151
|
S S S, Sthanam LK, Padinhateeri R, Inamdar MM, Sen S. Probing cellular mechanoadaptation using cell-substrate de-adhesion dynamics: experiments and model. PLoS One 2014; 9:e106915. [PMID: 25197799 PMCID: PMC4157833 DOI: 10.1371/journal.pone.0106915] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/01/2014] [Indexed: 11/19/2022] Open
Abstract
Physical properties of the extracellular matrix (ECM) are known to regulate cellular processes ranging from spreading to differentiation, with alterations in cell phenotype closely associated with changes in physical properties of cells themselves. When plated on substrates of varying stiffness, fibroblasts have been shown to exhibit stiffness matching property, wherein cell cortical stiffness increases in proportion to substrate stiffness up to 5 kPa, and subsequently saturates. Similar mechanoadaptation responses have also been observed in other cell types. Trypsin de-adhesion represents a simple experimental framework for probing the contractile mechanics of adherent cells, with de-adhesion timescales shown to scale inversely with cortical stiffness values. In this study, we combine experiments and computation in deciphering the influence of substrate properties in regulating de-adhesion dynamics of adherent cells. We first show that NIH 3T3 fibroblasts cultured on collagen-coated polyacrylamide hydrogels de-adhere faster on stiffer substrates. Using a simple computational model, we qualitatively show how substrate stiffness and cell-substrate bond breakage rate collectively influence de-adhesion timescales, and also obtain analytical expressions of de-adhesion timescales in certain regimes of the parameter space. Finally, by comparing stiffness-dependent experimental and computational de-adhesion responses, we show that faster de-adhesion on stiffer substrates arises due to force-dependent breakage of cell-matrix adhesions. In addition to illustrating the utility of employing trypsin de-adhesion as a biophysical tool for probing mechanoadaptation, our computational results highlight the collective interplay of substrate properties and bond breakage rate in setting de-adhesion timescales.
Collapse
Affiliation(s)
- Soumya S S
- Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Lakshmi Kavitha Sthanam
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Ranjith Padinhateeri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
- * E-mail: (RP); (MMI); (SS)
| | - Mandar M. Inamdar
- Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
- * E-mail: (RP); (MMI); (SS)
| | - Shamik Sen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
- * E-mail: (RP); (MMI); (SS)
| |
Collapse
|
152
|
van Oers RFM, Rens EG, LaValley DJ, Reinhart-King CA, Merks RMH. Mechanical cell-matrix feedback explains pairwise and collective endothelial cell behavior in vitro. PLoS Comput Biol 2014; 10:e1003774. [PMID: 25121971 PMCID: PMC4133044 DOI: 10.1371/journal.pcbi.1003774] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 06/20/2014] [Indexed: 12/14/2022] Open
Abstract
In vitro cultures of endothelial cells are a widely used model system of the collective behavior of endothelial cells during vasculogenesis and angiogenesis. When seeded in an extracellular matrix, endothelial cells can form blood vessel-like structures, including vascular networks and sprouts. Endothelial morphogenesis depends on a large number of chemical and mechanical factors, including the compliancy of the extracellular matrix, the available growth factors, the adhesion of cells to the extracellular matrix, cell-cell signaling, etc. Although various computational models have been proposed to explain the role of each of these biochemical and biomechanical effects, the understanding of the mechanisms underlying in vitro angiogenesis is still incomplete. Most explanations focus on predicting the whole vascular network or sprout from the underlying cell behavior, and do not check if the same model also correctly captures the intermediate scale: the pairwise cell-cell interactions or single cell responses to ECM mechanics. Here we show, using a hybrid cellular Potts and finite element computational model, that a single set of biologically plausible rules describing (a) the contractile forces that endothelial cells exert on the ECM, (b) the resulting strains in the extracellular matrix, and (c) the cellular response to the strains, suffices for reproducing the behavior of individual endothelial cells and the interactions of endothelial cell pairs in compliant matrices. With the same set of rules, the model also reproduces network formation from scattered cells, and sprouting from endothelial spheroids. Combining the present mechanical model with aspects of previously proposed mechanical and chemical models may lead to a more complete understanding of in vitro angiogenesis.
Collapse
Affiliation(s)
- René F. M. van Oers
- Life Sciences group, Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
- Netherlands Consortium for System Biology - Netherlands Institute for Systems Biology, Amsterdam, The Netherlands
| | - Elisabeth G. Rens
- Life Sciences group, Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
- Netherlands Consortium for System Biology - Netherlands Institute for Systems Biology, Amsterdam, The Netherlands
| | - Danielle J. LaValley
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America
| | - Cynthia A. Reinhart-King
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America
| | - Roeland M. H. Merks
- Life Sciences group, Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
- Netherlands Consortium for System Biology - Netherlands Institute for Systems Biology, Amsterdam, The Netherlands
- Mathematical Institute, Leiden University, Leiden, The Netherlands
| |
Collapse
|
153
|
Oakes PW, Gardel ML. Stressing the limits of focal adhesion mechanosensitivity. Curr Opin Cell Biol 2014; 30:68-73. [PMID: 24998185 DOI: 10.1016/j.ceb.2014.06.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 01/09/2023]
Abstract
Focal adhesion assembly and maturation often occurs concomitantly with changes in force generated within the cytoskeleton or extracellular matrix. To coordinate focal adhesion dynamics with force, it has been suggested that focal adhesion dynamics are mechanosensitive. This review discusses current understanding of the regulation of focal adhesion assembly and force transmission, and the limits to which we can consider focal adhesion plaques as mechanosensitive entities.
Collapse
Affiliation(s)
- Patrick W Oakes
- James Franck Institute, Institute for Biophysical Dynamics and Physics Department, University of Chicago, Chicago, IL, United States
| | - Margaret L Gardel
- James Franck Institute, Institute for Biophysical Dynamics and Physics Department, University of Chicago, Chicago, IL, United States.
| |
Collapse
|
154
|
Tang X, Tofangchi A, Anand SV, Saif TA. A novel cell traction force microscopy to study multi-cellular system. PLoS Comput Biol 2014; 10:e1003631. [PMID: 24901766 PMCID: PMC4046928 DOI: 10.1371/journal.pcbi.1003631] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 04/03/2014] [Indexed: 11/19/2022] Open
Abstract
Traction forces exerted by adherent cells on their microenvironment can mediate many critical cellular functions. Accurate quantification of these forces is essential for mechanistic understanding of mechanotransduction. However, most existing methods of quantifying cellular forces are limited to single cells in isolation, whereas most physiological processes are inherently multi-cellular in nature where cell-cell and cell-microenvironment interactions determine the emergent properties of cell clusters. In the present study, a robust finite-element-method-based cell traction force microscopy technique is developed to estimate the traction forces produced by multiple isolated cells as well as cell clusters on soft substrates. The method accounts for the finite thickness of the substrate. Hence, cell cluster size can be larger than substrate thickness. The method allows computing the traction field from the substrate displacements within the cells' and clusters' boundaries. The displacement data outside these boundaries are not necessary. The utility of the method is demonstrated by computing the traction generated by multiple monkey kidney fibroblasts (MKF) and human colon cancerous (HCT-8) cells in close proximity, as well as by large clusters. It is found that cells act as individual contractile groups within clusters for generating traction. There may be multiple of such groups in the cluster, or the entire cluster may behave a single group. Individual cells do not form dipoles, but serve as a conduit of force (transmission lines) over long distances in the cluster. The cell-cell force can be either tensile or compressive depending on the cell-microenvironment interactions.
Collapse
Affiliation(s)
- Xin Tang
- Department of Mechanical Science and Engineering (MechSE), College of Engineering, University of Illinois at Urbana-Champaign (UIUC), Urbana, Illinois, United States of America
| | - Alireza Tofangchi
- Department of Mechanical Science and Engineering (MechSE), College of Engineering, University of Illinois at Urbana-Champaign (UIUC), Urbana, Illinois, United States of America
| | - Sandeep V. Anand
- Department of Mechanical Science and Engineering (MechSE), College of Engineering, University of Illinois at Urbana-Champaign (UIUC), Urbana, Illinois, United States of America
| | - Taher A. Saif
- Department of Mechanical Science and Engineering (MechSE), College of Engineering, University of Illinois at Urbana-Champaign (UIUC), Urbana, Illinois, United States of America
- Micro and Nanotechnology Laboratory (MNTL), University of Illinois at Urbana-Champaign (UIUC), Urbana, Illinois, United States of America
| |
Collapse
|
155
|
Abstract
Cell migration is a fundamental process that occurs during embryo development. Classic studies using in vitro culture systems have been instrumental in dissecting the principles of cell motility and highlighting how cells make use of topographical features of the substrate, cell-cell contacts, and chemical and physical environmental signals to direct their locomotion. Here, we review the guidance principles of in vitro cell locomotion and examine how they control directed cell migration in vivo during development. We focus on developmental examples in which individual guidance mechanisms have been clearly dissected, and for which the interactions among guidance cues have been explored. We also discuss how the migratory behaviours elicited by guidance mechanisms generate the stereotypical patterns of migration that shape tissues in the developing embryo.
Collapse
Affiliation(s)
- Germán Reig
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences
- Biomedical Neuroscience Institute, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile
| | - Eduardo Pulgar
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences
- Biomedical Neuroscience Institute, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile
| | - Miguel L. Concha
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences
- Biomedical Neuroscience Institute, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile
| |
Collapse
|
156
|
Amado-Azevedo J, Valent ET, Van Nieuw Amerongen GP. Regulation of the endothelial barrier function: a filum granum of cellular forces, Rho-GTPase signaling and microenvironment. Cell Tissue Res 2014; 355:557-76. [PMID: 24633925 DOI: 10.1007/s00441-014-1828-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/24/2014] [Indexed: 12/20/2022]
Abstract
Although the endothelium is an extremely thin single-cell layer, it performs exceedingly well in preventing blood fluids from leaking into the surrounding tissues. However, specific pathological conditions can affect this cell layer, compromising the integrity of the barrier. Vascular leakage is a hallmark of many cardiovascular diseases and despite its medical importance, no specialized therapies are available to prevent it or reduce it. Small guanosine triphosphatases (GTPases) of the Rho family are known to be key regulators of various aspects of cell behavior and studies have shown that they can exert both positive and negative effects on endothelial barrier integrity. Moreover, extracellular matrix stiffness has now been implicated in the regulation of Rho-GTPase signaling, which has a direct impact on the integrity of endothelial junctions. However, knowledge about both the precise mechanism of this regulation and the individual contribution of the specific regulatory proteins remains fragmentary. In this review, we discuss recent findings concerning the balanced activities of Rho-GTPases and, in particular, aspects of the regulation of the endothelial barrier. We highlight the role of Rho-GTPases in the intimate relationships between biomechanical forces, microenvironmental influences and endothelial intercellular junctions, which are all interwoven in a beautiful filigree-like fashion.
Collapse
Affiliation(s)
- Joana Amado-Azevedo
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, Van den Boechorststraat 7, 1081BT, Amsterdam, The Netherlands
| | | | | |
Collapse
|
157
|
Czarnowski A, Papp S, Szaraz P, Opas M. Calreticulin affects cell adhesiveness through differential phosphorylation of insulin receptor substrate-1. Cell Mol Biol Lett 2014; 19:77-97. [PMID: 24470116 PMCID: PMC6275655 DOI: 10.2478/s11658-014-0181-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 01/20/2014] [Indexed: 11/21/2022] Open
Abstract
Cellular adhesion to the underlying substratum is regulated through numerous signaling pathways. It has been suggested that insulin receptor substrate 1 (IRS-1) is involved in some of these pathways, via association with and activation of transmembrane integrins. Calreticulin, as an important endoplasmic reticulum-resident, calcium-binding protein with a chaperone function, plays an obvious role in proteomic expression. Our previous work showed that calreticulin mediates cell adhesion not only by affecting protein expression but also by affecting the state of regulatory protein phosphorylation, such as that of c-src. Here, we demonstrate that calreticulin affects the abundance of IRS-1 such that the absence of calreticulin is paralleled by a decrease in IRS-1 levels and the unregulated overexpression of calreticulin is accompanied by an increase in IRS-1 levels. These changes in the abundance of calreticulin and IRS-1 are accompanied by changes in cell-substratum adhesiveness and phosphorylation, such that increases in the expression of calreticulin and IRS-1 are paralleled by an increase in focal contact-based cell-substratum adhesiveness, and a decrease in the expression of these proteins brings about a decrease in cell-substratum adhesiveness. Wild type and calreticulin-null mouse embryonic fibroblasts (MEFs) were cultured and the IRS-1 isoform profile was assessed. Differences in morphology and motility were also quantified. While no substantial differences in the speed of locomotion were found, the directionality of cell movement was greatly promoted by the presence of calreticulin. Calreticulin expression was also found to have a dramatic effect on the phosphorylation state of serine 636 of IRS-1, such that phosphorylation of IRS-1 on serine 636 increased radically in the absence of calreticulin. Most importantly, treatment of cells with the RhoA/ROCK inhibitor, Y-27632, which among its many effects also inhibited serine 636 phosphorylation of IRS-1, had profound effects on cell-substratum adhesion, in that it suppressed focal contacts, induced extensive close contacts, and increased the strength of adhesion. The latter effect, while counterintuitive, can be explained by the close contacts comprising labile bonds but in large numbers. In addition, the lability of bonds in close contacts would permit fast locomotion. An interesting and novel finding is that Y-27632 treatment of MEFs releases them from contact inhibition of locomotion, as evidenced by the invasion of a cell's underside by the thin lamellae and filopodia of a cell in close apposition.
Collapse
Affiliation(s)
- Arthur Czarnowski
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario Canada M5S 1A8
| | - Sylvia Papp
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario Canada M5S 1A8
| | - Peter Szaraz
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario Canada M5S 1A8
| | - Michal Opas
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario Canada M5S 1A8
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King’s College Circle, Medical Sciences Building, room 6326, Toronto, Ontario M5S 1A8 Canada
| |
Collapse
|
158
|
Vernerey FJ, Farsad M. A mathematical model of the coupled mechanisms of cell adhesion, contraction and spreading. J Math Biol 2014; 68:989-1022. [PMID: 23463540 PMCID: PMC3855150 DOI: 10.1007/s00285-013-0656-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 01/23/2013] [Indexed: 01/11/2023]
Abstract
Recent research has shown that cell spreading is highly dependent on the contractility of its cytoskeleton and the mechanical properties of the environment it is located in. The dynamics of such process is critical for the development of tissue engineering strategy but is also a key player in wound contraction, tissue maintenance and angiogenesis. To better understand the underlying physics of such phenomena, the paper describes a mathematical formulation of cell spreading and contraction that couples the processes of stress fiber formation, protrusion growth through actin polymerization at the cell edge and dynamics of cross-membrane protein (integrins) enabling cell-substrate attachment. The evolving cell's cytoskeleton is modeled as a mixture of fluid, proteins and filaments that can exchange mass and generate contraction. In particular, besides self-assembling into stress fibers, actin monomers able to polymerize into an actin meshwork at the cell's boundary in order to push the membrane forward and generate protrusion. These processes are possible via the development of cell-substrate attachment complexes that arise from the mechano-sensitive equilibrium of membrane proteins, known as integrins. After deriving the governing equation driving the dynamics of cell evolution and spreading, we introduce a numerical solution based on the extended finite element method, combined with a level set formulation. Numerical simulations show that the proposed model is able to capture the dependency of cell spreading and contraction on substrate stiffness and chemistry. The very good agreement between model predictions and experimental observations suggests that mechanics plays a strong role into the coupled mechanisms of contraction, adhesion and spreading of adherent cells.
Collapse
Affiliation(s)
- Franck J Vernerey
- Department of Civil, Environmental and Architectural Engineering, University of Colorado, Boulder, USA,
| | | |
Collapse
|
159
|
Integrated Effects of Matrix Mechanics and Vascular Endothelial Growth Factor (VEGF) on Capillary Sprouting. Ann Biomed Eng 2014; 42:1024-36. [DOI: 10.1007/s10439-014-0987-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 02/06/2014] [Indexed: 01/06/2023]
|
160
|
On the role of the actin cytoskeleton and nucleus in the biomechanical response of spread cells. Biomaterials 2014; 35:4015-25. [PMID: 24529900 DOI: 10.1016/j.biomaterials.2014.01.056] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/23/2014] [Indexed: 01/09/2023]
Abstract
Micropipette aspiration (MA) has been used extensively in biomechanical investigations of un-adhered cells suspended in media. In the current study, a custom MA system is developed to aspirate substrate adhered spread cells. Additionally, the system facilitates immuno-fluorescent staining of aspirated cells to investigate stress fibre redistribution and nucleus deformation during MA. In response to an applied pressure, significantly lower aspiration length is observed for untreated contractile cells compared to cells in which actin polymerisation is chemically inhibited, demonstrating the important contribution of stress fibres in the biomechanical behaviour of spread cells. Additional experiments are performed in which untreated contractile cells are subjected to a range of applied pressures. Computational finite element simulations reveal that a viscoelastic material model for the cell cytoplasm is incapable of accurately predicting the observed aspiration length over the range of applied pressures. It is demonstrated that an active computational framework that incorporates stress fibre remodelling and contractility must be used in order to accurately simulate MA of untreated spread cells. Additionally, the stress fibre distribution observed in immuno-fluorescent experimental images of aspirated cells is accurately predicted using the active stress fibre modelling framework. Finally, a detailed experimental-computational investigation of the nucleus mechanical behaviour demonstrates that the nucleus is highly deformable in cyto, reaching strain levels in excess of 100% during MA. The characterisation of stress fibres and nucleus biomechanics in spread cells presented in the current study can potentially be used to guide tissue engineering strategies to control cell behaviour and gene expression.
Collapse
|
161
|
Dependence of cancer cell adhesion kinetics on integrin ligand surface density measured by a high-throughput label-free resonant waveguide grating biosensor. Sci Rep 2014; 4:4034. [PMID: 24503534 PMCID: PMC3916899 DOI: 10.1038/srep04034] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 01/23/2014] [Indexed: 12/28/2022] Open
Abstract
A novel high-throughput label-free resonant waveguide grating (RWG) imager biosensor, the Epic® BenchTop (BT), was utilized to determine the dependence of cell spreading kinetics on the average surface density (vRGD) of integrin ligand RGD-motifs. vRGD was tuned over four orders of magnitude by co-adsorbing the biologically inactive PLL-g-PEG and the RGD-functionalized PLL-g-PEG-RGD synthetic copolymers from their mixed solutions onto the sensor surface. Using highly adherent human cervical tumor (HeLa) cells as a model system, cell adhesion kinetic data of unprecedented quality were obtained. Spreading kinetics were fitted with the logistic equation to obtain the spreading rate constant (r) and the maximum biosensor response (Δλmax), which is assumed to be directly proportional to the maximum spread contact area (Amax). r was found to be independent of the surface density of integrin ligands. In contrast, Δλmax increased with increasing RGD surface density until saturation at high densities. Interpreting the latter behavior with a simple kinetic mass action model, a 2D dissociation constant of 1753 ± 243 μm−2 (corresponding to a 3D dissociation constant of ~30 μM) was obtained for the binding between RGD-specific integrins embedded in the cell membrane and PLL-g-PEG-RGD. All of these results were obtained completely noninvasively without using any labels.
Collapse
|
162
|
Otaka A, Takahashi K, Takeda YS, Kambe Y, Kuwana Y, Tamada Y, Tomita N. Quantification of cell co-migration occurrences during cell aggregation on fibroin substrates. Tissue Eng Part C Methods 2014; 20:671-80. [PMID: 24341914 DOI: 10.1089/ten.tec.2013.0344] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A quantitative analytical method was proposed for measuring cell co-migration, which was defined as two or more cells migrating together. To accurately identify and quantify this behavior, cell migration on fibroin substrates was analyzed with respect to intercellular distance. Specifically, cell size was characterized by major diameter, and then, based on these measurements and cell center data, a specific threshold distance for defining co-migration was determined after analyzing cell motion using the Voronoi diagram method. The results confirmed that co-migration occurrences of rounded cells were significantly more stable on fibroin than on ProNectin substrates under the present experimental conditions. The cell co-migration analysis method in this article was shown to be successful in evaluating the stability of cell co-migration and also suggested the presence of "critical distance" where two cells interact on fibroin substrates. With further research, the cell co-migration analysis method and "critical distance" may prove to be capable of identifying the aggregation behavior of other cells on different materials, making it a valuable tool that can be used in tissue engineering design.
Collapse
Affiliation(s)
- Akihisa Otaka
- 1 Department of Mechanical Engineering and Science, Graduate School of Engineering, Kyoto University , Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
163
|
Cassidy JW, Roberts JN, Smith CA, Robertson M, White K, Biggs MJ, Oreffo ROC, Dalby MJ. Osteogenic lineage restriction by osteoprogenitors cultured on nanometric grooved surfaces: the role of focal adhesion maturation. Acta Biomater 2014; 10:651-60. [PMID: 24252447 PMCID: PMC3907683 DOI: 10.1016/j.actbio.2013.11.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 11/07/2013] [Accepted: 11/11/2013] [Indexed: 01/08/2023]
Abstract
The differentiation of progenitor cells is dependent on more than biochemical signalling. Topographical cues in natural bone extracellular matrix guide cellular differentiation through the formation of focal adhesions, contact guidance, cytoskeletal rearrangement and ultimately gene expression. Osteoarthritis and a number of bone disorders present as growing challenges for our society. Hence, there is a need for next generation implantable devices to substitute for, or guide, bone repair in vivo. Cellular responses to nanometric topographical cues need to be better understood in vitro in order to ensure the effective and efficient integration and performance of these orthopedic devices. In this study, the FDA-approved plastic polycaprolactone was embossed with nanometric grooves and the response of primary and immortalized osteoprogenitor cells observed. Nanometric groove dimensions were 240 nm or 540 nm deep and 12.5 μm wide. Cells cultured on test surfaces followed contact guidance along the length of groove edges, elongated along their major axis and showed nuclear distortion; they formed more focal complexes and lower proportions of mature adhesions relative to planar controls. Down-regulation of the osteoblast marker genes RUNX2 and BMPR2 in primary and immortalized cells was observed on grooved substrates. Down-regulation appeared to directly correlate with focal adhesion maturation, indicating the involvement of ERK 1/2 negative feedback pathways following integrin-mediated FAK activation.
Collapse
Affiliation(s)
- John W Cassidy
- Centre for Cell Engineering, Institute of Biomedical and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Jemma N Roberts
- Centre for Cell Engineering, Institute of Biomedical and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Carol-Anne Smith
- Centre for Cell Engineering, Institute of Biomedical and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Mary Robertson
- Kelvin Nanotechnology, James Watt Nanofabrication Centre, University of Glasgow, Glasgow G12 8LT, UK
| | - Kate White
- Bone & Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton SO16 6YD, UK
| | - Manus J Biggs
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway, Ireland
| | - Richard O C Oreffo
- Bone & Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton SO16 6YD, UK
| | - Matthew J Dalby
- Centre for Cell Engineering, Institute of Biomedical and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
164
|
Li J, Han D, Zhao YP. Kinetic behaviour of the cells touching substrate: the interfacial stiffness guides cell spreading. Sci Rep 2014; 4:3910. [PMID: 24468681 PMCID: PMC5379211 DOI: 10.1038/srep03910] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 01/13/2014] [Indexed: 11/08/2022] Open
Abstract
To describe detailed behaviour of cell spreading under the influence of substrate stiffness, A549 cells cultured on the surfaces of polydimethylsiloxane (PDMS) and polyacrylamide (PAAm) with bulk rigidities ranging from 0.1 kPa to 40 kPa were in situ observed. The spreading behaviour of cells on PAAm presented a positive correlation between spreading speed and substrate stiffness. After computing the deformations of PAAm gels and collagen, the bulk stiffness of PAAm, rather than matrix tethering, determined the cell behaviour. On the other hand, spreading behaviour of the cells was unaffected by varying the bulk stiffness of PDMS. Based on simulation analyses, the elasticity of silica-like layer induced by UV radiation on PDMS surface dominated cell-substrate interaction, rather than the bulk stiffness of the material, indicating that it is the interfacial stiffness that mainly guided the cell spreading. And then the kinetics of cell spreading was for the first time modeled based on absolute rate theory.
Collapse
Affiliation(s)
- Jianjun Li
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Dong Han
- National Center for Nanoscience and Technology, Beijing 100190, China
| | - Ya-Pu Zhao
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
165
|
Köhn-Luque A, de Back W, Yamaguchi Y, Yoshimura K, Herrero MA, Miura T. Dynamics of VEGF matrix-retention in vascular network patterning. Phys Biol 2013; 10:066007. [DOI: 10.1088/1478-3975/10/6/066007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
166
|
The role of filopodia in the recognition of nanotopographies. Sci Rep 2013; 3:1658. [PMID: 23584574 PMCID: PMC3625890 DOI: 10.1038/srep01658] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 03/21/2013] [Indexed: 01/09/2023] Open
Abstract
Substrate-exploring functions of filopodia were previously suggested based on cell studies on flat surfaces, but their role in topography sensing especially within nanofibrillar environments remained elusive. Here we have grown highly flexible hairy silicon nanowires on micropatterned islands on otherwise flat glass surfaces and coated them both with the extracellular matrix (ECM) protein fibronectin. This allowed us to visualize how filopodia steer fundamental cell functions such as cell adhesion, spreading, migration and division in the absence of lamellipodia. Shortly after seeding, transient filopodia protrude from the still spherical cells. Once filopodia contact nanowires, they bend and align them, while most filopodia peel off from flat surfaces. A zipping mechanism regulated by traction forces is proposed to explain how force-induced changes in filopodia-substrate contact angles enable topography sensing, including the still elusive phenomenon of contact guidance. Filopodia thus play a central role in steering transient topographic preferences.
Collapse
|
167
|
Lu Y, Li L, Yan H, Su Q, Huang J, Fu C. Endothelial microparticles exert differential effects on functions of Th1 in patients with acute coronary syndrome. Int J Cardiol 2013; 168:5396-5404. [PMID: 24012161 DOI: 10.1016/j.ijcard.2013.08.050] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 07/25/2013] [Accepted: 08/18/2013] [Indexed: 02/01/2023]
Abstract
BACKGROUND Endothelial microparticles (EMPs) can be involved in inflammatory process, blood coagulation, and regulation of vascular function. However, it remains unclear whether EMPs participate in the pathogenesis of ACS. The purpose of this study is to investigate the impact of EMPs on Th1/Th2 development and functions in vitro. METHODS Eight-five patients were allocated into SAP group (n=27), UAP group (n=28), and AMI group (n=30). Twenty hospitalized patients with normal coronary angiography were recruited as controls. The frequency of EMPs, IFN-γ, and IL-4 levels were measured, and the correlation between EMPs and Th1/Th2 cytokine was analyzed. PBMCs isolated from patients with ACS were treated in vitro with EMPs. This was followed by flow cytometry for Th1/Th2 counts, real-time PCR and western blotting for T-bet and GATA mRNA and protein expression, and ELISA for IFN-γ, TNF-α, IL-4, and IL-10. RESULTS This study proved that the frequency of EMPs was significantly increased in ACS patients. There was a significant positive correlation between EMPs and IFN-γ. EMPs could significantly upregulate the differentiation and function of Th1 through increasing the expression of T-bet mRNA and protein. Furthermore, this study also indicated that EMP treatment in vitro could promote the expression of TNF-α, which exerts adverse effects on the pathogenesis and progression of atherosclerosis. CONCLUSIONS EMPs may be involved in the immune and inflammatory processes that take part in artery atherosclerosis and that they do so by regulating Th1/Th2 differentiation and function. They may play an important role in the pathogenesis of coronary atherosclerosis and plaque instability.
Collapse
Affiliation(s)
- Yongguang Lu
- Department of Cardiology, The Second People's Hospital of Qinzhou, Qinzhou 535099, Guangxi, China
| | | | | | | | | | | |
Collapse
|
168
|
Roca-Cusachs P, Sunyer R, Trepat X. Mechanical guidance of cell migration: lessons from chemotaxis. Curr Opin Cell Biol 2013; 25:543-9. [DOI: 10.1016/j.ceb.2013.04.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 04/26/2013] [Indexed: 01/04/2023]
|
169
|
WU PEIJUNG, LIN CHOUCHINGK, JU MINGSHAUNG. AXIAL-SYMMETRIC MODELING AND KINEMATIC ANALYSIS OF SPREADING OF SPARSELY CULTURED FIBROBLASTS. J MECH MED BIOL 2013. [DOI: 10.1142/s0219519413500620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cell spreading plays an important role in the modulation of physiological functions such as inflammation and cancer metastasis. The Brownian ratchet model and Bell's model have been used to simulate actin dynamics and bond kinetics for focal adhesion dynamics, respectively. In the present study, these models were modified and two additional subcellular mechanisms, integrin and myosin kinetics, were incoporated. An integrin recruitment function was introduced to determine the size of a focal adhesion associated with the substrate stiffness. The relationship between myosin concentration and the actin protrusion velocity was described by a first-order differential equation. Subcellular processes, including cell protrusion, focal adhesion formation, and stress fiber formation, were integrated into an axial-symmetric biophysical model, while inputs to the model were kinematic data from time-lapse experiments. Numerical simulations of the model using the Gillespie algorithm showed that dynamics of cell spreading can be well described by the model.
Collapse
Affiliation(s)
- PEI-JUNG WU
- Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - CHOU-CHING K. LIN
- Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan
- Department of Neurology, College of Medicine, National Cheng Kung University Hospital, Tainan 701, Taiwan
| | - MING-SHAUNG JU
- Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
170
|
Kim JS, Lee CH, Su BY, Coulombe PA. Mathematical modeling of the impact of actin and keratin filaments on keratinocyte cell spreading. Biophys J 2013. [PMID: 23199911 DOI: 10.1016/j.bpj.2012.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Keratin intermediate filaments (IFs) form cross-linked arrays to fulfill their structural support function in epithelial cells and tissues subjected to external stress. How the cross-linking of keratin IFs impacts the morphology and differentiation of keratinocytes in the epidermis and related surface epithelia remains an open question. Experimental measurements have established that keratinocyte spreading area is inversely correlated to the extent of keratin IF bundling in two-dimensional culture. In an effort to quantitatively explain this relationship, we developed a mathematical model in which isotropic cell spreading is considered as a first approximation. Relevant physical properties such as actin protrusion, adhesion events, and the corresponding response of lamellum formation at the cell periphery are included in this model. Through optimization with experimental data that relate time-dependent changes in keratinocyte surface area during spreading, our simulation results confirm the notion that the organization and mechanical properties of cross-linked keratin filaments affect cell spreading; in addition, our results provide details of the kinetics of this effect. These in silico findings provide further support for the notion that differentiation-related changes in the density and intracellular organization of keratin IFs affect tissue architecture in epidermis and related stratified epithelia.
Collapse
Affiliation(s)
- Jin Seob Kim
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA.
| | | | | | | |
Collapse
|
171
|
Han SJ, Bielawski KS, Ting LH, Rodriguez ML, Sniadecki NJ. Decoupling substrate stiffness, spread area, and micropost density: a close spatial relationship between traction forces and focal adhesions. Biophys J 2013; 103:640-8. [PMID: 22947925 DOI: 10.1016/j.bpj.2012.07.023] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 07/03/2012] [Accepted: 07/18/2012] [Indexed: 01/30/2023] Open
Abstract
Mechanical cues can influence the manner in which cells generate traction forces and form focal adhesions. The stiffness of a cell's substrate and the available area on which it can spread can influence its generation of traction forces, but to what extent these factors are intertwined is unclear. In this study, we used microcontact printing and micropost arrays to control cell spreading, substrate stiffness, and post density to assess their effect on traction forces and focal adhesions. We find that both the spread area and the substrate stiffness influence traction forces in an independent manner, but these factors have opposite effects: cells on stiffer substrates produce higher average forces, whereas cells with larger spread areas generate lower average forces. We show that post density influences the generation of traction forces in a manner that is more dominant than the effect of spread area. Additionally, we observe that focal adhesions respond to spread area, substrate stiffness, and post density in a manner that closely matches the trends seen for traction forces. This work supports the notion that traction forces and focal adhesions have a close relationship in their response to mechanical cues.
Collapse
Affiliation(s)
- Sangyoon J Han
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, USA
| | | | | | | | | |
Collapse
|
172
|
Yip AK, Iwasaki K, Ursekar C, Machiyama H, Saxena M, Chen H, Harada I, Chiam KH, Sawada Y. Cellular response to substrate rigidity is governed by either stress or strain. Biophys J 2013; 104:19-29. [PMID: 23332055 DOI: 10.1016/j.bpj.2012.11.3805] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 11/19/2012] [Accepted: 11/26/2012] [Indexed: 12/18/2022] Open
Abstract
Cells sense the rigidity of their substrate; however, little is known about the physical variables that determine their response to this rigidity. Here, we report traction stress measurements carried out using fibroblasts on polyacrylamide gels with Young's moduli ranging from 6 to 110 kPa. We prepared the substrates by employing a modified method that involves N-acryloyl-6-aminocaproic acid (ACA). ACA allows for covalent binding between proteins and elastomers and thus introduces a more stable immobilization of collagen onto the substrate when compared to the conventional method of using sulfo-succinimidyl-6-(4-azido-2-nitrophenyl-amino) hexanoate (sulfo-SANPAH). Cells remove extracellular matrix proteins off the surface of gels coated using sulfo-SANPAH, which corresponds to lower values of traction stress and substrate deformation compared to gels coated using ACA. On soft ACA gels (Young's modulus <20 kPa), cell-exerted substrate deformation remains constant, independent of the substrate Young's modulus. In contrast, on stiff substrates (Young's modulus >20 kPa), traction stress plateaus at a limiting value and the substrate deformation decreases with increasing substrate rigidity. Sustained substrate strain on soft substrates and sustained traction stress on stiff substrates suggest these may be factors governing cellular responses to substrate rigidity.
Collapse
Affiliation(s)
- Ai Kia Yip
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Hong Z, Ersoy I, Sun M, Bunyak F, Hampel P, Hong Z, Sun Z, Li Z, Levitan I, Meininger GA, Palaniappan K. Influence of membrane cholesterol and substrate elasticity on endothelial cell spreading behavior. J Biomed Mater Res A 2012; 101:1994-2004. [PMID: 23239612 DOI: 10.1002/jbm.a.34504] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 10/15/2012] [Accepted: 10/24/2012] [Indexed: 02/05/2023]
Abstract
Interactions between implanted materials and the surrounding host cells critically affect the fate of bioengineered materials. In this study, the biomechanical response of bovine aortic endothelial cells (BAECs) with different membrane cholesterol levels to polyacrylamide (PA) gels was investigated by measuring cell adhesion and spreading behaviors at varying PA elasticity. The elasticity of gel substrates was manipulated by cross-linker content. Type I collagen (COL1) was coated on PA gel to provide a biologically functional environment for cell spreading. Precise quantitative characterization of changes in cell area and perimeter of cells across two treatments and three bioengineered substrates were determined using a customized software developed for computational image analysis. We found that the initial response of endothelial cells to changes in substrate elasticity was determined by membrane cholesterol levels, and that the extent of endothelial cell spreading increases with membrane cholesterol content. All of the BAECs with different cholesterol levels showed little growth on substrates with elasticity below 20 kPa, but increased spreading at higher substrate elasticity. Cholesterol-depleted cells were consistently smaller than control and cholesterol-enriched cells regardless of substrate elasticity. These observations indicate that membrane cholesterol plays an important role in cell spreading on soft biomimetic materials constructed with appropriate elasticity.
Collapse
Affiliation(s)
- Zhongkui Hong
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Synergistic modulation of cellular contractility by mixed extracellular matrices. Int J Cell Biol 2012; 2012:471591. [PMID: 23251159 PMCID: PMC3517853 DOI: 10.1155/2012/471591] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 10/31/2012] [Indexed: 11/23/2022] Open
Abstract
The extracellular matrix (ECM) is known to provide various physicochemical cues in directing cell behavior including composition, topography, and dimensionality. Physical remodeling of the ECM has been documented in a variety of cancers. In breast cancer, the increased deposition of matrix proteins, their crosslinking, and alignment create a stiffer microenvironment that activates cell contractility and promotes cancer invasion. In this paper, we sought to study the collective influence of ECM composition and density on the contractile mechanics of human MDA-MB-231 cells making use of the recently established trypsin deadhesion assay. Using collagen and fibronectin-coated surfaces of varying density, we show that cell contractility is tuned in a density-dependent manner, with faster deadhesion on fibronectin-coated surfaces compared to collagen-coated surfaces under identical coating densities. The deadhesion responses are significantly delayed when cells are treated with the myosin inhibitor blebbistatin. By combining collagen and fibronectin at two different densities, we show that mixed ligand surfaces synergistically modulate cell contractility. Finally, we show that on fibroblast-derived 3D matrices that closely mimic in vivo matrices, cells are strongly polarized and exhibit faster deadhesion compared to the mixed ligand surfaces. Together, our results demonstrate that ECM composition, density, and 3D organization collectively regulate cell contractility.
Collapse
|
175
|
Huang J, Shao W, Wu L, Yang W, Chen Y. Effects of exogenous ganglioside GM1 on different stages of cell spreading studied by directly quantifying spreading rate. ACTA ACUST UNITED AC 2012. [DOI: 10.3109/15419061.2012.749245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
176
|
Joshi SD, Davidson LA. Epithelial machines of morphogenesis and their potential application in organ assembly and tissue engineering. Biomech Model Mechanobiol 2012; 11:1109-21. [PMID: 22854913 PMCID: PMC3664917 DOI: 10.1007/s10237-012-0423-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 07/17/2012] [Indexed: 01/16/2023]
Abstract
Sheets of embryonic epithelial cells coordinate their efforts to create diverse tissue structures such as pits, grooves, tubes, and capsules that lead to organ formation. Such cells can use a number of cell behaviors including contractility, proliferation, and directed movement to create these structures. By contrast, tissue engineers and researchers in regenerative medicine seeking to produce organs for repair or replacement therapy can combine cells with synthetic polymeric scaffolds. Tissue engineers try to achieve these goals by shaping scaffold geometry in such a way that cells embedded within these scaffold self-assemble to form a tissue, for instance aligning to synthetic fibers, and assembling native extracellular matrix to form the desired tissue-like structure. Although self-assembly is a dominant process that guides tissue assembly both within the embryo and within artificial tissue constructs, we know little about these critical processes. Here, we compare and contrast strategies of tissue assembly used by embryos to those used by engineers during epithelial morphogenesis and highlight opportunities for future applications of developmental biology in the field of tissue engineering.
Collapse
Affiliation(s)
- Sagar D. Joshi
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh PA 15213
| | - Lance A. Davidson
- Departments of Bioengineering and Developmental Biology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh PA 15213
| |
Collapse
|
177
|
Comelles J, Hortigüela V, Samitier J, Martínez E. Versatile gradients of covalently bound proteins on microstructured substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:13688-13697. [PMID: 22913232 DOI: 10.1021/la3025638] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this work, we propose an easy method to produce highly tunable gradients of covalently bound proteins on topographically modified poly(methyl methacrylate). We used a microfluidic approach to obtain linear gradients with high slope (0.5 pmol·cm(-2)·mm(-1)), relevant at the single-cell level. These protein gradients were characterized using fluorescence microscopy and surface plasmon resonance. Both experimental results and theoretical modeling on the protein gradients generated have proved them to be highly reproducible, stable up to 7 days, and easily tunable. This method enables formation of versatile cell culture platforms combining both complex biochemical and physical cues in an attempt to approach in vitro cell culture methods to in vivo cellular microenvironments.
Collapse
Affiliation(s)
- Jordi Comelles
- Institute for Bioengineering of Catalonia, C/Baldiri Reixac 11-15, 08028 Barcelona, Spain.
| | | | | | | |
Collapse
|
178
|
Allen JL, Cooke ME, Alliston T. ECM stiffness primes the TGFβ pathway to promote chondrocyte differentiation. Mol Biol Cell 2012; 23:3731-42. [PMID: 22833566 PMCID: PMC3442419 DOI: 10.1091/mbc.e12-03-0172] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
ECM stiffness enhances chondrocyte differentiation by priming cells for a potent response to TGFβ. ECM stiffness modifies the TGFβ pathway at multiple levels, including stiffness-sensitive induction of TGFβ1 expression, Smad3 phosphorylation, and synergistic activation of chondrocyte differentiation, by combining TGFβ and an inductive ECM stiffness. Cells encounter physical cues such as extracellular matrix (ECM) stiffness in a microenvironment replete with biochemical cues. However, the mechanisms by which cells integrate physical and biochemical cues to guide cellular decision making are not well defined. Here we investigate mechanisms by which chondrocytes generate an integrated response to ECM stiffness and transforming growth factor β (TGFβ), a potent agonist of chondrocyte differentiation. Primary murine chondrocytes and ATDC5 cells grown on 0.5-MPa substrates deposit more proteoglycan and express more Sox9, Col2α1, and aggrecan mRNA relative to cells exposed to substrates of any other stiffness. The chondroinductive effect of this discrete stiffness, which falls within the range reported for articular cartilage, requires the stiffness-sensitive induction of TGFβ1. Smad3 phosphorylation, nuclear localization, and transcriptional activity are specifically increased in cells grown on 0.5-MPa substrates. ECM stiffness also primes cells for a synergistic response, such that the combination of ECM stiffness and exogenous TGFβ induces chondrocyte gene expression more robustly than either cue alone through a p38 mitogen-activated protein kinase–dependent mechanism. In this way, the ECM stiffness primes the TGFβ pathway to efficiently promote chondrocyte differentiation. This work reveals novel mechanisms by which cells integrate physical and biochemical cues to exert a coordinated response to their unique cellular microenvironment.
Collapse
Affiliation(s)
- Jessica L Allen
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
179
|
Affiliation(s)
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering and
- Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado 80309-0424; ,
| |
Collapse
|
180
|
Schwarz US, Gardel ML. United we stand: integrating the actin cytoskeleton and cell-matrix adhesions in cellular mechanotransduction. J Cell Sci 2012; 125:3051-60. [PMID: 22797913 DOI: 10.1242/jcs.093716] [Citation(s) in RCA: 213] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Many essential cellular functions in health and disease are closely linked to the ability of cells to respond to mechanical forces. In the context of cell adhesion to the extracellular matrix, the forces that are generated within the actin cytoskeleton and transmitted through integrin-based focal adhesions are essential for the cellular response to environmental clues, such as the spatial distribution of adhesive ligands or matrix stiffness. Whereas substantial progress has been made in identifying mechanosensitive molecules that can transduce mechanical force into biochemical signals, much less is known about the nature of cytoskeletal force generation and transmission that regulates the magnitude, duration and spatial distribution of forces imposed on these mechanosensitive complexes. By focusing on cell-matrix adhesion to flat elastic substrates, on which traction forces can be measured with high temporal and spatial resolution, we discuss our current understanding of the physical mechanisms that integrate a large range of molecular mechanotransduction events on cellular scales. Physical limits of stability emerge as one important element of the cellular response that complements the structural changes affected by regulatory systems in response to mechanical processes.
Collapse
Affiliation(s)
- Ulrich S Schwarz
- BioQuant and Institute for Theoretical Physics, University of Heidelberg, Heidelberg, Germany.
| | | |
Collapse
|
181
|
Baker BM, Chen CS. Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues. J Cell Sci 2012; 125:3015-24. [PMID: 22797912 PMCID: PMC3434846 DOI: 10.1242/jcs.079509] [Citation(s) in RCA: 1115] [Impact Index Per Article: 85.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Much of our understanding of the biological mechanisms that underlie cellular functions, such as migration, differentiation and force-sensing has been garnered from studying cells cultured on two-dimensional (2D) glass or plastic surfaces. However, more recently the cell biology field has come to appreciate the dissimilarity between these flat surfaces and the topographically complex, three-dimensional (3D) extracellular environments in which cells routinely operate in vivo. This has spurred substantial efforts towards the development of in vitro 3D biomimetic environments and has encouraged much cross-disciplinary work among biologists, material scientists and tissue engineers. As we move towards more-physiological culture systems for studying fundamental cellular processes, it is crucial to define exactly which factors are operative in 3D microenvironments. Thus, the focus of this Commentary will be on identifying and describing the fundamental features of 3D cell culture systems that influence cell structure, adhesion, mechanotransduction and signaling in response to soluble factors, which - in turn - regulate overall cellular function in ways that depart dramatically from traditional 2D culture formats. Additionally, we will describe experimental scenarios in which 3D culture is particularly relevant, highlight recent advances in materials engineering for studying cell biology, and discuss examples where studying cells in a 3D context provided insights that would not have been observed in traditional 2D systems.
Collapse
Affiliation(s)
| | - Christopher S. Chen
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA 19104, USA
| |
Collapse
|
182
|
Ventre M, Causa F, Netti PA. Determinants of cell-material crosstalk at the interface: towards engineering of cell instructive materials. J R Soc Interface 2012; 9:2017-32. [PMID: 22753785 DOI: 10.1098/rsif.2012.0308] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The development of novel biomaterials able to control cell activities and direct their fate is warranted for engineering functional biological tissues, advanced cell culture systems, single-cell diagnosis as well as for cell sorting and differentiation. It is well established that crosstalk at the cell-material interface occurs and this has a profound influence on cell behaviour. However, the complete deciphering of the cell-material communication code is still far away. A variety of material surface properties have been reported to affect the strength and the nature of the cell-material interactions, including biological cues, topography and mechanical properties. Novel experimental evidence bears out the hypothesis that these three different signals participate in the same material-cytoskeleton crosstalk pathway via adhesion plaque formation dynamics. In this review, we present the relevant findings on material-induced cell response along with the description of cell behaviour when exposed to arrays of signals-biochemical, topographical and mechanical. Finally, with the aid of literature data, we attempt to draw unifying elements of the material-cytoskeleton-cell fate chain.
Collapse
Affiliation(s)
- Maurizio Ventre
- Center for Advanced Biomaterials for Health Care@CRIB, Istituto Italiano di Tecnologia and Interdisciplinary Research Center on Biomaterials, University of Naples Federico II, Napoli, Italy
| | | | | |
Collapse
|
183
|
Guvendiren M, Burdick JA. Stiffening hydrogels to probe short- and long-term cellular responses to dynamic mechanics. Nat Commun 2012; 3:792. [PMID: 22531177 DOI: 10.1038/ncomms1792] [Citation(s) in RCA: 519] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 03/19/2012] [Indexed: 12/20/2022] Open
Abstract
Biological processes are dynamic in nature, and growing evidence suggests that matrix stiffening is particularly decisive during development, wound healing and disease; yet, nearly all in vitro models are static. Here we introduce a step-wise approach, addition then light-mediated crosslinking, to fabricate hydrogels that stiffen (for example, ~3-30 kPa) in the presence of cells, and investigated the short-term (minutes-to-hours) and long-term (days-to-weeks) cell response to dynamic stiffening. When substrates are stiffened, adhered human mesenchymal stem cells increase their area from ~500 to 3,000 μm(2) and exhibit greater traction from ~1 to 10 kPa over a timescale of hours. For longer cultures up to 14 days, human mesenchymal stem cells selectively differentiate based on the period of culture, before or after stiffening, such that adipogenic differentiation is favoured for later stiffening, whereas osteogenic differentiation is favoured for earlier stiffening.
Collapse
Affiliation(s)
- Murat Guvendiren
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
184
|
Kraning-Rush CM, Califano JP, Reinhart-King CA. Cellular traction stresses increase with increasing metastatic potential. PLoS One 2012; 7:e32572. [PMID: 22389710 PMCID: PMC3289668 DOI: 10.1371/journal.pone.0032572] [Citation(s) in RCA: 284] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 01/27/2012] [Indexed: 01/22/2023] Open
Abstract
Cancer cells exist in a mechanically and chemically heterogeneous microenvironment which undergoes dynamic changes throughout neoplastic progression. During metastasis, cells from a primary tumor acquire characteristics that enable them to escape from the primary tumor and migrate through the heterogeneous stromal environment to establish secondary tumors. Despite being linked to poor prognosis, there are no direct clinical tests available to diagnose the likelihood of metastasis. Moreover, the physical mechanisms employed by metastatic cancer cells to migrate are poorly understood. Because metastasis of most solid tumors requires cells to exert force to reorganize and navigate through dense stroma, we investigated differences in cellular force generation between metastatic and non-metastatic cells. Using traction force microscopy, we found that in human metastatic breast, prostate and lung cancer cell lines, traction stresses were significantly increased compared to non-metastatic counterparts. This trend was recapitulated in the isogenic MCF10AT series of breast cancer cells. Our data also indicate that increased matrix stiffness and collagen density promote increased traction forces, and that metastatic cells generate higher forces than non-metastatic cells across all matrix properties studied. Additionally, we found that cell spreading for these cell lines has a direct relationship with collagen density, but a biphasic relationship with substrate stiffness, indicating that cell area alone does not dictate the magnitude of traction stress generation. Together, these data suggest that cellular contractile force may play an important role in metastasis, and that the physical properties of the stromal environment may regulate cellular force generation. These findings are critical for understanding the physical mechanisms of metastasis and the role of the extracellular microenvironment in metastatic progression.
Collapse
Affiliation(s)
| | | | - Cynthia A. Reinhart-King
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
185
|
Saitakis M, Gizeli E. Acoustic sensors as a biophysical tool for probing cell attachment and cell/surface interactions. Cell Mol Life Sci 2012; 69:357-71. [PMID: 21997385 PMCID: PMC11114954 DOI: 10.1007/s00018-011-0854-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 09/29/2011] [Accepted: 09/29/2011] [Indexed: 01/09/2023]
Abstract
Acoustic biosensors offer the possibility to analyse cell attachment and spreading. This is due to the offered speed of detection, the real-time non-invasive approach and their high sensitivity not only to mass coupling, but also to viscoelastic changes occurring close to the sensor surface. Quartz crystal microbalance (QCM) and surface acoustic wave (Love-wave) systems have been used to monitor the adhesion of animal cells to various surfaces and record the behaviour of cell layers under various conditions. The sensors detect cells mostly via their sensitivity in viscoelasticity and mechanical properties. Particularly, the QCM sensor detects cytoskeletal rearrangements caused by specific drugs affecting either actin microfilaments or microtubules. The Love-wave sensor directly measures cell/substrate bonds via acoustic damping and provides 2D kinetic and affinity parameters. Other studies have applied the QCM sensor as a diagnostic tool for leukaemia and, potentially, for chemotherapeutic agents. Acoustic sensors have also been used in the evaluation of the cytocompatibility of artificial surfaces and, in general, they have the potential to become powerful tools for even more diverse cellular analysis.
Collapse
Affiliation(s)
- Michael Saitakis
- Department of Biology, University of Crete, Heraklion-Crete, Greece
- Institute of Molecular Biology and Biotechnology, FORTH, 100 N. Plastira Vassilika Vouton, 70013 Heraklion-Crete, Greece
| | - Electra Gizeli
- Department of Biology, University of Crete, Heraklion-Crete, Greece
- Institute of Molecular Biology and Biotechnology, FORTH, 100 N. Plastira Vassilika Vouton, 70013 Heraklion-Crete, Greece
| |
Collapse
|
186
|
Shamloo A, Xu H, Heilshorn S. Mechanisms of vascular endothelial growth factor-induced pathfinding by endothelial sprouts in biomaterials. Tissue Eng Part A 2012; 18:320-30. [PMID: 21888475 PMCID: PMC3267969 DOI: 10.1089/ten.tea.2011.0323] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 09/01/2011] [Indexed: 12/15/2022] Open
Abstract
A critical property of biomaterials for use in regenerative medicine applications is the ability to promote angiogenesis, the formation of new vascular networks, to support regenerating tissues. Recent studies have demonstrated that a complex interplay exists between biomechanical and biochemical regulators of endothelial cell sprouting, an early step in angiogenesis. Here, we use a microfluidic platform to study the pathfinding behaviors induced by various stable vascular endothelial growth factor (VEGF) gradients during sprouting morphogenesis within biomaterials. Quantitative, time-lapse analysis of endothelial sprouting demonstrated that the ability of VEGF to regulate sprout orientation during several stages of sprouting morphogenesis (initiation, elongation, and turning navigation) was biomaterial dependent. Identical VEGF gradients induced different types of coordinated cell movements depending on the density of the surrounding collagen/fibronectin matrix. In denser matrices, sprouts were more likely to have an initial orientation aligned parallel to the VEGF gradient. In contrast, in less dense matrices, sprouts were more likely to initially misalign with the VEGF gradient; however, these sprouts underwent significant turning and navigation to eventually reorient to be parallel to the VEGF gradient. These less dense matrices required shallower VEGF gradients and demonstrated lower activating VEGF thresholds to induce proper sprout alignment and pathfinding. These results encourage the future use of microfluidic platforms to probe fundamental aspects of matrix effects on angiogenesis, to screen biomaterials for angiogenic potential, and to design ex vivo tissues with aligned vascular networks.
Collapse
Affiliation(s)
- Amir Shamloo
- Department of Mechanical Engineering, Stanford University, Stanford, California
| | - Hui Xu
- Department of Materials Science and Engineering, Stanford University, Stanford, California
| | - Sarah Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, California
| |
Collapse
|
187
|
Oakes PW, Beckham Y, Stricker J, Gardel ML. Tension is required but not sufficient for focal adhesion maturation without a stress fiber template. ACTA ACUST UNITED AC 2012; 196:363-74. [PMID: 22291038 PMCID: PMC3275371 DOI: 10.1083/jcb.201107042] [Citation(s) in RCA: 244] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Focal adhesion composition and size are modulated in a myosin II-dependent maturation process that controls adhesion, migration, and matrix remodeling. As myosin II activity drives stress fiber assembly and enhanced tension at adhesions simultaneously, the extent to which adhesion maturation is driven by tension or altered actin architecture is unknown. We show that perturbations to formin and α-actinin 1 activity selectively inhibited stress fiber assembly at adhesions but retained a contractile lamella that generated large tension on adhesions. Despite relatively unperturbed adhesion dynamics and force transmission, impaired stress fiber assembly impeded focal adhesion compositional maturation and fibronectin remodeling. Finally, we show that compositional maturation of focal adhesions could occur even when myosin II-dependent cellular tension was reduced by 80%. We propose that stress fiber assembly at the adhesion site serves as a structural template that facilitates adhesion maturation over a wide range of tensions. This work identifies the essential role of lamellar actin architecture in adhesion maturation.
Collapse
Affiliation(s)
- Patrick W Oakes
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
188
|
Kniazeva E, Weidling JW, Singh R, Botvinick EL, Digman MA, Gratton E, Putnam AJ. Quantification of local matrix deformations and mechanical properties during capillary morphogenesis in 3D. Integr Biol (Camb) 2012; 4:431-9. [PMID: 22281872 DOI: 10.1039/c2ib00120a] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Reciprocal mechanical interactions between cells and the extracellular matrix (ECM) are thought to play important instructive roles in branching morphogenesis. However, most studies to date have failed to characterize these interactions on a length scale relevant to cells, especially in three-dimensional (3D) matrices. Here we utilized two complementary methods, spatio-temporal image correlation spectroscopy (STICS) and laser optical tweezers-based active microrheology (AMR), to quantify endothelial cell (EC)-mediated deformations of individual ECM elements and the local ECM mechanical properties, respectively, during the process of capillary morphogenesis in a 3D cell culture model. In experiments in which the ECM density was systematically varied, STICS revealed that the rate at which ECs deformed individual ECM fibers on the microscale positively correlated with capillary sprouting on the macroscale. ECs expressing constitutively active V14-RhoA displaced individual matrix fibers at significantly faster rates and displayed enhanced capillary sprouting relative to wild-type cells, while those expressing dominant-negative N19-RhoA behaved in an opposite fashion. In parallel, AMR revealed a local stiffening of the ECM proximal to the tips of sprouting ECs. By quantifying the dynamic physical properties of the cell-ECM interface in both space and time, we identified a correlation linking ECM deformation rates and local ECM stiffening at the microscale with capillary morphogenesis at the macroscale.
Collapse
Affiliation(s)
- Ekaterina Kniazeva
- Biomedical Engineering Department, Natural Sciences II, Room 3201, University of California, Irvine, Irvine, CA 92697-2715, USA
| | | | | | | | | | | | | |
Collapse
|
189
|
Dado D, Sagi M, Levenberg S, Zemel A. Mechanical control of stem cell differentiation. Regen Med 2012; 7:101-16. [DOI: 10.2217/rme.11.99] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Numerous studies have focused on identifying the chemical and biological factors that govern the differentiation of stem cells; however, recent research has shown that mechanical cues may play an equally important role. Mechanical forces such as shear stresses and tensile loads, as well as the rigidity and topography of the extracellular matrix were shown to induce significant changes in the morphology and fate of stem cells. We survey experimental studies that focused on the response of stem cells to mechanical and geometrical properties of their environment and discuss the mechanical mechanisms that accompany their response including the remodeling of the cytoskeleton and determination of cell and nucleus size and shape.
Collapse
Affiliation(s)
- Dekel Dado
- Biomedical Engineering, Technion, Haifa, 32000, Israel
| | - Maayan Sagi
- Institute of Dental Sciences & the Fritz Haber Research Center, Hebrew-University, Hadassah Medical Center, Jerusalem, 91120, Israel
| | | | | |
Collapse
|
190
|
Kraning-Rush CM, Carey SP, Califano JP, Reinhart-King CA. Quantifying Traction Stresses in Adherent Cells. Methods Cell Biol 2012; 110:139-78. [DOI: 10.1016/b978-0-12-388403-9.00006-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
191
|
Shebanova O, Hammer DA. Biochemical and mechanical extracellular matrix properties dictate mammary epithelial cell motility and assembly. Biotechnol J 2011; 7:397-408. [PMID: 22121055 DOI: 10.1002/biot.201100188] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 10/07/2011] [Accepted: 11/18/2011] [Indexed: 01/22/2023]
Abstract
Biochemical and mechanical cues of the extracellular matrix have been shown to play important roles in cell-matrix and cell-cell interactions. We have experimentally tested the combined influence of these cues to better understand cell motility, force generation, cell-cell interaction, and assembly in an in vitro breast cancer model. MCF-10A non-tumorigenic mammary epithelial cells were observed on surfaces with varying fibronectin ligand concentration and polyacrylamide gel rigidity. Our data show that cell velocity is biphasic in both matrix rigidity and adhesiveness. The maximum cell migration velocity occurs only at specific combination of substrate stiffness and ligand density. We found cell-cell interactions reduce migration velocity. However, the traction forces cells exert onto the substrate increase linearly with both cues, with cells in pairs exerting higher maximum tractions observed over single cells. A relationship between force and motility shows a maximum in single cell velocity not observed in cell pairs. Cell-cell adhesion becomes strongly favored on softer gels with elasticity ≤ 1250 Pascals (Pa), implying the existence of a compliance threshold that promotes cell-cell over cell-matrix adhesion. Finally on gels with stiffness similar to pre-malignant breast tissue, 400 Pa, cells undergo multicellular assembly and division into 3D spherical aggregates on a 2D surface.
Collapse
Affiliation(s)
- Olga Shebanova
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
192
|
Huynh J, Nishimura N, Rana K, Peloquin JM, Califano JP, Montague CR, King MR, Schaffer CB, Reinhart-King CA. Age-related intimal stiffening enhances endothelial permeability and leukocyte transmigration. Sci Transl Med 2011; 3:112ra122. [PMID: 22158860 PMCID: PMC3693751 DOI: 10.1126/scitranslmed.3002761] [Citation(s) in RCA: 302] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Age is the most significant risk factor for atherosclerosis; however, the link between age and atherosclerosis is poorly understood. During both aging and atherosclerosis progression, the blood vessel wall stiffens owing to alterations in the extracellular matrix. Using in vitro and ex vivo models of vessel wall stiffness and aging, we show that stiffening of extracellular matrix within the intima promotes endothelial cell permeability--a hallmark of atherogenesis. When cultured on hydrogels fabricated to match the elasticity of young and aging intima, endothelial monolayers exhibit increased permeability and disrupted cell-cell junctions on stiffer matrices. In parallel experiments, we showed a corresponding increase in cell-cell junction width with age in ex vivo aortas from young (10 weeks) and old (21 to 25 months) healthy mice. To investigate the mechanism by which matrix stiffening alters monolayer integrity, we found that cell contractility increases with increased matrix stiffness, mechanically destabilizing cell-cell junctions. This increase in endothelial permeability results in increased leukocyte extravasation, which is a critical step in atherosclerotic plaque formation. Mild inhibition of Rho-dependent cell contractility using Y-27632, an inhibitor of Rho-associated kinase, or small interfering RNA restored monolayer integrity in vitro and in vivo. Our results suggest that extracellular matrix stiffening alone, which occurs during aging, can lead to endothelial monolayer disruption and atherosclerosis pathogenesis. Because previous therapeutics designed to decrease vascular stiffness have been met with limited success, our findings could be the basis for the design of therapeutics that target the Rho-dependent cellular contractile response to matrix stiffening, rather than stiffness itself, to more effectively prevent atherosclerosis progression.
Collapse
Affiliation(s)
- John Huynh
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Nozomi Nishimura
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Kuldeepsinh Rana
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - John M. Peloquin
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Joseph P. Califano
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | - Michael R. King
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Chris B. Schaffer
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
193
|
Lai T, Chiam KH. Mechanochemical model of cell migration on substrates of varying stiffness. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:061907. [PMID: 22304116 DOI: 10.1103/physreve.84.061907] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 11/08/2011] [Indexed: 05/31/2023]
Abstract
Cells propel themselves along a substrate by organizing structures at the leading edge called lamellipodia that contain the actin network, myosin, integrin, and other proteins. In this article, we describe a quantitative model that couples the response of stretch-sensitive proteins in the lamellipodia to the dynamics of the actin cytoskeleton, therefore allowing the cell to respond to different substrate stiffnesses. Using this model, we predict the various phases of dynamics possible, including continuous protrusion, unstable retractions leading to ruffling, and periodic protrusion-retraction cycles. We explain the necessary conditions for each type of migratory behavior to occur. In particular, we show that, for periodic protrusion-retraction cycles to occur, the stiffness of the substrate must be high, the myosin-dependent maturation rate of nascent to focal adhesions must be high, and the myosin-independent integrin activation rate must be low. In addition, we also predict the dynamics expected at a given substrate stiffness, leading to a quantitative explanation of experimental data that showed that periodic protrusion-retraction cycles disappear when cells are placed on soft substrates. We also suggest experiments with downregulating α actinin and/or talin and upregulating p130Cas and make predictions on what types of migratory dynamics will be observed.
Collapse
Affiliation(s)
- Tanny Lai
- A*STAR Institute of High Performance Computing, Singapore and Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | | |
Collapse
|
194
|
Hoffecker IT, Guo WH, Wang YL. Assessing the spatial resolution of cellular rigidity sensing using a micropatterned hydrogel-photoresist composite. LAB ON A CHIP 2011; 11:3538-3544. [PMID: 21897978 DOI: 10.1039/c1lc20504h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The biophysical machinery that permits a cell to sense substrate rigidity is poorly understood. Rigidity sensing of adherent cells likely involves traction forces applied through focal adhesions and measurement of resulting deformation. However, it is unclear if this measurement takes place underneath single focal adhesions, over local clusters of focal adhesions, or across the length of the entire cell. To address this question, we developed a composite, chip-based material containing many arrays of 6.5 μm × 6.5 μm rigid adhesive islands, with an edge-edge distance of 8 μm, grafted onto the surface of a non-adhesive polyacrylamide hydrogel. This material is thus rigid within single islands while long-range rigidity is determined by the hydrogel. On soft gels, most NIH 3T3 cells spread only across two islands in a given dimension forming small stress fibers and focal adhesions. On stiff gels, cell spreading, stress fibers, and focal adhesions were indistinguishable from those on regular culture surfaces. We conclude that rigidity sensing is dictated by material compliance across the cell length and that responses to rigidity may be inhibited at any point when large substrate strain is encountered during spreading. Our finding may serve as a guideline for the design of biomaterials for tissue engineering.
Collapse
Affiliation(s)
- Ian T Hoffecker
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15219, USA
| | | | | |
Collapse
|
195
|
Gribova V, Crouzier T, Picart C. A material's point of view on recent developments of polymeric biomaterials: control of mechanical and biochemical properties. JOURNAL OF MATERIALS CHEMISTRY 2011; 21:14354-14366. [PMID: 25067892 PMCID: PMC4111539 DOI: 10.1039/c1jm11372k] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cells respond to a variety of stimuli, including biochemical, topographical and mechanical signals originating from their micro-environment. Cell responses to the mechanical properties of their substrates have been increasingly studied for about 14 years. To this end, several types of materials based on synthetic and natural polymers have been developed. Presentation of biochemical ligands to the cells is also important to provide additional functionalities or more selectivity in the details of cell/material interaction. In this review article, we will emphasize the development of synthetic and natural polymeric materials with well-characterized and tunable mechanical properties. We will also highlight how biochemical signals can be presented to the cells by combining them with these biomaterials. Such developments in materials science are not only important for fundamental biophysical studies on cell/material interactions but also for the design of a new generation of advanced and highly functional biomaterials.
Collapse
Affiliation(s)
- Varvara Gribova
- LMGP-MINATEC, Grenoble Institute of Technology, 3 parvis Louis Néel 38016 Grenoble, France
| | - Thomas Crouzier
- LMGP-MINATEC, Grenoble Institute of Technology, 3 parvis Louis Néel 38016 Grenoble, France
| | - Catherine Picart
- LMGP-MINATEC, Grenoble Institute of Technology, 3 parvis Louis Néel 38016 Grenoble, France
| |
Collapse
|
196
|
Rossen NS, Hansen AJ, Selhuber-Unkel C, Oddershede LB. Arachidonic acid randomizes endothelial cell motion and regulates adhesion and migration. PLoS One 2011; 6:e25196. [PMID: 21966453 PMCID: PMC3179469 DOI: 10.1371/journal.pone.0025196] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 08/30/2011] [Indexed: 11/18/2022] Open
Abstract
Cell adhesion and migration are essential for the evolution, organization, and repair of living organisms. An example of a combination of these processes is the formation of new blood vessels (angiogenesis), which is mediated by a directed migration and adhesion of endothelial cells (ECs). Angiogenesis is an essential part of wound healing and a prerequisite of cancerous tumor growth. We investigated the effect of the amphiphilic compound arachidonic acid (AA) on EC adhesion and migration by combining live cell imaging with biophysical analysis methods. AA significantly influenced both EC adhesion and migration, in either a stimulating or inhibiting fashion depending on AA concentration. The temporal evolution of cell adhesion area was well described by a two-phase model. In the first phase, the spreading dynamics were independent of AA concentration. In the latter phase, the spreading dynamics increased at low AA concentrations and decreased at high AA concentrations. AA also affected EC migration; though the instantaneous speed of individual cells remained independent of AA concentration, the individual cells lost their sense of direction upon addition of AA, thus giving rise to an overall decrease in the collective motion of a confluent EC monolayer into vacant space. Addition of AA also caused ECs to become more elongated, this possibly being related to incorporation of AA in the EC membrane thus mediating a change in the viscosity of the membrane. Hence, AA is a promising non-receptor specific regulator of wound healing and angiogenesis.
Collapse
|
197
|
Network connectivity, mechanical properties and cell adhesion for hyaluronic acid/PEG hydrogels. Biomaterials 2011; 32:6456-70. [DOI: 10.1016/j.biomaterials.2011.05.044] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 05/12/2011] [Indexed: 10/18/2022]
|
198
|
Slater JH, Miller JS, Yu SS, West JL. Fabrication of Multifaceted Micropatterned Surfaces with Laser Scanning Lithography. ADVANCED FUNCTIONAL MATERIALS 2011; 21:2876-2888. [PMID: 29861708 PMCID: PMC5978433 DOI: 10.1002/adfm.201100297] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The implementation of engineered surfaces presenting micrometer-sized patterns of cell adhesive ligands against a biologically inert background has led to numerous discoveries in fundamental cell biology. While existing surface patterning strategies allow for pattering of a single ligand it is still challenging to fabricate surfaces displaying multiple patterned ligands. To address this issue we implemented Laser Scanning Lithography (LSL), a laser-based thermal desorption technique, to fabricate multifaceted, micropatterned surfaces that display independent arrays of subcellular-sized patterns of multiple adhesive ligands with each ligand confined to its own array. We demonstrate that LSL is a highly versatile "maskless" surface patterning strategy that provides the ability to create patterns with features ranging from 450 nm to 100 μm, topography ranging from -1 to 17 nm, and to fabricate both stepwise and smooth ligand surface density gradients. As validation for their use in cell studies, surfaces presenting orthogonally interwoven arrays of 1×8 μm elliptical patterns of Gly-Arg-Gly-Asp-terminated alkanethiol self-assembled monolayers and human plasma fibronectin are produced. Human umbilical vein endothelial cells cultured on these multifaceted surfaces form adhesion sites to both ligands simultaneously and utilize both ligands for lamella formation during migration. The ability to create multifaceted, patterned surfaces with tight control over pattern size, spacing, and topography provides a platform to simultaneously investigate the complex interactions of extracellular matrix geometry, biochemistry, and topography on cell adhesion and downstream cell behavior.
Collapse
|
199
|
Sadr N, Zhu M, Osaki T, Kakegawa T, Yang Y, Moretti M, Fukuda J, Khademhosseini A. SAM-based cell transfer to photopatterned hydrogels for microengineering vascular-like structures. Biomaterials 2011; 32:7479-90. [PMID: 21802723 DOI: 10.1016/j.biomaterials.2011.06.034] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 06/14/2011] [Indexed: 12/27/2022]
Abstract
A major challenge in tissue engineering is to reproduce the native 3D microvascular architecture fundamental for in vivo functions. Current approaches still lack a network of perfusable vessels with native 3D structural organization. Here we present a new method combining self-assembled monolayer (SAM)-based cell transfer and gelatin methacrylate hydrogel photopatterning techniques for microengineering vascular structures. Human umbilical vein cell (HUVEC) transfer from oligopeptide SAM-coated surfaces to the hydrogel revealed two SAM desorption mechanisms: photoinduced and electrochemically triggered. The former, occurs concomitantly to hydrogel photocrosslinking, and resulted in efficient (>97%) monolayer transfer. The latter, prompted by additional potential application, preserved cell morphology and maintained high transfer efficiency of VE-cadherin positive monolayers over longer culture periods. This approach was also applied to transfer HUVECs to 3D geometrically defined vascular-like structures in hydrogels, which were then maintained in perfusion culture for 15 days. As a step toward more complex constructs, a cell-laden hydrogel layer was photopatterned around the endothelialized channel to mimic the vascular smooth muscle structure of distal arterioles. This study shows that the coupling of the SAM-based cell transfer and hydrogel photocrosslinking could potentially open up new avenues in engineering more complex, vascularized tissue constructs for regenerative medicine and tissue engineering applications.
Collapse
Affiliation(s)
- Nasser Sadr
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
200
|
Portable magnetic tweezers device enables visualization of the three-dimensional microscale deformation of soft biological materials. Biotechniques 2011; 51:29-34. [DOI: 10.2144/000113701] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 05/16/2011] [Indexed: 11/23/2022] Open
Abstract
We have designed and built a magnetic tweezers device that enables the application of calibrated stresses to soft materials while simultaneously measuring their microscale deformation using confocal microscopy. Unlike previous magnetic tweezers designs, our device is entirely portable, allowing easy use on microscopes in core imaging facilities or in collaborators' laboratories. The imaging capabilities of the microscope are unimpaired, enabling the 3-D structures of fluorescently labeled materials to be precisely determined under applied load. With this device, we can apply a large range of forces (∼1–1200 pN) over micron-scale contact areas to beads that are either embedded within 3-D matrices or attached to the surface of thin slab gels. To demonstrate the usefulness of this instrument, we have studied two important and biologically relevant materials: polyacrylamide-based hydrogel films typical of those used in cell traction force microscopy, and reconstituted networks of microtubules, essential cytoskeletal filaments.
Collapse
|