151
|
Qian H, Ye Z, Pi L, Ao J. Roles and current applications of S-nitrosoglutathione in anti-infective biomaterials. Mater Today Bio 2022; 16:100419. [PMID: 36105674 PMCID: PMC9465324 DOI: 10.1016/j.mtbio.2022.100419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022]
Abstract
Bacterial infections can compromise the physical and biological functionalities of humans and pose a huge economical and psychological burden on infected patients. Nitric oxide (NO) is a broad-spectrum antimicrobial agent, whose mechanism of action is not affected by bacterial resistance. S-nitrosoglutathione (GSNO), an endogenous donor and carrier of NO, has gained increasing attention because of its potent antibacterial activity and efficient biocompatibility. Significant breakthroughs have been made in the application of GSNO in biomaterials. This review is based on the existing evidence that comprehensively summarizes the progress of antimicrobial GSNO applications focusing on their anti-infective performance, underlying antibacterial mechanisms, and application in anti-infective biomaterials. We provide an accurate overview of the roles and applications of GSNO in antibacterial biomaterials and shed new light on the avenues for future studies.
Collapse
Key Words
- A.baumannii, Acinetobacter baumannii
- AgNPs, Silver nanoparticles
- Antibacterial property
- BMSCs, Bone marrow stem cells
- Bacterial resistance
- Biomaterials
- C.albicans, Candida albicans
- CS/GE, Chitosan/gelatin
- Cu, copper
- DMSO, Dimethyl sulfoxide
- DPA, Diethylenetriamine pentaacetic acid
- E. coli, Escherichia coli
- E.tenella, Eimeria tenella
- ECC, Extracorporeal circulation
- ECM, Experimental cerebral malaria
- GSNO, S-Nitrosoglutathione
- GSNOR, S-Nitrosoglutathione Reductase
- H.pylori, Helicobacter pylori
- HCC, Human cervical carcinoma
- HDFs, Human dermal fibroblasts
- HUVEC, Human umbilical vein endothelial cells
- ICR, Imprinted control region
- Infection
- K.Pneumonia, Klebsiella Pneumonia
- L.amazonensis, Leishmania amazonensis
- L.major, Leishmania major
- M.Tuberculosis, Mycobacterium tuberculosis
- M.smegmatis, Mycobacterium smegmatis
- MOF, Metal–organic framework
- MRPA, Multidrug-resistant Pseudomonas aeruginosa
- MRSA, Methicillin resistant Staphylococcus aureus
- N. gonorrhoeae, Neisseria gonorrhoeae
- N.meningitidis, Neisseria meningitidis
- NA, Not available
- NO-np, NO-releasing nanoparticulate platform
- NP, Nanoparticle
- P.aeruginosa, Pseudomonas aeruginosa
- P.berghei, Plasmodium berghei
- P.mirabilis, Proteus mirabilis
- PCL, Polycaprolactone
- PCVAD, Porcine circovirus-associated disease
- PDA-GSNO NPs, Polydopamine nanoparticles containing GSNO
- PDAM@Cu, polydopamine based copper coatings
- PEG, polyethylene glycol
- PHB, polyhydroxybutyrate
- PLA, polylactic acid
- PLGA, poly(lactic-co-glycolic acid)
- PTT, Photothermal therapy
- PVA, poly(vinyl alcohol)
- PVA/PEG, poly(vinyl alcohol)/poly(ethylene glycol)
- PVC, poly(vinyl chloride)
- S-nitrosoglutathione
- S. typhimurium, Salmonella typhimurium
- S.aureus, Staphylococcus aureus
- S.epidermidis, Staphylococcus epidermidis
- S.pneumoniae, Streptococcus pneumoniae
- SAKI, Septic acute kidney injury
- SCI, Spinal cord slices
- Se, Selenium
- Sp3, Specificity proteins 3
- TDC, Tunneled dialysis catheters
- TMOS, Tetramethylorthosilicate
- ZnO, Zinc oxide
- cftr, cystic fibrosis transmembrane conductance regulatory gene
- d, day
- h, hour
- min, minute
- pSiNPs, porous silicon nanoparticles
- w, week
Collapse
Affiliation(s)
- Hu Qian
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhimin Ye
- Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Lanping Pi
- Nursing Department, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jun Ao
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
152
|
Sarohi V, Chakraborty S, Basak T. Exploring the cardiac ECM during fibrosis: A new era with next-gen proteomics. Front Mol Biosci 2022; 9:1030226. [PMID: 36483540 PMCID: PMC9722982 DOI: 10.3389/fmolb.2022.1030226] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/31/2022] [Indexed: 10/24/2023] Open
Abstract
Extracellular matrix (ECM) plays a critical role in maintaining elasticity in cardiac tissues. Elasticity is required in the heart for properly pumping blood to the whole body. Dysregulated ECM remodeling causes fibrosis in the cardiac tissues. Cardiac fibrosis leads to stiffness in the heart tissues, resulting in heart failure. During cardiac fibrosis, ECM proteins get excessively deposited in the cardiac tissues. In the ECM, cardiac fibroblast proliferates into myofibroblast upon various kinds of stimulations. Fibroblast activation (myofibroblast) contributes majorly toward cardiac fibrosis. Other than cardiac fibroblasts, cardiomyocytes, epithelial/endothelial cells, and immune system cells can also contribute to cardiac fibrosis. Alteration in the expression of the ECM core and ECM-modifier proteins causes different types of cardiac fibrosis. These different components of ECM culminated into different pathways inducing transdifferentiation of cardiac fibroblast into myofibroblast. In this review, we summarize the role of different ECM components during cardiac fibrosis progression leading to heart failure. Furthermore, we highlight the importance of applying mass-spectrometry-based proteomics to understand the key changes occurring in the ECM during fibrotic progression. Next-gen proteomics studies will broaden the potential to identify key targets to combat cardiac fibrosis in order to achieve precise medicine-development in the future.
Collapse
Affiliation(s)
- Vivek Sarohi
- School of Biosciences and Bioengineering, Indian Institute of Technology (IIT)- Mandi, Himachal Pradesh, India
- BioX Center, Indian Institute of Technology (IIT)- Mandi, Himachal Pradesh, India
| | - Sanchari Chakraborty
- School of Biosciences and Bioengineering, Indian Institute of Technology (IIT)- Mandi, Himachal Pradesh, India
- BioX Center, Indian Institute of Technology (IIT)- Mandi, Himachal Pradesh, India
| | - Trayambak Basak
- School of Biosciences and Bioengineering, Indian Institute of Technology (IIT)- Mandi, Himachal Pradesh, India
- BioX Center, Indian Institute of Technology (IIT)- Mandi, Himachal Pradesh, India
| |
Collapse
|
153
|
Shimura T, Totani R, Ogasawara H, Inomata K, Sasatani M, Kamiya K, Ushiyama A. Effects of oxygen on the response of mitochondria to X-irradiation and reactive oxygen species-mediated fibroblast activation. Int J Radiat Biol 2022; 99:769-778. [PMID: 36383181 DOI: 10.1080/09553002.2023.2142980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE In living organisms, sensitivity to radiation increases in the presence of oxygen (O2) compared with that under anoxic or hypoxic conditions. Here, we investigated whether O2 concentration affected the response of mitochondria to X-rays radiation, which is associated with tumor microenvironment formation via fibroblast activation in radiation-related tumors. MATERIALS AND METHODS O2 concentrations were controlled at <5% (internal environmental oxygen condition) or anoxic levels during culture of normal human diploid lung fibroblasts TIG-3 and MRC-5. Protein expression associated with the response of mitochondria to radiation was assessed using immunostaining or western blotting. RESULTS Induction of DNA damage (marker: γ-H2A histone family member X) and mitochondrial signaling (AMP-activated protein kinase), suppression of mitochondrial metabolic activity, and generation of reactive oxygen species occurred with radiation in cells cultured under 5% and 20% O2 conditions. However, reducing O2 concentration mitigated the effects of radiation on cell growth, mitochondrial damage (parkin), induction of antioxidant responses (nuclear factor E2-related factor 2), and fibroblast activation (α-smooth muscle actin). Radiation did not affect the markers used in this study in the absence of O2. CONCLUSION O2 concentration affected the response of mitochondria to radiation and reactive oxygen species-mediated fibroblast activation. Higher O2 concentrations enhanced the effects of radiation on mitochondria in human fibroblasts. In vitro studies may overestimate in vivo radiation effects due to high O2 concentrations.
Collapse
Affiliation(s)
- Tsutomu Shimura
- Department of Environmental Health, National Institute of Public Health Wako, Saitama, Japan
| | - Rina Totani
- Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | | | - Keiki Inomata
- Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Megumi Sasatani
- Department of Experimental Oncology; Research Center for Radiation Genome Medicine; Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, Hiroshima, Japan
| | - Kenji Kamiya
- Department of Experimental Oncology; Research Center for Radiation Genome Medicine; Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, Hiroshima, Japan
| | - Akira Ushiyama
- Department of Environmental Health, National Institute of Public Health Wako, Saitama, Japan
| |
Collapse
|
154
|
Ge Y, Wang J, Cao W, Niu Q, Wu Y, Feng Y, Xu Z, Liu Y. Low Temperature Plasma Jet Affects Acute Skin Wounds in Diabetic Mice Through Reactive Components. INT J LOW EXTR WOUND 2022:15347346221139519. [PMID: 36380558 DOI: 10.1177/15347346221139519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
As a common complication of diabetes, diabetic foot ulcers serious affect the life quality even lead to amputation if it's not properly treated. In this paper, we developed a Low Temperature Plasma Jet (LTPJ) system for treating diabetic foot ulcers on streptozotocin-induced diabetic mice. This system generates time-dependent reactive nitrogen and oxygen species (RNOS), which have temperature below 40°C. The wound area of normal mice was significantly reduced after LTPJ treatment. Histological and immunohistochemistry analysis showed faster deposition of collagen and more vessel formation both in plasma-treated normal and diabetic mice on Day 3. However, diabetic wounds showed poor collagen deposition and angiogenesis on Day 8, which might be the reason of slow wound healing. Reactive nitrogen species (RNS) that generated by LTPJ can promote endogenous nitric oxide (NO) production in diabetic wounds, thus promoting inflammation, stromal deposition, angiogenesis, cell proliferation and remodeling, while excess reactive oxygen species (ROS) will exacerbate oxidative stress in wound tissues of diabetic mice. In conclusion, LTPJ improved acute wound healing in normal mice, increased collagen deposition and angiogenesis in initial diabetic wound healing, but had no significant effect on diabetic wound healing rate.
Collapse
Affiliation(s)
- Yang Ge
- The CAS Key Laboratory of Bio-Medical Diagnostics, 165085Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Jun Wang
- The CAS Key Laboratory of Bio-Medical Diagnostics, 165085Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
- Nanjing Guoke Medical Enginneering Technology Development co., LTD, Nanjing, Jiangsu, China
| | - Wei Cao
- The CAS Key Laboratory of Bio-Medical Diagnostics, 165085Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Qun Niu
- The CAS Key Laboratory of Bio-Medical Diagnostics, 165085Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Yanfan Wu
- The CAS Key Laboratory of Bio-Medical Diagnostics, 165085Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Yongtong Feng
- The CAS Key Laboratory of Bio-Medical Diagnostics, 165085Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Zhengping Xu
- The CAS Key Laboratory of Bio-Medical Diagnostics, 165085Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Yi Liu
- The CAS Key Laboratory of Bio-Medical Diagnostics, 165085Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| |
Collapse
|
155
|
Sim P, Strudwick XL, Song Y, Cowin AJ, Garg S. Influence of Acidic pH on Wound Healing In Vivo: A Novel Perspective for Wound Treatment. Int J Mol Sci 2022; 23:13655. [PMID: 36362441 PMCID: PMC9658872 DOI: 10.3390/ijms232113655] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 07/30/2023] Open
Abstract
There has been little understanding of acidification functionality in wound healing, highlighting the need to study the efficacy of wound acidification on wound closure and cellular activity in non-infected wounds. This study is focused on establishing the healing potential of wound acidification in non-infected wounds. Acidic buffers, constituting either phosphoric or citric acid, were employed to modify the physiological pH of non-infected full-thickness excisional murine wounds. Acidification of the wound by acidic buffers was found to be an effective strategy to improve wound healing. A significant improvement in wound healing parameters was observed as early as 2 days post-treatment with acidic buffers compared to controls, with faster rate of epithelialization, wound closure and higher levels of collagen at day 7. pH is shown to play a role in mediating the rate of wound healing, with acidic buffers formulated at pH 4 observed to stimulate faster recovery of wounded tissues than pH 6 buffers. Our study shows the importance of maintaining an acidic wound microenvironment at pH 4, which could be a potential therapeutic strategy for wound management.
Collapse
Affiliation(s)
- Pivian Sim
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Xanthe L. Strudwick
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, SA 5095, Australia
| | - YunMei Song
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Allison J. Cowin
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, SA 5095, Australia
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| |
Collapse
|
156
|
Fu S, Du C, Zhang Q, Liu J, Zhang X, Deng M. A Novel Peptide from Polypedates megacephalus Promotes Wound Healing in Mice. Toxins (Basel) 2022; 14:toxins14110753. [PMID: 36356003 PMCID: PMC9693016 DOI: 10.3390/toxins14110753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Amphibian skin contains wound-healing peptides, antimicrobial peptides, and insulin-releasing peptides, which give their skin a strong regeneration ability to adapt to a complex and harsh living environment. In the current research, a novel wound-healing promoting peptide, PM-7, was identified from the skin secretions of Polypedates megacephalus, which has an amino acid sequence of FLNWRRILFLKVVR and shares no structural similarity with any peptides described before. It displays the activity of promoting wound healing in mice. Moreover, PM-7 exhibits the function of enhancing proliferation and migration in HUVEC and HSF cells by affecting the MAPK signaling pathway. Considering its favorable traits as a novel peptide that significantly promotes wound healing, PM-7 can be a potential candidate in the development of novel wound-repairing drugs.
Collapse
Affiliation(s)
- Siqi Fu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha 410013, China
| | - Canwei Du
- Chengdu Pep Biomedical Co., Ltd., Chengdu 610041, China
| | - Qijian Zhang
- Wound Center of Xiangya Hospital, Central South University, Changsha 410013, China
| | - Jiayu Liu
- Hunan Province Key Laboratory of Basic and Applied Hematology, Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha 410013, China
| | - Xushuang Zhang
- Hunan Province Key Laboratory of Basic and Applied Hematology, Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha 410013, China
| | - Meichun Deng
- Hunan Province Key Laboratory of Basic and Applied Hematology, Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410013, China
- Correspondence:
| |
Collapse
|
157
|
Ravanfar K, Amniattalab A, Mohammadi R. Curcumin-Polyethylene Glycol Loaded on Chitosan-Gelatin Nanoparticles Enhances Burn Wound Healing in Rat. J Burn Care Res 2022; 43:1399-1409. [PMID: 35420679 DOI: 10.1093/jbcr/irac048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The aim of the present study was to evaluate effects of curcumin-polyethylene glycol loaded on chitosan-gelatin nanoparticles (C-PEG-CGNPs) on burn wound healing in rat as a model study. Sixty healthy male White Wistar rats were randomized into four experimental groups of 15 animals each: Control group (Control) was treated with normal saline. Carrier group was treated with CGNPs-based ointment (0.05 mg/ml). Silver sulfadiazine group was treated with silver sulfadiazine 1% ointment. Treatment group was treated with C-PEG-CGNPs (0.05 mg/ml). Wound size was measured on 7, 14, and 21 days after surgery. The expression of p53, Bcl-2, caspase-3 were evaluated using reverse transcription-polymerase chain reaction and immunohistochemical staining. Reduction in wound area indicated that there was significant difference between Treatment group and other groups (P < .05). Quantitative histological and morphometric studies, and mean rank of the qualitative studies demonstrated that there was a significant difference between Treatment group and other groups (P < .05). Observations demonstrated C-PEG-CGNPs significantly shortened the inflammatory phase and accelerated the cellular proliferation. Accordingly, the animals in Treatment group revealed significantly (P < .05) higher fibroblast distribution/one mm2 of wound area and rapid reepithelialization. The mRNA levels of Bcl-2, p53, and caspase-3 were remarkably (P < .05) higher in Treatment group compared to control animals. The immunohistochemical analyses confirmed the reverse transcription-polymerase chain reaction findings. C-PEG-CGNPs offered potential advantages in burn wound healing acceleration and improvement.
Collapse
Affiliation(s)
- Kimia Ravanfar
- Department of Pathology, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Amir Amniattalab
- Department of Pathology, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Rahim Mohammadi
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
158
|
Kim B, Kim Y, Lee Y, Oh J, Jung Y, Koh WG, Chung JJ. Reactive Oxygen Species Suppressive Kraft Lignin-Gelatin Antioxidant Hydrogels for Chronic Wound Repair. Macromol Biosci 2022; 22:e2200234. [PMID: 36067493 DOI: 10.1002/mabi.202200234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/05/2022] [Indexed: 12/25/2022]
Abstract
Chronic wound is difficult to repair because the normal wound healing mechanism is inhibited by the continuous inflammatory response. The delayed inflammatory responses generate high level of reactive oxygen species (ROS) at the wound sites, which leads to a longer inflammatory phase and induces a vicious cycle that interferes with the normal wound healing process. Therefore, ROS scavenging is an important factor for chronic wound healing. In this study, antioxidant hydrogel is developed by cross-linking kraft lignin, an antioxidant agent, and gelatin (Klig-Gel). Klig-Gel hydrogel is fabricated via ring opening reaction with epichlorohydrin as a cross-linker. High ROS scavenging activities are confirmed by various antioxidant evaluations, and in vitro natural antioxidant expression tests show reduction of oxidative stress. Mechanical properties of Klig-Gel hydrogel are tailorable by introducing different amount of kraft lignin to the hydrogel system. Biocompatibility is confirmed regardless of the kraft lignin content. Klig-Gel hydrogel is a promising ROS scavenging material that can be applied in various chronic wound healing applications.
Collapse
Affiliation(s)
- Byulhana Kim
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, 03080, Republic of Korea.,Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Young Kim
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, 03080, Republic of Korea.,Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yoonho Lee
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Joomin Oh
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Youngmee Jung
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.,School of Electrical and Electronic Engineering, YU-KIST, Yonsei University, Seoul, 03722, Republic of Korea
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Justin J Chung
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, 03080, Republic of Korea.,Department of Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| |
Collapse
|
159
|
Zhu H, Xing C, Dou X, Zhao Y, Peng Y, Feng C, Fang Y. Chiral Hydrogel Accelerates Re-Epithelization in Chronic Wounds via Mechanoregulation. Adv Healthc Mater 2022; 11:e2201032. [PMID: 36052735 DOI: 10.1002/adhm.202201032] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/17/2022] [Indexed: 01/28/2023]
Abstract
Chronic wounds, such as diabetic foot ulcers (DFU), are a serious clinical problem. It is a challenge for the conventional wound dressings to achieve the desirable therapeutic efficacy due to the lack of biomimetic structural environment for rapid re-epithelization. Inspired by the naturally existing chiral structures in skin, a novel amino acid-based chiral hydrogel dressing is developed, consisting of left-handed or right-handed helical fibers self-assembled by l/d-phenylalanine derivatives. Compared to the levorotatory chiral hydrogel (LH), the dextral chiral hydrogel (DH) shows the ability to enhance cell adhesion, proliferation, and migration, and strongly promotes diabetic wound healing and re-epithelialization with a drug-free mode. Interestingly, the dextral chiral hydrogel is able to actively increase adsorption of type I collagen and promote proliferation and migration of keratinocyte in an integrin and YAP-mediated manner. This study not only provides a novel strategy for treatment of chronic wounds by utilizing dextral chiral hydrogel dressings, but also unveils the molecular mechanism for effect of dextral chiral structures on the promoted proliferation of keratinocyte.
Collapse
Affiliation(s)
- Hanting Zhu
- Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, China.,Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, China
| | - Chao Xing
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoqiu Dou
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu Zhao
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yinbo Peng
- Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, China.,Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, China
| | - Chuanliang Feng
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong Fang
- Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, China.,Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, China
| |
Collapse
|
160
|
Abstract
Morphogenesis is extremely diverse, but its systematic quantification to determine the physical mechanisms that produce different phenotypes is possible by quantifying the underlying cell behaviours. These are limited and definable: they consist of cell proliferation, orientation of cell division, cell rearrangement, directional matrix production, cell addition/subtraction and cell size/shape change. Although minor variations in these categories are possible, in sum they capture all possible morphogenetic behaviours. This article summarises these processes, discusses their measurement, and highlights some salient examples.
Collapse
Affiliation(s)
- Jeremy B. A. Green
- Centre for Craniofacial Regeneration and Biology, King's College London, Guy's Campus, London SE1 9RT, UK
| |
Collapse
|
161
|
Zhou Q, Zhou X, Mo Z, Zeng Z, Wang Z, Cai Z, Luo L, Ding Q, Li H, Tang S. A PEG-CMC-THB-PRTM hydrogel with antibacterial and hemostatic properties for promoting wound healing. Int J Biol Macromol 2022; 224:370-379. [DOI: 10.1016/j.ijbiomac.2022.10.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
|
162
|
Hodge JG, Zamierowski DS, Robinson JL, Mellott AJ. Evaluating polymeric biomaterials to improve next generation wound dressing design. Biomater Res 2022; 26:50. [PMID: 36183134 PMCID: PMC9526981 DOI: 10.1186/s40824-022-00291-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 08/28/2022] [Indexed: 11/24/2022] Open
Abstract
Wound healing is a dynamic series of interconnected events with the ultimate goal of promoting neotissue formation and restoration of anatomical function. Yet, the complexity of wound healing can often result in development of complex, chronic wounds, which currently results in a significant strain and burden to our healthcare system. The advancement of new and effective wound care therapies remains a critical issue, with the current therapeutic modalities often remaining inadequate. Notably, the field of tissue engineering has grown significantly in the last several years, in part, due to the diverse properties and applications of polymeric biomaterials. The interdisciplinary cohesion of the chemical, biological, physical, and material sciences is pertinent to advancing our current understanding of biomaterials and generating new wound care modalities. However, there is still room for closing the gap between the clinical and material science realms in order to more effectively develop novel wound care therapies that aid in the treatment of complex wounds. Thus, in this review, we discuss key material science principles in the context of polymeric biomaterials, provide a clinical breadth to discuss how these properties affect wound dressing design, and the role of polymeric biomaterials in the innovation and design of the next generation of wound dressings.
Collapse
Affiliation(s)
- Jacob G Hodge
- Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA.,Department of Plastic Surgery, University of Kansas Medical Center, Kansas City, KS, USA
| | - David S Zamierowski
- Department of Plastic Surgery, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jennifer L Robinson
- Department of Chemical and Petroleum Engineering, University of Kansas, Mail Stop: 3051, 3901 Rainbow Blvd, Lawrence, KS, 66160, USA
| | - Adam J Mellott
- Department of Plastic Surgery, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
163
|
Siahpoosh A, Malayeri A, Salimi A, Khorsandi L, Abdevand ZZ. Determination of the effectiveness of Dorema ammoniacum gum on wound healing: an experimental study. J Wound Care 2022; 31:S16-S27. [PMID: 36240871 DOI: 10.12968/jowc.2022.31.sup10.s16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
OBJECTIVE For a long time, natural compounds have been used to accelerate wound healing. In this study, the topical effects of ammoniacum gum extract on wound healing were investigated in white male rats. METHOD Following skin wound induction in aseptic conditions, 48 Wistar rats were divided into six equal groups; phenytoin cream 1% (standard), untreated (control), Eucerin (control), and 5%, 10% and 20% ointments of Dorema ammoniacum gum extract (treatment groups). All experimental groups received topical drugs daily for 14 days. The percentage of wound healing, hydroxyproline content, histological parameters, and growth factors (endothelial growth factor (EGF), platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF) and transforming growth factor (TGF)-α) were measured in experimental groups. RESULTS The areas of the wounds in the treatment groups were significantly decreased compared with the wound areas of control groups at 5, 7 and 10 days after wounding. On the 12th day, the wounds in the treatment groups were completely healed. Hydroxyproline contents were significantly increased in the treatment groups compared with the control groups (p<0.001). In histological evaluation, the re-epithelialisation, increasing thickness of the epithelial layer, granulation tissue and neovascularisation parameters in the treatment groups showed significant increases compared with the control groups. Also, serum levels of TGF-β, PDGF, EGF and VEGF in the treatment groups were significantly increased compared to the control groups. CONCLUSION The topical application of ammoniacum gum extract significantly increases the percentage of wound healing in rats and reduces the time of wound closure.
Collapse
Affiliation(s)
- Amir Siahpoosh
- Department of Pharmacognosy, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Medicinal Plants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Malayeri
- Medicinal Plants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Pharmacology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Anayatollah Salimi
- Department of Pharmaceutics, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Medical Basic Science Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zeinab Zaheri Abdevand
- Medicinal Plants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Persian Medicine and Pharmacy, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
164
|
Dual drug delivery system based on layered double hydroxides/carboxymethyl cellulose-poly ethylene oxide bionanocomposite electrospun fibrous mats: Fabrication, characterization, in-vitro and in-vivo studies. Int J Biol Macromol 2022; 222:3142-3154. [DOI: 10.1016/j.ijbiomac.2022.10.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/15/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
165
|
Li J, Yan S, Han W, Dong Z, Li J, Wu Q, Fu X. Phospholipid-grafted PLLA electrospun micro/nanofibers immobilized with small extracellular vesicles from rat adipose mesenchymal stem cells promote wound healing in diabetic rats. Regen Biomater 2022; 9:rbac071. [PMID: 36246766 PMCID: PMC9555996 DOI: 10.1093/rb/rbac071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 08/25/2022] [Accepted: 09/11/2022] [Indexed: 11/13/2022] Open
Abstract
Small extracellular vesicles (sEVs) derived from mesenchymal stem cells (MSCs) can deliver a variety of bioactive factors to create a favorable local microenvironment, thereby holding huge potential in chronic wound repair. However, free sEVs administrated intravenously or locally are usually cleared rapidly, resulting in an insufficient duration of the efficacy. Thus, strategies that enable optimized retention and release profiles of sEVs at wound sites are desirable. Herein, we fabricated novel functional phosphoethanolamine phospholipid-grafted poly-l-lactic acid micro/nanofibers (DSPE-PLLA) to carry and retain sEVs from rat adipose MSCs, enabling the slow local release of sEVs. Our results showed that sEVs@DSPE-PLLA promoted the proliferation, migration and gene expression (Col I, Col III, TGF-β, α-SMA, HIF-1α) of fibroblasts. It also promoted keratinocyte proliferation. In addition, sEVs@DSPE-PLLA helped polarize macrophages toward the M2 phenotype by increasing the expression of anti-inflammatory genes (Arginase 1, CD 206, IL-10) and inhibiting the expression of pro-inflammatory genes (IL-1β, TNF-α). Further in vivo study in diabetic rat models showed that sEVs@DSPE-PLLA improved the wound-healing process by alleviating the inflammatory responses, stimulating cell proliferation, collagen deposition and angiogenesis. These results highlight the potential of using DSPE-grafted scaffolds for extracellular vesicle immobilization and suggest sEVs@DSPE-PLLA micro/nanofibers as promising functional wound dressings for diabetic wounds.
Collapse
Affiliation(s)
- Jing Li
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction and Innovation Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
- Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Shunshun Yan
- National Engineering Research Center for Tissue Restoration and Reconstruction and Innovation Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
- Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
| | - Weiju Han
- National Engineering Research Center for Tissue Restoration and Reconstruction and Innovation Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
- Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
| | - Zixuan Dong
- National Engineering Research Center for Tissue Restoration and Reconstruction and Innovation Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
- Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
| | - Junliang Li
- National Engineering Research Center for Tissue Restoration and Reconstruction and Innovation Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
- Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
| | - Qi Wu
- National Engineering Research Center for Tissue Restoration and Reconstruction and Innovation Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
- Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
| | - Xiaoling Fu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
| |
Collapse
|
166
|
Hassanshahi A, Moradzad M, Ghalamkari S, Fadaei M, Cowin AJ, Hassanshahi M. Macrophage-Mediated Inflammation in Skin Wound Healing. Cells 2022; 11:2953. [PMID: 36230913 PMCID: PMC9564023 DOI: 10.3390/cells11192953] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Macrophages are key immune cells that respond to infections, and modulate pathophysiological conditions such as wound healing. By possessing phagocytic activities and through the secretion of cytokines and growth factors, macrophages are pivotal orchestrators of inflammation, fibrosis, and wound repair. Macrophages orchestrate the process of wound healing through the transitioning from predominantly pro-inflammatory (M1-like phenotypes), which present early post-injury, to anti-inflammatory (M2-like phenotypes), which appear later to modulate skin repair and wound closure. In this review, different cellular and molecular aspects of macrophage-mediated skin wound healing are discussed, alongside important aspects such as macrophage subtypes, metabolism, plasticity, and epigenetics. We also highlight previous studies demonstrating interactions between macrophages and these factors for optimal wound healing. Understanding and harnessing the activity and capability of macrophages may help to advance new approaches for improving healing of the skin.
Collapse
Affiliation(s)
- Alireza Hassanshahi
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, SA 5095, Australia
| | - Mohammad Moradzad
- Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj 66179-13446, Iran
| | - Saman Ghalamkari
- Department of Biology, Islamic Azad University, Arsanjan 61349-37333, Iran
| | - Moosa Fadaei
- Department of Biology, Islamic Azad University, Arsanjan 61349-37333, Iran
| | - Allison J. Cowin
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, SA 5095, Australia
| | - Mohammadhossein Hassanshahi
- Vascular Research Centre, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| |
Collapse
|
167
|
Küpeli Akkol E, Renda G, İlhan M, Bektaş NY. Wound healing acceleration and anti-inflammatory potential of Prunella vulgaris L.: From conventional use to preclinical scientific verification. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115411. [PMID: 35636653 DOI: 10.1016/j.jep.2022.115411] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Prunella L. (Lamiaceae) is represented by nine species in the world and four species in Turkey. The infusion prepared from the aerial parts of Prunella vulgaris L. is used internally for abdominal pain and as an expectorant, the decoction prepared from all parts is used internally or externally as a wound healing. AIM OF THE STUDY This study aims to investigate the wound healing potential of Prunella vulgaris L. on the scientific platform. MATERIAL AND METHODS The aerial parts of the plant were extracted with 80% methanol. The resulting aqueous methanol extract was partitioned with n-hexane and ethyl acetate, and sub-extracts were obtained. The wound healing effects of the methanol extract and sub-extracts were studied in mice and rats using linear incision and circular excision wound models, and the anti-inflammatory effect was investigated using acetic acid-induced capillary permeability test. Isolation studies were performed using the ethyl acetate sub-extract, which exhibited the highest activity. RESULTS Using various chromatographic methods, 6 compounds were isolated from the ethyl acetate sub-extract. The structures of the compounds were identified as methyl arginolate, ursolic acid, chlorogenic acid, rosmarinic acid, methyl 3-epimaclinate, and ethyl rosmarinate by spectroscopic techniques (UV, IR, 13C-NMR, 1H-NMR, 2D-NMR, MS). The wound healing mechanisms of the pure compounds were investigated by performing assays to inhibit the enzymes hyaluronidase, collagenase, and elastase. Ursolic acid, chlorogenic acid, and rosmarinic acid were found to be responsible for the anti-inflammatory and wound healing effects. CONCLUSION The experimental study revealed that Prunella vulgaris showed significant wound healing and anti-inflammatory activities.
Collapse
Affiliation(s)
- Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330, Etiler, Ankara, Turkey.
| | - Gülin Renda
- Department of Pharmacognosy, Faculty of Pharmacy, Karadeniz Technical University, 61100, Ortahisar, Trabzon, Turkey.
| | - Mert İlhan
- Department of Pharmacognosy, Faculty of Pharmacy, Van Yüzüncü Yıl University, Tuşba, 65080, Van, Turkey.
| | - Nurdan Yazıcı Bektaş
- Department of Pharmacognosy, Faculty of Pharmacy, Karadeniz Technical University, 61100, Ortahisar, Trabzon, Turkey.
| |
Collapse
|
168
|
Purbhoo-Makan M, Houreld NN, Enwemeka CS. The Effects of Blue Light on Human Fibroblasts and Diabetic Wound Healing. Life (Basel) 2022; 12:life12091431. [PMID: 36143466 PMCID: PMC9505688 DOI: 10.3390/life12091431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/31/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetes is a serious threat to global health and is among the top 10 causes of death. The Diabetic foot ulcer (DFU) is among the most common and severe complications of the disease. Bacterial infections are common; therefore, timely aggressive management, using multidisciplinary management approaches is needed to prevent complications, morbidity, and mortality, particularly in view of the growing cases of antibiotic-resistant bacteria. Photobiomodulation (PBM) involves the application of low-level light at specific wavelengths to induce cellular photochemical and photophysical responses. Red and near-infrared (NIR) wavelengths have been shown to be beneficial, and recent studies indicate that other wavelengths within the visible spectrum could be helpful as well, including blue light (400–500 nm). Reports of the antimicrobial activity and susceptibility of blue light on several strains of the same bacterium show that many bacteria are less likely to develop resistance to blue light treatment, meaning it is a viable alternative to antibiotic therapy. However, not all studies have shown positive results for wound healing and fibroblast proliferation. This paper presents a critical review of the literature concerning the use of PBM, with a focus on blue light, for tissue healing and diabetic ulcer care, identifies the pros and cons of PBM intervention, and recommends the potential role of PBM for diabetic ulcer care.
Collapse
Affiliation(s)
- Meesha Purbhoo-Makan
- Department of Podiatry, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
- Laser Research Center, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Nicolette Nadene Houreld
- Laser Research Center, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
- Correspondence:
| | - Chukuka S. Enwemeka
- Laser Research Center, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
- College of Health and Human Services, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
169
|
Sharifiaghdam M, Shaabani E, Faridi-Majidi R, De Smedt SC, Braeckmans K, Fraire JC. Macrophages as a therapeutic target to promote diabetic wound healing. Mol Ther 2022; 30:2891-2908. [PMID: 35918892 PMCID: PMC9482022 DOI: 10.1016/j.ymthe.2022.07.016] [Citation(s) in RCA: 186] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/06/2022] [Accepted: 07/21/2022] [Indexed: 11/21/2022] Open
Abstract
It is well established that macrophages are key regulators of wound healing, displaying impressive plasticity and an evolving phenotype, from an aggressive pro-inflammatory or "M1" phenotype to a pro-healing or "M2" phenotype, depending on the wound healing stage, to ensure proper healing. Because dysregulated macrophage responses have been linked to impaired healing of diabetic wounds, macrophages are being considered as a therapeutic target for improved wound healing. In this review, we first discuss the role of macrophages in a normal skin wound healing process and discuss the aberrations that occur in macrophages under diabetic conditions. Next we provide an overview of recent macrophage-based therapeutic approaches, including delivery of ex-vivo-activated macrophages and delivery of pharmacological strategies aimed at eliminating or re-educating local skin macrophages. In particular, we focus on strategies to silence key regulator genes to repolarize wound macrophages to the M2 phenotype, and we provide a discussion of their potential future clinical translation.
Collapse
Affiliation(s)
- Maryam Sharifiaghdam
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, 9000 Ghent, Belgium; Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elnaz Shaabani
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, 9000 Ghent, Belgium; Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Faridi-Majidi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, 9000 Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, 9000 Ghent, Belgium; Center for Advanced Light Microscopy, Ghent University, 9000 Ghent, Belgium.
| | - Juan C Fraire
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
170
|
Porcine Small Intestinal Submucosa Alters the Biochemical Properties of Wound Healing: A Narrative Review. Biomedicines 2022; 10:biomedicines10092213. [PMID: 36140314 PMCID: PMC9496019 DOI: 10.3390/biomedicines10092213] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Among the many biological scaffold materials currently available for clinical use, the small intestinal submucosa (SIS) is an effective material for wound healing. SIS contains numerous active forms of extracellular matrix that support angiogenesis, cell migration, and proliferation, providing growth factors involved in signaling for tissue formation and assisting wound healing. SIS not only serves as a bioscaffold for cell migration and differentiation, but also restores the impaired dynamic reciprocity between cells and the extracellular matrix, ultimately driving wound healing. Here, we review the evidence on how SIS can shift the biochemical balance in a wound from chronic to an acute state.
Collapse
|
171
|
Al-Warhi T, Elmaidomy AH, Maher SA, Abu-Baih DH, Selim S, Albqmi M, Al-Sanea MM, Alnusaire TS, Ghoneim MM, Mostafa EM, Hussein S, El-Damasy AK, Saber EA, Elrehany MA, Sayed AM, Othman EM, El-Sherbiny M, Abdelmohsen UR. The Wound-Healing Potential of Olea europaea L. Cv. Arbequina Leaves Extract: An Integrated In Vitro, In Silico, and In Vivo Investigation. Metabolites 2022; 12:metabo12090791. [PMID: 36144197 PMCID: PMC9503157 DOI: 10.3390/metabo12090791] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/04/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Olea europaea L. Cv. Arbequina (OEA) (Oleaceae) is an olive variety species that has received little attention. Besides our previous work for the chemical profiling of OEA leaves using LC−HRESIMS, an additional 23 compounds are identified. An excision wound model is used to measure wound healing action. Wounds are provided with OEA (2% w/v) or MEBO® cream (marketed treatment). The wound closure rate related to vehicle-treated wounds is significantly increased by OEA. Comparing to vehicle wound tissues, significant levels of TGF-β in OEA and MEBO® (p < 0.05) are displayed by gene expression patterns, with the most significant levels in OEA-treated wounds. Proinflammatory TNF-α and IL-1β levels are substantially reduced in OEA-treated wounds. The capability of several lignan-related compounds to interact with MMP-1 is revealed by extensive in silico investigation of the major OEA compounds (i.e., inverse docking, molecular dynamics simulation, and ΔG calculation), and their role in the wound-healing process is also characterized. The potential of OEA as a potent MMP-1 inhibitor is shown in subsequent in vitro testing (IC50 = 88.0 ± 0.1 nM). In conclusion, OEA is introduced as an interesting therapeutic candidate that can effectively manage wound healing because of its anti-inflammatory and antioxidant properties.
Collapse
Affiliation(s)
- Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Abeer H. Elmaidomy
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Sherif A. Maher
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, New Minia 61111, Egypt
| | - Dalia H. Abu-Baih
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, New Minia 61111, Egypt
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72341, Saudi Arabia
| | - Mha Albqmi
- Chemistry Department, College of Science and Arts, Jouf University, Alqurayyat 77447, Saudi Arabia
| | - Mohammad M. Al-Sanea
- Pharmaceutical Chemistry Department, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
- Correspondence: (M.M.A.-S.); (A.M.S.); (U.R.A.)
| | | | - Mohammed M. Ghoneim
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
- Department of Pharmacy Practice, College of Pharmacy, Al Maarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Ehab M. Mostafa
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
- Department of Pharmacognosy, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Shaimaa Hussein
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Ashraf K. El-Damasy
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Entesar Ali Saber
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Minia 61519, Egypt
- Department of Histology and Cell Biology, Deraya University, Universities Zone, New Minia 61111, Egypt
| | - Mahmoud A. Elrehany
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, New Minia 61111, Egypt
| | - Ahmed M. Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt
- Correspondence: (M.M.A.-S.); (A.M.S.); (U.R.A.)
| | - Eman M. Othman
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074 Wuerzburg, Germany
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh 11597, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, New Minia 61111, Egypt
- Correspondence: (M.M.A.-S.); (A.M.S.); (U.R.A.)
| |
Collapse
|
172
|
Moni SS, Sultan MH, Alshahrani S, Tripathi P, Assiri A, Alqahtani SS, Bakkari MA, Madkhali OA, Alam MF, Alqahtani AH, Tripathi R, Pancholi SS, Ashafaq M, Elmobark ME. Physical characterization and wound healing properties of Zamzam water. BRAZ J BIOL 2022; 82:e262815. [PMID: 35976285 DOI: 10.1590/1519-6984.262815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/23/2022] [Indexed: 01/06/2023] Open
Abstract
The objective of the study was to evaluate the quality of Zamzam water, holy water for Muslims and consumed for its medicinal value. The present study demonstrates the physicochemical characterization and wound healing property of Zamzam water. The physicochemical characterization of Zamzam water samples was analyzed for dissolved oxygen, pH, conductivity, total dissolved solids, redox potential, zeta potential, polydispersity index, and zeta size. The microbial quality of Zamzam water was also assessed by exposing water samples to open air. In this work, Zamzam water was also screened for the medicinal value through wound healing properties in Wistar rats. Zamzam water exhibited a unique physicochemical characterization with high levels of dissolved oxygen, zeta potential, polydispersity index, redox potential, total dissolved solids, and conductivity before exposure to open air. After open air exposure, Zamzam water resisted the growth of bacteria. The wound healing properties of Zamzam water in vivo showed a 96% of healing effect on 12th day observation. The wound healing was achieved by modulating pro-inflammatory cytokine such as interleukin -1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor -α (TNF-α). Followed by the level of apoptosis markers caspase-9 and caspase-3 were reduced. The present study proved that Zamzam water is a good-quality water and showed excellent wound healing property. Therefore, Zamzam water can be used for pharmaceutical formulations.
Collapse
Affiliation(s)
- S S Moni
- Jazan University, College of Pharmacy, Department of Pharmaceutics, Jazan, Kingdom of Saudi Arabia
| | - M H Sultan
- Jazan University, College of Pharmacy, Department of Pharmaceutics, Jazan, Kingdom of Saudi Arabia
| | - S Alshahrani
- Jazan University, College of Pharmacy, Department of Pharmacology and Toxicology, Jazan, Kingdom of Saudi Arabia
| | - P Tripathi
- Jazan University, College of Pharmacy, Department of Pharmacology and Toxicology, Jazan, Kingdom of Saudi Arabia
| | - A Assiri
- King Khalid University, College of Pharmacy, Department of Clinical Pharmacy, Abha, Kingdom of Saudi Arabia
| | - S S Alqahtani
- Jazan University, College of Pharmacy, Department of Pharmacy Practice, Jazan, Kingdom of Saudi Arabia.,Jazan University, College of Pharmacy, Pharmacy Practice Research Unit, Jazan, Kingdom of Saudi Arabia
| | - M A Bakkari
- Jazan University, College of Pharmacy, Department of Pharmaceutics, Jazan, Kingdom of Saudi Arabia
| | - O A Madkhali
- Jazan University, College of Pharmacy, Department of Pharmaceutics, Jazan, Kingdom of Saudi Arabia
| | - M F Alam
- Jazan University, College of Pharmacy, Department of Pharmacology and Toxicology, Jazan, Kingdom of Saudi Arabia
| | - A H Alqahtani
- Al- Dawaa Medical Services, Co Ltd, Riyadh, Kingdom of Saudi Arabia
| | - R Tripathi
- Jazan University, College of Pharmacy, Department of Pharmacy Practice, Jazan, Kingdom of Saudi Arabia
| | - S S Pancholi
- Jazan University, College of Pharmacy, Department of Pharmaceutics, Jazan, Kingdom of Saudi Arabia.,Ganpat University, S. K. Patel College of Pharmaceutical Education and Research, Mahesana, Gujarat, India
| | - M Ashafaq
- Jazan University, College of Pharmacy, Department of Pharmacology and Toxicology, Jazan, Kingdom of Saudi Arabia
| | - M E Elmobark
- Jazan University, College of Pharmacy, Department of Pharmaceutics, Jazan, Kingdom of Saudi Arabia
| |
Collapse
|
173
|
Ahmed MA, Nazim F, Ahmed K, Bari MF, Abdulwahed A, AlMokhatieb AA, Alalvi Y, Abduljabbar T, Mughal N, Abidi SH. Association between the baseline gene expression profile in periapical granuloma and periapical wound healing after surgical endodontic treatment. Sci Rep 2022; 12:13824. [PMID: 35970906 PMCID: PMC9378616 DOI: 10.1038/s41598-022-17774-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 07/30/2022] [Indexed: 11/09/2022] Open
Abstract
In this study, we have investigated the association between the baseline gene expression profile in periapical granuloma and periapical wound healing after surgical endodontic treatment. Twenty-seven patients aged between 15 and 57 years underwent periapical surgery. The retrieved periapical tissue sample was used for mRNA expression analysis of COL1A1, VTN, ITGA5, IL-4, TNF, ANGPT, VEGFA, and CTGF. All patients were recalled after 6 and 12 months for periapical healing evaluation. Healing was then correlated with baseline gene expression. Healing was observed in 15 patients at the end of 6 months, which increased to 21 patients after 12 months. Six patients showed no healing even after 12 months. Analysis of baseline expression levels of the tested genes with healing status showed the mean relative expression of VTN, VEGFA, ANGPT, TNF, and CTGF to be significantly different (p < 0.05) between the healing group (6 and 12 months) (72.99%) and the non-healing (94.42%) group. Periapical Index scores 3-5 exhibited a positive correlation with ITGA-5 expression. Overexpression of ANGPT and a strong positive correlation between ITGA5 and PAI scores in the non-healing group of patients may suggest these genes to be a potential prognostic biomarker for periapical wound non-healing after surgical endodontic treatment.
Collapse
Affiliation(s)
- Muhammad Adeel Ahmed
- Department of Restorative Dental Sciences, College of Dentistry, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Fizza Nazim
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Khalid Ahmed
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Muhammad Furqan Bari
- Department of Pathology, Dr. Ishrat-ul-Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi, Pakistan
| | - Abdulaziz Abdulwahed
- Department of Conservative Dental Sciences, College of Dentistry, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ahmed A AlMokhatieb
- Department of Conservative Dental Sciences, College of Dentistry, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Yaseen Alalvi
- College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Tariq Abduljabbar
- Department of Prosthetic Dental Science, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Nouman Mughal
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan. .,Department of Surgery, Aga Khan University, Karachi, Pakistan.
| | - Syed Hani Abidi
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan. .,Department of Biomedical Sciences, Nazarbayev University School of Medicine, Nur-Sultan, Kazakhstan.
| |
Collapse
|
174
|
Flores AI, Pipino C, Jerman UD, Liarte S, Gindraux F, Kreft ME, Nicolas FJ, Pandolfi A, Tratnjek L, Giebel B, Pozzobon M, Silini AR, Parolini O, Eissner G, Lang-Olip I. Perinatal derivatives: How to best characterize their multimodal functions in vitro. Part C: Inflammation, angiogenesis, and wound healing. Front Bioeng Biotechnol 2022; 10:965006. [PMID: 35992360 PMCID: PMC9386263 DOI: 10.3389/fbioe.2022.965006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Perinatal derivatives (PnD) are birth-associated tissues, such as placenta, umbilical cord, amniotic and chorionic membrane, and thereof-derived cells as well as secretomes. PnD play an increasing therapeutic role with beneficial effects on the treatment of various diseases. The aim of this review is to elucidate the modes of action of non-hematopoietic PnD on inflammation, angiogenesis and wound healing. We describe the source and type of PnD with a special focus on their effects on inflammation and immune response, on vascular function as well as on cutaneous and oral wound healing, which is a complex process that comprises hemostasis, inflammation, proliferation (including epithelialization, angiogenesis), and remodeling. We further evaluate the different in vitro assays currently used for assessing selected functional and therapeutic PnD properties. This review is a joint effort from the COST SPRINT Action (CA17116) with the intention to promote PnD into the clinics. It is part of a quadrinomial series on functional assays for validation of PnD, spanning biological functions, such as immunomodulation, anti-microbial/anti-cancer activities, anti-inflammation, wound healing, angiogenesis, and regeneration.
Collapse
Affiliation(s)
- Ana I. Flores
- Regenerative Medicine Group, Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Caterina Pipino
- Center for Advanced Studies and Technology (CAST), Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio Chieti-Pescara, StemTech Group, Chieti, Italy
| | - Urška Dragin Jerman
- University of Ljubljana, Faculty of Medicine, Institute of Cell Biology, Ljubljana, Slovenia
| | - Sergio Liarte
- Laboratorio de Regeneración, Oncología Molecular y TGF-β, IMIB-Arrixaca, Murcia, Spain
| | - Florelle Gindraux
- Service de Chirurgie Maxillo-Faciale, Stomatologie et Odontologie Hospitalière, CHU Besançon, Besançon, France
- Laboratoire de Nanomédecine, Imagerie, Thérapeutique EA 466, Université Bourgogne Franche-Comté, Besançon, France
| | - Mateja Erdani Kreft
- University of Ljubljana, Faculty of Medicine, Institute of Cell Biology, Ljubljana, Slovenia
| | - Francisco J. Nicolas
- Laboratorio de Regeneración, Oncología Molecular y TGF-β, IMIB-Arrixaca, Murcia, Spain
| | - Assunta Pandolfi
- Center for Advanced Studies and Technology (CAST), Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio Chieti-Pescara, StemTech Group, Chieti, Italy
| | - Larisa Tratnjek
- University of Ljubljana, Faculty of Medicine, Institute of Cell Biology, Ljubljana, Slovenia
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Michela Pozzobon
- Department of Women’s and Children’s Health, University of Padova, Padova, Italy and Foundation Institute of Pediatric Research Fondazione Città Della Speranza, Padova, Italy
| | | | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | - Günther Eissner
- Systems Biology Ireland, School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Ingrid Lang-Olip
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| |
Collapse
|
175
|
Shukla S, Cho W, Elbasiony E, Singh RB, Mittal SK, Chauhan SK. Non-immune and immune functions of interleukin-36γ suppress epithelial repair at the ocular surface. FASEB J 2022; 36:10.1096/fj.202200174RR. [PMID: 35781326 PMCID: PMC9924024 DOI: 10.1096/fj.202200174rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/16/2022] [Accepted: 06/03/2022] [Indexed: 02/05/2023]
Abstract
Regulation of innate inflammation is critical for maintaining tissue homeostasis and barrier function, especially in those interfacing the external environments such as the skin and cornea. Expression of pro-inflammatory cytokines by injured tissues has been shown to exacerbate the inflammatory cascade, causing tissue damage. Interleukin 36, a subfamily of the IL-1 superfamily, consists of three pro-inflammatory agonists-IL36α, IL36β, and IL36γ and an IL36 receptor antagonist (IL36Ra). The current investigation, for the first time, reports that IL36γ is the primary agonist expressed by the corneal epithelium, which is significantly upregulated following corneal injury. The function of IL36γ on non-immune cells, in addition to innate inflammatory cells, in regulating tissue homeostasis has not been well investigated. Using a loss-of-function approach via neutralizing antibody treatment, our data demonstrate that blocking endogenously expressed IL36γ in epithelial cells promotes rapid re-epithelialization in in vitro wound closure assay. Finally, by utilizing a naturally occurring antagonist IL36Ra in a well-established murine model of ocular injury, our study demonstrates that inhibition of IL36γ accelerates epithelial regeneration and suppresses tissue inflammation. Given rapid wound healing is critical for re-establishing normal tissue structure and function, our investigation on the function of IL36γ provides evidence for the development of novel IL36γ-targeting strategies to promote tissue repair.
Collapse
Affiliation(s)
- Sachin Shukla
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
- L.V. Prasad Eye Institute, Hyderabad, India
| | - WonKyung Cho
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Elsayed Elbasiony
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Rohan Bir Singh
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Sharad K. Mittal
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Sunil K. Chauhan
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
176
|
Ghosh S, Haldar S, Gupta S, Chauhan S, Mago V, Roy P, Lahiri D. Single unit functionally graded bioresorbable electrospun scaffold for scar-free full-thickness skin wound healing. BIOMATERIALS ADVANCES 2022; 139:212980. [PMID: 35882136 DOI: 10.1016/j.bioadv.2022.212980] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/19/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Full-thickness wounds are difficult to heal spontaneously. Scaffolds, meant for treating full-thickness wounds, should ensure proper tissue regeneration, both structurally and functionally. An ideal scaffold should mimic the physical, mechanical and biochemical properties of natural skin. However, available mono- or bi-layer skin scaffolds lack in the precise architecture and functionality, thus, failing to provide scar-free regeneration of full-thickness skin wounds. These unmet challenges of scar-free skin regeneration have been addressed in the present study for the first time. This research deals with the synthesis of a low-cost, structurally and functionally graded single unit biodegradable polymeric scaffold. The functional gradient in this scaffold was achieved by varying polymer concentration and electrospinning parameters. This gradient in the scaffold provided the required microenvironment for proper functional and structural reconstruction of all the layers of natural skin. The mechanical property of the scaffold matched that of the natural skin. Besides, the degradation kinetics of the scaffold was in coordination with the regeneration time for the full-thickness wound. The porosity and hydrophilicity gradients of the scaffold helped it mimic the in vivo hypodermal, dermal and epidermal microenvironments of the skin, simultaneously. Co-culturing PCS-201 (dermal fibroblasts) and HaCaT (keratinocytes) on the scaffold resulted in successful regeneration through cellular proliferation, differentiation and organization of the skin tissue. The scaffold also displayed better wound healing in vivo, in terms of speedy wound closure and proper tissue regeneration, in comparison to the standard treatment. Altogether, this study successfully established a simple, one-step synthesis process of a functionally graded, bioresorbable scaffold for scar-free, native-like, structural and functional regeneration of full-thickness skin wounds. Due to cost-effectiveness, easy synthesis process and microarchitectural features, the designed scaffold possesses a potential of translation to a good commercial wound healing product.
Collapse
Affiliation(s)
- Souvik Ghosh
- Biomaterials and Multiscale Mechanics Lab, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India; Molecular Endocrinology Lab, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India; Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Swati Haldar
- Biomaterials and Multiscale Mechanics Lab, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India; Molecular Endocrinology Lab, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India; Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Sumeet Gupta
- Department of Pharmacy, Maharshi Markandeshwar University (Deemed to Be University), Mullana, Haryana 133207, India
| | - Samrat Chauhan
- Department of Pharmacy, Maharshi Markandeshwar University (Deemed to Be University), Mullana, Haryana 133207, India
| | - Vishal Mago
- Burns and Plastic Surgery Unit, All India Institute of Medical Sciences Rishikesh, Rishikesh, Uttarakhand 249203, India
| | - Partha Roy
- Molecular Endocrinology Lab, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Debrupa Lahiri
- Biomaterials and Multiscale Mechanics Lab, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India; Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
177
|
Xiang Z, Guan X, Ma Z, Shi Q, Panteleev M, Ataullakhanov FI. Bioactive engineered scaffolds based on PCL-PEG-PCL and tumor cell-derived exosomes to minimize the foreign body reaction. BIOMATERIALS AND BIOSYSTEMS 2022; 7:100055. [PMID: 36824486 PMCID: PMC9934494 DOI: 10.1016/j.bbiosy.2022.100055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Long-term presence of M1 macrophages causes serious foreign body reaction (FBR), which is the main reason for the failure of biological scaffold integration. Inducing M2 polarization of macrophages near scaffolds to reduce foreign body response has been widely researched. In this work, inspired by the special capability of tumor exosomes in macrophages M2 polarization, we integrate tumor-derived exosomes into biological scaffolds to minimize the FBR. In brief, breast cancer cell-derived exosomes are loaded into polycaprolactone-b-polyethylene glycol-b-polycaprolactone (PCL-PEG-PCL) fiber scaffold through physical adsorption and entrapment to constructed bioactive engineered scaffold. In cellular experiments, we demonstrate bioactive engineered scaffold based on PCL-PEG-PCL and exosomes can promote the transformation of macrophages from M1 to M2 through the PI3K/Akt signaling pathway. In addition, the exosomes release gradually from scaffolds and act on the macrophages around the scaffolds to reduce FBR in a subcutaneous implant mouse model. Compared with PCL-PEG-PCL scaffolds without exosomes, bioactive engineered scaffolds reduce significantly inflammation and fibrosis of tissues around the scaffolds. Therefore, cancer cell-derived exosomes show the potential for constructing engineered scaffolds in inhibiting the excessive inflammation and facilitating tissue formation.
Collapse
Affiliation(s)
- Zehong Xiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xinghua Guan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhifang Ma
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Soochow University, Suzhou 215123, China
| | - Mikhail Panteleev
- Dmitry Rogachev Natl Res Ctr Pediat Hematol Oncol, 1 Samory Mashela St, Moscow, 117198, Russia
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, 1, build. 2, GSP-1, Moscow 119991, Russia
| | - Fazly I Ataullakhanov
- Dmitry Rogachev Natl Res Ctr Pediat Hematol Oncol, 1 Samory Mashela St, Moscow, 117198, Russia
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, 1, build. 2, GSP-1, Moscow 119991, Russia
| |
Collapse
|
178
|
Zhang Z, Feng Y, Wang L, Liu D, Qin C, Shi Y. A review of preparation methods of porous skin tissue engineering scaffolds. MATERIALS TODAY COMMUNICATIONS 2022; 32:104109. [DOI: 10.1016/j.mtcomm.2022.104109] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
179
|
Four-point Impedance Changes in the Early Post-Operative Period After Cochlear Implantation. Otol Neurotol 2022; 43:e730-e737. [PMID: 35861642 DOI: 10.1097/mao.0000000000003592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Monitoring four-point impedance changes after cochlear implantation with comparison to conventional impedance measurements. Four-point impedance provides information regarding the bulk biological environment surrounding the electrode array, which is not discernible with conventional impedances. STUDY DESIGN Prospective observational. SETTING Hospital. PATIENTS Adult cochlear implant recipients with no measurable hearing before implantation and implanted with a perimodiolar cochlear implant. MAIN OUTCOME MEASURES Mean values for four-point and common ground impedances were calculated for all electrode contacts at intra-operative, 1 day, 1 week, 4 to 6 weeks, and 3 months post implantation. Linear mixed models were applied to the impedance data to compare between impedances and time points. Furthermore, patients were divided into groups dependent on the normalized change in four-point impedance from intra-operative to 1 day post-operative. The normalized change was then calculated for all other time points and compared across the two groups. RESULTS Significant increases in four-point impedance occurred 1 day and 3 months after surgery, particularly in the basal half of the array. Four-point impedance at 1 day was highly predictive of four-point impedance at 3 months. Four-point impedance at the other time points showed marginal or no increases from intra-operative. Patients with an average increase higher than 10% in four-point impedance from intra-operative to 1 day, had significantly higher values at 3 months ( p = 0.012). These patterns were not observed in common ground impedance. CONCLUSION This is the first study to report increases in four-point impedance within 24 hours of cochlear implantation. The increases at 1 day and 3 months align with the natural timeline of an acute and chronic inflammatory responses.
Collapse
|
180
|
Abstract
The aims of this study were to induce calli from the seeds of three rice varieties (Hommali 105, Munpu, and Niawdum) and investigate their anti-aging potential. First, rice seeds were cultured on a Murashige and Skoog medium (MS medium) supplemented with 2 mg/L of 2,4-Dichlorophenoxyacetic acid (2,4-D), 1 mg/L of 1-Naphthalene acetic acid (NAA), and 1 mg/L of 6-Benzylaminopurine (BAP). After three weeks, the calli were extracted with ethanol. Then, their phenolic contents were determined by spectrophotometer and the amino acids were identified by ultra-performance liquid chromatography (UPLC). Their cytotoxicity, anti-oxidant (potassium ferricyanide reducing power assay (PFRAP), DPPH radical scavenging assay (DPPH), lipid peroxidation inhibition (LPO), and superoxide dismutase activity (SOD)), and anti-aging (keratinocyte proliferation, anti-collagenase, anti-inflammation, and anti-tyrosinase) activities were also investigated. Munpu callus (385%) was obtained with a higher yield than Hommali (322%) and Niawdum (297%) calli. The results revealed that the phenolic and amino acid contents were enhanced in the calli. Moreover, the calli were rich in glutamic acid, alanine, and gamma aminobutyric acid (GABA). The callus extracts showed no cytotoxic effects at a concentration of equal to or lower than 0.25 mg/mL. The highest anti-oxidant activities (PFRAP (0.81 mg AAE/mL), DPPH (68.22%), LPO (52.21%), and SOD (67.16%)) was found in Munpu callus extract. This extract also had the highest keratinocyte proliferation (43.32%), anti-collagenase (53.83%), anti-inflammation (85.40%), and anti-tyrosinase (64.77%) activities. The experimental results suggest that the amounts of bioactive compounds and anti-aging activities of rice seeds can be enhanced by the induction of callus formation.
Collapse
|
181
|
Jiang T, Li Q, Qiu J, Chen J, Du S, Xu X, Wu Z, Yang X, Chen Z, Chen T. Nanobiotechnology: Applications in Chronic Wound Healing. Int J Nanomedicine 2022; 17:3125-3145. [PMID: 35898438 PMCID: PMC9309282 DOI: 10.2147/ijn.s372211] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/06/2022] [Indexed: 12/15/2022] Open
Abstract
Wounds occur when skin integrity is broken and the skin is damaged. With progressive changes in the disease spectrum, the acute wounds caused by mechanical trauma have been become less common, while chronic wounds triggered with aging, diabetes and infection have become more frequent. Chronic wounds now affect more than 6 million people in the United States, amounting to 10 billion dollars in annual expenditure. However, the treatment of chronic wounds is associated with numerous challenges. Traditional remedies for chronic wounds include skin grafting, flap transplantation, negative-pressure wound therapy, and gauze dressing, all of which can cause tissue damage or activity limitations. Nanobiotechnology — which comprises a diverse array of technologies derived from engineering, chemistry, and biology — is now being applied in biomedical practice. Here, we review the design, application, and clinical trials for nanotechnology-based therapies for chronic wound healing, highlighting the clinical potential of nanobiotechnology in such treatments. By summarizing previous nanobiotechnology studies, we lay the foundation for future wound care via a nanotech-based multifunctional smart system.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Qianyun Li
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jinmei Qiu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Jing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Shuang Du
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Xiang Xu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Zihan Wu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| |
Collapse
|
182
|
Scopelliti F, Cattani C, Dimartino V, Mirisola C, Cavani A. Platelet Derivatives and the Immunomodulation of Wound Healing. Int J Mol Sci 2022; 23:ijms23158370. [PMID: 35955503 PMCID: PMC9368989 DOI: 10.3390/ijms23158370] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023] Open
Abstract
Besides their primary role in hemostasis, platelets contain a plethora of immunomodulatory molecules that profoundly affect the entire process of wound repair. Therefore, platelet derivatives, such as platelet-rich plasma or platelet lysate, have been widely employed with promising results in the treatment of chronic wounds. Platelet derivatives provide growth factors, cytokines, and chemokines targeting resident and immigrated cells belonging to the innate and adaptive immune system. The recruitment and activation of neutrophils and macrophages is critical for pathogen clearance in the early phase of wound repair. The inflammatory response begins with the release of cytokines, such as TGF-β, aimed at damping excessive inflammation and promoting the regenerative phase of wound healing. Dysregulation of the immune system during the wound healing process leads to persistent inflammation and delayed healing, which ultimately result in chronic wound. In this review, we summarize the role of the different immune cells involved in wound healing, particularly emphasizing the function of platelet and platelet derivatives in orchestrating the immunological response.
Collapse
|
183
|
Kamel RA, Teiama MS, El-Hagrassi AM, Elgayed SH, Khattab MA, El-Sayed EK, Ibrahim MT, Mady MS, Moharram FA. Appraisal on the Wound Healing Potential of Deverra tortuosa DC. and Deverra triradiata Hochst Essential Oil Nanoemulsion Topical Preparation. Front Pharmacol 2022; 13:940988. [PMID: 35959438 PMCID: PMC9360601 DOI: 10.3389/fphar.2022.940988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
Deverra tortuosa (Desf.) DC. and Deverra. triradiata Hochst. ex Bioss are perennial desert shrubs widely used traditionally for many purposes and they are characteristic for their essential oil. The objective of the present study was to investigate the in vivo wound healing activity of the essential oil (EO) of D. tortuosa and D. triradiata through their encapsulation into nanoemulsion. EO nanoemulsion was prepared using an aqueous phase titration method, and nanoemulsion zones were identified through the construction of phase diagrams. The EO was prepared by hydrodistillation (HD), microwave-assisted hydrodistillation (MAHD), and supercritical fluid extraction (SFE) and analyzed using GC/MS. D. tortuosa oil is rich in the non-oxygenated compound, representing 74.54, 73.02, and 41.19% in HD, MADH, and SFE, respectively, and sabinene represents the major monoterpene hydrocarbons. Moreover, D. triradiata is rich in oxygenated compounds being 69.77, 52.87, and 61.69% in HD, MADH, and SFE, respectively, with elemicin and myristicin as major phenylpropanoids. Topical application of the nanoemulsion of D. tortuosa and D. triradiata (1% or 2%) exhibited nearly 100% wound contraction and complete healing at day 16. Moreover, they exhibit significant antioxidant and anti-inflammatory effects and a significant increase in growth factors and hydroxyproline levels. Histopathological examination exhibited complete re-epithelialization accompanied by activated hair follicles and abundant collagen fibers, especially at a concentration of 2%. Therefore, the incorporation of the two Deverra species into nanoemulsion could professionally endorse different stages of wound healing.
Collapse
Affiliation(s)
- Reem A. Kamel
- Mansheyat El-Bakry, General Hospital, Heliopolis, Egypt
| | - Mohammed S Teiama
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Ali M. El-Hagrassi
- Department of Phytochemistry and Plant Systematics, Pharmaceutical Industries Division, National Research Centre, Giza, Egypt
| | - Sabah H. Elgayed
- Department of Pharmacognosy, Faculty of Pharmacy, 6October University, Cairo, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed A. Khattab
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Elsayed K. El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Magda T. Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Al -Azhar University, Cairo, Egypt
| | - Mohamed S. Mady
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Fatma A. Moharram
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, Egypt
- *Correspondence: Fatma A. Moharram,
| |
Collapse
|
184
|
Xu Q, Sigen A, Wang W. Injectable Hydrogels as a Stem Cell Delivery Platform for Wound Healing. MULTIFUNCTIONAL HYDROGELS FOR BIOMEDICAL APPLICATIONS 2022:323-355. [DOI: 10.1002/9783527825820.ch14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
185
|
In vitro evaluation of a synthetic (Biobrane®) and a biopolymer (Epicite) wound dressing with primary human juvenile and adult fibroblasts after different colonization strategies. Ann Anat 2022; 244:151981. [PMID: 35853533 DOI: 10.1016/j.aanat.2022.151981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 05/30/2022] [Accepted: 07/07/2022] [Indexed: 01/08/2023]
Abstract
BACKGROUND The three-dimensional [3D] wound dressings Biobrane® and Epicite are used in the wound management. Fibroblasts are important for successful deep wound healing. The direct effect of Biobrane® and Epicite on human fibroblasts, particularly of juvenile individuals, remains unclear. Therefore, this study compared the survival and growth characteristics of juvenile and adult dermal fibroblasts on Biobrane® and Epicite using different culture models. METHOD Murine (L929), primary juvenile and adult human fibroblasts were seeded on both materials using two dimensional (2D, slide culture) or 3D culture at the medium-air interface and dynamical rotatory culture. Cell adherence, viability, morphology, actin cytoskeleton architecture and DNA content were monitored. Scanning electron microscopy (SEM) analyses could be only performed from Biobrane®. Permeability of both materials were tested. RESULTS The majority of all tested fibroblasts species survived on both dressings with no significant differences between 1 and 14 days. Juvenile and adult fibroblasts exerted typical fibroblast morphology with spindle-shaped cell bodies on the materials. SEM visualized morphological differences between murine and human fibroblasts on Biobrane®. Juvenile and adult fibroblasts colonized Biobrane® in rotatory culture after 7 days the most. The Biobrane® rotatory culture of L929 and juvenile fibroblasts showed after 7 days the significantly highest DNA amount. No major gender differences could be observed. Biobrane® had a higher permeability than Epicite. CONCLUSION Both wound dressing can be colonized by fibroblasts suggesting their high cytocompatibility. Fibroblast survival and morphology on Biobrane® and Epicite depended on the culture system and the fibroblast source.
Collapse
|
186
|
de Oliveira PHC, Gomes Filho JE, Rodrigues MJDS, da Silva CC, Cardoso CDBM, Cosme daSilva L, Ervolino E, Cintra LTA. Influence of supplement administration of omega-3 on the subcutaneous tissue response of endodontic sealers in Wistar rats. Int Endod J 2022; 55:1026-1041. [PMID: 35791796 DOI: 10.1111/iej.13795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022]
Abstract
AIM Natural substances such as omega-3 have been used in the medical field due to their numerous properties and, in particular, modulating effect on the systemic and local inflammatory processes. Thus, this study evaluated the influence of omega-3 supplementation on the subcutaneous tissue response of endodontic sealers in Wistar Rats. METHODOLOGY Polyethylene tubes were implanted in the subcutaneous tissue of 48 animals (one empty for control and three filled with Sealapex, AH Plus or Endofill). The animals were treated with omega-3 (TO) or water (TW). Treatments started 15 days before implantation until euthanasia. After 5, 15 and 30 days (n = 8), animals were euthanized and polyethylene tubes and surrounding tissue were removed and processed for histological analysis. The inflammatory reaction was analysed by Haematoxylin and Eosin stain and immunolabelling for IL-6 and TNF-α. The collagen maturity was analysed by picrosirius red stain and calcium deposition by von Kossa stain and polarized light. Results were statistically analysed (p < .05). RESULTS Amongst TW sealer groups, Endofill evoked a more intense inflammatory infiltrate compared with AH Plus and control in the 30-day period (p = .009). However, in TO sealer groups, there was no difference amongst the sealers and control in all periods (p > .05). Comparing each sealer as a function of the supplementation with water or omega-3, there are differences for Endofill (p = .001) and Sealapex (p = .005) in the 30-day period, presenting lower inflammatory infiltrate in the animals treated with omega-3. A higher percentage of immature fibres was observed at 15 and 30 days in the TO group, compared with the TW group (p < .05). The deposition of calcium particles was observed only by Sealapex in all periods, despite the supplementation procedure. CONCLUSIONS Omega-3 supplementation influence the tissue reactions of endodontic sealers, modulating inflammation, the immunolabelling of IL-6 and TNF-α, the repair process and it does not interfere with calcium deposition.
Collapse
Affiliation(s)
- Pedro Henrique Chaves de Oliveira
- Endodontic Section, Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
| | - João Eduardo Gomes Filho
- Endodontic Section, Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
| | - Michael Júnio da Silva Rodrigues
- Endodontic Section, Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
| | - Cristiane Cantiga da Silva
- Endodontic Section, Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
| | - Carolina da Barros Moraes Cardoso
- Endodontic Section, Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
| | - Leopoldo Cosme daSilva
- Endodontic Section, Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil.,Department of Endodontics, School of Dentistry, Alagoas Federal University (UFAL), Maceió, Brazil
| | - Edilson Ervolino
- Department of Basic Science, School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
| | - Luciano Tavares Angelo Cintra
- Endodontic Section, Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil.,Dental Assistance Center for Disabled Persons (CAOE) of the São Paulo State University (UNESP), School of Dentistry, Araçatuba, Brazil
| |
Collapse
|
187
|
Cetin N, Menevse E, Celik ZE, Ceylan C, Rama ST, Gultekin Y, Tekin T, Sahin A. Evaluation of burn wound healing activity of thermosensitive gel and PLGA nanoparticle formulation of quercetin in Wistar albino rats. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
188
|
Bulutoglu B, Acun A, Deng SL, Mert S, Lupon E, Lellouch AG, Cetrulo CL, Uygun BE, Yarmush ML. Combinatorial Use of Therapeutic ELP-Based Micelle Particles in Tissue Engineering. Adv Healthc Mater 2022; 11:e2102795. [PMID: 35373501 PMCID: PMC9262838 DOI: 10.1002/adhm.202102795] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/19/2022] [Indexed: 11/10/2022]
Abstract
Elastin-like peptides (ELPs) are a versatile platform for tissue engineering and drug delivery. Here, micelle forming ELP chains are genetically fused to three therapeutic molecules, keratinocyte growth factor (KGF), stromal cell-derived growth factor 1 (SDF1), and cathelicidin (LL37), to be used in wound healing. Chronic wounds represent a growing problem worldwide. A combinatorial therapy approach targeting different aspects of wound healing would be beneficial, providing a controlled and sustained release of active molecules, while simultaneously protecting these therapeutics from the surrounding harsh wound environment. The results of this study demonstrate that the conjugation of the growth factors KGF and SDF1 and the antimicrobial peptide LL37 to ELPs does not affect the micelle structure and that all three therapeutic moieties retain their bioactivity in vitro. Importantly, when the combination of these micelle ELP nanoparticles are applied to wounds in diabetic mice, over 90 % wound closure is observed, which is significantly higher than when the therapeutics are applied in their naked forms. The application of the nanoparticles designed here is the first report of targeting different aspect of wound healing synergistically.
Collapse
Affiliation(s)
- Beyza Bulutoglu
- Center for Engineering in Medicine and SurgeryMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
- Shriners Hospitals for Children‐BostonBostonMA02114USA
- Present address:
Department of Protein ChemistryGenentechSouth San FranciscoCA94404USA
| | - Aylin Acun
- Center for Engineering in Medicine and SurgeryMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
- Shriners Hospitals for Children‐BostonBostonMA02114USA
- Department of Biomedical EngineeringWidener UniversityChesterPA19013USA
| | - Sarah L. Deng
- Center for Engineering in Medicine and SurgeryMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
- Shriners Hospitals for Children‐BostonBostonMA02114USA
| | - Safak Mert
- Center for Engineering in Medicine and SurgeryMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
- Shriners Hospitals for Children‐BostonBostonMA02114USA
| | - Elise Lupon
- Shriners Hospitals for Children‐BostonBostonMA02114USA
- Vascularized Composite Allotransplantation LaboratoryCenter for Transplantation SciencesMassachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
- Division of Plastic and Reconstructive SurgeryMassachusetts General HospitalBostonMA02114USA
| | - Alexandre G. Lellouch
- Shriners Hospitals for Children‐BostonBostonMA02114USA
- Vascularized Composite Allotransplantation LaboratoryCenter for Transplantation SciencesMassachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
- Division of Plastic and Reconstructive SurgeryMassachusetts General HospitalBostonMA02114USA
- Department of Plastic SurgeryEuropean George Pompidou HospitalUniversity of ParisParisFrance
| | - Curtis L. Cetrulo
- Shriners Hospitals for Children‐BostonBostonMA02114USA
- Vascularized Composite Allotransplantation LaboratoryCenter for Transplantation SciencesMassachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
- Division of Plastic and Reconstructive SurgeryMassachusetts General HospitalBostonMA02114USA
- Department of Plastic SurgeryEuropean George Pompidou HospitalUniversity of ParisParisFrance
| | - Basak E. Uygun
- Center for Engineering in Medicine and SurgeryMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
- Shriners Hospitals for Children‐BostonBostonMA02114USA
| | - Martin L. Yarmush
- Center for Engineering in Medicine and SurgeryMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
- Shriners Hospitals for Children‐BostonBostonMA02114USA
- Department of Biomedical EngineeringRutgers UniversityPiscatawayNJ08854USA
| |
Collapse
|
189
|
The Role of the Extracellular Matrix (ECM) in Wound Healing: A Review. Biomimetics (Basel) 2022; 7:biomimetics7030087. [PMID: 35892357 PMCID: PMC9326521 DOI: 10.3390/biomimetics7030087] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/23/2022] [Accepted: 06/29/2022] [Indexed: 12/27/2022] Open
Abstract
The extracellular matrix (ECM) is a 3-dimensional structure and an essential component in all human tissues. It is comprised of varying proteins, including collagens, elastin, and smaller quantities of structural proteins. Studies have demonstrated the ECM aids in cellular adherence, tissue anchoring, cellular signaling, and recruitment of cells. During times of integumentary injury or damage, either acute or chronic, the ECM is damaged. Through a series of overlapping events called the wound healing phases—hemostasis, inflammation, proliferation, and remodeling—the ECM is synthesized and ideally returned to its native state. This article synthesizes current and historical literature to demonstrate the involvement of the ECM in the varying phases of the wound healing cascade.
Collapse
|
190
|
van Dongen JA, van Boxtel J, Uguten M, Brouwer LA, Vermeulen KM, Melenhorst WB, Niessen FB, Harmsen MC, Stevens HP, van der Lei B. Tissue Stromal Vascular Fraction Improves Early Scar Healing: A Prospective Randomized Multicenter Clinical Trial. Aesthet Surg J 2022; 42:NP477-NP488. [PMID: 34967864 DOI: 10.1093/asj/sjab431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Wound healing and scar formation depends on a plethora of factors. Given the impact of abnormal scar formation, interventions aimed to improve scar formation would be most advantageous. The tissue stromal vascular fraction (tSVF) of adipose tissue is composed of a heterogenous mixture of cells embedded in extracellular matrix. It contains growth factors and cytokines involved in wound-healing processes, eg, parenchymal proliferation, inflammation, angiogenesis, and matrix remodeling. OBJECTIVES The aim of this study was to investigate the hypothesis that tSVF reduces postsurgical scar formation. METHODS This prospective, double-blind, placebo-controlled, randomized trial was conducted between 2016 and 2020. Forty mammoplasty patients were enrolled and followed for 1 year. At the end of the mammoplasty procedure, all patients received tSVF in the lateral 5 cm of the horizontal scar of 1 breast and a placebo injection in the contralateral breast to serve as an intrapatient control. Primary outcome was scar quality measure by the Patient and Observer Scar Assessment Scale (POSAS). Secondary outcomes were obtained from photographic evaluation and histologic analysis of scar tissue samples. RESULTS Thirty-four of 40 patients completed follow-up. At 6 months postoperation, injection of tSVF had significantly improved postoperative scar appearance as assessed by the POSAS questionnaire. No difference was observed at 12 months postoperation. No improvement was seen based on the evaluation of photographs and histologic analysis of postoperative scars between both groups. CONCLUSIONS Injection of tSVF resulted in improved wound healing and reduced scar formation at 6 months postoperation, without any noticeable advantageous effects seen at 12 months. LEVEL OF EVIDENCE: 2
Collapse
Affiliation(s)
- Joris A van Dongen
- Department of Plastic Surgery, University Medical Center Utrecht , Utrecht , the Netherlands
| | - Joeri van Boxtel
- Department of Plastic Surgery, Catharina Hospital Eindhoven , Eindhoven , the Netherlands
| | - Mustafa Uguten
- Department of Plastic Surgery, Haga Hospital , the Hague , the Netherlands
| | - Linda A Brouwer
- Department of Pathology and Medical Biology, University of Groningen and University Medical Center of Groningen , Groningen , the Netherlands
| | - Karin M Vermeulen
- Department of Epidemiology, University of Groningen and University Medical Center of Groningen , Groningen , the Netherlands
| | - Wynand B Melenhorst
- Department of Plastic Surgery, Diakonessenhuis Utrecht , Utrecht , the Netherlands
| | | | - Martin C Harmsen
- Department of Pathology and Medical Biology, University of Groningen and University Medical Center of Groningen , Groningen , the Netherlands
| | | | - Berend van der Lei
- Department of Plastic Surgery, University of Groningen and University Medical Center of Groningen , Groningen , the Netherlands
| |
Collapse
|
191
|
Kuhn P, Bubel M, Jennewein M, Guthörl S, Pohlemann T, Oberringer M. Dose-dependent dominance: How cell densities design stromal cell functions during soft tissue healing. Cell Biochem Funct 2022; 40:439-450. [PMID: 35707856 DOI: 10.1002/cbf.3705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/15/2022] [Accepted: 04/10/2022] [Indexed: 11/06/2022]
Abstract
Regular soft tissue healing relies on the well-organized interaction of different stromal cell types with endothelial cells. However, spatiotemporal conditions might provoke high densities of one special stromal cell type, potentially leading to impaired healing. Detailed knowledge of the functions of rivaling stromal cell types aiming for tissue contraction and stabilization as well as vascular support is mandatory. By the application of an in vitro approach comprising the evaluation of cell proliferation, cell morphology, myofibroblastoid differentiation, and cytokine release, we verified a density-dependent modulation of these functions among juvenile and adult fibroblasts, pericytes, and adipose-derived stem cells during their interaction with microvascular endothelial cells in cocultures. Results indicate that juvenile fibroblasts rather support angiogenesis via paracrine regulation at the early stage of healing, a role potentially compromised in adult fibroblasts. In contrast, pericytes showed a more versatile character aiming at angiogenesis, vessel stabilization, and tissue contraction. Such a universal character was even more pronounced among adipose-derived stem cells. The explicit knowledge of the characteristic functions of stromal cell types is a prerequisite for the development of new analytical and therapeutic approaches for impaired soft tissue healing. The present study delivers new considerations concerning the roles of rivaling stromal cell types within a granulation tissue, pointing to extraordinary properties of pericytes and adipose-derived stem cells.
Collapse
Affiliation(s)
- Philipp Kuhn
- Department of Trauma-, Hand- and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Monika Bubel
- Department of Trauma-, Hand- and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Martina Jennewein
- Department of Trauma-, Hand- and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Silke Guthörl
- Department of Trauma-, Hand- and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Tim Pohlemann
- Department of Trauma-, Hand- and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Martin Oberringer
- Department of Trauma-, Hand- and Reconstructive Surgery, Saarland University, Homburg, Germany
| |
Collapse
|
192
|
Aslam Z, Roome T, Razzak A, Aslam SM, Zaidi MB, Kanwal T, Sikandar B, Bertino MF, Rehman K, Shah MR. Investigation of wound healing potential of photo-active curcumin-ZnO-nanoconjugates in excisional wound model. Photodiagnosis Photodyn Ther 2022; 39:102956. [PMID: 35714899 DOI: 10.1016/j.pdpdt.2022.102956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/23/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022]
Abstract
Wound healing, being a dynamic process consisting of hemostasis, inflammation, proliferation, and remodeling, involves the complicated interplay of various growth mediators and the cells associated repair system. Current wound healing therapies usually fail to completely regain skin integrity and functionality. Traditionally, curcumin is considered a potent natural wound healing agent as it possesses antibacterial, antioxidant, and anti-inflammatory properties. It is also known that zinc oxide (ZnO) nanoparticles (NPs) have photocatalytic properties, including the generation of reactive oxygen species. ZnO nanoaprticles are also Food and Drug Administration (FDA) approved as safe substances. While ZnO oxide requires illumination with ultraviolet light to become photocatalytically active, dye-sensitized ZnO can be activated by illumination with visible light. In the present study, we explored the wound healing potential of ZnO nanoparticles sensitized with curcumin (Cu+ZnO Nps) and illuminated with visible (blue) light generated by an array of high power LEDs. We studied the antibacterial effect of our conjugates by percentage reduction in bacterial growth and biofilm formation. The wound healing potential was analyzed by percentage wound contraction, biochemical parameters, and histopathological analysis of the wounded site. Additionally, angiogenesis and wound associated cytokines was evaluated by immunohistochemistry of CD31 and gene expression analysis of IL-1β, TNF-α, and MMP-9 after 16 days of post-wound treatment, respectively. Our study suggests that the therapeutic effect of Cu+ZnO NPs with LED illumination increases its wound healing potential by producing an antibacterial and anti-inflammatory effect. Moreover, the treatment strategy of using a nano formulation in combination with LED illumination further increases its efficacy. It was concluded that the anti-inflammatory and bactericidal effects of the LED illuminated Cu+ZnO Np showed accelerated wound healing with increased wound contraction, collagen deposition, angiogenesis, and re-epithelialization.
Collapse
Affiliation(s)
- Zara Aslam
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, Karachi University, Karachi, 74200, Pakistan.
| | - Talat Roome
- Molecular Pathology Section, Dow Diagnostic Reference and Research Laboratory, Department of Pathology, Dow International Medical College, Dow University of Health Sciences, Karachi, 74200, Pakistan; Dow Institute of Advanced Biological & Animal Research, Dow University of Health Sciences, Karachi, 74200, Pakistan.
| | - Anam Razzak
- Molecular Pathology Section, Dow Diagnostic Reference and Research Laboratory, Department of Pathology, Dow International Medical College, Dow University of Health Sciences, Karachi, 74200, Pakistan; Dow Institute of Advanced Biological & Animal Research, Dow University of Health Sciences, Karachi, 74200, Pakistan.
| | - Shazmeen Mohammad Aslam
- Dow Institute of Advanced Biological & Animal Research, Dow University of Health Sciences, Karachi, 74200, Pakistan.
| | - Midhat Batool Zaidi
- Dow Institute of Advanced Biological & Animal Research, Dow University of Health Sciences, Karachi, 74200, Pakistan.
| | - Tasmina Kanwal
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, Karachi University, Karachi, 74200, Pakistan.
| | - Bushra Sikandar
- Histopathology Section, Department of Pathology, Dow Diagnostic Reference and Research Laboratory, Dow Medical College, Dow University of Health Sciences, Karachi, 74200, Pakistan.
| | | | - Khadija Rehman
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, Karachi University, Karachi, 74200, Pakistan.
| | - Muhammad Raza Shah
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, Karachi University, Karachi, 74200, Pakistan.
| |
Collapse
|
193
|
Role and Function of Mesenchymal Stem Cells on Fibroblast in Cutaneous Wound Healing. Biomedicines 2022; 10:biomedicines10061391. [PMID: 35740413 PMCID: PMC9219688 DOI: 10.3390/biomedicines10061391] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 11/24/2022] Open
Abstract
Skin wounds often repair themselves completely over time; however, this is true only for healthy individuals. Although various studies are being conducted to improve wound-healing therapy outcomes, the mechanisms of wound healing and regeneration are not completely understood yet. In recent years, mesenchymal stem cells (MSCs) have been reported to contribute significantly to wound healing and regeneration. Understanding the function of MSCs will help to elucidate the fundamentals of wound healing. MSCs are multipotent stem cells that are used in regenerative medicine for their ability to self-renew and differentiate into bone, fat, and cartilage, with few ethical problems associated with cell harvesting. Additionally, they have anti-inflammatory and immunomodulatory properties and antifibrotic effects via paracrine signaling, and many studies have been conducted to use them to treat graft-versus-host disease, inflammatory bowel disease, and intractable cutaneous wounds. Many substances derived from MSCs are involved in the wound-healing process, and specific cascades and pathways have been elucidated. This review aims to explain the fundamental role of MSCs in wound healing and the effects of MSCs on fibroblasts.
Collapse
|
194
|
Liu H, Tan L, Fu G, Chen L, Tan H. Efficacy of Topical Intervention for Recurrent Aphthous Stomatitis: A Network Meta-Analysis. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:771. [PMID: 35744034 PMCID: PMC9227309 DOI: 10.3390/medicina58060771] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 12/05/2022]
Abstract
Background and objectives: To compare the efficacy and safety of topical interventions used for recurrent aphthous stomatitis. Materials and Methods: This network meta-analysis was conducted in accordance with the PRISMA statement. We searched four electronic databases, PubMed, Web of Science (WOS), Cochrane Central Register of Controlled Trials and Embase, for randomized controlled trials reporting efficacy and safety data on topical interventions for recurrent aphthous stomatitis. We performed a quality evaluation using a methodology based on the Cochrane Handbook. Two authors independently extracted data on healing effect, size reduction effect, symptom reduction effect, recurrence and safety assessment. Network meta-analysis was then performed using ADDIS and RevMan. Results: A total of 72 trials (5272 subjects) involving 29 topical interventions were included. Honey, lnsulin liposome gel, laser, amlexanox, glycyrrhiza and triamcinolone had better efficacy performance. Probiotics and chlorhexidine helped to prolong ulcer intervals and reduce recurrence. Doxycycline and penicillin had a high risk of adverse events. Hematologic evaluation showed no preference. The rank possibility of size-reducing effect and symptom-reducing effect supported the short-term effect of laser and the long-term effect of probiotics. Conclusions: We recommend the use of laser as a short-term intervention during the exacerbation phase of RAS and probiotics as a long-term intervention during the exacerbation and remission phases of RAS.
Collapse
Affiliation(s)
- Hao Liu
- College of Stomatology, Chongqing Medical University, Chongqing 400016, China;
| | - Lei Tan
- College of Nursing, Chongqing Medical University, Chongqing 400016, China;
| | - Gege Fu
- First Clinical College, Chongqing Medical University, Chongqing 400016, China;
| | - Ling Chen
- The Center of Experimental Teaching Management, Chongqing Medical University, Chongqing 400016, China
| | - Hua Tan
- The Center of Experimental Teaching Management, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
195
|
Hajati Ziabari A, Asadi Heris M, Mohammad Doodmani S, Jahandideh A, Koorehpaz K, Mohammadi R. Cinnamon Nanoparticles Loaded on Chitosan- Gelatin Nanoparticles Enhanced Burn Wound Healing in Diabetic Foot Ulcers in Rats. INT J LOW EXTR WOUND 2022:15347346221101245. [PMID: 35658599 DOI: 10.1177/15347346221101245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The objective of this work was to investigate impact of Cinnamon nanoparticles loaded on chitosan- gelatin nanoparticles on burn wound healing in diabetic foot ulcers in rat. We included sixty male rats into four groups. There were 15 animals in each group as follow: DFU group: We treated the burn wounds with normal saline (0.1 mL). DFU/SSD group: In this group, the wounds were with silver sulfadiazine 1% ointment. DFU/CGNP: In this group, the burn wounds were treated with chitosan-gelatin nanoparticles based ointment (0.05 mg/mL). DFU/CNP-CGNP group: In this group, the wounds were treated with CN-CGNPs (0.05 mg/mL). Wound area reduction measurements, biochemistry, histomorphometrical studies, hydroxyproline levels and reverse transcription polymerase chain reaction for caspase 3, Bcl-2, and p53 showed significant difference between rats in DFU/CNP-CGNP group in comparison with other groups (P < .05). Accelerated repair of the wounds in DFU/CNP-CGNP group showed that local application of Cinnamon nanoparticles loaded on chitosan- gelatin nanoparticles could be taken into consideration in burn wound healing in diabetic foot ulcers.
Collapse
Affiliation(s)
- Amirreza Hajati Ziabari
- Department of Clinical Sciences, Faculty of Specialized Veterinary Sciences, Science and Research Branch, 125643Islamic Azad University, Tehran, Iran
| | - Mostafa Asadi Heris
- Department of Clinical Sciences, Faculty of Specialized Veterinary Sciences, Science and Research Branch, 125643Islamic Azad University, Tehran, Iran
| | - Seyed Mohammad Doodmani
- Department of Clinical Sciences, Faculty of Specialized Veterinary Sciences, Science and Research Branch, 125643Islamic Azad University, Tehran, Iran
| | - Alireza Jahandideh
- Department of Clinical Sciences, Faculty of Specialized Veterinary Sciences, Science and Research Branch, 125643Islamic Azad University, Tehran, Iran
| | - Kave Koorehpaz
- Department of Theriogenology, Faculty of Veterinary Medicine, 117045Urmia University, Urmia, Iran
| | - Rahim Mohammadi
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, 117045Urmia University, Urmia, Iran
| |
Collapse
|
196
|
Sun C, Yan H, Jiang K, Huang L. Protective Effect of Casticin on Experimental Skin Wound Healing of Rats. J Surg Res 2022; 274:145-152. [DOI: 10.1016/j.jss.2021.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 11/30/2021] [Accepted: 12/13/2021] [Indexed: 12/28/2022]
|
197
|
Vitale S, Colanero S, Placidi M, Di Emidio G, Tatone C, Amicarelli F, D’Alessandro AM. Phytochemistry and Biological Activity of Medicinal Plants in Wound Healing: An Overview of Current Research. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113566. [PMID: 35684503 PMCID: PMC9182061 DOI: 10.3390/molecules27113566] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022]
Abstract
Wound healing is a complicated process, and the effective management of wounds is a major challenge. Natural herbal remedies have now become fundamental for the management of skin disorders and the treatment of skin infections due to the side effects of modern medicine and lower price for herbal products. The aim of the present study is to summarize the most recent in vitro, in vivo, and clinical studies on major herbal preparations, their phytochemical constituents, and new formulations for wound management. Research reveals that several herbal medicaments have marked activity in the management of wounds and that this activity is ascribed to flavonoids, alkaloids, saponins, and phenolic compounds. These phytochemicals can act at different stages of the process by means of various mechanisms, including anti-inflammatory, antimicrobial, antioxidant, collagen synthesis stimulating, cell proliferation, and angiogenic effects. The application of natural compounds using nanotechnology systems may provide significant improvement in the efficacy of wound treatments. Increasing the clinical use of these therapies would require safety assessment in clinical trials.
Collapse
Affiliation(s)
- Stefania Vitale
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
| | - Sara Colanero
- Department of Biosciences, University of Milan, Via Giovanni Celoria 26, 20133 Milan, Italy;
| | - Martina Placidi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
| | - Giovanna Di Emidio
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
| | - Carla Tatone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
| | - Fernanda Amicarelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
| | - Anna Maria D’Alessandro
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
- Correspondence:
| |
Collapse
|
198
|
Dong L, Han Z, Zhang H, Yang R, Fang J, Wang L, Li X, Li X. Tea polyphenol/glycerol-treated double-network hydrogel with enhanced mechanical stability and anti-drying, antioxidant and antibacterial properties for accelerating wound healing. Int J Biol Macromol 2022; 208:530-543. [PMID: 35346679 DOI: 10.1016/j.ijbiomac.2022.03.128] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/14/2022] [Accepted: 03/20/2022] [Indexed: 01/22/2023]
Abstract
Frequent dressing changes can result in secondary wound damage. Therefore, it is of great significance to construct a wound dressing that can be used for a long time without changing. Here, a double-network hydrogel was synthesized through hydrogen bonding interactions of tea polyphenol (TP)/glycerol with photo-crosslinked N-acryloyl glycinamide (NAGA), gelatin methacrylate (GelMA), and nanoclay hydrogel. The glycerol/water solvent slowed the diffusion of TP into the NAGA/GelMA/Laponite (NGL)hydrogel, thereby avoiding excessive crosslinking, and forming a uniform network. The hydrogel exhibited excellent water retention (84% within 28 days). Additionally, due to the hygroscopicity of glycerol, the hydrogel's mechanical strength (0.73-1.14 MPa) and tensile strain (207%-353%) increased further after 14 days in an open environment. Additionally, the hydrogel exhibited superior anti-ultraviolet and antioxidant properties, which effectively alleviated the wound site's oxidative stress and accelerated wound healing. Moreover, antibacterial activity was observed against both E. coli and S. aureus in the hydrogel wound dressing. Thus, by promoting wound closure, angiogenesis and collagen deposition, the double-network NGLG20/TG hydrogel dressing can successfully accelerate wound healing. The multifunctional double-network hydrogel, therefore, shows immense potential as an ideal candidate for wound dressings because it is long-lasting and prevents secondary damage caused by frequent dressing changes.
Collapse
Affiliation(s)
- Lanlan Dong
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhengzhe Han
- Department of Orthopedic Surgery, and Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, P. R. China
| | - Hang Zhang
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Renhao Yang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| | - Jinhui Fang
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Lei Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P. R. China
| | - Xiaolin Li
- Department of Orthopedic Surgery, and Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, P. R. China.
| | - Xiang Li
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
199
|
Urciuolo F, Passariello R, Imparato G, Casale C, Netti PA. Bioengineered Wound Healing Skin Models: The Role of Immune Response and Endogenous ECM to Fully Replicate the Dynamic of Scar Tissue Formation In Vitro. Bioengineering (Basel) 2022; 9:233. [PMID: 35735476 PMCID: PMC9219817 DOI: 10.3390/bioengineering9060233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/27/2022] Open
Abstract
The healing of deep skin wounds is a complex phenomenon evolving according with a fine spatiotemporal regulation of different biological events (hemostasis, inflammation, proliferation, remodeling). Due to the spontaneous evolution of damaged human dermis toward a fibrotic scar, the treatment of deep wounds still represents a clinical concern. Bioengineered full-thickness skin models may play a crucial role in this direction by providing a deep understanding of the process that leads to the formation of fibrotic scars. This will allow (i) to identify new drugs and targets/biomarkers, (ii) to test new therapeutic approaches, and (iii) to develop more accurate in silico models, with the final aim to guide the closure process toward a scar-free closure and, in a more general sense, (iv) to understand the mechanisms involved in the intrinsic and extrinsic aging of the skin. In this work, the complex dynamic of events underlaying the closure of deep skin wound is presented and the engineered models that aim at replicating such complex phenomenon are reviewed. Despite the complexity of the cellular and extracellular events occurring during the skin wound healing the gold standard assay used to replicate such a process is still represented by planar in vitro models that have been largely used to identify the key factors regulating the involved cellular processes. However, the lack of the main constituents of the extracellular matrix (ECM) makes these over-simplistic 2D models unable to predict the complexity of the closure process. Three-dimensional bioengineered models, which aim at recreating the closure dynamics of the human dermis by using exogenous biomaterials, have been developed to fill such a gap. Although interesting mechanistic effects have been figured out, the effect of the inflammatory response on the ECM remodelling is not replicated yet. We discuss how more faithful wound healing models can be obtained by creating immunocompetent 3D dermis models featuring an endogenous ECM.
Collapse
Affiliation(s)
- Francesco Urciuolo
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy; (C.C.); (P.A.N.)
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy;
| | - Roberta Passariello
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy;
- Center for Advanced Biomaterials for HealthCare@CRIB Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy;
| | - Giorgia Imparato
- Center for Advanced Biomaterials for HealthCare@CRIB Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy;
| | - Costantino Casale
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy; (C.C.); (P.A.N.)
| | - Paolo Antonio Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy; (C.C.); (P.A.N.)
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy;
- Center for Advanced Biomaterials for HealthCare@CRIB Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy;
| |
Collapse
|
200
|
Crisaborole Loaded Nanoemulsion Based Chitosan Gel: Formulation, Physicochemical Characterization and Wound Healing Studies. Gels 2022; 8:gels8050318. [PMID: 35621616 PMCID: PMC9140491 DOI: 10.3390/gels8050318] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 02/05/2023] Open
Abstract
The development of an effective gel capable of treating eczema remains a challenge in medicine. Because of its greater retention in the affected area, good absorption of wound exudates, and induction of cell growth, nanogel is widely investigated as a topical preparation. Chitosan gel based on nanoemulsions has received much attention for its use in wound healing. In this study, four formulae (CRB-NE1-CRB-NE4) of crisaborole-loaded nanoemulsions (CRB-NEs) were developed using lauroglycol 90 as an oil, Tween-80 as a surfactant, and transcutol-HP (THP) as a co-surfactant. The prepared NEs (CRB-NE1-CRB-NE4) were evaluated for their physicochemical properties. Based on vesicle size (64.5 ± 5.3 nm), polydispersity index (PDI) (0.202 ± 0.06), zeta potential (ZP, −36.3 ± 4.16 mV), refractive index (RI, 1.332 ± 0.03), and percent transmittance (% T, 99.8 ± 0.12) was optimized and further incorporated into chitosan (2%, w/w) polymeric gels. The CRB-NE1-loaded chitosan gel was then evaluated for its drug content, spreadability, in-vitro release, flux, wound healing, and anti-inflammatory studies. The CRB-NE1-loaded chitosan gel exhibited a flux of 0.211 mg/cm2/h, a drug release of 74.45 ± 5.4% CRB released in 24 h with a Korsmeyer-Peppas mechanism release behavior. The CRB-NE1-loaded gel exhibited promising wound healing and anti-inflammatory activities.
Collapse
|