151
|
Nakashima E. Estimation of accelerated failure time due to exposure risk using piecewise-exponential model in cohort follow-up study. COMMUN STAT-THEOR M 2021. [DOI: 10.1080/03610926.2019.1640878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Eiji Nakashima
- Research Institute for Radiation Epidemiology and Biostatistics, Hiroshima, Japan
| |
Collapse
|
152
|
Oakley PA, Harrison DE. Radiophobic Fear-Mongering, Misappropriation of Medical References and Dismissing Relevant Data Forms the False Stance for Advocating Against the Use of Routine and Repeat Radiography in Chiropractic and Manual Therapy. Dose Response 2021; 19:1559325820984626. [PMID: 33628151 PMCID: PMC7883173 DOI: 10.1177/1559325820984626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 12/14/2022] Open
Abstract
There is a faction within the chiropractic profession passionately advocating against the routine use of X-rays in the diagnosis, treatment and management of patients with spinal disorders (aka subluxation). These activists reiterate common false statements such as "there is no evidence" for biomechanical spine assessment by X-ray, "there are no guidelines" supporting routine imaging, and also promulgate the reiterating narrative that "X-rays are dangerous." These arguments come in the form of recycled allopathic "red flag only" medical guidelines for spine care, opinion pieces and consensus statements. Herein, we review these common arguments and present compelling data refuting such claims. It quickly becomes evident that these statements are false. They are based on cherry-picked medical references and, most importantly, expansive evidence against this narrative continues to be ignored. Factually, there is considerable evidential support for routine use of radiological imaging in chiropractic and manual therapies for 3 main purposes: 1. To assess spinopelvic biomechanical parameters; 2. To screen for relative and absolute contraindications; 3. To reassess a patient's progress from some forms of spine altering treatments. Finally, and most importantly, we summarize why the long-held notion of carcinogenicity from X-rays is not a valid argument.
Collapse
|
153
|
Utada M, Brenner AV, Preston DL, Cologne JB, Sakata R, Sugiyama H, Kato N, Grant EJ, Cahoon EK, Mabuchi K, Ozasa K. Radiation Risk of Ovarian Cancer in Atomic Bomb Survivors: 1958-2009. Radiat Res 2021; 195:60-65. [PMID: 33181839 PMCID: PMC10320731 DOI: 10.1667/rade-20-00170.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/18/2020] [Indexed: 11/03/2022]
Abstract
There is limited evidence concerning the association between radiation exposure and ovarian cancer. We evaluated radiation risk of ovarian cancer between 1958 and 2009 among 62,534 female atomic bomb survivors in the Life Span Study cohort, adding 11 years of follow-up from the previously reported study. Poisson regression methods were used to estimate excess relative risk per Gy (ERR/Gy) for total ovarian cancer and according to tumor type. We assessed the modifying effect of follow-up period and other factors on the radiation risk. We ascertained 288 first primary ovarian cancers including 77 type 1 epithelial cancers, 75 type 2 epithelial cancers, 66 epithelial cancers of undetermined type and 70 other cancers. Radiation dose was positively, although not significantly, associated with risk of total ovarian cancer [ERR/Gy = 0.30, 95% confidence interval (CI): -0.22 to 1.11]. There was a suggestion of heterogeneity in radiation effects (P = 0.08) for type 1 (ERR/Gy = -0.32, 95% CI: <-0.32 to 0.88) and type 2 cancers (ERR/Gy = 1.24, 95% CI: -0.08 to 4.16). There were no significant trends in the ERR with time since exposure or age at exposure. Further follow-up will help characterize more accurately the patterns of radiation risk for total ovarian cancer and its types.
Collapse
Affiliation(s)
- Mai Utada
- Radiation Effects Research Foundation, Hiroshima and Nagasaki, Japan
| | - Alina V Brenner
- Radiation Effects Research Foundation, Hiroshima and Nagasaki, Japan
| | | | - John B Cologne
- Radiation Effects Research Foundation, Hiroshima and Nagasaki, Japan
| | - Ritsu Sakata
- Radiation Effects Research Foundation, Hiroshima and Nagasaki, Japan
| | - Hiromi Sugiyama
- Radiation Effects Research Foundation, Hiroshima and Nagasaki, Japan
| | - Naohiro Kato
- Radiation Effects Research Foundation, Hiroshima and Nagasaki, Japan
| | - Eric J Grant
- Radiation Effects Research Foundation, Hiroshima and Nagasaki, Japan
| | - Elizabeth K Cahoon
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Kiyohiko Mabuchi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Kotaro Ozasa
- Radiation Effects Research Foundation, Hiroshima and Nagasaki, Japan
| |
Collapse
|
154
|
Mabuchi K, Preston DL, Brenner AV, Sugiyama H, Utada M, Sakata R, Sadakane A, Grant EJ, French B, Cahoon EK, Ozasa K. Risk of Prostate Cancer Incidence among Atomic Bomb Survivors: 1958-2009. Radiat Res 2021; 195:66-76. [PMID: 33181833 PMCID: PMC7849930 DOI: 10.1667/rr15481.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/14/2020] [Indexed: 12/15/2022]
Abstract
Epidemiological evidence for a radiation effect on prostate cancer risk has been inconsistent and largely indicative of no or little effect. Here we studied prostate cancer incidence among males of the Life Span Study cohort of atomic bomb survivors in a follow-up from 1958 to 2009, eleven years more than was previously reported. During this period there were 851 incident cases of prostate cancer among 41,544 male subjects, doubling the total number of cases in the cohort. More than 50% of the cases were diagnosed among those who were less than 20 years of age at the time of the bombings and who were at, or near, the ages of heightened prostate cancer risks during the last decade of follow-up. In analyses of the radiation dose response using Poisson regression methods, we used a baseline-rate model that allowed for calendar period effects corresponding to the emergence of prostate-specific antigen screening in the general population as well as effects of attained age and birth cohort. The model also allowed for markedly increased baseline rates among the Adult Health Study participants between 2005 and 2009, a period during which a prostate-specific antigen test was included in Adult Health Study biennial health examinations. We found a significant linear dose response with an estimated excess relative risk (ERR) per Gy of 0.57 (95% CI: 0.21, 1.00, P = 0.001). An estimated 40 of the observed cases were attributed to radiation exposure from the bombings. There was a suggestion of the ERR decreasing with increasing age at exposure (P = 0.09). We found no indication of effects of smoking, alcohol consumption and body mass index on the baseline risk of prostate cancer. The observed dose response strengthens the evidence of a radiation effect on the risk of prostate cancer incidence in the atomic bomb survivors.
Collapse
Affiliation(s)
- Kiyohiko Mabuchi
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | | | - Alina V. Brenner
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima and Nagasaki, Japan
| | - Hiromi Sugiyama
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima and Nagasaki, Japan
| | - Mai Utada
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima and Nagasaki, Japan
| | - Ritsu Sakata
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima and Nagasaki, Japan
| | - Atsuko Sadakane
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima and Nagasaki, Japan
| | - Eric J. Grant
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima and Nagasaki, Japan
| | - Benjamin French
- Department of Statistics, Radiation Effects Research Foundation, Hiroshima and Nagasaki, Japan
| | - Elizabeth K. Cahoon
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Kotaro Ozasa
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima and Nagasaki, Japan
| |
Collapse
|
155
|
Hosoda M, Nugraha ED, Akata N, Yamada R, Tamakuma Y, Sasaki M, Kelleher K, Yoshinaga S, Suzuki T, Rattanapongs CP, Furukawa M, Yamaguchi M, Iwaoka K, Sanada T, Miura T, Iskandar D, Pudjadi E, Kashiwakura I, Tokonami S. A unique high natural background radiation area - Dose assessment and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:142346. [PMID: 33182182 DOI: 10.1016/j.scitotenv.2020.142346] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
The biological effects of low dose-rate radiation exposures on humans remains unknown. In fact, the Japanese nation still struggles with this issue after the Fukushima Dai-ichi Nuclear Power Plant accident. Recently, we have found a unique area in Indonesia where naturally high radiation levels are present, resulting in chronic low dose-rate radiation exposures. We aimed to estimate the comprehensive dose due to internal and external exposures at the particularly high natural radiation area, and to discuss the enhancement mechanism of radon. A car-borne survey was conducted to estimate the external doses from terrestrial radiation. Indoor radon measurements were made in 47 dwellings over three to five months, covering the two typical seasons, to estimate the internal doses. Atmospheric radon gases were simultaneously collected at several heights to evaluate the vertical distribution. The absorbed dose rates in air in the study area vary widely between 50 nGy h-1 and 1109 nGy h-1. Indoor radon concentrations ranged from 124 Bq m-3 to 1015 Bq m-3. That is, the indoor radon concentrations measured exceed the reference levels of 100 Bq m-3 recommended by the World Health Organization. Furthermore, the outdoor radon concentrations measured were comparable to the high indoor radon concentrations. The annual effective dose due to external and internal exposures in the study area was estimated to be 27 mSv using the median values. It was found that many residents are receiving radiation exposure from natural radionuclides over the dose limit for occupational exposure to radiation workers. This enhanced outdoor radon concentration might be as a result of the stable atmospheric conditions generated at an exceptionally low altitude. Our findings suggest that this area provides a unique opportunity to conduct an epidemiological study related to health effects due to chronic low dose-rate radiation exposure.
Collapse
Affiliation(s)
- Masahiro Hosoda
- Depertment of Radiation Science, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan; Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan
| | - Eka Djatnika Nugraha
- Depertment of Radiation Science, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan; Center for Technology of Radiation Safety and Metrology, National Nuclear Energy Agency, JI. Lebak Bulus Raya No. 49, Jakarta 12440, Indonesia
| | - Naofumi Akata
- Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan
| | - Ryohei Yamada
- Depertment of Radiation Science, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan; Nuclear Fuel Cycle Engineering Laboratories, Japan Atomic Energy Agency, 4-33, Muramatsu, Tokai-mura, Naka-gun, Ibaraki 319-1194, Japan
| | - Yuki Tamakuma
- Depertment of Radiation Science, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan; Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan
| | - Michiya Sasaki
- Radiation Safety Research Center, Central Research Institute of Electric Power Industry, 2-11-1 Iwado kita, Komae, Tokyo 201-8511, Japan
| | - Kevin Kelleher
- Office of Radiation Protection and Environmental Monitoring, Environmental Protection Agency, Richview, Clonskeagh Road, Dublin 14, Ireland
| | - Shinji Yoshinaga
- Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Takahito Suzuki
- Depertment of Radiation Science, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan
| | - Chanis Pornnumpa Rattanapongs
- Department of Applied Radiation and Isotopes, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Lat Yao, Chatuchak, Bangkok 10900, Thailand
| | - Masahide Furukawa
- Department of Physics and Earth Sciences, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Okinawa 903-0213, Japan
| | - Masaru Yamaguchi
- Depertment of Radiation Science, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan
| | - Kazuki Iwaoka
- Center for Radiation Protection Knowledge, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage, Chiba 263-8555, Japan
| | - Tetsuya Sanada
- Department of Radiological Technology, Faculty of Health Sciences, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan
| | - Tomisato Miura
- Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan
| | - Dadong Iskandar
- Center for Technology of Radiation Safety and Metrology, National Nuclear Energy Agency, JI. Lebak Bulus Raya No. 49, Jakarta 12440, Indonesia
| | - Eko Pudjadi
- Center for Technology of Radiation Safety and Metrology, National Nuclear Energy Agency, JI. Lebak Bulus Raya No. 49, Jakarta 12440, Indonesia
| | - Ikuo Kashiwakura
- Depertment of Radiation Science, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan
| | - Shinji Tokonami
- Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan.
| |
Collapse
|
156
|
Early life ionizing radiation exposure and cancer risks: systematic review and meta-analysis. Pediatr Radiol 2021; 51:45-56. [PMID: 32910229 DOI: 10.1007/s00247-020-04803-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/12/2020] [Accepted: 08/05/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND Ionizing radiation use for medical diagnostic purposes has substantially increased over the last three decades. Moderate to high doses of radiation are well established causes of cancer, especially for exposure at young ages. However, cancer risk from low-dose medical imaging is debated. OBJECTIVE To review the literature on cancer risks associated with prenatal and postnatal medical diagnostic ionizing radiation exposure among children and to assess this risk through a meta-analysis. MATERIALS AND METHODS A literature search of five electronic databases supplemented by a hand search was performed to retrieve relevant epidemiological studies published from 2000 to 2019, including patients younger than 22 years of age exposed to medical imaging ionizing radiation. Pooled odds ratio (ORpooled) and pooled excess relative risk (ERRpooled) representing the excess of risk per unit of organ dose were estimated with a random effect model. RESULTS Twenty-four studies were included. For prenatal exposure (radiographs or CT), no significant increased risk was reported for all cancers, leukemia and brain tumors. For postnatal exposure, increased risk was observed only for CT, mostly for leukemia (ERRpooled=26.9 Gy-1; 95% confidence interval [CI]: 2.7-57.1) and brain tumors (ERRpooled=9.1 Gy-1; 95% CI: 5.2-13.1). CONCLUSION CT exposure in childhood appears to be associated with increased risk of cancer while no significant association was observed with diagnostic radiographs.
Collapse
|
157
|
Shimura T. Roles of Fibroblasts in Microenvironment Formation Associated with Radiation-Induced Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1329:239-251. [PMID: 34664243 DOI: 10.1007/978-3-030-73119-9_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In tumor tissues, activated stromal fibroblasts, termed cancer-associated fibroblasts (CAFs), exhibit similar characteristics to myofibroblasts. CAFs promote cancer cell differentiation and invasion by releasing various factors, such as growth factors, chemokines, and matrix-degrading proteases, into neighboring tumor cells. However, the roles of tumor microenvironment in case of radiation-induced carcinogenesis remain poorly understood. We recently revealed that mitochondrial oxidative stress causes tumor microenvironment formation associated with radiation-induced cancer. Repeated low-dose fractionated radiation progressively damages fibroblast mitochondria and elevates mitochondrial reactive oxygen species (ROS) levels. Excessive mitochondrial ROS activate transforming growth factor-beta (TGF-β) signaling, thereby inducing fibroblasts activation and facilitating tumor microenvironment formation. Consequently, radiation affects malignant cancer cells directly and indirectly via molecular alterations in stromal fibroblasts, such as the activation of TGF-β and angiogenic signaling. This review summarizes for the first time the roles of mitochondrial oxidative stress in microenvironment formation associated with radiation-induced cancer. This review may help us understand the risks of exposure to low-dose radiation. The cross talk between cancer cells and stromal fibroblasts contributes to the development and progression of radiation-induced cancer.
Collapse
Affiliation(s)
- Tsutomu Shimura
- Department of Environmental Health, National Institute of Public Health, Saitama, Japan.
| |
Collapse
|
158
|
Oakley PA, Harrison DE. Are Continued Efforts to Reduce Radiation Exposures from X-Rays Warranted? Dose Response 2021; 19:1559325821995653. [PMID: 33746654 PMCID: PMC7903835 DOI: 10.1177/1559325821995653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/23/2021] [Accepted: 01/23/2021] [Indexed: 12/12/2022] Open
Abstract
There are pressures to avoid use of radiological imaging throughout all healthcare due to the notion that all radiation is carcinogenic. This perception stems from the long-standing use of the linear no-threshold (LNT) assumption of risk associated with radiation exposures. This societal perception has led to relentless efforts to avoid and reduce radiation exposures to patients at great costs. Many radiation reduction campaigns have been launched to dissuade doctors from using radiation imaging. Lower-dose imaging techniques and practices are being advocated. Alternate imaging procedures are encouraged. Are these efforts warranted? Based on recent evidence, LNT ideology is shown to be defunct for risk assessment at low-dose exposure ranges which includes X-rays and CT scans. In fact, the best evidence that was once used to support LNT ideology, including the Life Span Study data, now indicates thresholds for cancer induction are high; therefore, low-dose X-rays cannot cause harm. Current practices are safe as exposures currently encountered are orders of magnitude below threshold levels shown to be harmful. As long as imaging is medically warranted, it is shown that efforts to reduce exposures that are within background radiation levels and that are also shown to enhance health by upregulating natural adaptive protection systems are definitively wasted resources.
Collapse
|
159
|
Yoshida K, Misumi M, Kusunoki Y, Yamada M. Longitudinal changes in red blood cell distribution width decades after radiation exposure in atomic-bomb survivors. Br J Haematol 2020; 193:406-409. [PMID: 33350457 PMCID: PMC8247336 DOI: 10.1111/bjh.17296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/01/2020] [Indexed: 01/28/2023]
Abstract
Red blood cell distribution width (RDW), which generally increases with age, is a risk marker for morbidity and mortality in various diseases. We investigated the association between elevated RDW and prior radiation exposure by examining longitudinal RDW changes in 4204 atomic‐bomb survivors over 15 years. A positive association was found between RDW and radiation dose, wherein RDW increased by 0·18%/Gy. This radiation‐associated effect increased as the participants aged. Elevated RDW was also associated with higher all‐cause mortality. The biological mechanisms underlying these observed associations merit further investigation.
Collapse
Affiliation(s)
- Kengo Yoshida
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Munechika Misumi
- Department of Statistics, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Yoichiro Kusunoki
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Michiko Yamada
- Department of Clinical Studies, Radiation Effects Research Foundation, Hiroshima, Japan
| |
Collapse
|
160
|
Ueda K, Ohishi W, Cullings H, Fujiwara S, Suzuki G, Hayashi T, Mitsui F, Hida A, Ozasa K, Ito M, Chayama K, Tahara E. Modifying Effect of Chronic Atrophic Gastritis on Radiation Risk for Noncardia Gastric Cancer According to Histological Type. Radiat Res 2020; 194:180-187. [PMID: 32845989 DOI: 10.1667/rr15482.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 05/11/2020] [Indexed: 12/09/2022]
Abstract
The findings from previously published studies have suggested that radiation exposure is associated with increased mortality and incidence of gastric cancer. However, few cohort studies have incorporated risk factors such as Helicobacter pylori (H. pylori) infection or chronic atrophic gastritis (CAG). The current study is aimed at evaluating the modifying effect of CAG on radiation risk of noncardia gastric cancer by histological type, by reanalyzing data from a nested case-control study conducted within the longitudinal clinical cohort of atomic bomb survivors. The analysis was restricted to 297 intestinal- or diffuse-type noncardia cases and 873 controls rematched to the cases on gender, age, city, and time and type of serum storage, and countermatched on radiation dose. Multivariable-adjusted relative risks [95% confidence interval (CI)] of noncardia gastric cancer were 3.9 (2.1-7.2) for H. pylori IgG seropositivity with cytotoxin-associated gene A (CagA) IgG low titer, 2.6 (1.9-3.6) for CAG, 1.9 (1.3-2.8) for current smoking, and 1.4 (1.1-1.9) for 1 Gy irradiation. Among subjects without CAG, the relative risk (95% CI) of noncardia gastric cancer at 1 Gy was 2.3 (1.4-3.7), whereas relative risk (95% CI) at 1 Gy was 1.1 (0.8-1.5) among subjects with CAG (for the overall interaction, P = 0.012). By histological type, the risk at 1 Gy was high for diffuse type without CAG, with adjusted relative risk (95% CI) of 3.8 (2.0-7.6), but was not high for diffuse type with CAG or for intestinal-type irrespective of CAG status. The results indicate that radiation exposure is associated with increased risk of diffuse-type noncardia gastric cancer without CAG, and this association exists despite adjustment for H. pylori infection and smoking habit.
Collapse
Affiliation(s)
- Keiko Ueda
- Departments of a Clinical Studies.,Departments of Chuden Hospital, Hiroshima, Japan
| | | | - Harry Cullings
- Departments of Statistics, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Saeko Fujiwara
- Departments of a Clinical Studies.,Yasuda Women's University, Hiroshima, Japan
| | - Gen Suzuki
- Departments of International University of Health and Welfare Clinic, Ohtawara, Japan
| | - Tomonori Hayashi
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | | | - Ayumi Hida
- Department of Clinical Studies, Radiation Effects Research Foundation, Nagasaki Japan
| | - Kotaro Ozasa
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Masanori Ito
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Eiichi Tahara
- Departments of Hiroshima Cancer Seminar Foundation, Hiroshima, Japan
| |
Collapse
|
161
|
Linet MS, Little MP, Kitahara CM, Cahoon EK, Doody MM, Simon SL, Alexander BH, Preston DL. Occupational radiation and haematopoietic malignancy mortality in the retrospective cohort study of US radiologic technologists, 1983-2012. Occup Environ Med 2020; 77:822-831. [PMID: 32967989 PMCID: PMC8527846 DOI: 10.1136/oemed-2019-106346] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/27/2020] [Accepted: 06/07/2020] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To evaluate cumulative occupational radiation dose response and haematopoietic malignancy mortality risks in the US radiologic technologist cohort. METHODS Among 110 297 radiologic technologists (83 655 women, 26 642 men) who completed a baseline questionnaire sometime during 1983-1998, a retrospective cohort study was undertaken to assess cumulative, low-to-moderate occupational radiation dose and haematopoietic malignancy mortality risks during 1983-2012. Cumulative bone marrow dose (mean 8.5 mGy, range 0-430 mGy) was estimated based on 921 134 badge monitoring measurements during 1960-1997, work histories and historical data; 35.4% of estimated doses were based on badge measurements. Poisson regression was used to estimate excess relative risk of haematopoietic cancers per 100 milligray (ERR/100 mGy) bone-marrow absorbed dose, adjusting for attained age, sex and birth year. RESULTS Deaths from baseline questionnaire completion through 2012 included 133 myeloid neoplasms, 381 lymphoid neoplasms and 155 leukaemias excluding chronic lymphocytic leukaemia (CLL). Based on a linear dose-response, no significant ERR/100 mGy occurred for acute myeloid leukaemia (ERR=0.0002, 95% CI <-0.02 to 0.24, p-trend>0.5, 85 cases) or leukaemia excluding CLL (ERR=0.05, 95% CI <-0.09 to 0.24, p-trend=0.21, 155 cases). No significant dose-response trends were observed overall for CLL (ERR<-0.023, 95% CI <-0.025 to 0.18, p-trend=0.45, 32 cases), non-Hodgkin lymphoma (ERR=0.03, 95% CI <-0.2 to 0.18, p-trend=0.4, 201 cases) or multiple myeloma (ERR=0.003, 95% CI -0.02 to 0.16, p-trend>0.5, 112 cases). Findings did not differ significantly by demographic factors, smoking or specific radiological procedures performed. CONCLUSION After follow-up averaging 22 years, there was little evidence of a relationship between occupational radiation exposure and myeloid or lymphoid haematopoietic neoplasms.
Collapse
Affiliation(s)
- Martha S Linet
- National Cancer Institute Division of Cancer Epidemiology and Genetics, Bethesda, Maryland, USA
| | - Mark P Little
- National Cancer Institute Division of Cancer Epidemiology and Genetics, Bethesda, Maryland, USA
| | - Cari M Kitahara
- National Cancer Institute Division of Cancer Epidemiology and Genetics, Bethesda, Maryland, USA
| | - Elizabeth K Cahoon
- National Cancer Institute Division of Cancer Epidemiology and Genetics, Bethesda, Maryland, USA
| | - Michele M Doody
- National Cancer Institute Division of Cancer Epidemiology and Genetics, Bethesda, Maryland, USA
| | - Steven L Simon
- National Cancer Institute Division of Cancer Epidemiology and Genetics, Bethesda, Maryland, USA
| | - Bruce H Alexander
- Division of Environmental Health Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Dale L Preston
- self-employed at Hirosoft International, Eureka, California, USA
| |
Collapse
|
162
|
Zhukovsky M, Onishchenko A. CALCULATION OF DOSE CONVERSION FACTORS BASED ON THE RESULTS OF GEOMETRIC MIXTURE MODELS FOR RISK ASSESSMENT OF RADON EXPOSURE. RADIATION PROTECTION DOSIMETRY 2020; 191:181-187. [PMID: 33103192 DOI: 10.1093/rpd/ncaa145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
The results of the geometric mixture model by Tomasek (2011, 2013) were applied for the calculation of radiation risk at radon exposure at the assessment of dose conversion factors (DCF; mSv/WLM) from radon exposure to the effective dose-by-dose conversion convention approach for cohorts with different smoking status. It is shown that the use of a geometric mixture model results in a better agreement between DCF values for men and women.
Collapse
Affiliation(s)
- Michael Zhukovsky
- Institute of Industrial Ecology UB RAS, 620990, Sophy Kovalevskoy St, 20, Ekaterinburg, Russia
| | - Aleksandra Onishchenko
- Institute of Industrial Ecology UB RAS, 620990, Sophy Kovalevskoy St, 20, Ekaterinburg, Russia
| |
Collapse
|
163
|
Shimura T, Ando T, Narao M, Sasatani M, Kamiya K, Ushiyama A. Mechanism of turnover or persistence of radiation-induced myofibroblast in vitro. Cell Cycle 2020; 19:3375-3385. [PMID: 33225802 DOI: 10.1080/15384101.2020.1848063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We recently made an important discovery that radiation induces myofibroblasts, which play a role in radiation-related carcinogenesis via tumor microenvironment formation. Here, we investigated the threshold dose and the mechanisms of myofibroblast induction to assess adverse radiation effects on normal cells. Single-dose of healthy human fibroblasts in vitro promotes myofibroblast induction at high doses (≥ 5 Gy). In contrast, repeated low dose of fractionated radiation is at least equivalent to high-dose single radiation regarding myofibroblast induction. ROS play a pivotal role in the process of myofibroblast induction in normal tissue injury. Antioxidants, such as epicatechin and ascorbic acid can prevent myofibroblast induction by scavenging ROS. We further investigated the role of DNA damage responses (DDR) on myofibroblast induction. Blocking the DDR using DNA-PK or AKT inhibitors enhanced cellular sensitivity to radiation and facilitated myofibroblast induction, whereas an ATM inhibitor also enhanced radiation sensitivity but abrogated ROS accumulation and myofibroblast induction. In contrast to standard culture conditions, myofibroblasts remained after low or moderate doses of radiation (below 2.5 Gy) under growth-restricted conditions. In conclusion, the recovery of damaged cells from radiation is essential for myofibroblast clearance, which restores stromal cell dormancy and prevents tumor microenvironment formation. However, residual ROS, by way of sustaining myofibroblast presence, can facilitate tumor microenvironment formation. Targeting ROS using antioxidants is effective in the mitigation of radiation-related adverse effects, such as growth retardation and myofibroblast induction, and helps protect normal tissues.
Collapse
Affiliation(s)
- Tsutomu Shimura
- Department of Environmental Health, National Institute of Public Health , Saitama, Japan
| | - Takahito Ando
- Department of Hygienic Chemistry , Meiji Pharmaceutical University , Tokyo, Japan
| | - Momoka Narao
- Department of Hygienic Chemistry , Meiji Pharmaceutical University , Tokyo, Japan
| | - Megumi Sasatani
- Department of Experimental Oncology, Research Center for Radiation Genome Medicine, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University , Hiroshima, Japan
| | - Kenji Kamiya
- Department of Experimental Oncology, Research Center for Radiation Genome Medicine, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University , Hiroshima, Japan
| | - Akira Ushiyama
- Department of Environmental Health, National Institute of Public Health , Saitama, Japan
| |
Collapse
|
164
|
Harbron RW, Pasqual E. Ionising radiation as a risk factor for lymphoma: a review. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2020; 40:R151-R185. [PMID: 33017815 DOI: 10.1088/1361-6498/abbe37] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
The ability of ionising radiation to induce lymphoma is unclear. Here, we present a narrative review of epidemiological evidence of the risk of lymphoma, including chronic lymphocytic leukaemia (CLL) and multiple myeloma (MM), among various exposed populations including atomic bombing survivors, industrial and medical radiation workers, and individuals exposed for medical purposes. Overall, there is a suggestion of a positive dose-dependent association between radiation exposure and lymphoma. The magnitude of this association is highly imprecise, however, with wide confidence intervals frequently including zero risk. External comparisons tend to show similar incidence and mortality rates to the general population. Currently, there is insufficient information on the impact of age at exposure, high versus low linear energy transfer radiation, external versus internal or acute versus chronic exposures. Associations are stronger for males than females, and stronger for non-Hodgkin lymphoma and MM than for Hodgkin lymphoma, while the risk of radiation-induced CLL may be non-existent. This broad grouping of diverse diseases could potentially obscure stronger associations for certain subtypes, each with a different cell of origin. Additionally, the classification of malignancies as leukaemia or lymphoma may result in similar diseases being analysed separately, while distinct diseases are analysed in the same category. Uncertainty in cell of origin means the appropriate organ for dose response analysis is unclear. Further uncertainties arise from potential confounding or bias due to infectious causes and immunosuppression. The potential interaction between radiation and other risk factors is unknown. Combined, these uncertainties make lymphoma perhaps the most challenging malignancy to study in radiation epidemiology.
Collapse
Affiliation(s)
- Richard W Harbron
- Population Health Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- NIHR Health Protection Research Unit in Chemical and Radiation Threats and Hazards, Newcastle University, United Kingdom
- Barcelona Institute for Global Health, (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Elisa Pasqual
- Barcelona Institute for Global Health, (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
165
|
Bockwoldt B, Sugiyama H, Tsai K, Bhatti P, Brenner AV, Hu A, Kerr KF, Morenz E, French B, Phipps AI. Gastrointestinal Cancer Survival and Radiation Exposure among Atomic Bomb Survivors: The Life Span Study. Cancer Epidemiol Biomarkers Prev 2020; 30:412-418. [PMID: 33199439 DOI: 10.1158/1055-9965.epi-20-1239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/16/2020] [Accepted: 11/11/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Radiation exposure is an established risk factor for the development of several forms of cancer, including gastrointestinal cancers. However, few studies have investigated the relationship between prediagnostic radiation exposure and survival after cancer diagnosis. METHODS Participants in the Life Span Study (LSS) of atomic bomb survivors who were diagnosed with a first primary invasive stomach, colon, or rectal cancer between 1958 and 2009 were followed for mortality during 1958-2014. Cox regression models were used to calculate HRs and 95% confidence intervals (CI) for associations of radiation dose from atomic bomb exposure with survival (cancer-specific and overall) after cancer diagnosis. Analyses were adjusted for city of primary exposure, sex, age at diagnosis, and year of diagnosis. RESULTS We identified 7,728 eligible patients with cancer for analysis. We observed no statistically significant associations between radiation dose and cancer-specific survival among LSS participants with a gastrointestinal cancer. Higher radiation doses (≥1 Gy) were suggestively, but not significantly, associated with modestly poorer cancer-specific survival for colon cancer only (HR, 1.38; 95% CI, 0.90-2.12), and were associated with poorer overall survival regardless of cancer site. CONCLUSIONS Although radiation exposure is associated with increased risk of gastrointestinal cancer incidence and mortality, study results are inconclusive about an association between prediagnostic radiation exposure and survival after gastrointestinal cancer diagnosis. IMPACT Radiation exposure from the atomic bomb before gastrointestinal cancer diagnosis was not associated with cancer survival, but should be evaluated in relation to survival for other cancer types.
Collapse
Affiliation(s)
- Brandie Bockwoldt
- Department of Epidemiology, University of Washington, Seattle, Washington
| | - Hiromi Sugiyama
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima and Nagasaki, Japan
| | - Kevin Tsai
- Department of Epidemiology, University of Washington, Seattle, Washington
| | - Parveen Bhatti
- Cancer Control Research, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Alina V Brenner
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima and Nagasaki, Japan
| | - Audrey Hu
- Department of Epidemiology, University of Washington, Seattle, Washington
| | - Kathleen F Kerr
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Eric Morenz
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Benjamin French
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Amanda I Phipps
- Department of Epidemiology, University of Washington, Seattle, Washington.
| |
Collapse
|
166
|
Ataídes FG, Silva SFBR, Baldin JJCMDC. Radiation-Induced Optic Neuropathy: Literature Review. Neuroophthalmology 2020; 45:172-180. [PMID: 34194124 PMCID: PMC8210865 DOI: 10.1080/01658107.2020.1817946] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/04/2020] [Accepted: 08/25/2020] [Indexed: 10/23/2022] Open
Abstract
Radiation-induced optic neuropathy (RION) is a rare disease caused by exposure of the optic nerves to radiation during radiotherapy procedures for head and neck tumours. The purpose of this study was to review and summarise the epidemiology, risk factors, clinical presentations, pathphysiology characteristics, diagnosis, and management of RION. Its occurrence is associated with cumulative doses of radiation above 50 Gy, presence of multi-morbidities and the presence of concomitant chemotherapy and radiotherapy. It manifests with acute, painless, and monocular loss of vision, and these symptoms appear late after the radiation exposure. The diagnosis of the disease occurs by exclusion and, mainly, by the clinical analysis of the case associated with the time of radiation exposure. Treatment does not seem promising and there is not an effective cure. In this review, we mainly focus on compiling existing information on the topic and providing knowledge for early diagnosis and more efficient treatment.
Collapse
Affiliation(s)
- Fabrício Gomes Ataídes
- Biological Science and Health Centre, Federal University of Western Bahia, Barreiras, Brazil
| | | | | |
Collapse
|
167
|
Nakamura N. A hypothesis: radiation carcinogenesis may result from tissue injuries and subsequent recovery processes which can act as tumor promoters and lead to an earlier onset of cancer. Br J Radiol 2020; 93:20190843. [PMID: 31860335 PMCID: PMC8519633 DOI: 10.1259/bjr.20190843] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cancer risks from radiation can be observed as an increase in mortality when compared to a control group. However, it is unknown if this increased risk results from the induction of cancer or from an earlier onset of cancer. In mouse studies, it has been repeatedly shown that after an irradiation, the survival curve is shifted toward lower ages, but remains parallel to the control curve, and the extent of the shift in time to lower ages is dose-dependent. This shift is not satisfactorily explained by the induction model which assumes that cancers in the exposed group consist of spontaneous and induced events. Consequently, it seems that this shift could be interpreted to mean that all animals in the exposed group had suffered from life shortening. Under this scenario, however, it turns out that the radiation effects can no longer be interpreted as the result of oncogenic mutations, because these effects would have to involve all tumors, and the effectiveness of radiation changes with the dose. This leads to the speculation that radiation exposures induce a broad range of tissue injuries, and that these injuries are subsequently subjected to longlasting systemic recovery processes which act as promoters for tumor cells. In other words, potential cancer stem cells which were located in the irradiated field can escape oncogenic damage but undergo stimulation later in life toward the development of malignancy from radiation-induced activated microenvironment. This is an unusual form of the non-targeted or bystander effects of radiation. It is worth noting that this model suggests that there could be a path or paths which could be used to intervene in the process of post-exposure carcinogenesis, and that cancer risks at low doses could be described as days or weeks of life lost.
Collapse
Affiliation(s)
- Nori Nakamura
- Dept. of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima city, Japan
| |
Collapse
|
168
|
Das IJ, Kalapurakal JA, Mittal BB. Caution warranted for low-dose radiation therapy for Covid-19. Br J Radiol 2020; 94:20200466. [PMID: 33112664 PMCID: PMC7774700 DOI: 10.1259/bjr.20200466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Covid-19 is a morbid respiratory disease that has caused desperate times on a global scale due to the lack of any effective medical treatment. Some in the radiation community are actively proposing low-dose radiation therapy (LDRT) for managing the viral pneumonia associated with Covid-19. This commentary provides a rationale for exercising caution against such a decision as the efficacy of LDRT for viral diseases is unknown, while its long-term adverse risks are well known.
Collapse
Affiliation(s)
- Indra J Das
- Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | | | | |
Collapse
|
169
|
Furuta H, Nishide A, Kudo S, Saigusa S. ESTIMATION OF PHOTON ENERGY AND DIRECTION DISTRIBUTIONS AT JAPANESE NUCLEAR POWER PLANTS BASED ON LITERATURE SURVEY FOR J-EPISODE STUDY. RADIATION PROTECTION DOSIMETRY 2020; 190:372-391. [PMID: 32885239 PMCID: PMC7566493 DOI: 10.1093/rpd/ncaa111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/05/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
In order to reconstruct organ-absorbed dose from recorded dose for risk estimation in nuclear worker cohort, the preceding study of the International Agency for Research on Cancer (IARC) 15-Country Collaborative Study estimated the organ dose conversion factor from the recorded dose of Hp(10) under the assumption that on average, in the nuclear power plants (NPPs), 10% of the dose received by workers was due to photon energies ranging from 100 to 300 keV and 90% from photon energies ranging from 300 to 3000 keV, with the average geometry being 50% in the antero-posterior geometry and 50% in the isotropic geometry. Similar examination was conducted at the Japanese Epidemiological Study on Low-Dose Radiation Effects (J-EPISODE). Literature survey disclosed that Japanese electric power companies had jointly conducted the research on energy distribution and incidence direction distribution of gamma rays in working environments during periodical inspection and maintenance as well as during operation in the 1980s. The analysis of the survey results on photon energy and geometry distribution of Japanese NPPs demonstrated appropriateness in applying the IARC study assumption for nuclear workers in Japan and reconstructing organ-absorbed dose in the J-EPISODE. These results in Japan also provide strong evidence to support the robustness and generality of the IARC study assumption, which was estimated based on the judgment of experts at nuclear facilities around the world.
Collapse
Affiliation(s)
- Hiroshige Furuta
- Institute of Radiation Epidemiology, Radiation Effects Association, 1-9-16 Kaji-cho, Chiyoda-ku, Tokyo 101-0044 Japan
| | - Akemi Nishide
- Institute of Radiation Epidemiology, Radiation Effects Association, 1-9-16 Kaji-cho, Chiyoda-ku, Tokyo 101-0044 Japan
| | - Shin'ichi Kudo
- Institute of Radiation Epidemiology, Radiation Effects Association, 1-9-16 Kaji-cho, Chiyoda-ku, Tokyo 101-0044 Japan
| | - Shin Saigusa
- Institute of Radiation Epidemiology, Radiation Effects Association, 1-9-16 Kaji-cho, Chiyoda-ku, Tokyo 101-0044 Japan
| |
Collapse
|
170
|
Doi K, Kai M, Suzuki K, Imaoka T, Sasatani M, Tanaka S, Yamada Y, Kakinuma S. Estimation of Dose-Rate Effectiveness Factor for Malignant Tumor Mortality: Joint Analysis of Mouse Data Exposed to Chronic and Acute Radiation. Radiat Res 2020; 194:500-510. [DOI: 10.1667/rade-19-00003.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 08/06/2020] [Indexed: 11/03/2022]
Affiliation(s)
| | - Michiaki Kai
- Environmental Health Science Division, Oita University of Nursing and Health Sciences, Oita, Japan
| | - Keiji Suzuki
- Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | | | - Megumi Sasatani
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Satoshi Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, Aomori, Japan
| | - Yutaka Yamada
- Department of Radioecology and Fukushima Project, Center for Advanced Radiation Emergency Medicine, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | | |
Collapse
|
171
|
The Risk of Cancer from CT Scans and Other Sources of Low-Dose Radiation: A Critical Appraisal of Methodologic Quality. Prehosp Disaster Med 2020; 35:3-16. [PMID: 32009606 DOI: 10.1017/s1049023x1900520x] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Concern exists that radiation exposure from computerized tomography (CT) will cause thousands of malignancies. Other experts share the same perspective regarding the risk from additional sources of low-dose ionizing radiation, such as the releases from Three Mile Island (1979; Pennsylvania USA) and Fukushima (2011; Okuma, Fukushima Prefecture, Japan) nuclear power plant disasters. If this premise is false, the fear of cancer leading patients and physicians to avoid CT scans and disaster responders to initiate forced evacuations is unfounded. STUDY OBJECTIVE This investigation provides a quantitative evaluation of the methodologic quality of studies to determine the evidentiary strength supporting or refuting a causal relationship between low-dose radiation and cancer. It will assess the number of higher quality studies that support or question the role of low-dose radiation in oncogenesis. METHODS This investigation is a systematic, methodologic review of articles published from 1975-2017 examining cancer risk from external low-dose x-ray and gamma radiation, defined as less than 200 millisievert (mSv). Following the PRISMA guidelines, the authors performed a search of the PubMed, Cochrane, Scopus, and Web of Science databases. Methodologies of selected articles were scored using the Newcastle Ottawa Scale (NOS) and a tool identifying 11 lower quality indicators. Manuscript methodologies were ranked as higher quality if they scored no lower than seven out of nine on the NOS and contained no more than two lower quality indicators. Investigators then characterized articles as supporting or not supporting a causal relationship between low-dose radiation and cancer. RESULTS Investigators identified 4,382 articles for initial review. A total of 62 articles met all inclusion/exclusion criteria and were evaluated in this study. Quantitative evaluation of the manuscripts' methodologic strengths found 25 studies met higher quality criteria while 37 studies met lower quality criteria. Of the 25 studies with higher quality methods, 21 out of 25 did not support cancer induction by low-dose radiation (P = .0003). CONCLUSIONS A clear preponderance of articles with higher quality methods found no increased risk of cancer from low-dose radiation. The evidence suggests that exposure to multiple CT scans and other sources of low-dose radiation with a cumulative dose up to 100 mSv (approximately 10 scans), and possibly as high as 200 mSv (approximately 20 scans), does not increase cancer risk.
Collapse
|
172
|
Little MP, Pawel D, Misumi M, Hamada N, Cullings HM, Wakeford R, Ozasa K. Lifetime Mortality Risk from Cancer and Circulatory Disease Predicted from the Japanese Atomic Bomb Survivor Life Span Study Data Taking Account of Dose Measurement Error. Radiat Res 2020; 194:259-276. [PMID: 32942303 PMCID: PMC7646983 DOI: 10.1667/rr15571.1] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/24/2020] [Indexed: 11/03/2022]
Abstract
Dosimetric measurement error is known to potentially bias the magnitude of the dose response, and can also affect the shape of dose response. In this report, generalized relative and absolute rate models are fitted to the latest Japanese atomic bomb survivor solid cancer, leukemia and circulatory disease mortality data (followed from 1950 through 2003), with the latest (DS02R1) dosimetry, using Bayesian techniques to adjust for errors in dose estimates and assessing other model uncertainties. Linear-quadratic models are fitted and used to assess lifetime mortality risks for contemporary UK, USA, French, Russian, Japanese and Chinese populations. For a test dose of 0.1 Gy absorbed dose weighted by neutron relative biological effectiveness, solid cancer, leukemia and circulatory disease mortality risks for a UK population using a generalized linear-quadratic relative rate model were estimated to be 3.88% Gy-1 [95% Bayesian credible interval (BCI): 1.17, 6.97], 0.35% Gy-1 (95% BCI: -0.03, 0.78) and 2.24% Gy-1 (95% BCI: -0.17, 13.76), respectively. Using a generalized absolute rate linear-quadratic model at 0.1 Gy, the lifetime risks for these three end points were estimated to be 3.56% Gy-1 (95% BCI: 0.54, 6.78), 0.41% Gy-1 (95% BCI: 0.01, 0.86) and 1.56% Gy-1 (95% BCI: -1.10, 7.21), respectively. There was substantial evidence of curvature for solid cancer (in particular, the group of solid cancers excluding lung, breast and stomach cancers) and leukemia, so that for solid cancer and leukemia, estimates of excess risk per unit dose were nearly doubled by increasing the dose from 0.01 to 1.0 Gy, with most of the increase occurring in the interval from 0.1 to 1.0 Gy. For circulatory disease, the dose-response curvature was inverse, so that risk per unit dose was nearly halved by going from 0.01 t o 1.0 Gy weighted absorbed dose, although there were substantial uncertainties. In general, there were higher radiation risks for females compared to males. This was true for solid cancer and circulatory disease overall, as well as for lung, breast, stomach and the group of other solid cancers, and was the case whether relative or absolute rate projection models were employed; however, for leukemia this pattern was reversed. Risk estimates varied somewhat between populations, with lower cancer risks in aggregate for China and Russia, but higher circulatory disease risks for Russia, particularly using the relative rate model. There was more pronounced variation for certain cancer sites and certain types of projection models, so that breast cancer risk was markedly lower in China and Japan using a relative rate model, but the opposite was the case for stomach cancer. There was less variation between countries using the absolute rate models for stomach cancer and breast cancer, but this was not the case for lung cancer and the group of other solid cancers, or for circulatory disease.
Collapse
Affiliation(s)
- Mark P. Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, Maryland 20892-9778
| | - David Pawel
- Office of Air and Radiation, Environmental Protection Agency, Washington, DC 20004
| | | | - Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Tokyo 201-8511, Japan
| | | | - Richard Wakeford
- Centre for Occupational and Environmental Health, The University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Kotaro Ozasa
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima 732-0815, Japan
| |
Collapse
|
173
|
Oakley PA, Navid Ehsani N, Harrison DE. 5 Reasons Why Scoliosis X-Rays Are Not Harmful. Dose Response 2020; 18:1559325820957797. [PMID: 32963506 PMCID: PMC7488912 DOI: 10.1177/1559325820957797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
Radiographic imaging for scoliosis screening, diagnosis, treatment, and management is the gold standard assessment tool. Scoliosis patients receive many repeat radiographs, typically 10-25 and as many as 40-50, equating to a maximum 50 mGy of cumulative exposure. It is argued this amount of radiation exposure is not carcinogenic to scoliosis patients for 5 main reasons: 1. Estimated theoretical cumulative effective doses remain below the carcinogenic dose threshold; 2. Scoliosis patient x-rays are delivered in serial exposures and therefore, mitigate any potential cumulative effect; 3. Linear no-threshold cancer risk estimates from scoliosis patient cohorts are flawed due to faulty science; 4. Standardized incidence/mortality ratios demonstrating increased cancers from aged scoliosis cohorts are confounded by the effects of the disease entity itself making it impossible to claim cause and effect resulting from low-dose radiation exposures from spinal imaging; 5. Children are not more susceptible to radiation damage than adults. Radiophobia concerns from patients, parents, and doctors over repeat imaging for scoliosis treatment and management is not justified; it adds unnecessary anxiety to the patient (and their parents) and interferes with optimal medical management. X-rays taken in the evidence-based management of scoliosis should be taken without hesitation or concern about negligible radiation exposures.
Collapse
|
174
|
Takahashi N, Misumi M, Murakami H, Niwa Y, Ohishi W, Inaba T, Nagamachi A, Suzuki G. Association between low doses of ionizing radiation, administered acutely or chronically, and time to onset of stroke in a rat model. JOURNAL OF RADIATION RESEARCH 2020; 61:666-673. [PMID: 32748938 PMCID: PMC7482173 DOI: 10.1093/jrr/rraa050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/10/2020] [Indexed: 06/10/2023]
Abstract
Exposure to high-doses of ionizing radiation has been reported to be associated with the risk of stroke. However, risks associated with lower dose exposures remain unclear, and there is little information available for the risk modification according to the dose-rate. There are few studies using animal models which might be able to provide complementary information on this association. In this study, the male stroke-prone spontaneously hypertensive rat (SHRSP) was used as a model animal. The rats were acutely irradiated with doses between 0 and 1.0 Gy or chronically irradiated with a cumulative dose of 0.5 or 1.0 Gy (at a dose rate of 0.05 or 0.1 Gy/day, respectively). The onset time of stroke related symptoms in SHRSP was used as an endpoint for evaluating the effects of low dose and the low dose-rate gamma-ray exposures. With respect to acute exposure, the time to the onset of stroke in the irradiated rats suggested the presence of a threshold around 0.1 Gy. For the low dose-rate chronically exposed, no significant increase in stroke symptom was observed. These findings are novel and demonstrate that the SHRSP system can be used to determine the association between the risk of stroke and radiation exposure with high sensitivity. Moreover, these studies provide important information regarding the association between the low dose and low dose-rate radiation exposure and circulatory diseases, especially stroke.
Collapse
Affiliation(s)
| | - Munechika Misumi
- Department of Statistics, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Hideko Murakami
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Yasuharu Niwa
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Waka Ohishi
- Clinical Studies (Hiroshima), Radiation Effects Research Foundation (RERF), Hiroshima, Japan
| | - Toshiya Inaba
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Akiko Nagamachi
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Gen Suzuki
- International University of Health and Welfare Clinic, Otawara, Tochigi, Japan
| |
Collapse
|
175
|
Peralta AA, Link MS, Schwartz J, Luttmann-Gibson H, Dockery DW, Blomberg A, Wei Y, Mittleman MA, Gold DR, Laden F, Coull BA, Koutrakis P. Exposure to Air Pollution and Particle Radioactivity With the Risk of Ventricular Arrhythmias. Circulation 2020; 142:858-867. [PMID: 32795087 PMCID: PMC7484430 DOI: 10.1161/circulationaha.120.046321] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Individuals are exposed to air pollution and ionizing radiation from natural sources through inhalation of particles. This study investigates the association between cardiac arrhythmias and short-term exposures to fine particulate matter (particulate matter ≤2.5 µm aerodynamic diameter; PM2.5) and particle radioactivity. METHODS Ventricular arrhythmic events were identified among 176 patients with dual-chamber implanted cardioverter-defibrillators in Boston, Massachusetts between September 2006 and June 2010. Patients were assigned exposures based on residential addresses. Daily PM2.5 levels were estimated at 1-km×1-km grid cells from a previously validated prediction model. Particle gross β activity was used as a surrogate for particle radioactivity and was measured from several monitoring sites by the US Environmental Protection Agency's monitoring network. The association of the onset of ventricular arrhythmias (VA) with 0- to 21-day moving averages of PM2.5 and particle radioactivity (2 single-pollutant models and a 2-pollutant model) before the event was examined using time-stratified case-crossover analyses, adjusted for dew point and air temperatures. RESULTS A total of 1,050 VA were recorded among 91 patients, including 123 sustained VA among 25 of these patients. In the single-pollutant model of PM2.5, each interquartile range increase in daily PM2.5 levels for a 21-day moving average was associated with 39% higher odds of a VA event (95% CI, 12%-72%). In the single-pollutant model of particle radioactivity, each interquartile range increase in particle radioactivity for a 2-day moving average was associated with 13% higher odds of a VA event (95% CI, 1%-26%). In the 2-pollutant model, for the same averaging window of 21 days, each interquartile range increase in daily PM2.5 was associated with an 48% higher odds of a VA event (95% CI, 15%-90%), and each interquartile range increase of particle radioactivity with a 10% lower odds of a VA event (95% CI, -29% to 14%). We found that with higher levels of particle radioactivity, the effect of PM2.5 on VAs is reduced. CONCLUSIONS In this high-risk population, intermediate (21-day) PM2.5 exposure was associated with higher odds of a VA event onset among patients with known cardiac disease and indication for implanted cardioverter-defibrillator implantation independently of particle radioactivity.
Collapse
Affiliation(s)
- Adjani A. Peralta
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Mark S. Link
- UTSouthwestern Medical Center, Department of Internal Medicine, Division of Cardiology, Cardiac Arrhythmia Service, Dallas, TX
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Heike Luttmann-Gibson
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Douglas W. Dockery
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Annelise Blomberg
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Yaguang Wei
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Murray A. Mittleman
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Cardiovascular Epidemiology Research Unit, Beth Israel Deaconess Medical Center, Boston, MA
| | - Diane R. Gold
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Francine Laden
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Brent A. Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
176
|
French B, Sadakane A, Cologne J, Mabuchi K, Ozasa K, Preston DL. Misclassification of primary liver cancer in the Life Span Study of atomic bomb survivors. Int J Cancer 2020; 147:1294-1299. [PMID: 31985032 PMCID: PMC8015398 DOI: 10.1002/ijc.32887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/23/2019] [Accepted: 01/21/2020] [Indexed: 12/24/2022]
Abstract
Primary liver cancer is difficult to diagnose accurately at death, due to metastases from nearby organs and to concomitant diseases, such as chronic hepatitis and cirrhosis. Trends in diagnostic accuracy could affect radiation risk estimates for incident liver cancer by altering background rates or by impacting risk modification by sex and age. We quantified the potential impact of death-certificate inaccuracies on radiation risk estimates for liver cancer in the Life Span Study of atomic bomb survivors. True-positive and false-negative rates were obtained from a previous study that compared death-certificate causes of death with those based on pathological review, from 1958 to 1987. We assumed various scenarios for misclassification rates after 1987. We obtained estimated true positives and estimated false negatives by stratified sampling from binomial distributions with probabilities given by the true-positive and false-negative rates, respectively. Poisson regression methods were applied to highly stratified person-year tables of corrected case counts and accrued person years. During the study period (1958-2009), there were 1,885 cases of liver cancer, which included 383 death-certificate-only (DCO) cases; 1,283 cases with chronic liver disease as the underlying cause of death; and 150 DCO cases of pancreatic cancer among 105,444 study participants. Across the range of scenarios considered, radiation risk estimates based on corrected case counts were attenuated, on average, by 13-30%. Our results indicated that radiation risk estimates for liver cancer were potentially sensitive to death-certificate inaccuracies. Additional data are needed to inform misclassification rates in recent years.
Collapse
Affiliation(s)
- Benjamin French
- Department of Statistics, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Atsuko Sadakane
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - John Cologne
- Department of Statistics, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Kiyohiko Mabuchi
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Kotaro Ozasa
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | | |
Collapse
|
177
|
Chartier H, Fassier P, Leuraud K, Jacob S, Baudin C, Laurier D, Bernier MO. Occupational low-dose irradiation and cancer risk among medical radiation workers. Occup Med (Lond) 2020; 70:476-484. [DOI: 10.1093/occmed/kqaa130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Background
Medical workers are the largest group of workers occupationally exposed to low doses of ionizing radiation (IR) worldwide.
Aims
This review presents all the cohorts of medical workers exposed in the world and summarizes cancer risks associated with radiation exposure in this population.
Methods
Epidemiological studies on health professionals exposed to IR published from 1975 to 2019 were reviewed. Strength of evidence was assessed according to the modified Royal College of General Practitioners three-star system.
Results
Among the 16 epidemiological studies focusing on cancers from 11 cohorts among medical staff exposed to radiation, higher risks of cancer were observed for pre-1950 exposure and for medical workers who performed fluoroscopically guided interventional procedures or radionuclides procedures compared to those who did not. However, strength of evidence supporting the associations remains moderate as several methodological limits including the lack of dosimetry data, lifestyle factors and recent updates may obscure the link between medical occupational exposure and cancer occurrence.
Conclusions
Excess risk of cancer is suspected for high and former exposures. The more highly exposed professions, i.e. interventional physicians and nuclear medicine workers, should be monitored carefully. Collaborative projects aiming to increase the quantity and quality of information of the studied populations would be a key point
Collapse
Affiliation(s)
- H Chartier
- PSE-SANTE/SESANE/LEPID, Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
- Percy Hospital, Radiological Protection Service of the Armed Forces (SPRA), Clamart, France
| | - P Fassier
- PSE-SANTE/SESANE/LEPID, Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - K Leuraud
- PSE-SANTE/SESANE/LEPID, Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - S Jacob
- PSE-SANTE/SESANE/LEPID, Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - C Baudin
- PSE-SANTE/SESANE/LEPID, Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - D Laurier
- PSE-SANTE/SESANE/LEPID, Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - M-O Bernier
- PSE-SANTE/SESANE/LEPID, Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| |
Collapse
|
178
|
Ivanov VK, Karpenko SV, Kashcheev VV, Lovachev SS, Kashcheeva PV, Shchukina NV, Tumanov KA, Kochergina EV, Maksioutov MA. Relationship between follow-up periods and the low-dose ranges with statistically significant radiation-induced risk of all solid cancers in the Russian cohort of Chernobyl emergency workers. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2020; 59:415-421. [PMID: 32468176 DOI: 10.1007/s00411-020-00850-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Radiation-induced risks for all solid cancer incidence and mortality were studied in the cohort of Russian Chernobyl emergency workers. The cohort included 69,440 persons with documented individual radiation dose accrued over the time of working in the Chernobyl zone. The mean age at entry into the zone of recovery operations was 33.9 years and accumulated radiation dose was 132.9 mGy. A total of 6981 solid cancer incident cases and 4272 deaths occurred in this cohort from 1992 to 2017. Three follow-up periods were studied: 1992-2009, 1992-2013, and 1992-2017. For each follow-up period, the lowest dose range with statistically significant (p < 0.05) radiation-induced risk of all solid cancer incidence and mortality were obtained. For the incidence of all solid cancer during the follow-up period 1992-2009, this lowest dose range was estimated to be 0-250 mGy with an excess relative risk per dose of ERR Gy-1 = 0.51 and 95% confidence interval (CI) (0.02; 1.05) Gy-1. For the period 1992-2013, the lowest dose range was 0-175 mGy with ERR Gy-1 = 0.85 (95% CI 0.03; 1.78), while for the whole follow-up period 1992-2017, it was 0-175 mGy with ERR Gy-1 = 0.81 (95% CI 0.08; 1.62). For mortality from all solid cancers during the follow-up period 1992-2009, the lowest dose range with statistically significant radiation-induced risk was estimated to be 0-225 mGy with ERR Gy-1 = 1.07 (95% CI 0.31; 0.97). For the period 1992-2013, the lowest dose range was 0-225 mGy with ERR Gy-1 = 0.86 (95% CI 0.23; 1.58), while for the whole follow-up period 1992-2017, the lowest dose range was 0-200 mGy with ERR Gy-1 = 0.82 (95% CI 0.10; 1.65). Thus, it was found that the minimal level of significant exposure (Dmin), for which a statistically significant radiation-induced risk of all solid cancers was obtained for Russian emergency workers (with individual doses of 0 - Dmin), decreases with increasing duration of cohort observation, both for cancer incidence and mortality.
Collapse
Affiliation(s)
- V K Ivanov
- A. Tsyb Medical Radiological Research Center (A. Tsyb MRRC), Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 4 Korolyov Street, 249035, Obninsk, Kaluga Region, Russia.
| | - S V Karpenko
- A. Tsyb Medical Radiological Research Center (A. Tsyb MRRC), Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 4 Korolyov Street, 249035, Obninsk, Kaluga Region, Russia
| | - V V Kashcheev
- A. Tsyb Medical Radiological Research Center (A. Tsyb MRRC), Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 4 Korolyov Street, 249035, Obninsk, Kaluga Region, Russia
| | - S S Lovachev
- A. Tsyb Medical Radiological Research Center (A. Tsyb MRRC), Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 4 Korolyov Street, 249035, Obninsk, Kaluga Region, Russia
| | - P V Kashcheeva
- A. Tsyb Medical Radiological Research Center (A. Tsyb MRRC), Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 4 Korolyov Street, 249035, Obninsk, Kaluga Region, Russia
| | - N V Shchukina
- A. Tsyb Medical Radiological Research Center (A. Tsyb MRRC), Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 4 Korolyov Street, 249035, Obninsk, Kaluga Region, Russia
| | - K A Tumanov
- A. Tsyb Medical Radiological Research Center (A. Tsyb MRRC), Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 4 Korolyov Street, 249035, Obninsk, Kaluga Region, Russia
| | - E V Kochergina
- A. Tsyb Medical Radiological Research Center (A. Tsyb MRRC), Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 4 Korolyov Street, 249035, Obninsk, Kaluga Region, Russia
| | - M A Maksioutov
- A. Tsyb Medical Radiological Research Center (A. Tsyb MRRC), Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 4 Korolyov Street, 249035, Obninsk, Kaluga Region, Russia
| |
Collapse
|
179
|
Furuta H, Tsujimura N, Nishide A, Kudo S, Saigusa S. CONVERSION FACTOR FROM DOSEMETER READING TO AIR KERMA FOR NUCLEAR WORKER USING ANTHROPOMORPHIC PHANTOM FOR FURTHER CONVERSION FROM AIR KERMA TO ORGAN-ABSORBED DOSE. RADIATION PROTECTION DOSIMETRY 2020; 189:371-383. [PMID: 32364603 PMCID: PMC7366797 DOI: 10.1093/rpd/ncaa051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/03/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Estimation of cancer risk based on the organ-absorbed dose is underway for the Japanese Epidemiological Study on Low-Dose Radiation Effects (J-EPISODE). The reconstruction method for the organ-absorbed dose follows the approach adopted in the IARC 15-Country Collaborative Study, which examined the dosemeter response to photon exposure for the old film badge (FB) type, a multi-element FB and a thermoluminescence dosemeter. Until 2000, the dosemeters used in Japan were almost the same in the IARC study, so IARC study data could be used as they were. However, since 2000, the type of dosemeter has been replaced with active personal dosemeters (hereafter called electronic personal dosemeters), radio-photoluminescent glass dosemeters (Glass badge) and optically stimulated luminescence dosemeters (Luminess badge). Hence, it was necessary to collect these data again. A dosemeter response experiment was conducted using a device that irradiated an anthropomorphic phantom in the Japan Atomic Energy Agency calibration laboratories. The aim of the paper is to provide a conversion factor from reading in terms of Hp(10) to air kerma for realistic conditions for further conversion from air kerma to organ-absorbed dose. The obtained dosemeter responses for the dosemeter types currently used in Japan were consistent with those in the IARC study. These data will be utilized for J-EPISODE in reconstructing the organ-absorbed dose.
Collapse
Affiliation(s)
- Hiroshige Furuta
- Institute of Radiation Epidemiology, Radiation Effects Association, 1-9-16 Kaji-cho, Chiyoda-ku, Tokyo 101-0044, Japan
| | - Norio Tsujimura
- Nuclear Fuel Cycle Engineering Laboratories, Japan Atomic Energy Agency, Tokai-mura, Ibaraki 319-1194, Japan
| | - Akemi Nishide
- Institute of Radiation Epidemiology, Radiation Effects Association, 1-9-16 Kaji-cho, Chiyoda-ku, Tokyo 101-0044, Japan
| | - Shin’ichi Kudo
- Institute of Radiation Epidemiology, Radiation Effects Association, 1-9-16 Kaji-cho, Chiyoda-ku, Tokyo 101-0044, Japan
| | - Shin Saigusa
- Institute of Radiation Epidemiology, Radiation Effects Association, 1-9-16 Kaji-cho, Chiyoda-ku, Tokyo 101-0044, Japan
| |
Collapse
|
180
|
Pasqual E, Turner MC, Gracia-Lavedan E, Casabonne D, Benavente Y, Chef IT, Maynadié M, Cocco P, Staines A, Foretova L, Nieters A, Boffetta P, Brennan P, Cardis E, de Sanjose S. Association of ionizing radiation dose from common medical diagnostic procedures and lymphoma risk in the Epilymph case-control study. PLoS One 2020; 15:e0235658. [PMID: 32649712 PMCID: PMC7351167 DOI: 10.1371/journal.pone.0235658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/21/2020] [Indexed: 11/19/2022] Open
Abstract
Medical diagnostic X-rays are an important source of ionizing radiation (IR) exposure in the general population; however, it is unclear if the resulting low patient doses increase lymphoma risk. We examined the association between lifetime medical diagnostic X-ray dose and lymphoma risk, taking into account potential confounding factors, including medical history. The international Epilymph study (conducted in the Czech-Republic, France, Germany, Ireland, Italy, and Spain) collected self-reported information on common diagnostic X-ray procedures from 2,362 lymphoma cases and 2,465 frequency-matched (age, sex, country) controls. Individual lifetime cumulative bone marrow (BM) dose was estimated using time period-based dose estimates for different procedures and body parts. The association between categories of BM dose and lymphoma risk was examined using unconditional logistic regression models adjusting for matching factors, socioeconomic variables, and the presence of underlying medical conditions (atopic, autoimmune, infectious diseases, osteoarthritis, having had a sick childhood, and family history of lymphoma) as potential confounders of the association. Cumulative BM dose was low (median 2.25 mGy) and was not positively associated with lymphoma risk. Odds ratios (ORs) were consistently less than 1.0 in all dose categories compared to the reference category (less than 1 mGy). Results were similar after adjustment for potential confounding factors, when using different exposure scenarios, and in analyses by lymphoma subtype and by type of control (hospital-, population-based). Overall no increased risk of lymphoma was observed. The reduced ORs may be related to unmeasured confounding or other sources of systematic bias.We found little evidence that chronic medical conditions confound lymphoma risk and medical radiation associations.
Collapse
Affiliation(s)
- Elisa Pasqual
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Michelle C. Turner
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Canada
| | - Esther Gracia-Lavedan
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Delphine Casabonne
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Unit of Infections and Cancer, Cancer Epidemiology Research Programme, IDIBELL, Catalan Institute of Oncology, Barcelona, Spain
| | - Yolanda Benavente
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Unit of Infections and Cancer, Cancer Epidemiology Research Programme, IDIBELL, Catalan Institute of Oncology, Barcelona, Spain
| | - Isabelle Thierry Chef
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Marc Maynadié
- Registre des Hémopathies Malignes de Côte d’Or INSERM U 1231, Université de Bourgogne Franche-Comté et CHU Dijon-Bourgogne, Dijon, France
| | - Pierluigi Cocco
- Department of Public Health, Clinical and Molecular Medicine, Occupational Health Section, University of Cagliari, Cagliari, Italy
| | - Anthony Staines
- School of Nursing and Human Science, Dublin City University, Glasnevin, Dublin, Ireland
| | - Lenka Foretova
- Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute and MF MU, Brno, Czech Republic
| | - Alexandra Nieters
- Centre of Chronic Immunodeficiency, Molecular Epidemiology, University Medical Center Freiburg, Freiburg, Germany
| | - Paolo Boffetta
- Tisch Cancer Institute and Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Paul Brennan
- IARC, International Agency for Research on Cancer, Lyon, France
| | - Elisabeth Cardis
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Silvia de Sanjose
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Unit of Infections and Cancer, Cancer Epidemiology Research Programme, IDIBELL, Catalan Institute of Oncology, Barcelona, Spain
| |
Collapse
|
181
|
Velazquez-Kronen R, Gilbert ES, Linet MS, Moysich KB, Freudenheim JL, Wactawski-Wende J, Simon SL, Cahoon EK, Alexander BH, Doody MM, Kitahara CM. Lung cancer mortality associated with protracted low-dose occupational radiation exposures and smoking behaviors in U.S. radiologic technologists, 1983-2012. Int J Cancer 2020; 147:3130-3138. [PMID: 32506420 DOI: 10.1002/ijc.33141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 04/23/2020] [Accepted: 05/20/2020] [Indexed: 11/09/2022]
Abstract
In the Japanese atomic bomb survivors, risk of lung cancer has been shown to increase with greater acute exposure to ionizing radiation. Although similar findings have been observed in populations exposed to low-dose, protracted radiation, such studies lack information on cigarette smoking history, a potential confounder. In a cohort of 106 068 U.S. radiologic technologists, we examined the association between estimated cumulative lung absorbed dose from occupational radiation exposure and lung cancer mortality. Poisson regression models, adjusted for attained age, sex, birth cohort, pack-years smoked and years since quitting smoking, were used to calculate linear excess relative risks (ERR) per 100 mGy, using time-dependent cumulative lung absorbed dose, lagged 10 years. Mean cumulative absorbed dose to the lung was 25 mGy (range: 0-810 mGy). During the 1983 to 2012 follow-up, 1090 participants died from lung cancer. Greater occupational radiation lung dose was not associated with lung cancer mortality overall (ERR per 100 mGy: -0.02, 95% CI: <0-0.13). However, significant dose-response relationships were observed for some subgroups, which might be false-positive results given the number of statistical tests performed. As observed in other studies of radiation and smoking, the interaction between radiation and smoking appeared to be sub-multiplicative with an ERR per 100 mGy of 0.41 (95% CI: 0.01-1.15) for those who smoked <20 pack-years and -0.03 (95% CI: <0-0.15) for those who smoked ≥20 pack-years. Our study provides some evidence that greater protracted radiation exposure in the low-dose range is positively associated with lung cancer mortality.
Collapse
Affiliation(s)
- Raquel Velazquez-Kronen
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, USA.,Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Ethel S Gilbert
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, USA
| | - Martha S Linet
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, USA
| | - Kirsten B Moysich
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Jo L Freudenheim
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Jean Wactawski-Wende
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Steven L Simon
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, USA
| | - Elizabeth K Cahoon
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, USA
| | - Bruce H Alexander
- Division of Environmental Health Sciences, University of Minnesota School of Public Health, Minneapolis, Minnesota, USA
| | - Michele M Doody
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, USA
| | - Cari M Kitahara
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, USA
| |
Collapse
|
182
|
Beyer T, Sasaki Y. A Conversation Between Yasuhito Sasaki and Thomas Beyer. J Nucl Med 2020; 61:940-942. [PMID: 32611711 DOI: 10.2967/jnumed.120.245316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Thomas Beyer
- QIMP Team, Medical University Vienna, Vienna, Austria; and
| | - Yasuhito Sasaki
- Research Center for Radiation Oncology in the Clinical Research Center at Shonan Kamakura General Hospital, Kamakura, Japan
| |
Collapse
|
183
|
Kaiser JC, Misumi M, Furukawa K. Biologically-based modeling of radiation risk and biomarker prevalence for papillary thyroid cancer in Japanese a-bomb survivors 1958-2005. Int J Radiat Biol 2020; 97:19-30. [PMID: 32573332 DOI: 10.1080/09553002.2020.1784488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE Thyroid cancer of papillary histology (PTC) is the dominant type in radio-epidemiological cohorts established after nuclear accidents or warfare. Studies on post-Chernobyl PTC and on thyroid cancer in the life span study (LSS) of Japanese a-bomb survivors consistently revealed high radiation risk after exposure during childhood and adolescence. For post-Chernobyl risk assessment overexpression of the CLIP2 gene was proposed as molecular biomarker to separate radiogenic from sporadic PTC. Based on such binary marker a biologically-based risk model of PTC carcinogenesis has been developed for observational Chernobyl data. The model featured two independent molecular pathways of disease development, of which one was associated with radiation exposure. To gain credibility the concept for a mechanistic risk model must be based on general biological features which transcend findings in a single cohort. The purpose of the present study is therefore to demonstrate portability of the model concept by application to PTC incidence data in the LSS. By exploiting the molecular two-path concept we improve the determination of the probability of radiation causing cancer (POC). MATERIALS AND METHODS The current analysis uses thyroid cancer incidence data of the LSS with thyroid cancer diagnoses and papillary histology (n = 292) from the follow-up period between 1958 and 2005. Risk analysis was performed with both descriptive and biologically-based models. RESULTS Judged by goodness-of-fit all applied models described the data almost equally well. They yielded similar risk estimates in cohorts post-Chernobyl and LSS. The preferred mechanistic model was selected by biological plausibility. It reflected important features of an imperfect radiation marker which are not easily addressed by descriptive models. Precise model predictions of marker prevalence in strata of epidemiological covariables can be tested by molecular measurements. Application of the radiation-related molecular pathway from our preferred model in retrospective risk assessment decreases the threshold dose for 50% POC from 0.33 (95% confidence interval (CI) 0.18; 0.64) Gy to 0.04 (95% CI 0.01; 0.19) Gy for females and from 0.43 (95% CI 0.17; 1.84) Gy to 0.19 (95% CI 0.05; 1.00) Gy for males. These improvements are still not sufficient to separate radiation-induced from sporadic PTC cases at very low doses <0.015 Gy typical for the Fukushima accident. CONCLUSIONS Successful application of our preferred mechanistic model to LSS incidence data confirms and improves the biological two-path concept of radiation-induced PTC. Model predictions suggest further molecular validation studies to consolidate the basis of biologically-based risk estimation.
Collapse
Affiliation(s)
- Jan Christian Kaiser
- Helmholtz Zentrum München, Institute of Radiation Medicine, Oberschleißheim, Germany
| | - Munechika Misumi
- Department of Statistics, Radiation Effects Research Foundation, Hiroshima, Japan
| | | |
Collapse
|
184
|
Gilbert ES, Little MP, Preston DL, Stram DO. Issues in Interpreting Epidemiologic Studies of Populations Exposed to Low-Dose, High-Energy Photon Radiation. J Natl Cancer Inst Monogr 2020; 2020:176-187. [PMID: 32657345 PMCID: PMC7355296 DOI: 10.1093/jncimonographs/lgaa004] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/02/2020] [Indexed: 01/19/2023] Open
Abstract
This article addresses issues relevant to interpreting findings from 26 epidemiologic studies of persons exposed to low-dose radiation. We review the extensive data from both epidemiologic studies of persons exposed at moderate or high doses and from radiobiology that together have firmly established radiation as carcinogenic. We then discuss the use of the linear relative risk model that has been used to describe data from both low- and moderate- or high-dose studies. We consider the effects of dose measurement errors; these can reduce statistical power and lead to underestimation of risks but are very unlikely to bring about a spurious dose response. We estimate statistical power for the low-dose studies under the assumption that true risks of radiation-related cancers are those expected from studies of Japanese atomic bomb survivors. Finally, we discuss the interpretation of confidence intervals and statistical tests and the applicability of the Bradford Hill principles for a causal relationship.
Collapse
Affiliation(s)
- Ethel S Gilbert
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Mark P Little
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | | | - Daniel O Stram
- Department of Preventive Medicine, School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
185
|
Oakley PA, Harrison DE. X-Ray Hesitancy: Patients' Radiophobic Concerns Over Medical X-rays. Dose Response 2020; 18:1559325820959542. [PMID: 32994755 PMCID: PMC7503016 DOI: 10.1177/1559325820959542] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022] Open
Abstract
All too often the family physician, orthopedic surgeon, dentist or chiropractor is met with radiophobic concerns about X-ray imaging in the clinical setting. These concerns, however, are unwarranted fears based on common but ill-informed and perpetuated ideology versus current understanding of the effects of low-dose radiation exposures. Themes of X-ray hesitancy come in 3 forms: 1. All radiation exposures are harmful (i.e. carcinogenic); 2. Radiation exposures are cumulative; 3. Children are more susceptible to radiation. Herein we address these concerns and find that low-dose radiation activates the body's adaptive responses and leads to reduced cancers. Low-dose radiation is not cumulative as long as enough time (e.g. 24 hrs) passes prior to a repeated exposure, and any damage is repaired, removed, or eliminated. Children have more active immune systems; the literature shows children are no more affected than adults by radiation exposures. Medical X-rays present a small, insignificant addition to background radiation exposure that is not likely to cause harm. Doctors and patients alike should be better informed of the lack of risks from diagnostic radiation and the decision to image should rely on the best evidence, unique needs of the patient, and the expertise of the physician-not radiophobia.
Collapse
|
186
|
Xiao C, Xu C, He N, Liu Y, Wang Y, Zhang M, Ji K, Du L, Wang J, Wang Q, Liu Q. Atractylenolide II prevents radiation damage via MAPKp38/Nrf2 signaling pathway. Biochem Pharmacol 2020; 177:114007. [DOI: 10.1016/j.bcp.2020.114007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/21/2020] [Indexed: 01/15/2023]
|
187
|
Castelletti N, Kaiser JC, Simonetto C, Furukawa K, Küchenhoff H, Stathopoulos GT. Risk of lung adenocarcinoma from smoking and radiation arises in distinct molecular pathways. Carcinogenesis 2020; 40:1240-1250. [PMID: 30915466 DOI: 10.1093/carcin/bgz036] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/30/2019] [Accepted: 02/18/2019] [Indexed: 01/04/2023] Open
Abstract
KRAS mutations of lung adenocarcinoma (LADC) are associated with smoking but little is known on other exposure-oncogene associations. Hypothesizing that different inciting agents may cause different driver mutations, we aimed to identify distinct molecular pathways to LADC, applying two entirely different approaches. First, we examined clinicopathologic features and genomic signatures of environmental exposures in the large LADC Campbell data set. Second, we designed a molecular mechanistic risk model of LADC (M3LADC) that links environmental exposure to incidence risk by mathematically emulating the disease process. This model was applied to incidence data of Japanese atom-bomb survivors which contains information on radiation and smoking exposure. Grouping the clinical data by driver mutations revealed two main distinct molecular pathways to LADC: one unique to transmembrane receptor-mutant patients that displayed robust signatures of radiation exposure and one shared between submembrane transducer-mutant patients and patients with no evident driver mutation that carried the signature of smoking. Consistently, best fit of the incidence data was achieved with a M3LADC with two pathways: in one LADC risk increased with radiation exposure and in the other with cigarette consumption. We conclude there are two main molecular pathways to LADC associated with different environmental exposures. Future molecular measurements in lung cancer tissue of atom-bomb survivors may allow to further test quantitatively the M3LADC-predicted link of radiation to transmembrane receptor mutations. Moreover, the developed molecular mechanistic model showed that for low doses, as relevant e.g. for medical imaging, smokers have the same radiation risk compared with never smokers.
Collapse
Affiliation(s)
- Noemi Castelletti
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, Neuherberg, Bavaria, Germany
| | - Jan Christian Kaiser
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, Neuherberg, Bavaria, Germany
| | - Cristoforo Simonetto
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, Neuherberg, Bavaria, Germany
| | - Kyoji Furukawa
- Biostatistics Center, Kurume University, Asahi-machi, Kurume, Japan
| | - Helmut Küchenhoff
- Department of Statistics, Ludwig-Maximilian University (LMU) Munich, Munich, Bavaria, Germany
| | - Georgios T Stathopoulos
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine; University of Patras; Rio, Achaia, Greece.,Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), University Hospital, Ludwig-Maximilian University (LMU) and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Bavaria, Germany
| |
Collapse
|
188
|
Devic C, Ferlazzo ML, Berthel E, Foray N. Influence of Individual Radiosensitivity on the Hormesis Phenomenon: Toward a Mechanistic Explanation Based on the Nucleoshuttling of ATM Protein. Dose Response 2020; 18:1559325820913784. [PMID: 32425719 PMCID: PMC7218313 DOI: 10.1177/1559325820913784] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/02/2020] [Accepted: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
Hormesis is a low-dose phenomenon that has been reported to occur, to different extents, in animals, plants, and microorganisms. However, a review of the literature shows that only a few reports describe it in humans. Also, the diversity of experimental protocols and cellular models used makes deciphering the mechanisms of hormesis difficult. In humans, hormesis mostly appears in the 20 to 75 mGy dose range and in nontransformed, radioresistant cells. In a previous paper by Devic et al, a biological interpretation of the adaptive response (AR) phenomenon was proposed using our model that is based on the radiation-induced nucleoshuttling of the ATM protein (the RIANS model). Here, we showed that the 20 to 75 mGy dose range corresponds to a maximum amount of ATM monomers diffusing into the nucleus, while no DNA double-strand breaks is produced by radiation. These ATM monomers are suggested to help in recognizing and repairing spontaneous DNA breaks accumulated in cells and contribute to reductions in genomic instability and aging. The RIANS model also permitted the biological interpretation of hypersensitivity to low doses (HRS)-another low-dose phenomenon. Hence, for the first time to our knowledge, hormesis, AR, and HRS can be explained using the same unified molecular model.
Collapse
Affiliation(s)
- Clément Devic
- Institut National de la Santé et de la Recherche Médicale (INSERM), UA8 Unit "Radiations: Defense, Health and Environment," Centre Léon-Bérard, Lyon, France.,Fibermetrix Company, Strasbourg, France
| | - Mélanie L Ferlazzo
- Institut National de la Santé et de la Recherche Médicale (INSERM), UA8 Unit "Radiations: Defense, Health and Environment," Centre Léon-Bérard, Lyon, France
| | - Elise Berthel
- Institut National de la Santé et de la Recherche Médicale (INSERM), UA8 Unit "Radiations: Defense, Health and Environment," Centre Léon-Bérard, Lyon, France
| | - Nicolas Foray
- Institut National de la Santé et de la Recherche Médicale (INSERM), UA8 Unit "Radiations: Defense, Health and Environment," Centre Léon-Bérard, Lyon, France
| |
Collapse
|
189
|
Radiation dosimetry analyses of radiographic imaging systems used for orthodontic treatment: comparison among child, adolescent, and adult patients. Oral Radiol 2020; 37:245-250. [PMID: 32361820 DOI: 10.1007/s11282-020-00439-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/17/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVES The aim of this study was to compare the effective doses of orthodontic radiographs in children, adolescents, and adults. METHODS We exposed a child, an adolescent (simulated by an adult female phantom), and adult male phantoms using common scanning protocols for panoramic radiography, cephalography, and cone-beam computed tomography (CBCT). Glass dosimeters were placed in the organs of the phantom to measure the absorbed doses. The effective doses were deduced using tissue weighting factors as defined in the ICRP Publication 103. RESULTS For panoramic imaging, the parotid gland had the highest absorbed dose in the child and the submandibular glands had the highest absorbed dose in both the adolescent and adult phantoms. For cephalography, the organs and tissues located closest to the X-ray tube had the highest absorbed dose values. For CBCT, the lenses of the eyes received the highest absorbed dose. Effective doses with CBCT were the greatest in the adolescent phantom, followed by in the adult and child phantoms. CONCLUSIONS Dental practitioners should be aware of patient age, as younger patients will incur greater risks from radiation.
Collapse
|
190
|
Helm JS, Rudel RA. Adverse outcome pathways for ionizing radiation and breast cancer involve direct and indirect DNA damage, oxidative stress, inflammation, genomic instability, and interaction with hormonal regulation of the breast. Arch Toxicol 2020; 94:1511-1549. [PMID: 32399610 PMCID: PMC7261741 DOI: 10.1007/s00204-020-02752-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/16/2020] [Indexed: 12/15/2022]
Abstract
Knowledge about established breast carcinogens can support improved and modernized toxicological testing methods by identifying key mechanistic events. Ionizing radiation (IR) increases the risk of breast cancer, especially for women and for exposure at younger ages, and evidence overall supports a linear dose-response relationship. We used the Adverse Outcome Pathway (AOP) framework to outline and evaluate the evidence linking ionizing radiation with breast cancer from molecular initiating events to the adverse outcome through intermediate key events, creating a qualitative AOP. We identified key events based on review articles, searched PubMed for recent literature on key events and IR, and identified additional papers using references. We manually curated publications and evaluated data quality. Ionizing radiation directly and indirectly causes DNA damage and increases production of reactive oxygen and nitrogen species (RONS). RONS lead to DNA damage and epigenetic changes leading to mutations and genomic instability (GI). Proliferation amplifies the effects of DNA damage and mutations leading to the AO of breast cancer. Separately, RONS and DNA damage also increase inflammation. Inflammation contributes to direct and indirect effects (effects in cells not directly reached by IR) via positive feedback to RONS and DNA damage, and separately increases proliferation and breast cancer through pro-carcinogenic effects on cells and tissue. For example, gene expression changes alter inflammatory mediators, resulting in improved survival and growth of cancer cells and a more hospitable tissue environment. All of these events overlap at multiple points with events characteristic of "background" induction of breast carcinogenesis, including hormone-responsive proliferation, oxidative activity, and DNA damage. These overlaps make the breast particularly susceptible to ionizing radiation and reinforce that these biological activities are important characteristics of carcinogens. Agents that increase these biological processes should be considered potential breast carcinogens, and predictive methods are needed to identify chemicals that increase these processes. Techniques are available to measure RONS, DNA damage and mutation, cell proliferation, and some inflammatory proteins or processes. Improved assays are needed to measure GI and chronic inflammation, as well as the interaction with hormonally driven development and proliferation. Several methods measure diverse epigenetic changes, but it is not clear which changes are relevant to breast cancer. In addition, most toxicological assays are not conducted in mammary tissue, and so it is a priority to evaluate if results from other tissues are generalizable to breast, or to conduct assays in breast tissue. Developing and applying these assays to identify exposures of concern will facilitate efforts to reduce subsequent breast cancer risk.
Collapse
Affiliation(s)
- Jessica S Helm
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA
| | - Ruthann A Rudel
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA.
| |
Collapse
|
191
|
O'Brien SA, James DJ, Warren-Forward HM. Health and Lifestyle Factors of Australian Medical Radiation Workers: A Pilot Study Using Nuclear Medicine Technologists. J Nucl Med Technol 2020; 48:246-253. [PMID: 32312849 DOI: 10.2967/jnmt.119.241505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 03/16/2020] [Indexed: 11/16/2022] Open
Abstract
The health effects of chronic low-dose radiation exposure are a subject of worldwide debate. These effects are difficult to assess because all low-dose exposure mechanisms must be accounted for, including background exposure, personal medical examinations, and environmental exposure such as aviation, as well as lifestyle choices contributing to disease. The current literature recommends investigation of lifestyle factors to fill in these gaps. The aim of this study was to pilot-test a survey developed to assess health and lifestyle factors for Australian medical radiation workers. Methods: A cohort of nuclear medicine technologists (NMTs) was selected to test the survey. The survey consisted of 53 questions relating to demographics, employment, lifestyle, and health. Data from the 2017-2018 Australian National Health Survey were used to compare the lifestyle choices and health of the participants with those of the Australian general population. Results: In total, 101 participants pilot-tested the survey. Overall, Australian NMTs make better lifestyle choices (more exercise, more vegetable intake, lower rates of smoking and alcohol consumption) resulting in lower rates of obesity than the Australian general population. NMTs had a higher reported health status than the Australian population, with lower levels of psychologic distress. Given the low age of NMTs participating in the study, the cancer incidence rate may be higher than that reported for the Australian general population; however, a larger sample size is required to provide more definitive results. Conclusion: This pilot study demonstrated the feasibility of conducting a widespread survey to assess health and lifestyle factors for the Australian medical radiation worker cohort. Comparison of survey results with data for the entire Australian population have highlighted the potential to increase the number of lifestyle questions.
Collapse
Affiliation(s)
- Samantha A O'Brien
- School of Health Sciences, University of Newcastle, Newcastle, New South Wales, Australia
| | - Daphne J James
- School of Health Sciences, University of Newcastle, Newcastle, New South Wales, Australia
| | - Helen M Warren-Forward
- School of Health Sciences, University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
192
|
Zhuntova GV, Azizova TV, Grigoryeva ES. Risk of stomach cancer incidence in a cohort of Mayak PA workers occupationally exposed to ionizing radiation. PLoS One 2020; 15:e0231531. [PMID: 32294114 PMCID: PMC7159243 DOI: 10.1371/journal.pone.0231531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 03/25/2020] [Indexed: 12/17/2022] Open
Abstract
Stomach cancer is a widespread health condition associated with environmental and genetic factors. Contribution of ionizing radiation to stomach cancer etiology is not sufficiently studied. This study was aimed to assess an association of the stomach cancer incidence risk with doses from occupational radiation exposure in a cohort of workers hired at main Mayak production association facilities in 1948–1982 taking into account non-radiation factors including digestive disorders. The study cohort comprised 22,377 individuals and by 31.12.2013 343 stomach cancer diagnoses had been reported among the cohort members. Occupational stomach absorbed doses were provided by the Mayak Worker Dosimetry System– 2008 (MWDS–2008) for external gamma ray exposure and by the Mayak Worker Dosimetry System– 2013 (MWDS–2013) for internal exposure to plutonium. Excess relative risks (ERR) per Gy for stomach cancer were estimated using the Poisson’s regression. Analyses were run using the AMFIT module of the EPICURE software. The stomach cancer incidence risk in the study cohort was found to be significantly associated with the stomach absorbed dose of gamma rays: ERR/Gy = 0.19 (95% CI: 0.01, 0.44) with a 0 year lag, and ERR/Gy = 0.20 (95% CI: 0.01, 0.45) with a 5 year lag. To estimate the baseline risk, sex, attained age, smoking status and alcohol consumption, chronic diseases (peptic ulcer, gastritis and duodenitis) were taken into account. No modifications of the radiogenic risk by non-radiation factors were found in the study worker cohort. No association of the stomach cancer incidence risk with internal exposure to incorporated plutonium was observed.
Collapse
Affiliation(s)
- Galina V. Zhuntova
- Clinical Department, Southern Urals Biophysics Institute (SUBI), Ozyorsk, Chelyabinsk region, Russia
| | - Tamara V. Azizova
- Clinical Department, Southern Urals Biophysics Institute (SUBI), Ozyorsk, Chelyabinsk region, Russia
- * E-mail:
| | - Evgeniya S. Grigoryeva
- Clinical Department, Southern Urals Biophysics Institute (SUBI), Ozyorsk, Chelyabinsk region, Russia
| |
Collapse
|
193
|
Furukawa S, Nagamatsu A, Nenoi M, Fujimori A, Kakinuma S, Katsube T, Wang B, Tsuruoka C, Shirai T, Nakamura AJ, Sakaue-Sawano A, Miyawaki A, Harada H, Kobayashi M, Kobayashi J, Kunieda T, Funayama T, Suzuki M, Miyamoto T, Hidema J, Yoshida Y, Takahashi A. Space Radiation Biology for "Living in Space". BIOMED RESEARCH INTERNATIONAL 2020; 2020:4703286. [PMID: 32337251 PMCID: PMC7168699 DOI: 10.1155/2020/4703286] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/13/2020] [Indexed: 12/16/2022]
Abstract
Space travel has advanced significantly over the last six decades with astronauts spending up to 6 months at the International Space Station. Nonetheless, the living environment while in outer space is extremely challenging to astronauts. In particular, exposure to space radiation represents a serious potential long-term threat to the health of astronauts because the amount of radiation exposure accumulates during their time in space. Therefore, health risks associated with exposure to space radiation are an important topic in space travel, and characterizing space radiation in detail is essential for improving the safety of space missions. In the first part of this review, we provide an overview of the space radiation environment and briefly present current and future endeavors that monitor different space radiation environments. We then present research evaluating adverse biological effects caused by exposure to various space radiation environments and how these can be reduced. We especially consider the deleterious effects on cellular DNA and how cells activate DNA repair mechanisms. The latest technologies being developed, e.g., a fluorescent ubiquitination-based cell cycle indicator, to measure real-time cell cycle progression and DNA damage caused by exposure to ultraviolet radiation are presented. Progress in examining the combined effects of microgravity and radiation to animals and plants are summarized, and our current understanding of the relationship between psychological stress and radiation is presented. Finally, we provide details about protective agents and the study of organisms that are highly resistant to radiation and how their biological mechanisms may aid developing novel technologies that alleviate biological damage caused by radiation. Future research that furthers our understanding of the effects of space radiation on human health will facilitate risk-mitigating strategies to enable long-term space and planetary exploration.
Collapse
Affiliation(s)
- Satoshi Furukawa
- Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
| | - Aiko Nagamatsu
- Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
| | - Mitsuru Nenoi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Akira Fujimori
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Shizuko Kakinuma
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Takanori Katsube
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Bing Wang
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Chizuru Tsuruoka
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Toshiyuki Shirai
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Asako J. Nakamura
- Department of Biological Sciences, College of Science, Ibaraki University, 2-1-1, Bunkyo, Mito, Ibaraki 310-8512, Japan
| | - Asako Sakaue-Sawano
- Lab for Cell Function and Dynamics, CBS, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Atsushi Miyawaki
- Lab for Cell Function and Dynamics, CBS, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroshi Harada
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Minoru Kobayashi
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Junya Kobayashi
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takekazu Kunieda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomoo Funayama
- Takasaki Advanced Radiation Research Institute, QST, 1233 Watanuki-machi, Takasaki, Gunma 370-1292, Japan
| | - Michiyo Suzuki
- Takasaki Advanced Radiation Research Institute, QST, 1233 Watanuki-machi, Takasaki, Gunma 370-1292, Japan
| | - Tatsuo Miyamoto
- Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan
| | - Jun Hidema
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
- Division for the Establishment of Frontier Sciences of the Organization for Advanced Studies, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Yukari Yoshida
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Akihisa Takahashi
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
194
|
Oakley PA, Harrison DE. Are Restrictive Medical Radiation Imaging Campaigns Misguided? It Seems So: A Case Example of the American Chiropractic Association's Adoption of "Choosing Wisely". Dose Response 2020; 18:1559325820919321. [PMID: 32425722 PMCID: PMC7218311 DOI: 10.1177/1559325820919321] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/12/2020] [Accepted: 03/20/2020] [Indexed: 12/18/2022] Open
Abstract
Since the 1980s, increased utilization of medical radiology, primarily computed tomography, has doubled medically sourced radiation exposures. Ensuing fear-mongering media headlines of iatrogenic cancers from these essential medical diagnostic tools has led the public and medical professionals alike to display escalating radiophobia. Problematically, several campaigns including Image Gently, Image Wisely, and facets of Choosing Wisely propagate fears of all medical radiation, which is necessary for the delivery of effective and efficient health care. Since there are no sound data supporting the alleged risks from low-dose radiation and since there is abundant evidence of health benefits from low-doses, these imaging campaigns seem misguided. Further, thresholds for cancer are 100 to 1000-fold greater than X-rays, which are within the realm of natural background radiation where no harm has ever been validated. Here, we focus on radiographic imaging for use in spinal rehabilitation by manual therapists, chiropractors, and physiotherapists as spinal X-rays represent the lowest levels of radiation imaging and are critical in the diagnosis and management of spine-related disorders. Using a case example of a chiropractic association adopting "Choosing Wisely," we argue that these campaigns only fuel the pervasive radiophobia and continue to constrain medical professionals, attempting to deliver quality care to patients.
Collapse
|
195
|
Oakley PA, Harrison DE. Death of the ALARA Radiation Protection Principle as Used in the Medical Sector. Dose Response 2020; 18:1559325820921641. [PMID: 32425724 PMCID: PMC7218317 DOI: 10.1177/1559325820921641] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 12/17/2022] Open
Abstract
ALARA is the acronym for "As Low As Reasonably Achievable." It is a radiation protection concept borne from the linear no-threshold (LNT) hypothesis. There are no valid data today supporting the use of LNT in the low-dose range, so dose as a surrogate for risk in radiological imaging is not appropriate, and therefore, the use of the ALARA concept is obsolete. Continued use of an outdated and erroneous principle unnecessarily constrains medical professionals attempting to deliver high-quality care to patients by leading to a reluctance by doctors to order images, a resistance from patients/parents to receive images, subquality images, repeated imaging, increased radiation exposures, the stifling of low-dose radiation research and treatment, and the propagation of radiophobia and continued endorsement of ALARA by regulatory bodies. All these factors result from the fear of radiogenic cancer, many years in the future, that will not occur. It has been established that the dose threshold for leukemia is higher than previously thought. A low-dose radiation exposure from medical imaging will likely upregulate the body's adaptive protection systems leading to the prevention of future cancers. The ALARA principle, as used as a radiation protection principle throughout medicine, is scientifically defunct and should be abandoned.
Collapse
|
196
|
Kakomi S, Nakayama T, Shang Y, Tsuruoka C, Sunaoshi M, Morioka T, Shimada Y, Kakinuma S, Tachibana A. The effects of short-term calorie restriction on mutations in the spleen cells of infant-irradiated mice. JOURNAL OF RADIATION RESEARCH 2020; 61:187-196. [PMID: 31909805 PMCID: PMC7246060 DOI: 10.1093/jrr/rrz078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/03/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
The risk of cancer due to exposure to ionizing radiation is higher in infants than in adults. In a previous study, the effect of adult-onset calorie restriction (CR) on carcinogenesis in mice after early-life exposure to X-rays was examined (Shang, Y, Kakinuma, S, Yamauchi, K, et al. Cancer prevention by adult-onset calorie restriction after infant exposure to ionizing radiation in B6C3F1 male mice. Int J Cancer. 2014; 135: 1038-47). The results showed that the tumor frequency was reduced in the CR group. However, the mechanism of tumor suppression by CR is not yet clear. In this study, we examined the effects of CR on radiation-induced mutations using gpt delta mice, which are useful to analyze mutations in various tissues throughout the whole body. Infant male mice (1-week old) were exposed to 3.8 Gy X-rays and fed a control (95 kcal/week/mouse) or CR (65 kcal/week/mouse) diet from adult stage (7-weeks old). Mice were sacrificed at the age of 7 weeks, 8 weeks and 100 days, and organs (spleen, liver, lung, thymus) were harvested. Mutations at the gpt gene in the DNA from the spleen were analyzed by using a gpt assay protocol that detects primarily point mutations in the gpt gene. The results showed that mutation frequencies were decreased in CR groups compared with non-CR groups. Sequence analysis of the gpt gene in mutants revealed a reduction in the G:C to T:A transversion in CR groups. Since it is known that 8-oxoguanine could result in this base substitution and that CR has an effect of reducing oxidative stress, these results indicate that the suppression of oxidative stress by CR is the cause of the reduction of this transversion.
Collapse
Affiliation(s)
- Saori Kakomi
- Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| | - Takafumi Nakayama
- Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
- National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yi Shang
- National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Chizuru Tsuruoka
- National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Masaaki Sunaoshi
- National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Takamitsu Morioka
- National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yoshiya Shimada
- National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Shizuko Kakinuma
- Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
- National Institute of Radiological Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Akira Tachibana
- Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| |
Collapse
|
197
|
Rühm W, Breckow J, Dietze G, Friedl A, Greinert R, Jacob P, Kistinger S, Michel R, Müller WU, Otten H, Streffer C, Weiss W. Dose limits for occupational exposure to ionising radiation and genotoxic carcinogens: a German perspective. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2020; 59:9-27. [PMID: 31677018 DOI: 10.1007/s00411-019-00817-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
This paper summarises the view of the German Commission on Radiological Protection ("Strahlenschutzkommission", SSK) on the rationale behind the currently valid dose limits and dose constraints for workers recommended by the International Commission on Radiological Protection (ICRP). The paper includes a discussion of the reasoning behind current dose limits followed by a discussion of the detriment used by ICRP as a measure for stochastic health effects. Studies on radiation-induced cancer are reviewed because this endpoint represents the most important contribution to detriment. Recent findings on radiation-induced circulatory disease that are currently not included in detriment calculation are also reviewed. It appeared that for detriment calculations the contribution of circulatory diseases plays only a secondary role, although the uncertainties involved in their risk estimates are considerable. These discussions are complemented by a review of the procedures currently in use in Germany, or in discussion elsewhere, to define limits for genotoxic carcinogens. To put these concepts in perspective, actual occupational radiation exposures are exemplified with data from Germany, for the year 2012, and regulations in Germany are compared to the recommendations issued by ICRP. Conclusions include, among others, considerations on radiation protection concepts currently in use and recommendations of the SSK on the limitation of annual effective dose and effective dose cumulated over a whole working life.
Collapse
Affiliation(s)
- Werner Rühm
- Helmholtz Zentrum München, Institute of Radiation Therapy, Ingolstädter Landstr. 1, 85764, Oberschleißheim, Germany.
| | | | - Günter Dietze
- Physikalisch-Technische Bundesanstalt, Braunschweig, Germany
| | - Anna Friedl
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | | | - Peter Jacob
- Helmholtz Zentrum München, Neuherberg, Germany
| | | | | | | | - Heinz Otten
- Deutsche Gesetzliche Unfallversicherung, Berlin, Germany
| | | | | |
Collapse
|
198
|
|
199
|
Schöllnberger H, Kaiser JC, Eidemüller M, Zablotska LB. Radio-biologically motivated modeling of radiation risks of mortality from ischemic heart diseases in the Canadian fluoroscopy cohort study. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2020; 59:63-78. [PMID: 31781840 DOI: 10.1007/s00411-019-00819-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
Recent analyses of the Canadian fluoroscopy cohort study reported significantly increased radiation risks of mortality from ischemic heart diseases (IHD) with a linear dose-response adjusted for dose fractionation. This cohort includes 63,707 tuberculosis patients from Canada who were exposed to low-to-moderate dose fractionated X-rays in 1930s-1950s and were followed-up for death from non-cancer causes during 1950-1987. In the current analysis, we scrutinized the assumption of linearity by analyzing a series of radio-biologically motivated nonlinear dose-response models to get a better understanding of the impact of radiation damage on IHD. The models were weighted according to their quality of fit and were then mathematically superposed applying the multi-model inference (MMI) technique. Our results indicated an essentially linear dose-response relationship for IHD mortality at low and medium doses and a supra-linear relationship at higher doses (> 1.5 Gy). At 5 Gy, the estimated radiation risks were fivefold higher compared to the linear no-threshold (LNT) model. This is the largest study of patients exposed to fractionated low-to-moderate doses of radiation. Our analyses confirm previously reported significantly increased radiation risks of IHD from doses similar to those from diagnostic radiation procedures.
Collapse
Affiliation(s)
- Helmut Schöllnberger
- Department of Radiation Sciences, Institute of Radiation Medicine, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.
- Division UR-Environmental Radioactivity, Federal Office for Radiation Protection, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.
| | - Jan Christian Kaiser
- Department of Radiation Sciences, Institute of Radiation Medicine, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Markus Eidemüller
- Department of Radiation Sciences, Institute of Radiation Medicine, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Lydia B Zablotska
- Department of Epidemiology and Biostatistics, University of California, San Francisco, 550 16th Street, San Francisco, CA, 94158, USA
| |
Collapse
|
200
|
Galon J, Bruni D. Tumor Immunology and Tumor Evolution: Intertwined Histories. Immunity 2020; 52:55-81. [PMID: 31940273 DOI: 10.1016/j.immuni.2019.12.018] [Citation(s) in RCA: 374] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/01/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022]
Abstract
Cancer is a complex disease whose outcome depends largely on the cross-talk between the tumor and its microenvironment. Here, we review the evolution of the field of tumor immunology and the advances, in lockstep, of our understanding of cancer as a disease. We discuss the involvement of different immune cells at distinct stages of tumor progression and how immune contexture determinants shaping tumor development are being exploited therapeutically. Current clinical stratification schemes focus on the tumor histopathology and the molecular characteristics of the tumor cell. We argue for the importance of revising these stratification systems to include immune parameters so as to address the immediate need for improved prognostic and/or predictive information to guide clinical decisions.
Collapse
Affiliation(s)
- Jérôme Galon
- INSERM, Laboratory of Integrative Cancer Immunology, Equipe Labellisée Ligue Contre le Cancer, Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Université de Paris; Centre de Recherche des Cordeliers, F-75006 Paris, France.
| | - Daniela Bruni
- INSERM, Laboratory of Integrative Cancer Immunology, Equipe Labellisée Ligue Contre le Cancer, Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Université de Paris; Centre de Recherche des Cordeliers, F-75006 Paris, France
| |
Collapse
|