151
|
Longman D, Jackson-Jones KA, Maslon MM, Murphy LC, Young RS, Stoddart JJ, Hug N, Taylor MS, Papadopoulos DK, Cáceres JF. Identification of a localized nonsense-mediated decay pathway at the endoplasmic reticulum. Genes Dev 2020; 34:1075-1088. [PMID: 32616520 PMCID: PMC7397857 DOI: 10.1101/gad.338061.120] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/05/2020] [Indexed: 12/25/2022]
Abstract
Nonsense-mediated decay (NMD) is a translation-dependent RNA quality control mechanism that occurs in the cytoplasm. However, it is unknown how NMD regulates the stability of RNAs translated at the endoplasmic reticulum (ER). Here, we identify a localized NMD pathway dedicated to ER-translated mRNAs. We previously identified NBAS, a component of the Syntaxin 18 complex involved in Golgi-to-ER trafficking, as a novel NMD factor. Furthermore, we show that NBAS fulfills an independent function in NMD. This ER-NMD pathway requires the interaction of NBAS with the core NMD factor UPF1, which is partially localized at the ER in the proximity of the translocon. NBAS and UPF1 coregulate the stability of ER-associated transcripts, in particular those associated with the cellular stress response. We propose a model where NBAS recruits UPF1 to the membrane of the ER and activates an ER-dedicated NMD pathway, thus providing an ER-protective function by ensuring quality control of ER-translated mRNAs.
Collapse
Affiliation(s)
- Dasa Longman
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Kathryn A Jackson-Jones
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Magdalena M Maslon
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Laura C Murphy
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Robert S Young
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Jack J Stoddart
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Nele Hug
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Martin S Taylor
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Dimitrios K Papadopoulos
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Javier F Cáceres
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| |
Collapse
|
152
|
Bond S, Lopez-Lloreda C, Gannon PJ, Akay-Espinoza C, Jordan-Sciutto KL. The Integrated Stress Response and Phosphorylated Eukaryotic Initiation Factor 2α in Neurodegeneration. J Neuropathol Exp Neurol 2020; 79:123-143. [PMID: 31913484 DOI: 10.1093/jnen/nlz129] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
The proposed molecular mechanisms underlying neurodegenerative pathogenesis are varied, precluding the development of effective therapies for these increasingly prevalent disorders. One of the most consistent observations across neurodegenerative diseases is the phosphorylation of eukaryotic initiation factor 2α (eIF2α). eIF2α is a translation initiation factor, involved in cap-dependent protein translation, which when phosphorylated causes global translation attenuation. eIF2α phosphorylation is mediated by 4 kinases, which, together with their downstream signaling cascades, constitute the integrated stress response (ISR). While the ISR is activated by stresses commonly observed in neurodegeneration, such as oxidative stress, endoplasmic reticulum stress, and inflammation, it is a canonically adaptive signaling cascade. However, chronic activation of the ISR can contribute to neurodegenerative phenotypes such as neuronal death, memory impairments, and protein aggregation via apoptotic induction and other maladaptive outcomes downstream of phospho-eIF2α-mediated translation inhibition, including neuroinflammation and altered amyloidogenic processing, plausibly in a feed-forward manner. This review examines evidence that dysregulated eIF2a phosphorylation acts as a driver of neurodegeneration, including a survey of observations of ISR signaling in human disease, inspection of the overlap between ISR signaling and neurodegenerative phenomenon, and assessment of recent encouraging findings ameliorating neurodegeneration using developing pharmacological agents which target the ISR. In doing so, gaps in the field, including crosstalk of the ISR kinases and consideration of ISR signaling in nonneuronal central nervous system cell types, are highlighted.
Collapse
Affiliation(s)
- Sarah Bond
- From the Department of Biochemistry and Biophysics (SB); Department of Neuroscience (CL-L); Department of Pharmacology (PG), Perelman School of Medicine; Department of Basic and Translational Sciences (CA-E); and Department of Basic and Translational Sciences (KLJ-S), School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Claudia Lopez-Lloreda
- From the Department of Biochemistry and Biophysics (SB); Department of Neuroscience (CL-L); Department of Pharmacology (PG), Perelman School of Medicine; Department of Basic and Translational Sciences (CA-E); and Department of Basic and Translational Sciences (KLJ-S), School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Patrick J Gannon
- From the Department of Biochemistry and Biophysics (SB); Department of Neuroscience (CL-L); Department of Pharmacology (PG), Perelman School of Medicine; Department of Basic and Translational Sciences (CA-E); and Department of Basic and Translational Sciences (KLJ-S), School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Cagla Akay-Espinoza
- From the Department of Biochemistry and Biophysics (SB); Department of Neuroscience (CL-L); Department of Pharmacology (PG), Perelman School of Medicine; Department of Basic and Translational Sciences (CA-E); and Department of Basic and Translational Sciences (KLJ-S), School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kelly L Jordan-Sciutto
- From the Department of Biochemistry and Biophysics (SB); Department of Neuroscience (CL-L); Department of Pharmacology (PG), Perelman School of Medicine; Department of Basic and Translational Sciences (CA-E); and Department of Basic and Translational Sciences (KLJ-S), School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
153
|
van Ziel AM, Scheper W. The UPR in Neurodegenerative Disease: Not Just an Inside Job. Biomolecules 2020; 10:biom10081090. [PMID: 32707908 PMCID: PMC7465596 DOI: 10.3390/biom10081090] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 12/26/2022] Open
Abstract
Neurons are highly specialized cells that continuously and extensively communicate with other neurons, as well as glia cells. During their long lifetime, the post-mitotic neurons encounter many stressful situations that can disrupt protein homeostasis (proteostasis). The importance of tight protein quality control is illustrated by neurodegenerative disorders where disturbed neuronal proteostasis causes neuronal dysfunction and loss. For their unique function, neurons require regulated and long-distance transport of membrane-bound cargo and organelles. This highlights the importance of protein quality control in the neuronal endomembrane system, to which the unfolded protein response (UPR) is instrumental. The UPR is a highly conserved stress response that is present in all eukaryotes. However, recent studies demonstrate the existence of cell-type-specific aspects of the UPR, as well as cell non-autonomous UPR signaling. Here we discuss these novel insights in view of the complex cellular architecture of the brain and the implications for neurodegenerative diseases.
Collapse
Affiliation(s)
- Anna Maria van Ziel
- Department of Clinical Genetics, Amsterdam University Medical Centers location VUmc, 1081 HV Amsterdam, The Netherlands;
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit (VU), 1081 HV Amsterdam, The Netherlands
| | - Wiep Scheper
- Department of Clinical Genetics, Amsterdam University Medical Centers location VUmc, 1081 HV Amsterdam, The Netherlands;
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit (VU), 1081 HV Amsterdam, The Netherlands
- Correspondence: ; Tel.: +31-20-5982771
| |
Collapse
|
154
|
Verheijen BM, Lussier C, Müller-Hübers C, Garruto RM, Oyanagi K, Braun RJ, van Leeuwen FW. Activation of the Unfolded Protein Response and Proteostasis Disturbance in Parkinsonism-Dementia of Guam. J Neuropathol Exp Neurol 2020; 79:34-45. [PMID: 31750913 DOI: 10.1093/jnen/nlz110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/15/2019] [Accepted: 10/14/2019] [Indexed: 12/14/2022] Open
Abstract
Guam parkinsonism-dementia (G-PD) is a progressive and fatal neurodegenerative disorder among the native inhabitants of the Mariana Islands that manifests clinically with parkinsonism as well as dementia. Neuropathologically, G-PD is characterized by abundant neurofibrillary tangles composed of hyperphosphorylated tau, marked deposition of transactive response DNA-binding protein 43 kDa (TDP-43), and neuronal loss. The mechanisms that underlie neurodegeneration in G-PD are poorly understood. Here, we report that the unfolded protein response (UPR) is activated in G-PD brains. Specifically, we show that the endoplasmic reticulum (ER) chaperone binding immunoglobulin protein/glucose-regulated protein 78 kDa and phosphorylated (activated) ER stress sensor protein kinase RNA-like ER kinase accumulate in G-PD brains. Furthermore, proteinaceous aggregates in G-PD brains are found to contain several proteins related to the ubiquitin-proteasome system (UPS) and the autophagy pathway, two major mechanisms for intracellular protein degradation. In particular, a mutant ubiquitin (UBB+1), whose presence is a marker for UPS dysfunction, is shown to accumulate in G-PD brains. We demonstrate that UBB+1 is a potent modifier of TDP-43 aggregation and cytotoxicity in vitro. Overall, these data suggest that UPR activation and intracellular proteolytic pathways are intimately connected with the accumulation of aggregated proteins in G-PD.
Collapse
Affiliation(s)
- Bert M Verheijen
- Department of Translational Neuroscience (BMV); Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University (BMV), Utrecht, The Netherlands; Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany (CL, CM-H, RJB); Department of Anthropology (RMG); Department of Biological Sciences, Binghamton University, State University of New York (RMG), Binghamton, New York; Division of Neuropathology, Department of Brain Disease Research, Shinshu University School of Medicine, Matsumoto, Nagano, Japan (KO); Brain Research Laboratory, Hatsuishi Hospital, Kashiwa, Chiba, Japan (KO); Faculty of Medicine/Dental Medicine, Danube Private University, Krems an der Donau, Austria (RJB); and Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands (FWvL)
| | - Celina Lussier
- Department of Translational Neuroscience (BMV); Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University (BMV), Utrecht, The Netherlands; Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany (CL, CM-H, RJB); Department of Anthropology (RMG); Department of Biological Sciences, Binghamton University, State University of New York (RMG), Binghamton, New York; Division of Neuropathology, Department of Brain Disease Research, Shinshu University School of Medicine, Matsumoto, Nagano, Japan (KO); Brain Research Laboratory, Hatsuishi Hospital, Kashiwa, Chiba, Japan (KO); Faculty of Medicine/Dental Medicine, Danube Private University, Krems an der Donau, Austria (RJB); and Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands (FWvL)
| | - Cora Müller-Hübers
- Department of Translational Neuroscience (BMV); Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University (BMV), Utrecht, The Netherlands; Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany (CL, CM-H, RJB); Department of Anthropology (RMG); Department of Biological Sciences, Binghamton University, State University of New York (RMG), Binghamton, New York; Division of Neuropathology, Department of Brain Disease Research, Shinshu University School of Medicine, Matsumoto, Nagano, Japan (KO); Brain Research Laboratory, Hatsuishi Hospital, Kashiwa, Chiba, Japan (KO); Faculty of Medicine/Dental Medicine, Danube Private University, Krems an der Donau, Austria (RJB); and Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands (FWvL)
| | - Ralph M Garruto
- Department of Translational Neuroscience (BMV); Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University (BMV), Utrecht, The Netherlands; Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany (CL, CM-H, RJB); Department of Anthropology (RMG); Department of Biological Sciences, Binghamton University, State University of New York (RMG), Binghamton, New York; Division of Neuropathology, Department of Brain Disease Research, Shinshu University School of Medicine, Matsumoto, Nagano, Japan (KO); Brain Research Laboratory, Hatsuishi Hospital, Kashiwa, Chiba, Japan (KO); Faculty of Medicine/Dental Medicine, Danube Private University, Krems an der Donau, Austria (RJB); and Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands (FWvL)
| | - Kiyomitsu Oyanagi
- Department of Translational Neuroscience (BMV); Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University (BMV), Utrecht, The Netherlands; Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany (CL, CM-H, RJB); Department of Anthropology (RMG); Department of Biological Sciences, Binghamton University, State University of New York (RMG), Binghamton, New York; Division of Neuropathology, Department of Brain Disease Research, Shinshu University School of Medicine, Matsumoto, Nagano, Japan (KO); Brain Research Laboratory, Hatsuishi Hospital, Kashiwa, Chiba, Japan (KO); Faculty of Medicine/Dental Medicine, Danube Private University, Krems an der Donau, Austria (RJB); and Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands (FWvL)
| | - Ralf J Braun
- Department of Translational Neuroscience (BMV); Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University (BMV), Utrecht, The Netherlands; Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany (CL, CM-H, RJB); Department of Anthropology (RMG); Department of Biological Sciences, Binghamton University, State University of New York (RMG), Binghamton, New York; Division of Neuropathology, Department of Brain Disease Research, Shinshu University School of Medicine, Matsumoto, Nagano, Japan (KO); Brain Research Laboratory, Hatsuishi Hospital, Kashiwa, Chiba, Japan (KO); Faculty of Medicine/Dental Medicine, Danube Private University, Krems an der Donau, Austria (RJB); and Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands (FWvL)
| | - Fred W van Leeuwen
- Department of Translational Neuroscience (BMV); Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University (BMV), Utrecht, The Netherlands; Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany (CL, CM-H, RJB); Department of Anthropology (RMG); Department of Biological Sciences, Binghamton University, State University of New York (RMG), Binghamton, New York; Division of Neuropathology, Department of Brain Disease Research, Shinshu University School of Medicine, Matsumoto, Nagano, Japan (KO); Brain Research Laboratory, Hatsuishi Hospital, Kashiwa, Chiba, Japan (KO); Faculty of Medicine/Dental Medicine, Danube Private University, Krems an der Donau, Austria (RJB); and Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands (FWvL)
| |
Collapse
|
155
|
Murray HC, Dieriks BV, Swanson MEV, Anekal PV, Turner C, Faull RLM, Belluscio L, Koretsky A, Curtis MA. The unfolded protein response is activated in the olfactory system in Alzheimer's disease. Acta Neuropathol Commun 2020; 8:109. [PMID: 32665027 PMCID: PMC7362534 DOI: 10.1186/s40478-020-00986-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/03/2020] [Indexed: 01/04/2023] Open
Abstract
Olfactory dysfunction is an early and prevalent symptom of Alzheimer’s disease (AD) and the olfactory bulb is a nexus of beta-amyloid plaque and tau neurofibrillary tangle (NFT) pathology during early AD progression. To mitigate the accumulation of misfolded proteins, an endoplasmic reticulum stress response called the unfolded protein response (UPR) occurs in the AD hippocampus. However, chronic UPR activation can lead to apoptosis and the upregulation of beta-amyloid and tau production. Therefore, UPR activation in the olfactory system could be one of the first changes in AD. In this study, we investigated whether two proteins that signal UPR activation are expressed in the olfactory system of AD cases with low or high amounts of aggregate pathology. We used immunohistochemistry to label two markers of UPR activation (p-PERK and p-eIF2α) concomitantly with neuronal markers (NeuN and PGP9.5) and pathology markers (beta-amyloid and tau) in the olfactory bulb, piriform cortex, entorhinal cortex and the CA1 region of the hippocampus in AD and normal cases. We show that UPR activation, as indicated by p-PERK and p-eIF2α expression, is significantly increased throughout the olfactory system in AD cases with low (Braak stage III-IV) and high-level (Braak stage V-VI) pathology. We further show that UPR activation occurs in the mitral cells and in the anterior olfactory nucleus of the olfactory bulb where tau and amyloid pathology is abundant. However, UPR activation is not present in neurons when they contain NFTs and only rarely occurs in neurons containing diffuse tau aggregates. We conclude that UPR activation is prevalent in all regions of the olfactory system and support previous findings suggesting that UPR activation likely precedes NFT formation. Our data indicate that chronic UPR activation in the olfactory system might contribute to the olfactory dysfunction that occurs early in the pathogenesis of AD.
Collapse
|
156
|
Bocai NI, Marcora MS, Belfiori-Carrasco LF, Morelli L, Castaño EM. Endoplasmic Reticulum Stress in Tauopathies: Contrasting Human Brain Pathology with Cellular and Animal Models. J Alzheimers Dis 2020; 68:439-458. [PMID: 30775999 DOI: 10.3233/jad-181021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The accumulation and spreading of protein tau in the human brain are major features of neurodegenerative disorders known as tauopathies. In addition to several subcellular abnormalities, tau aggregation within neurons seems capable of triggering endoplasmic reticulum (ER) stress and the consequent unfolded protein response (UPR). In metazoans, full activation of a complex ER-UPR network may restore proteostasis and ER function or, if stress cannot be solved, commit cells to apoptosis. Due to these alternative outcomes (survival or death), the pharmacological manipulation of ER-UPR has become the focus of potential therapies in many human diseases, including tauopathies. Here we update and analyze the experimental data from human brain, cellular, and animal models linking tau accumulation and ER-UPR. We further discuss mechanistic aspects and put the ER-UPR into perspective as a possible therapeutic target in this group of diseases.
Collapse
Affiliation(s)
- Nadia I Bocai
- Laboratory of Amyloidosis and Neurodegeneration, Fundación Instituto Leloir, Buenos Aires, Argentina.,Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María S Marcora
- Laboratory of Amyloidosis and Neurodegeneration, Fundación Instituto Leloir, Buenos Aires, Argentina.,Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lautaro F Belfiori-Carrasco
- Laboratory of Amyloidosis and Neurodegeneration, Fundación Instituto Leloir, Buenos Aires, Argentina.,Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Laura Morelli
- Laboratory of Amyloidosis and Neurodegeneration, Fundación Instituto Leloir, Buenos Aires, Argentina.,Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Eduardo M Castaño
- Laboratory of Amyloidosis and Neurodegeneration, Fundación Instituto Leloir, Buenos Aires, Argentina.,Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
157
|
Multiple Herpes Simplex Virus-1 (HSV-1) Reactivations Induce Protein Oxidative Damage in Mouse Brain: Novel Mechanisms for Alzheimer's Disease Progression. Microorganisms 2020; 8:microorganisms8070972. [PMID: 32610629 PMCID: PMC7409037 DOI: 10.3390/microorganisms8070972] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 12/24/2022] Open
Abstract
Compelling evidence supports the role of oxidative stress in Alzheimer's disease (AD) pathophysiology. Interestingly, Herpes simplex virus-1 (HSV-1), a neurotropic virus that establishes a lifelong latent infection in the trigeminal ganglion followed by periodic reactivations, has been reportedly linked both to AD and to oxidative stress conditions. Herein, we analyzed, through biochemical and redox proteomic approaches, the mouse model of recurrent HSV-1 infection we previously set up, to investigate whether multiple virus reactivations induced oxidative stress in the mouse brain and affected protein function and related intracellular pathways. Following multiple HSV-1 reactivations, we found in mouse brains increased levels of oxidative stress hallmarks, including 4-hydroxynonenal (HNE), and 13 HNE-modified proteins whose levels were found significantly altered in the cortex of HSV-1-infected mice compared to controls. We focused on two proteins previously linked to AD pathogenesis, i.e., glucose-regulated protein 78 (GRP78) and collapsin response-mediated protein 2 (CRMP2), which are involved in the unfolded protein response (UPR) and in microtubule stabilization, respectively. We found that recurrent HSV-1 infection disables GRP78 function and activates the UPR, whereas it prevents CRMP2 function in mouse brains. Overall, these data suggest that repeated HSV-1 reactivation into the brain may contribute to neurodegeneration also through oxidative damage.
Collapse
|
158
|
Sanders O, Rajagopal L. Phosphodiesterase Inhibitors for Alzheimer's Disease: A Systematic Review of Clinical Trials and Epidemiology with a Mechanistic Rationale. J Alzheimers Dis Rep 2020; 4:185-215. [PMID: 32715279 PMCID: PMC7369141 DOI: 10.3233/adr-200191] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Preclinical studies, clinical trials, and reviews suggest increasing 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP) with phosphodiesterase inhibitors is disease-modifying in Alzheimer's disease (AD). cAMP/protein kinase A (PKA) and cGMP/protein kinase G (PKG) signaling are disrupted in AD. cAMP/PKA and cGMP/PKG activate cAMP response element binding protein (CREB). CREB binds mitochondrial and nuclear DNA, inducing synaptogenesis, memory, and neuronal survival gene (e.g., brain-derived neurotrophic factor) and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α). cAMP/PKA and cGMP/PKG activate Sirtuin-1, which activates PGC1α. PGC1α induces mitochondrial biogenesis and antioxidant genes (e.g.,Nrf2) and represses BACE1. cAMP and cGMP inhibit BACE1-inducing NFκB and tau-phosphorylating GSK3β. OBJECTIVE AND METHODS We review efficacy-testing clinical trials, epidemiology, and meta-analyses to critically investigate whether phosphodiesteraseinhibitors prevent or treat AD. RESULTS Caffeine and cilostazol may lower AD risk. Denbufylline and sildenafil clinical trials are promising but preliminary and inconclusive. PF-04447943 and BI 409,306 are ineffective. Vinpocetine, cilostazol, and nicergoline trials are mixed. Deprenyl/selegiline trials show only short-term benefits. Broad-spectrum phosphodiesterase inhibitor propentofylline has been shown in five phase III trials to improve cognition, dementia severity, activities of daily living, and global assessment in mild-to-moderate AD patients on multiple scales, including the ADAS-Cogand the CIBIC-Plus in an 18-month phase III clinical trial. However, two books claimed based on a MedScape article an 18-month phase III trial failed, so propentofylline was discontinued. Now, propentofylline is used to treat canine cognitive dysfunction, which, like AD, involves age-associated wild-type Aβ deposition. CONCLUSION Phosphodiesterase inhibitors may prevent and treat AD.
Collapse
|
159
|
Krammes L, Hart M, Rheinheimer S, Diener C, Menegatti J, Grässer F, Keller A, Meese E. Induction of the Endoplasmic-Reticulum-Stress Response: MicroRNA-34a Targeting of the IRE1α-Branch. Cells 2020; 9:cells9061442. [PMID: 32531952 PMCID: PMC7348704 DOI: 10.3390/cells9061442] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative disorders such as Alzheimer’s disease (AD) and Parkinson’s disease (PD) are characterized by the accumulation of misfolded proteins in the endoplasmic reticulum (ER) and the unfolded protein response (UPR). Modulating the UPR is one of the major challenges to counteract the development of neurodegenerative disorders and other diseases with affected UPR. Here, we show that miR-34a-5p directly targets the IRE1α branch of the UPR, including the genes BIP, IRE1α, and XBP1. Upon induction of ER stress in neuronal cells, miR-34a-5p overexpression impacts the resulting UPR via a significant reduction in IRE1α and XBP1s that in turn leads to decreased viability, increased cytotoxicity and caspase activity. The possibility to modify the UPR signaling pathway by a single miRNA that targets central genes of the IRE1α branch offers new perspectives for future therapeutic approaches against neurodegeneration.
Collapse
Affiliation(s)
- Lena Krammes
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany; (M.H.); (S.R.); (C.D.); (E.M.)
- Correspondence: ; Tel.: +49-(0)-6841-1626602; Fax: +49-(0)-6841-1626185
| | - Martin Hart
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany; (M.H.); (S.R.); (C.D.); (E.M.)
| | - Stefanie Rheinheimer
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany; (M.H.); (S.R.); (C.D.); (E.M.)
| | - Caroline Diener
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany; (M.H.); (S.R.); (C.D.); (E.M.)
| | - Jennifer Menegatti
- Institute of Virology, Saarland University, 66421 Homburg, Germany; (J.M.); (F.G.)
| | - Friedrich Grässer
- Institute of Virology, Saarland University, 66421 Homburg, Germany; (J.M.); (F.G.)
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany;
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany; (M.H.); (S.R.); (C.D.); (E.M.)
| |
Collapse
|
160
|
Synaptic Loss, ER Stress and Neuro-Inflammation Emerge Late in the Lateral Temporal Cortex and Associate with Progressive Tau Pathology in Alzheimer's Disease. Mol Neurobiol 2020; 57:3258-3272. [PMID: 32514860 PMCID: PMC7340653 DOI: 10.1007/s12035-020-01950-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/22/2020] [Indexed: 11/17/2022]
Abstract
The complex multifactorial nature of AD pathogenesis has been highlighted by evidence implicating additional neurodegenerative mechanisms, beyond that of amyloid-β (Aβ) and tau. To provide insight into cause and effect, we here investigated the temporal profile and associations of pathological changes in synaptic, endoplasmic reticulum (ER) stress and neuro-inflammatory markers. Quantifications were established via immunoblot and immunohistochemistry protocols in post-mortem lateral temporal cortex (n = 46). All measures were assessed according to diagnosis (non-AD vs. AD), neuropathological severity (low (Braak ≤ 2) vs. moderate (3–4) vs. severe (≥ 5)) and individual Braak stage, and were correlated with Aβ and tau pathology and cognitive scores. Postsynaptic PSD-95, but not presynaptic synaptophysin, was decreased in AD cases and demonstrated a progressive decline across disease severity and Braak stage, yet not with cognitive scores. Of all investigated ER stress markers, only phospho-protein kinase RNA-like ER kinase (p-PERK) correlated with Braak stage and was increased in diagnosed AD cases. A similar relationship was observed for the astrocytic glial fibrillary acidic protein (GFAP); however, the associated aquaporin 4 and microglial Iba1 remained unchanged. Pathological alterations in these markers preferentially correlated with measures of tau over those related to Aβ. Notably, GFAP also correlated strongly with Aβ markers and with all assessments of cognition. Lateral temporal cortex-associated synaptic, ER stress and neuro-inflammatory pathologies are here determined as late occurrences in AD progression, largely associated with tau pathology. Moreover, GFAP emerged as the most robust indicator of disease progression, tau/Aβ pathology, and cognitive impairment.
Collapse
|
161
|
Tanaka M, Yamasaki T, Hasebe R, Suzuki A, Horiuchi M. Enhanced phosphorylation of PERK in primary cultured neurons as an autonomous neuronal response to prion infection. PLoS One 2020; 15:e0234147. [PMID: 32479530 PMCID: PMC7263615 DOI: 10.1371/journal.pone.0234147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/19/2020] [Indexed: 01/29/2023] Open
Abstract
Conversion of cellular prion protein (PrPC) into the pathogenic isoform of prion protein (PrPSc) in neurons is one of the key pathophysiological events in prion diseases. However, the molecular mechanism of neurodegeneration in prion diseases has yet to be fully elucidated because of a lack of suitable experimental models for analyzing neuron-autonomous responses to prion infection. In the present study, we used neuron-enriched primary cultures of cortical and thalamic mouse neurons to analyze autonomous neuronal responses to prion infection. PrPSc levels in neurons increased over the time after prion infection; however, no obvious neuronal losses or neurite alterations were observed. Interestingly, a finer analysis of individual neurons co-stained with PrPSc and phosphorylated protein kinase RNA-activated-like endoplasmic reticulum (ER) kinase (p-PERK), the early cellular response of the PERK-eukaryotic initiation factor 2 (eIF2α) pathway, demonstrated a positive correlation between the number of PrPSc granular stains and p-PERK granular stains, in cortical neurons at 21 dpi. Although the phosphorylation of PERK was enhanced in prion-infected cortical neurons, there was no sign of subsequent translational repression of synaptic protein synthesis or activations of downstream unfolded protein response (UPR) in the PERK-eIF2α pathway. These results suggest that PrPSc production in neurons induces ER stress in a neuron-autonomous manner; however, it does not fully activate UPR in prion-infected neurons. Our findings provide insights into the autonomous neuronal responses to prion propagation and the involvement of neuron-non-autonomous factor(s) in the mechanisms of neurodegeneration in prion diseases.
Collapse
Affiliation(s)
- Misaki Tanaka
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Takeshi Yamasaki
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Rie Hasebe
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Akio Suzuki
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Motohiro Horiuchi
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Global Station for Zoonosis Control, Global Institute for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
- * E-mail:
| |
Collapse
|
162
|
Uddin MS, Tewari D, Sharma G, Kabir MT, Barreto GE, Bin-Jumah MN, Perveen A, Abdel-Daim MM, Ashraf GM. Molecular Mechanisms of ER Stress and UPR in the Pathogenesis of Alzheimer's Disease. Mol Neurobiol 2020; 57:2902-2919. [PMID: 32430843 DOI: 10.1007/s12035-020-01929-y] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/01/2020] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease involving aggregation of misfolded proteins inside the neuron causing prolonged cellular stress. The neuropathological hallmarks of AD include the formation of senile plaques and neurofibrillary tangles in specific brain regions that lead to synaptic loss and neuronal death. The exact mechanism of neuron dysfunction in AD remains obscure. In recent years, endoplasmic reticulum (ER) dysfunction has been implicated in neuronal degeneration seen in AD. Apart from AD, many other diseases also involve misfolded proteins aggregations in the ER, a condition referred to as ER stress. The response of the cell to ER stress is to activate a group of signaling pathways called unfolded protein response (UPR) that stimulates a particular transcriptional program to restore ER function and ensure cell survival. ER stress also involves the generation of reactive oxygen species (ROS) that, together with mitochondrial ROS and decreased effectiveness of antioxidant mechanisms, producing a condition of chronic oxidative stress. The unfolded proteins may not always produce a response that leads to the restoration of cellular functions, but they may also lead to inflammation by a set of different pathways with deleterious consequences. In this review, we extensively discuss the role of ER stress and how to target it using different pharmacological approaches in AD development and onset.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh.
| | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Gaurav Sharma
- Department of Physiology, AIIMS Jodhpur, Jodhpur, India
| | | | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile.
| | - May N Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
163
|
Koren SA, Galvis-Escobar S, Abisambra JF. Tau-mediated dysregulation of RNA: Evidence for a common molecular mechanism of toxicity in frontotemporal dementia and other tauopathies. Neurobiol Dis 2020; 141:104939. [PMID: 32413399 DOI: 10.1016/j.nbd.2020.104939] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/10/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023] Open
Abstract
Frontotemporal dementias (FTDs) encompass several disorders commonly characterized by progressive frontotemporal lobar degeneration and dementia. Pathologically, TDP-43, FUS, dipeptide repeats, and tau constitute the protein aggregates in FTD, which in turn coincide with heterogeneity in clinical variants. The underlying molecular etiology explaining the formation of each type of protein aggregate remains unclear; however, dysregulated RNA metabolism rises as a common pathogenic factor. Alongside with TDP-43 and FUS, which bind to and regulate RNA dynamics, emerging data suggest that tau may also regulate RNA metabolism and translation. The complex mechanisms that drive translational selectivity in turn regulate the broad clinical presentation of FTDs. Here, we focus on the enigmatic relationship between tau and RNA and review the mechanisms of tau-mediated dysregulation of RNA in tauopathies such as FTD.
Collapse
Affiliation(s)
- Shon A Koren
- Department of Neuroscience & Center for Translational Research in Neurodegenerative Disease, BOX 100159, 1275 Center Drive, University of Florida, Gainesville, FL 32610, United States of America
| | - Sara Galvis-Escobar
- Department of Neuroscience & Center for Translational Research in Neurodegenerative Disease, BOX 100159, 1275 Center Drive, University of Florida, Gainesville, FL 32610, United States of America
| | - Jose F Abisambra
- Department of Neuroscience & Center for Translational Research in Neurodegenerative Disease, BOX 100159, 1275 Center Drive, University of Florida, Gainesville, FL 32610, United States of America.
| |
Collapse
|
164
|
Urokinase-Type Plasminogen Activator Protects Cerebral Cortical Neurons from Soluble Aβ-Induced Synaptic Damage. J Neurosci 2020; 40:4251-4263. [PMID: 32332118 DOI: 10.1523/jneurosci.2804-19.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/20/2020] [Accepted: 04/13/2020] [Indexed: 11/21/2022] Open
Abstract
Soluble amyloid β (Aβ)-induced synaptic dysfunction is an early event in the pathogenesis of Alzheimer's disease (AD) that precedes the deposition of insoluble Aβ and correlates with the development of cognitive deficits better than the number of plaques. The mammalian plasminogen activation (PA) system catalyzes the generation of plasmin via two activators: tissue-type (tPA) and urokinase-type (uPA). A dysfunctional tPA-plasmin system causes defective proteolytic degradation of Aβ plaques in advanced stages of AD. In contrast, it is unknown whether uPA and its receptor (uPAR) contribute to the pathogenesis of this disease. Neuronal cadherin (NCAD) plays a pivotal role in the formation of synapses and dendritic branches, and Aβ decreases its expression in cerebral cortical neurons. Here we show that neuronal uPA protects the synapse from the harmful effects of soluble Aβ. However, Aβ-induced inactivation of the eukaryotic initiation factor 2α halts the transcription of uPA mRNA, leaving unopposed the deleterious effects of Aβ on the synapse. In line with these observations, the synaptic abundance of uPA, but not uPAR, is decreased in the frontal cortex of AD patients and 5xFAD mice, and in cerebral cortical neurons incubated with soluble Aβ. We found that uPA treatment increases the synaptic expression of NCAD by a uPAR-mediated plasmin-independent mechanism, and that uPA-induced formation of NCAD dimers protects the synapse from the harmful effects of soluble Aβ oligomers. These data indicate that Aβ-induced decrease in the synaptic abundance of uPA contributes to the development of synaptic damage in the early stages of AD.SIGNIFICANCE STATEMENT Soluble amyloid β (Aβ)-induced synaptic dysfunction is an early event in the pathogenesis of cognitive deficits in Alzheimer's disease (AD). We found that neuronal urokinase-type (uPA) protects the synapse from the deleterious effects of soluble Aβ. However, Aβ-induced inactivation of the eukaryotic initiation factor 2α decreases the synaptic abundance of uPA, leaving unopposed the harmful effects of Aβ on the synapse. In line with these observations, the synaptic expression of uPA is decreased in the frontal cortex of AD brains and 5xFAD mice, and uPA treatment abrogates the deleterious effects of Aβ on the synapse. These results unveil a novel mechanism of Aβ-induced synaptic dysfunction in AD patients, and indicate that recombinant uPA is a potential therapeutic strategy to protect the synapse before the development of irreversible brain damage.
Collapse
|
165
|
Salminen A, Kaarniranta K, Kauppinen A. ER stress activates immunosuppressive network: implications for aging and Alzheimer's disease. J Mol Med (Berl) 2020; 98:633-650. [PMID: 32279085 PMCID: PMC7220864 DOI: 10.1007/s00109-020-01904-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022]
Abstract
The endoplasmic reticulum (ER) contains stress sensors which recognize the accumulation of unfolded proteins within the lumen of ER, and subsequently these transducers stimulate the unfolded protein response (UPR). The ER sensors include the IRE1, PERK, and ATF6 transducers which activate the UPR in an attempt to restore the quality of protein folding and thus maintain cellular homeostasis. If there is excessive stress, UPR signaling generates alarmins, e.g., chemokines and cytokines, which activate not only tissue-resident immune cells but also recruit myeloid and lymphoid cells into the affected tissues. ER stress is a crucial inducer of inflammation in many pathological conditions. A chronic low-grade inflammation and cellular senescence have been associated with the aging process and many age-related diseases, such as Alzheimer’s disease. Currently, it is known that immune cells can exhibit great plasticity, i.e., they are able to display both pro-inflammatory and anti-inflammatory phenotypes in a context-dependent manner. The microenvironment encountered in chronic inflammatory conditions triggers a compensatory immunosuppression which defends tissues from excessive inflammation. Recent studies have revealed that chronic ER stress augments the suppressive phenotypes of immune cells, e.g., in tumors and other inflammatory disorders. The activation of immunosuppressive network, including myeloid-derived suppressor cells (MDSC) and regulatory T cells (Treg), has been involved in the aging process and Alzheimer’s disease. We will examine in detail whether the ER stress-related changes found in aging tissues and Alzheimer’s disease are associated with the activation of immunosuppressive network, as has been observed in tumors and many chronic inflammatory diseases.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.,Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029, Kuopio, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
166
|
Teimouri E, Rainey-Smith SR, Bharadwaj P, Verdile G, Martins RN. Amla Therapy as a Potential Modulator of Alzheimer’s Disease Risk Factors and Physiological Change. J Alzheimers Dis 2020; 74:713-733. [PMID: 32083581 DOI: 10.3233/jad-191033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Elham Teimouri
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Stephanie R. Rainey-Smith
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Sir James McCusker Alzheimer’s Disease Research Unit (Hollywood Private Hospital), Perth, Western Australia, Australia
| | - Prashant Bharadwaj
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Giuseppe Verdile
- Sir James McCusker Alzheimer’s Disease Research Unit (Hollywood Private Hospital), Perth, Western Australia, Australia
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Ralph N. Martins
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Sir James McCusker Alzheimer’s Disease Research Unit (Hollywood Private Hospital), Perth, Western Australia, Australia
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, Western Australia, Australia
- Department of Biomedical Sciences, Macquarie University, North Ryde, New South Wales, Australia
| |
Collapse
|
167
|
Gorbatyuk MS, Starr CR, Gorbatyuk OS. Endoplasmic reticulum stress: New insights into the pathogenesis and treatment of retinal degenerative diseases. Prog Retin Eye Res 2020; 79:100860. [PMID: 32272207 DOI: 10.1016/j.preteyeres.2020.100860] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/08/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022]
Abstract
Physiological equilibrium in the retina depends on coordinated work between rod and cone photoreceptors and can be compromised by the expression of mutant proteins leading to inherited retinal degeneration (IRD). IRD is a diverse group of retinal dystrophies with multifaceted molecular mechanisms that are not fully understood. In this review, we focus on the contribution of chronically activated unfolded protein response (UPR) to inherited retinal pathogenesis, placing special emphasis on studies employing genetically modified animal models. As constitutively active UPR in degenerating retinas may activate pro-apoptotic programs associated with oxidative stress, pro-inflammatory signaling, dysfunctional autophagy, free cytosolic Ca2+ overload, and altered protein synthesis rate in the retina, we focus on the regulatory mechanisms of translational attenuation and approaches to overcoming translational attenuation in degenerating retinas. We also discuss current research on the role of the UPR mediator PERK and its downstream targets in degenerating retinas and highlight the therapeutic benefits of reprogramming PERK signaling in preclinical animal models of IRD. Finally, we describe pharmacological approaches targeting UPR in ocular diseases and consider their potential applications to IRD.
Collapse
Affiliation(s)
- Marina S Gorbatyuk
- The University of Alabama at Birmingham, Department of Optometry and Vision Science, School of Optometry, USA.
| | - Christopher R Starr
- The University of Alabama at Birmingham, Department of Optometry and Vision Science, School of Optometry, USA
| | - Oleg S Gorbatyuk
- The University of Alabama at Birmingham, Department of Optometry and Vision Science, School of Optometry, USA
| |
Collapse
|
168
|
He Z, Wang M, Zhao Q, Li X, Liu P, Ren B, Wu C, Du X, Li N, Liu Q. Bis(ethylmaltolato)oxidovanadium (IV) mitigates neuronal apoptosis resulted from amyloid-beta induced endoplasmic reticulum stress through activating peroxisome proliferator-activated receptor γ. J Inorg Biochem 2020; 208:111073. [PMID: 32466853 DOI: 10.1016/j.jinorgbio.2020.111073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/14/2020] [Accepted: 03/19/2020] [Indexed: 01/14/2023]
Abstract
Neuronal apoptosis caused by amyloid-beta (Aβ) overproduction is one of the most important pathological features in Alzheimer's disease (AD). Endoplasmic reticulum (ER) stress induced by Aβ overload plays a critical role in this process. Bis(ethylmaltolato)oxidovanadium (IV) (BEOV), a vanadium compound which had been regarded as peroxisome proliferator-activated receptor γ (PPARγ) agonist, was reported to exert an antagonistic effect on ER stress. In this study, we tested whether BEOV could ameliorate the Aβ-induced neuronal apoptosis by inhibiting ER stress. It was observed that BEOV treatment ameliorated both tunicamycin-induced and/or Aβ-induced ER stress and neurotoxicity in a dose-dependent manner through downgrading ER stress-associated and apoptosis-associated proteins in primary hippocampal neurons. Consistent with in vitro results, BEOV also reduced ER stress and inhibited neuronal apoptosis in hippocampi and cortexes of transgenic AD model mice. Moreover, by adopting GW9662 and salubrinal, the inhibitor of PPARγ and hyperphosphorylated eukaryotic translation initiation factor 2α, respectively, we further confirmed that BEOV alleviated Aβ-induced ER stress and neuronal apoptosis in primary hippocampal neurons by activating PPARγ. Taken together, these results provided scientific evidences to support the concept that BEOV ameliorates Aβ-induced ER stress and neuronal apoptosis through activating PPARγ.
Collapse
Affiliation(s)
- Zhijun He
- College of life sciences and oceanography, Shenzhen university, Shenzhen, Guangdong 518055, China; College of optoelectronic engineering, Shenzhen university, Shenzhen, Guangdong 518060, China
| | - Menghuan Wang
- School of Basic Medical Sciences, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Qionghui Zhao
- Shenzhen Food Inspection Center of CIQ, Shenzhen, Guangdong 518055, China
| | - Xiaoqian Li
- College of life sciences and oceanography, Shenzhen university, Shenzhen, Guangdong 518055, China
| | - Pengan Liu
- College of life sciences and oceanography, Shenzhen university, Shenzhen, Guangdong 518055, China
| | - Bingyu Ren
- College of life sciences and oceanography, Shenzhen university, Shenzhen, Guangdong 518055, China
| | - Chong Wu
- College of life sciences and oceanography, Shenzhen university, Shenzhen, Guangdong 518055, China
| | - Xiubo Du
- College of life sciences and oceanography, Shenzhen university, Shenzhen, Guangdong 518055, China
| | - Nan Li
- College of life sciences and oceanography, Shenzhen university, Shenzhen, Guangdong 518055, China; Shenzhen Bay Laboratory, Shenzhen 518055, China.
| | - Qiong Liu
- College of life sciences and oceanography, Shenzhen university, Shenzhen, Guangdong 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, China.
| |
Collapse
|
169
|
Rozpędek-Kamińska W, Siwecka N, Wawrzynkiewicz A, Wojtczak R, Pytel D, Diehl JA, Majsterek I. The PERK-Dependent Molecular Mechanisms as a Novel Therapeutic Target for Neurodegenerative Diseases. Int J Mol Sci 2020; 21:E2108. [PMID: 32204380 PMCID: PMC7139310 DOI: 10.3390/ijms21062108] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/11/2022] Open
Abstract
Higher prevalence of neurodegenerative diseases is strictly connected with progressive aging of the world population. Interestingly, a broad range of age-related, neurodegenerative diseases is characterized by a common pathological mechanism-accumulation of misfolded and unfolded proteins within the cells. Under certain circumstances, such protein aggregates may evoke endoplasmic reticulum (ER) stress conditions and subsequent activation of the unfolded protein response (UPR) signaling pathways via the protein kinase RNA-like endoplasmic reticulum kinase (PERK)-dependent manner. Under mild to moderate ER stress, UPR has a pro-adaptive role. However, severe or long-termed ER stress conditions directly evoke shift of the UPR toward its pro-apoptotic branch, which is considered to be a possible cause of neurodegeneration. To this day, there is no effective cure for Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), or prion disease. Currently available treatment approaches for these diseases are only symptomatic and cannot affect the disease progression. Treatment strategies, currently under detailed research, include inhibition of the PERK-dependent UPR signaling branches. The newest data have reported that the use of small-molecule inhibitors of the PERK-mediated signaling branches may contribute to the development of a novel, ground-breaking therapeutic approach for neurodegeneration. In this review, we critically describe all the aspects associated with such targeted therapy against neurodegenerative proteopathies.
Collapse
Affiliation(s)
- Wioletta Rozpędek-Kamińska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (W.R.-K.); (N.S.); (A.W.); (R.W.)
| | - Natalia Siwecka
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (W.R.-K.); (N.S.); (A.W.); (R.W.)
| | - Adam Wawrzynkiewicz
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (W.R.-K.); (N.S.); (A.W.); (R.W.)
| | - Radosław Wojtczak
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (W.R.-K.); (N.S.); (A.W.); (R.W.)
| | - Dariusz Pytel
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; (D.P.); (J.A.D.)
| | - J. Alan Diehl
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; (D.P.); (J.A.D.)
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (W.R.-K.); (N.S.); (A.W.); (R.W.)
| |
Collapse
|
170
|
Abstract
Objectives: Recently, new criteria for sensitive and specific clinical diagnosis of progressive supranuclear palsy (PSP) have been addressed while distinct clinical phenotypes of the disorder have been increasingly described in the literature. This study aimed to describe past and present aspects of the disease as well as to highlight the cognitive and behavioral profile of PSP patients in relation to the underlying pathology, genetics and treatment procedures.Methods: A Medline and Scopus search was performed to identify articles published on this topic. Articles published solely in English were considered.Results: The most common clinical characteristics of PSP included early postural instability and falls, vertical supranuclear gaze palsy, parkinsonism with poor response to levodopa and pseudobulbar palsy. Frontal dysfunction and verbal fluency deficits were the most distinct cognitive impairments in PSP while memory, visuospatial and social cognition could also be affected. Apathy and impulsivity were also present in PSP patients and had significant impact on relatives and caregivers.Conclusions: PSP is a neurodegenerative disorder with prominent tau neuropathology. Movement, motivation and communication impairments in patients with PSP may limit participation in everyday living activities. Comprehensive neuropsychological assessments are of significant importance for PSP cognitive evaluation. Pharmacologic and non-pharmacologic approaches could be applied in order to relieve patients and improve quality of life.Clinical Implications: Executive dysfunction is the most notable cognitive impairment and dominates the neuropsychological profile of patients with PSP.
Collapse
Affiliation(s)
| | - Kleopatra H Schulpis
- Institute of Child Health, Research Center, "Aghia Sophia" Children's Hospital, Athens, Greece
| |
Collapse
|
171
|
Necrosome complex detected in granulovacuolar degeneration is associated with neuronal loss in Alzheimer's disease. Acta Neuropathol 2020; 139:463-484. [PMID: 31802237 DOI: 10.1007/s00401-019-02103-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/05/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is characterized by a specific pattern of neuropathological changes, including extracellular amyloid β (Aβ) deposits, intracellular neurofibrillary tangles (NFTs), granulovacuolar degeneration (GVD) representing cytoplasmic vacuolar lesions, synapse dysfunction and neuronal loss. Necroptosis, a programmed form of necrosis characterized by the assembly of the necrosome complex composed of phosphorylated proteins, i.e. receptor-interacting serine/threonine-protein kinase 1 and 3 (pRIPK1 and pRIPK3) and mixed lineage kinase domain-like protein (pMLKL), has recently been shown to be involved in AD. However, it is not yet clear whether necrosome assembly takes place in brain regions showing AD-related neuronal loss and whether it is associated with AD-related neuropathological changes. Here, we analyzed brains of AD, pathologically defined preclinical AD (p-preAD) and non-AD control cases to determine the neuropathological characteristics and distribution pattern of the necrosome components. We demonstrated that all three activated necrosome components can be detected in GVD lesions (GVDn+, i.e. GVD with activated necrosome) in neurons, that they colocalize with classical GVD markers, such as pTDP-43 and CK1δ, and similarly to these markers detect GVD lesions. GVDn + neurons inversely correlated with neuronal density in the early affected CA1 region of the hippocampus and in the late affected frontal cortex layer III. Additionally, AD-related GVD lesions were associated with AD-defining parameters, showing the strongest correlation and partial colocalization with NFT pathology. Therefore, we conclude that the presence of the necrosome in GVD plays a role in AD, possibly by representing an AD-specific form of necroptosis-related neuron death. Hence, necroptosis-related neuron loss could be an interesting therapeutic target for treating AD.
Collapse
|
172
|
da Silva DC, Valentão P, Andrade PB, Pereira DM. Endoplasmic reticulum stress signaling in cancer and neurodegenerative disorders: Tools and strategies to understand its complexity. Pharmacol Res 2020; 155:104702. [PMID: 32068119 DOI: 10.1016/j.phrs.2020.104702] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022]
Abstract
The endoplasmic reticulum (ER) comprises a network of tubules and vesicles that constitutes the largest organelle of the eukaryotic cell. Being the location where most proteins are synthesized and folded, it is crucial for the upkeep of cellular homeostasis. Disturbed ER homeostasis triggers the activation of a conserved molecular machinery, termed the unfolded protein response (UPR), that comprises three major signaling branches, initiated by the protein kinase RNA-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1 (IRE1) and the activating transcription factor 6 (ATF6). Given the impact of this intricate signaling network upon an extensive list of cellular processes, including protein turnover and autophagy, ER stress is involved in the onset and progression of multiple diseases, including cancer and neurodegenerative disorders. There is, for this reason, an increasing number of publications focused on characterizing and/or modulating ER stress, which have resulted in a wide array of techniques employed to study ER-related molecular events. This review aims to sum up the essentials on the current knowledge of the molecular biology of endoplasmic reticulum stress, while highlighting the available tools used in studies of this nature.
Collapse
Affiliation(s)
- Daniela Correia da Silva
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-213, Porto, Portugal
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-213, Porto, Portugal
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-213, Porto, Portugal
| | - David M Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-213, Porto, Portugal.
| |
Collapse
|
173
|
Andreone BJ, Larhammar M, Lewcock JW. Cell Death and Neurodegeneration. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a036434. [PMID: 31451511 DOI: 10.1101/cshperspect.a036434] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neurodegenerative disease is characterized by the progressive deterioration of neuronal function caused by the degeneration of synapses, axons, and ultimately the death of nerve cells. An increased understanding of the mechanisms underlying altered cellular homeostasis and neurodegeneration is critical to the development of effective treatments for disease. Here, we review what is known about neuronal cell death and how it relates to our understanding of neurodegenerative disease pathology. First, we discuss prominent molecular signaling pathways that drive neuronal loss, and highlight the upstream cell biology underlying their activation. We then address how neuronal death may occur during disease in response to neuron intrinsic and extrinsic stressors. An improved understanding of the molecular mechanisms underlying neuronal dysfunction and cell death will open up avenues for clinical intervention in a field lacking disease-modifying treatments.
Collapse
|
174
|
Jayaraj RL, Azimullah S, Beiram R. Diabetes as a risk factor for Alzheimer's disease in the Middle East and its shared pathological mediators. Saudi J Biol Sci 2020; 27:736-750. [PMID: 32210695 PMCID: PMC6997863 DOI: 10.1016/j.sjbs.2019.12.028] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023] Open
Abstract
The incidence of Alzheimer's disease (AD) has risen exponentially worldwide over the past decade. A growing body of research indicates that AD is linked to diabetes mellitus (DM) and suggests that impaired insulin signaling acts as a crucial risk factor in determining the progression of this devastating disease. Many studies suggest people with diabetes, especially type 2 diabetes, are at higher risk of eventually developing Alzheimer's dementia or other dementias. Despite nationwide efforts to increase awareness, the prevalence of Diabetes Mellitus (DM) has risen significantly in the Middle East and North African (MENA) region which might be due to rapid urbanization, lifestyle changes, lack of physical activity and rise in obesity. Growing body of evidence indicates that DM and AD are linked because both conditions involve impaired glucose homeostasis and altered brain function. Current theories and hypothesis clearly implicate that defective insulin signaling in the brain contributes to synaptic dysfunction and cognitive deficits in AD. In the periphery, low-grade chronic inflammation leads to insulin resistance followed by tissue deterioration. Thus insulin resistance acts as a bridge between DM and AD. There is pressing need to understand on how DM increases the risk of AD as well as the underlying mechanisms, due to the projected increase in age related disorders. Here we aim to review the incidence of AD and DM in the Middle East and the possible link between insulin signaling and ApoE carrier status on Aβ aggregation, tau hyperphosphorylation, inflammation, oxidative stress and mitochondrial dysfunction in AD. We also critically reviewed mutation studies in Arab population which might influence DM induced AD. In addition, recent clinical trials and animal studies conducted to evaluate the efficiency of anti-diabetic drugs have been reviewed.
Collapse
Key Words
- AAV, Adeno-associated virus
- ABCA1, ATP binding cassette subfamily A member 1
- AD, Alzheimer’s disease
- ADAMTS9, ADAM Metallopeptidase With Thrombospondin Type 1 Motif 9
- AGPAT1, 1-acyl-sn-glycerol-3-phosphate acyltransferase alpha
- Alzheimer’s disease
- Anti-diabetic drugs
- ApoE, Apolipoprotein E
- Arab population
- Aβ, Amyloid-beta
- BACE1, Beta-secretase 1
- BBB, Blood-Brain Barrier
- BMI, Body mass index
- CALR, calreticulin gene
- CIP2A, Cancerous Inhibitor Of Protein Phosphatase 2A
- COX-2, Cyclooxygenase 2
- CSF, Cerebrospinal fluid
- DM, Diabetes mellitus
- DUSP9, Dual Specificity Phosphatase 9
- Diabetes mellitus
- ECE-1, Endotherin converting enzyme 1
- FDG-PET, Fluorodeoxyglucose- positron emission tomography
- FRMD4A, FERM Domain Containing 4A
- FTO, Fat Mass and Obesity Associated Gene
- GLP-1, Glucagon like peptide
- GNPDA2, Glucosamine-6-phosphate deaminase 2
- GSK-3β, Glycogen synthase kinase 3 beta
- IDE, Insulin degrading enzyme
- IGF-1, Insulin-like growth factor 1
- IR, Insulin receptor
- IR, Insulin resistance
- Insulin signaling
- LPA, Lipophosphatidic acid
- MC4R, Melanocortin 4 receptor
- MCI, Myocardial infarction
- MENA, Middle East North African
- MG-H1, Methylglyoxal-hydroimidazolone isomer trifluoroactic acid salt
- MRI, Magnetic resonance imaging
- NDUFS3, NADH:Ubiquinone Oxidoreductase Core Subunit S3
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NFT, Neurofibrillary tangles
- NOTCH4, Neurogenic locus notch homolog protein 4
- PI3K, Phosphoinositide-3
- PP2A, Protein phosphatase 2
- PPAR-γ2, Peroxisome proliferator-activated receptor gamma 2
- Pit-PET, Pittsburgh compound B- positron emission tomography
- RAB1A, Ras-related protein 1A
- SORT, Sortilin
- STZ, Streptozotocin
- T1DM, Type 1 Diabetes Mellitus
- T2DM, Type 2 Diabetes Mellitus
- TCF7L2, Transcription Factor 7 Like 2
- TFAP2B, Transcription Factor AP-2 Beta
Collapse
Affiliation(s)
| | | | - Rami Beiram
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
175
|
Llanos-González E, Henares-Chavarino ÁA, Pedrero-Prieto CM, García-Carpintero S, Frontiñán-Rubio J, Sancho-Bielsa FJ, Alcain FJ, Peinado JR, Rabanal-Ruíz Y, Durán-Prado M. Interplay Between Mitochondrial Oxidative Disorders and Proteostasis in Alzheimer's Disease. Front Neurosci 2020; 13:1444. [PMID: 32063825 PMCID: PMC7000623 DOI: 10.3389/fnins.2019.01444] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/24/2019] [Indexed: 12/14/2022] Open
Abstract
Although the basis of Alzheimer’s disease (AD) etiology remains unknown, oxidative stress (OS) has been recognized as a prodromal factor associated to its progression. OS refers to an imbalance between oxidant and antioxidant systems, which usually consist in an overproduction of reactive oxygen species (ROS) and reactive nitrogen species (RNS) which overwhelms the intrinsic antioxidant defenses. Due to this increased production of ROS and RNS, several biological functions such as glucose metabolism or synaptic activity are impaired. In AD, growing evidence links the ROS-mediated damages with molecular targets including mitochondrial dynamics and function, protein quality control system, and autophagic pathways, affecting the proteostasis balance. In this scenario, OS should be considered as not only a major feature in the pathophysiology of AD but also a potential target to combat the progression of the disease. In this review, we will discuss the role of OS in mitochondrial dysfunction, protein quality control systems, and autophagy associated to AD and suggest innovative therapeutic strategies based on a better understanding of the role of OS and proteostasis.
Collapse
Affiliation(s)
- Emilio Llanos-González
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Ciudad Real, Spain.,Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | | | - Cristina María Pedrero-Prieto
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Ciudad Real, Spain.,Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Sonia García-Carpintero
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Ciudad Real, Spain.,Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Javier Frontiñán-Rubio
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Ciudad Real, Spain.,Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Francisco Javier Sancho-Bielsa
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Ciudad Real, Spain.,Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Francisco Javier Alcain
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Ciudad Real, Spain.,Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Juan Ramón Peinado
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Ciudad Real, Spain.,Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Yoana Rabanal-Ruíz
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Ciudad Real, Spain.,Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Mario Durán-Prado
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Ciudad Real, Spain.,Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| |
Collapse
|
176
|
Thapa S, Abdelaziz DH, Abdulrahman BA, Schatzl HM. Sephin1 Reduces Prion Infection in Prion-Infected Cells and Animal Model. Mol Neurobiol 2020; 57:2206-2219. [PMID: 31981074 DOI: 10.1007/s12035-020-01880-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/15/2020] [Indexed: 02/05/2023]
Abstract
Prion diseases are fatal infectious neurodegenerative disorders in human and animals caused by misfolding of the cellular prion protein (PrPC) into the infectious isoform PrPSc. These diseases have the potential to transmit within or between species, and no cure is available to date. Targeting the unfolded protein response (UPR) as an anti-prion therapeutic approach has been widely reported for prion diseases. Here, we describe the anti-prion effect of the chemical compound Sephin1 which has been shown to protect in mouse models of protein misfolding diseases including amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS) by selectively inhibiting the stress-induced regulatory subunit of protein phosphatase 1, thus prolonging eIF2α phosphorylation. We show here that Sephin1 dose and time dependently reduced PrPSc in different neuronal cell lines which were persistently infected with various prion strains. In addition, prion seeding activity was reduced in Sephin1-treated cells. Importantly, we found that Sephin1 significantly overcame the endoplasmic reticulum (ER) stress induced in treated cells, as measured by lower expression of stress-induced aberrant prion protein. In a mouse model of prion infection, intraperitoneal treatment with Sephin1 significantly prolonged survival of prion-infected mice. When combining Sephin1 with the neuroprotective drug metformin, the survival of prion-infected mice was also prolonged. These results suggest that Sephin1 could be a potential anti-prion drug selectively targeting one component of the UPR pathway.
Collapse
Affiliation(s)
- Simrika Thapa
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada.,Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, TRW 2D10, 3280 Hospital Drive NW, Calgary, Alberta, T2N 4Z6, Canada.,Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta, Canada
| | - Dalia H Abdelaziz
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada.,Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, TRW 2D10, 3280 Hospital Drive NW, Calgary, Alberta, T2N 4Z6, Canada.,Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta, Canada.,Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Basant A Abdulrahman
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada.,Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, TRW 2D10, 3280 Hospital Drive NW, Calgary, Alberta, T2N 4Z6, Canada.,Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta, Canada.,Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Hermann M Schatzl
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada. .,Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, TRW 2D10, 3280 Hospital Drive NW, Calgary, Alberta, T2N 4Z6, Canada. .,Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
177
|
Richter M, Vidovic N, Biber K, Dolga A, Culmsee C, Dodel R. The neuroprotective role of microglial cells against amyloid beta-mediated toxicity in organotypic hippocampal slice cultures. Brain Pathol 2020; 30:589-602. [PMID: 31769564 PMCID: PMC8018096 DOI: 10.1111/bpa.12807] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/18/2019] [Indexed: 02/02/2023] Open
Abstract
During Alzheimer's disease (AD) progression, microglial cells play complex roles and have potentially detrimental as well as beneficial effects. The use of appropriate model systems is essential for characterizing and understanding the roles of microglia in AD pathology. Here, we used organotypic hippocampal slice cultures (OHSCs) to investigate the impact of microglia on amyloid beta (Aβ)-mediated toxicity. Neurons in OHSCs containing microglia were not vulnerable to cell death after 7 days of repeated treatment with Aβ1-42 oligomer-enriched preparations. However, when clodronate was used to remove microglia, treatment with Aβ1-42 resulted in significant neuronal death. Further investigations indicated signs of endoplasmic reticulum stress and caspase activation after Aβ1-42 challenge only when microglia were absent. Interestingly, microglia provided protection without displaying any classic signs of activation, such as an amoeboid morphology or the release of pro-inflammatory mediators (e.g., IL-6, TNF-α, NO). Furthermore, depleting microglia or inhibiting microglial uptake mechanisms resulted in significant more Aβ deposition compared to that observed in OHSCs containing functional microglia, suggesting that microglia efficiently cleared Aβ. Because inhibiting microglial uptake increased neuronal cell death, the ability of microglia to engulf Aβ is thought to contribute to its protective properties. Our study argues for a beneficial role of functional ramified microglia whereby they act against the accumulation of neurotoxic forms of Aβ and support neuronal resilience in an in situ model of AD pathology.
Collapse
Affiliation(s)
- Maren Richter
- Department of Neurology, Philipps-University Marburg, Marburg, Germany.,Institute for Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Marburg, Germany
| | - Natascha Vidovic
- Department of Neurology, Philipps-University Marburg, Marburg, Germany.,Chair of Geriatric Medicine, University Duisburg-Essen, Essen, Germany
| | - Knut Biber
- Molecular Psychiatry, Psychiatric Hospital, University of Freiburg, Freiburg, Germany.,Department of Neuroscience, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Amalia Dolga
- Institute for Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Marburg, Germany.,Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, Faculty of Science and Engineering, Groningen, the Netherlands
| | - Carsten Culmsee
- Institute for Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Marburg, Germany
| | - Richard Dodel
- Department of Neurology, Philipps-University Marburg, Marburg, Germany.,Chair of Geriatric Medicine, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
178
|
Astrocyte Unfolded Protein Response Induces a Specific Reactivity State that Causes Non-Cell-Autonomous Neuronal Degeneration. Neuron 2020; 105:855-866.e5. [PMID: 31924446 PMCID: PMC7054837 DOI: 10.1016/j.neuron.2019.12.014] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/06/2019] [Accepted: 12/09/2019] [Indexed: 12/21/2022]
Abstract
Recent interest in astrocyte activation states has raised the fundamental question of how these cells, normally essential for synapse and neuronal maintenance, become pathogenic. Here, we show that activation of the unfolded protein response (UPR), specifically phosphorylated protein kinase R-like endoplasmic reticulum (ER) kinase (PERK-P) signaling-a pathway that is widely dysregulated in neurodegenerative diseases-generates a distinct reactivity state in astrocytes that alters the astrocytic secretome, leading to loss of synaptogenic function in vitro. Further, we establish that the same PERK-P-dependent astrocyte reactivity state is harmful to neurons in vivo in mice with prion neurodegeneration. Critically, targeting this signaling exclusively in astrocytes during prion disease is alone sufficient to prevent neuronal loss and significantly prolongs survival. Thus, the astrocyte reactivity state resulting from UPR over-activation is a distinct pathogenic mechanism that can by itself be effectively targeted for neuroprotection.
Collapse
|
179
|
Sun Y, Ma C, Sun H, Wang H, Peng W, Zhou Z, Wang H, Pi C, Shi Y, He X. Metabolism: A Novel Shared Link between Diabetes Mellitus and Alzheimer's Disease. J Diabetes Res 2020; 2020:4981814. [PMID: 32083135 PMCID: PMC7011481 DOI: 10.1155/2020/4981814] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/29/2019] [Accepted: 01/14/2020] [Indexed: 12/14/2022] Open
Abstract
As a chronic metabolic disease, diabetes mellitus (DM) is broadly characterized by elevated levels of blood glucose. Novel epidemiological studies demonstrate that some diabetic patients have an increased risk of developing dementia compared with healthy individuals. Alzheimer's disease (AD) is the most frequent cause of dementia and leads to major progressive deficits in memory and cognitive function. Multiple studies have identified an increased risk for AD in some diabetic populations, but it is still unclear which diabetic patients will develop dementia and which biological characteristics can predict cognitive decline. Although few mechanistic metabolic studies have shown clear pathophysiological links between DM and AD, there are several plausible ways this may occur. Since AD has many characteristics in common with impaired insulin signaling pathways, AD can be regarded as a metabolic disease. We conclude from the published literature that the body's diabetic status under certain circumstances such as metabolic abnormalities can increase the incidence of AD by affecting glucose transport to the brain and reducing glucose metabolism. Furthermore, due to its plentiful lipid content and high energy requirement, the brain's metabolism places great demands on mitochondria. Thus, the brain may be more susceptible to oxidative damage than the rest of the body. Emerging evidence suggests that both oxidative stress and mitochondrial dysfunction are related to amyloid-β (Aβ) pathology. Protein changes in the unfolded protein response or endoplasmic reticulum stress can regulate Aβ production and are closely associated with tau protein pathology. Altogether, metabolic disorders including glucose/lipid metabolism, oxidative stress, mitochondrial dysfunction, and protein changes caused by DM are associated with an impaired insulin signal pathway. These metabolic factors could increase the prevalence of AD in diabetic patients via the promotion of Aβ pathology.
Collapse
Affiliation(s)
- Yanan Sun
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Cao Ma
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
- Department of Pathology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Hui Sun
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Huan Wang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Wei Peng
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
- Department of Clinical Medicine, Jilin University, Changchun 130021, China
| | - Zibo Zhou
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
- Department of Clinical Medicine, Jilin University, Changchun 130021, China
| | - Hongwei Wang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
- Department of Clinical Medicine, Jilin University, Changchun 130021, China
| | - Chenchen Pi
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
- The First Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Yingai Shi
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Xu He
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
180
|
Yamoah A, Tripathi P, Sechi A, Köhler C, Guo H, Chandrasekar A, Nolte KW, Wruck CJ, Katona I, Anink J, Troost D, Aronica E, Steinbusch H, Weis J, Goswami A. Aggregates of RNA Binding Proteins and ER Chaperones Linked to Exosomes in Granulovacuolar Degeneration of the Alzheimer's Disease Brain. J Alzheimers Dis 2020; 75:139-156. [PMID: 32250292 DOI: 10.3233/jad-190722] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Granulovacuolar degeneration (GVD) occurs in Alzheimer's disease (AD) brain due to compromised autophagy. Endoplasmic reticulum (ER) function and RNA binding protein (RBP) homeostasis regulate autophagy. We observed that the ER chaperones Glucose - regulated protein, 78 KDa (GRP78/BiP), Sigma receptor 1 (SigR1), and Vesicle-associated membrane protein associated protein B (VAPB) were elevated in many AD patients' subicular neurons. However, those neurons which were affected by GVD showed lower chaperone levels, and there was only minor co-localization of chaperones with GVD bodies (GVBs), suggesting that neurons lacking sufficient chaperone-mediated proteostasis enter the GVD pathway. Consistent with this notion, granular, incipient pTau aggregates in human AD and pR5 tau transgenic mouse neurons were regularly co-localized with increased chaperone immunoreactivity, whereas neurons with mature neurofibrillary tangles lacked both the chaperone buildup and significant GVD. On the other hand, APP/PS1 (APPswe/PSEN1dE9) transgenic mouse hippocampal neurons that are devoid of pTau accumulation displayed only few GVBs-like vesicles, which were still accompanied by prominent chaperone buildup. Identifying a potential trigger for GVD, we found cytoplasmic accumulations of RBPs including Matrin 3 and FUS as well as stress granules in GVBs of AD patient and pR5 mouse neurons. Interestingly, we observed that GVBs containing aggregated pTau and pTDP-43 were consistently co-localized with the exosomal marker Flotillin 1 in both AD and pR5 mice. In contrast, intraneuronal 82E1-immunoreactive amyloid-β in human AD and APP/PS1 mice only rarely co-localized with Flotillin 1-positive exosomal vesicles. We conclude that altered chaperone-mediated ER protein homeostasis and impaired autophagy manifesting in GVD are linked to both pTau and RBP accumulation and that some GVBs might be targeted to exocytosis.
Collapse
Affiliation(s)
- Alfred Yamoah
- Institute of Neuropathology, RWTH Aachen University Medical School, Aachen, Germany
- EURON - European Graduate School of Neuroscience
| | - Priyanka Tripathi
- Institute of Neuropathology, RWTH Aachen University Medical School, Aachen, Germany
- EURON - European Graduate School of Neuroscience
| | - Antonio Sechi
- Institute of Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
| | - Christoph Köhler
- Center for Anatomy, Department II, Medical Faculty, University of Cologne, Cologne, Germany
| | - Haihong Guo
- Institute of Neuropathology, RWTH Aachen University Medical School, Aachen, Germany
| | - Akila Chandrasekar
- Institute of Neuropathology, RWTH Aachen University Medical School, Aachen, Germany
| | - Kay Wilhelm Nolte
- Institute of Neuropathology, RWTH Aachen University Medical School, Aachen, Germany
| | - Christoph Jan Wruck
- Institute of Anatomy and Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
| | - Istvan Katona
- Institute of Neuropathology, RWTH Aachen University Medical School, Aachen, Germany
| | - Jasper Anink
- Amsterdam UMC, University of Amsterdam, Department of (Neuro) Pathology, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Dirk Troost
- Amsterdam UMC, University of Amsterdam, Department of (Neuro) Pathology, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of (Neuro) Pathology, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Harry Steinbusch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- EURON - European Graduate School of Neuroscience
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Medical School, Aachen, Germany
| | - Anand Goswami
- Institute of Neuropathology, RWTH Aachen University Medical School, Aachen, Germany
| |
Collapse
|
181
|
Papanikolopoulou K, Skoulakis EMC. Altered Proteostasis in Neurodegenerative Tauopathies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:177-194. [PMID: 32274757 DOI: 10.1007/978-3-030-38266-7_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Tauopathies are a heterogeneous group of neurodegenerative dementias involving perturbations in the levels, phosphorylation or mutations of the neuronal microtubule-binding protein Tau. Tauopathies are characterized by accumulation of hyperphosphorylated Tau leading to formation of a range of aggregates including macromolecular ensembles such as Paired Helical filaments and Neurofibrilary Tangles whose morphology characterizes and differentiates these disease states. Why nonphysiological Tau proteins elude the surveillance normal proteostatic mechanisms and eventually form these macromolecular assemblies is a central mostly unresolved question of cardinal importance for diagnoses and potential therapeutic interventions. We discuss the response of the Ubiquitin-Proteasome system, autophagy and the Endoplasmic Reticulum-Unfolded Protein response in Tauopathy models and patients, revealing interactions of components of these systems with Tau, but also of the effects of pathological Tau on these systems which eventually lead to Tau aggregation and accumulation. These interactions point to potential disease biomarkers and future potential therapeutic targets.
Collapse
Affiliation(s)
- Katerina Papanikolopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre "Alexander Fleming", Vari, Greece
| | - Efthimios M C Skoulakis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre "Alexander Fleming", Vari, Greece.
| |
Collapse
|
182
|
Zheng XY, Lv YD, Jin FY, Wu XJ, Zhu J, Ruan Y. Kainic acid hyperphosphorylates tau via inflammasome activation in MAPT transgenic mice. Aging (Albany NY) 2019; 11:10923-10938. [PMID: 31789603 PMCID: PMC6932880 DOI: 10.18632/aging.102495] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 11/17/2019] [Indexed: 01/26/2023]
Abstract
The excitotoxicity induced by kainic acid (KA) is thought to contribute to the development of Alzheimer’s disease (AD); however, the mechanisms underlying this excitotoxicity remain unknown. In the current study, we investigated the dynamic changes in tau phosphorylation and their associations with the excitotoxicity induced by intraperitoneal injection of KA in the mouse brain. We found that KA-induced excitotoxicity led to sustained hyperphosphorylation of tau in MAPT transgenic (Tg) mice. By using cultured microglia and mouse brains, we showed that KA treatment specifically induced endoplasmic reticulum (ER) stress, which was characterized by activation of the major biomarkers of ER, such as ATF6, GRP78, and IRE1, and resulted in stimulation of inflammasomes. KA receptors (KARs), such as Girk1, were determined to be involved in this KA-induced ER stress. ER stress was also shown to activate inflammasomes by stimulating the expression of the two major components of inflammasomes, nucleotide binding oligomerization domain (NOD)-like receptor (NLR) protein 3 (NLRP3) and nuclear factor (NF)-κB, and eventually causing the production of interleukin-1β (IL-1β). Inhibition of NLRP3 or NF-κB by Bay11-7082 resulted in reduction of KA-induced IL-1β production. Our results also revealed the positive effects of IL-1β on tau phosphorylation, which was blocked by Bay11-7082. Notably, the results indicate that Bay11-7082 acts against KA-induced neuronal degeneration, tau phosphorylation, and memory defects via inflammasomes, which further highlight the protective role of Bay11-7082 in KA-induced neuronal defects.
Collapse
Affiliation(s)
- Xiang-Yu Zheng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Yu-Dan Lv
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Feng-Yan Jin
- Department of Hematology, Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Xiu-Juan Wu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Jie Zhu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China.,Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm 141 86, Sweden
| | - Yang Ruan
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
183
|
Salubrinal attenuates nitric oxide mediated PERK:IRE1α: ATF-6 signaling and DNA damage in neuronal cells. Neurochem Int 2019; 131:104581. [DOI: 10.1016/j.neuint.2019.104581] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/09/2019] [Accepted: 10/15/2019] [Indexed: 01/14/2023]
|
184
|
Wiersma VI, van Ziel AM, Vazquez-Sanchez S, Nölle A, Berenjeno-Correa E, Bonaterra-Pastra A, Clavaguera F, Tolnay M, Musters RJP, van Weering JRT, Verhage M, Hoozemans JJM, Scheper W. Granulovacuolar degeneration bodies are neuron-selective lysosomal structures induced by intracellular tau pathology. Acta Neuropathol 2019; 138:943-970. [PMID: 31456031 PMCID: PMC6851499 DOI: 10.1007/s00401-019-02046-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 01/28/2023]
Abstract
Granulovacuolar degeneration bodies (GVBs) are membrane-bound vacuolar structures harboring a dense core that accumulate in the brains of patients with neurodegenerative disorders, including Alzheimer's disease and other tauopathies. Insight into the origin of GVBs and their connection to tau pathology has been limited by the lack of suitable experimental models for GVB formation. Here, we used confocal, automated, super-resolution and electron microscopy to demonstrate that the seeding of tau pathology triggers the formation of GVBs in different mouse models in vivo and in primary mouse neurons in vitro. Seeding-induced intracellular tau aggregation, but not seed exposure alone, causes GVB formation in cultured neurons, but not in astrocytes. The extent of tau pathology strongly correlates with the GVB load. Tau-induced GVBs are immunoreactive for the established GVB markers CK1δ, CK1ɛ, CHMP2B, pPERK, peIF2α and pIRE1α and contain a LAMP1- and LIMP2-positive single membrane that surrounds the dense core and vacuole. The proteolysis reporter DQ-BSA is detected in the majority of GVBs, demonstrating that GVBs contain degraded endocytic cargo. GFP-tagged CK1δ accumulates in the GVB core, whereas GFP-tagged tau or GFP alone does not, indicating selective targeting of cytosolic proteins to GVBs. Taken together, we established the first in vitro model for GVB formation by seeding tau pathology in primary neurons. The tau-induced GVBs have the marker signature and morphological characteristics of GVBs in the human brain. We show that GVBs are lysosomal structures distinguished by the accumulation of a characteristic subset of proteins in a dense core.
Collapse
|
185
|
Upregulation of the Sarco-Endoplasmic Reticulum Calcium ATPase 1 Truncated Isoform Plays a Pathogenic Role in Alzheimer's Disease. Cells 2019; 8:cells8121539. [PMID: 31795302 PMCID: PMC6953121 DOI: 10.3390/cells8121539] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/30/2022] Open
Abstract
Dysregulation of the Endoplasmic Reticulum (ER) Ca2+ homeostasis and subsequent ER stress activation occur in Alzheimer Disease (AD). We studied the contribution of the human truncated isoform of the sarco-endoplasmic reticulum Ca2+ ATPase 1 (S1T) to AD. We examined S1T expression in human AD-affected brains and its functional consequences in cellular and transgenic mice AD models. S1T expression is increased in sporadic AD brains and correlates with amyloid β (Aβ) and ER stress chaperone protein levels. Increased S1T expression was also observed in human neuroblastoma cells expressing Swedish-mutated β-amyloid precursor protein (βAPP) or treated with Aβ oligomers. Lentiviral overexpression of S1T enhances in return the production of APP C-terminal fragments and Aβ through specific increases of β-secretase expression and activity, and triggers neuroinflammation. We describe a molecular interplay between S1T-dependent ER Ca2+ leak, ER stress and βAPP-derived fragments that could contribute to AD setting and/or progression.
Collapse
|
186
|
He Y, Ruganzu JB, Lin C, Ding B, Zheng Q, Wu X, Ma R, Liu Q, Wang Y, Jin H, Qian Y, Peng X, Ji S, Zhang L, Yang W, Lei X. Tanshinone IIA ameliorates cognitive deficits by inhibiting endoplasmic reticulum stress-induced apoptosis in APP/PS1 transgenic mice. Neurochem Int 2019; 133:104610. [PMID: 31778727 DOI: 10.1016/j.neuint.2019.104610] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/15/2019] [Accepted: 11/23/2019] [Indexed: 02/06/2023]
Abstract
Our previous data indicated that tanshinone IIA (tan IIA) improves learning and memory in a mouse model of Alzheimer's disease (AD) induced by streptozotocin via restoring cholinergic function, attenuating oxidative stress and blocking p38 MAPK signal pathway activation. This study aims to estimate whether tan IIA inhibits endoplasmic reticulum (ER) stress-induced apoptosis to prevent cognitive decline in APP/PS1 transgenic mice. Tan IIA (10 mg/kg and 30 mg/kg) was intraperitoneally administered to the six-month-old APP/PS1 mice for 30 consecutive days. β-amyloid (Aβ) plaques were measured by immunohistochemisty and Thioflavin S staining, apoptotic cells were observed by TUNEL, ER stress markers and apoptosis signaling proteins were investigated by western blotting and RT-PCR. Our results showed that tan IIA significantly ameliorates cognitive deficits and improves spatial learning ability of APP/PS1 mice in the nest-building test, novel object recognition test and Morris water maze test. Furthermore, tan IIA significantly reduced the deposition of Aβ plaques and neuronal apoptosis, and markedly prevented abnormal expression of glucose regulated protein 78 (GRP78), initiation factor 2α (eIF2α), inositol-requiring enzyme 1α (IRE1α), activating transcription factor 6 (ATF6), as well as suppressed the activation of C/EBP homologous protein (CHOP) and c-Jun N-terminal kinase (JNK) pathways in the parietal cortex and hippocampus. Moreover, tan IIA induced an up-regulation of the Bcl-2/Bax ratio and down-regulation of caspase-3 protein activity. Taken together, the above findings indicated that tan IIA improves learning and memory through attenuating Aβ plaques deposition and inhibiting ER stress-induced apoptosis. These results suggested that tan IIA might become a promising therapeutic candidate drug against AD.
Collapse
Affiliation(s)
- Yingying He
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China
| | - John Bosco Ruganzu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China
| | - Chengheng Lin
- Medical Undergraduates of Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China
| | - Bo Ding
- Medical Undergraduates of Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China
| | - Quzhao Zheng
- Medical Undergraduates of Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China
| | - Xiangyuan Wu
- Medical Undergraduates of Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China
| | - Ruiyang Ma
- Medical Undergraduates of Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China
| | - Qian Liu
- Medical Undergraduates of Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China
| | - Yang Wang
- Medical Undergraduates of Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China
| | - Hui Jin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China
| | - Yihua Qian
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China
| | - Xiaoqian Peng
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China
| | - Shengfeng Ji
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China
| | - Liangliang Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi province, 710061, China
| | - Weina Yang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi province, 710061, China.
| | - Xiaomei Lei
- Department of Child Health Care, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi province, 710004, China.
| |
Collapse
|
187
|
Pathak SS, Liu D, Li T, de Zavalia N, Zhu L, Li J, Karthikeyan R, Alain T, Liu AC, Storch KF, Kaufman RJ, Jin VX, Amir S, Sonenberg N, Cao R. The eIF2α Kinase GCN2 Modulates Period and Rhythmicity of the Circadian Clock by Translational Control of Atf4. Neuron 2019; 104:724-735.e6. [PMID: 31522764 PMCID: PMC6872934 DOI: 10.1016/j.neuron.2019.08.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/13/2019] [Accepted: 08/03/2019] [Indexed: 12/20/2022]
Abstract
The integrated stress response (ISR) is activated in response to diverse stress stimuli to maintain homeostasis in neurons. Central to this process is the phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α). Here, we report a critical role for ISR in regulating the mammalian circadian clock. The eIF2α kinase GCN2 rhythmically phosphorylates eIF2α in the suprachiasmatic circadian clock. Increased eIF2α phosphorylation shortens the circadian period in both fibroblasts and mice, whereas reduced eIF2α phosphorylation lengthens the circadian period and impairs circadian rhythmicity in animals. Mechanistically, phosphorylation of eIF2α promotes mRNA translation of Atf4. ATF4 binding motifs are identified in multiple clock genes, including Per2, Per3, Cry1, Cry2, and Clock. ATF4 binds to the TTGCAGCA motif in the Per2 promoter and activates its transcription. Together, these results demonstrate a significant role for ISR in circadian physiology and provide a potential link between dysregulated ISR and circadian dysfunction in brain diseases.
Collapse
Affiliation(s)
- Salil Saurav Pathak
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Dong Liu
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Tianbao Li
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Nuria de Zavalia
- Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Lei Zhu
- Douglas Mental Health University Institute and Department of Psychiatry, McGill University, Montreal, QC H4H 1R3, Canada
| | - Jin Li
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Ramanujam Karthikeyan
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Tommy Alain
- Children's Hospital of Eastern Ontario Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Andrew C Liu
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Kai-Florian Storch
- Douglas Mental Health University Institute and Department of Psychiatry, McGill University, Montreal, QC H4H 1R3, Canada
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92307, USA
| | - Victor X Jin
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Shimon Amir
- Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC H4B 1R6, Canada.
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montreal, QC H3A 1A3, Canada.
| | - Ruifeng Cao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| |
Collapse
|
188
|
Icariin improves the cognitive function of APP/PS1 mice via suppressing endoplasmic reticulum stress. Life Sci 2019; 234:116739. [DOI: 10.1016/j.lfs.2019.116739] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 11/18/2022]
|
189
|
Constitutive XBP-1s-mediated activation of the endoplasmic reticulum unfolded protein response protects against pathological tau. Nat Commun 2019; 10:4443. [PMID: 31570707 PMCID: PMC6768869 DOI: 10.1038/s41467-019-12070-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 08/15/2019] [Indexed: 12/14/2022] Open
Abstract
To endure over the organismal lifespan, neurons utilize multiple strategies to achieve protein homeostasis (proteostasis). Some homeostatic mechanisms act in a subcellular compartment-specific manner, but others exhibit trans-compartmental mechanisms of proteostasis. To identify pathways protecting neurons from pathological tau protein, we employed a transgenic Caenorhabditis elegans model of human tauopathy exhibiting proteostatic disruption. We show normal functioning of the endoplasmic reticulum unfolded protein response (UPRER) promotes clearance of pathological tau, and loss of the three UPRER branches differentially affects tauopathy phenotypes. Loss of function of xbp-1 and atf-6 genes, the two main UPRER transcription factors, exacerbates tau toxicity. Furthermore, constitutive activation of master transcription factor XBP-1 ameliorates tauopathy phenotypes. However, both ATF6 and PERK branches of the UPRER participate in amelioration of tauopathy by constitutively active XBP-1, possibly through endoplasmic reticulum-associated protein degradation (ERAD). Understanding how the UPRER modulates pathological tau accumulation will inform neurodegenerative disease mechanisms.
Collapse
|
190
|
Chen Y, Podojil JR, Kunjamma RB, Jones J, Weiner M, Lin W, Miller SD, Popko B. Sephin1, which prolongs the integrated stress response, is a promising therapeutic for multiple sclerosis. Brain 2019; 142:344-361. [PMID: 30657878 DOI: 10.1093/brain/awy322] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis is a chronic autoimmune demyelinating disorder of the CNS. Immune-mediated oligodendrocyte cell loss contributes to multiple sclerosis pathogenesis, such that oligodendrocyte-protective strategies represent a promising therapeutic approach. The integrated stress response, which is an innate cellular protective signalling pathway, reduces the cytotoxic impact of inflammation on oligodendrocytes. This response is initiated by phosphorylation of eIF2α to diminish global protein translation and selectively allow for the synthesis of protective proteins. The integrated stress response is terminated by dephosphorylation of eIF2α. The small molecule Sephin1 inhibits eIF2α dephosphorylation, thereby prolonging the protective response. Herein, we tested the effectiveness of Sephin1 in shielding oligodendrocytes against inflammatory stress. We confirmed that Sephin1 prolonged eIF2α phosphorylation in stressed primary oligodendrocyte cultures. Moreover, by using a mouse model of multiple sclerosis, experimental autoimmune encephalomyelitis, we demonstrated that Sephin1 delayed the onset of clinical symptoms, which correlated with a prolonged integrated stress response, reduced oligodendrocyte and axon loss, as well as diminished T cell presence in the CNS. Sephin1 is reportedly a selective inhibitor of GADD34 (PPP1R15A), which is a stress-induced regulatory subunit of protein phosphatase 1 complex that dephosphorylates eIF2α. Consistent with this possibility, GADD34 mutant mice presented with a similar ameliorated experimental autoimmune encephalomyelitis phenotype as Sephin1-treated mice, and Sephin1 did not provide additional therapeutic benefit to the GADD34 mutant animals. Results presented from the adoptive transfer of encephalitogenic T cells between wild-type and GADD34 mutant mice further indicate that the beneficial effects of Sephin1 are mediated through a direct protective effect on the CNS. Of particular therapeutic relevance, Sephin1 provided additive therapeutic benefit when combined with the first line multiple sclerosis drug, interferon β. Together, our results suggest that a neuroprotective treatment based on the enhancement of the integrated stress response would likely have significant therapeutic value for multiple sclerosis patients.
Collapse
Affiliation(s)
- Yanan Chen
- Department of Neurology, The University of Chicago Center for Peripheral Neuropathy, The University of Chicago, Chicago, Illinois, USA
| | - Joseph R Podojil
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rejani B Kunjamma
- Department of Neurology, The University of Chicago Center for Peripheral Neuropathy, The University of Chicago, Chicago, Illinois, USA
| | - Joshua Jones
- Department of Neurology, The University of Chicago Center for Peripheral Neuropathy, The University of Chicago, Chicago, Illinois, USA
| | - Molly Weiner
- Department of Neurology, The University of Chicago Center for Peripheral Neuropathy, The University of Chicago, Chicago, Illinois, USA
| | - Wensheng Lin
- Department of Neuroscience, The Institute of Translational Neuroscience, The University of Minnesota, Minneapolis, Minnesota, USA
| | - Stephen D Miller
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Brian Popko
- Department of Neurology, The University of Chicago Center for Peripheral Neuropathy, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
191
|
de Leeuw S, Tackenberg C. Alzheimer's in a dish - induced pluripotent stem cell-based disease modeling. Transl Neurodegener 2019; 8:21. [PMID: 31338163 PMCID: PMC6624934 DOI: 10.1186/s40035-019-0161-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/25/2019] [Indexed: 02/06/2023] Open
Abstract
Background Since the discovery of the induced pluripotent stem cell (iPSC) technique more than a decade ago, extensive progress has been made to develop clinically relevant cell culture systems. Alzheimer’s disease (AD) is the most common neurodegenerative disease, accounting for approximately two thirds of all cases of dementia. The massively increasing number of affected individuals explains the major interest of research in this disease as well as the strong need for better understanding of disease mechanisms. Main body IPSC-derived neural cells have been widely used to recapitulating key aspects of AD. In this Review we highlight the progress made in studying AD pathophysiology and address the currently available techniques, such as specific differentiation techniques for AD-relevant cell types as well as 2D and 3D cultures. Finally, we critically discuss the key challenges and future directions of this field and how some of the major limitations of the iPSC technique may be overcome. Conclusion Stem cell-based disease models have the potential to induce a paradigm shift in biomedical research. In particular, the combination of the iPSC technology with recent advances in gene editing or 3D cell cultures represents a breakthrough for in vitro disease modeling and provides a platform for a better understanding of disease mechanisms in human cells and the discovery of novel therapeutics.
Collapse
Affiliation(s)
- Sherida de Leeuw
- 1Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland.,2Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Christian Tackenberg
- 1Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland.,2Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
192
|
Clarke JR, Ribeiro FC, Frozza RL, De Felice FG, Lourenco MV. Metabolic Dysfunction in Alzheimer's Disease: From Basic Neurobiology to Clinical Approaches. J Alzheimers Dis 2019; 64:S405-S426. [PMID: 29562518 DOI: 10.3233/jad-179911] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Clinical trials have extensively failed to find effective treatments for Alzheimer's disease (AD) so far. Even after decades of AD research, there are still limited options for treating dementia. Mounting evidence has indicated that AD patients develop central and peripheral metabolic dysfunction, and the underpinnings of such events have recently begun to emerge. Basic and preclinical studies have unveiled key pathophysiological mechanisms that include aberrant brain stress signaling, inflammation, and impaired insulin sensitivity. These findings are in accordance with clinical and neuropathological data suggesting that AD patients undergo central and peripheral metabolic deregulation. Here, we review recent basic and clinical findings indicating that metabolic defects are central to AD pathophysiology. We further propose a view for future therapeutics that incorporates metabolic defects as a core feature of AD pathogenesis. This approach could improve disease understanding and therapy development through drug repurposing and/or identification of novel metabolic targets.
Collapse
Affiliation(s)
- Julia R Clarke
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe C Ribeiro
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rudimar L Frozza
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro, Brazil
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
193
|
Quercetin Regulates the Integrated Stress Response to Improve Memory. Int J Mol Sci 2019; 20:ijms20112761. [PMID: 31195662 PMCID: PMC6600673 DOI: 10.3390/ijms20112761] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/02/2019] [Accepted: 06/03/2019] [Indexed: 12/11/2022] Open
Abstract
The initiation of protein synthesis is suppressed under several stress conditions, inducing phosphorylation of the α-subunit of the eukaryotic initiation factor 2 (eIF2α), thereby inactivating the GTP-GDP recycling protein eIF2B. By contrast, the mammalian activating transcription factor 4 (ATF4, also known as cAMP response element binding protein 2 (CREB2)) is still translated under stress conditions. Four protein kinases (general control nonderepressible-2 (GCN2) kinase, double-stranded RNA-activated protein kinase (PKR), PKR-endoplasmic reticulum (ER)-related kinase (PERK), and heme-regulated inhibitor kinase (HRI)) phosphorylate eIF2α in the presence of stressors such as amino acid starvation, viral infection, ER stress, and heme deficiency. This signaling reaction is known as the integrated stress response (ISR). Here, we review ISR signaling in the brain in a mouse model of Alzheimer’s disease (AD). We propose that targeting ISR signaling with quercetin has therapeutic potential, because it suppresses amyloid-β (Aβ) production in vitro and prevents cognitive impairments in a mouse model of AD.
Collapse
|
194
|
Zhong S, Pei D, Shi L, Cui Y, Hong Z. Ephrin-B2 inhibits Aβ25-35-induced apoptosis by alleviating endoplasmic reticulum stress and promoting autophagy in HT22 cells. Neurosci Lett 2019; 704:50-56. [DOI: 10.1016/j.neulet.2019.03.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 03/08/2019] [Accepted: 03/18/2019] [Indexed: 01/05/2023]
|
195
|
Treadmill exercise decreases β-amyloid burden in APP/PS1 transgenic mice involving regulation of the unfolded protein response. Neurosci Lett 2019; 703:125-131. [DOI: 10.1016/j.neulet.2019.03.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/11/2019] [Accepted: 03/19/2019] [Indexed: 11/22/2022]
|
196
|
Chadwick SR, Lajoie P. Endoplasmic Reticulum Stress Coping Mechanisms and Lifespan Regulation in Health and Diseases. Front Cell Dev Biol 2019; 7:84. [PMID: 31231647 PMCID: PMC6558375 DOI: 10.3389/fcell.2019.00084] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/03/2019] [Indexed: 12/30/2022] Open
Abstract
Multiple factors lead to proteostatic perturbations, often resulting in the aberrant accumulation of toxic misfolded proteins. Cells, from yeast to humans, can respond to sudden accumulation of secretory proteins within the endoplasmic reticulum (ER) through pathways such as the Unfolded Protein Response (UPR). The ability of cells to adapt the ER folding environment to the misfolded protein burden ultimately dictates cell fate. The aging process is a particularly important modifier of the proteostasis network; as cells age, both their ability to maintain this balance in protein folding/degradation and their ability to respond to insults in these pathways can break down, a common element of age-related diseases (including neurodegenerative diseases). ER stress coping mechanisms are central to lifespan regulation under both normal and disease states. In this review, we give a brief overview of the role of ER stress response pathways in age-dependent neurodegeneration.
Collapse
Affiliation(s)
- Sarah R Chadwick
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON, Canada
| | - Patrick Lajoie
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
197
|
Weidling I, Swerdlow RH. Mitochondrial Dysfunction and Stress Responses in Alzheimer's Disease. BIOLOGY 2019; 8:biology8020039. [PMID: 31083585 PMCID: PMC6627276 DOI: 10.3390/biology8020039] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/04/2019] [Accepted: 01/16/2019] [Indexed: 02/04/2023]
Abstract
Alzheimer's disease (AD) patients display widespread mitochondrial defects. Brain hypometabolism occurs alongside mitochondrial defects, and correlates well with cognitive decline. Numerous theories attempt to explain AD mitochondrial dysfunction. Groups propose AD mitochondrial defects stem from: (1) mitochondrial-nuclear DNA interactions/variations; (2) amyloid and neurofibrillary tangle interactions with mitochondria, and (3) mitochondrial quality control defects and oxidative damage. Cells respond to mitochondrial dysfunction through numerous retrograde responses including the Integrated Stress Response (ISR) involving eukaryotic initiation factor 2α (eIF2α), activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP). AD brains activate the ISR and we hypothesize mitochondrial defects may contribute to ISR activation. Here we review current recognized contributions of the mitochondria to AD, with an emphasis on their potential contribution to brain stress responses.
Collapse
Affiliation(s)
- Ian Weidling
- University of Kansas Alzheimer's Disease Center, Fairway, KS 66205, USA.
- Department of Integrated and Molecular Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Russell H Swerdlow
- University of Kansas Alzheimer's Disease Center, Fairway, KS 66205, USA.
- Department of Integrated and Molecular Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
198
|
Pitera AP, Asuni AA, O'Connor V, Deinhardt K. Pathogenic tau does not drive activation of the unfolded protein response. J Biol Chem 2019; 294:9679-9688. [PMID: 31053641 PMCID: PMC6597832 DOI: 10.1074/jbc.ra119.008263] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/26/2019] [Indexed: 11/06/2022] Open
Abstract
The unfolded protein response (UPR) is commonly associated with a range of neurodegenerative diseases, and targeting UPR components has been suggested as a therapeutic strategy. The UPR surveys protein folding within the endoplasmic reticulum. However, many of the misfolded proteins that accumulate in neurodegeneration are localized so that they do not directly cause endoplasmic reticulum triggers that activate this pathway. Here, using a transgenic mouse model and primary cell cultures along with quantitative PCR, immunoblotting, and immunohistochemistry, we tested whether the UPR is induced in in vivo and in vitro murine models of tauopathy that are based on expression of mutant tauP301L We found no evidence for the UPR in the rTg4510 mouse model, in which mutant tau is transgenically expressed under the control of tetracycline-controlled transactivator protein. This observation was supported by results from acute experiments in which neuronal cultures expressed mutant tau and accumulated misfolded cytoplasmic tau aggregates but exhibited no UPR activation. These results suggest that the UPR is not induced as a response to tau misfolding and aggregation despite clear evidence for progressive cellular dysfunction and degeneration. We propose that caution is needed when evaluating the implied significance of the UPR as a critical determinant across major neurodegenerative diseases.
Collapse
Affiliation(s)
- Aleksandra P Pitera
- From Biological Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom and
| | - Ayodeji A Asuni
- Systems Biology - Symptoms, H. Lundbeck A/S, 2500 Valby, Denmark
| | - Vincent O'Connor
- From Biological Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom and
| | - Katrin Deinhardt
- From Biological Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom and
| |
Collapse
|
199
|
Hayat B, Padhy B, Mohanty PP, Alone DP. Altered unfolded protein response and proteasome impairment in pseudoexfoliation pathogenesis. Exp Eye Res 2019; 181:197-207. [DOI: 10.1016/j.exer.2019.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/03/2019] [Accepted: 02/04/2019] [Indexed: 02/02/2023]
|
200
|
Bi C, Bi S, Li B. Processing of Mutant β-Amyloid Precursor Protein and the Clinicopathological Features of Familial Alzheimer's Disease. Aging Dis 2019; 10:383-403. [PMID: 31011484 PMCID: PMC6457050 DOI: 10.14336/ad.2018.0425] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 04/25/2018] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is a complex, multifactorial disease involving many pathological mechanisms. Nonetheless, single pathogenic mutations in amyloid precursor protein (APP) or presenilin 1 or 2 can cause AD with almost all of the clinical and neuropathological features, and therefore, we believe an important mechanism of pathogenesis in AD could be revealed from examining pathogenic APP missense mutations. A comprehensive review of the literature, including clinical, neuropathological, cellular and animal model data, was conducted through PubMed and the databases of Alzforum mutations, HGMD, UniProt, and AD&FTDMDB. Pearson correlation analysis combining the clinical and neuropathological data and aspects of mutant APP processing in cellular models was performed. We find that an increase in Aβ42 has a significant positive correlation with the appearance of neurofibrillary tangles (NFTs) and tends to cause an earlier age of AD onset, while an increase in Aβ40 significantly increases the age at death. The increase in the α-carboxyl terminal fragment (CTF) has a significantly negative correlation with the age of AD onset, and β-CTF has a similar effect without statistical significance. Animal models show that intracellular Aβ is critical for memory defects. Based on these results and the fact that amyloid plaque burden correlates much less well with cognitive impairment than do NFT counts, we propose a "snowball hypothesis": the accumulation of intraneuronal NFTs caused by extracellular Aβ42 and the increase in intraneuronal APP proteolytic products (CTFs and Aβs) could cause cellular organelle stress that leads to neurodegeneration in AD, which then resembles the formation of abnormal protein "snowballs" both inside and outside of neurons.
Collapse
Affiliation(s)
- Christopher Bi
- Washington Institute for Health Sciences, Arlington, VA 22203, USA
| | - Stephanie Bi
- Washington Institute for Health Sciences, Arlington, VA 22203, USA
| | - Bin Li
- Washington Institute for Health Sciences, Arlington, VA 22203, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington DC 20057, USA
| |
Collapse
|