151
|
Tricoire L, Pelkey KA, Daw MI, Sousa VH, Miyoshi G, Jeffries B, Cauli B, Fishell G, McBain CJ. Common origins of hippocampal Ivy and nitric oxide synthase expressing neurogliaform cells. J Neurosci 2010; 30:2165-76. [PMID: 20147544 PMCID: PMC2825142 DOI: 10.1523/jneurosci.5123-09.2010] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 11/30/2009] [Accepted: 12/24/2009] [Indexed: 12/27/2022] Open
Abstract
GABAergic interneurons critically regulate cortical computation through exquisite spatiotemporal control over excitatory networks. Precision of this inhibitory control requires a remarkable diversity within interneuron populations that is largely specified during embryogenesis. Although interneurons expressing the neuronal isoform of nitric oxide synthase (nNOS) constitute the largest hippocampal interneuron cohort their origin and specification remain unknown. Thus, as neurogliaform cells (NGC) and Ivy cells (IvC) represent the main nNOS(+) interneurons, we investigated their developmental origins. Although considered distinct interneuron subtypes, NGCs and IvCs exhibited similar neurochemical and electrophysiological signatures, including NPY expression and late spiking. Moreover, lineage analyses, including loss-of-function experiments and inducible fate-mapping, indicated that nNOS(+) IvCs and NGCs are both derived from medial ganglionic eminence (MGE) progenitors under control of the transcription factor Nkx2-1. Surprisingly, a subset of NGCs lacking nNOS arises from caudal ganglionic eminence (CGE) progenitors. Thus, while nNOS(+) NGCs and IvCs arise from MGE progenitors, a CGE origin distinguishes a discrete population of nNOS(-) NGCs.
Collapse
Affiliation(s)
- Ludovic Tricoire
- Laboratory of Cellular and Synaptic Neurophysiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Kenneth A. Pelkey
- Laboratory of Cellular and Synaptic Neurophysiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Michael I. Daw
- Laboratory of Cellular and Synaptic Neurophysiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Vitor H. Sousa
- Smilow Neuroscience Program and the Department of Cell Biology, New York University, New York, New York 10016, and
| | - Goichi Miyoshi
- Smilow Neuroscience Program and the Department of Cell Biology, New York University, New York, New York 10016, and
| | - Brian Jeffries
- Laboratory of Cellular and Synaptic Neurophysiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Bruno Cauli
- Laboratoire de Neurobiologie des Processus Adaptatifs, Université Pierre et Marie Curie, CNRS UMR 7102, 75005 Paris, France
| | - Gord Fishell
- Smilow Neuroscience Program and the Department of Cell Biology, New York University, New York, New York 10016, and
| | - Chris J. McBain
- Laboratory of Cellular and Synaptic Neurophysiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
152
|
Valiente M, Marín O. Neuronal migration mechanisms in development and disease. Curr Opin Neurobiol 2010; 20:68-78. [DOI: 10.1016/j.conb.2009.12.003] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Revised: 12/01/2009] [Accepted: 12/03/2009] [Indexed: 12/18/2022]
|
153
|
Ceci ML, López-Mascaraque L, de Carlos JA. The influence of the environment on Cajal-Retzius cell migration. ACTA ACUST UNITED AC 2010; 20:2348-60. [PMID: 20100897 DOI: 10.1093/cercor/bhp305] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
During cerebral cortex development, different cell populations migrate tangentially through the preplate, traveling from their site of origin toward their final positions. One of the earliest populations formed, the Cajal-Retzius (C-R) cells, is mainly generated in different cortical hem (CH) domains, and they migrate along established and parallel routes to cover the whole cortical mantle. In this study, we present evidence that the phenotype of -Retzius cells, as well as some of their migratory characteristics, is specified in the area where the cells are generated. Nevertheless, when implanted ectopically, these cells can follow new migratory routes, indicating that locally provided genetic cues along the migratory path nonautonomously influence the position of these cells emanating from different portions of the CH. This was witnessed by performing CH implants of tissue expressing fluorescent tracers in live whole embryos. In the same way, tracer injections into the hem of Small eye mutant mice were particularly informative since the lack of Pax6 affects some guidance factors in the migratory environment. As a result, in these animals, the C-R cell population is disorganized, and it forms 1 day late, showing certain differences in gene expression that might help explain these disruptions.
Collapse
Affiliation(s)
- María Laura Ceci
- Instituto Cajal Consejo Superior de Investigaciones Científicas, Madrid 28002, Spain
| | | | | |
Collapse
|
154
|
Siegenthaler JA, Ashique AM, Zarbalis K, Patterson KP, Hecht JH, Kane MA, Folias AE, Choe Y, May SR, Kume T, Napoli JL, Peterson AS, Pleasure SJ. Retinoic acid from the meninges regulates cortical neuron generation. Cell 2009; 139:597-609. [PMID: 19879845 DOI: 10.1016/j.cell.2009.10.004] [Citation(s) in RCA: 323] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2008] [Revised: 07/10/2009] [Accepted: 09/01/2009] [Indexed: 12/18/2022]
Abstract
Extrinsic signals controlling generation of neocortical neurons during embryonic life have been difficult to identify. In this study we demonstrate that the dorsal forebrain meninges communicate with the adjacent radial glial endfeet and influence cortical development. We took advantage of Foxc1 mutant mice with defects in forebrain meningeal formation. Foxc1 dosage and loss of meninges correlated with a dramatic reduction in both neuron and intermediate progenitor production and elongation of the neuroepithelium. Several types of experiments demonstrate that retinoic acid (RA) is the key component of this secreted activity. In addition, Rdh10- and Raldh2-expressing cells in the dorsal meninges were either reduced or absent in the Foxc1 mutants, and Rdh10 mutants had a cortical phenotype similar to the Foxc1 null mutants. Lastly, in utero RA treatment rescued the cortical phenotype in Foxc1 mutants. These results establish RA as a potent, meningeal-derived cue required for successful corticogenesis.
Collapse
Affiliation(s)
- Julie A Siegenthaler
- Department of Neurology, Institute for Regenerative Medicine, University of California San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Kolk SM, Gunput RAF, Tran TS, van den Heuvel DMA, Prasad AA, Hellemons AJCGM, Adolfs Y, Ginty DD, Kolodkin AL, Burbach JPH, Smidt MP, Pasterkamp RJ. Semaphorin 3F is a bifunctional guidance cue for dopaminergic axons and controls their fasciculation, channeling, rostral growth, and intracortical targeting. J Neurosci 2009; 29:12542-57. [PMID: 19812329 PMCID: PMC3097132 DOI: 10.1523/jneurosci.2521-09.2009] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Revised: 08/10/2009] [Accepted: 09/01/2009] [Indexed: 01/22/2023] Open
Abstract
Dopaminergic neurons in the mesodiencephalon (mdDA neurons) make precise synaptic connections with targets in the forebrain via the mesostriatal, mesolimbic, and mesoprefrontal pathways. Because of the functional importance of these remarkably complex ascending axon pathways and their implication in human disease, the mechanisms underlying the development of these connections are of considerable interest. Despite extensive in vitro studies, the molecular determinants that ensure the perfect formation of these pathways in vivo remain mostly unknown. Here, we determine the embryonic origin and ontogeny of the mouse mesoprefrontal pathway and use these data to reveal an unexpected requirement for semaphorin 3F (Sema3F) and its receptor neuropilin-2 (Npn-2) during mdDA pathway development using tissue culture approaches and analysis of sema3F(-/-), npn-2(-/-), and npn-2(-/-);TH-Cre mice. We show that Sema3F is a bifunctional guidance cue for mdDA axons, some of which have the remarkable ability to regulate their responsiveness to Sema3F as they develop. During early developmental stages, Sema3F chemorepulsion controls previously uncharacterized aspects of mdDA pathway development through both Npn-2-dependent (axon fasciculation and channeling) and Npn-2-independent (rostral growth) mechanisms. Later on, chemoattraction mediated by Sema3F and Npn-2 is required to orient mdDA axon projections in the cortical plate of the medial prefrontal cortex. This latter finding demonstrates that regulation of axon orientation in the target field occurs by chemoattractive mechanisms, and this is likely to also apply to other neural systems. In all, this study provides a framework for additional dissection of the molecular basis of mdDA pathway development and disease.
Collapse
Affiliation(s)
- Sharon M. Kolk
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands, and
| | - Rou-Afza F. Gunput
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands, and
| | - Tracy S. Tran
- The Solomon H. Snyder Department of Neuroscience and Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Dianne M. A. van den Heuvel
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands, and
| | - Asheeta A. Prasad
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands, and
| | - Anita J. C. G. M. Hellemons
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands, and
| | - Youri Adolfs
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands, and
| | - David D. Ginty
- The Solomon H. Snyder Department of Neuroscience and Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Alex L. Kolodkin
- The Solomon H. Snyder Department of Neuroscience and Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - J. Peter H. Burbach
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands, and
| | - Marten P. Smidt
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands, and
| | - R. Jeroen Pasterkamp
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands, and
| |
Collapse
|
156
|
Colasante G, Sessa A, Crispi S, Calogero R, Mansouri A, Collombat P, Broccoli V. Arx acts as a regional key selector gene in the ventral telencephalon mainly through its transcriptional repression activity. Dev Biol 2009; 334:59-71. [PMID: 19627984 DOI: 10.1016/j.ydbio.2009.07.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 05/28/2009] [Accepted: 07/06/2009] [Indexed: 12/17/2022]
Abstract
The homeobox-containing gene Arx is expressed during ventral telencephalon development and required for correct GABAergic interneuron tangential migration from the ganglionic eminences to the olfactory bulbs, cerebral cortex and striatum. Its human ortholog is associated with a variety of neurological clinical manifestations whose symptoms are compatible with the loss of cortical interneurons and altered basal ganglia-related activities. Herein, we report the identification of a number of genes whose expression is consistently altered in Arx mutant ganglionic eminences. Our analyses revealed a striking ectopic expression in the ganglionic eminences of several of these genes normally at most marginally expressed in the ventral telencephalon. Among them, Ebf3 was functionally analyzed. Thus, its ectopic expression in ventral telencephalon was found to prevent neuronal tangential migration. Further, we showed that Arx is sufficient to repress Ebf3 endogenous expression and that its silencing in Arx mutant tissues partially rescues tangential cell movement. Together, these data provide new insights into the molecular pathways regulated by Arx during telencephalon development.
Collapse
Affiliation(s)
- Gaia Colasante
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
157
|
Desfeux A, El Ghazi F, Jégou S, Legros H, Marret S, Laudenbach V, Gonzalez BJ. Dual effect of glutamate on GABAergic interneuron survival during cerebral cortex development in mice neonates. Cereb Cortex 2009; 20:1092-108. [PMID: 19759125 DOI: 10.1093/cercor/bhp181] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In term and preterm neonates, massive glutamate release can lead to excitotoxic white-matter and cortical lesions. Because of its high permeability toward calcium, the N-methyl-D-aspartic acid (NMDA) receptor is thought to play an important role in excitotoxic lesions and NMDA antagonists therefore hold promise for neuroprotection. We found that, in neonatal mouse cortex, a given NMDA concentration exerted either excitotoxic or antiapoptotic effects depending on the cortical layers. In layer VI, NMDA led to excitotoxicity, sustained calcium mobilization, and necrosis of Gad67GFP neurons. In the immature layers II-IV, NMDA decreased apoptosis and induced transient calcium mobilization. The NMDA antagonist MK801 acted as a potent caspase-3 activator in immature layers II-IV and affected gamma aminobutyric acid (GABA)ergic interneurons. The apoptotic effect of MK801-induced BAX expression, mitochondrial potential collapse and caspase-9 activation. In vivo Bax small interfering ribonucleic acid and a caspase-9 inhibitor abrogated MK801-induced apoptosis and pyknotic nucleus formation. Ketamine, an anesthetic with NMDA antagonist properties, mimicked the apoptotic effects of MK801. These data indicate a dual effect of glutamate on survival of immature and mature GABAergic neurons and suggest that ketamine may induce apoptosis of immature GABAergic neurons.
Collapse
Affiliation(s)
- Arnaud Desfeux
- EA NeoVasc 4309, Laboratory of Microvascular Endothelium and Neonate Brain Lesions, Rouen Institute for Biomedical Research, European Institute for Peptide Research (IFR 23) University of Rouen, 76183 Rouen, France
| | | | | | | | | | | | | |
Collapse
|
158
|
Batista-Brito R, Fishell G. The developmental integration of cortical interneurons into a functional network. Curr Top Dev Biol 2009; 87:81-118. [PMID: 19427517 DOI: 10.1016/s0070-2153(09)01203-4] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The central goal of this manuscript is to survey our present knowledge of how cortical interneuron subtypes are generated. To achieve this, we will first define what is meant by subtype diversity. To this end, we begin by considering the mature properties that differentiate between the different populations of cortical interneurons. This requires us to address the difficulties involved in determining which characteristics allow particular interneurons to be assigned to distinct subclasses. Having grappled with this thorny issue, we will then proceed to review the progressive events in development involved in the generation of interneuron diversity. Starting with their origin and specification within the subpallium, we will follow them up through the first postnatal weeks during their integration into a functional network. Finally, we will conclude by calling the readers attention to the devastating consequences that result from developmental failures in the formation of inhibitory circuits within the cortex.
Collapse
|
159
|
Molecular regulation of neuronal migration during neocortical development. Mol Cell Neurosci 2009; 42:11-22. [PMID: 19523518 DOI: 10.1016/j.mcn.2009.06.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 06/03/2009] [Indexed: 11/21/2022] Open
Abstract
Neocortex, a distinct six-layered neural structure, is one of the most exquisite nerve tissues in the human body. Proper assembly of neocortex requires precise regulation of neuronal migration and abnormalities can result in severe neurological diseases. Three major types of neuronal migration have been implicated in corticogenesis: radial migration of excitatory neuron precursors and tangential migration of interneurons as well as Cajal-Retzius cells. In the past several years, significant progress has been made in understanding how these parallel events are regulated and coordinated during corticogenesis. New insights have been gained into regulation of radial neuron migration by the well-known Reelin signal. New pathways have also been identified that regulate radial as well as tangential migration. Equally important, better understandings have been obtained on the cellular and molecular mechanics of cell migration by both projection neurons and interneurons. These findings have not only enhanced our understanding of normal neuron migration but also revealed insights into the etiologies of several neurological diseases where these processes go awry.
Collapse
|
160
|
Zhu Y, Matsumoto T, Mikami S, Nagasawa T, Murakami F. SDF1/CXCR4 signalling regulates two distinct processes of precerebellar neuronal migration and its depletion leads to abnormal pontine nuclei formation. Development 2009; 136:1919-28. [DOI: 10.1242/dev.032276] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The development of mossy-fibre projecting precerebellar neurons (PCN)presents a classical example of tangential neuronal migration. PCN migrate tangentially along marginal streams beneath the pial surface from the lower rhombic lip to specific locations in the hindbrain, where they form precerebellar nuclei. Among them, the pontine neurons follow a stereotypic anteroventral-directed pathway to form the pontine nuclei in the pons. The guidance mechanisms that determine the marginal migration of PCN and the anterior migration of pontine neurons are poorly understood. Here, we report that a chemokine SDF1 (also known as CXCL12) derived from the meningeal tissue regulates the migratory pathways of PCN. PCN are chemoattracted by the meningeal tissue, an effect that is mimicked by an SDF1 source. Analysis of knockout mice for the Sdf1 receptor Cxcr4 shows that both the marginal migration of PCN and the anterior migration of pontine neurons are disrupted. We provide further evidence that SDF1/CXCR4 signalling regulates these two processes cell-autonomously. As a result of disrupted neuronal migration, pontine nuclei formation was highly abnormal, with the presence of multiple ectopic pontine clusters posteriorly. The ectopic pontine clusters led to ectopic collateral branch formation from the corticospinal tract. Our results together demonstrate crucial roles for SDF1/CXCR4 in multiple aspects of PCN migration and highlight the deleterious consequence of derailed migration on proper nuclei formation. Furthermore, we provide the first in vivo evidence that pontine neurons themselves induce collateral branching from the corticospinal axons.
Collapse
Affiliation(s)
- Yan Zhu
- Graduate School of Frontier Biosciences, Osaka University, Yamadaoka 1-3,Suita, Osaka 565-0871, Japan
| | - Tomoko Matsumoto
- Graduate School of Frontier Biosciences, Osaka University, Yamadaoka 1-3,Suita, Osaka 565-0871, Japan
| | - Sakae Mikami
- Department of Medical Systems Control, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takashi Nagasawa
- Department of Medical Systems Control, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Fujio Murakami
- Graduate School of Frontier Biosciences, Osaka University, Yamadaoka 1-3,Suita, Osaka 565-0871, Japan
| |
Collapse
|
161
|
Chédotal A, Rijli FM. Transcriptional regulation of tangential neuronal migration in the developing forebrain. Curr Opin Neurobiol 2009; 19:139-45. [PMID: 19428236 DOI: 10.1016/j.conb.2009.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 04/18/2009] [Accepted: 04/20/2009] [Indexed: 12/19/2022]
Abstract
In the developing brain, the tangential mode of migration appears as an efficient strategy for newly generated neurons to reach destinations that are far away from their site of origin, as opposed to local migration along radial glia process. The ganglionic eminence, in the vertebrate subpallium, is the main source of tangentially migrating neurons in the forebrain. However, little is known about the transcriptional control of such long-distance tangential migrations. Here, we review recent findings showing that homeodomain (HD) transcription factors (TFs) regulate the tangential migration of telencephalic neurons through the expression of several downstream targets including other TFs, axon guidance molecules, and cytoskeletal components. This molecular mechanism also seems to apply to tangentially migrating neurons in other parts of the brain.
Collapse
Affiliation(s)
- Alain Chédotal
- INSERM UMRS_968, Institut de la Vision, Department of Development, 17 rue Moreau, 75012 Paris, France
| | | |
Collapse
|
162
|
Netrin-1-alpha3beta1 integrin interactions regulate the migration of interneurons through the cortical marginal zone. Proc Natl Acad Sci U S A 2009; 106:7595-600. [PMID: 19383784 DOI: 10.1073/pnas.0811343106] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Cortical GABAergic interneurons, most of which originate in the ganglionic eminences, take distinct tangential migratory trajectories into the developing cerebral cortex. However, the ligand-receptor systems that modulate the tangential migration of distinct groups of interneurons into the emerging cerebral wall remain unclear. Here, we show that netrin-1, a diffusible guidance cue expressed along the migratory routes traversed by GABAergic interneurons, interacts with alpha3beta1 integrin to promote interneuronal migration. In vivo analysis of interneuron-specific alpha3beta1 integrin, netrin-1-deficient mice (alpha3(lox/-)Dlx5/6-CIE, netrin-1(-/-)) reveals specific deficits in the patterns of interneuronal migration along the top of the developing cortical plate, resulting in aberrant interneuronal positioning throughout the cerebral cortex and hippocampus of conditional alpha3(lox/-)Dlx5/6-CIE, netrin-1(-/-) mice. These results indicate that specific guidance mechanisms, such as netrin-1-alpha3beta1 integrin interactions, modulate distinct routes of interneuronal migration and the consequent positioning of groups of cortical interneurons in the developing cerebral cortex.
Collapse
|
163
|
PAPE JR, BERTRAND SS, LAFON P, ODESSA MF, CHAIGNIAU M, STILES JK, GARRET M. Expression of GABA(A) receptor alpha3-, theta-, and epsilon-subunit mRNAs during rat CNS development and immunolocalization of the epsilon subunit in developing postnatal spinal cord. Neuroscience 2009; 160:85-96. [PMID: 19249336 PMCID: PMC2857689 DOI: 10.1016/j.neuroscience.2009.02.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 02/03/2009] [Accepted: 02/19/2009] [Indexed: 12/13/2022]
Abstract
Ionotropic GABA(A) receptors are heteromeric structures composed of a combination of five from at least 16 different subunits. Subunit genes are expressed in distinct cell types at specific times during development. The most abundant native GABA(A) receptors consist of alpha1-, beta2-, and gamma2-subunits that are co-expressed in numerous brain areas. alpha3-, theta-, And epsilon-subunits are clustered on the X chromosome and show striking overlapping expression patterns throughout the adult rat brain. To establish whether these subunits are temporally and spatially co-expressed, we used in situ hybridization to analyze their expression throughout rat development from embryonic stage E14 to postnatal stage P12. Each transcript exhibited a unique or a shared regional and temporal developmental expression profile. The thalamic expression pattern evolved from a restricted expression of epsilon and theta transcripts before birth, to a theta and alpha3 expression at birth, and finally to a grouped epsilon, theta and alpha3 expression postpartum. However, strong similarities occurred, such as a grouped expression of the three subunits within the hypothalamus, tegmentum and pontine nuclei throughout the developmental process. At early stages of development (E17), epsilon and theta appeared to have a greater spatial distribution before the dominance of the alpha3 subunit transcript around birth. We also revealed expression of alpha3, theta, and epsilon in the developing spinal cord and identified neurons that express epsilon in the postnatal dorsal horn, intermediolateral column and motoneurons. Our findings suggest that various combinations of alpha3-, theta- and epsilon-subunits may be assembled at a regional and developmental level in the brain.
Collapse
Affiliation(s)
- J.-R. PAPE
- Université de Bordeaux, CNRS, UMR 5228, France
| | - S. S. BERTRAND
- Université de Bordeaux, CNRS, UMR 5227, 146 Rue Léo Saignat, 33076 France
| | - P. LAFON
- Université de Bordeaux, CNRS, UMR 5228, France
| | - M.-F. ODESSA
- Université de Bordeaux, CNRS, UMR 5227, 146 Rue Léo Saignat, 33076 France
| | | | - J. K. STILES
- Department of Microbiology, Biochemistry and Immunology, More-house School of Medicine, Atlanta, GA, USA
| | - M. GARRET
- Université de Bordeaux, CNRS, UMR 5227, 146 Rue Léo Saignat, 33076 France
| |
Collapse
|
164
|
Barber M, Di Meglio T, Andrews WD, Hernández-Miranda LR, Murakami F, Chédotal A, Parnavelas JG. The role of Robo3 in the development of cortical interneurons. ACTA ACUST UNITED AC 2009; 19 Suppl 1:i22-31. [PMID: 19366869 PMCID: PMC2693537 DOI: 10.1093/cercor/bhp041] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A number of studies in recent years have shown that members of the Roundabout (Robo) receptor family, Robo1 and Robo2, play significant roles in the formation of axonal tracks in the developing forebrain and in the migration and morphological differentiation of cortical interneurons. Here, we investigated the expression and function of Robo3 in the developing cortex. We found that this receptor is strongly expressed in the preplate layer and cortical hem of the early cortex where it colocalizes with markers of Cajal–Retzius cells and interneurons. Analysis of Robo3 mutant mice at early (embryonic day [E] 13.5) and late (E18.5) stages of corticogenesis revealed no significant change in the number of interneurons, but a change in their morphology at E13.5. However, preliminary analysis on a small number of mice that lacked all 3 Robo receptors indicated a marked reduction in the number of cortical interneurons, but only a limited effect on their morphology. These observations and the results of other recent studies suggest a complex interplay between the 3 Robo receptors in regulating the number, migration and morphological differentiation of cortical interneurons.
Collapse
Affiliation(s)
- Melissa Barber
- Department of Cell and Developmental Biology, University College London, London, UK
| | | | | | | | | | | | | |
Collapse
|
165
|
Li G, Kataoka H, Coughlin SR, Pleasure SJ. Identification of a transient subpial neurogenic zone in the developing dentate gyrus and its regulation by Cxcl12 and reelin signaling. Development 2009; 136:327-35. [PMID: 19103804 DOI: 10.1242/dev.025742] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
One striking feature of dentate gyrus development, distinct from the other cortical structures, is the relocation of neural precursors from the ventricular zone to the forming dentate pole to produce a lifelong neurogenic subgranular zone (SGZ). In this study, we demonstrate that dentate progenitors first dwell for up to 1 week in a previously unrecognized neurogenic zone intimately associated with the pial meningeal surface lining the outer edge of the forming dentate. This zone also serves as the organizational matrix for the initial formation of the dentate glial scaffolding. Timely clearance of neural precursors from their transient location depends on reelin, whereas initial formation of this transient stem cell niche requires Cxcl12-Cxcr4 signaling. The final settlement of the neural precursors at the subgranular zone relies on a pertussis toxin-sensitive pathway independent of Cxcl12-Cxcr4 signaling. Furthermore, genetic fate-mapping analysis suggests that subpial precursors contribute to the SGZ formation. These results demonstrate that the relocation of neural precursors in the dentate gyrus consists of discrete steps regulated by multiple pathways.
Collapse
Affiliation(s)
- Guangnan Li
- Department of Neurology, UCSF School of Medicine, San Francisco, CA 94158, USA.
| | | | | | | |
Collapse
|
166
|
Abstract
The great number of species of teleosts permits highly specialized forms to evolve to occupy particular niches. This diversity allows for extreme variations in brain structure according to particular sensory or motor adaptations. In the case of the taste system, goldfish (Carassius auratus L., 1758) and some carps have evolved a specialized intraoral food-sorting apparatus along with corresponding specializations of gustatory centers in the brainstem. A comparison of circuitry within the complex vagal lobe of goldfish, and of the simpler gustatory lobes in catfish (Ictalurus punctatus Rafinesque, 1818) shows numerous similarities in organization and neurotransmitters. Double labeling studies using horseradish peroxidase and biotinylated dextran amine in catfish shows a direct projection from the vagal lobe to the motoneurons of nucleus ambiguous which innervate oropharyngeal musculature. Therefore, a three neuron reflex arc connects gustatory input to motor output. In the vagal lobe of goldfish, a similar three neuron arc can be identified: from primary gustatory afferent, to vagal lobe interneuron, thence to dendrites of the vagal motoneurons that innervate the pharyngeal muscles. Therefore, despite large differences in the gross appearance of the vagal gustatory systems in the brains of catfish and goldfish, the essential connectivity and circuitry is similar. This suggests that evolutionary change in the central nervous system largely proceeds by rearrangement and elaboration of existing systems, rather than by addition of new structures or circuits.
Collapse
Affiliation(s)
- Thomas E Finger
- Department of Cell and Developmental Biology, University of Colorado Denver, Aurora, CO, USA.
| |
Collapse
|
167
|
Martini FJ, Valiente M, López Bendito G, Szabó G, Moya F, Valdeolmillos M, Marín O. Biased selection of leading process branches mediates chemotaxis during tangential neuronal migration. Development 2009; 136:41-50. [PMID: 19060332 DOI: 10.1242/dev.025502] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Current models of chemotaxis during neuronal migration and axon guidance propose that directional sensing relies on growth cone dynamics. According to this view, migrating neurons and growing axons are guided to their correct targets by steering the growth cone in response to attractive and repulsive cues. Here, we have performed a detailed analysis of the dynamic behavior of individual neurons migrating tangentially in telencephalic slices using high-resolution time-lapse videomicroscopy. We found that cortical interneurons consistently display branched leading processes as part of their migratory cycle, a feature that seems to be common to many other populations of GABAergic neurons in the brain and spinal cord. Analysis of the migratory behavior of individual cells suggests that interneurons respond to chemoattractant signals by generating new leading process branches that are better aligned with the source of the gradient, and not by reorienting previously existing branches. Moreover, experimental evidence revealed that guidance cues influence the angle at which new branches emerge. This model is further supported by pharmacological experiments in which inhibition of branching blocked chemotaxis, suggesting that this process is an essential component of the mechanism controlling directional guidance. These results reveal a novel guidance mechanism during neuronal migration that might be extensively used in brain development.
Collapse
Affiliation(s)
- Francisco J Martini
- Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain
| | | | | | | | | | | | | |
Collapse
|
168
|
Random walk behavior of migrating cortical interneurons in the marginal zone: time-lapse analysis in flat-mount cortex. J Neurosci 2009; 29:1300-11. [PMID: 19193877 DOI: 10.1523/jneurosci.5446-08.2009] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Migrating neurons are thought to travel from their origin near the ventricle to distant territories along stereotypical pathways by detecting environmental cues in the extracellular milieu. Here, we report a novel mode of neuronal migration that challenges this view. We performed long-term, time-lapse imaging of medial ganglionic eminence (MGE)-derived cortical interneurons tangentially migrating in the marginal zone (MZ) in flat-mount cortices. We find that they exhibit a diverse range of behaviors in terms of the rate and direction of migration. Curiously, a predominant population of these neurons repeatedly changes its direction of migration in an unpredictable manner. Trajectories of migration vary from one neuron to another. The migration of individual cells lasts for long periods, sometimes up to 2 d. Theoretical analyses reveal that these behaviors can be modeled by a random walk. Furthermore, MZ cells migrate from the cortical subventricular zone to the cortical plate, transiently accumulating in the MZ. These results suggest that MGE-derived cortical interneurons, once arriving at the MZ, are released from regulation by guidance cues and initiate random walk movement, which potentially contributes to their dispersion throughout the cortex.
Collapse
|
169
|
Rakić S, Yanagawa Y, Obata K, Faux C, Parnavelas JG, Nikolić M. Cortical interneurons require p35/Cdk5 for their migration and laminar organization. ACTA ACUST UNITED AC 2008; 19:1857-69. [PMID: 19037081 DOI: 10.1093/cercor/bhn213] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Projection neurons and interneurons populate the cerebral cortex in a layer-specific manner. Here, we studied the role of Cyclin-dependent kinase 5 (Cdk5) and its activator p35 in cortical interneuron migration and disposition in the cortex. We found that mice lacking p35 (p35(-/-)) show accumulation of interneurons in the upper part of the cortex. We also observed an inverted distribution of both early- and late-born interneurons, with the former showing a preference for the upper and the latter for the lower aspects of the cortex. We investigated the causes of the altered laminar organization of interneurons in p35(-/-) mice and found a cell-autonomous delay in their tangential migration that may prevent them from reaching correct positions. Incomplete splitting of the preplate in p35(-/-) mice, which causes accumulation of cells in the superficial layer and defects in the "inward" and "outward" components of their radial movement, may also account for the altered final arrangement of interneurons. We, therefore, propose that p35/Cdk5 plays a key role in guiding cortical interneurons to their final positions in the cortex.
Collapse
Affiliation(s)
- Sonja Rakić
- Department of Anatomy and Developmental Biology, University College London, London WC1E 6BT, UK
| | | | | | | | | | | |
Collapse
|
170
|
Schönemeier B, Kolodziej A, Schulz S, Jacobs S, Hoellt V, Stumm R. Regional and cellular localization of the CXCl12/SDF-1 chemokine receptor CXCR7 in the developing and adult rat brain. J Comp Neurol 2008; 510:207-20. [PMID: 18615560 DOI: 10.1002/cne.21780] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The chemokine stromal cell-derived factor-1 (SDF-1) regulates neuronal development via the chemokine receptor CXCR4. In the adult brain the SDF-1/CXCR4 system was implicated in neurogenesis, neuromodulation, brain inflammation, tumor growth, and HIV encephalopathy. Until the recent identification of RDC1/CXCR7 as the second SDF-1 receptor, CXCR4 was considered to be the only receptor for SDF-1. Here we provide the first map of CXCR7 mRNA expression in the embryonic and adult rat brain. At embryonic stages, CXCR7 and CXCR4 were codistributed in the germinative zone of the ganglionic eminences, caudate putamen, and along the routes of GABAergic precursors migrating toward the cortex. In the cortex, CXCR7 was identified in GABAergic precursors and in some reelin-expressing Cajal-Retzius cells. Unlike CXCR4, CXCR7 was abundant in neurons forming the cortical plate and sparse in the developing dentate gyrus and cerebellar external germinal layer. In the adult brain, CXCR7 was expressed by blood vessels, pyramidal cells in CA3, and mature dentate gyrus granule cells, which is reminiscent of the SDF-1 pattern. CXCR7 and CXCR4 overlapped in the wall of the four ventricles. Further neuronal structures expressing CXCR7 comprised the olfactory bulb, accumbens shell, supraoptic and ventromedial hypothalamic nuclei, medial thalamus, and brain stem motor nuclei. Also, GLAST-expressing astrocytes showed signals for CXCR7. Thus, CXCR4 and CXCR7 may cooperate or act independently in SDF-1-dependent neuronal development. In mature neurons and blood vessels CXCR7 appears to be the preponderant SDF-1-receptor.
Collapse
Affiliation(s)
- Bastian Schönemeier
- Institute of Pharmacology and Toxicology, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | | | | | | | | | | |
Collapse
|
171
|
Fulp CT, Cho G, Marsh ED, Nasrallah IM, Labosky PA, Golden JA. Identification of Arx transcriptional targets in the developing basal forebrain. Hum Mol Genet 2008; 17:3740-60. [PMID: 18799476 PMCID: PMC2581427 DOI: 10.1093/hmg/ddn271] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mutations in the aristaless-related homeobox (ARX) gene are associated with multiple neurologic disorders in humans. Studies in mice indicate Arx plays a role in neuronal progenitor proliferation and development of the cerebral cortex, thalamus, hippocampus, striatum, and olfactory bulbs. Specific defects associated with Arx loss of function include abnormal interneuron migration and subtype differentiation. How disruptions in ARX result in human disease and how loss of Arx in mice results in these phenotypes remains poorly understood. To gain insight into the biological functions of Arx, we performed a genome-wide expression screen to identify transcriptional changes within the subpallium in the absence of Arx. We have identified 84 genes whose expression was dysregulated in the absence of Arx. This population was enriched in genes involved in cell migration, axonal guidance, neurogenesis, and regulation of transcription and includes genes implicated in autism, epilepsy, and mental retardation; all features recognized in patients with ARX mutations. Additionally, we found Arx directly repressed three of the identified transcription factors: Lmo1, Ebf3 and Shox2. To further understand how the identified genes are involved in neural development, we used gene set enrichment algorithms to compare the Arx gene regulatory network (GRN) to the Dlx1/2 GRN and interneuron transcriptome. These analyses identified a subset of genes in the Arx GRN that are shared with that of the Dlx1/2 GRN and that are enriched in the interneuron transcriptome. These data indicate Arx plays multiple roles in forebrain development, both dependent and independent of Dlx1/2, and thus provides further insights into the understanding of the mechanisms underlying the pathology of mental retardation and epilepsy phenotypes resulting from ARX mutations.
Collapse
Affiliation(s)
- Carl T Fulp
- Neuroscience Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
172
|
Zhao Y, Flandin P, Long JE, Cuesta MD, Westphal H, Rubenstein JLR. Distinct molecular pathways for development of telencephalic interneuron subtypes revealed through analysis of Lhx6 mutants. J Comp Neurol 2008; 510:79-99. [PMID: 18613121 PMCID: PMC2547494 DOI: 10.1002/cne.21772] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Here we analyze the role of the Lhx6 lim-homeobox transcription factor in regulating the development of subsets of neocortical, hippocampal, and striatal interneurons. An Lhx6 loss-of-function allele, which expresses placental alkaline phosphatase (PLAP), allowed analysis of the development and fate of Lhx6-expressing interneurons in mice lacking this homeobox transcription factor. There are Lhx6+;Dlx+ and Lhx6-;Dlx+ subtypes of tangentially migrating interneurons. Most interneurons in Lhx6(PLAP/PLAP) mutants migrate to the cortex, although less efficiently, and exhibit defects in populating the marginal zone and superficial parts of the neocortical plate. By contrast, migration to superficial parts of the hippocampus is not seriously affected. Furthermore, whereas parvalbumin+ and somatostatin+ interneurons do not differentiate, NPY+ interneurons are present; we suggest that these NPY+ interneurons are derived from the Lhx6-;Dlx+ subtype. Striatal interneurons show deficits distinct from pallial interneurons, including a reduction in the NPY+ subtype. We provide evidence that Lhx6 mediates these effects through promoting expression of receptors that regulate interneuron migration (ErbB4, CXCR4, and CXCR7), and through promoting the expression of transcription factors either known (Arx) or implicated (bMaf, Cux2, and NPAS1) in controlling interneuron development.
Collapse
Affiliation(s)
- Yangu Zhao
- Laboratory of Mammalian Genes and Development, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
173
|
Dugas JC, Mandemakers W, Rogers M, Ibrahim A, Daneman R, Barres BA. A novel purification method for CNS projection neurons leads to the identification of brain vascular cells as a source of trophic support for corticospinal motor neurons. J Neurosci 2008; 28:8294-305. [PMID: 18701692 PMCID: PMC2567869 DOI: 10.1523/jneurosci.2010-08.2008] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 06/23/2008] [Accepted: 06/30/2008] [Indexed: 11/21/2022] Open
Abstract
One of the difficulties in studying cellular interactions in the CNS is the lack of effective methods to purify specific neuronal populations of interest. We report the development of a novel purification scheme, cholera toxin beta (CTB) immunopanning, in which a particular CNS neuron population is selectively labeled via retrograde axonal transport of the cell-surface epitope CTB, and then purified via immobilization with anti-CTB antibody. We have demonstrated the usefulness and versatility of this method by purifying both retinal ganglion cells and corticospinal motor neurons (CSMNs). Genomic expression analyses of purified CSMNs revealed that they express significant levels of many receptors for growth factors produced by brain endothelial cells; three of these factors, CXCL12, pleiotrophin, and IGF2 significantly enhanced purified CSMN survival, similar to previously characterized CSMN trophic factors BDNF and IGF1. In addition, endothelial cell conditioned medium significantly promoted CSMN neurite outgrowth. These findings demonstrate a useful method for the purification of several different types of CNS projection neurons, which in principle should work in many mammalian species, and provide evidence that endothelial-derived factors may represent an overlooked source of trophic support for neurons in the brain.
Collapse
Affiliation(s)
- Jason C Dugas
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305-5125,
| | | | | | | | | | | |
Collapse
|
174
|
van Vliet MH, Reyal F, Horlings HM, van de Vijver MJ, Reinders MJT, Wessels LFA. Pooling breast cancer datasets has a synergetic effect on classification performance and improves signature stability. BMC Genomics 2008; 9:375. [PMID: 18684329 PMCID: PMC2527336 DOI: 10.1186/1471-2164-9-375] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 08/06/2008] [Indexed: 12/16/2022] Open
Abstract
Background Michiels et al. (Lancet 2005; 365: 488–92) employed a resampling strategy to show that the genes identified as predictors of prognosis from resamplings of a single gene expression dataset are highly variable. The genes most frequently identified in the separate resamplings were put forward as a 'gold standard'. On a higher level, breast cancer datasets collected by different institutions can be considered as resamplings from the underlying breast cancer population. The limited overlap between published prognostic signatures confirms the trend of signature instability identified by the resampling strategy. Six breast cancer datasets, totaling 947 samples, all measured on the Affymetrix platform, are currently available. This provides a unique opportunity to employ a substantial dataset to investigate the effects of pooling datasets on classifier accuracy, signature stability and enrichment of functional categories. Results We show that the resampling strategy produces a suboptimal ranking of genes, which can not be considered to be a 'gold standard'. When pooling breast cancer datasets, we observed a synergetic effect on the classification performance in 73% of the cases. We also observe a significant positive correlation between the number of datasets that is pooled, the validation performance, the number of genes selected, and the enrichment of specific functional categories. In addition, we have evaluated the support for five explanations that have been postulated for the limited overlap of signatures. Conclusion The limited overlap of current signature genes can be attributed to small sample size. Pooling datasets results in more accurate classification and a convergence of signature genes. We therefore advocate the analysis of new data within the context of a compendium, rather than analysis in isolation.
Collapse
Affiliation(s)
- Martin H van Vliet
- Information and Communication Theory Group, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands.
| | | | | | | | | | | |
Collapse
|
175
|
Tiveron MC, Cremer H. CXCL12/CXCR4 signalling in neuronal cell migration. Curr Opin Neurobiol 2008; 18:237-44. [DOI: 10.1016/j.conb.2008.06.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 06/25/2008] [Indexed: 11/15/2022]
|
176
|
Abstract
A number of theories have been proposed to explain the etiopathogenesis of idiopathic sudden sensorineural hearing loss (ISSHL), including viral infection, vascular occlusion, breaks of labyrinthine membranes, immune-mediated mechanisms and abnormal cellular stress responses within the cochlea. In the present paper, we provide a critical review of the viral hypothesis of ISSHL. The evidence reviewed includes published reports of epidemiological and serological studies, clinical observations and results of antiviral therapy, morphological and histopathological studies, as well as results of animal experiments. The published evidence does not satisfy the majority of the Henle-Koch postulates for viral causation of an infectious disease. Possible explanations as to why these postulates remain unfulfilled are reviewed, and future studies that may provide more insight are described. We also discuss other mechanisms that have been postulated to explain ISSHL. Our review indicates that vascular occlusion, labyrinthine membrane breaks and immune-mediated mechanisms are unlikely to be common causes of ISSHL. Finally, we review our recently proposed theory that abnormal cellular stress responses within the cochlea may be responsible for ISSHL.
Collapse
Affiliation(s)
- Saumil N Merchant
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA.
| | | | | |
Collapse
|