151
|
Maulik M, Mitra S, Basmayor AM, Lu B, Taylor BE, Bult-Ito A. Genetic Silencing of Fatty Acid Desaturases Modulates α-Synuclein Toxicity and Neuronal Loss in Parkinson-Like Models of C. elegans. Front Aging Neurosci 2019; 11:207. [PMID: 31447665 PMCID: PMC6691153 DOI: 10.3389/fnagi.2019.00207] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 07/22/2019] [Indexed: 01/14/2023] Open
Abstract
The molecular basis of Parkinson's disease (PD) is currently unknown. There is increasing evidence that fat metabolism is at the crossroad of key molecular pathways associated with the pathophysiology of PD. Fatty acid desaturases catalyze synthesis of saturated fatty acids from monounsaturated fatty acids thereby mediating several cellular mechanisms that are associated with diseases including cancer and metabolic disorders. The role of desaturases in modulating age-related neurodegenerative manifestations such as PD is poorly understood. Here, we investigated the effect of silencing Δ9 desaturase enzyme encoding fat-5 and fat-7 genes which are known to reduce fat content, on α-synuclein expression, neuronal morphology and dopamine-related behaviors in transgenic PD-like models of Caenorhabditis elegans (C. elegans). The silencing of the fat-5 and fat-7 genes rescued both degeneration of dopamine neurons and deficits in dopamine-dependent behaviors, including basal slowing and ethanol avoidance in worm models of PD. Similarly, silencing of these genes also decreased the formation of protein aggregates in a nematode model of PD expressing α-synuclein in the body wall muscles and rescued deficits in resistance to heat and osmotic stress. On the contrary, silencing of nhr-49 and tub-1 genes that are known to increase total fat content did not alter behavioral and pathological endpoints in the PD worm strains. Interestingly, the genetic manipulation of all four selected genes resulted in differential fat levels in the PD models without having significant effect on the lifespan, further indicating a complex fat homeostasis unique to neurodegenerative pathophysiology. Overall, we provide a comprehensive understanding of how Δ9 desaturase can alter PD-like pathology due to environmental exposures and proteotoxic stress, suggesting new avenues in deciphering the disease etiology and possible therapeutic targets.
Collapse
Affiliation(s)
- Malabika Maulik
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, United States
- Biomedical Learning and Student Training (BLaST) Program, University of Alaska Fairbanks, Fairbanks, AK, United States
- Department of Oral Biology, University at Buffalo, The State University of New York at Buffalo, Buffalo, NY, United States
| | - Swarup Mitra
- Program in Neuroscience, Department of Pharmacology and Toxicology, The Research Institution on Addiction, The State University of New York at Buffalo, Buffalo, NY, United States
| | - Ajiel Mae Basmayor
- Biomedical Learning and Student Training (BLaST) Program, University of Alaska Fairbanks, Fairbanks, AK, United States
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Brianna Lu
- Biomedical Learning and Student Training (BLaST) Program, University of Alaska Fairbanks, Fairbanks, AK, United States
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Barbara E. Taylor
- Department of Biological Sciences and College of Natural Sciences and Mathematics, California State University at Long Beach, Long Beach, CA, United States
| | - Abel Bult-Ito
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, United States
| |
Collapse
|
152
|
Mesa-Herrera F, Taoro-González L, Valdés-Baizabal C, Diaz M, Marín R. Lipid and Lipid Raft Alteration in Aging and Neurodegenerative Diseases: A Window for the Development of New Biomarkers. Int J Mol Sci 2019; 20:E3810. [PMID: 31382686 PMCID: PMC6696273 DOI: 10.3390/ijms20153810] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022] Open
Abstract
Lipids in the brain are major components playing structural functions as well as physiological roles in nerve cells, such as neural communication, neurogenesis, synaptic transmission, signal transduction, membrane compartmentalization, and regulation of gene expression. Determination of brain lipid composition may provide not only essential information about normal brain functioning, but also about changes with aging and diseases. Indeed, deregulations of specific lipid classes and lipid homeostasis have been demonstrated in neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). Furthermore, recent studies have shown that membrane microdomains, named lipid rafts, may change their composition in correlation with neuronal impairment. Lipid rafts are key factors for signaling processes for cellular responses. Lipid alteration in these signaling platforms may correlate with abnormal protein distribution and aggregation, toxic cell signaling, and other neuropathological events related with these diseases. This review highlights the manner lipid changes in lipid rafts may participate in the modulation of neuropathological events related to AD and PD. Understanding and characterizing these changes may contribute to the development of novel and specific diagnostic and prognostic biomarkers in routinely clinical practice.
Collapse
Affiliation(s)
- Fátima Mesa-Herrera
- Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, Edaphology and Geology
| | - Lucas Taoro-González
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Section of Medicine, Faculty of Health Sciences, University of La Laguna, Sta. Cruz de Tenerife 38200, Spain
| | - Catalina Valdés-Baizabal
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Section of Medicine, Faculty of Health Sciences, University of La Laguna, Sta. Cruz de Tenerife 38200, Spain
| | - Mario Diaz
- Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, Edaphology and Geology
- Associate Research Unit ULL-CSIC "Membrane Physiology and Biophysics in Neurodegenerative and Cancer Diseases", University of La Laguna, Sta. Cruz de Tenerife 38200, Spain
| | - Raquel Marín
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Section of Medicine, Faculty of Health Sciences, University of La Laguna, Sta. Cruz de Tenerife 38200, Spain.
- Associate Research Unit ULL-CSIC "Membrane Physiology and Biophysics in Neurodegenerative and Cancer Diseases", University of La Laguna, Sta. Cruz de Tenerife 38200, Spain.
| |
Collapse
|
153
|
Smith LK, Kuhn TB, Chen J, Bamburg JR. HIV Associated Neurodegenerative Disorders: A New Perspective on the Role of Lipid Rafts in Gp120-Mediated Neurotoxicity. Curr HIV Res 2019; 16:258-269. [PMID: 30280668 PMCID: PMC6398609 DOI: 10.2174/1570162x16666181003144740] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/17/2018] [Accepted: 09/26/2018] [Indexed: 02/07/2023]
Abstract
The implementation of combination antiretroviral therapy (cART) as the primary means of treatment for HIV infection has achieved a dramatic decline in deaths attributed to AIDS and the reduced incidence of severe forms of HIV-associated neurocognitive disorders (HAND) in infected individuals. Despite these advances, milder forms of HAND persist and prevalence of these forms of neurocognitive impairment are rising with the aging population of HIV infected individuals. HIV enters the CNS early in the pathophysiology establishing persistent infection in resident macrophages and glial cells. These infected cells, in turn, secrete neurotoxic viral proteins, inflammatory cytokines, and small metabolites thought to contribute to neurodegenerative processes. The viral envelope protein gp120 has been identified as a potent neurotoxin affecting neurodegeneration via indirect and direct mechanisms involving interactions with chemokine co-receptors CCR5 and CXCR4. This short review focuses on gp120 neurotropism and associated mechanisms of neurotoxicity linked to chemokine receptors CCR5 and CXCR4 with a new perspective on plasma membrane lipid rafts as an active participant in gp120-mediated neurodegeneration underlying HIV induced CNS pathology.
Collapse
Affiliation(s)
- Lisa K Smith
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Thomas B Kuhn
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Jack Chen
- Department of Biology and Wildlife, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - James R Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
154
|
Calvano CD, Ventura G, Sardanelli AMM, Savino L, Losito I, Michele GD, Palmisano F, Cataldi TRI. Searching for Potential Lipid Biomarkers of Parkinson's Disease in Parkin-Mutant Human Skin Fibroblasts by HILIC-ESI-MS/MS: Preliminary Findings. Int J Mol Sci 2019; 20:ijms20133341. [PMID: 31284683 PMCID: PMC6650793 DOI: 10.3390/ijms20133341] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 01/09/2023] Open
Abstract
Early diagnosis of neural changes causing cerebral impairment is critical for proposing preventive therapies for Parkinson’s disease (PD). Biomarkers currently available cannot be informative of PD onset since they are characterized by analysing post-mortem tissues from patients with severe degeneration of the substantia nigra. Skin fibroblasts (SF) are now recognized as a useful model of primary human cells, capable of reflecting the chronological and biological aging of the subjects. Here a lipidomic study of easily accessible primary SF is presented, based on hydrophilic interaction liquid chromatography coupled to electrospray ionization and mass spectrometry (HILIC/ESI-MS). Phospholipids (PL) from dermal fibroblasts of five PD patients with different parkin mutations and healthy control SF were characterized by single and tandem MS measurements using a hybrid quadrupole-Orbitrap and a linear ion trap mass analysers. The proposed approach enabled the identification of more than 360 PL. Univariate statistical analyses highlight abnormality of PL metabolism in the PD group, suggesting down- or up-regulation of certain species according to the extent of disease progression. These findings, although preliminary, suggest that the phospholipidome of human SF represents a source of potential biomarkers for the early diagnosis of PD. The dysregulation of ethanolamine plasmalogens in the circulatory system, especially those containing polyunsaturated fatty acids (PUFA), might be likely associated with neurodegeneration.
Collapse
Affiliation(s)
- Cosima D Calvano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy.
- Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy.
| | - Giovanni Ventura
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy
| | - Anna Maria M Sardanelli
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", 70100 Bari, Italy.
- Department of Medicine, Campus Bio-Medico University of Rome, 00128 Roma, Italy.
| | - Laura Savino
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", 70100 Bari, Italy
| | - Ilario Losito
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy
- Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy
| | - Giuseppe De Michele
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Francesco Palmisano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy
- Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy
| | - Tommaso R I Cataldi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy
- Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy
| |
Collapse
|
155
|
Al-Shar'i NA, Al-Balas QA. Molecular Dynamics Simulations of Adenosine Receptors: Advances, Applications and Trends. Curr Pharm Des 2019; 25:783-816. [DOI: 10.2174/1381612825666190304123414] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 02/26/2019] [Indexed: 01/09/2023]
Abstract
:
Adenosine receptors (ARs) are transmembrane proteins that belong to the G protein-coupled receptors
(GPCRs) superfamily and mediate the biological functions of adenosine. To date, four AR subtypes are known,
namely A1, A2A, A2B and A3 that exhibit different signaling pathways, tissue localization, and mechanisms of
activation. Moreover, the widespread ARs and their implication in numerous physiological and pathophysiological
conditions had made them pivotal therapeutic targets for developing clinically effective agents.
:
The crystallographic success in identifying the 3D crystal structures of A2A and A1 ARs has dramatically enriched
our understanding of their structural and functional properties such as ligand binding and signal transduction.
This, in turn, has provided a structural basis for a larger contribution of computational methods, particularly molecular
dynamics (MD) simulations, toward further investigation of their molecular properties and designing
bioactive ligands with therapeutic potential. MD simulation has been proved to be an invaluable tool in investigating
ARs and providing answers to some critical questions. For example, MD has been applied in studying ARs
in terms of ligand-receptor interactions, molecular recognition, allosteric modulations, dimerization, and mechanisms
of activation, collectively aiding in the design of subtype selective ligands.
:
In this review, we focused on the advances and different applications of MD simulations utilized to study the
structural and functional aspects of ARs that can foster the structure-based design of drug candidates. In addition,
relevant literature was briefly discussed which establishes a starting point for future advances in the field of drug
discovery to this pivotal group of drug targets.
Collapse
Affiliation(s)
- Nizar A. Al-Shar'i
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Qosay A. Al-Balas
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| |
Collapse
|
156
|
Reduced level of docosahexaenoic acid shifts GPCR neuroreceptors to less ordered membrane regions. PLoS Comput Biol 2019; 15:e1007033. [PMID: 31107861 PMCID: PMC6544328 DOI: 10.1371/journal.pcbi.1007033] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 05/31/2019] [Accepted: 04/12/2019] [Indexed: 01/11/2023] Open
Abstract
G protein-coupled receptors (GPCRs) control cellular signaling and responses. Many of these GPCRs are modulated by cholesterol and polyunsaturated fatty acids (PUFAs) which have been shown to co-exist with saturated lipids in ordered membrane domains. However, the lipid compositions of such domains extracted from the brain cortex tissue of individuals suffering from GPCR-associated neurological disorders show drastically lowered levels of PUFAs. Here, using free energy techniques and multiscale simulations of numerous membrane proteins, we show that the presence of the PUFA DHA helps helical multi-pass proteins such as GPCRs partition into ordered membrane domains. The mechanism is based on hybrid lipids, whose PUFA chains coat the rough protein surface, while the saturated chains face the raft environment, thus minimizing perturbations therein. Our findings suggest that the reduction of GPCR partitioning to their native ordered environments due to PUFA depletion might affect the function of these receptors in numerous neurodegenerative diseases, where the membrane PUFA levels in the brain are decreased. We hope that this work inspires experimental studies on the connection between membrane PUFA levels and GPCR signaling. Our current picture of cellular membranes depicts them as laterally heterogeneous sheets of lipids crowded with membrane proteins. These proteins often require a specific lipid environment to efficiently perform their functions. Certain neuroreceptor proteins are regulated by membrane cholesterol that is considered to be enriched in ordered membrane domains. In the brain, these very same domains also contain a fair amount of polyunsaturated fatty acids (PUFAs) that have also been discovered to interact favorably with many receptor proteins. However, certain neurological diseases—associated with the inadequate functioning of the neuroreceptors—seem to result in the decrease of brain PUFA levels. We hypothesized that this decrease in PUFA levels somehow inhibits receptor partitioning to cholesterol-rich domains, which could further compromise their function. We verified our hypothesis by an extensive set of computer simulations. They demonstrated that the PUFA–receptor interaction indeed leads to favorable partitioning of the receptors in the cholesterol-rich ordered domains. Moreover, the underlying mechanism based on the shielding of the rough protein surface by the PUFAs seems to be exclusive for multi-helical protein structures, of which neuroreceptors are a prime example.
Collapse
|
157
|
Tian C, Liu G, Gao L, Soltys D, Pan C, Stewart T, Shi M, Xie Z, Liu N, Feng T, Zhang J. Erythrocytic α-Synuclein as a potential biomarker for Parkinson's disease. Transl Neurodegener 2019; 8:15. [PMID: 31123587 PMCID: PMC6521422 DOI: 10.1186/s40035-019-0155-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/24/2019] [Indexed: 12/21/2022] Open
Abstract
Background Erythrocytes are a major source of peripheral α-synuclein (α-Syn). The goal of the current investigation is to evaluate erythrocytic total, oligomeric/aggregated, and phosphorylated α-Syn species as biomarkers of Parkinson’s disease (PD). PD and healthy control blood samples were collected along with extensive clinical history to determine whether total, phosphorylated, or aggregated α-Syn derived from erythrocytes (the major source of blood α-Syn) are more promising and consistent biomarkers for PD than are free α-Syn species in serum or plasma. Methods Using newly developed electrochemiluminescence assays, concentrations of erythrocytic total, aggregated and phosphorylated at Ser129 (pS129) α-Syn, separated into membrane and cytosolic components, were measured in 225 PD patients and 133 healthy controls and analyzed with extensive clinical measures. Results The total and aggregated α-Syn levels were significantly higher in the membrane fraction of PD patients compared to healthy controls, but without alterations in the cytosolic component. The pS129 level was remarkably higher in PD subjects than in controls in the cytosolic fraction, and to a lesser extent, higher in the membrane fraction. Combining age, erythrocytic membrane aggregated α-Syn, and cytosolic pS129 levels, a model generated by using logistic regression analysis was able to discriminate patients with PD from neurologically normal controls, with a sensitivity and a specificity of 72 and 68%, respectively. Conclusions These results suggest that total, aggregated and phosphorylated α-Syn levels are altered in PD erythrocytes and peripheral erythrocytic α-Syn is a potential PD biomarker that needs further validation. Electronic supplementary material The online version of this article (10.1186/s40035-019-0155-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chen Tian
- 1Department of Pathology, Peking University School of Basic Medical Sciences, Peking University, Beijing, China.,6Department of Pathology, University of Washington School of Medicine, Seattle, WA USA
| | - Genliang Liu
- 3Center for Neurodegenerative Disease, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,4China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Liyan Gao
- 8Department of neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.,3Center for Neurodegenerative Disease, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - David Soltys
- 6Department of Pathology, University of Washington School of Medicine, Seattle, WA USA
| | - Catherine Pan
- 6Department of Pathology, University of Washington School of Medicine, Seattle, WA USA
| | - Tessandra Stewart
- 6Department of Pathology, University of Washington School of Medicine, Seattle, WA USA
| | - Min Shi
- 6Department of Pathology, University of Washington School of Medicine, Seattle, WA USA
| | - Zhiying Xie
- 6Department of Pathology, University of Washington School of Medicine, Seattle, WA USA
| | - Na Liu
- Department of Neurology, Peking University Third Hospital, Peking University, Beijing, China.,Beijing Key Laboratory of Research and Transformation on Neurodegenerative Diseases Biomarkers, Beijing, China
| | - Tao Feng
- 3Center for Neurodegenerative Disease, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,4China National Clinical Research Center for Neurological Diseases, Beijing, China.,5Parkinson's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Jing Zhang
- 1Department of Pathology, Peking University School of Basic Medical Sciences, Peking University, Beijing, China.,Department of Pathology, Peking University Third Hospital, Peking University, Beijing, China.,6Department of Pathology, University of Washington School of Medicine, Seattle, WA USA.,Beijing Key Laboratory of Research and Transformation on Neurodegenerative Diseases Biomarkers, Beijing, China
| |
Collapse
|
158
|
O'Leary EI, Lee JC. Interplay between α-synuclein amyloid formation and membrane structure. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2019; 1867:483-491. [PMID: 30287222 PMCID: PMC6445794 DOI: 10.1016/j.bbapap.2018.09.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/08/2018] [Accepted: 09/25/2018] [Indexed: 12/23/2022]
Abstract
Amyloid formation is a pathological hallmark of many neurodegenerative diseases, including Alzheimer's, Parkinson's, and Huntington's. While it is unknown how these disorders are initiated, in vitro and cellular experiments confirm the importance of membranes. Ubiquitous in vivo, membranes induce conformational changes in amyloidogenic proteins and in some cases, facilitate aggregation. Reciprocally, perturbations in the bilayer structure can be induced by amyloid formation. Here, we review studies in the last 10 years describing α-synuclein (α-syn) and its interactions with membranes, detailing the roles of anionic and zwitterionic lipids in aggregation, and their contribution to Parkinson's disease. We summarize the impact of α-syn - comparing monomeric, oligomeric, and fibrillar forms - on membrane structure, and the effect of membrane remodeling on amyloid formation. Finally, perspective on future studies investigating the interplay between α-syn aggregation and membranes is discussed. This article is part of a Special Issue entitled: Amyloids.
Collapse
Affiliation(s)
- Emma I O'Leary
- Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Jennifer C Lee
- Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
159
|
Vasili E, Dominguez-Meijide A, Outeiro TF. Spreading of α-Synuclein and Tau: A Systematic Comparison of the Mechanisms Involved. Front Mol Neurosci 2019; 12:107. [PMID: 31105524 PMCID: PMC6494944 DOI: 10.3389/fnmol.2019.00107] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 04/09/2019] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are age-associated neurodegenerative disorders characterized by the misfolding and aggregation of alpha-synuclein (aSyn) and tau, respectively. The coexistence of aSyn and tau aggregates suggests a strong overlap between tauopathies and synucleinopathies. Interestingly, misfolded forms of aSyn and tau can propagate from cell to cell, and throughout the brain, thereby templating the misfolding of native forms of the proteins. The exact mechanisms involved in the propagation of the two proteins show similarities, and are reminiscent of the spreading characteristic of prion diseases. Recently, several models were developed to study the spreading of aSyn and tau. Here, we discuss the mechanisms involved, the similarities and differences between the spreading of the two proteins and that of the prion protein, and the different cell and animal models used for studying these processes. Ultimately, a deeper understanding of the molecular mechanisms involved may lead to the identification of novel targets for therapeutic intervention in a variety of devastating neurodegenerative diseases.
Collapse
Affiliation(s)
- Eftychia Vasili
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany
| | - Antonio Dominguez-Meijide
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany.,Max Planck Institute for Experimental Medicine, Goettingen, Germany.,The Medical School, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
160
|
Díaz M, Luis-Amaro AC, Rodriguez Barreto D, Casañas-Sánchez V, Pérez JA, Marin R. Lipostatic Mechanisms Preserving Cerebellar Lipids in MPTP-Treated Mice: Focus on Membrane Microdomains and Lipid-Related Gene Expression. Front Mol Neurosci 2019; 12:93. [PMID: 31105522 PMCID: PMC6491966 DOI: 10.3389/fnmol.2019.00093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 03/29/2019] [Indexed: 01/22/2023] Open
Abstract
The cerebellum is an essential component in the control of motor patterns. Despite dramatic alteration of basal ganglia morpho-functionality in Parkinson's disease (PD), cerebellar function appears to be unaffected by the disease. Only recently this brain structure has been proposed to play compensatory roles in PD-induced motor dysfunction, particularly during the initial asymptomatic stages of PD. In PD subjects and animal models of PD, such as MPTP-treated mice, brain structures other than basal ganglia are also affected by the disease, including cortical areas not involved in motor control. Thus, it is noteworthy that the cerebellum remains unaffected. In the present study, we have analyzed the lipid composition of membrane microdomains [lipid rafts (LR) and non-raft domains] and assessed the expression levels of genes encoding enzymes synthesizing membrane-related lipids. The outcomes revealed that membrane domain lipids in cerebellum are highly preserved both in control and MPTP-treated mice as compared to control animals. Likewise, only small, mostly not significant, changes were observed in the expression of lipid-related genes in the cerebellum. Indeed, most changes were related to aging rather than to the exposure to the neurotoxin. Conversely, in the same animals, lipid composition, and gene expression were dramatically altered in the occipital cortex (OC), a brain area unrelated to the control of motor function. PCR and immunohistochemical analyses of both brain areas revealed that dopamine transporter (DAT) mRNA and protein were expressed in OC but not in the cerebellum. As MPTP neurotoxicity requires the expression of DAT to access intracellular compartments, we hypothesized that the absence of DAT in cerebellum hampers MPTP-induced toxicity. We conclude that cerebellum is endowed with efficient mechanisms to preserve nerve cell lipid homeostasis, which greatly maintain the stability of membrane microdomains involved in synaptic transmission, signal transduction, and intercellular communication, which together may participate in the compensatory role of the cerebellum in PD symptomatology.
Collapse
Affiliation(s)
- Mario Díaz
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Unidad Asociada de Investigación ULL-CSIC, “Fisiología y Biofísica de la Membrana Celular en Patologías Neurodegenerativas y Tumorales”, San Cristóbal de La Laguna, Spain
| | - Ana Canerina Luis-Amaro
- Unidad Asociada de Investigación ULL-CSIC, “Fisiología y Biofísica de la Membrana Celular en Patologías Neurodegenerativas y Tumorales”, San Cristóbal de La Laguna, Spain
- Departamento de Ciencias Médicas Básicas, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Deiene Rodriguez Barreto
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Verónica Casañas-Sánchez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, San Cristóbal de La Laguna, Spain
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - José A. Pérez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, San Cristóbal de La Laguna, Spain
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Raquel Marin
- Unidad Asociada de Investigación ULL-CSIC, “Fisiología y Biofísica de la Membrana Celular en Patologías Neurodegenerativas y Tumorales”, San Cristóbal de La Laguna, Spain
- Departamento de Ciencias Médicas Básicas, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| |
Collapse
|
161
|
Canerina-Amaro A, Pereda D, Diaz M, Rodriguez-Barreto D, Casañas-Sánchez V, Heffer M, Garcia-Esparcia P, Ferrer I, Puertas-Avendaño R, Marin R. Differential Aggregation and Phosphorylation of Alpha Synuclein in Membrane Compartments Associated With Parkinson Disease. Front Neurosci 2019; 13:382. [PMID: 31068782 PMCID: PMC6491821 DOI: 10.3389/fnins.2019.00382] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/02/2019] [Indexed: 12/15/2022] Open
Abstract
The aggregation of α-synuclein (α-syn) is a major factor behind the onset of Parkinson’s disease (PD). Sublocalization of this protein may be relevant for the formation of multimeric α-syn oligomeric configurations, insoluble aggregates that form Lewy bodies in PD brains. Processing of this protein aggregation is regulated by associations with distinct lipid classes. For instance, instability of lipid raft (LR) microdomains, membrane regions with a particular lipid composition, is an early event in the development of PD. However, the relevance of membrane microdomains in the regulation and trafficking of the distinct α-syn configurations associated with PD remains unexplored. In this study, using 6- and 14-month-old healthy and MPTP-treated animals as a model of PD, we have investigated the putative molecular alterations of raft membrane microstructures, and their impact on α-syn dynamics and conformation. A comparison of lipid analyses of LR microstructures and non-raft (NR) fractions showed alterations in gangliosides, cholesterol, polyunsaturated fatty acids (PUFA) and phospholipids in the midbrain and cortex of aged and MPTP-treated mice. In particular, the increase of PUFA and phosphatidylserine (PS) during aging correlated with α-syn multimeric formation in NR. In these aggregates, α-syn was phosphorylated in pSer129, the most abundant post-transductional modification of α-syn promoting toxic aggregation. Interestingly, similar variations in PUFA and PS content correlating with α-syn insoluble accumulation were also detected in membrane microstructures from the human cortex of incidental Parkinson Disease (iPD) and PD, as compared to healthy controls. Furthermore, structural changes in membrane lipid microenvironments may induce rearrangements in raft-interacting proteins involved in other neuropathologies. Therefore, we also investigated the dynamic of other protein markers involved in cognition and memory impairment such as metabotropic glutamate receptor 5 (mGluR5), ionotropic NMDA receptor (NMDAR2B), prion protein (PrPc) and amyloid precursor protein (APP), whose activity depends on membrane lipid organization. We observed a decline of these protein markers in LR fractions with the progression of aging and pathology. Overall, our findings demonstrate that lipid alterations in membranous compartments promoted by brain aging and PD-like injury may have an effect on α-syn aggregation and segregation in abnormal multimeric structures.
Collapse
Affiliation(s)
- Ana Canerina-Amaro
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Section of Medicine, Faculty of Health Sciences, University of La Laguna, Santa Cruz de Tenerife, Spain.,Associate Research Unit ULL-CSIC, Membrane Physiology and Biophysics in Neurodegenerative and Cancer Diseases, University of La Laguna, Santa Cruz de Tenerife, Spain
| | - Daniel Pereda
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Section of Medicine, Faculty of Health Sciences, University of La Laguna, Santa Cruz de Tenerife, Spain.,Associate Research Unit ULL-CSIC, Membrane Physiology and Biophysics in Neurodegenerative and Cancer Diseases, University of La Laguna, Santa Cruz de Tenerife, Spain
| | - Mario Diaz
- Associate Research Unit ULL-CSIC, Membrane Physiology and Biophysics in Neurodegenerative and Cancer Diseases, University of La Laguna, Santa Cruz de Tenerife, Spain.,Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, Edaphology and Geology, Faculty of Sciences, University of La Laguna, Santa Cruz de Tenerife, Spain
| | - Deiene Rodriguez-Barreto
- Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, Edaphology and Geology, Faculty of Sciences, University of La Laguna, Santa Cruz de Tenerife, Spain
| | - Verónica Casañas-Sánchez
- Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, Edaphology and Geology, Faculty of Sciences, University of La Laguna, Santa Cruz de Tenerife, Spain
| | - Marija Heffer
- Department of Biology, University of Osijek School of Medicine, Osijek, Croatia
| | - Paula Garcia-Esparcia
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain.,Bellvitge University Hospital, Barcelona, Spain.,CIBERNED, Barcelona, Spain
| | - Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain.,Bellvitge University Hospital, Barcelona, Spain.,CIBERNED, Barcelona, Spain
| | - Ricardo Puertas-Avendaño
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Section of Medicine, Faculty of Health Sciences, University of La Laguna, Santa Cruz de Tenerife, Spain
| | - Raquel Marin
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Section of Medicine, Faculty of Health Sciences, University of La Laguna, Santa Cruz de Tenerife, Spain.,Associate Research Unit ULL-CSIC, Membrane Physiology and Biophysics in Neurodegenerative and Cancer Diseases, University of La Laguna, Santa Cruz de Tenerife, Spain
| |
Collapse
|
162
|
Alecu I, Bennett SAL. Dysregulated Lipid Metabolism and Its Role in α-Synucleinopathy in Parkinson's Disease. Front Neurosci 2019; 13:328. [PMID: 31031582 PMCID: PMC6470291 DOI: 10.3389/fnins.2019.00328] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/21/2019] [Indexed: 12/23/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, the main pathological hallmark of which is the accumulation of α-synuclein (α-syn) and the formation of filamentous aggregates called Lewy bodies in the brainstem, limbic system, and cortical areas. Lipidomics is a newly emerging field which can provide fresh insights and new answers that will enhance our capacity for early diagnosis, tracking disease progression, predicting critical endpoints, and identifying risk in pre-symptomatic persons. In recent years, lipids have been implicated in many aspects of PD pathology. Biophysical and lipidomic studies have demonstrated that α-syn binds preferentially not only to specific lipid families but also to specific molecular species and that these lipid-protein complexes enhance its interaction with synaptic membranes, influence its oligomerization and aggregation, and interfere with the catalytic activity of cytoplasmic lipid enzymes and lysosomal lipases, thereby affecting lipid metabolism. The genetic link between aberrant lipid metabolism and PD is even more direct, with mutations in GBA and SMPD1 enhancing PD risk in humans and loss of GALC function increasing α-syn aggregation and accumulation in experimental murine models. Moreover, a number of lipidomic studies have reported PD-specific lipid alterations in both patient brains and plasma, including alterations in the lipid composition of lipid rafts in the frontal cortex. A further aspect of lipid dysregulation promoting PD pathogenesis is oxidative stress and inflammation, with proinflammatory lipid mediators such as platelet activating factors (PAFs) playing key roles in arbitrating the progressive neurodegeneration seen in PD linked to α-syn intracellular trafficking. Lastly, there are a number of genetic risk factors of PD which are involved in normal lipid metabolism and function. Genes such as PLA2G6 and SCARB2, which are involved in glycerophospholipid and sphingolipid metabolism either directly or indirectly are associated with risk of PD. This review seeks to describe these facets of metabolic lipid dysregulation as they relate to PD pathology and potential pathomechanisms involved in disease progression, while highlighting incongruous findings and gaps in knowledge that necessitate further research.
Collapse
Affiliation(s)
- Irina Alecu
- Neural Regeneration Laboratory, Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis and Research Innovation, University of Ottawa, Ottawa, ON, Canada
| | - Steffany A. L. Bennett
- Neural Regeneration Laboratory, Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis and Research Innovation, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
163
|
Paul S, Lancaster GI, Meikle PJ. Plasmalogens: A potential therapeutic target for neurodegenerative and cardiometabolic disease. Prog Lipid Res 2019; 74:186-195. [DOI: 10.1016/j.plipres.2019.04.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/06/2019] [Accepted: 04/07/2019] [Indexed: 01/23/2023]
|
164
|
Sibomana I, Grobe N, DelRaso NJ, Reo NV. Influence of Myo-inositol Plus Ethanolamine on Plasmalogens and Cell Viability during Oxidative Stress. Chem Res Toxicol 2019; 32:265-284. [PMID: 30604967 DOI: 10.1021/acs.chemrestox.8b00280] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Previously, we demonstrated that treatment of rats with myo-inositol plus ethanolamine (ME) elevated brain ethanolamine plasmalogens (PE-Pls) and protected against phosphine-induced oxidative stress. Here we tested the hypothesis that ME treatment elevates PE-Pls in a neuro-2A (N2A) cell culture system and protects against hydrogen peroxide (H2O2)-induced oxidative stress, and we assessed the effects of treatments using myo-inositol with or without (+/-) ethanolamine on ethanolamine phospholipids (PLs) and cell viability following H2O2 exposure. Cells were treated with equimolar amounts (500 μM) of myo-inositol, ethanolamine (Etn), or their combination (ME) for 24 h, followed by an additional 24 h exposure to 650 μM H2O2. NMR analyses evaluated the treatment effects on Etn PLs, while LC-MS/MS analyses assessed the molecular species of Etn PLs preferentially affected by ME and H2O2 treatments, especially PE-Pls and their degradation byproducts-lysophosphatidylethanolamine (LPE) and glycerophosphoethanolamine (GPE). Only ME influenced the cellular levels of PLs. ME yielded a 3-fold increase in PE-Pls and phosphatidylethanolamine (PE) ( p < 0.001) and a preferential 60% increase in PE-Pls containing saturated and monounsaturated fatty acids (SFA+MUFA), while polyunsaturated fatty acid (PUFA) species increased by only 10%. Exposing cells to 650 μM H2O2 caused a significant cell death (56% viability), a 27% decrease in PE-Pls, a 201% increase in PUFA-rich LPE, and a ca. 3-fold increase in GPE. H2O2 had no impact on PE, suggesting that LPE and GPE were primarily the byproducts of PE-Pls (not PE) degradation. Surprisingly, ME pretreatment ameliorated H2O2 effects and significantly increased cell survival to 80% ( p < 0.05). Cellular PE-Pls levels prior to H2O2 treatment were highly correlated ( R2 = 0.95) with cell survival, suggesting a relationship between PE-Pls and cell protection. Data suggest that a preferential increase in PE-Pls containing SFA+MUFA species may protect cells from oxidative stress. Such studies aid in our understanding of the neuroprotective mechanisms that may be associated with plasmalogens and the relevance of these phospholipids to neurodegenerative diseases/disorders.
Collapse
Affiliation(s)
- Isaie Sibomana
- Department of Biochemistry and Molecular Biology, Magnetic Resonance Laboratory, Boonshoft School of Medicine, 162 Diggs Laboratory , Wright State University , Dayton , Ohio 45435 , United States.,Molecular Mechanisms Branch, Human-Centered ISR Division, Airman Systems Directorate, 711th Human Performance Wing , Air Force Research Laboratory , Wright-Patterson Air Force Base , Ohio 45433 , United States
| | - Nadja Grobe
- Molecular Mechanisms Branch, Human-Centered ISR Division, Airman Systems Directorate, 711th Human Performance Wing , Air Force Research Laboratory , Wright-Patterson Air Force Base , Ohio 45433 , United States
| | - Nicholas J DelRaso
- Molecular Mechanisms Branch, Human-Centered ISR Division, Airman Systems Directorate, 711th Human Performance Wing , Air Force Research Laboratory , Wright-Patterson Air Force Base , Ohio 45433 , United States
| | - Nicholas V Reo
- Department of Biochemistry and Molecular Biology, Magnetic Resonance Laboratory, Boonshoft School of Medicine, 162 Diggs Laboratory , Wright State University , Dayton , Ohio 45435 , United States
| |
Collapse
|
165
|
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease characterized by a progressive loss of dopaminergic neurons from the nigrostriatal pathway, formation of Lewy bodies, and microgliosis. During the past decades multiple cellular pathways have been associated with PD pathology (i.e., oxidative stress, endosomal-lysosomal dysfunction, endoplasmic reticulum stress, and immune response), yet disease-modifying treatments are not available. We have recently used genetic data from familial and sporadic cases in an unbiased approach to build a molecular landscape for PD, revealing lipids as central players in this disease. Here we extensively review the current knowledge concerning the involvement of various subclasses of fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterols, and lipoproteins in PD pathogenesis. Our review corroborates a central role for most lipid classes, but the available information is fragmented, not always reproducible, and sometimes differs by sex, age or PD etiology of the patients. This hinders drawing firm conclusions about causal or associative effects of dietary lipids or defects in specific steps of lipid metabolism in PD. Future technological advances in lipidomics and additional systematic studies on lipid species from PD patient material may improve this situation and lead to a better appreciation of the significance of lipids for this devastating disease.
Collapse
|
166
|
Hussain G, Anwar H, Rasul A, Imran A, Qasim M, Zafar S, Imran M, Kamran SKS, Aziz N, Razzaq A, Ahmad W, Shabbir A, Iqbal J, Baig SM, Ali M, Gonzalez de Aguilar JL, Sun T, Muhammad A, Muhammad Umair A. Lipids as biomarkers of brain disorders. Crit Rev Food Sci Nutr 2019; 60:351-374. [DOI: 10.1080/10408398.2018.1529653] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ghulam Hussain
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Haseeb Anwar
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Azhar Rasul
- Department of Zoology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Ali Imran
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Shamaila Zafar
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Syed Kashif Shahid Kamran
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Nimra Aziz
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Aroona Razzaq
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Waseem Ahmad
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Asghar Shabbir
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Javed Iqbal
- Department of Neurology, Allied Hospital, Faisalabad, Pakistan
| | - Shahid Mahmood Baig
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), PIEAS, Faisalabad, Pakistan
| | - Muhammad Ali
- Department of Zoology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Jose-Luis Gonzalez de Aguilar
- Université de Strasbourg, Strasbourg, France
- Mécanismes Centraux et Péripheriques de la Neurodégénérescence, INSERM, Strasbourg, France
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian Province, China
| | - Atif Muhammad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | | |
Collapse
|
167
|
Javanainen M, Martinez-Seara H. Rapid diffusion of cholesterol along polyunsaturated membranes via deep dives. Phys Chem Chem Phys 2019; 21:11660-11669. [PMID: 31119241 DOI: 10.1039/c9cp02022e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cholesterol regulates the function of membrane proteins either via direct or membrane-mediated effects. Therefore, its ready availability is crucial for many protein-governed cellular processes. Recent studies suggest that cholesterol can partition to the core of polyunsaturated membranes, where cholesterol binding sites of many membrane proteins are also located. This core region is characterized by a lower viscosity. Therefore, we hypothesized that cholesterol partitioning into the membrane interior increases the rate of its diffusion in polyunsaturated membrane environments. We studied the behavior of cholesterol in membranes with increasing level of lipid chain unsaturation using a combination of atomistic and coarse-grained molecular dynamics simulations. Our simulations suggest a strong correlation between entropy-driven enhanced cholesterol partitioning to the membrane core and its faster lateral diffusion, which indicates that the less viscous membrane core indeed provides an efficient means for cholesterol movement in polyunsaturated membrane environments.
Collapse
Affiliation(s)
- Matti Javanainen
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, CZ-166 10 Prague 6, Czech Republic.
| | | |
Collapse
|
168
|
Qu Y, Chen X, Xu MM, Sun Q. Relationship between high dietary fat intake and Parkinson's disease risk: a meta-analysis. Neural Regen Res 2019; 14:2156-2163. [PMID: 31397355 PMCID: PMC6788237 DOI: 10.4103/1673-5374.262599] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE: To assess whether dietary fat intake influences Parkinson’s disease risk. DATA SOURCES: We systematically surveyed the Embase and PubMed databases, reviewing manuscripts published prior to October 2018. The following terms were used: (“Paralysis agitans” OR “Parkinson disease” OR “Parkinson” OR “Parkinson’s” OR “Parkinson’s disease”) AND (“fat” OR “dietary fat” OR “dietary fat intake”). DATA SELECTION: Included studies were those with both dietary fat intake and Parkinson’s disease risk as exposure factors. The Newcastle-Ottawa Scale was adapted to investigate the quality of included studies. Stata V12.0 software was used for statistical analysis. OUTCOME MEASURES: The primary outcomes included the relationship between high total energy intake, high total fat intake, and Parkinson’s disease risk. The secondary outcomes included the relationship between different kinds of fatty acids and Parkinson’s disease risk. RESULTS: Nine articles met the inclusion criteria and were incorporated into this meta-analysis. Four studies scored 7 and the other five studies scored 9 on the Newcastle-Ottawa Scale, meaning that all studies were of high quality. Meta-analysis results showed that high total energy intake was associated with an increased risk of Parkinson’s disease (P = 0.000, odds ratio (OR) = 1.49, 95% confidence interval (CI): 1.26–1.75); in contrast, high total fat intake was not associated with Parkinson’s disease risk (P = 0.123, OR = 1.07, 95% CI: 0.91–1.25). Subgroup analysis revealed that polyunsaturated fatty acid intake (P = 0.010, OR = 1.03, 95% CI: 0.88–1.20) reduced the risk of Parkinson’s disease, while arachidonic acid (P = 0.026, OR = 1.15, 95% CI: 0.97–1.37) and cholesterol (P = 0.002, OR = 1.09, 95% CI: 0.92–1.29) both increased the risk of Parkinson’s disease. Subgroup analysis also demonstrated that, although the results were not significant, consumption of n-3 polyunsaturated fatty acids (P = 0.071, OR = 0.88, 95% CI: 0.73–1.05), α-linolenic acid (P = 0.06, OR = 0.86, 95% CI: 0.72–1.02), and the n-3 to n-6 ratio (P = 0.458, OR = 0.89, 95% CI: 0.75–1.06) were all linked with a trend toward reduced Parkinson’s disease risk. Monounsaturated fatty acid (P = 0.450, OR = 1.06, 95% CI: 0.91–1.23), n-6 polyunsaturated fatty acids (P = 0.100, OR = 1.15, 95% CI: 0.96–1.36) and linoleic acid (P = 0.053, OR = 1.11, 95% CI: 0.94–1.32) intakes were associated with a non-significant trend toward higher PD risk. Saturated fatty acid (P = 0.619, OR = 1.01, 95% CI: 0.87–1.18) intake was not associated with Parkinson’s disease. CONCLUSION: Dietary fat intake affects Parkinson’s disease risk, although this depends on the fatty acid subtype. Higher intake of polyunsaturated fatty acids may reduce the risk of Parkinson’s disease, while higher cholesterol and arachidonic acid intakes may elevate Parkinson’s disease risk. However, further studies and evidence are needed to validate any link between dietary fat intake and Parkinson’s disease.
Collapse
Affiliation(s)
- Yan Qu
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Xi Chen
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Man-Man Xu
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Qiang Sun
- Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
169
|
Kuter KZ, Olech Ł, Dencher NA. Increased energetic demand supported by mitochondrial electron transfer chain and astrocyte assistance is essential to maintain the compensatory ability of the dopaminergic neurons in an animal model of early Parkinson's disease. Mitochondrion 2018; 47:227-237. [PMID: 30578987 DOI: 10.1016/j.mito.2018.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 10/03/2018] [Accepted: 12/11/2018] [Indexed: 01/03/2023]
Abstract
Partial degeneration of dopaminergic neurons in the substantia nigra (SN), induces locomotor disability in animals but with time it is spontaneously compensated for by neurons surviving in the tissue by increasing their functional efficiency. Such compensation probably increases energy requirements and astrocyte support could be essential for this ability. We studied the effect of degeneration of dopaminergic neurons induced by the selective toxin 6-hydroxydopamine and/or death of 30% of astrocytes induced by chronic infusion of the glial toxin fluorocitrate on functioning of the mitochondrial electron transfer chain (ETC) complexes (Cxs) I, II, IV and their higher assembled forms, supercomplexes in the rat SN. Astrocyte death decreased Cx I and IV performance, while significantly increased the amount of Cx II protein SDHA, indicating system adaptation. After death of 50% of dopaminergic neurons in the SN, we observed increased mitochondrial Cxs performing, especially Cx I and IV in the remaining cells. It corresponded with reduction of behavioural deficits. Those results support the hypothesis that the compensatory ability of surviving neurons requires meeting their higher energetic demand by ETC. When astrocytes were defective, the neurons remaining after partial lesion were not able to enhance their functioning anymore and compensate for deficits. It proves in vivo that astrocytic support is important for compensatory potential of neurons in the SN. Neuro-glia cooperation is fundamental for compensation for early deficits in the nigrostriatal system.
Collapse
Affiliation(s)
- Katarzyna Z Kuter
- Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland; Department of Chemistry, Physical Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany.
| | - Łukasz Olech
- Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Norbert A Dencher
- Department of Chemistry, Physical Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany; Research Center for Molecular Mechanisms of Ageing and Age-related Neurodegenerative Diseases, Moscow Institute of Physics and Technology MIPT, Dolgoprudny/Moscow, Russia
| |
Collapse
|
170
|
Verde A, Sierra M, Alarcón L, Pedroni V, Appignanesi G, Morini M. Experimental and computational studies of the effects of free DHA on a model phosphatidylcholine membrane. Chem Phys Lipids 2018; 217:12-18. [DOI: 10.1016/j.chemphyslip.2018.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/01/2018] [Accepted: 10/15/2018] [Indexed: 02/09/2023]
|
171
|
Docosahexaenoic acid protection in a rotenone induced Parkinson's model: Prevention of tubulin and synaptophysin loss, but no association with mitochondrial function. Neurochem Int 2018; 121:26-37. [DOI: 10.1016/j.neuint.2018.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022]
|
172
|
Chan CY, Wang WX. A lipidomic approach to understand copper resilience in oyster Crassostrea hongkongensis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 204:160-170. [PMID: 30273783 DOI: 10.1016/j.aquatox.2018.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 09/15/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
Copper (Cu) can cause oxidative stress and inflammatory responses, and there is arising evidence between Cu toxicity and lipid disturbance. In this study, we examined the relationships between Cu exposure and lipid metabolism in an estuarine oyster (Crassostrea hongkongensis) and aimed to understand the effects and resilience strategies of Cu on oyster metabolism. We exposed the oysters to waterborne Cu (10 and 50 μg/L) and measured the physiological changes (condition index and clearance rate), lipid accumulation and lipid peroxidation in the oysters. We found more altered lipid responses in oysters exposed to a lower Cu concentration (10 μg/L), and speculated that oysters exposed to 50 μg/L may upregulate the defenses. We further evaluated the changes in lipidome profiling of the Cu-exposed oysters in aspects of membrane dynamics, lipid signaling and energy metabolism. We documented the phospholipid remodeling as well as quick modulation in inflammatory responses and extensive vesicle formation for subcellular compartmentalization and autophagosome formation, as well as the possible impacts on mitochondrial bioenergetics in the Cu-exposed oysters. The lipidomics approach provided a comprehensive lipid profile of possible alteration by Cu exposure. In combination with other omics approaches, it may be possible to elucidate the pathways and mechanisms in stress acclimation and resilience associated between Cu contamination and lipid metabolism.
Collapse
Affiliation(s)
- Cheuk Yan Chan
- Marine Environmental Laboratory, HKUST Shenzhen Research Institute, Shenzhen, 518057, China; Department of Ocean Science, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong
| | - Wen-Xiong Wang
- Marine Environmental Laboratory, HKUST Shenzhen Research Institute, Shenzhen, 518057, China; Department of Ocean Science, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
173
|
Choi TS, Han JY, Heo CE, Lee SW, Kim HI. Electrostatic and hydrophobic interactions of lipid-associated α-synuclein: The role of a water-limited interfaces in amyloid fibrillation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1854-1862. [DOI: 10.1016/j.bbamem.2018.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/05/2018] [Accepted: 02/05/2018] [Indexed: 12/22/2022]
|
174
|
Schommer J, Marwarha G, Nagamoto-Combs K, Ghribi O. Palmitic Acid-Enriched Diet Increases α-Synuclein and Tyrosine Hydroxylase Expression Levels in the Mouse Brain. Front Neurosci 2018; 12:552. [PMID: 30127714 PMCID: PMC6087752 DOI: 10.3389/fnins.2018.00552] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/20/2018] [Indexed: 11/13/2022] Open
Abstract
Background: Accumulation of the α-synuclein (α-syn) protein and depletion of dopaminergic neurons in the substantia nigra are hallmarks of Parkinson's disease (PD). Currently, α-syn is under scrutiny as a potential pathogenic factor that may contribute to dopaminergic neuronal death in PD. However, there is a significant gap in our knowledge on what causes α-syn to accumulate and dopaminergic neurons to die. It is now strongly suggested that the nature of our dietary intake influences both epigenetic changes and disease-related genes and may thus potentially increase or reduce our risk of developing PD. Objective: In this study, we determined the extent to which a 3 month diet enriched in the saturated free fatty acid palmitate (PA) influences levels of α-syn and tyrosine hydroxylase, the rate limiting enzyme in dopamine synthesis in mice brains. Methods: We fed the m-Thy1-αSyn (m-Thy1) mouse model for PD and its matched control, the B6D2F1/J (B6D2) mouse a PA-enriched diet or a normal diet for 3 months. Levels of α-syn, tyrosine hydroxylase, and the biogenic amines dopamine and dopamine metabolites, serotonin and noradrenaline were determined. Results: We found that the PA-enriched diet induces an increase in α-syn and TH protein and mRNA expression levels in m-Thy1 transgenic mice. We also show that, while it didn't affect levels of biogenic amine content in the B6D2 mice, the PA-enriched diet significantly reduces dopamine metabolites and increases the level of serotonin in m-Thy1 mice. Conclusion: Altogether, our results demonstrate that a diet rich in the saturated fatty acid palmitate can modulate levels of α-syn, TH, dopamine, and serotonin which all are proteins and neurochemicals that play key roles in increasing or reducing the risk for many neurodegenerative diseases including PD.
Collapse
Affiliation(s)
- Jared Schommer
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Gurdeep Marwarha
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Kumi Nagamoto-Combs
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Othman Ghribi
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| |
Collapse
|
175
|
Tied up: Does altering phosphoinositide-mediated membrane trafficking influence neurodegenerative disease phenotypes? J Genet 2018. [DOI: 10.1007/s12041-018-0961-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
176
|
Díaz M, Fabelo N, Ferrer I, Marín R. “Lipid raft aging” in the human frontal cortex during nonpathological aging: gender influences and potential implications in Alzheimer's disease. Neurobiol Aging 2018; 67:42-52. [DOI: 10.1016/j.neurobiolaging.2018.02.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/06/2018] [Accepted: 02/22/2018] [Indexed: 01/27/2023]
|
177
|
Nadiminti SSP, Kamak M, Koushika SP. Tied up: Does altering phosphoinositide-mediated membrane trafficking influence neurodegenerative disease phenotypes? J Genet 2018; 97:753-771. [PMID: 30027907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Phosphoinositides are a class of membrane lipids that are found on several intracellular compartments and play diverse roles inside cells, such as vesicle formation, protein trafficking, endocytosis etc. Intracellular distribution and levels of phosphoinositides are regulated by enzymes that generate and breakdown these lipids as well as other proteins that associate with phosphoinositides. These events lead to differing levels of specific phosphoinositides on different intracellular compartments. At these intracellular locations, phosphoinositides and their associated proteins, such as Rab GTPases, dynamin and BAR domain-containing proteins, regulate a variety of membrane trafficking pathways. Neurodegenerative phenotypes in disorders such as Parkinson's disease (PD) can arise as a consequence of altered or hampered intracellular trafficking. Altered trafficking can cause proteins such as α-synuclein to aggregate intracellularly. Several trafficking pathways are regulated bymaster regulators such as LRRK2,which is known to regulate the activity of phosphoinositide effector proteins. Perturbing either the levels of phosphoinositides or their interactions with different proteins disrupts intracellular trafficking pathways, contributing to phenotypes often observed in disorders such as Alzheimer's or PDs. Thus, studying phosphoinositide regulation and its role in trafficking can give us a deeper understanding of the contribution of disrupted trafficking to neurodegenerative phenotypes.
Collapse
Affiliation(s)
- Sravanthi S P Nadiminti
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400 005, India.
| | | | | |
Collapse
|
178
|
D'Angelo M, Antonosante A, Castelli V, Catanesi M, Moorthy N, Iannotta D, Cimini A, Benedetti E. PPARs and Energy Metabolism Adaptation during Neurogenesis and Neuronal Maturation. Int J Mol Sci 2018; 19:ijms19071869. [PMID: 29949869 PMCID: PMC6073366 DOI: 10.3390/ijms19071869] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/20/2018] [Accepted: 06/24/2018] [Indexed: 11/20/2022] Open
Abstract
Peroxisome proliferator activated receptors (PPARs) are a class of ligand-activated transcription factors, belonging to the superfamily of receptors for steroid and thyroid hormones, retinoids, and vitamin D. PPARs control the expression of several genes connected with carbohydrate and lipid metabolism, and it has been demonstrated that PPARs play important roles in determining neural stem cell (NSC) fate. Lipogenesis and aerobic glycolysis support the rapid proliferation during neurogenesis, and specific roles for PPARs in the control of different phases of neurogenesis have been demonstrated. Understanding the changes in metabolism during neuronal differentiation is important in the context of stem cell research, neurodegenerative diseases, and regenerative medicine. In this review, we will discuss pivotal evidence that supports the role of PPARs in energy metabolism alterations during neuronal maturation and neurodegenerative disorders.
Collapse
Affiliation(s)
- Michele D'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Andrea Antonosante
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Mariano Catanesi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - NandhaKumar Moorthy
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Dalila Iannotta
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| |
Collapse
|
179
|
Gorzkiewicz A, Szemraj J. Brain endocannabinoid signaling exhibits remarkable complexity. Brain Res Bull 2018; 142:33-46. [PMID: 29953913 DOI: 10.1016/j.brainresbull.2018.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/06/2018] [Accepted: 06/21/2018] [Indexed: 01/04/2023]
Abstract
The endocannabinoid (eCB) signaling system is one of the most extensive of the mammalian brain. Despite the involvement of only few specific ligands and receptors, the system encompasses a vast diversity of triggered mechanisms and driven effects. It mediates a wide range of phenomena, including the regulation of transmitter release, neural excitability, synaptic plasticity, impulse spread, long-term neuronal potentiation, neurogenesis, cell death, lineage segregation, cell migration, inflammation, oxidative stress, nociception and the sleep cycle. It is also known to be involved in the processes of learning and memory formation. This extensive scope of action is attained by combining numerous variables. In a properly functioning brain, the correlations of these variables are kept in a strictly controlled balance; however, this balance is disrupted in many pathological conditions. However, while this balance is known to be disrupted by drugs in the case of addicts, the stimuli and mechanisms influencing the neurodegenerating brain remain elusive. This review examines the multiple factors and phenomena affecting the eCB signaling system in the brain. It evaluates techniques of controlling the eCB system to identify the obstacles in their applications and highlights the crucial interdependent variables that may influence biomedical research outcomes.
Collapse
Affiliation(s)
- Anna Gorzkiewicz
- Medical University of Lodz, ul.Mazowiecka 6/8, 92-215, Lodz, Poland.
| | - Janusz Szemraj
- Medical University of Lodz, ul.Mazowiecka 6/8, 92-215, Lodz, Poland
| |
Collapse
|
180
|
O'Leary EI, Jiang Z, Strub MP, Lee JC. Effects of phosphatidylcholine membrane fluidity on the conformation and aggregation of N-terminally acetylated α-synuclein. J Biol Chem 2018; 293:11195-11205. [PMID: 29853639 DOI: 10.1074/jbc.ra118.002780] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/22/2018] [Indexed: 12/15/2022] Open
Abstract
Membrane association of α-synuclein (α-syn), a neuronal protein associated with Parkinson's disease (PD), is involved in α-syn function and pathology. Most previous studies on α-syn-membrane interactions have not used the physiologically relevant N-terminally acetylated (N-acetyl) α-syn form nor the most naturally abundant cellular lipid, i.e. phosphatidylcholine (PC). Here, we report on how PC membrane fluidity affects the conformation and aggregation propensity of N-acetyl α-syn. It is well established that upon membrane binding, α-syn adopts an α-helical structure. Using CD spectroscopy, we show that N-acetyl α-syn transitions from α-helical to disordered at the lipid melting temperature (Tm ). We found that this fluidity sensing is a robust characteristic, unaffected by acyl chain length (Tm = 34-55 °C) and preserved in its homologs β- and γ-syn. Interestingly, both N-acetyl α-syn membrane binding and amyloid formation trended with lipid order (1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) > 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/sphingomyelin/cholesterol (2:2:1) ≥ DOPC), with gel-phase vesicles shortening aggregation kinetics and promoting fibril formation compared to fluid membranes. Furthermore, we found that acetylation enhances binding to PC micelles and small unilamellar vesicles with high curvature (r ∼16-20 nm) and that DPPC binding is reduced in the presence of cholesterol. These results confirmed that the exposure of hydrocarbon chains (i.e. packing defects) is essential for binding to zwitterionic gel membranes. Collectively, our in vitro results suggest that N-acetyl α-syn localizes to highly curved, ordered membranes inside a cell. We propose that age-related changes in membrane fluidity can promote the formation of amyloid fibrils, insoluble materials associated with PD.
Collapse
Affiliation(s)
- Emma I O'Leary
- From the Laboratory of Protein Conformation and Dynamics and
| | - Zhiping Jiang
- From the Laboratory of Protein Conformation and Dynamics and
| | - Marie-Paule Strub
- the Biochemistry and Biophysics Center, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Jennifer C Lee
- From the Laboratory of Protein Conformation and Dynamics and
| |
Collapse
|
181
|
Ng YW, Say YH. Palmitic acid induces neurotoxicity and gliatoxicity in SH-SY5Y human neuroblastoma and T98G human glioblastoma cells. PeerJ 2018; 6:e4696. [PMID: 29713567 PMCID: PMC5924683 DOI: 10.7717/peerj.4696] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/12/2018] [Indexed: 12/21/2022] Open
Abstract
Background Obesity-related central nervous system (CNS) pathologies like neuroinflammation and reactive gliosis are associated with high-fat diet (HFD) related elevation of saturated fatty acids like palmitic acid (PA) in neurons and astrocytes of the brain. Methods Human neuroblastoma cells SH-SY5Y (as a neuronal model) and human glioblastoma cells T98G (as an astrocytic model), were treated with 100–500 µM PA, oleic acid (OA) or lauric acid (LA) for 24 h or 48 h, and their cell viability was assessed by 3-(4,5-dimetylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The effects of stable overexpression of γ-synuclein (γ-syn), a neuronal protein recently recognized as a novel regulator of lipid handling in adipocytes, and transient overexpression of Parkinson’s disease (PD) α-synuclein [α-syn; wild-type (wt) and its pathogenic mutants A53T, A30P and E46K] in SH-SY5Y and T98G cells, were also evaluated. The effects of co-treatment of PA with paraquat (PQ), a Parkinsonian pesticide, and leptin, a hormone involved in the brain-adipose axis, were also assessed. Cell death mode and cell cycle were analyzed by Annexin V/PI flow cytometry. Reactive oxygen species (ROS) level was determined using 2′,7′-dichlorofluorescien diacetate (DCFH-DA) assay and lipid peroxidation level was determined using thiobarbituric acid reactive substances (TBARS) assay. Results MTT assay revealed dose- and time-dependent PA cytotoxicity on SH-SY5Y and T98G cells, but not OA and LA. The cytotoxicity was significantly lower in SH-SY5Y-γ-syn cells, while transient overexpression of wt α-syn or its PD mutants (A30P and E46K, but not A53T) modestly (but still significantly) rescued the cytotoxicity of PA in SH-SY5Y and T98G cells. Co-treatment of increasing concentrations of PQ exacerbated PA’s neurotoxicity. Pre-treatment of leptin, an anti-apoptotic adipokine, did not successfully rescue SH-SY5Y cells from PA-induced cytotoxicity—suggesting a mechanism of PA-induced leptin resistance. Annexin V/PI flow cytometry analysis revealed PA-induced increase in percentages of cells in annexin V-positive/PI-negative quadrant (early apoptosis) and subG0-G1 fraction, accompanied by a decrease in G2-M phase cells. The PA-induced ROS production and lipid peroxidation was at greater extent in T98G as compared to that in SH-SY5Y. Discussion In conclusion, PA induces apoptosis by increasing oxidative stress in neurons and astrocytes. Taken together, the results suggest that HFD may cause neuronal and astrocytic damage, which indirectly proposes that CNS pathologies involving neuroinflammation and reactive gliosis could be prevented via the diet regimen.
Collapse
Affiliation(s)
- Yee-Wen Ng
- Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR) Kampar Campus, Kampar, Perak, Malaysia
| | - Yee-How Say
- Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR) Kampar Campus, Kampar, Perak, Malaysia
| |
Collapse
|
182
|
Herrera JL, Ordoñez-Gutierrez L, Fabrias G, Casas J, Morales A, Hernandez G, Acosta NG, Rodriguez C, Prieto-Valiente L, Garcia-Segura LM, Alonso R, Wandosell FG. Ovarian Function Modulates the Effects of Long-Chain Polyunsaturated Fatty Acids on the Mouse Cerebral Cortex. Front Cell Neurosci 2018; 12:103. [PMID: 29740285 PMCID: PMC5928148 DOI: 10.3389/fncel.2018.00103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/29/2018] [Indexed: 12/31/2022] Open
Abstract
Different dietary ratios of n−6/n−3 long-chain polyunsaturated fatty acids (LC-PUFAs) may alter brain lipid profile, neural activity, and brain cognitive function. To determine whether ovarian hormones influence the effect of diet on the brain, ovariectomized and sham-operated mice continuously treated with placebo or estradiol were fed for 3 months with diets containing low or high n−6/n−3 LC-PUFA ratios. The fatty acid (FA) profile and expression of key neuronal proteins were analyzed in the cerebral cortex, with intact female mice on standard diet serving as internal controls of brain lipidome composition. Diets containing different concentrations of LC-PUFAs greatly modified total FAs, sphingolipids, and gangliosides in the cerebral cortex. Some of these changes were dependent on ovarian hormones, as they were not detected in ovariectomized animals, and in the case of complex lipids, the effect of ovariectomy was partially or totally reversed by continuous administration of estradiol. However, even though differential dietary LC-PUFA content modified the expression of neuronal proteins such as synapsin and its phosphorylation level, PSD-95, amyloid precursor protein (APP), or glial proteins such as glial fibrillary acidic protein (GFAP), an effect also dependent on the presence of the ovary, chronic estradiol treatment was unable to revert the dietary effects on brain cortex synaptic proteins. These results suggest that, in addition to stable estradiol levels, other ovarian hormones such as progesterone and/or cyclic ovarian secretory activity could play a physiological role in the modulation of dietary LC-PUFAs on the cerebral cortex, which may have clinical implications for post-menopausal women on diets enriched with different proportions of n−3 and n−6 LC-PUFAs.
Collapse
Affiliation(s)
- Jose L Herrera
- Departamento de Ciencias Médicas Básica and Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, La Laguna, Spain
| | - Lara Ordoñez-Gutierrez
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain
| | - Gemma Fabrias
- Instituto de Química Avanzada de Cataluña (IQAC-CSIC), Barcelona, Spain
| | - Josefina Casas
- Instituto de Química Avanzada de Cataluña (IQAC-CSIC), Barcelona, Spain
| | - Araceli Morales
- Departamento de Ciencias Médicas Básica and Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, La Laguna, Spain
| | - Guadalberto Hernandez
- Departamento de Ciencias Médicas Básica and Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, La Laguna, Spain
| | - Nieves G Acosta
- Departamento de Biología Animal, Edafología y Geología, and Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, Tenerife, Spain
| | - Covadonga Rodriguez
- Departamento de Ciencias Médicas Básica and Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, La Laguna, Spain.,Departamento de Biología Animal, Edafología y Geología, and Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, Tenerife, Spain
| | | | - Luis M Garcia-Segura
- Instituto Cajal (CSIC) and Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Madrid, Spain
| | - Rafael Alonso
- Departamento de Ciencias Médicas Básica and Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, La Laguna, Spain
| | - Francisco G Wandosell
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain
| |
Collapse
|
183
|
Di Pardo A, Maglione V. Sphingolipid Metabolism: A New Therapeutic Opportunity for Brain Degenerative Disorders. Front Neurosci 2018; 12:249. [PMID: 29719499 PMCID: PMC5913346 DOI: 10.3389/fnins.2018.00249] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 03/29/2018] [Indexed: 01/01/2023] Open
Abstract
Neurodegenerative diseases represent a class of fatal brain disorders for which the number of effective therapeutic options remains limited with only symptomatic treatment accessible. Multiple studies show that defects in sphingolipid pathways are shared among different brain disorders including neurodegenerative diseases and may contribute to their complex pathogenesis. In this mini review, we discuss the hypothesis that modulation of sphingolipid metabolism and their related signaling pathways may represent a potential therapeutic approach for those devastating conditions. The plausible “druggability” of sphingolipid pathways is greatly promising and represent a relevant feature that brings real advantage to the development of new therapeutic options for these conditions. Indeed, several molecules that selectively target sphingolipds are already available and many of them currently in clinical trial for human diseases. A deeper understanding of the “sphingolipid scenario” in neurodegenerative disorders would certainly enhance therapeutic perspectives for these conditions, by taking advantage from the already available molecules and by promoting the development of new ones.
Collapse
|
184
|
Structural insights into positive and negative allosteric regulation of a G protein-coupled receptor through protein-lipid interactions. Sci Rep 2018. [PMID: 29535353 PMCID: PMC5849739 DOI: 10.1038/s41598-018-22735-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Lipids are becoming known as essential allosteric modulators of G protein-coupled receptor (GPCRs). However, how they exert their effects on GPCR conformation at the atomic level is still unclear. In light of recent experimental data, we have performed several long-timescale molecular dynamics (MD) simulations, totalling 24 μs, to rigorously map allosteric modulation and conformational changes in the β2 adrenergic receptor (β2AR) that occur as a result of interactions with three different phospholipids. In particular, we identify different sequential mechanisms behind receptor activation and deactivation, respectively, mediated by specific lipid interactions with key receptor regions. We show that net negatively charged lipids stabilize an active-like state of β2AR that is able to dock Gsα protein. Clustering of anionic lipids around the receptor with local distortion of membrane thickness is also apparent. On the other hand, net-neutral zwitterionic lipids inactivate the receptor, generating either fully inactive or intermediate states, with kinetics depending on lipid headgroup charge distribution and hydrophobicity. These chemical differences alter membrane thickness and density, which differentially destabilize the β2AR active state through lateral compression effects.
Collapse
|
185
|
Olsen ASB, Færgeman NJ. Sphingolipids: membrane microdomains in brain development, function and neurological diseases. Open Biol 2018; 7:rsob.170069. [PMID: 28566300 PMCID: PMC5451547 DOI: 10.1098/rsob.170069] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 04/30/2017] [Indexed: 12/11/2022] Open
Abstract
Sphingolipids are highly enriched in the nervous system where they are pivotal constituents of the plasma membranes and are important for proper brain development and functions. Sphingolipids are not merely structural elements, but are also recognized as regulators of cellular events by their ability to form microdomains in the plasma membrane. The significance of such compartmentalization spans broadly from being involved in differentiation of neurons and synaptic transmission to neuronal–glial interactions and myelin stability. Thus, perturbations of the sphingolipid metabolism can lead to rearrangements in the plasma membrane, which has been linked to the development of various neurological diseases. Studying microdomains and their functions has for a long time been synonymous with studying the role of cholesterol. However, it is becoming increasingly clear that microdomains are very heterogeneous, which among others can be ascribed to the vast number of sphingolipids. In this review, we discuss the importance of microdomains with emphasis on sphingolipids in brain development and function as well as how disruption of the sphingolipid metabolism (and hence microdomains) contributes to the pathogenesis of several neurological diseases.
Collapse
Affiliation(s)
- Anne S B Olsen
- Villum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Nils J Færgeman
- Villum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| |
Collapse
|
186
|
Marin R, Diaz M. Estrogen Interactions With Lipid Rafts Related to Neuroprotection. Impact of Brain Ageing and Menopause. Front Neurosci 2018; 12:128. [PMID: 29559883 PMCID: PMC5845729 DOI: 10.3389/fnins.2018.00128] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/16/2018] [Indexed: 12/22/2022] Open
Abstract
Estrogens (E2) exert a plethora of neuroprotective actions against aged-associated brain diseases, including Alzheimer's disease (AD). Part of these actions takes place through binding to estrogen receptors (ER) embedded in signalosomes, where numerous signaling proteins are clustered. Signalosomes are preferentially located in lipid rafts which are dynamic membrane microstructures characterized by a peculiar lipid composition enriched in gangliosides, saturated fatty acids, cholesterol, and sphingolipids. Rapid E2 interactions with ER-related signalosomes appear to trigger intracellular signaling ultimately leading to the activation of molecular mechanisms against AD. We have previously observed that the reduction of E2 blood levels occurring during menopause induced disruption of ER-signalosomes at frontal cortical brain areas. These molecular changes may reduce neuronal protection activities, as similar ER signalosome derangements were observed in AD brains. The molecular impairments may be associated with changes in the lipid composition of lipid rafts observed in neurons during menopause and AD. These evidences indicate that the changes in lipid raft structure during aging may be at the basis of alterations in the activity of ER and other neuroprotective proteins integrated in these membrane microstructures. Moreover, E2 is a homeostatic modulator of lipid rafts. Recent work has pointed to this relevant aspect of E2 activity to preserve brain integrity, through mechanisms affecting lipid uptake and local biosynthesis in the brain. Some evidences have demonstrated that estrogens and the docosahexaenoic acid (DHA) exert synergistic effects to stabilize brain lipid matrix. DHA is essential to enhance molecular fluidity at the plasma membrane, promoting functional macromolecular interactions in signaling platforms. In support of this, DHA detriment in neuronal lipid rafts has been associated with the most common age-associated neuropathologies, namely AD and Parkinson disease. Altogether, these findings indicate that E2 may participate in brain preservation through a dual membrane-related mechanism. On the one hand, E2 interacting with ER related signalosomes may protect against neurotoxic insults. On the other hand, E2 may exert lipostatic actions to preserve lipid balance in neuronal membrane microdomains. The different aspects of the emerging multifunctional role of estrogens in membrane-related signalosomes will be discussed in this review.
Collapse
Affiliation(s)
- Raquel Marin
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Medicine, Faculty of Health Sciences, University of La Laguna, Tenerife, Spain.,Fisiología y Biofísica de la Membrana Celular en Patologías Neurodegenerativas y Tumorales, Consejo Superior de Investigaciones Cientificas, Unidad Asociada de Investigación, Universidad de La Laguna Tenerife, Tenerife, Spain
| | - Mario Diaz
- Fisiología y Biofísica de la Membrana Celular en Patologías Neurodegenerativas y Tumorales, Consejo Superior de Investigaciones Cientificas, Unidad Asociada de Investigación, Universidad de La Laguna Tenerife, Tenerife, Spain.,Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, Edaphology and Geology, University of La Laguna, Tenerife, Spain
| |
Collapse
|
187
|
Horibata Y, Elpeleg O, Eran A, Hirabayashi Y, Savitzki D, Tal G, Mandel H, Sugimoto H. EPT1 (selenoprotein I) is critical for the neural development and maintenance of plasmalogen in humans. J Lipid Res 2018; 59:1015-1026. [PMID: 29500230 DOI: 10.1194/jlr.p081620] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/01/2018] [Indexed: 11/20/2022] Open
Abstract
Ethanolamine phosphotransferase (EPT)1, also known as selenoprotein 1 (SELENOI), is an enzyme that transfers phosphoethanolamine from cytidine diphosphate-ethanolamine to lipid acceptors to produce ethanolamine glycerophospholipids, such as diacyl-linked phosphatidylethanolamine (PE) and ether-linked plasmalogen [1-alkenyl-2-acyl-glycerophosphoethanolamine (plasmenyl-PE)]. However, to date there has been no analysis of the metabolomic consequences of the mutation of EPT1 on the concentration of ethanolamine glycerophospholipids in mammalian cells. We studied a patient with severe complicated hereditary spastic paraplegia, sensorineural-deafness, blindness, and seizures. Neuroimaging revealed hypomyelination, followed by brain atrophy mainly in the cerebellum and brainstem. Using whole exome sequencing, we identified a novel EPT1 mutation (exon skipping). In vitro EPT activity, as well as the rate of biosynthesis of ethanolamine glycerophospholipids, was markedly reduced in cultures of the patient's skin fibroblasts. Quantification of phospholipids by LC-MS/MS demonstrated reduced levels of several PE species with polyunsaturated fatty acids, such as 38:6, 38:4, 40:6, 40:5, and 40:4. Notably, most plasmenyl-PE species were significantly decreased in the patient's cells, whereas most plasmanylcholine [1-alkyl-2-acyl-glycerophosphocholine (plasmanyl-PC)] species were increased. Similar findings regarding decreased plasmenyl-PE and increased plasmanyl-PC were obtained using EPT1-KO HeLa cells. Our data demonstrate for the first time the indispensable role of EPT1 in the myelination process and neurodevelopment, and in the maintenance of normal homeostasis of ether-linked phospholipids in humans.
Collapse
Affiliation(s)
- Yasuhiro Horibata
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Orly Elpeleg
- Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ayelet Eran
- Department of Diagnostic Imaging, Rambam Health Care Campus, Haifa, Israel
| | - Yoshio Hirabayashi
- Molecular Membrane Neuroscience, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - David Savitzki
- Pediatric Neurology Unit, Galilee Medical Center, Nahariya, Israel
| | - Galit Tal
- Metabolic Unit, Rambam Health Care Campus, Rappaport School of Medicine, Haifa, Israel
| | - Hanna Mandel
- Metabolic Unit, Rambam Health Care Campus, Rappaport School of Medicine, Haifa, Israel.
| | - Hiroyuki Sugimoto
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan.
| |
Collapse
|
188
|
Jouvène C, Fourmaux B, Géloën A, Balas L, Durand T, Lagarde M, Létisse M, Guichardant M. Ultra-Performance Liquid Chromatography-Mass Spectrometry Analysis of Free and Esterified Oxygenated Derivatives from Docosahexaenoic Acid in Rat Brain. Lipids 2018; 53:103-116. [PMID: 29469960 DOI: 10.1002/lipd.12006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 10/04/2017] [Accepted: 10/18/2017] [Indexed: 12/21/2022]
Abstract
Docosahexaenoic acid (DHA), a prominent long-chain fatty acid of the omega-3 family, is present at high amount in brain tissues, especially in membrane phospholipids. This polyunsaturated fatty acid is the precursor of various oxygenated lipid mediators involved in diverse physiological and pathophysiological processes. Characterization of DHA-oxygenated metabolites is therefore crucial for better understanding the biological roles of DHA. In this study, we identified and measured, by ultrahigh-performance liquid chromatography coupled with tandem mass spectrometry, a number of oxygenated products derived from DHA in exsanguinated and nonexsanguinated brains. These metabolites were found both in free form and esterified in phospholipids. Interestingly, both (R)- and (S)-monohydroxylated fatty acid stereoisomers were observed free and esterified in phospholipids. Monohydroxylated metabolites were the main derivatives; however, measurable amounts of dihydroxylated products such as protectin DX were detected. Moreover, exsanguination allowed discriminating brain oxygenated metabolites from those generated in blood. These results obtained in healthy rats allowed an overview on the brain oxygenated metabolism of DHA, which deserves further research in pathophysiological conditions, especially in neurodegenerative diseases.
Collapse
Affiliation(s)
- Charlotte Jouvène
- Univ-Lyon, CarMeN laboratory, (Inserm UMR 1060, Inra UMR 1397), Université Claude Bernard Lyon 1, INSA-Lyon, IMBL, 20 Av A. Einstein, F-69100, Villeurbanne, France
| | - Baptiste Fourmaux
- Univ-Lyon, CarMeN laboratory, (Inserm UMR 1060, Inra UMR 1397), Université Claude Bernard Lyon 1, INSA-Lyon, IMBL, 20 Av A. Einstein, F-69100, Villeurbanne, France
| | - Alain Géloën
- Univ-Lyon, CarMeN laboratory, (Inserm UMR 1060, Inra UMR 1397), Université Claude Bernard Lyon 1, INSA-Lyon, IMBL, 20 Av A. Einstein, F-69100, Villeurbanne, France
| | - Laurence Balas
- Univ-Montpellier, IBMM, ENSCM, UMR CNRS 5247, Fac Pharm, 15 Av Ch Flahault, F-34093, Montpellier, 05, France
| | - Thierry Durand
- Univ-Montpellier, IBMM, ENSCM, UMR CNRS 5247, Fac Pharm, 15 Av Ch Flahault, F-34093, Montpellier, 05, France
| | - Michel Lagarde
- Univ-Lyon, CarMeN laboratory, (Inserm UMR 1060, Inra UMR 1397), Université Claude Bernard Lyon 1, INSA-Lyon, IMBL, 20 Av A. Einstein, F-69100, Villeurbanne, France
| | - Marion Létisse
- Univ-Lyon, CarMeN laboratory, (Inserm UMR 1060, Inra UMR 1397), Université Claude Bernard Lyon 1, INSA-Lyon, IMBL, 20 Av A. Einstein, F-69100, Villeurbanne, France
| | - Michel Guichardant
- Univ-Lyon, CarMeN laboratory, (Inserm UMR 1060, Inra UMR 1397), Université Claude Bernard Lyon 1, INSA-Lyon, IMBL, 20 Av A. Einstein, F-69100, Villeurbanne, France
| |
Collapse
|
189
|
Brain docosahexaenoic acid uptake and metabolism. Mol Aspects Med 2018; 64:109-134. [PMID: 29305120 DOI: 10.1016/j.mam.2017.12.004] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/21/2017] [Accepted: 12/28/2017] [Indexed: 12/22/2022]
Abstract
Docosahexaenoic acid (DHA) is the most abundant n-3 polyunsaturated fatty acid in the brain where it serves to regulate several important processes and, in addition, serves as a precursor to bioactive mediators. Given that the capacity of the brain to synthesize DHA locally is appreciably low, the uptake of DHA from circulating lipid pools is essential to maintaining homeostatic levels. Although, several plasma pools have been proposed to supply the brain with DHA, recent evidence suggests non-esterified-DHA and lysophosphatidylcholine-DHA are the primary sources. The uptake of DHA into the brain appears to be regulated by a number of complementary pathways associated with the activation and metabolism of DHA, and may provide mechanisms for enrichment of DHA within the brain. Following entry into the brain, DHA is esterified into and recycled amongst membrane phospholipids contributing the distribution of DHA in brain phospholipids. During neurotransmission and following brain injury, DHA is released from membrane phospholipids and converted to bioactive mediators which regulate signaling pathways important to synaptogenesis, cell survival, and neuroinflammation, and may be relevant to treating neurological diseases. In the present review, we provide a comprehensive overview of brain DHA metabolism, encompassing many of the pathways and key enzymatic regulators governing brain DHA uptake and metabolism. In addition, we focus on the release of non-esterified DHA and subsequent production of bioactive mediators and the evidence of their proposed activity within the brain. We also provide a brief review of the evidence from post-mortem brain analyses investigating DHA levels in the context of neurological disease and mood disorder, highlighting the current disparities within the field.
Collapse
|
190
|
Abstract
Ether lipids, such as plasmalogens, are peroxisome-derived glycerophospholipids in which the hydrocarbon chain at the sn-1 position of the glycerol backbone is attached by an ether bond, as opposed to an ester bond in the more common diacyl phospholipids. This seemingly simple biochemical change has profound structural and functional implications. Notably, the tendency of ether lipids to form non-lamellar inverted hexagonal structures in model membranes suggests that they have a role in facilitating membrane fusion processes. Ether lipids are also important for the organization and stability of lipid raft microdomains, cholesterol-rich membrane regions involved in cellular signaling. In addition to their structural roles, a subset of ether lipids are thought to function as endogenous antioxidants, and emerging studies suggest that they are involved in cell differentiation and signaling pathways. Here, we review the biology of ether lipids and their potential significance in human disorders, including neurological diseases, cancer, and metabolic disorders.
Collapse
Affiliation(s)
- John M Dean
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Irfan J Lodhi
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
| |
Collapse
|
191
|
Bourque M, Grégoire L, Di Paolo T. The plasmalogen precursor analog PPI-1011 reduces the development of L-DOPA-induced dyskinesias in de novo MPTP monkeys. Behav Brain Res 2018; 337:183-185. [PMID: 28917506 DOI: 10.1016/j.bbr.2017.09.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/08/2017] [Accepted: 09/13/2017] [Indexed: 11/16/2022]
Abstract
The gold standard therapy for Parkinson's disease (PD), L-3,4-dihydroxyphenylalanine (L-DOPA), induces dyskinesias in the majority of patients after years of treatment. Ethanolamine plasmalogens (PlsEtn) play critical roles in membrane structure mediated functions and as a storage depot of polyunsaturated fatty acids such as docosahexaenoic acid. We previously showed that a PlsEtn precursor PPI-1011 reduced already established L-DOPA-induced dyskinesias (LID) in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) lesioned monkeys as a PD model. We hypothesize that development of LID can be prevented with a PPI-1011 treatment in de novo MPTP-lesioned monkeys. MPTP-lesioned monkeys were treated once daily for 28days with either L-DOPA or L-DOPA+PPI-1011 (25mg/kg). The antiparkinsonian effect of L-DOPA was maintained throughout the treatment period in MPTP-lesioned monkeys treated with L-DOPA alone and L-DOPA+PPI-1011. Over the 28days of treatment, the mean dyskinesia score increased in L-DOPA-treated monkeys whereas this increase was significantly less in the L-DOPA+PPI-1011 group. This was followed by a washout period of 2 weeks of both experimental groups without treatment. Then both groups were administered once during week 7 and twice during week 8 with L-DOPA with behavioral measures recorded on treatment days. MPTP monkeys of both experimental groups administered L-DOPA in experimental week 7 showed reduced LID. During week 8, the L-DOPA group showed increased LID whereas LID remained low in the group previously treated with L-DOPA+PPI-1011. The present results suggest that PPI-1011 can prevent/delay the development of LID while maintaining the antiparkinsonian activity of L-DOPA.
Collapse
Affiliation(s)
- Mélanie Bourque
- Neuroscience Research Unit, Centre de Recherche du CHU de Québec, CHUL, 2705 Laurier Boulevard, Quebec City, Qc, G1V 4G2, Canada; Faculty of Pharmacy, Laval University, 1050, avenue de la Médecine, Quebec City, Qc, G1V 0A6, Canada
| | - Laurent Grégoire
- Neuroscience Research Unit, Centre de Recherche du CHU de Québec, CHUL, 2705 Laurier Boulevard, Quebec City, Qc, G1V 4G2, Canada
| | - Thérèse Di Paolo
- Neuroscience Research Unit, Centre de Recherche du CHU de Québec, CHUL, 2705 Laurier Boulevard, Quebec City, Qc, G1V 4G2, Canada; Faculty of Pharmacy, Laval University, 1050, avenue de la Médecine, Quebec City, Qc, G1V 0A6, Canada.
| |
Collapse
|
192
|
Moskot M, Bocheńska K, Jakóbkiewicz-Banecka J, Banecki B, Gabig-Cimińska M. Abnormal Sphingolipid World in Inflammation Specific for Lysosomal Storage Diseases and Skin Disorders. Int J Mol Sci 2018; 19:E247. [PMID: 29342918 PMCID: PMC5796195 DOI: 10.3390/ijms19010247] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/20/2017] [Accepted: 01/11/2018] [Indexed: 02/06/2023] Open
Abstract
Research in recent years has shown that sphingolipids are essential signalling molecules for the proper biological and structural functioning of cells. Long-term studies on the metabolism of sphingolipids have provided evidence for their role in the pathogenesis of a number of diseases. As many inflammatory diseases, such as lysosomal storage disorders and some dermatologic diseases, including psoriasis, atopic dermatitis and ichthyoses, are associated with the altered composition and metabolism of sphingolipids, more studies precisely determining the responsibilities of these compounds for disease states are required to develop novel pharmacological treatment opportunities. It is worth emphasizing that knowledge from the study of inflammatory metabolic diseases and especially the possibility of their treatment may lead to insight into related metabolic pathways, including those involved in the formation of the epidermal barrier and providing new approaches towards workable therapies.
Collapse
Affiliation(s)
- Marta Moskot
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Molecular Biology, Kadki 24, 80-822 Gdańsk, Poland.
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | - Katarzyna Bocheńska
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | | | - Bogdan Banecki
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, Abrahama 58, 80-307 Gdańsk, Poland.
| | - Magdalena Gabig-Cimińska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Molecular Biology, Kadki 24, 80-822 Gdańsk, Poland.
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| |
Collapse
|
193
|
Abstract
Proteomics and lipidomics are powerful tools to the large-scale study of proteins and lipids, respectively. Several methods can be employed with particular benefits and limitations in the study of human brain. This is a review of the rationale use of current techniques with particular attention to limitations and pitfalls inherent to each one of the techniques, and more importantly, to their use in the study of post-mortem brain tissue. These aspects are cardinal to avoid false interpretations, errors and unreal expectancies. Other points are also stressed as exemplified in the analysis of human neurodegenerative diseases which are manifested by disease-, region-, and stage-specific modifications commonly in the context of aging. Information about certain altered protein clusters and proteins oxidatively damaged is summarized for Alzheimer and Parkinson diseases.
Collapse
Affiliation(s)
- Isidro Ferrer
- Pathologic Anatomy Service, Institute of Neuropathology, Bellvitge University Hospital; Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona; and Network Center of Biomedical Research on Neurodegenerative Diseases, Institute Carlos III; Hospitalet de Llobregat, Llobregat, Spain.
| |
Collapse
|
194
|
Singh A, Vishwakarma V, Singhal B. Metabiotics: The Functional Metabolic Signatures of Probiotics: Current State-of-Art and Future Research Priorities—Metabiotics: Probiotics Effector Molecules. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/abb.2018.94012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
195
|
Rocha S, Freitas A, Guimaraes SC, Vitorino R, Aroso M, Gomez-Lazaro M. Biological Implications of Differential Expression of Mitochondrial-Shaping Proteins in Parkinson's Disease. Antioxidants (Basel) 2017; 7:E1. [PMID: 29267236 PMCID: PMC5789311 DOI: 10.3390/antiox7010001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 12/17/2022] Open
Abstract
It has long been accepted that mitochondrial function and morphology is affected in Parkinson's disease, and that mitochondrial function can be directly related to its morphology. So far, mitochondrial morphological alterations studies, in the context of this neurodegenerative disease, have been performed through microscopic methodologies. The goal of the present work is to address if the modifications in the mitochondrial-shaping proteins occurring in this disorder have implications in other cellular pathways, which might constitute important pathways for the disease progression. To do so, we conducted a novel approach through a thorough exploration of the available proteomics-based studies in the context of Parkinson's disease. The analysis provided insight into the altered biological pathways affected by changes in the expression of mitochondrial-shaping proteins via different bioinformatic tools. Unexpectedly, we observed that the mitochondrial-shaping proteins altered in the context of Parkinson's disease are, in the vast majority, related to the organization of the mitochondrial cristae. Conversely, in the studies that have resorted to microscopy-based techniques, the most widely reported alteration in the context of this disorder is mitochondria fragmentation. Cristae membrane organization is pivotal for mitochondrial ATP production, and changes in their morphology have a direct impact on the organization and function of the oxidative phosphorylation (OXPHOS) complexes. To understand which biological processes are affected by the alteration of these proteins we analyzed the binding partners of the mitochondrial-shaping proteins that were found altered in Parkinson's disease. We showed that the binding partners fall into seven different cellular components, which include mitochondria, proteasome, and endoplasmic reticulum (ER), amongst others. It is noteworthy that, by evaluating the biological process in which these modified proteins are involved, we showed that they are related to the production and metabolism of ATP, immune response, cytoskeleton alteration, and oxidative stress, amongst others. In summary, with our bioinformatics approach using the data on the modified proteins in Parkinson's disease patients, we were able to relate the alteration of mitochondrial-shaping proteins to modifications of crucial cellular pathways affected in this disease.
Collapse
Affiliation(s)
- Sara Rocha
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Ana Freitas
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.
- FMUP-Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal.
| | - Sofia C Guimaraes
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Rui Vitorino
- iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal.
- Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Universidade do Porto, 4200-319 Porto, Portugal.
| | - Miguel Aroso
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Maria Gomez-Lazaro
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.
| |
Collapse
|
196
|
Distinct lipidomic profiles in models of physiological and pathological cardiac remodeling, and potential therapeutic strategies. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1863:219-234. [PMID: 29217479 DOI: 10.1016/j.bbalip.2017.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 11/04/2017] [Accepted: 12/02/2017] [Indexed: 01/23/2023]
Abstract
Cardiac myocyte membranes contain lipids which remodel dramatically in response to heart growth and remodeling. Lipid species have both structural and functional roles. Physiological and pathological cardiac remodeling have very distinct phenotypes, and the identification of molecular differences represent avenues for therapeutic interventions. Whether the abundance of specific lipid classes is different in physiological and pathological models was largely unknown. The aim of this study was to determine whether distinct lipids are regulated in settings of physiological and pathological remodeling, and if so, whether modulation of differentially regulated lipids could modulate heart size and function. Lipidomic profiling was performed on cardiac-specific transgenic mice with 1) physiological cardiac hypertrophy due to increased Insulin-like Growth Factor 1 (IGF1) receptor or Phosphoinositide 3-Kinase (PI3K) signaling, 2) small hearts due to depressed PI3K signaling (dnPI3K), and 3) failing hearts due to dilated cardiomyopathy (DCM). In hearts of dnPI3K and DCM mice, several phospholipids (plasmalogens) were decreased and sphingolipids increased compared to mice with physiological hypertrophy. To assess whether restoration of plasmalogens could restore heart size or cardiac function, dnPI3K and DCM mice were administered batyl alcohol (BA; precursor to plasmalogen biosynthesis) in the diet for 16weeks. BA supplementation increased a major plasmalogen species (p18:0) in the heart but had no effect on heart size or function. This may be due to the concurrent reduction in other plasmalogen species (p16:0 and p18:1) with BA. Here we show that lipid species are differentially regulated in settings of physiological and pathological remodeling. Restoration of lipid species in the failing heart warrants further examination.
Collapse
|
197
|
Dorninger F, Herbst R, Kravic B, Camurdanoglu BZ, Macinkovic I, Zeitler G, Forss-Petter S, Strack S, Khan MM, Waterham HR, Rudolf R, Hashemolhosseini S, Berger J. Reduced muscle strength in ether lipid-deficient mice is accompanied by altered development and function of the neuromuscular junction. J Neurochem 2017; 143:569-583. [PMID: 28555889 PMCID: PMC5725694 DOI: 10.1111/jnc.14082] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/28/2017] [Accepted: 05/10/2017] [Indexed: 01/31/2023]
Abstract
Inherited deficiency in ether lipids, a subgroup of phospholipids whose biosynthesis needs peroxisomes, causes the fatal human disorder rhizomelic chondrodysplasia punctata. The exact roles of ether lipids in the mammalian organism and, therefore, the molecular mechanisms underlying the disease are still largely enigmatic. Here, we used glyceronephosphate O-acyltransferase knockout (Gnpat KO) mice to study the consequences of complete inactivation of ether lipid biosynthesis and documented substantial deficits in motor performance and muscle strength of these mice. We hypothesized that, probably in addition to previously described cerebellar abnormalities and myelination defects in the peripheral nervous system, an impairment of neuromuscular transmission contributes to the compromised motor abilities. Structurally, a morphologic examination of the neuromuscular junction (NMJ) in diaphragm muscle at different developmental stages revealed aberrant axonal branching and a strongly increased area of nerve innervation in Gnpat KO mice. Post-synaptically, acetylcholine receptor (AChR) clusters colocalized with nerve terminals within a widened endplate zone. In addition, we detected atypical AChR clustering, as indicated by decreased size and number of clusters following stimulation with agrin, in vitro. The turnover of AChRs was unaffected in ether lipid-deficient mice. Electrophysiological evaluation of the adult diaphragm indicated that although evoked potentials were unaltered in Gnpat KO mice, ether lipid deficiency leads to fewer spontaneous synaptic vesicle fusion events but, conversely, an increased post-synaptic response to spontaneous vesicle exocytosis. We conclude from our findings that ether lipids are essential for proper development and function of the NMJ and may, therefore, contribute to motor performance. Read the Editorial Highlight for this article on page 463.
Collapse
Affiliation(s)
- Fabian Dorninger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Ruth Herbst
- Section for Synapse Formation, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Bojana Kravic
- Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Bahar Z Camurdanoglu
- Section for Synapse Formation, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Igor Macinkovic
- Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Gerhard Zeitler
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Siegfried Strack
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Muzamil Majid Khan
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Institute of Molecular and Cell Biology, Faculty of Biotechnology, University of Applied Sciences Mannheim, Mannheim, Germany
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Rüdiger Rudolf
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Institute of Molecular and Cell Biology, Faculty of Biotechnology, University of Applied Sciences Mannheim, Mannheim, Germany
| | - Said Hashemolhosseini
- Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
198
|
Cholesterol metabolism and glaucoma: Modulation of Muller cell membrane organization by 24S-hydroxycholesterol. Chem Phys Lipids 2017; 207:179-191. [DOI: 10.1016/j.chemphyslip.2017.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/19/2017] [Accepted: 05/23/2017] [Indexed: 02/04/2023]
|
199
|
Dorninger F, Forss-Petter S, Berger J. From peroxisomal disorders to common neurodegenerative diseases - the role of ether phospholipids in the nervous system. FEBS Lett 2017; 591:2761-2788. [PMID: 28796901 DOI: 10.1002/1873-3468.12788] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 07/26/2017] [Accepted: 08/07/2017] [Indexed: 01/01/2023]
Abstract
The emerging diverse roles of ether (phospho)lipids in nervous system development and function in health and disease are currently attracting growing interest. Plasmalogens, a subgroup of ether lipids, are important membrane components involved in vesicle fusion and membrane raft composition. They store polyunsaturated fatty acids and may serve as antioxidants. Ether lipid metabolites act as precursors for the formation of glycosyl-phosphatidyl-inositol anchors; others, like platelet-activating factor, are implicated in signaling functions. Consolidating the available information, we attempt to provide molecular explanations for the dramatic neurological phenotype in ether lipid-deficient human patients and mice by linking individual functional properties of ether lipids with pathological features. Furthermore, recent publications have identified altered ether lipid levels in the context of many acquired neurological disorders including Alzheimer's disease (AD) and autism. Finally, current efforts to restore ether lipids in peroxisomal disorders as well as AD are critically reviewed.
Collapse
Affiliation(s)
- Fabian Dorninger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Austria
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Austria
| |
Collapse
|
200
|
Miville-Godbout E, Bourque M, Morissette M, Al-Sweidi S, Smith T, Jayasinghe D, Ritchie S, Di Paolo T. Plasmalogen precursor mitigates striatal dopamine loss in MPTP mice. Brain Res 2017; 1674:70-76. [PMID: 28830769 DOI: 10.1016/j.brainres.2017.08.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 12/29/2022]
Abstract
Ethanolamine plasmalogens (PlsEtn) are a class of glycerophospholipids characterized by a vinyl-ether bond at the sn-1 position that play an important role in the structure and function of membranes. Previous reports have suggested a link between reduced blood and brain PlsEtn levels and Parkinson's disease (PD). We recently reported that the DHA containing plasmalogen precursor PPI-1011 protected striatal dopamine (DA) against MPTP toxicity in mice. In this paper, we further investigate the specificity requirements of the lipid side chains by testing the oleic acid-containing plasmalogen precursor PPI-1025. Male mice were treated for 10days with daily oral administration of PPI-1025 (10, 50 or 200mg/kg). On day 5 mice received MPTP and were sacrificed on Day 11. Treatment with PPI-1025 prevented MPTP-induced decrease of DA and serotonin, as well as their metabolites. In addition, PPI-1025 treatment prevented the MPTP-induced decrease of the striatal dopamine transporter (DAT) and vesicular monoamine transporter 2 (VMAT2) specific binding. Significant positive correlations were measured between striatal DA concentrations and DAT or VMAT2 specific binding, as well as with serum plasmalogen concentrations. The neuroprotective effect of PPI-1025 displayed a bell-curve dose-dependency losing effect at the highest dose tested. The similar protective response of oleic and docosahexaenoic acid (DHA)-containing plasmalogen precursors suggests that the neuroprotection observed is not only due to DHA but to the oleic substituent and the plasmalogen backbone.
Collapse
Affiliation(s)
- Edith Miville-Godbout
- Neuroscience Research Unit, Centre de Recherche du CHU de Québec, CHUL, 2705 Laurier Boulevard, Quebec City, Qc G1V 4G2, Canada; Faculty of Pharmacy, Laval University, 1050, Avenue de la Médecine, Quebec City, Qc G1V 0A6, Canada
| | - Mélanie Bourque
- Neuroscience Research Unit, Centre de Recherche du CHU de Québec, CHUL, 2705 Laurier Boulevard, Quebec City, Qc G1V 4G2, Canada; Faculty of Pharmacy, Laval University, 1050, Avenue de la Médecine, Quebec City, Qc G1V 0A6, Canada
| | - Marc Morissette
- Neuroscience Research Unit, Centre de Recherche du CHU de Québec, CHUL, 2705 Laurier Boulevard, Quebec City, Qc G1V 4G2, Canada
| | - Sara Al-Sweidi
- Neuroscience Research Unit, Centre de Recherche du CHU de Québec, CHUL, 2705 Laurier Boulevard, Quebec City, Qc G1V 4G2, Canada
| | - Tara Smith
- Med-Life Discoveries LP, 104-407 Downey Road, Saskatoon, SK S7N 4L8, Canada
| | | | - Shawn Ritchie
- Med-Life Discoveries LP, 104-407 Downey Road, Saskatoon, SK S7N 4L8, Canada
| | - Thérèse Di Paolo
- Neuroscience Research Unit, Centre de Recherche du CHU de Québec, CHUL, 2705 Laurier Boulevard, Quebec City, Qc G1V 4G2, Canada; Faculty of Pharmacy, Laval University, 1050, Avenue de la Médecine, Quebec City, Qc G1V 0A6, Canada.
| |
Collapse
|