151
|
Leong MY, Kong YL, Burgess K, Wong WF, Sethi G, Looi CY. Recent Development of Nanomaterials for Transdermal Drug Delivery. Biomedicines 2023; 11:biomedicines11041124. [PMID: 37189742 DOI: 10.3390/biomedicines11041124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 05/17/2023] Open
Abstract
Nano-engineered medical products first appeared in the last decade. The current research in this area focuses on developing safe drugs with minimal adverse effects associated with the pharmacologically active cargo. Transdermal drug delivery, an alternative to oral administration, offers patient convenience, avoids first-pass hepatic metabolism, provides local targeting, and reduces effective drug toxicities. Nanomaterials provide alternatives to conventional transdermal drug delivery including patches, gels, sprays, and lotions, but it is crucial to understand the transport mechanisms involved. This article reviews the recent research trends in transdermal drug delivery and emphasizes the mechanisms and nano-formulations currently in vogue.
Collapse
Affiliation(s)
- Moong Yan Leong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia
| | - Yeo Lee Kong
- Department of Engineering and Applied Science, America Degree Program, Taylor's University Lakeside Campus, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia
| | - Kevin Burgess
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, TX 77842, USA
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia
| |
Collapse
|
152
|
Mulla MY, Isacsson P, Dobryden I, Beni V, Östmark E, Håkansson K, Edberg J. Bio-Graphene Sensors for Monitoring Moisture Levels in Wood and Ambient Environment. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2200235. [PMID: 37020627 PMCID: PMC10069311 DOI: 10.1002/gch2.202200235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/31/2023] [Indexed: 06/19/2023]
Abstract
Wood is an inherently hygroscopic material which tends to absorb moisture from its surrounding. Moisture in wood is a determining factor for the quality of wood being employed in construction, since it causes weakening, deformation, rotting, and ultimately leading to failure of the structures resulting in costs to the economy, the environment, and to the safety of residents. Therefore, monitoring moisture in wood during the construction phase and after construction is vital for the future of smart and sustainable buildings. Employing bio-based materials for the construction of electronics is one way to mitigate the environmental impact of such electronics. Herein, a bio-graphene sensor for monitoring the moisture inside and around wooden surfaces is fabricated using laser-induced graphitization of a lignin-based ink precursor. The bio-graphene sensors are used to measure humidity in the range of 10% up to 90% at 25 °C. Using laser induced graphitization, conductor resistivity of 18.6 Ω sq-1 is obtained for spruce wood and 57.1 Ω sq-1 for pine wood. The sensitivity of sensors fabricated on spruce and pine wood is 2.6 and 0.74 MΩ per % RH. Surface morphology and degree of graphitization are investigated using scanning electron microscopy, Raman spectroscopy, and thermogravimetric analysis methods.
Collapse
Affiliation(s)
- Mohammad Yusuf Mulla
- Printed‐, Bio‐ and Organic ElectronicsRISE Research Institutes of SwedenBredgatan 35NorrköpingSE‐602 21Sweden
- Digital Cellulose CenterBredgatan 35NorrköpingSE‐602 21Sweden
| | - Patrik Isacsson
- Digital Cellulose CenterBredgatan 35NorrköpingSE‐602 21Sweden
- Department of Science and Technology (ITN)Laboratory of Organic ElectronicsLinköping UniversityNorrköpingSE‐601 74Sweden
- Ahlstrom Group InnovationApprieu38140France
| | - Illia Dobryden
- Bioeconomy and HealthRISE Research Institutes of SwedenDrottning Kristinas väg 61StockholmSE‐114 28Sweden
| | - Valerio Beni
- Printed‐, Bio‐ and Organic ElectronicsRISE Research Institutes of SwedenBredgatan 35NorrköpingSE‐602 21Sweden
- Digital Cellulose CenterBredgatan 35NorrköpingSE‐602 21Sweden
| | - Emma Östmark
- Digital Cellulose CenterBredgatan 35NorrköpingSE‐602 21Sweden
- Stora Enso ABInnovation Centre for BiomaterialsBox 70395StockholmSE‐107 24Sweden
| | - Karl Håkansson
- Digital Cellulose CenterBredgatan 35NorrköpingSE‐602 21Sweden
- Bioeconomy and HealthRISE Research Institutes of SwedenDrottning Kristinas väg 61StockholmSE‐114 28Sweden
| | - Jesper Edberg
- Printed‐, Bio‐ and Organic ElectronicsRISE Research Institutes of SwedenBredgatan 35NorrköpingSE‐602 21Sweden
- Digital Cellulose CenterBredgatan 35NorrköpingSE‐602 21Sweden
| |
Collapse
|
153
|
Harrison TR, Gupta VK, Alam P, Perriman AW, Scarpa F, Thakur VK. From trash to treasure: Sourcing high-value, sustainable cellulosic materials from living bioreactor waste streams. Int J Biol Macromol 2023; 233:123511. [PMID: 36773882 DOI: 10.1016/j.ijbiomac.2023.123511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/16/2023] [Accepted: 01/29/2023] [Indexed: 02/11/2023]
Abstract
The appreciation of how conventional and fossil-based materials could be harmful to our planet is growing, especially when considering single-use and non-biodegradable plastics manufactured from fossil fuels. Accordingly, tackling climate change and plastic waste pollution entails a more responsible approach to sourcing raw materials and the adoption of less destructive end-of-life pathways. Livestock animals, in particular ruminants, process plant matter using a suite of mechanical, chemical and biological mechanisms through the act of digestion. The manure from these "living bioreactors" is ubiquitous and offers a largely untapped source of lignocellulosic biomass for the development of bio-based and biodegradable materials. In this review, we assess recent studies made into manure-based cellulose materials in terms of their material characteristics and implications for sustainability. Despite the surprisingly diverse body of research, it is apparent that progress towards the commercialisation of manure-derived cellulose materials is hindered by a lack of truly sustainable options and robust data to assess the performance against conventional materials alternatives. Nanocellulose, a natural biopolymer, has been successfully produced by living bioreactors and is presented as a candidate for future developments. Life cycle assessments from non-wood sources are however minimal, but there are some initial indications that manure-derived nanocellulose would offer environmental benefits over traditional wood-derived sources.
Collapse
Affiliation(s)
- Thomas R Harrison
- Biorefining and Advanced Materials Research Centre, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Institute for Materials and Processes, The University of Edinburgh, Edinburgh, UK
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Centre, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| | - Parvez Alam
- Institute for Materials and Processes, The University of Edinburgh, Edinburgh, UK
| | - Adam Willis Perriman
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK; Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia; John Curtain School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Fabrizio Scarpa
- Bristol Composites Institute, University of Bristol, Bristol BS8 1TR, UK
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India.
| |
Collapse
|
154
|
Superhydrophobic film from silicone-modified nanocellulose and waterborne polyurethane through simple sanding process. Int J Biol Macromol 2023; 232:123431. [PMID: 36702039 DOI: 10.1016/j.ijbiomac.2023.123431] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
How to improve the water and pollution resistance of films has been a major stumbling block in applications of waterborne coatings. To solve this problem, a new strategy was developed to construct waterborne superhydrophobic polyurethane composite films by modifying cellulose nanocrystal (CNC) with polysiloxane and doping the modified CNC into waterborne polyurethane (WPU). The super-hydrophobic functionalization with a water contact angle >150° was achieved by simple sanding. The effects of CNC on the morphology, thermal, mechanical, and hydrophobic properties of the obtained superhydrophobic composite films were investigated. The simple sanding process formed a large number of rough porous structures on the surface of the film, which improved the superhydrophobic properties of the film. And after 30 sanding cycles, the film still had excellent hydrophobicity (water contact angle >150°). This easy and effective method for the preparation of superhydrophobic films has great practical application value in the area of waterborne coatings.
Collapse
|
155
|
Jirathampinyo S, Chumchoochart W, Tinoi J. Integrated Biobased Processes for Nanocellulose Preparation from Rice Straw Cellulose. Processes (Basel) 2023. [DOI: 10.3390/pr11041006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
High-potential nanomaterials were derived from rice straw using the integrated biobased processes of enzymatic hydrolysis with green organic acid hydrolysis assisted with ultrasonication pretreatment. The optimization condition of nanocellulose preparation by enzymatic hydrolysis via central composite design (CCD) achieved a maximum nanocellulose content of 32.37 ± 0.47% using a cellulase concentration of 107.06 U/mL and 0.13% (w/w) of rice straw cellulose. The ultrasonication-assisted pretreatment prior to enzymatic hydrolysis improved nanocellulose preparation to 52.28 ± 1.55%. Integration with oxalic acid hydrolysis increased the nanocellulose content to 64.99 ± 0.16%. Granular nanocellulose was obtained and consisted of a 105–825 nm nanosize with a zeta potential value of −34.5 mV, and nanocellulose suspension showed high stability without aggregation. In addition, the remaining rice straw cellulose after oxalic acid was microcrystalline nanocellulose. All prepared nanocellulose represented a functional group as original cellulose but had a low crystallinity index (CrI) of 15.68% that could be classified as amorphous nanocellulose. Based on their characteristics, all nanocellose could be further applied in food, cosmetics, and pharmaceuticals. Moreover, the results indicated that the rice straw could be an alternative non-edible cellulose source for preparing potential nanocellulose via a controlled hydrolysis process.
Collapse
|
156
|
Sapuan SM, Harussani MM, Ismail AH, Zularifin Soh NS, Mohamad Azwardi MI, Siddiqui VU. Development of nanocellulose fiber reinforced starch biopolymer composites: a review. PHYSICAL SCIENCES REVIEWS 2023. [DOI: 10.1515/psr-2022-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Abstract
Abstract
In the last few years, there are rising numbers for environmental waste due to factors such as plastic based food packaging that really need to get enough attention in order to prevent the issue from becoming worse and bringing disaster to society. Thus, the uses of plastic composite materials need to be reduced and need to be replaced with materials that are natural and have low degradation to preserve nature. Based on the statistics for the global, the production of plastic has been roughly calculated for passing 400 million metric tons every year and has a high probability of approaching the value of 500 million metric tons at the year of 2025 and this issue needs to be counteracted as soon as possible. Due to that, the increasing number for recent development of natural biopolymer, as an example starch, has been investigated as the substitution for the non-biodegradable biopolymer. Besides, among all biodegradable polymers, starch has been considered as promising substitution polymer due to its renewability, easy availability, and biodegradability. Apart from that, by the reinforcement from the nanocellulose, starch fiber has an increasing in terms of mechanical, barrier and thermal properties. In this review paper, we will be discussing the up-to-date development of nanocellulose fiber reinforced starch biopolymer composites throughout this century.
Collapse
Affiliation(s)
- Salit Mohd Sapuan
- Department of Mechanical and Manufacturing Engineering , Advanced Engineering Materials and Composites (AEMC) Research Centre, Universiti Putra Malaysia (UPM) , Serdang , Selangor 43400 , Malaysia
| | - Moklis Muhammad Harussani
- Energy Science and Engineering, Department of Transdisciplinary Science and Engineering , School of Environment and Society, Tokyo Institute of Technology , Meguro 152-8552 , Tokyo , Japan
| | - Aleif Hakimi Ismail
- Department of Mechanical and Manufacturing Engineering , Advanced Engineering Materials and Composites (AEMC) Research Centre, Universiti Putra Malaysia (UPM) , Serdang , Selangor 43400 , Malaysia
| | - Noorashikin Soh Zularifin Soh
- Department of Mechanical and Manufacturing Engineering , Advanced Engineering Materials and Composites (AEMC) Research Centre, Universiti Putra Malaysia (UPM) , Serdang , Selangor 43400 , Malaysia
| | - Mohamad Irsyad Mohamad Azwardi
- Department of Mechanical and Manufacturing Engineering , Advanced Engineering Materials and Composites (AEMC) Research Centre, Universiti Putra Malaysia (UPM) , Serdang , Selangor 43400 , Malaysia
| | - Vasi Uddin Siddiqui
- Department of Mechanical and Manufacturing Engineering , Advanced Engineering Materials and Composites (AEMC) Research Centre, Universiti Putra Malaysia (UPM) , Serdang , Selangor 43400 , Malaysia
| |
Collapse
|
157
|
Alsufyani T, M'sakni NH. Part A: Biodegradable Bio-Composite Film Reinforced with Cellulose Nanocrystals from Chaetomorpha linum into Thermoplastic Starch Matrices. Polymers (Basel) 2023; 15:polym15061542. [PMID: 36987321 PMCID: PMC10058665 DOI: 10.3390/polym15061542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
In recent years, macroalgae and microalgae have played a significant role in the production of organic matter, fiber, and minerals on Earth. They contribute to both technical and medicinal applications as well as being a healthy and nutritious food for humans and animals. The theme of this work concerns the development and exploitation of Chaetomorpha linum (C. linum) biomass, through the elaboration of a new starch-based composite film reinforced by cellulose nanocrystals (CL-CNC) derived from C. linum. The first step involves the chemical extraction of CL-CNC from dry C. linum algae biomass. To achieve this, three types of cyclic treatment were adopted: alkalinization (sodium hydroxide) followed by bleaching (sodium hypochlorite) and acid hydrolysis (hydrochloric acid). We then studied the optimization of the development of bio-composite films based on corn starch (CS) reinforced by CL-CNC. These polymeric films were produced using the solution-casting technique followed by the thermal evaporation process. Structure and interactions were modified by using different amounts of glycerol plasticizers (20% and 50%) and different CS:CNC ratios (7:3 and 8:2). These materials were characterized by UV visible (UV/Vis), Fourier Transform Infrared (FTIR) and Scanning Electron Microscope (SEM) spectroscopy to understand structure-property relationships. The result revealed that the best matrix composition is 7:3 (CS: CL-CNC) with 50% glycerol, which reflects that the reinforcing effect of CL-CNC was greater in bio-composites prepared with a 50% plasticizer, revealing the formation of hydrogen bonds between CL-CNC and CS.
Collapse
Affiliation(s)
- Taghreed Alsufyani
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Nour Houda M'sakni
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Laboratory of Interfaces and Advanced Materials (LIMA), Faculty of Science, Monastir University, Monastir 5019, Tunisia
| |
Collapse
|
158
|
Wheat thermoplastic starch composite films reinforced with nanocellulose. PHYSICAL SCIENCES REVIEWS 2023. [DOI: 10.1515/psr-2022-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Abstract
The rising costs of non-renewable plastic and environmental concerns with their industrial usage have encouraged the study and development of renewable products. As an alternative, biological-based materials create a huge opportunity for a healthy and safe environment by replacing non-renewable plastic in a variety of applications. Wheat is one of the world’s most widely cultivated crops. Due to its mechanical and physical properties, wheat starch is vital in the biopolymer industry. Wheat thermoplastic starch exhibits useable properties when plasticizers, elevated temperatures and shear are present. Thus, make it very suitable to be used as packaging material. However, this material suffers from low mechanical properties, which limit its applications. Several studies looked at the feasibility of using plant components which is nanocellulose as a reinforcing agent in wheat starch thermoplastic composites. Overall, the addition of nanocellulose can improve the performance of wheat thermoplastic starch, especially for its mechanical properties. It can potentially be used in several areas of packaging and biomedical. The objective of this review is to discuss several achievements regarding wheat starch/nanocellulose-based composites. Several important aspects of the mechanical performance and the thermal properties of the composites were evaluated. The discussion on wheat starch and nanocellulose was also tackled in this review.
Collapse
|
159
|
Potato thermoplastic starch nanocomposite films reinforced with nanocellulose. PHYSICAL SCIENCES REVIEWS 2023. [DOI: 10.1515/psr-2022-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Abstract
Potato is a widely available feedstock with biocompatibility and biodegradability properties, making it a strong candidate for producing thermoplastic starch. The application of thermoplastic starch to replace petroleum-based plastic as a sustainable and environmentally friendly approach led to its further improvement through various techniques such as modification and filler reinforcement. Numerous studies have been done addressing the properties enhancement of potato thermoplastic starch through filler reinforcement including nanocellulose. This review focus on the recent and future potential of potato-based starch as one of the feedstocks for producing potato thermoplastic starch composites reinforced with nanocellulose.
Collapse
|
160
|
Kröger M, Badara O, Pääkkönen T, Schlapp-Hackl I, Hietala S, Kontturi E. Efficient Isolation Method for Highly Charged Phosphorylated Cellulose Nanocrystals. Biomacromolecules 2023; 24:1318-1328. [PMID: 36749901 PMCID: PMC10015457 DOI: 10.1021/acs.biomac.2c01363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Phosphorylation of cellulose nanocrystals (CNCs) has remained a marginal activity despite the undisputed application potential in flame-retardant materials, sustainable high-capacity ion-exchange materials, or substrates for biomineralization among others. This is largely due to strenuous extraction methods prone to a combination of poor reproducibility, low degrees of substitution, disappointing yields, and impractical reaction sequences. Here, we demonstrate an improved methodology relying on the modification routines for phosphorylated cellulose nanofibers and hydrolysis by gaseous HCl to isolate CNCs. This allows us to overcome the aforementioned shortcomings and to reliably and reproducibly extract phosphorylated CNCs with exceptionally high surface charge (∼2000 mmol/kg) in a straightforward routine that minimizes water consumption and maximizes yields. The CNCs were characterized by NMR, ζpotential, conductometric titration, thermogravimetry, elemental analysis, wide-angle X-ray scattering, transmission electron microscopy, and atomic force microscopy.
Collapse
Affiliation(s)
- Marcel Kröger
- Department
of Bioproducts and Biosystems, Aalto University, FI-00076 Aalto, Finland
| | - Olamide Badara
- Department
of Bioproducts and Biosystems, Aalto University, FI-00076 Aalto, Finland
| | - Timo Pääkkönen
- Department
of Bioproducts and Biosystems, Aalto University, FI-00076 Aalto, Finland
| | - Inge Schlapp-Hackl
- Department
of Bioproducts and Biosystems, Aalto University, FI-00076 Aalto, Finland
| | - Sami Hietala
- Department
of Chemistry, University of Helsinki, PB 55, FI-00014 Helsinki, Finland
| | - Eero Kontturi
- Department
of Bioproducts and Biosystems, Aalto University, FI-00076 Aalto, Finland
| |
Collapse
|
161
|
Solhi L, Guccini V, Heise K, Solala I, Niinivaara E, Xu W, Mihhels K, Kröger M, Meng Z, Wohlert J, Tao H, Cranston ED, Kontturi E. Understanding Nanocellulose-Water Interactions: Turning a Detriment into an Asset. Chem Rev 2023; 123:1925-2015. [PMID: 36724185 PMCID: PMC9999435 DOI: 10.1021/acs.chemrev.2c00611] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Modern technology has enabled the isolation of nanocellulose from plant-based fibers, and the current trend focuses on utilizing nanocellulose in a broad range of sustainable materials applications. Water is generally seen as a detrimental component when in contact with nanocellulose-based materials, just like it is harmful for traditional cellulosic materials such as paper or cardboard. However, water is an integral component in plants, and many applications of nanocellulose already accept the presence of water or make use of it. This review gives a comprehensive account of nanocellulose-water interactions and their repercussions in all key areas of contemporary research: fundamental physical chemistry, chemical modification of nanocellulose, materials applications, and analytical methods to map the water interactions and the effect of water on a nanocellulose matrix.
Collapse
Affiliation(s)
- Laleh Solhi
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Valentina Guccini
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Katja Heise
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Iina Solala
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Elina Niinivaara
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Department of Wood Science, University of British Columbia, Vancouver, British ColumbiaV6T 1Z4, Canada
| | - Wenyang Xu
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Laboratory of Natural Materials Technology, Åbo Akademi University, TurkuFI-20500, Finland
| | - Karl Mihhels
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Marcel Kröger
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Zhuojun Meng
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325001, China
| | - Jakob Wohlert
- Wallenberg Wood Science Centre (WWSC), Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044Stockholm, Sweden
| | - Han Tao
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Emily D Cranston
- Department of Wood Science, University of British Columbia, Vancouver, British ColumbiaV6T 1Z4, Canada.,Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British ColumbiaV6T 1Z3, Canada
| | - Eero Kontturi
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| |
Collapse
|
162
|
Prilepskii A, Nikolaev V, Klaving A. Conductive bacterial cellulose: From drug delivery to flexible electronics. Carbohydr Polym 2023; 313:120850. [PMID: 37182950 DOI: 10.1016/j.carbpol.2023.120850] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
Bacterial cellulose (BC) is a chemically pure, non-toxic, and non-pyrogenic natural polymer with high mechanical strength and a complex fibrillar porous structure. Due to these unique biological and physical properties, BC has been amply used in the food industry and, to a somewhat lesser extent, in medicine and cosmetology. To expand its application the BC structure can be modified. This review presented some recent developments in electrically conductive BC-based composites. The as-synthesized BC is an excellent dielectric. Conductive polymers, graphene oxide, nanoparticles and other materials are used to provide it with conductive properties. Conductive bacterial cellulose (CBC) is currently investigated in numerous areas including electrically conductive scaffolds for tissue regeneration, implantable and wearable biointerfaces, flexible batteries, sensors, EMI shielding composites. However, there are several issues to be addressed before CBC composites can enter the market, namely, composite mechanical strength reduction, porosity decrease, change in chemical characteristics. Some of them can be addressed both at the stage of synthesis, biologically, or by adding (nano)materials with the required properties to the BC structure. We propose several solutions to meet the challenges and suggest some promising BC applications.
Collapse
|
163
|
Zafari R, Mendonça FG, Tom Baker R, Fauteux-Lefebvre C. Efficient SO2 capture using an amine-functionalized, nanocrystalline cellulose-based adsorbent. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
164
|
Gyanjyoti A, Guleria P, Awasthi A, Singh K, Kumar V. Recent advancement in fluorescent materials for optical sensing of pesticides. MATERIALS TODAY COMMUNICATIONS 2023; 34:105193. [DOI: 10.1016/j.mtcomm.2022.105193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
165
|
Bikiaris ND, Koumentakou I, Samiotaki C, Meimaroglou D, Varytimidou D, Karatza A, Kalantzis Z, Roussou M, Bikiaris RD, Papageorgiou GZ. Recent Advances in the Investigation of Poly(lactic acid) (PLA) Nanocomposites: Incorporation of Various Nanofillers and their Properties and Applications. Polymers (Basel) 2023; 15:1196. [PMID: 36904437 PMCID: PMC10007491 DOI: 10.3390/polym15051196] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
Poly(lactic acid) (PLA) is considered the most promising biobased substitute for fossil-derived polymers due to its compostability, biocompatibility, renewability, and good thermomechanical properties. However, PLA suffers from several shortcomings, such as low heat distortion temperature, thermal resistance, and rate of crystallization, whereas some other specific properties, i.e., flame retardancy, anti-UV, antibacterial or barrier properties, antistatic to conductive electrical characteristics, etc., are required by different end-use sectors. The addition of different nanofillers represents an attractive way to develop and enhance the properties of neat PLA. Numerous nanofillers with different architectures and properties have been investigated, with satisfactory achievements, in the design of PLA nanocomposites. This review paper overviews the current advances in the synthetic routes of PLA nanocomposites, the imparted properties of each nano-additive, as well as the numerous applications of PLA nanocomposites in various industrial fields.
Collapse
Affiliation(s)
- Nikolaos D. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Ioanna Koumentakou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Christina Samiotaki
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Despoina Meimaroglou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Despoina Varytimidou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Anastasia Karatza
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Zisimos Kalantzis
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Magdalini Roussou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Rizos D. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - George Z. Papageorgiou
- Department of Chemistry, University of Ioannina, P.O. Box 1186, GR-45110 Ioannina, Greece
| |
Collapse
|
166
|
Aulitto M, Castaldo R, Avolio R, Errico ME, Xu YQ, Gentile G, Contursi P. Sustainable and Green Production of Nanostructured Cellulose by a 2-Step Mechano-Enzymatic Process. Polymers (Basel) 2023; 15:polym15051115. [PMID: 36904355 PMCID: PMC10006998 DOI: 10.3390/polym15051115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/09/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Nanostructured cellulose (NC) represents an emerging sustainable biomaterial for diverse biotechnological applications; however, its production requires hazardous chemicals that render the process ecologically unfriendly. Using commercial plant-derived cellulose, an innovative strategy for NC production based on the combination of mechanical and enzymatic approaches was proposed as a sustainable alternative to conventional chemical procedures. After ball milling, the average length of the fibers was reduced by one order of magnitude (down to 10-20 μm) and the crystallinity index decreased from 0.54 to 0.07-0.18. Moreover, a 60 min ball milling pre-treatment followed by 3 h Cellic Ctec2 enzymatic hydrolysis led to NC production (15% yield). Analysis of the structural features of NC obtained by the mechano-enzymatic process revealed that the diameters of the obtained cellulose fibrils and particles were in the range of 200-500 nm and approximately 50 nm, respectively. Interestingly, the film-forming property on polyethylene (coating ≅ 2 μm thickness) was successfully demonstrated and a significant reduction (18%) of the oxygen transmission rate was obtained. Altogether, these findings demonstrated that nanostructured cellulose could be successfully produced using a novel, cheap, and rapid 2-step physico-enzymatic process that provides a potential green and sustainable route that could be exploitable in future biorefineries.
Collapse
Affiliation(s)
- Martina Aulitto
- Department of Biology, Università degli Studi di Napoli Federico II, 80138 Napoli, Italy
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Rachele Castaldo
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy (CNR), 80078 Pozzuoli, Italy
| | - Roberto Avolio
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy (CNR), 80078 Pozzuoli, Italy
| | - Maria Emanuela Errico
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy (CNR), 80078 Pozzuoli, Italy
| | - Yong-Quan Xu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9P South Meiling Road, Hangzhou 310008, China
| | - Gennaro Gentile
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy (CNR), 80078 Pozzuoli, Italy
- Correspondence: (G.G.); (P.C.)
| | - Patrizia Contursi
- Department of Biology, Università degli Studi di Napoli Federico II, 80138 Napoli, Italy
- Correspondence: (G.G.); (P.C.)
| |
Collapse
|
167
|
Preparation and research of PCL/cellulose composites: Cellulose derived from agricultural wastes. Int J Biol Macromol 2023; 235:123785. [PMID: 36822283 DOI: 10.1016/j.ijbiomac.2023.123785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/31/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023]
Abstract
For the rational use of agricultural wastes, bagasse, orange peel and wheat bran were used to fabricate bio-based polymer materials. Cellulose was extracted from the three different agricultural wastes, and poly(ε-caprolactone) (PCL) was used as the matrix material. PCL was mixed with nanocrystalline cellulose (CNC), extracted bagasse cellulose (GC), orange peel cellulose (JC) and wheat bran cellulose (MC) by solution casting. Morphology and structure of the extracted cellulose were studied by Scanning Electron Microscope, Fourier Infrared spectrometer, thermogravimetry and X-ray diffractometer. The influence of GC, JC, MC on the crystallization process and mechanical properties of PCL was investigated by DSC and tensile test. Experimental results show that the addition of CNC, GC, JC, MC increases the crystallization temperature of PCL, accelerates the crystallization process of PCL, and improves the tensile property of PCL.
Collapse
|
168
|
Mahmoud SM, Ali SH, Omar MMA. Cationic cellulose nanocrystals as sustainable green material for multi biological applications via ξ potential. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023:1-25. [PMID: 36752027 DOI: 10.1080/09205063.2023.2177474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The present study aims to disclose the activity of cationic cellulose nanocrystals (CNCs) as a promising multifunctional green nanomaterial with applications in biological aspects. The basic reason behind multifunctional behavior is zeta potential and size distribution of nano biopolymers; exhibit a remarkable physical and biological activity compared to normal molecules.The preliminary characterized studied using absorption spectral analysis showed strong absorption peak indicating that spectrum curves can be screen by UV spectra at wavelength range 200-400nm. Ultrastructural studies (SEM-EDS and TEM), manifest that CNCs are elliptical particles in shape. Also, TEM show CNCs are the ideal illustration of zero-dimensional (0-D) NPs, less than 5.1 nm in diameter with Cationic charge and similar results in size distribution by TEM. Nonetheless, developed as antioxidant activity IC50 was 1467 ± 25.9 µg/mL, antimicrobial activity tested G-ve strains, but not affected on tested G+ve strains and tested fungi. Evaluating toxicity effect of cationic CNCs against human blood erythrocytes (RBCs) and Lymphocyte Proliferation and the end point evaluate by comet assay, which proven no cytotoxic effect. Also, a high dose 500 µg/mL of CNCs highly significant (p < 0.05) reduction in cell viability of Caco-2 cancer cells after 24 h. incubation time, whereas the IC50 was 1884 ± 19.46 µg/mL. Moreover, genotoxic assay indicates Caco-2 cells cause apoptosis with no fragmentation in DNA. Undoubtedly, the obtained results brought about by the interaction of layers carrying opposing charges. Additionally, there is a balance between hydrophilic contact and electrostatic attraction. That emphasizes how the cationic CNCs have excellent potential for use as antioxidants, antimicrobials, and anticancer agents.
Collapse
Affiliation(s)
- Sara Mohamed Mahmoud
- Biotechnology Department, Faculty of Graduate Studies and Environmental Researches, Ain Shams University, Cairo, Egypt
| | - Safwat Hassan Ali
- Biochemistry Department, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Mohamed M A Omar
- Biochemistry Department, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| |
Collapse
|
169
|
Review on Hybrid Reinforced Polymer Matrix Composites with Nanocellulose, Nanomaterials, and Other Fibers. Polymers (Basel) 2023; 15:polym15040984. [PMID: 36850267 PMCID: PMC9959991 DOI: 10.3390/polym15040984] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/18/2023] Open
Abstract
The use of composite materials has seen many new innovations for a large variety of applications. The area of reinforcement in composites is also rapidly evolving with many new discoveries, including the use of hybrid fibers, sustainable materials, and nanocellulose. In this review, studies on hybrid fiber reinforcement, the use of nanocellulose, the use of nanocellulose in hybrid forms, the use of nanocellulose with other nanomaterials, the applications of these materials, and finally, the challenges and opportunities (including safety issues) of their use are thoroughly discussed. This review will point out new prospects for the composite materials world, enabling the use of nano- and micron-sized materials together and creating value-added products at the industrial scale. Furthermore, the use of hybrid structures consisting of two different nano-materials creates many novel solutions for applications in electronics and sensors.
Collapse
|
170
|
Raza S, Ghasali E, Orooji Y, Lin H, Karaman C, Dragoi EN, Erk N. Two dimensional (2D) materials and biomaterials for water desalination; structure, properties, and recent advances. ENVIRONMENTAL RESEARCH 2023; 219:114998. [PMID: 36481367 DOI: 10.1016/j.envres.2022.114998] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/22/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND An efficient solution to the global freshwater dilemma is desalination. MXene, Molybdenum Disulfide (MoS2), Graphene Oxide, Hexagonal Boron Nitride, and Phosphorene are just a few examples of two-dimensional (2D) materials that have shown considerable promise in the development of 2D materials for water desalination. However, other promising materials for desalinating water are biomaterials. The benefits of bio-materials are their wide distribution, lack of toxicity, and superior capacity for water desalination. METHODS For the rational use of water and the advancement of sustainable development, it is of the utmost importance to research 2D-dimensional materials and biomaterials that are effective for water desalination. The scientific community has concentrated on wastewater remediation using bio-derived materials, such as nanocellulose, chitosan, bio-char, bark, and activated charcoal generated from plant sources, among the various endeavors to enhance access to clean water. Moreover, the 2D-materials and biomaterials may have ushered in a new age in the production of desalination materials and created a promising future. RESULTS The present review article focuses on and reviews the progress of 2D materials and biomaterials for water desalination. Their properties, surface, and structure, combined with water desalination applications, are highlighted. Further, the practicability and potential future directions of 2D materials and biomaterials are proposed. Thus, the current work provides information and discernments for developing novel 2D materials and biomaterials for wastewater desalination. Moreover, it aims to promote the contribution and advancement of materials for water desalination, fabrication, and industrial production.
Collapse
Affiliation(s)
- Saleem Raza
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Ehsan Ghasali
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Yasin Orooji
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China.
| | - Hongjun Lin
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Ceren Karaman
- Departmen of Electricity and Energy, Akdeniz University, Antalya, 07070, Turkey; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - Elena Niculina Dragoi
- "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University, Bld. D. Mangeron No 73, 700050, Iasi, Romania.
| | - Nevin Erk
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey
| |
Collapse
|
171
|
Abdullatif Y, Sodiq A, Mir N, Bicer Y, Al-Ansari T, El-Naas MH, Amhamed AI. Emerging trends in direct air capture of CO 2: a review of technology options targeting net-zero emissions. RSC Adv 2023; 13:5687-5722. [PMID: 36816069 PMCID: PMC9930410 DOI: 10.1039/d2ra07940b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/24/2023] [Indexed: 02/17/2023] Open
Abstract
The increasing concentration of carbon dioxide (CO2) in the atmosphere has compelled researchers and policymakers to seek urgent solutions to address the current global climate change challenges. In order to keep the global mean temperature at approximately 1.5 °C above the preindustrial era, the world needs increased deployment of negative emission technologies. Among all the negative emissions technologies reported, direct air capture (DAC) is positioned to deliver the needed CO2 removal in the atmosphere. DAC technology is independent of the emissions origin, and the capture machine can be located close to the storage or utilization sites or in a location where renewable energy is abundant or where the price of energy is low-cost. Notwithstanding these inherent qualities, DAC technology still has a few drawbacks that need to be addressed before the technology can be widely deployed. As a result, this review focuses on emerging trends in direct air capture (DAC) of CO2, the main drivers of DAC systems, and the required development for commercialization. The main findings point to undeniable facts that DAC's overall system energy requirement is high, and it is the main bottleneck in DAC commercialization.
Collapse
Affiliation(s)
- Yasser Abdullatif
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation Education City Doha Qatar
- Qatar Environment and Energy Institute (QEERI) Doha Qatar
| | - Ahmed Sodiq
- Qatar Environment and Energy Institute (QEERI) Doha Qatar
| | - Namra Mir
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation Education City Doha Qatar
| | - Yusuf Bicer
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation Education City Doha Qatar
| | - Tareq Al-Ansari
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation Education City Doha Qatar
| | | | | |
Collapse
|
172
|
Pascoli DU, Dichiara A, Gustafson R, Bura R. A Robust Process to Produce Lignocellulosic Nanofibers from Corn Stover, Reed Canary Grass, and Industrial Hemp. Polymers (Basel) 2023; 15:polym15040937. [PMID: 36850221 PMCID: PMC9967869 DOI: 10.3390/polym15040937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/04/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
The use of agricultural waste biomass for nanocellulose production has gained interest due to its environmental and economic benefits compared to conventional bleached pulp feedstock. However, there is still a need to establish robust process technologies that can accommodate the variability of waste feedstocks and to understand the effects of feedstock characteristics on the final nanofiber properties. Here, lignocellulosic nanofibers with unique properties are produced from various waste biomass based on a simple and low-cost process using mild operating conditions. The process robustness is demonstrated by diversifying the feedstock, ranging from food crop waste (corn stover) to invasive grass species (reed canary grass) and industrial lignocellulosic residues (industrial hemp). This comprehensive study provides a thorough examination of the influence of the feedstocks' physico-chemical characteristics on the conversion treatment, including process yield, degree of delignification, effectiveness of nanofibrillation, fiber morphology, surface charge, and density. Results show that nanofibers have been successfully produced from all feedstocks, with minor to no adjustments to process conditions. This work provides a framework for future studies to engineer nanocellulose with specific properties by taking advantage of biomass feedstocks' intrinsic characteristics to enable versatile applications.
Collapse
Affiliation(s)
- Danielle Uchimura Pascoli
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA
- VERDE Nanomaterials Inc., Davis, CA 95618, USA
- Correspondence: (D.U.P.); (R.B.)
| | - Anthony Dichiara
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA
| | - Rick Gustafson
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA
| | - Renata Bura
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA
- Correspondence: (D.U.P.); (R.B.)
| |
Collapse
|
173
|
Nguyen SV, Lee BK. Multifunctional nanocomposite based on polyvinyl alcohol, cellulose nanocrystals, titanium dioxide, and apple peel extract for food packaging. Int J Biol Macromol 2023; 227:551-563. [PMID: 36528148 DOI: 10.1016/j.ijbiomac.2022.12.073] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Although polyvinyl alcohol (PVA) is a potential biodegradable food packaging material, it has several critical limitations: low mechanical strength, poor ultraviolet (UV) and water vapor barrier properties, and lack of antioxidant and antimicrobial properties. Previous studies have used cellulose nanocrystals (CNCs) to improve the mechanical and water vapor barrier properties of the PVA matrix. In this study, a multifunctional nanocomposite for food packaging applications was developed by incorporating titanium dioxide (TiO2) and apple peel extract (APE) into a PVA/CNC matrix. The combination of TiO2 and APE in the nanocomposites not only enhanced multifunctionality but also improved mechanical and barrier properties. The mechanical strength and water vapor barrier properties of PVA/CNC/TiO2/APE (5 wt% TiO2 and 20 wt% APE in the PVA/CNC matrix containing 5 wt% of CNCs) increased by 49.9 % and 36.6 % compared to PVA. Furthermore, PVA/CNC/TiO2/APE exhibited an excellent UV barrier (UV-protection factor of 1012.73) and high antioxidant and antimicrobial properties. In food packaging tests with fresh cherry tomatoes and potatoes, PVA/CNC/TiO2/APE effectively protected samples from external influences and prolonged their self-life, demonstrating the potential use of this nanocomposite as a biodegradable and multifunctional food packaging material.
Collapse
Affiliation(s)
- Son Van Nguyen
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Bong-Kee Lee
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea.
| |
Collapse
|
174
|
Sudhaik A, Raizada P, Ahamad T, Alshehri SM, Nguyen VH, Van Le Q, Thakur S, Thakur VK, Selvasembian R, Singh P. Recent advances in cellulose supported photocatalysis for pollutant mitigation: A review. Int J Biol Macromol 2023; 226:1284-1308. [PMID: 36574582 DOI: 10.1016/j.ijbiomac.2022.11.241] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
In recent times, green chemistry or "green world" is a new and effective approach for sustainable environmental remediation. Among all biomaterials, cellulose is a vital material in research and green chemistry. Cellulose is the most commonly used natural biopolymer because of its distinctive and exceptional properties such as reproducibility, cost-effectiveness, biocompatibility, biodegradability, and universality. Generally, coupling cellulose with other nanocomposite materials enhances the properties like porosity and specific surface area. The polymer is environment-friendly, bioresorbable, and sustainable which not only justifies the requirements of a good photocatalyst but boosts the adsorption ability and degradation efficiency of the nanocomposite. Hence, knowing the role of cellulose to enhance photocatalytic activity, the present review is focused on the properties of cellulose and its application in antibiotics, textile dyes, phenol and Cr(VI) reduction, and degradation. The work also highlighted the degradation mechanism of cellulose-based photocatalysts, confirming cellulose's role as a support material to act as a sink and electron mediator, suppressing the charge carrier's recombination rate and enhancing the charge migration ability. The review also covers the latest progressions, leanings, and challenges of cellulose biomaterials-based nanocomposites in the photocatalysis field.
Collapse
Affiliation(s)
- Anita Sudhaik
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Saudi Arabia
| | - Saad M Alshehri
- Department of Chemistry, College of Science, King Saud University, Saudi Arabia
| | - Van-Huy Nguyen
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam-603103, Tamil Nadu, India
| | - Quyet Van Le
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sourbh Thakur
- Silesian University of Technology, Faculty of Chemistry, Department of Inorganic, Analytical Chemistry and Electrochemistry, B. Krzywoustego 6 Str., 44-100 Gliwice, Poland
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre, Scotland's Rural College, Edinburgh EH9 3JG, Scotland, UK
| | | | - Pardeep Singh
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India.
| |
Collapse
|
175
|
Pahwa R, Ahuja M. Design and Development of Fluconazole-Loaded Nanocellulose-Eudragit Vaginal Drug Delivery System. J Pharm Innov 2023. [DOI: 10.1007/s12247-022-09705-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
176
|
Raju V, Revathiswaran R, Subramanian KS, Parthiban KT, Chandrakumar K, Anoop EV, Chirayil CJ. Isolation and characterization of nanocellulose from selected hardwoods, viz., Eucalyptus tereticornis Sm. and Casuarina equisetifolia L., by steam explosion method. Sci Rep 2023; 13:1199. [PMID: 36681725 PMCID: PMC9867748 DOI: 10.1038/s41598-022-26600-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/16/2022] [Indexed: 01/22/2023] Open
Abstract
Extraction of nanocellulose is challenging, especially from hardwoods due to its complex chemical structure as well as structural hierarchy. In this study, nanocellulose was isolated from wood pulp of two hardwood species, namely Eucalyptus tereticornis Sm. and Casuarina equisetifolia L. by steam explosion process. Pure cellulose wood pulp was obtained through Kraft pulping process followed by alkaline and bleaching pre-treatments. Isolated nanocellulose was characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM), Fourier Transformed Infrared (FTIR) Spectra, Thermogravimetric Analysis (TGA), and X-ray diffraction (XRD) studies. Nanocellulose obtained from both species showed non-significant difference with average diameter of 27.801 nm for eucalyptus and 28.690 nm for casuarina, which was confirmed from TEM and AFM images. FTIR spectra of nanocellulose showed prominent peaks corresponding to cellulose and absence of peaks corresponding to lignin. The elemental purity of nanocellulose was confirmed with EDAX detector. XRD analysis showed the enrichment of crystalline cellulose in nanocellulose, and also confirmed the significant conversion of cellulose I to cellulose II. During TG analysis the untreated fibres started to degrade earlier than the nanocellulose which indicated the higher thermal stability of nanocellulose. Highly entangled network like structure along with high aspect ratio make the nanofibres a versatile material for reinforcing the composites. This successful method can be replicated for industrial level production of cellulose nanofibres.
Collapse
Affiliation(s)
- Vishnu Raju
- Forest College and Research Institute, Tamil Nadu Agricultural University, Mettupalayam, Tamil Nadu, 641301, India.
- Department of Forest Products and Utilization, College of Forestry, Kerala Agricultural University, Thrissur, Kerala, 680656, India.
| | - Revathi Revathiswaran
- Forest College and Research Institute, Tamil Nadu Agricultural University, Mettupalayam, Tamil Nadu, 641301, India
| | | | | | - Kalichamy Chandrakumar
- Department of Bioenergy, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - Elaveetil Vasu Anoop
- Department of Forest Products and Utilization, College of Forestry, Kerala Agricultural University, Thrissur, Kerala, 680656, India
| | | |
Collapse
|
177
|
Kokol V, Novak S, Kononenko V, Kos M, Vivod V, Gunde-Cimerman N, Drobne D. Antibacterial and degradation properties of dialdehyded and aminohexamethylated nanocelluloses. Carbohydr Polym 2023; 311:120603. [PMID: 37028864 DOI: 10.1016/j.carbpol.2023.120603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Dialdehyde cellulose nanofibrils (CNF) and nanocrystals (CNC) were prepared via periodate oxidation (CNF/CNC-ox) and subsequently functionalized with hexamethylenediamine (HMDA) via a Schiff-base reaction, resulting in partially crosslinked micro-sized (0.5-10 μm) particles (CNF/CNC-ox-HMDA) with an aggregation and sedimentation tendency in an aqueous media, as assessed by Dynamic Light Scattering and Scanning Electron Microscopy. The antibacterial efficacy, aquatic in vivo (to Daphnia magna) and human in vitro (to A594 lung cells) toxicities, and degradation profiles in composting soil of all forms of CNF/CNC were assessed to define their safety profile. CNF/CNC-ox-HMDA exhibited higher antibacterial activity than CNF/CNC-ox and higher against Gram-positive S. aureus than Gram-negative E. coli, yielding a bacteria reduction of >90 % after 24 h of exposure at the minimum (≤2 mg/mL), but potentially moderately/aquatic and low/human toxic concentrations (≥50 mg/L). The presence of anionic, un/protonated amino-hydrophobized groups in addition to unconjugated aldehydes of hydrodynamically smaller (<1 μm) CNC-ox-HMDA increased the reduction of both bacteria to log 9 at ≥4 mg/mL and their bactericidal activity. While only CNF/CNC-ox can be considered as biosafe and up to >80 % biodegradable within 24 weeks, this process was inhibited for the CNF/CNC-ox-HMDA. This indicated their different stability, application and disposal after use (composting vs. recycling).
Collapse
Affiliation(s)
- Vanja Kokol
- University of Maribor, Faculty of Mechanical Engineering, Institute of Engineering Materials and Design, Smetanova ulica 17, 2000 Maribor, Slovenia.
| | - Sara Novak
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana, Slovenia.
| | - Veno Kononenko
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana, Slovenia.
| | - Monika Kos
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana, Slovenia.
| | - Vera Vivod
- University of Maribor, Faculty of Mechanical Engineering, Institute of Engineering Materials and Design, Smetanova ulica 17, 2000 Maribor, Slovenia.
| | - Nina Gunde-Cimerman
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana, Slovenia.
| | - Damjana Drobne
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana, Slovenia.
| |
Collapse
|
178
|
Ma Y, Chai X, Bao H, Huang Y, Dong W. Study on nanocellulose isolated from waste chilli stems processing as dietary fiber in biscuits. PLoS One 2023; 18:e0281142. [PMID: 36706130 PMCID: PMC9882701 DOI: 10.1371/journal.pone.0281142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/15/2023] [Indexed: 01/28/2023] Open
Abstract
In order to expand the high added value of waste chilli stems and the recycling of green resources, cellulose in chilli stems was extracted by nitric acid-ethanol method, and nanocellulose was prepared by sulfuric acid hydrolysis method. The results showed that the cellulose content was between 15% and 34.5%. Under the optimum experimental conditions of 60% sulfuric acid concentration, 60°C reaction temperature and 120 min reaction time, the average yield of nanocellulose was 36.42% ±1.36%. Prepared cellulose and nanocellulose had been characterized using scanning electron microscopy, fourier-transform infrared, and x-ray diffraction analysis. The research indicated that the biscuits with acceptable overall quality could be prepared by using the dosage of nanocellulose (7%), and the corresponding biscuits had regular appearance and relatively smooth surface. The total dietary fiber content was positively correlated with different nanocellulose content. Through mice experiments, it was found that the consumption of biscuits containing nanocellulose could significantly reduce the food intake of mice and inhibit the weight growth of mice. Therefore, the research showed that whole wheat biscuits with nanocellulose could be regarded as food rich in dietary fiber. These results provided a basis for exploring the green resource recycling of chilli stems in food processing.
Collapse
Affiliation(s)
- Yongjie Ma
- College of Food and Drug, Luoyang Normal University, Luoyang, Henan Province, China
- * E-mail:
| | - Xuyan Chai
- College of Food and Drug, Luoyang Normal University, Luoyang, Henan Province, China
| | - Hongliang Bao
- Mathematical and Sciences College, Luoyang Normal University, Luoyang, Henan Province, China
| | - Yishuo Huang
- College of Food and Drug, Luoyang Normal University, Luoyang, Henan Province, China
| | - Wenbin Dong
- College of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, Shanxi Province, China
| |
Collapse
|
179
|
Kadim HA, Abd AN. Removing Pollutants from Wastewater Using an Advanced Method. REVISTA DE GESTÃO SOCIAL E AMBIENTAL 2022; 16:e03097. [DOI: 10.24857/rgsa.v16n3-012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Purpose: Preparation of Nano cellulose from cotton lint and pear peels instead of throwing it as waste and cause damage to environment and Comparison between the efficiency of the product of Nano cellulose prepared from cotton lint and NC prepared from pear peels through the characterization of both type of NC by using technique Field emission scanning electron microscopy (FESEM) . finally Applying Murexide dye from the aqueous solution to the surface of both types of extracted Nano cellulose from cotton lint and pear peels for industrial
Methodology: Agricultural wastes is the: cotton lint collected from Diyala, Iraq. Linter is an important by product of the textile industry and pear peels collected from Local market of Iraq as raw material to synthesis of Nano cellulose compound Extraction of cellulose from the cotton lint in several steps as follows: A: Purification step B: Grinding step preparation NC product: The product has been prepared by acid hydrolysis.
Results and Discussion: In the present study, nanocellulose was successfully isolated from various plant fiber sources (cotton lint and pear peels) using acid hydrolysis . The results indicate that the FE-SEM formation of cellulose nano particles followed this method. However, the best results under sonication conditions used are coming from treatment of 30% acid hydrolysis sonicated for 120 min. Nanocellulose for cotton lint is more efficient than nanocellulose for pear peels in removing murexide dye from the aqueous solution, because percentage of the removal of murexide dye from the aqueous solution by NC of cotton lint is higher than the percentage of the removal of murexide dye from the aqueous solution by pear peels. Therefore, nanocellulose for cotton lint will be more efficient in removing pollutants from water.
Collapse
|
180
|
Silva ACQ, Silvestre AJD, Vilela C, Freire CSR. Cellulose and protein nanofibrils: Singular biobased nanostructures for the design of sustainable advanced materials. Front Bioeng Biotechnol 2022; 10:1059097. [PMID: 36582838 PMCID: PMC9793328 DOI: 10.3389/fbioe.2022.1059097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022] Open
Abstract
Polysaccharides and proteins are extensively used for the design of advanced sustainable materials. Owing to the high aspect ratio and specific surface area, ease of modification, high mechanical strength and thermal stability, renewability, and biodegradability, biopolymeric nanofibrils are gaining growing popularity amongst the catalog of nanostructures exploited in a panoply of fields. These include the nanocomposites, paper and packaging, environmental remediation, electronics, energy, and biomedical applications. In this review, recent trends on the use of cellulose and protein nanofibrils as versatile substrates for the design of high-performance nanomaterials are assessed. A concise description of the preparation methodologies and characteristics of cellulosic nanofibrils, namely nanofibrillated cellulose (NFC), bacterial nanocellulose (BNC), and protein nanofibrils is presented. Furthermore, the use of these nanofibrils in the production of sustainable materials, such as membranes, films, and patches, amongst others, as well as their major domains of application, are briefly described, with focus on the works carried out at the BioPol4Fun Research Group (Innovation in BioPolymer based Functional Materials and Bioactive Compounds) from the Portuguese associate laboratory CICECO-Aveiro Institute of Materials (University of Aveiro). The potential for partnership between both types of nanofibrils in advanced material development is also reviewed. Finally, the critical challenges and opportunities for these biobased nanostructures for the development of functional materials are addressed.
Collapse
|
181
|
Thach-Nguyen R, Lam HH, Phan HP, Dang-Bao T. Cellulose nanocrystals isolated from corn leaf: straightforward immobilization of silver nanoparticles as a reduction catalyst. RSC Adv 2022; 12:35436-35444. [PMID: 36540239 PMCID: PMC9742858 DOI: 10.1039/d2ra06689k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/06/2022] [Indexed: 10/29/2023] Open
Abstract
As the most abundant natural biopolymer on earth, celluloses have long-term emerged as a capable platform for diverse purposes. In the context of metal nanoparticles applied to catalysis, the alternatives to traditional catalyst supports by using biomass-derived renewable materials, likely nanocelluloses, have been paid a great effort, in spite of being less exploited. In this study, cellulose nanocrystals were isolated from corn leaf via chemical treatment involving alkalizing, bleaching and acid hydrolysis. The crystallinity of obtained cellulose was evaluated in each step, focusing on the effects of reactant concentration and reaction time. Cellulose nanocrystals were characterized by powder X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), evidencing the presence of cellulose nanospheres (crystallinity index of 67.3% in comparison with 38.4% from untreated raw material) in the size range of 50 nm. Without using any additional surfactants or stabilizers, silver nanoparticles (AgNPs) well-dispersed on the surface of cellulose nanocrystals (silver content of 5.1 wt%) could be obtained by a simple chemical reduction using NaBH4 at room temperature. The catalytic activity was evaluated in the selective reductions of 4-nitrophenol towards 4-aminophenol and methyl orange towards aromatic amine derivatives in water at room temperature. The effects of catalyst amount and reaction time were also studied in both reduction processes, showing near-quantitative conversions within 5 minutes and obeying the pseudo-first-order kinetics, with the apparent kinetic rate constants of 8.9 × 10-3 s-1 (4-nitrophenol) and 13.6 × 10-3 s-1 (methyl orange). The chemical structure of the catalytic system was found to be highly stable during reaction and no metal leaching was detected in reaction medium, evidencing adaptability of cellulose nanocrystals in immobilizing noble metal nanoparticles.
Collapse
Affiliation(s)
- Roya Thach-Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| | - Hoa-Hung Lam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| | - Hong-Phuong Phan
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| | - Trung Dang-Bao
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| |
Collapse
|
182
|
Ahmad H, Anguilano L, Fan M. Microstructural architecture and mechanical properties of empowered cellulose-based aerogel composites via TEMPO-free oxidation. Carbohydr Polym 2022; 298:120117. [DOI: 10.1016/j.carbpol.2022.120117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 12/01/2022]
|
183
|
Thangarasu S, Oh TH. Recent Developments on Bioinspired Cellulose Containing Polymer Nanocomposite Cation and Anion Exchange Membranes for Fuel Cells (PEMFC and AFC). Polymers (Basel) 2022; 14:polym14235248. [PMID: 36501640 PMCID: PMC9738973 DOI: 10.3390/polym14235248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Hydrogen fuel cell (FC) technologies are being worked on as a possible replacement for fossil fuels because they produce a lot of energy and do not pollute the air. In FC, ion-exchange membranes (IEMs) are the vital components for ion transport between two porous electrodes. However, the high production cost of commercialized membranes limits their benefits. Various research has focused on cellulose-based membranes such as IEM with high proton conductivity, and mechanical, chemical, and thermal stabilities to replace the high cost of synthetic polymer materials. In this review, we focus on and explain the recent progress (from 2018 to 2022) of cellulose-containing hybrid membranes as cation exchange membranes (CEM) and anion exchange membranes (AEM) for proton exchange membrane fuel cells (PEMFC) and alkaline fuel cells (AFC). In this account, we focused primarily on the effect of cellulose materials in various membranes on the functional properties of various polymer membranes. The development of hybrid membranes with cellulose for PEMFC and AFC has been classified based on the combination of other polymers and materials. For PEMFC, the sections are associated with cellulose with Nafion, polyaryletherketone, various polymeric materials, ionic liquid, inorganic fillers, and natural materials. Moreover, the cellulose-containing AEM for AFC has been summarized in detail. Furthermore, this review explains the significance of cellulose and cellulose derivative-modified membranes during fuel cell performance. Notably, this review shows the vital information needed to improve the ion exchange membrane in PEMFC and AFC technologies.
Collapse
|
184
|
Syed MH, Zahari MAKM, Khan MMR, Beg MDH, Abdullah N. An overview on recent biomedical applications of biopolymers: Their role in drug delivery systems and comparison of major systems. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
185
|
da S. Ferreira G, da Silva DJ, Rosa DS. Super stable Melaleuca alternifolia essential oil Pickering emulsions stabilized with cellulose nanofibrils: Rheological aspects. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
186
|
Muthamma K, Sunil D. Cellulose as an Eco-Friendly and Sustainable Material for Optical Anticounterfeiting Applications: An Up-to-Date Appraisal. ACS OMEGA 2022; 7:42681-42699. [PMID: 36467930 PMCID: PMC9713864 DOI: 10.1021/acsomega.2c05547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
The falsification of documents, currency, pharmaceuticals, branded goods, clothing, food products, and packaging leads to severe consequences. Counterfeited products can not only pose health risks to consumers but also cause substantial economic losses that can negatively impact the global markets. Unfortunately, most anticounterfeiting strategies are easily duplicated due to rapid technological advancements. Therefore, innovative and cost-effective antiforgery techniques that can offer superior multilevel security features are continuously sought after. Due to the ever-growing global awareness of environmental pollution, renewable and eco-friendly native biopolymers are garnering wide attention in anticounterfeiting applications. This review highlights the potential use of cellulose-based eco-friendly materials to combat the counterfeiting of goods. The initial section of the review focuses on the structure, properties, and chemical modifications of cellulose as a sustainable biomaterial. Further, the topical developments reported on cellulose and nanocellulose-based materials used as fluorescent security inks, films, and papers for achieving protection against counterfeiting are presented. The studies suggest the convenient use of celluose and modified cellulose materials for promising optical antiforgery applications. Furthermore, the scope for future research developments is also discussed based on the current critical challenges in the fabrication of cellulose-based materials and their anticounterfeit applications.
Collapse
|
187
|
Characterization, genome analysis and genetic tractability studies of a new nanocellulose producing Komagataeibacter intermedius isolate. Sci Rep 2022; 12:20520. [PMID: 36443480 PMCID: PMC9705422 DOI: 10.1038/s41598-022-24735-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
Bacterial nanocellulose (BC) is a highly versatile biopolymer currently pursued as a material of choice in varied themes of biomedical and material science research fields. With the aim to extend the biotechnological applications, the genetic tractability of the BC producers within the Komagataeibacter genus and its potential as an alternative host chassis in synthetic biology have been extensively studied. However, such studies have been largely focused on the model Komagataeibacter spp. Here, we present a novel K. intermedius strain capable of utilizing glucose, and glycerol sources for biomass and BC synthesis. Genome assembly identified one bacterial cellulose synthetase (bcs) operon containing the complete gene set encoding the BC biogenesis machinery (bcsI) and three additional copies (bcsII-IV). Investigations on the genetic tractability confirmed plasmid transformation, propagation of vectors with pBBR1 and p15A origin of replications and constitutive and inducible induction of recombinant protein in K. intermedius ENS15. This study provides the first report on the genetic tractability of K. intermedius, serving as starting point towards future genetic engineering of this strain.
Collapse
|
188
|
Candau N, Fernandes JPC, Vasmer E, Maspoch ML. Cellulose nanocrystals as nucleating agents for the strain induced crystallization in natural rubber. SOFT MATTER 2022; 18:8663-8674. [PMID: 36349700 DOI: 10.1039/d2sm01291j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Vulcanized natural rubber (NR)/cellulose nanocrystals (CNC) composites with a CNC content of up to 5 wt% using physical blending and dicumyl peroxide crosslinking were prepared. The tensile properties were investigated at slow and high strain rates. The slow strain rate tests revealed an increase of the elastic modulus concomitant with a decrease of strain at the crystallization onset while increasing the CNC fraction. The high strain rate tests performed near adiabatic conditions demonstrated the ability of the CNC to improve the elastocaloric properties of the NR matrix, with an increase of 30% and 15% of heating and cooling capacities, respectively, in the presence of 3 wt% CNC. Such results were ascribed to (i) a higher thermoelastic effect, due to strain amplification in the NR matrix in the presence of CNC and (ii) a nucleating effect of the CNC on strain induced crystallization. This series of materials can be proposed as a promising eco-friendly alternative to conventional carbon black filled rubber as potential green elastocaloric materials (heating pump, cooling machines).
Collapse
Affiliation(s)
- Nicolas Candau
- Centre Català del Plàstic (CCP) - Universitat Politècnica de Catalunya Barcelona Tech (EEBE-UPC), Av. D'Eduard Maristany, 16, 08019, Spain.
| | | | - Emilien Vasmer
- Centre Català del Plàstic (CCP) - Universitat Politècnica de Catalunya Barcelona Tech (EEBE-UPC), Av. D'Eduard Maristany, 16, 08019, Spain.
| | - Maria Lluisa Maspoch
- Centre Català del Plàstic (CCP) - Universitat Politècnica de Catalunya Barcelona Tech (EEBE-UPC), Av. D'Eduard Maristany, 16, 08019, Spain.
| |
Collapse
|
189
|
Chandran GU, Parappanal AS, S H, Sambhudevan S, Shankar B. A critical review on cellulose nano structures based polymer nanocomposites for packaging applications. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2022.2086813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Greeshma U Chandran
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India
| | | | - Hema S
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India
| | - Sreedha Sambhudevan
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India
| | - Balakrishnan Shankar
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India
| |
Collapse
|
190
|
Magnetic Hydrogel Composite for Wastewater Treatment. Polymers (Basel) 2022; 14:polym14235074. [PMID: 36501469 PMCID: PMC9741452 DOI: 10.3390/polym14235074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
Nanocomposite hydrogels are highly porous colloidal structures with a high adsorption capacity, making them promising materials for wastewater treatment. In particular, magnetic nanoparticle (MNP) incorporated hydrogels are an excellent adsorbent for aquatic pollutants. An added advantage is that, with the application of an external magnetic field, magnetic hydrogels can be collected back from the wastewater system. However, magnetic hydrogels are quite brittle and structurally unstable under compact conditions such as in fixed-bed adsorption columns. To address this issue, this study demonstrates a unique hydrogel composite bead structure, providing a good adsorption capacity and superior compressive stress tolerance due to the presence of hollow cores within the beads. The gel beads contain alginate polymer as the matrix and MNP-decorated cellulose nanofibres (CNF) as the reinforcing agent. The MNPs within the gel provide active adsorption functionality, while CNF provide a good stress transfer phenomenon when the beads are under compressive stress. Their adsorption performance is evaluated in a red mud solution for pollutant adsorption. Composite gel beads have shown high performance in adsorbing metal (aluminium, potassium, selenium, sodium, and vanadium) and non-metal (sulphur) contaminations. This novel hybrid hydrogel could be a promising alternative to the conventionally used toxic adsorbent, providing environmentally friendly operational benefits.
Collapse
|
191
|
de Cássia Spacki K, Corrêa RCG, Uber TM, Barros L, Ferreira ICFR, Peralta RA, de Fátima Peralta Muniz Moreira R, Helm CV, de Lima EA, Bracht A, Peralta RM. Full Exploitation of Peach Palm ( Bactris gasipaes Kunth): State of the Art and Perspectives. PLANTS (BASEL, SWITZERLAND) 2022; 11:3175. [PMID: 36432904 PMCID: PMC9696370 DOI: 10.3390/plants11223175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
The peach palm (Bactris gasipaes Kunth) is a palm tree native to the Amazon region, with plantations expanding to the Brazilian Southwest and South regions. This work is a critical review of historical, botanical, social, environmental, and nutritional aspects of edible and nonedible parts of the plant. In Brazil, the importance of the cultivation of B. gasipaes to produce palm heart has grown considerably, due to its advantages in relation to other palm species, such as precocity, rusticity and tillering. The last one is especially important, as it makes the exploitation of peach palm hearts, contrary to what happens with other palm tree species, a non-predatory practice. Of special interest are the recent efforts aiming at the valorization of the fruit as a source of carotenoids and starch. Further developments indicate that the B. gasipaes lignocellulosic wastes hold great potential for being upcycled into valuable biotechnological products such as prebiotics, enzymes, cellulose nanofibrils and high fiber flours. Clean technologies are protagonists of the recovery processes, ensuring the closure of the product's life cycle in a "green" way. Future research should focus on expanding and making the recovery processes economically viable, which would be of great importance for stimulating the peach palm production chain.
Collapse
Affiliation(s)
| | - Rúbia Carvalho Gomes Corrêa
- Programa de Pós-Graduação em Tecnologias Limpas, Instituto Cesumar de Ciência, Tecnologia e Inovação—ICETI, Universidade Cesumar—UNICESUMAR, Maringá 87050-900, Brazil
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Thaís Marques Uber
- Departamento de Bioquímica, Universidade Estadual de Maringá, Maringá 87020-900, Brazil
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Rosely Aparecida Peralta
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | | | | | | | - Adelar Bracht
- Departamento de Bioquímica, Universidade Estadual de Maringá, Maringá 87020-900, Brazil
| | - Rosane Marina Peralta
- Departamento de Bioquímica, Universidade Estadual de Maringá, Maringá 87020-900, Brazil
| |
Collapse
|
192
|
Xie Z, Wang X, Chen Z, Jiang H. Palmitoylated cellulose nanocrystal/polycarbonate composite with high mechanical performance and good transparency. J Appl Polym Sci 2022. [DOI: 10.1002/app.53298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhongyuan Xie
- College of Chemical Engineering Nanjing Forestry University Nanjing China
| | - Xingjuan Wang
- College of Chemical Engineering Nanjing Forestry University Nanjing China
| | - Zhangyun Chen
- College of Chemical Engineering Nanjing Forestry University Nanjing China
| | - Hua Jiang
- College of Chemical Engineering Nanjing Forestry University Nanjing China
| |
Collapse
|
193
|
Panthi KP, Gyawali A, Pandeya S, Sharma Bhusal ML, Neupane BB, Tiwari AP, Joshi MK. The Encapsulation of Bioactive Plant Extracts into the Cellulose Microfiber Isolated from G. optiva Species for Biomedical Applications. MEMBRANES 2022; 12:1089. [PMID: 36363644 PMCID: PMC9695381 DOI: 10.3390/membranes12111089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Agricultural waste-based cellulose fibers have gained significant interest for a myriad of applications. Grewia optiva (G. optiva), a plant species, has been widely used for feeding animals, and the small branches' bark is used for making rope. Herein, we have extracted cellulose fibers from the bark of G. optiva species via chemical treatments (including an alkaline treatment and bleaching). The gravimetric analysis revealed that the bark of G. Optiva contains cellulose (63.13%), hemicellulose (13.52%), lignin (15.13%), and wax (2.8%). Cellulose microfibre (CMF) has been synthesized from raw fibre via chemical treatment methods. The obtained cellulose fibers were crosslinked and employed as the matrix to encapsulate the bioactive plant extracts derived from the root of Catharanthus roseus (C. roseus). The microscopic images, XRD, FTIR, and antibacterial/antioxidant activity confirmed the encapsulation of natural extracts in the cellulose microfiber. The microscopic images revealed that the encapsulation of the natural extracts slightly increased the fiber's diameter. The XRD pattern showed that the extracted cellulose microfiber had an average crystalline size of 2.53 nm with a crystalline index of 30.4% compared to the crystalline size of 2.49 nm with a crystalline index of 27.99% for the plant extract incorporated membrane. The water uptake efficiency of the synthesized membrane increased up to 250%. The antimicrobial activity of the composite (the CMF-E membrane) was studied via the zone inhibition against gram-positive and gram-negative bacteria, and the result indicated high antibacterial activity. This work highlighted G. optiva-derived cellulose microfiber as an optimum substrate for antimicrobial scaffolds. In addition, this paper first reports the antimicrobial/antioxidant behavior of the composite membrane of the C. roseus extract blended in the G. optiva microfiber. This work revealed the potential applications of CMF-E membranes for wound healing scaffolds.
Collapse
Affiliation(s)
- Khim Prasad Panthi
- Department of Chemistry, Trichandra Multiple Campus, Tribhuvan University, Kathmandu 44613, Nepal
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44613, Nepal
| | - Aashish Gyawali
- Department of Chemistry, Trichandra Multiple Campus, Tribhuvan University, Kathmandu 44613, Nepal
| | - Shiva Pandeya
- Department of Chemistry, Trichandra Multiple Campus, Tribhuvan University, Kathmandu 44613, Nepal
| | | | | | - Arjun Prasad Tiwari
- Mechanical Engineering and Engineering Science, the University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Mahesh Kumar Joshi
- Department of Chemistry, Trichandra Multiple Campus, Tribhuvan University, Kathmandu 44613, Nepal
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44613, Nepal
| |
Collapse
|
194
|
Hoo DY, Low ZL, Low DYS, Tang SY, Manickam S, Tan KW, Ban ZH. Ultrasonic cavitation: An effective cleaner and greener intensification technology in the extraction and surface modification of nanocellulose. ULTRASONICS SONOCHEMISTRY 2022; 90:106176. [PMID: 36174272 PMCID: PMC9519792 DOI: 10.1016/j.ultsonch.2022.106176] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 05/17/2023]
Abstract
With rising consumer demand for natural products, a greener and cleaner technology, i.e., ultrasound-assisted extraction, has received immense attention given its effective and rapid isolation for nanocellulose compared to conventional methods. Nevertheless, the application of ultrasound on a commercial scale is limited due to the challenges associated with process optimization, high energy requirement, difficulty in equipment design and process scale-up, safety and regulatory issues. This review aims to narrow the research gap by placing the current research activities into perspectives and highlighting the diversified applications, significant roles, and potentials of ultrasound to ease future developments. In recent years, enhancements have been reported with ultrasound assistance, including a reduction in extraction duration, minimization of the reliance on harmful chemicals, and, most importantly, improved yield and properties of nanocellulose. An extensive review of the strengths and weaknesses of ultrasound-assisted treatments has also been considered. Essentially, the cavitation phenomena enhance the extraction efficiency through an increased mass transfer rate between the substrate and solvent due to the implosion of microbubbles. Optimization of process parameters such as ultrasonic intensity, duration, and frequency have indicated their significance for improved efficiency.
Collapse
Affiliation(s)
- Do Yee Hoo
- School of Energy and Chemical Engineering, Xiamen University Malaysia, 43900 Sepang, Selangor Darul Ehsan, Malaysia
| | - Zhen Li Low
- School of Energy and Chemical Engineering, Xiamen University Malaysia, 43900 Sepang, Selangor Darul Ehsan, Malaysia
| | - Darren Yi Sern Low
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Siah Ying Tang
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
| | - Khang Wei Tan
- School of Energy and Chemical Engineering, Xiamen University Malaysia, 43900 Sepang, Selangor Darul Ehsan, Malaysia.
| | - Zhen Hong Ban
- School of Energy and Chemical Engineering, Xiamen University Malaysia, 43900 Sepang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
195
|
|
196
|
Gamage A, Thiviya P, Mani S, Ponnusamy PG, Manamperi A, Evon P, Merah O, Madhujith T. Environmental Properties and Applications of Biodegradable Starch-Based Nanocomposites. Polymers (Basel) 2022; 14:polym14214578. [PMID: 36365571 PMCID: PMC9656360 DOI: 10.3390/polym14214578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 12/01/2022] Open
Abstract
In recent years, the demand for environmental sustainability has caused a great interest in finding novel polymer materials from natural resources that are both biodegradable and eco-friendly. Natural biodegradable polymers can displace the usage of petroleum-based synthetic polymers due to their renewability, low toxicity, low costs, biocompatibility, and biodegradability. The development of novel starch-based bionanocomposites with improved properties has drawn specific attention recently in many applications, including food, agriculture, packaging, environmental remediation, textile, cosmetic, pharmaceutical, and biomedical fields. This paper discusses starch-based nanocomposites, mainly with nanocellulose, chitin nanoparticles, nanoclay, and carbon-based materials, and their applications in the agriculture, packaging, biomedical, and environment fields. This paper also focused on the lifecycle analysis and degradation of various starch-based nanocomposites.
Collapse
Affiliation(s)
- Ashoka Gamage
- Chemical and Process Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka
- Correspondence: (A.G.); (O.M.); Tel.: +94-714430714 (A.G.); +33-5-3432-3523 (O.M.)
| | - Punniamoorthy Thiviya
- Postgraduate Institute of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Sudhagar Mani
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA
| | | | - Asanga Manamperi
- Department of Chemical Engineering, College of Engineering, Kettering University, Flint, MI 48504-6214, USA
| | - Philippe Evon
- Laboratoire de Chimie Agro-Industrielle (LCA), Institut National de la Recherche Agronomique, Université de Toulouse, CEDEX 4, 31030 Toulouse, France
| | - Othmane Merah
- Laboratoire de Chimie Agro-Industrielle (LCA), Institut National de la Recherche Agronomique, Université de Toulouse, CEDEX 4, 31030 Toulouse, France
- Département Génie Biologique, IUT A, Université Paul Sabatier, 32000 Auch, France
- Correspondence: (A.G.); (O.M.); Tel.: +94-714430714 (A.G.); +33-5-3432-3523 (O.M.)
| | - Terrence Madhujith
- Department of Food Science and Technology, Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
| |
Collapse
|
197
|
Teo SH, Chee CY, Fahmi MZ, Wibawa Sakti SC, Lee HV. Review of Functional Aspects of Nanocellulose-Based Pickering Emulsifier for Non-Toxic Application and Its Colloid Stabilization Mechanism. Molecules 2022; 27:7170. [PMID: 36363998 PMCID: PMC9657650 DOI: 10.3390/molecules27217170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 07/27/2023] Open
Abstract
In the past few years, the research on particle-stabilized emulsion (Pickering emulsion) has mainly focused on the usage of inorganic particles with well-defined shapes, narrow size distributions, and chemical tunability of the surfaces such as silica, alumina, and clay. However, the presence of incompatibility of some inorganic particles that are non-safe to humans and the ecosystem and their poor sustainability has led to a shift towards the development of materials of biological origin. For this reason, nano-dimensional cellulose (nanocellulose) derived from natural plants is suitable for use as a Pickering material for liquid interface stabilization for various non-toxic product formulations (e.g., the food and beverage, cosmetic, personal care, hygiene, pharmaceutical, and biomedical fields). However, the current understanding of nanocellulose-stabilized Pickering emulsion still lacks consistency in terms of the structural, self-assembly, and physio-chemical properties of nanocellulose towards the stabilization between liquid and oil interfaces. Thus, this review aims to provide a comprehensive study of the behavior of nanocellulose-based particles and their ability as a Pickering functionality to stabilize emulsion droplets. Extensive discussion on the characteristics of nanocelluloses, morphology, and preparation methods that can potentially be applied as Pickering emulsifiers in a different range of emulsions is provided. Nanocellulose's surface modification for the purpose of altering its characteristics and provoking multifunctional roles for high-grade non-toxic applications is discussed. Subsequently, the water-oil stabilization mechanism and the criteria for effective emulsion stabilization are summarized in this review. Lastly, we discuss the toxicity profile and risk assessment guidelines for the whole life cycle of nanocellulose from the fresh feedstock to the end-life of the product.
Collapse
Affiliation(s)
- Shao Hui Teo
- Nanotechnology & Catalysis Research Center (NANOCAT), Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Ching Yern Chee
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Mochamad Zakki Fahmi
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Campus C, Mulyorejo, Surabaya 60115, Indonesia
| | - Satya Candra Wibawa Sakti
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Campus C, Mulyorejo, Surabaya 60115, Indonesia
| | - Hwei Voon Lee
- Nanotechnology & Catalysis Research Center (NANOCAT), Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Campus C, Mulyorejo, Surabaya 60115, Indonesia
| |
Collapse
|
198
|
Sources, Chemical Functionalization, and Commercial Applications of Nanocellulose and Nanocellulose-Based Composites: A Review. Polymers (Basel) 2022; 14:polym14214468. [PMID: 36365462 PMCID: PMC9658553 DOI: 10.3390/polym14214468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022] Open
Abstract
Nanocellulose is the most abundant material extracted from plants, animals, and bacteria. Nanocellulose is a cellulosic material with nano-scale dimensions and exists in the form of cellulose nanocrystals (CNC), bacterial nanocellulose (BNC), and nano-fibrillated cellulose (NFC). Owing to its high surface area, non-toxic nature, good mechanical properties, low thermal expansion, and high biodegradability, it is obtaining high attraction in the fields of electronics, paper making, packaging, and filtration, as well as the biomedical industry. To obtain the full potential of nanocellulose, it is chemically modified to alter the surface, resulting in improved properties. This review covers the nanocellulose background, their extraction methods, and possible chemical treatments that can enhance the properties of nanocellulose and its composites, as well as their applications in various fields.
Collapse
|
199
|
Norrrahim MNF, Knight VF, Nurazzi NM, Jenol MA, Misenan MSM, Janudin N, Kasim NAM, Shukor MFA, Ilyas RA, Asyraf MRM, Naveen J. The Frontiers of Functionalized Nanocellulose-Based Composites and Their Application as Chemical Sensors. Polymers (Basel) 2022; 14:polym14204461. [PMID: 36298039 PMCID: PMC9608972 DOI: 10.3390/polym14204461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/16/2022] Open
Abstract
Chemical sensors are a rapidly developing technology that has received much attention in diverse industries such as military, medicine, environmental surveillance, automotive power and mobility, food manufacturing, infrastructure construction, product packaging and many more. The mass production of low-cost devices and components for use as chemical sensors is a major driving force for improvements in each of these industries. Recently, studies have found that using renewable and eco-friendly materials would be advantageous for both manufacturers and consumers. Thus, nanotechnology has led to the investigation of nanocellulose, an emerging and desirable bio-material for use as a chemical sensor. The inherent properties of nanocellulose, its high tensile strength, large specific surface area and good porous structure have many advantages in its use as a composite material for chemical sensors, intended to decrease response time by minimizing barriers to mass transport between an analyte and the immobilized indicator in the sensor. Besides which, the piezoelectric effect from aligned fibers in nanocellulose composites is beneficial for application in chemical sensors. Therefore, this review presents a discussion on recent progress and achievements made in the area of nanocellulose composites for chemical sensing applications. Important aspects regarding the preparation of nanocellulose composites using different functionalization with other compounds are also critically discussed in this review.
Collapse
Affiliation(s)
- Mohd Nor Faiz Norrrahim
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
- Correspondence: (M.N.F.N.); (V.F.K.); (N.M.N.)
| | - Victor Feizal Knight
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
- Correspondence: (M.N.F.N.); (V.F.K.); (N.M.N.)
| | - Norizan Mohd Nurazzi
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Correspondence: (M.N.F.N.); (V.F.K.); (N.M.N.)
| | - Mohd Azwan Jenol
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | | | - Nurjahirah Janudin
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - Noor Azilah Mohd Kasim
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - Muhammad Faizan A. Shukor
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - Rushdan Ahmad Ilyas
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Muhammad Rizal Muhammad Asyraf
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
- Engineering Design Research Group (EDRG), School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Jesuarockiam Naveen
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, India
| |
Collapse
|
200
|
Lama S, Subedi S, Ramesh S, Shin K, Lee YJ, Kim JH. Synthesis and Characterization of MnO 2@Cellulose and Polypyrrole-Decorated MnO 2@Cellulose for the Detection of Chemical Warfare Agent Simulant. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7313. [PMID: 36295378 PMCID: PMC9606964 DOI: 10.3390/ma15207313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/10/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Chemical warfare agents (CWAs) have been threatening human civilization and its existence because of their rapid response, toxic, and irreversible nature. The hybrid nanostructured composites were synthesized by the hydrothermal process to detect the dimethyl methyl phosphonate (DMMP), a simulant of G-series nerve agents, especially sarin. Cellulose (CE), manganese oxide cellulose (MnO2@CE), and MnO2@CE/polypyrrole (PPy) exhibited a frequency shift of 0.4, 4.8, and 8.9 Hz, respectively, for a DMMP concentration of 25 ppm in the quartz crystal microbalance (QCM). In surface acoustic wave (SAW) sensor, they exhibited 187 Hz, 276 Hz, and 78 Hz, respectively. A comparison between CE, MnO2@CE, and MnO2@CE/PPy demonstrated that MnO2@CE/PPy possesses excellent linearity with a coefficient of determination (COD or R2) of 0.992 and 0.9547 in the QCM and SAW sensor. The hybrid composite materials showed a reversible adsorption and desorption phenomenon in the reproducibility test. The response and recovery times indicated that MnO2@CE/PPy showed the shortest response (~23 s) and recovery times (~42 s) in the case of the QCM sensor. Hence, the pristine CE and its nanostructured composites were compared to analyze the sensing performance based on sensitivity, selectivity, linearity, reproducibility, and response and recovery times to detect the simulant of nerve agents.
Collapse
Affiliation(s)
- Sanjeeb Lama
- Laboratory of Intelligent Devices and Thermal Control, Department of Mechanical Engineering, Inha University, Incheon 22212, Korea
| | - Sumita Subedi
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Korea
| | - Sivalingam Ramesh
- Department of Mechanical, Robotics and Energy Engineering, Dongguk University, Seoul 04620, Korea
| | - Kyeongho Shin
- Laboratory of Intelligent Devices and Thermal Control, Department of Mechanical Engineering, Inha University, Incheon 22212, Korea
| | - Young-Jun Lee
- Laboratory of Intelligent Devices and Thermal Control, Department of Mechanical Engineering, Inha University, Incheon 22212, Korea
| | - Joo-Hyung Kim
- Laboratory of Intelligent Devices and Thermal Control, Department of Mechanical Engineering, Inha University, Incheon 22212, Korea
| |
Collapse
|