rs11030104 and Val66Met were associated with antipsychotic response (P=0.04; 0.007, respectively). On the other hand, marker rs1519480 was associated with weight gain (P=0.04). Moreover, a two-marker haplotype across rs6265 and rs1519480 was associated with weight change (P=0.001). Results with Val66Met in response, and results with rs6265-rs1519480 haplotypes remained significant at the modified Bonferroni corrected alpha of 0.017. CONCLUSION BDNF genetic variants might play an important role in predicting antipsychotic response and antipsychotic-induced weight gain. However, replication in larger and independent samples is required.
Collapse
Affiliation(s)
- Gwyneth C M Zai
- Neurogenetics Section, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Lee SY, Chen SL, Wang YS, Chang YH, Huang SY, Tzeng NS, Lee IH, Yeh TL, Yang YK, Lu RB. COMT and BDNF interacted in bipolar II disorder not comorbid with anxiety disorder. Behav Brain Res 2012; 237:243-8. [PMID: 23026378 DOI: 10.1016/j.bbr.2012.09.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 09/18/2012] [Accepted: 09/20/2012] [Indexed: 12/14/2022]
Abstract
Bipolar disorder (BP), especially bipolar II disorder (BP-II), is highly comorbid with anxiety disorder (AD). Monoaminergic dysfunction has been implicated in the pathogenesis of BP, it may be important to investigate genes such as the catechol-O-methyltransferase (COMT), involved in monoamine metabolism and brain-derived neurotrophic factor (BDNF) genes, modulating the monoamine system. We therefore examined the association of the COMT Val158Met and BDNF Val66Met polymorphisms with BP-II with and without comorbidity of AD, and possible interactions between these genes. Seven hundred and seventy-one participants were recruited: 314 with bipolar-II without AD, 117 with bipolar-II with AD, and 340 healthy controls. The genotypes of the COMT and BDNF polymorphisms were determined using polymerase chain reactions plus restriction fragment length polymorphism analysis. Logistic regression analysis showed a significant effect of the COMT and the BDNF polymorphisms, and a significant interaction effect for the Val/Val genotypes of the BDNF Val66Met polymorphism and the COMsT Val158Met Val/Met and Met/Met genotypes (P=0.007, 0.048) discriminated between BP-II without AD patients and controls. Our findings provide initial evidence that the COMT and BDNF genes interact in bipolar-II without AD. Our findings suggest the involvement of dopaminergic pathway in the pathogenesis of bipolar-II.
Collapse
Affiliation(s)
- Sheng-Yu Lee
- Department of Psychiatry, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Conditional ablation of brain-derived neurotrophic factor-TrkB signaling impairs striatal neuron development. Proc Natl Acad Sci U S A 2012; 109:15491-6. [PMID: 22949667 DOI: 10.1073/pnas.1212899109] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurotrophic factors, such as brain-derived neurotrophic factor (BDNF), are associated with the physiology of the striatum and the loss of its normal functioning under pathological conditions. The role of BDNF and its downstream signaling in regulating the development of the striatum has not been fully investigated, however. Here we report that ablation of Bdnf in both the cortex and substantia nigra depletes BDNF in the striatum, and leads to impaired striatal development, severe motor deficits, and postnatal lethality. Furthermore, striatal-specific ablation of TrkB, the gene encoding the high-affinity receptor for BDNF, is sufficient to elicit an array of striatal developmental abnormalities, including decreased anatomical volume, smaller neuronal nucleus size, loss of dendritic spines, reduced enkephalin expression, diminished nigral dopaminergic projections, and severe deficits in striatal dopamine signaling through DARPP32. In addition, TrkB ablation in striatal neurons elicits a non-cell-autonomous reduction of tyrosine hydroxylase protein level in the axonal projections of substantia nigral dopaminergic neurons. Thus, our results establish an essential function for TrkB in regulating the development of striatal neurons.
Collapse
|
155
|
Passos PP, Borba JMC, Rocha-de-Melo AP, Guedes RCA, da Silva RP, Filho WTM, Gouveia KMM, Navarro DMDAF, Santos GKN, Borner R, Picanço-Diniz CW, Pereira A, de Oliveira Costa MSM, Rodrigues MCA, Andrade-da-Costa BLDS. Dopaminergic cell populations of the rat substantia nigra are differentially affected by essential fatty acid dietary restriction over two generations. J Chem Neuroanat 2012; 44:66-75. [DOI: 10.1016/j.jchemneu.2012.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 05/05/2012] [Accepted: 05/31/2012] [Indexed: 11/16/2022]
|
156
|
Huang CC, Chang YH, Lee SY, Chen SL, Chen SH, Chu CH, Huang SY, Tzeng NS, Lee IH, Yeh TL, Yang YK, Lu RB. The interaction between BDNF and DRD2 in bipolar II disorder but not in bipolar I disorder. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:501-7. [PMID: 22514151 DOI: 10.1002/ajmg.b.32055] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 04/04/2012] [Indexed: 12/17/2022]
Abstract
Bipolar I (BP-I) and bipolar II (BP-II) disorders are the two most common subtypes of bipolar disorder. However, most studies have not differentiated bipolar disorder into BP-I and BP-II groups, for which the underlying etiology differentiating these two subtypes remains unclear. The genetic association between both subtypes is essential for improving our understanding. The dopamine D2 receptor/ankyrin repeat and kinase domain containing 1 (DRD2/ANKK1), one of the dopaminergic pathways, as well as the brain-derived neurotrophic factor (BDNF) gene, were reported as candidate genes in the etiology of bipolar disorder. Therefore, we examined the contribution of the BDNF and DRD2/ANKK1 genes and their interaction to the differentiation of BP-I and BP-II. Seven hundred ninety-two participants were recruited: 208 with BP-I, 329 with BP-II, and 255 healthy controls. The genotypes of the BDNF and DRD2/ANKK1 Taq1A polymorphisms were determined using polymerase chain reactions plus restriction fragment length polymorphism analysis. A significant main effect for the Val/Val genotype of the BDNF Val66Met polymorphism predicted BP-II patients. The significant interaction effect for the Val/Val genotype of the BDNF Val66Met polymorphism and A1/A2 genotype of DRD2/ANKK1 Taq1A polymorphism was found only in BP-II patients. We provide initial evidence that the BDNF Val66Me and DRD2/ANKK1 Taq1A polymorphisms interact only in BP-II disorder and that BP-I and BP-II are genetically distinct.
Collapse
Affiliation(s)
- Chih-Chun Huang
- Department of Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Navakkode S, Sajikumar S, Korte M, Soong TW. Dopamine induces LTP differentially in apical and basal dendrites through BDNF and voltage-dependent calcium channels. Learn Mem 2012; 19:294-9. [DOI: 10.1101/lm.026203.112] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
158
|
Gavin DP, Akbarian S. Epigenetic and post-transcriptional dysregulation of gene expression in schizophrenia and related disease. Neurobiol Dis 2012; 46:255-62. [DOI: 10.1016/j.nbd.2011.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 11/10/2011] [Accepted: 12/04/2011] [Indexed: 12/22/2022] Open
|
159
|
Wang S, Okun MS, Suslov O, Zheng T, McFarland NR, Vedam-Mai V, Foote KD, Roper SN, Yachnis AT, Siebzehnrubl FA, Steindler DA. Neurogenic potential of progenitor cells isolated from postmortem human Parkinsonian brains. Brain Res 2012; 1464:61-72. [PMID: 22652067 DOI: 10.1016/j.brainres.2012.04.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 03/26/2012] [Accepted: 04/20/2012] [Indexed: 12/23/2022]
Abstract
The success of cellular therapies for Parkinson's disease (PD) will depend not only on a conducive growth environment in vivo, but also on the ex vivo amplification and targeted neural differentiation of stem/progenitor cells. Here, we demonstrate the in vitro proliferative and differentiation potential of stem/progenitor cells, adult human neural progenitor cells ("AHNPs") isolated from idiopathic PD postmortem tissue samples and, to a lesser extent, discarded deep brain stimulation electrodes. We demonstrate that these AHNPs can be isolated from numerous structures (e.g. substantia nigra, "SN") and are able to differentiate into both glia and neurons, but only under particular growth conditions including co-culturing with embryonic stem cell-derived neural precursors ("ESNPs"); this suggests that PD multipotent neural stem/progenitor cells do reside within the SN and other areas, but by themselves appear to lack key factors required for neuronal differentiation. AHNPs engraft following ex vivo expansion and transplantation into the rodent brain, demonstrating their regenerative potential. Our data demonstrate the presence and capacity of endogenous stem/progenitor cells in the PD brain.
Collapse
Affiliation(s)
- Shanshan Wang
- Department of Neurosurgery, The University of Florida, Center for Movement Disorders and Neurorestoration, College of Medicine, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Chen SH, Wu HM, Ossola B, Schendzielorz N, Wilson BC, Chu CH, Chen SL, Wang Q, Zhang D, Qian L, Li X, Hong JS, Lu RB. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, protects dopaminergic neurons from neurotoxin-induced damage. Br J Pharmacol 2012; 165:494-505. [PMID: 21726209 DOI: 10.1111/j.1476-5381.2011.01575.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Prevention or disease-modifying therapies are critical for the treatment of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and Huntington's disease. However, no such intervention is currently available. Growing evidence has demonstrated that administration of histone deacetylase (HDAC) inhibitors ameliorates a wide range of neurologic and psychiatric disorders in experimental models. Suberoylanilide hydroxamic acid (SAHA) was the first HDAC inhibitor approved by the Food and Drug Administration for the sole use of cancer therapy. The purpose of this study was to explore the potential new indications of SAHA for therapy of neurodegenerative diseases in in vitro Parkinson's disease models. EXPERIMENTAL APPROACH Mesencephalic neuron-glia cultures and reconstituted cultures were used to investigate neurotrophic and neuroprotective effects of SAHA. We measured toxicity in dopaminergic neurons, using dopamine uptake assay and morphological analysis and expression of neurotrophic substances by enzyme-linked immunosorbent assay and real-time RT PCR. KEY RESULTS In mesencephalic neuron-glia cultures, SAHA displayed dose- and time-dependent prolongation of the survival and protection against neurotoxin-induced neuronal death of dopaminergic neurons. Mechanistic studies revealed that the neuroprotective effects of SAHA were mediated in part by promoting release of neurotrophic factors from astroglia through inhibition of histone deacetylation. CONCLUSION AND IMPLICATIONS The novel neurotrophic and neuroprotective effects of SAHA demonstrated in this study suggest that further study of this HDAC inhibitor could provide a new therapeutic approach to the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- S H Chen
- Institute of Behavioral Medicine, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Balaratnasingam S, Janca A. Brain Derived Neurotrophic Factor: A novel neurotrophin involved in psychiatric and neurological disorders. Pharmacol Ther 2012; 134:116-24. [DOI: 10.1016/j.pharmthera.2012.01.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 01/03/2012] [Indexed: 01/01/2023]
|
162
|
Martinez-Fong D, Bannon MJ, Trudeau LE, Gonzalez-Barrios JA, Arango-Rodriguez ML, Hernandez-Chan NG, Reyes-Corona D, Armendáriz-Borunda J, Navarro-Quiroga I. NTS-Polyplex: a potential nanocarrier for neurotrophic therapy of Parkinson's disease. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2012; 8:1052-69. [PMID: 22406187 DOI: 10.1016/j.nano.2012.02.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 02/14/2012] [Accepted: 02/20/2012] [Indexed: 10/28/2022]
Abstract
UNLABELLED Nanomedicine has focused on targeted neurotrophic gene delivery to the brain as a strategy to stop and reverse neurodegeneration in Parkinson's disease. Because of improved transfection ability, synthetic nanocarriers have become candidates for neurotrophic therapy. Neurotensin (NTS)-polyplex is a "Trojan horse" synthetic nanocarrier system that enters dopaminergic neurons through NTS receptor internalization to deliver a genetic cargo. The success of preclinical studies with different neurotrophic genes supports the possibility of using NTS-polyplex in nanomedicine. In this review, we describe the mechanism of NTS-polyplex transfection. We discuss the concept that an effective neurotrophic therapy requires a simultaneous effect on the axon terminals and soma of the remaining dopaminergic neurons. We also discuss the future of this strategy for the treatment of Parkinson's disease. FROM THE CLINICAL EDITOR This review paper focuses on nanomedicine-based treatment of Parkinson's disease, a neurodegenerative condition with existing symptomatic but no curative treatment. Neurotensin-polyplex is a synthetic nanocarrier system that enables delivery of genetic cargo to dopaminergic neurons via NTS receptor internalization.
Collapse
|
163
|
Cai H, Cong WN, Ji S, Rothman S, Maudsley S, Martin B. Metabolic dysfunction in Alzheimer's disease and related neurodegenerative disorders. Curr Alzheimer Res 2012; 9:5-17. [PMID: 22329649 DOI: 10.2174/156720512799015064] [Citation(s) in RCA: 228] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 07/17/2011] [Accepted: 08/09/2011] [Indexed: 01/14/2023]
Abstract
Alzheimer's disease and other related neurodegenerative diseases are highly debilitating disorders that affect millions of people worldwide. Efforts towards developing effective treatments for these disorders have shown limited efficacy at best, with no true cure to this day being present. Recent work, both clinical and experimental, indicates that many neurodegenerative disorders often display a coexisting metabolic dysfunction which may exacerbate neurological symptoms. It stands to reason therefore that metabolic pathways may themselves contain promising therapeutic targets for major neurodegenerative diseases. In this review, we provide an overview of some of the most recent evidence for metabolic dysregulation in Alzheimer's disease, Huntington's disease, and Parkinson's disease, and discuss several potential mechanisms that may underlie the potential relationships between metabolic dysfunction and etiology of nervous system degeneration. We also highlight some prominent signaling pathways involved in the link between peripheral metabolism and the central nervous system that are potential targets for future therapies, and we will review some of the clinical progress in this field. It is likely that in the near future, therapeutics with combinatorial neuroprotective and 'eumetabolic' activities may possess superior efficacies compared to less pluripotent remedies.
Collapse
Affiliation(s)
- Huan Cai
- Metabolism Unit, National Institute on Aging, Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
164
|
Favalli G, Li J, Belmonte-de-Abreu P, Wong AHC, Daskalakis ZJ. The role of BDNF in the pathophysiology and treatment of schizophrenia. J Psychiatr Res 2012; 46:1-11. [PMID: 22030467 DOI: 10.1016/j.jpsychires.2011.09.022] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 09/12/2011] [Accepted: 09/29/2011] [Indexed: 12/20/2022]
Abstract
Brain derived neurotrophic factor (BDNF) has been associated with the pathophysiology of schizophrenia (SCZ). However, it remains unclear whether alterations in BDNF observed in patients with SCZ are a core part of disease neurobiology or a consequence of treatment. In this manuscript we review existing knowledge relating the function of BDNF to synaptic transmission and neural plasticity and the relationship between BDNF and both pharmacological and non-pharmacological treatments for SCZ. With regards to synaptic transmission, exposure to BDNF or lack of this neurotrophin results in alteration to both excitatory and inhibitory synapses. Many authors have also evaluated the effects of both pharmacological and non-pharmacological treatments for SCZ in BDNF and despite some controversial results, it seems that medicated and non-medicated patients present with lower levels of BDNF when compared to controls. Further data suggests that typical antipsychotics may decrease BDNF expression whereas mixed results have been obtained with atypical antipsychotics. The authors found few studies reporting changes in BDNF after non-pharmacological treatments for SCZ, so the existing evidence in this area is limited. Although the study of BDNF provides some new insights into understanding of the pathophysiology and treatment of SCZ, additional work in this area is needed.
Collapse
|
165
|
Cordeira J, Rios M. Weighing in the role of BDNF in the central control of eating behavior. Mol Neurobiol 2011; 44:441-8. [PMID: 22012072 PMCID: PMC3235948 DOI: 10.1007/s12035-011-8212-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 10/07/2011] [Indexed: 01/24/2023]
Abstract
The prevalence of obesity and its associated medical complications, including type 2 diabetes and cardiovascular disease, continues to rise globally. Lifestyle changes in the last decades have greatly contributed to the current obesity trends. However, inheritable biological factors that disrupt the tightly regulated equilibrium between caloric intake and energy expenditure also appear to play a critical part. Mounting evidence obtained from human and rodent studies suggests that perturbed brain-derived neurotrophic factor (BDNF) signaling in appetite-regulating centers in the brain might be a culprit. Here, we review findings that inform the critical roles of BDNF and its receptor TrkB in energy balance and reward centers of the brain impacting feeding behavior and body weight.
Collapse
Affiliation(s)
- Joshua Cordeira
- Department of Neuroscience and Program in Neuroscience, Sackler School of Graduate, Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111 USA
| | - Maribel Rios
- Department of Neuroscience and Program in Neuroscience, Sackler School of Graduate, Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111 USA
| |
Collapse
|
166
|
Pitx3 is a critical mediator of GDNF-induced BDNF expression in nigrostriatal dopaminergic neurons. J Neurosci 2011; 31:12802-15. [PMID: 21900559 DOI: 10.1523/jneurosci.0898-11.2011] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pitx3 is a critical homeodomain transcription factor for the proper development and survival of mesodiencephalic dopaminergic (mdDA) neurons in mammals. Several variants of this gene have been associated with human Parkinson's disease (PD), and lack of Pitx3 in mice causes the preferential loss of substantia nigra pars compacta (SNc) mdDA neurons that are most affected in PD. It is currently unclear how Pitx3 activity promotes the survival of SNc mdDA neurons and which factors act upstream and downstream of Pitx3 in this context. Here we show that a transient expression of glial cell line-derived neurotrophic factor (GDNF) in the murine ventral midbrain (VM) induces transcription of Pitx3 via NF-κB-mediated signaling, and that Pitx3 is in turn required for activating the expression of brain-derived neurotrophic factor (BDNF) in a rostrolateral (SNc) mdDA neuron subpopulation during embryogenesis. The loss of BDNF expression correlates with the increased apoptotic cell death of this mdDA neuronal subpopulation in Pitx3(-/-) mice, whereas treatment of VM cell cultures with BDNF augments the survival of the Pitx3(-/-) mdDA neurons. Most importantly, only BDNF but not GDNF protects mdDA neurons against 6-hydroxydopamine-induced cell death in the absence of Pitx3. As the feedforward regulation of GDNF, Pitx3, and BDNF expression also persists in the adult rodent brain, our data suggest that the disruption of the regulatory interaction between these three factors contributes to the loss of mdDA neurons in Pitx3(-/-) mutant mice and perhaps also in human PD.
Collapse
|
167
|
Granulocyte macrophage-colony stimulating factor protects against substantia nigra dopaminergic cell loss in an environmental toxin model of Parkinson's disease. Neurobiol Dis 2011; 43:99-112. [DOI: 10.1016/j.nbd.2011.02.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 01/26/2011] [Accepted: 02/27/2011] [Indexed: 12/21/2022] Open
|
168
|
Enciu AM, Nicolescu MI, Manole CG, Mureşanu DF, Popescu LM, Popescu BO. Neuroregeneration in neurodegenerative disorders. BMC Neurol 2011; 11:75. [PMID: 21699711 PMCID: PMC3146817 DOI: 10.1186/1471-2377-11-75] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Accepted: 06/23/2011] [Indexed: 02/07/2023] Open
Abstract
Background Neuroregeneration is a relatively recent concept that includes neurogenesis, neuroplasticity, and neurorestoration - implantation of viable cells as a therapeutical approach. Discussion Neurogenesis and neuroplasticity are impaired in brains of patients suffering from Alzheimer's Disease or Parkinson's Disease and correlate with low endogenous protection, as a result of a diminished growth factors expression. However, we hypothesize that the brain possesses, at least in early and medium stages of disease, a "neuroregenerative reserve", that could be exploited by growth factors or stem cells-neurorestoration therapies. Summary In this paper we review the current data regarding all three aspects of neuroregeneration in Alzheimer's Disease and Parkinson's Disease.
Collapse
Affiliation(s)
- Ana M Enciu
- Department of Cellular and Molecular Medicine, School of Medicine, 'Carol Davila' University of Medicine and Pharmacy, Bucharest 050474, Romania
| | | | | | | | | | | |
Collapse
|
169
|
Lalonde R, Strazielle C. Brain regions and genes affecting limb-clasping responses. ACTA ACUST UNITED AC 2011; 67:252-9. [DOI: 10.1016/j.brainresrev.2011.02.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 02/14/2011] [Accepted: 02/20/2011] [Indexed: 10/18/2022]
|
170
|
Sidiropoulos C, Jafari-Khouzani K, Soltanian-Zadeh H, Mitsias P, Alexopoulos P, Richter-Schmidinger T, Reichel M, Lewczuk P, Doerfler A, Kornhuber J. Influence of brain-derived neurotrophic factor and apolipoprotein E genetic variants on hemispheric and lateral ventricular volume of young healthy adults. Acta Neuropsychiatr 2011; 23:132-8. [PMID: 21701702 PMCID: PMC3119566 DOI: 10.1111/j.1601-5215.2011.00546.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Brain-derived neurotrophic factor (BDNF) and apolipoprotein E (ApoE) are thought to be implicated in a variety of neuronal processes, including cell growth, resilience to noxious stimuli and synaptic plasticity. A Val to Met substitution at codon 66 in the BDNF protein has been associated with a variety of neuropsychiatric conditions. The ApoE4 allele is considered a risk factor for late-onset Alzheimer's disease, but its effects on young adults are less clear. We sought to investigate the effects of those two polymorphisms on hemispheric and lateral ventricular volumes of young healthy adults. METHODS Hemispheric and lateral ventricular volumes of 144 healthy individuals, aged 19-35 years, were measured using high resolution magnetic resonance imaging and data were correlated with BDNF and ApoE genotypes. RESULTS There were no correlations between BDNF or ApoE genotype and hemispheric or lateral ventricular volumes. CONCLUSION These findings indicate that it is unlikely that either the BDNF Val66Met or ApoE polymorphisms exert any significant effect on hemispheric or lateral ventricular volume. However, confounding epistatic genetic effects as well as relative insensitivity of the volumetric methods used cannot be ruled out. Further imaging analyses are warranted to better define any genetic influence of the BDNF Val6Met and ApoE polymorphism on brain structure of young healthy adults.
Collapse
|
171
|
Teixeira AL, Barbosa IG, Diniz BS, Kummer A. Circulating levels of brain-derived neurotrophic factor: correlation with mood, cognition and motor function. Biomark Med 2011; 4:871-87. [PMID: 21133708 DOI: 10.2217/bmm.10.111] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is the most widely distributed neurotrophin in the CNS, where it plays several pivotal roles in synaptic plasticity and neuronal survival. As a consequence, BDNF has become a key target in the physiopathology of several neurological and psychiatric diseases. Recent studies have consistently reported altered levels of BDNF in the circulation (i.e., serum or plasma) of patients with major depression, bipolar disorder, Alzheimer's disease, Huntington's disease and Parkinson's disease. Correlations between serum BDNF levels and affective, cognitive and motor symptoms have also been described. BDNF appears to be an unspecific biomarker of neuropsychiatric disorders characterized by neurodegenerative changes.
Collapse
Affiliation(s)
- Antonio Lucio Teixeira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica & Imunologia, Instituto de Ciências Biológicas, UFMG Avenue Antonio Carlos, 6627 - 31270-901 - Belo Horizonte, MG, Brazil.
| | | | | | | |
Collapse
|
172
|
Gibrat C, Cicchetti F. Potential of cystamine and cysteamine in the treatment of neurodegenerative diseases. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:380-9. [PMID: 21111020 DOI: 10.1016/j.pnpbp.2010.11.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 11/10/2010] [Accepted: 11/17/2010] [Indexed: 01/08/2023]
Abstract
Neurodegenerative disorders are a subset of disabling pathologies characterized, in part, by a progressive and specific loss of certain brain cell populations. Current therapeutic approaches for the treatment of these disorders are mainly designed towards symptom management and do not manifestly block their typified neuronal loss. However, research conducted over the past decade has reflected the increasing interest and need to find disease-modifying molecules. Among the several neuroprotective agents emerging from experimental animal work, cystamine, as well as its reduced form cysteamine, have been identified as potential candidate drugs. Given the significant benefits observed in a Huntington's disease (HD) model, cysteamine has recently leaped to clinical trial. Here, we review the beneficial properties of these compounds as reported in animal studies, their mechanistic underpinnings, and their potential implications for the future treatment of patients suffering from neurodegenerative diseases, and more specifically for HD and Parkinson's disease (PD).
Collapse
Affiliation(s)
- C Gibrat
- Centre de Recherche du CHUL (CHUQ), Axe Neurosciences, 2705 Boulevard Laurier, Québec, QC, Canada, G1V 4G2
| | | |
Collapse
|
173
|
Clough RL, Dermentzaki G, Haritou M, Petsakou A, Stefanis L. Regulation of α-synuclein expression in cultured cortical neurons. J Neurochem 2011; 117:275-85. [DOI: 10.1111/j.1471-4159.2011.07199.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
174
|
Malgrange B, Borgs L, Grobarczyk B, Purnelle A, Ernst P, Moonen G, Nguyen L. Using human pluripotent stem cells to untangle neurodegenerative disease mechanisms. Cell Mol Life Sci 2011; 68:635-49. [PMID: 20976521 PMCID: PMC11115022 DOI: 10.1007/s00018-010-0557-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 09/14/2010] [Accepted: 10/04/2010] [Indexed: 12/12/2022]
Abstract
Human pluripotent stem cells, including embryonic (hES) and induced pluripotent stem cells (hiPS), retain the ability to self-renew indefinitely, while maintaining the capacity to differentiate into all cell types of the nervous system. While human pluripotent cell-based therapies are unlikely to arise soon, these cells can currently be used as an inexhaustible source of committed neurons to perform high-throughput screening and safety testing of new candidate drugs. Here, we describe critically the available methods and molecular factors that are used to direct the differentiation of hES or hiPS into specific neurons. In addition, we discuss how the availability of patient-specific hiPS offers a unique opportunity to model inheritable neurodegenerative diseases and untangle their pathological mechanisms, or to validate drugs that would prevent the onset or the progression of these neurological disorders.
Collapse
|
175
|
Kholodilov N, Kim SR, Yarygina O, Kareva T, Cho JW, Baohan A, Burke RE. Glial cell line-derived neurotrophic factor receptor-α1 expressed in striatum in trans regulates development and injury response of dopamine neurons of the substantia nigra. J Neurochem 2011; 116:486-98. [PMID: 21133924 DOI: 10.1111/j.1471-4159.2010.07128.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Many of the cellular effects of glial cell line-derived neurotrophic factor are initiated by binding to GNDF family receptor alpha-1 (GFRα1), and mediated by diverse intracellular signaling pathways, most notably through the Ret tyrosine kinase. Ret may be activated by the cell autonomous expression of GFRα1 ('in cis'), or by its non-cell autonomous presence ('in trans'), in either a soluble or immobilized state. GFRα1 is expressed in the striatum, a target of the dopaminergic projection of the substantia nigra. To determine whether post-synaptic expression of GFRα1 in striatum in trans has effects on the development or adult responses to injury of dopamine neurons, we have created transgenic mice in which GFRα1 expression is selectively increased in striatum and other forebrain targets of the dopaminergic projection. Post-synaptic GFRα1 has profound effects on the development of dopamine neurons, resulting in a 40% increase in their adult number. This morphologic effect was associated with an augmented motor response to amphetamine. In adult mice, post-synaptic GFRα1 expression did not affect neuron survival following neurotoxic lesion, but it did increase the preservation of striatal dopaminergic innervation. We conclude that post-synaptic striatal GFRα1 expression has important effects on the biology of dopamine neurons in vivo.
Collapse
Affiliation(s)
- Nikolai Kholodilov
- Department of Neurology, The College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
176
|
Harlow DE, Yang H, Williams T, Barlow LA. Epibranchial placode-derived neurons produce BDNF required for early sensory neuron development. Dev Dyn 2011; 240:309-23. [PMID: 21246648 DOI: 10.1002/dvdy.22527] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2010] [Indexed: 12/20/2022] Open
Abstract
In mice, BDNF provided by the developing taste epithelium is required for gustatory neuron survival following target innervation. However, we find that expression of BDNF, as detected by BDNF-driven β-galactosidase, begins in the cranial ganglia before its expression in the central (hindbrain) or peripheral (taste papillae) targets of these sensory neurons, and before gustatory ganglion cells innervate either target. To test early BDNF function, we examined the ganglia of bdnf null mice before target innervation, and found that while initial neuron survival is unaltered, early neuron development is disrupted. In addition, fate mapping analysis in mice demonstrates that murine cranial ganglia arise from two embryonic populations, i.e., epibranchial placodes and neural crest, as has been described for these ganglia in non-mammalian vertebrates. Only placodal neurons produce BDNF, however, which indicates that prior to innervation, early ganglionic BDNF produced by placode-derived cells promotes gustatory neuron development.
Collapse
Affiliation(s)
- Danielle E Harlow
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | | | | |
Collapse
|
177
|
TrkB receptor controls striatal formation by regulating the number of newborn striatal neurons. Proc Natl Acad Sci U S A 2011; 108:1669-74. [PMID: 21205893 DOI: 10.1073/pnas.1004744108] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In the peripheral nervous system, target tissues control the final size of innervating neuronal populations by producing limited amounts of survival-promoting neurotrophic factors during development. However, it remains largely unknown if the same principle works to regulate the size of neuronal populations in the developing brain. Here we show that neurotrophin signaling mediated by the TrkB receptor controls striatal size by promoting the survival of developing medium-sized spiny neurons (MSNs). Selective deletion of the gene for the TrkB receptor in striatal progenitors, using the Dlx5/6-Cre transgene, led to a hindpaw-clasping phenotype and a 50% loss of MSNs without affecting striatal interneurons. This loss resulted mainly from increased apoptosis of newborn MSNs within their birthplace, the lateral ganglionic eminence. Among MSNs, those expressing the dopamine receptor D2 (DRD2) were most affected, as indicated by a drastic loss of these neurons and specific down-regulation of the DRD2 and enkephalin. This specific phenotype of mutant animals is likely due to preferential TrkB expression in DRD2 MSNs. These findings suggest that neurotrophins can control the size of neuronal populations in the brain by promoting the survival of newborn neurons before they migrate to their final destinations.
Collapse
|
178
|
Litteljohn D, Mangano E, Clarke M, Bobyn J, Moloney K, Hayley S. Inflammatory mechanisms of neurodegeneration in toxin-based models of Parkinson's disease. PARKINSONS DISEASE 2010; 2011:713517. [PMID: 21234362 PMCID: PMC3018622 DOI: 10.4061/2011/713517] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 12/09/2010] [Indexed: 12/17/2022]
Abstract
Parkinson's disease (PD) has been associated with exposure to a variety of environmental agents, including pesticides, heavy metals, and organic pollutants; and inflammatory processes appear to constitute a common mechanistic link among these insults. Indeed, toxin exposure has been repeatedly demonstrated to induce the release of oxidative and inflammatory factors from immunocompetent microglia, leading to damage and death of midbrain dopamine (DA) neurons. In particular, proinflammatory cytokines such as tumor necrosis factor-α and interferon-γ, which are produced locally within the brain by microglia, have been implicated in the loss of DA neurons in toxin-based models of PD; and mounting evidence suggests a contributory role of the inflammatory enzyme, cyclooxygenase-2. Likewise, immune-activating bacterial and viral agents were reported to have neurodegenerative effects themselves and to augment the deleterious impact of chemical toxins upon DA neurons. The present paper will focus upon the evidence linking microglia and their inflammatory processes to the death of DA neurons following toxin exposure. Particular attention will be devoted to the possibility that environmental toxins can activate microglia, resulting in these cells adopting a “sensitized” state that favors the production of proinflammatory cytokines and damaging oxidative radicals.
Collapse
Affiliation(s)
- Darcy Litteljohn
- Institute of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6
| | | | | | | | | | | |
Collapse
|
179
|
Baydyuk M, Nguyen MT, Xu B. Chronic deprivation of TrkB signaling leads to selective late-onset nigrostriatal dopaminergic degeneration. Exp Neurol 2010; 228:118-25. [PMID: 21192928 DOI: 10.1016/j.expneurol.2010.12.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 12/08/2010] [Accepted: 12/16/2010] [Indexed: 01/19/2023]
Abstract
The pathological hallmark of Parkinson's disease (PD) is a selective and progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc). In the vast majority of cases the appearance of PD is sporadic, and its etiology remains unknown. Several postmortem studies demonstrate reduced levels of brain-derived neurotrophic factor (BDNF) in the SNc of PD patients. Application of BDNF promotes the survival of DA neurons in PD animal models. Here we show that BDNF signaling via its TrkB receptor tyrosine kinase is important for survival of nigrostriatal DA neurons in aging brains. Immunohistochemistry revealed that the TrkB receptor was expressed in DA neurons located in the SNc and ventral tegmental area (VTA). However, a significant loss of DA neurons occurred at 12-24 months of age only in the SNc but not in the VTA of TrkB hypomorphic mice in which the TrkB receptor was expressed at a quarter to a third of the normal amount. The neuronal loss was accompanied by a decrease in dopaminergic axonal terminals in the striatum and by gliosis in both the SNc and striatum. Furthermore, nigrostriatal DA neurons in the TrkB mutant mice were hypersensitive to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a mitochondrial complex I inhibitor that selectively kills DA neurons. These results suggest that BDNF-to-TrkB signaling plays an important role in the long-term maintenance of the nigrostriatal system and that its deficiency may contribute to the progression of PD.
Collapse
Affiliation(s)
- Maryna Baydyuk
- Department of Pharmacology, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | |
Collapse
|
180
|
Zai CC, Manchia M, De Luca V, Tiwari AK, Squassina A, Zai GC, Strauss J, Shaikh SA, Freeman N, Meltzer HY, Lieberman J, Le Foll B, Kennedy JL. Association study of BDNF and DRD3 genes in schizophrenia diagnosis using matched case-control and family based study designs. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:1412-8. [PMID: 20667458 DOI: 10.1016/j.pnpbp.2010.07.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 07/12/2010] [Accepted: 07/19/2010] [Indexed: 01/13/2023]
Abstract
Schizophrenia (SCZ) is a severe neuropsychiatric disorder with prominent genetic etiologic factors. The dopamine receptor DRD3 gene is a strong candidate in genetic studies of SCZ because of the dopamine hypothesis of SCZ and the selective expression of D(3) in areas of the limbic system implicated in the disease. We examined 15 single-nucleotide polymorphisms (SNPs) in DRD3 in our sample of European origin consisting of 95 small nuclear SCZ families and 167 case-control pairs. We also examined four BDNF SNPs in our samples because of evidence for BDNF regulation of DRD3 expression (Guillin et al., 2001). We found a nominally significant genotypic association with rs7633291 and allelic association with rs1025398 alleles. However, these observations did not survive correction for multiple testing. We did not find a statistically significant association with the other DRD3 and BDNF polymorphisms. Taken together, the results from the present study suggest that BDNF and DRD3 may not be involved in SCZ susceptibility.
Collapse
Affiliation(s)
- Clement C Zai
- Neurogenetics Section, Centre for Addiction and Mental Health, Toronto, Ontario, Canada M5T 1R8
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Li C, Biswas S, Li X, Dutta AK, Le W. Novel D3 dopamine receptor-preferring agonist D-264: Evidence of neuroprotective property in Parkinson's disease animal models induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and lactacystin. J Neurosci Res 2010; 88:2513-23. [PMID: 20623619 DOI: 10.1002/jnr.22405] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Parkinson's disease (PD), a progressive neurodegenerative movement disorder, is known to be caused by diverse pathological conditions resulting from dysfunction of the ubiquitin-proteasome system (UPS), mitochondria, and oxidative stress leading to preferential nigral dopamine (DA) neuron degeneration in the substantia nigra. In the present study, we evaluated the novel D3 receptor-preferring agonist D-264 in a mouse model of PD to evaluate its neuroprotective properties against both the nigrostriatal dopaminergic toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)- and the proteasome inhibitor lactacystin-induced dopaminergic degeneration. C57BL/6 male mice either were given MPTP by intraperitoneal injection twice per day for 2 successive days at a dose 20 mg/kg or were microinjected with lactacystin bilaterally (1.25 microg/side) into the medial forebrain bundle (MFB). Pretreatment with D-264 (1 mg/kg and 5 mg/kg, intraperitoneally, once per day), started 7 days before administration of MPTP or lactacystin. We found that D-264 significantly improved behavioral performance, attenuated both MPTP- and lactacystin-induced DA neuron loss, and blocked proteasomal inhibition and microglial activation in the substantia nigra (SN). Furthermore, D-264 treatment was shown to increase the levels of brain-derived neurotrophic factor (BDNF) and glial cell line-derived factor (GDNF) in MPTP- and lactacystin-treated mice, possibly indicating, at least in part, the mechanism of neuroprotection by D-264. Furthermore, pretreatment with the D3 receptor antagonist U99194 significantly altered the effect of neuroprotection conferred by D-264. Collectively, our study demonstrates that D-264 can prevent neurodegeneration induced by the selective neurotoxin MPTP and the UPS inhibitor lactacystin. The results indicate that D-264 could potentially serve as a symptomatic and neuroprotective treatment agent for PD.
Collapse
Affiliation(s)
- Chao Li
- Department of Neurology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
182
|
Abe M, Kimoto H, Eto R, Sasaki T, Kato H, Kasahara J, Araki T. Postnatal development of neurons, interneurons and glial cells in the substantia nigra of mice. Cell Mol Neurobiol 2010; 30:917-28. [PMID: 20414716 PMCID: PMC11498887 DOI: 10.1007/s10571-010-9521-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 04/05/2010] [Indexed: 10/19/2022]
Abstract
We investigated postnatal alterations of neurons, interneurons and glial cells in the mouse substantia nigra using immunohistochemistry. Tyrosine hydroxylase (TH), neuronal nuclei (NeuN), parvalbumin (PV), neuronal nitric oxide synthase (nNOS), glial fibrillary acidic protein (GFAP), ionized calcium-binding adaptor molecule 1 (Iba 1), CNPase (2',3'-cyclic nucleotide 3'-phosphodiesterase), brain-derived neurotrophic factor (BDNF) and glial cell-line-derived neurotrophic factor (GDNF) immunoreactivity were measured in 1-, 2-, 4- and 8-week-old mice. In the present study, the maturation of NeuN-immunopositive neurons preceded the production of TH in the substantia nigra during postnatal development in mice. Furthermore, the maturation of nNOS-immunopositive interneurons preceded the maturation of PV-immunopositive interneurons in the substantia nigra during postnatal development. Among astrocytes, microglia and oligodendrocytes, in contrast, the development process of oligodendrocytes is delayed in the substantia nigra. Our double-labeled immunohistochemical study suggests that the neurotrophic factors such as BDNF and GDNF secreted by GFAP-positive astrocytes may play some role in maturation of neurons, interneurons and glial cells of the substantia nigra during postnatal development in mice. Thus, our findings provide valuable information on the development processes of the substantia nigra.
Collapse
Affiliation(s)
- Manami Abe
- Department of Neurobiology and Therapeutics, Graduate School and Faculty of Pharmaceutical Sciences, The University of Tokushima, 1-78, Sho-machi, Tokushima, 770-8505 Japan
| | - Hiroki Kimoto
- Department of Neurobiology and Therapeutics, Graduate School and Faculty of Pharmaceutical Sciences, The University of Tokushima, 1-78, Sho-machi, Tokushima, 770-8505 Japan
| | - Risa Eto
- Department of Neurobiology and Therapeutics, Graduate School and Faculty of Pharmaceutical Sciences, The University of Tokushima, 1-78, Sho-machi, Tokushima, 770-8505 Japan
| | - Taeko Sasaki
- Department of Neurobiology and Therapeutics, Graduate School and Faculty of Pharmaceutical Sciences, The University of Tokushima, 1-78, Sho-machi, Tokushima, 770-8505 Japan
| | - Hiroyuki Kato
- Department of Neurology, Organized Center of Clinical Medicine, International University of Health and Welfare Hospital, Tochigi, Japan
| | - Jiro Kasahara
- Department of Neurobiology and Therapeutics, Graduate School and Faculty of Pharmaceutical Sciences, The University of Tokushima, 1-78, Sho-machi, Tokushima, 770-8505 Japan
| | - Tsutomu Araki
- Department of Neurobiology and Therapeutics, Graduate School and Faculty of Pharmaceutical Sciences, The University of Tokushima, 1-78, Sho-machi, Tokushima, 770-8505 Japan
| |
Collapse
|
183
|
Number and nuclear morphology of TH+ and TH- neurons in the mouse ventral midbrain using epifluorescence stereology. Exp Neurol 2010; 225:328-40. [PMID: 20637754 DOI: 10.1016/j.expneurol.2010.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 07/06/2010] [Accepted: 07/08/2010] [Indexed: 11/22/2022]
Abstract
The accurate and reliable counting of tyrosine hydroxylase positive (TH+) and tyrosine hydroxylase negative (TH-) neurons in the ventral midbrain is an important measure in studies related to Parkinson's disease and many other disorders associated with this region. Despite recent advancements, the use of stereology remains limited due to a variety of challenges for many users. We implemented a real-time fluorescence detection method and the use of an antibody to the neuron specific nuclear antigen (NeuN) to overcome some challenges for users. We found that the regional value for the two different cell types (TH+ and TH-) varied with the method of detection (chromogenic versus fluorescence) and with different nuclear markers (Nissl, DAPI, or NeuN). The number of both TH+ and TH- neurons was higher using fluorescence detection. The number of TH- neurons was higher using NeuN as a neuronal nuclear marker compared to DAPI. We identified 3 types of neuronal nuclei using NeuN staining characteristics. The method is applicable for mouse and rat. We describe a practical approach for epifluorescence-based counting of these two types of neurons that may offer significant advantages over existing methods for potential users.
Collapse
|
184
|
Intranigral transplantation of epigenetically induced BDNF-secreting human mesenchymal stem cells: implications for cell-based therapies in Parkinson's disease. Biol Blood Marrow Transplant 2010; 16:1530-40. [PMID: 20542127 DOI: 10.1016/j.bbmt.2010.06.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 06/01/2010] [Indexed: 12/12/2022]
Abstract
It is thought that the ability of human mesenchymal stem cells (hMSC) to deliver neurotrophic factors might be potentially useful for the treatment of neurodegenerative disorders. The aim of the present study was to characterize signals and/or molecules that regulate brain-derived neurotrophic factor (BDNF) protein expression/delivery in hMSC cultures and evaluate the effect of epigenetically generated BDNF-secreting hMSC on the intact and lesioned substantia nigra (SN). We tested 4 different culture media and found that the presence of fetal bovine serum (FBS) decreased the expression of BDNF, whereas exogenous addition of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) to serum-free medium was required to induce BDNF release (125 ± 12 pg/day/10⁶ cells). These cells were called hM(N)SC. Although the induction medium inhibited the expression of alpha smooth muscle actin (ASMA), an hMSC marker, and increased the nestin-positive subpopulation of hMSC cultures, the ability to express BDNF was restricted to the nestin-negative subpopulation. One week after transplantation into the SN, the human cells integrated into the surrounding tissue, and some showed a dopaminergic phenotype. We also observed the activation of Trk receptors for neurotrophic factors around the implant site, including the BDNF receptor TrkB. When we transplanted these cells into the unilateral lesioned SN induced by striatal injection of 6-hydroxydopamine (6-OHDA), a significant hypertrophy of nigral tyrosine hydroxylase (TH)(+) cells, an increase of striatal TH-staining and stabilization of amphetamine-induced motor symptoms were observed. Therefore, hMSC cultures exposed to the described induction medium might be highly useful as a vehicle for neurotrophic delivery to the brain and specifically are strong candidates for future therapeutic application in Parkinson's disease.
Collapse
|
185
|
Brain-derived neurotrophic factor regulates hedonic feeding by acting on the mesolimbic dopamine system. J Neurosci 2010; 30:2533-41. [PMID: 20164338 DOI: 10.1523/jneurosci.5768-09.2010] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) and its receptor, TrkB, play prominent roles in food intake regulation through central mechanisms. However, the neural circuits underlying their anorexigenic effects remain largely unknown. We showed previously that selective BDNF depletion in the ventromedial hypothalamus (VMH) of mice resulted in hyperphagic behavior and obesity. Here, we sought to ascertain whether its regulatory effects involved the mesolimbic dopamine system, which mediates motivated and reward-seeking behaviors including consumption of palatable food. We found that expression of BDNF and TrkB mRNA in the ventral tegmental area (VTA) of wild-type mice was influenced by consumption of palatable, high-fat food (HFF). Moreover, amperometric recordings in brain slices of mice depleted of central BDNF uncovered marked deficits in evoked release of dopamine in the nucleus accumbens (NAc) shell and dorsal striatum but normal secretion in the NAc core. Mutant mice also exhibited dramatic increases in HFF consumption, which were exacerbated when access to HFF was restricted. However, mutants displayed enhanced responses to D(1) receptor agonist administration, which normalized their intake of HFF in a 4 h food intake test. Finally, in contrast to deletion of Bdnf in the VMH of mice, which resulted in increased intake of standard chow, BDNF depletion in the VTA elicited excessive intake of HFF but not of standard chow and increased body weights under HFF conditions. Our findings indicate that the effects of BDNF on eating behavior are neural substrate-dependent and that BDNF influences hedonic feeding via positive modulation of the mesolimbic dopamine system.
Collapse
|
186
|
Branchi I, D’Andrea I, Armida M, Carnevale D, Ajmone-Cat MA, Pèzzola A, Potenza RL, Morgese MG, Cassano T, Minghetti L, Popoli P, Alleva E. Striatal 6-OHDA lesion in mice: Investigating early neurochemical changes underlying Parkinson's disease. Behav Brain Res 2010; 208:137-43. [DOI: 10.1016/j.bbr.2009.11.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 11/04/2009] [Accepted: 11/09/2009] [Indexed: 12/31/2022]
|
187
|
Rauskolb S, Zagrebelsky M, Dreznjak A, Deogracias R, Matsumoto T, Wiese S, Erne B, Sendtner M, Schaeren-Wiemers N, Korte M, Barde YA. Global deprivation of brain-derived neurotrophic factor in the CNS reveals an area-specific requirement for dendritic growth. J Neurosci 2010; 30:1739-49. [PMID: 20130183 PMCID: PMC6633992 DOI: 10.1523/jneurosci.5100-09.2010] [Citation(s) in RCA: 238] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 11/25/2009] [Accepted: 12/07/2009] [Indexed: 01/08/2023] Open
Abstract
Although brain-derived neurotrophic factor (BDNF) is linked with an increasing number of conditions causing brain dysfunction, its role in the postnatal CNS has remained difficult to assess. This is because the bdnf-null mutation causes the death of the animals before BDNF levels have reached adult levels. In addition, the anterograde axonal transport of BDNF complicates the interpretation of area-specific gene deletion. The present study describes the generation of a new conditional mouse mutant essentially lacking BDNF throughout the CNS. It shows that BDNF is not essential for prolonged postnatal survival, but that the behavior of such mutant animals is markedly altered. It also reveals that BDNF is not a major survival factor for most CNS neurons and for myelination of their axons. However, it is required for the postnatal growth of the striatum, and single-cell analyses revealed a marked decreased in dendritic complexity and spine density. In contrast, BDNF is dispensable for the growth of the hippocampus and only minimal changes were observed in the dendrites of CA1 pyramidal neurons in mutant animals. Spine density remained unchanged, whereas the proportion of the mushroom-type spine was moderately decreased. In line with these in vivo observations, we found that BDNF markedly promotes the growth of cultured striatal neurons and of their dendrites, but not of those of hippocampal neurons, suggesting that the differential responsiveness to BDNF is part of a neuron-intrinsic program.
Collapse
Affiliation(s)
| | - Marta Zagrebelsky
- Zoological Institute, Cellular Neurobiology, Technische Universität Braunschweig, D-38106 Braunschweig, Germany, and
| | - Anita Dreznjak
- Zoological Institute, Cellular Neurobiology, Technische Universität Braunschweig, D-38106 Braunschweig, Germany, and
| | | | | | - Stefan Wiese
- Institute of Clinical Neurobiology, University of Würzburg, D-97080 Würzburg, Germany
| | - Beat Erne
- Department of Biomedicine and Neurology, University Hospital, CH-4056 Basel, Switzerland
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University of Würzburg, D-97080 Würzburg, Germany
| | | | - Martin Korte
- Zoological Institute, Cellular Neurobiology, Technische Universität Braunschweig, D-38106 Braunschweig, Germany, and
| | | |
Collapse
|
188
|
Patel AV, Krimm RF. BDNF is required for the survival of differentiated geniculate ganglion neurons. Dev Biol 2010; 340:419-29. [PMID: 20122917 DOI: 10.1016/j.ydbio.2010.01.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 01/05/2010] [Accepted: 01/22/2010] [Indexed: 12/23/2022]
Abstract
In mice lacking functional brain-derived neurotrophic factor (BDNF), the number of geniculate ganglion neurons, which innervate taste buds, is reduced by one-half. Here, we determined how and when BDNF regulates the number of neurons in the developing geniculate ganglion. The loss of geniculate neurons begins at embryonic day 13.5 (E13.5) and continues until E18.5 in BDNF-null mice. Neuronal loss in BDNF-null mice was prevented by the removal of the pro-apoptotic gene Bax. Thus, BDNF regulates embryonic geniculate neuronal number by preventing cell death rather than promoting cell proliferation. The number of neurofilament positive neurons expressing activated caspase-3 increased on E13.5 in bdnf(-/-) mice, compared to wild-type mice, demonstrating that differentiated neurons were dying. The axons of geniculate neurons approach their target cells, the fungiform papillae, beginning on E13.5, at which time we found robust BDNF(LacZ) expression in these targets. Altogether, our findings establish that BDNF produced in peripheral target cells regulates the survival of early geniculate neurons by inhibiting cell death of differentiated neurons on E13.5 of development. Thus, BDNF acts as a classic target-derived growth factor in the developing taste system.
Collapse
Affiliation(s)
- Ami V Patel
- Department of Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, Louisville, KY 40202, USA
| | | |
Collapse
|
189
|
Gibrat C, Bousquet M, Saint-Pierre M, Lévesque D, Calon F, Rouillard C, Cicchetti F. Cystamine prevents MPTP-induced toxicity in young adult mice via the up-regulation of the brain-derived neurotrophic factor. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:193-203. [PMID: 19913065 DOI: 10.1016/j.pnpbp.2009.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 11/04/2009] [Accepted: 11/05/2009] [Indexed: 01/01/2023]
Abstract
Preclinical data suggest that cystamine stands as a promising neuroprotective agent against Huntington's and Parkinson's diseases. To decipher the mechanisms of action of cystamine, we investigated the effects of various doses of cystamine (10, 50, and 200mg/kg) on the regulation of the brain-derived neurotrophic factor (BDNF), its receptor tropomyosin-receptor-kinase B (TrkB) and on the heat shock protein 70 (Hsp70) brain mRNA expression in relation to the time after administration. We have determined that the lower cystamine dose is the most efficient to promote putative neuroprotective effects. Indeed, an acute administration of 10mg/kg of cystamine increased the expression of BDNF mRNA in the substantia nigra compacta (SNc), although it did not significantly influence TrkB or Hsp70 mRNA. Higher cystamine doses resulted in the absence of activation of any of these markers or led to non-specific effects. We have also substantiated the neuroprotective effect of a 21-day treatment of 10mg/kg/day of cystamine in young adult mice against MPTP-induced loss of tyrosine hydroxylase-striatal fiber density, nigral dopamine cells and nigral Nurr1 mRNA expression. The neuroprotective action of cystamine in the same animals was associated with an up-regulation of BDNF in the SNc. Taken together, these results strengthen the neuroprotective potential of cystamine in the treatment of Parkinson's disease and point towards the up-regulation of BDNF as an important mechanism of action.
Collapse
Affiliation(s)
- C Gibrat
- Centre de Recherche du CHUL (CHUQ), Axe neurosciences, 2705 Boulevard Laurier, Québec, QC, Canada G1V 4G2
| | | | | | | | | | | | | |
Collapse
|
190
|
Abstract
Parkinson's disease (PD) is a chronic, progressive neurodegenerative movement disorder for which there is currently no effective therapy. Over the past several decades, there has been a considerable interest in neuroprotective therapies using trophic factors to alleviate the symptoms of PD. Neurotrophic factors (NTFs) are a class of molecules that influence a number of neuronal functions, including cell survival and axonal growth. Experimental studies in animal models suggest that members of neurotrophin family and GDNF family of ligands (GFLs) have the potent ability to protect degenerating dopamine neurons as well as promote regeneration of the nigrostriatal dopamine system. In clinical trials, although no serious adverse events related to the NTF therapy has been reported in patients, they remain inconclusive. In this chapter, we attempt to give a brief overview on several different growth factors that have been explored for use in animal models of PD and those already used in PD patients.
Collapse
|
191
|
Bousquet M, Gibrat C, Saint-Pierre M, Julien C, Calon F, Cicchetti F. Modulation of brain-derived neurotrophic factor as a potential neuroprotective mechanism of action of omega-3 fatty acids in a parkinsonian animal model. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:1401-8. [PMID: 19632286 DOI: 10.1016/j.pnpbp.2009.07.018] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 06/29/2009] [Accepted: 07/20/2009] [Indexed: 10/20/2022]
Abstract
While we recently reported the beneficial effects of omega-3 polyunsaturated fatty acids (n-3 PUFAs) in a mouse model of Parkinson's disease (PD), the mechanisms of action remain largely unknown. Here, we specifically investigated the contribution of the brain-derived neurotrophic factor (BDNF) to the neuroprotective effect of n-3 PUFA observed in a mouse model of PD generated by a subacute exposure to MPTP using a total of 7 doses of 20mg/kg over 5 days. The ten-month high n-3 PUFA treatment which preceded the MPTP exposure induced an increase of BDNF mRNA expression in the striatum, but not in the motor cortex of animals fed the high n-3 PUFA diet. In contrast, n-3 PUFA treatment increased BDNF protein levels in the motor cortex of MPTP-treated mice, an effect not observed in vehicle-treated mice. The mRNA expression of the high-affinity BDNF receptor tropomyosin-related kinase B (TrkB) was increased in the striatum of MPTP-treated mice fed the high n-3 PUFA diet compared to vehicle and MPTP-treated mice on the control diet and to vehicle mice on the high n-3 PUFA diet. These data suggest that the modulation of BDNF expression contributes, in part, to n-3 PUFA-induced neuroprotection in an animal model of PD.
Collapse
Affiliation(s)
- M Bousquet
- Centre de Recherche du CHUL (CHUQ), Axe Neurosciences, Québec, QC, Canada
| | | | | | | | | | | |
Collapse
|
192
|
Serum levels of brain-derived neurotrophic factor correlate with motor impairment in Parkinson's disease. J Neurol 2009; 257:540-5. [PMID: 19847468 DOI: 10.1007/s00415-009-5357-2] [Citation(s) in RCA: 201] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 10/01/2009] [Accepted: 10/08/2009] [Indexed: 12/21/2022]
Abstract
The brain-derived neurotrophic factor (BDNF) is a potent inhibitor of apoptosis-mediated cell death and neurotoxin-induced degeneration of dopaminergic neurons. There is a growing body of evidence implicating BDNF in the pathogenesis of Parkinson's disease (PD), suggesting it may eventually be used in the development of neuroprotective therapies for PD. The serum BDNF of 47 PD patients and of 23 control subjects was assessed, and serum BNDF levels were significantly decreased in PD patients when compared with controls (p = 0.046). Interestingly enough, BDNF correlated positively with a longer time span of the disease, as well as with the severity of the PD symptoms and with more advanced stages of the disease. Additionally, higher BDNF levels also correlated with poor balance as assessed by the Berg Balance Scale, more time spent at the Timed Up & Go Test, reduced speed of gait and shorter distance walked during the Six-Minute Walk Test. Our results corroborate the literature regarding the involvement of BDNF in PD. We hypothesize that lower BDNF levels in early stages of the disease may be associated with pathogenic mechanisms of PD. The increase of BDNF levels with the progression of the disease may be a compensatory mechanism in more advanced stages of PD.
Collapse
|
193
|
Novel neuroprotective mechanisms of memantine: increase in neurotrophic factor release from astroglia and anti-inflammation by preventing microglial activation. Neuropsychopharmacology 2009; 34:2344-57. [PMID: 19536110 PMCID: PMC3655438 DOI: 10.1038/npp.2009.64] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Memantine shows clinically relevant efficacy in patients with Alzheimer's disease and Parkinson's disease. Most in vivo and in vitro studies attribute the neuroprotective effects of memantine to the blockade of N-methyl-D-aspartate (NMDA) receptor on neurons. However, it cannot be excluded that mechanisms other than NMDA receptor blockade may contribute to the neuroprotective effects of this compound. To address this question, primary midbrain neuron-glia cultures and reconstituted cultures were used, and lipopolysaccharide (LPS), an endotoxin from bacteria, was used to produce inflammation-mediated dopaminergic (DA) neuronal death. Here, we show that memantine exerted both potent neurotrophic and neuroprotective effects on DA neurons in rat neuron-glia cultures. The neurotrophic effect of memantine was glia dependent, as memantine failed to show any positive effect on DA neurons in neuron-enriched cultures. More specifically, it seems to be that astroglia, not microglia, are the source of the memantine-elicited neurotrophic effects through the increased production of glial cell line-derived neurotrophic factor (GDNF). Mechanistic studies showed that GDNF upregulation was associated with histone hyperacetylation by inhibiting the cellular histone deacetylase activity. In addition, memantine also displays neuroprotective effects against LPS-induced DA neuronal damage through its inhibition of microglia activation showed by both OX-42 immunostaining and reduction of pro-inflammatory factor production, such as extracellular superoxide anion, intracellular reactive oxygen species, nitric oxide, prostaglandin E(2), and tumor necrosis factor-alpha. These results suggest that the neuroprotective effects of memantine shown in our cell culture studies are mediated in part through alternative novel mechanisms by reducing microglia-associated inflammation and by stimulating neurotrophic factor release from astroglia.
Collapse
|
194
|
Abstract
Changes in the levels and activities of neurotrophic factors, such as brain-derived neurotrophic factor (BDNF), have been described in a number of neurodegenerative disorders, including Huntington disease, Alzheimer disease and Parkinson disease. It is only in Huntington disease, however, that gain-of-function and loss-of-function experiments have linked BDNF mechanistically with the underlying genetic defect. Altogether, these studies have led to the development of experimental strategies aimed at increasing BDNF levels in the brains of animals that have been genetically altered to mimic the aforementioned human diseases, with a view to ultimately influencing the clinical treatment of these conditions. In this article, we will review the current knowledge about the involvement of BDNF in a number of neurodegenerative diseases, with particular emphasis on Huntington disease, and will provide the rationale for and discuss the problems in proposing BDNF treatment as a beneficial and feasible therapeutic approach in the clinic.
Collapse
|
195
|
Cannon JR, Greenamyre JT. NeuN is not a reliable marker of dopamine neurons in rat substantia nigra. Neurosci Lett 2009; 464:14-7. [PMID: 19682546 DOI: 10.1016/j.neulet.2009.08.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 07/30/2009] [Accepted: 08/06/2009] [Indexed: 12/21/2022]
Abstract
Quantification of neuronal cell number is a key endpoint in the characterization of neurodegenerative disease models and neuroprotective regimens. Immunohistochemistry for phenotypic markers, followed by unbiased stereology is often used to quantify the relevant neuronal population. To control for loss of phenotypic markers in the absence of cell death, or to determine if other types of neurons are lost, a general neuronal marker is often desired. Vertebrate neuron-specific nuclear protein (NeuN) is reportedly expressed in most mammalian neurons. In Parkinson's disease models, NeuN has been widely used to determine if there is actual nigral dopamine neuron loss or simply loss of tyrosine hydroxylase expression, a prominent phenotypic marker. To date, the qualitative value of NeuN expression as such a marker in the substantia nigra has not been assessed. Midbrain tissue sections from control rats were stained for NeuN and tyrosine hydroxylase and assessed by light or confocal microscopy. Here we report that NeuN expression level in the rat substantia nigra was highly variable, with many faintly stained cells that would not be meet stereological scoring criteria. Additionally, dopamine neurons with little or no NeuN expression were readily identified. Subcellular compartmentalization of NeuN expression was also variable, with many cells dorsal and ventral to the nigra exhibiting expression in both the nucleus and cytoplasm. NeuN expression also appeared to be much higher in non-dopamine neurons within the ventral midbrain. This characterization of nigral NeuN expression suggests that it is not useful as a quantitative general neuronal marker in the substantia nigra.
Collapse
Affiliation(s)
- Jason R Cannon
- Department of Neurology, Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | | |
Collapse
|
196
|
Madhavan L, Daley BF, Paumier KL, Collier TJ. Transplantation of subventricular zone neural precursors induces an endogenous precursor cell response in a rat model of Parkinson's disease. J Comp Neurol 2009; 515:102-15. [PMID: 19399899 DOI: 10.1002/cne.22033] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Realistically, future stem cell therapies for neurological conditions including Parkinson's disease (PD) will most probably entail combination treatment strategies, involving both the stimulation of endogenous cells and transplantation. Therefore, this study investigates these two modes of neural precursor cell (NPC) therapy in concert in order to determine their interrelationships in a rat PD model. Human placental alkaline phosphatase (hPAP)-labeled NPCs were transplanted unilaterally into host rats which were subsequently infused ipsilaterally with 6-hydroxydopamine (6-OHDA). The reaction of host NPCs to the transplantation and 6-OHDA was tracked by bromodeoxyuridine (BrdU) labeling. Two weeks after transplantation, in animals transplanted with NPCs we found evidence of elevated host subventricular zone NPC proliferation, neurogenesis, and migration to the graft site. In these animals, we also observed a significant preservation of striatal tyrosine hydroxylase (TH) expression and substantia nigra TH cell number. We have seen no evidence that neuroprotection is a product of dopamine neuron replacement by NPC-derived cells. Rather, the NPCs expressed glial cell line-derived neurotrophic factor (GDNF), sonic hedgehog (Shh), and stromal cell-derived factor 1 alpha (SDF1alpha), providing a molecular basis for the observed neuroprotection and endogenous NPC response to transplantation. In summary, our data suggests plausible synergy between exogenous and endogenous NPC actions, and that NPC implantation before the 6-OHDA insult can create a host microenvironment conducive to stimulation of endogenous NPCs and protection of mature nigral neurons.
Collapse
Affiliation(s)
- Lalitha Madhavan
- Department of Neurology, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | | | | | | |
Collapse
|
197
|
Trzaska KA, King CC, Li KY, Kuzhikandathil EV, Nowycky MC, Ye JH, Rameshwar P. Brain-derived neurotrophic factor facilitates maturation of mesenchymal stem cell-derived dopamine progenitors to functional neurons. J Neurochem 2009; 110:1058-69. [PMID: 19493166 DOI: 10.1111/j.1471-4159.2009.06201.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The generation of dopamine (DA) neurons from stem cells holds great promise in the treatment of Parkinson's disease and other neural disease associated with dysfunction of DA neurons. Mesenchymal stem cells (MSCs) derived from the adult bone marrow show plasticity with regards to generating cells of other germ layers. In addition to reduced ethical concerns, MSCs could be transplanted across allogeneic barriers, making them desirable stem cells for clinical applications. We have reported on the generation of DA cells from human MSCs using sonic hedgehog (SHH), fibroblast growth factor 8 and basic fibroblast growth factor. Despite the secretion of DA, the cells did not show evidence of functional neurons, and were therefore designated DA progenitors. Here, we report on the role of brain-derived neurotrophic factor (BDNF) in the maturation of the MSC-derived DA progenitors. 9-day induced MSCs show significant tropomyosin-receptor-kinase B expression, which correlate with its ligand, BDNF, being able to induce functional maturation. The latter was based on Ca2+ imaging analyses and electrophysiology. BDNF-treated cells showed the following: increases in intracellular Ca2+ upon depolarization and after stimulation with the neurotransmitters acetylcholine and GABA and, post-synaptic currents by electrophysiological analyses. In addition, BDNF induced increased DA release upon depolarization. Taken together, these results demonstrate the crucial role for BDNF in the functional maturation of MSC-derived DA progenitors.
Collapse
Affiliation(s)
- Katarzyna A Trzaska
- Department of Medicine-Hematology/Oncology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, USA
| | | | | | | | | | | | | |
Collapse
|
198
|
Oo TF, Marchionini DM, Yarygina O, O'Leary PD, Hughes RA, Kholodilov N, Burke RE. Brain-derived neurotrophic factor regulates early postnatal developmental cell death of dopamine neurons of the substantia nigra in vivo. Mol Cell Neurosci 2009; 41:440-7. [PMID: 19409492 DOI: 10.1016/j.mcn.2009.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 03/25/2009] [Accepted: 04/22/2009] [Indexed: 11/29/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) was the first purified molecule identified to directly support the development of mesencephalic dopamine neurons. However, its physiologic role has remained unknown. Based on patterns of expression, it is unlikely to serve as a target-derived neurotrophic factor, but it may instead act locally in the mesencephalon, either released by afferent projections, or in autocrine fashion. To assess a possible local role, we blocked BDNF signaling in the substantia nigra (SN) of postnatal rats by injection of either neutralizing antibodies or a peptide antagonist. These treatments increased the magnitude of developmental cell death in the SN, indicating that endogenous local BDNF does play a regulatory role. However, we also find that elimination of BDNF in brain throughout postnatal development in BDNF(fl/fl):Nestin-Cre mice has no effect on the adult number of SN dopamine neurons. We postulate that other forms of trophic support may compensate for the elimination of BDNF during early development. Although the number of SN dopamine neurons is unchanged, their organization is disrupted. We conclude that BDNF plays a physiologic role in the postnatal development of SN dopamine neurons.
Collapse
Affiliation(s)
- Tinmarla F Oo
- Department of Neurology, The College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
199
|
Zai CC, Tiwari AK, De Luca V, Müller DJ, Bulgin N, Hwang R, Zai GC, King N, Voineskos AN, Meltzer HY, Lieberman JA, Potkin SG, Remington G, Kennedy JL. Genetic study of BDNF, DRD3, and their interaction in tardive dyskinesia. Eur Neuropsychopharmacol 2009; 19:317-28. [PMID: 19217756 DOI: 10.1016/j.euroneuro.2009.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 01/05/2009] [Accepted: 01/08/2009] [Indexed: 11/26/2022]
Abstract
Tardive dyskinesia (TD) is a neuroleptic-induced movement disorder. Its pathophysiology is unclear. The most consistent genetic findings have shown an association with the Ser9Gly polymorphism of the DRD3 gene. However, only few polymorphisms within DRD3 has been tested, and a comprehensive examination of DRD3 in TD is still lacking. Further, brain-derived neurotrophic factor (BDNF), a neuronal growth and survival peptide, regulates DRD3 expression and may be involved in the neuronal degeneration observed in TD. In the present study, we investigated 15 tag DRD3 polymorphisms and four tag BDNF polymorphisms for association with TD in our sample of Caucasian schizophrenia patients (N=171). While BDNF markers showed no association, a haplotype containing rs3732782, rs905568, and rs7620754 in the 5' region of DRD3 was associated with TD diagnosis (p[10,000 permutations]=0.007). We also found evidence of interaction between BDNF and DRD3 polymorphisms. Further studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Clement C Zai
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Baquet ZC, Williams D, Brody J, Smeyne RJ. A comparison of model-based (2D) and design-based (3D) stereological methods for estimating cell number in the substantia nigra pars compacta (SNpc) of the C57BL/6J mouse. Neuroscience 2009; 161:1082-90. [PMID: 19376196 DOI: 10.1016/j.neuroscience.2009.04.031] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 04/09/2009] [Accepted: 04/10/2009] [Indexed: 12/21/2022]
Abstract
The substantia nigra pars compacta (SNpc) is a compact brain structure that contains a variable distribution of cells in both medial to lateral and rostral to caudal dimensions. The SNpc is the primary brain structure affected in Parkinson's disease, where loss of dopaminergic neurons is one of the major hallmarks of the disorder. Neurotoxic and genetic models of Parkinson's disease, as well as mechanisms to treat this disorder, are modeled in the mouse. To accurately assess the validity of a model, one needs to be assured that the method(s) of analysis is accurate. Here, we determined the total number of dopaminergic neurons in the SNpc of the C57BL/6J mouse by serial reconstruction then compared that value to estimates derived using model-based stereology and design-based stereology. Serial reconstruction of the SNpc revealed the total number of SNpc dopaminergic neurons to be 8305+/-540 (+/-SEM). We compared this empirically derived neuron number to model based and design-based stereological estimates. We found that model based estimates gave a value of 8002+/-91 (+/-SEM) while design-based estimates were 8716+/-338 (+/-SEM). Statistical analysis showed no significant difference between estimates generated using model- or design-based stereological methods compared to empirically-derived counts using serial reconstruction.
Collapse
Affiliation(s)
- Z C Baquet
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl., Memphis, TN 38105-3678, USA
| | | | | | | |
Collapse
|