151
|
Wu F, Shao Q, Xia Q, Hu M, Zhao Y, Wang D, Fang K, Xu L, Zou X, Chen Z, Chen G, Lu F. A bioinformatics and transcriptomics based investigation reveals an inhibitory role of Huanglian-Renshen-Decoction on hepatic glucose production of T2DM mice via PI3K/Akt/FoxO1 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 83:153487. [PMID: 33636476 DOI: 10.1016/j.phymed.2021.153487] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/07/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Excessive hepatic glucose production (HGP) largely promotes the development of type 2 diabetes mellitus (T2DM), and the inhibition of HGP significantly ameliorates T2DM. Huanglian-Renshen-Decoction (HRD), a classic traditional Chinese herb medicine, is widely used for the treatment of diabetes in clinic for centuries and proved effective. However, the relevant mechanisms of HRD are not fully understood. PURPOSE Based on that, this study was designed to identify the potential effects and underlying mechanisms of HRD on HGP by a comprehensive investigation that integrated in vivo functional experiments, network pharmacology, molecular docking, transcriptomics and molecular biology. METHODS After confirming the therapeutic effects of HRD on T2DM mice, the inhibitory role of HRD on HGP was evaluated by pyruvate and glucagon tolerance tests, liver positron emission tomography (PET) imaging and the detection of gluconeogenic key enzymes. Then, network pharmacology and transcriptomics approaches were used to clarify the underlying mechanisms. Molecular biology, computational docking analysis and in vitro experiments were applied for final mechanism verification. RESULTS Here, our results showed that HRD can decrease weight gain and blood glucose, increase fasting insulin, glucose clearance and insulin sensitivity in T2DM mice. Dysregulated lipid profile was also corrected by HRD administration. Pyruvate, glucagon tolerance tests and liver PET imaging all indicated that HRD inhibited the abnormal HGP of T2DM, and the expressions of phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6-phosphatase (G6Pase) were significantly suppressed by HRD as expected. Network pharmacology and transcriptomics approaches illustrated that PI3K/Akt/FoxO1 signaling pathway may be responsible for the inhibitory effect of HRD on HGP. Afterward, further western blot and immunoprecipitation found that HRD did activate PI3K/Akt/FoxO1 signaling pathway in T2DM mice, which confirmed previous results. Additionally, the conclusion was further supported by molecular docking and in vitro experiments, in which identified HRD compound, oxyberberine, was proven to exert an obvious effect on Akt. CONCLUSION Our data demonstrated that HRD can treat T2DM by inhibiting hepatic glucose production, the underlying mechanisms were associated with the activation of PI3K/Akt/FoxO1 signaling pathway.
Collapse
Affiliation(s)
- Fan Wu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qingqing Shao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qingsong Xia
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Meilin Hu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yan Zhao
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dingkun Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ke Fang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lijun Xu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xin Zou
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhuo Chen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guang Chen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Fuer Lu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
152
|
Christensen KA, Le Luyer J, Chan MTT, Rondeau EB, Koop BF, Bernatchez L, Devlin RH. Assessing the effects of genotype-by-environment interaction on epigenetic, transcriptomic, and phenotypic response in a Pacific salmon. G3 (BETHESDA, MD.) 2021; 11:jkab021. [PMID: 33712817 PMCID: PMC8022943 DOI: 10.1093/g3journal/jkab021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/13/2021] [Indexed: 12/24/2022]
Abstract
Genotype-by-environment (GxE) interactions are non-parallel reaction norms among individuals with different genotypes in response to different environmental conditions. GxE interactions are an extension of phenotypic plasticity and consequently studying such interactions improves our ability to predict effects of different environments on phenotype as well as the fitness of genetically distinct organisms and their capacity to interact with ecosystems. Growth hormone transgenic coho salmon grow much faster than non-transgenics when raised in tank environments, but show little difference in growth when reared in nature-like streams. We used this model system to evaluate potential mechanisms underlying this growth rate GxE interaction, performing RNA-seq to measure gene transcription and whole-genome bisulfite sequencing to measure gene methylation in liver tissue. Gene ontology (GO) term analysis revealed stress as an important biological process potentially influencing growth rate GxE interactions. While few genes with transcription differences also had methylation differences, in promoter or gene regions, many genes were differentially methylated between tank and stream environments. A GO term analysis of differentially methylated genes between tank and stream environments revealed increased methylation in the stream environment of more than 95% of the differentially methylated genes, many with biological processes unrelated to liver function. The lower nutritional condition of the stream environment may cause increased negative regulation of genes less vital for liver tissue function than when fish are reared in tanks with unlimited food availability. These data show a large effect of rearing environment both on gene expression and methylation, but it is less clear that the detected epigenetic marks are responsible for the observed altered growth and physiological responses.
Collapse
Affiliation(s)
- Kris A Christensen
- Fisheries and Oceans Canada, West Vancouver, BC V7V 1N6, Canada
- Department of Biology, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Jérémy Le Luyer
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V OA6, Canada
| | - Michelle T T Chan
- Fisheries and Oceans Canada, West Vancouver, BC V7V 1N6, Canada
- Molecular Biology and Biochemistry Department, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Eric B Rondeau
- Fisheries and Oceans Canada, West Vancouver, BC V7V 1N6, Canada
- Department of Biology, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Ben F Koop
- Department of Biology, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Louis Bernatchez
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V OA6, Canada
| | - Robert H Devlin
- Fisheries and Oceans Canada, West Vancouver, BC V7V 1N6, Canada
| |
Collapse
|
153
|
Sun DY, Fu JT, Li GQ, Zhang WJ, Zeng FY, Tong J, Miao CY, Li DJ, Wang P. iTRAQ- and LC-MS/MS-based quantitative proteomics reveals Pqlc2 as a potential regulator of hepatic glucose metabolism and insulin signalling pathway during fasting. Clin Exp Pharmacol Physiol 2021; 48:238-249. [PMID: 33051888 DOI: 10.1111/1440-1681.13419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/24/2020] [Accepted: 10/06/2020] [Indexed: 11/30/2022]
Abstract
Glucose homeostasis is tightly controlled by balance between glucose production and uptake in liver tissue upon energy shortage condition. Altered glucose homeostasis contributes to the pathophysiology of metabolic disorders including diabetes and obesity. Here, we aimed to analyse the change of proteomic profile upon prolonged fasting in mice with isobaric tag for relative and absolute quantification (iTRAQ) labelling followed by liquid chromatography-mass spectrometry (LC/MS) technology. Adult male mice were fed or fasted for 16 hours and liver tissues were collected for iTRAQ labelling followed by LC/MS analysis. A total of 322 differentially expressed proteins were identified, including 189 upregulated and 133 downregulated proteins. Bioinformatics analyses, including Gene Ontology analysis (GO), Kyoto encyclopaedia of genes and genomes analysis (KEGG) and protein-protein interaction analysis (PPI) were conducted to understand biological process, cell component, and molecular function of the 322 differentially expressed proteins. Among 322 hepatic proteins differentially expressed between fasting and fed mice, we validated three upregulated proteins (Pqlc2, Ehhadh and Apoa4) and two downregulated proteins (Uba52 and Rpl37) by western-blotting analysis. In cultured HepG2 hepatocellular cells, we found that depletion of Pqlc2 by siRNA-mediated knockdown impaired the insulin-induced glucose uptake, inhibited GLUT2 mRNA level and suppressed the insulin-induced Akt phosphorylation. By contrast, knockdown of Pqlc2 did not affect the cAMP/dexamethasone-induced gluconeogenesis. In conclusion, our study provides important information on protein profile change during prolonged fasting with iTRAQ- and LC-MS/MS-based quantitative proteomics, and identifies Pqlc2 as a potential regulator of hepatic glucose metabolism and insulin signalling pathway in this process.
Collapse
Affiliation(s)
- Di-Yang Sun
- Department of Pharmacology, School of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Jiang-Tao Fu
- Department of Pharmacology, School of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Guo-Qiang Li
- Department of Pharmacology, School of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Wen-Jie Zhang
- Department of Pharmacology, School of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Fei-Yan Zeng
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Jie Tong
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Chao-Yu Miao
- Department of Pharmacology, School of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Dong-Jie Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Pei Wang
- Department of Pharmacology, School of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai, China
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| |
Collapse
|
154
|
Beken S, Abali S, Yildirim Saral N, Guner B, Dinc T, Albayrak E, Ersoy M, Kilercik M, Halici M, Bulbul E, Kaya D, Karabay M, Ay ZA, Eksi GZ, Benli Aksungar F, Korkmaz A, Serteser M. Early Postnatal Metabolic Profile in Neonates With Different Birth Weight Status: A Pilot Study. Front Pediatr 2021; 9:646860. [PMID: 33987152 PMCID: PMC8110833 DOI: 10.3389/fped.2021.646860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/16/2021] [Indexed: 11/24/2022] Open
Abstract
Introduction: Restricted or enhanced intrauterine growth is associated with elevated risks of early and late metabolic problems in humans. Metabolomics based on amino acid and carnitine/acylcarnitine profile may have a role in fetal and early postnatal energy metabolism. In this study, the relationship between intrauterine growth status and early metabolomics profile was evaluated. Materials and Methods: A single-center retrospective cohort study was conducted. Three hundred and sixty-one newborn infants were enrolled into the study, and they were grouped according to their birth weight percentile as small for gestational age (SGA, n = 69), appropriate for gestational age (AGA, n = 168), and large for gestational age (LGA, n = 124) infants. In all infants, amino acid and carnitine/acylcarnitine profiles with liquid chromatography-tandem mass spectrometry (LC-MS/MS) were recorded and compared between groups. Results: LGA infants had higher levels of glutamic acid and lower levels of ornithine, alanine, and glycine (p < 0.05) when compared with AGA infants. SGA infants had higher levels of alanine and glycine levels when compared with AGA and LGA infants. Total carnitine, C0, C2, C4, C5, C10:1, C18:1, C18:2, C14-OH, and C18:2-OH levels were significantly higher and C3 and C6-DC levels were lower in SGA infants (p < 0.05). LGA infants had higher C3 and C5:1 levels and lower C18:2 and C16:1-OH levels (p < 0.05). There were positive correlations between free carnitine and phenylalanine, arginine, methionine, alanine, and glycine levels (p < 0.05). Also, a positive correlation between ponderal index and C3, C5-DC, C14, and C14:1 and a negative correlation between ponderal index and ornithine, alanine, glycine, C16:1-OH, and C18:2 were shown. Conclusion: We demonstrated differences in metabolomics possibly reflecting the energy metabolism in newborn infants with intrauterine growth problems in the early postnatal period. These differences might be the footprints of metabolic disturbances in future adulthood.
Collapse
Affiliation(s)
- Serdar Beken
- Department of Pediatrics, Section of Neonatology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Saygin Abali
- Department of Pediatrics, Section of Pediatric Endocrinology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | | | - Bengisu Guner
- Department of Pediatrics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Taha Dinc
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Eda Albayrak
- Department of Pediatrics, Section of Neonatology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Melike Ersoy
- Department of Pediatrics, Bakirkoy Dr Sadi Konuk Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Meltem Kilercik
- Department of Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Muge Halici
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ezgi Bulbul
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Didem Kaya
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Melis Karabay
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Zeynep Alize Ay
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Gulten Zeynep Eksi
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Fehime Benli Aksungar
- Department of Metabolism, Acibadem Labmed Clinical Laboratories, Istanbul, Turkey.,Department of Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ayse Korkmaz
- Department of Pediatrics, Section of Neonatology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Mustafa Serteser
- Department of Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| |
Collapse
|
155
|
Zhang H, Ma J, Tang K, Huang B. Beyond energy storage: roles of glycogen metabolism in health and disease. FEBS J 2020; 288:3772-3783. [PMID: 33249748 DOI: 10.1111/febs.15648] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/19/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022]
Abstract
Beyond storing and supplying energy in the liver and muscles, glycogen also plays critical roles in cell differentiation, signaling, redox regulation, and stemness under various physiological and pathophysiological conditions. Such versatile functions have been revealed by various forms of glycogen storage diseases. Here, we outline the source of carbon flux in glycogen metabolism and discuss how glycogen metabolism guides CD8+ T-cell memory formation and maintenance. Likewise, we review how this affects macrophage polarization and inflammatory responses. Furthermore, we dissect how glycogen metabolism supports tumor development by promoting tumor-repopulating cell growth in hypoxic tumor microenvironments. This review highlights the essential role of the gluconeogenesis-glycogenesis-glycogenolysis-PPP metabolic chain in redox homeostasis, thus providing insights into potential therapeutic strategies against major chronic diseases including cancer.
Collapse
Affiliation(s)
- Huafeng Zhang
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingwei Ma
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Tang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Huang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, China.,Clinical Immunology Center, CAMS, Beijing, China
| |
Collapse
|
156
|
Singh V, Sagar P, Kaul S, Sandhir R, Singhal NK. Liver Phosphoenolpyruvate Carboxykinase-1 Downregulation via siRNA-Functionalized Graphene Oxide Nanosheets Restores Glucose Homeostasis in a Type 2 Diabetes Mellitus In Vivo Model. Bioconjug Chem 2020; 32:259-278. [PMID: 33347265 DOI: 10.1021/acs.bioconjchem.0c00645] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Metabolic disorders have been increasing at an alarming rate, and one such example of metabolic disorder is type 2 diabetes mellitus (T2DM). Unregulated gluconeogenesis in T2DM results in increased hepatic glucose output that causes fasting and postprandial hyperglycaemia. Extensive proofs have shown that the downregulation of the key rate-limiting enzyme phosphoenolpyruvate carboxykinase-1 (PCK-1) of gluconeogenesis improved glucose homeostasis in vivo. In the present study, we have synthesized and characterized liver-specific stearic acid conjugated octaarginine (StA-R8) functionalized 4arm-2K-PEGamineylated graphene oxide nanosheets (GPR8) for the delivery of siRNA against PCK-1 in T2DM C57BL/6 mice. We found that a single intravenous administration of siRNA (3 mg/kg BW) conjugated to GPR8 (GPR8:PCK-1siRNA(3 mg/kg BW) conjugate) in an optimized N/P ratio exploited as a therapeutic nanoformulation maintained glucose homeostasis for nearly 4 weeks in the T2DM mice. Efficient silencing of PCK-1 in T2DM liver tissue increased the phosphorylation of serine-256 of FOXO-1, thus showing a marked decrease in hepatic gluconeogenesis. Gluconeogenesis control and consequently glucose output from the liver furthermore partially enhanced liver and muscle insulin sensitivity results in the stimulation of the insulin/AKT-2 signaling pathway which indirectly restored glucose homeostasis in the treated T2DM group. Our therapeutic nanoformulation also improved glycogen storage in the liver and membrane translocation of GLUT4 in the muscle of the treated T2DM group. In conclusion, GPR8:PCK-1siRNA (3 mg/Kg BW) restored glucose homeostasis by controlling the hepatic glucose production and improved peripheral insulin sensitivity as a consequence of reduced hyperglycemia. Thus, the current approach offered an alternative strategy for the therapeutics for T2DM.
Collapse
Affiliation(s)
- Vishal Singh
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S. Nagar, Mohali, Punjab India.,Department of Biochemistry, Panjab University, Sector 14, Chandigarh, India
| | - Poonam Sagar
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S. Nagar, Mohali, Punjab India
| | - Sunaina Kaul
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S. Nagar, Mohali, Punjab India
| | - Rajat Sandhir
- Department of Biochemistry, Panjab University, Sector 14, Chandigarh, India
| | - Nitin Kumar Singhal
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S. Nagar, Mohali, Punjab India
| |
Collapse
|
157
|
Mann SN, Hadad N, Nelson Holte M, Rothman AR, Sathiaseelan R, Ali Mondal S, Agbaga MP, Unnikrishnan A, Subramaniam M, Hawse J, Huffman DM, Freeman WM, Stout MB. Health benefits attributed to 17α-estradiol, a lifespan-extending compound, are mediated through estrogen receptor α. eLife 2020; 9:59616. [PMID: 33289482 PMCID: PMC7744101 DOI: 10.7554/elife.59616] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Metabolic dysfunction underlies several chronic diseases, many of which are exacerbated by obesity. Dietary interventions can reverse metabolic declines and slow aging, although compliance issues remain paramount. 17α-estradiol treatment improves metabolic parameters and slows aging in male mice. The mechanisms by which 17α-estradiol elicits these benefits remain unresolved. Herein, we show that 17α-estradiol elicits similar genomic binding and transcriptional activation through estrogen receptor α (ERα) to that of 17β-estradiol. In addition, we show that the ablation of ERα completely attenuates the beneficial metabolic effects of 17α-E2 in male mice. Our findings suggest that 17α-E2 may act through the liver and hypothalamus to improve metabolic parameters in male mice. Lastly, we also determined that 17α-E2 improves metabolic parameters in male rats, thereby proving that the beneficial effects of 17α-E2 are not limited to mice. Collectively, these studies suggest ERα may be a drug target for mitigating chronic diseases in male mammals.
Collapse
Affiliation(s)
- Shivani N Mann
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, United States.,Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, United States.,Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, United States
| | - Niran Hadad
- The Jackson Laboratory, Bar Harbor, United States
| | - Molly Nelson Holte
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| | - Alicia R Rothman
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, United States
| | - Roshini Sathiaseelan
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, United States
| | - Samim Ali Mondal
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, United States
| | - Martin-Paul Agbaga
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, United States.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, United States.,Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, United States
| | - Archana Unnikrishnan
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, United States.,Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, United States
| | | | - John Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| | - Derek M Huffman
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, United States
| | - Willard M Freeman
- Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, United States.,Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, United States.,Oklahoma City Veterans Affairs Medical Center, Oklahoma City, United States
| | - Michael B Stout
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, United States.,Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, United States.,Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, United States
| |
Collapse
|
158
|
Fructose Consumption Affects Glucocorticoid Signaling in the Liver of Young Female Rats. Nutrients 2020; 12:nu12113470. [PMID: 33198224 PMCID: PMC7698302 DOI: 10.3390/nu12113470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/28/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
The effects of early-life fructose consumption on hepatic signaling pathways and their relation to the development of metabolic disorders in later life are not fully understood. To investigate whether fructose overconsumption at a young age induces alterations in glucocorticoid signaling that might contribute to development of metabolic disturbances, we analysed glucocorticoid receptor hormone-binding parameters and expression of its target genes involved in gluconeogenesis (phosphoenolpyruvate carboxykinase and glucose-6-phosphatase) and lipid metabolism (lipin-1), as well as redox and inflammatory status in the liver of female rats subjected to a fructose-rich diet immediately after weaning. The fructose diet increased hepatic corticosterone concentration, 11β-hydroxysteroid dehydrogenase type 1 level, glucocorticoid receptor protein level and hormone-binding activity, as well as lipin-1 level. The expression of glucose-6-phosphatase was reduced in fructose-fed rats, while phosphoenolpyruvate carboxykinase remained unaltered. The fructose-rich diet increased the level of fructose transporter GLUT2, while the expression of fructolytic enzymes fructokinase and aldolase B remained unaltered. The diet also affected pro-inflammatory pathways, but had no effect on the antioxidant defence system. In conclusion, a fructose-rich diet applied immediately after weaning promoted lipogenesis and enhanced hepatic glucocorticoid signaling, possibly to protect against inflammatory damage, but without an effect on gluconeogenesis and antioxidant enzymes. Yet, prolonged treatment might ultimately lead to more pronounced metabolic disturbances.
Collapse
|
159
|
Masi T, Patel BM. Altered glucose metabolism and insulin resistance in cancer-induced cachexia: a sweet poison. Pharmacol Rep 2020; 73:17-30. [PMID: 33141425 DOI: 10.1007/s43440-020-00179-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022]
Abstract
Cancer cachexia is a wasting disorder characterised by specific skeletal muscle and adipose tissue loss. Cancer cachexia is also driven by inflammation, altered metabolic changes such as increased energy expenditure, elevated plasma glucose, insulin resistance and excess catabolism. In cachexia, host-tumor interaction causes release of the lactate and inflammatory cytokines. Lactate released by tumor cells takes part in hepatic glucose production with the help of gluconeogenic enzymes. Thus, Cori cycle between organs and cancerous cells contributes to increased glucose production and energy expenditure. A high amount of blood glucose leads to increased production of insulin. Overproduction of insulin causes inactivation of PI3K/Akt/m-TOR pathway and finally results in insulin resistance. Insulin is involved in maintaining the vitality of organs and regulate the metabolism of glucose, protein and lipids. Insulin insensitivity decreases the uptake of glucose in the organs and results in loss of skeletal muscles and adipose tissues. However, looking into the complexity of this metabolic syndrome, it is impossible to rely on a single variable to treat patients having cancer cachexia. Hence, it becomes greater a challenge to produce a clinically effective treatment for this metabolic syndrome. Thus, the present paper aims to provide an understanding of pathogenesis and mechanism underlining the altered glucose metabolism and insulin resistance and its contribution to the progression of skeletal muscle wasting and lipolysis, providing future direction of research to develop new pharmacological treatment in cancer cachexia.
Collapse
Affiliation(s)
- Tamhida Masi
- Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, 382 481, India
| | - Bhoomika M Patel
- Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, 382 481, India.
| |
Collapse
|
160
|
Piragine E, Calderone V. Pharmacological modulation of the hydrogen sulfide (H 2 S) system by dietary H 2 S-donors: A novel promising strategy in the prevention and treatment of type 2 diabetes mellitus. Phytother Res 2020; 35:1817-1846. [PMID: 33118671 DOI: 10.1002/ptr.6923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/15/2020] [Accepted: 10/06/2020] [Indexed: 12/25/2022]
Abstract
Type 2 diabetes mellitus (T2DM) represents the most common age-related metabolic disorder, and its management is becoming both a health and economic issue worldwide. Moreover, chronic hyperglycemia represents one of the main risk factors for cardiovascular complications. In the last years, the emerging evidence about the role of the endogenous gasotransmitter hydrogen sulfide (H2 S) in the pathogenesis and progression of T2DM led to increasing interest in the pharmacological modulation of endogenous "H2 S-system". Indeed, H2 S directly contributes to the homeostatic maintenance of blood glucose levels; moreover, it improves impaired angiogenesis and endothelial dysfunction under hyperglycemic conditions. Moreover, H2 S promotes significant antioxidant, anti-inflammatory, and antiapoptotic effects, thus preventing hyperglycemia-induced vascular damage, diabetic nephropathy, and cardiomyopathy. Therefore, H2 S-releasing molecules represent a promising strategy in both clinical management of T2DM and prevention of macro- and micro-vascular complications associated to hyperglycemia. Recently, growing attention has been focused on dietary organosulfur compounds. Among them, garlic polysulfides and isothiocyanates deriving from Brassicaceae have been recognized as H2 S-donors of great pharmacological and nutraceutical interest. Therefore, a better understanding of the therapeutic potential of naturally occurring H2 S-donors may pave the way to a more rational use of these nutraceuticals in the modulation of H2 S homeostasis in T2DM.
Collapse
Affiliation(s)
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy.,Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, Pisa, Italy
| |
Collapse
|
161
|
Regulation of basal expression of hepatic PEPCK and G6Pase by AKT2. Biochem J 2020; 477:1021-1031. [PMID: 32096546 DOI: 10.1042/bcj20190570] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 02/04/2020] [Accepted: 02/25/2020] [Indexed: 01/11/2023]
Abstract
Hepatic glucose metabolism signaling downstream of insulin can diverge to multiple pathways including AKT. Genetic studies suggest that AKT is necessary for insulin to suppress gluconeogenesis. To specifically address the role of AKT2, the dominant liver isoform of AKT in the regulation of gluconeogenesis genes, we generated hepatocytes lacking AKT2 (Akt2-/-). We found that, in the absence of insulin signal, AKT2 is required for maintaining the basal level expression of phosphoenolpyruvate carboxyl kinase (PEPCK) and to a lesser extent G6Pase, two key rate-limiting enzymes for gluconeogenesis that support glucose excursion due to pyruvate loading. We further showed that this function of AKT2 is mediated by the phosphorylation of cyclic AMP response element binding (CREB). Phosphorylation of CREB by AKT2 is needed for CREB to induce the expression of PEPCK and likely represents a priming event for unstimulated cells to poise to receive glucagon and other signals. The inhibition of gluconeogenesis by insulin is also dependent on the reduced FOXO1 transcriptional activity at the promoter of PEPCK. When insulin signal is absent, this activity appears to be inhibited by AKT2 in manner that is independent of its phosphorylation by AKT. Together, this action of AKT2 on FOXO1 and CREB to maintain basal gluconeogenesis activity may provide fine-tuning for insulin and glucocorticoid/glucagon to regulate gluconeogenesis in a timely manner to meet metabolic needs.
Collapse
|
162
|
Yang S, Zhou R, Zhang C, He S, Su Z. Mitochondria-Associated Endoplasmic Reticulum Membranes in the Pathogenesis of Type 2 Diabetes Mellitus. Front Cell Dev Biol 2020; 8:571554. [PMID: 33195204 PMCID: PMC7606698 DOI: 10.3389/fcell.2020.571554] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/21/2020] [Indexed: 02/05/2023] Open
Abstract
The endoplasmic reticulum (ER) and mitochondria are essential intracellular organelles that actively communicate via temporally and spatially formed contacts called mitochondria-associated membranes (MAMs). These mitochondria-ER contacts are not only necessary for the physiological function of the organelles and their coordination with each other, but they also control the intracellular lipid exchange, calcium signaling, cell survival, and homeostasis in cellular metabolism. Growing evidence strongly supports the role of the mitochondria-ER connection in the insulin resistance of peripheral tissues, pancreatic β cell dysfunction, and the consequent development of type 2 diabetes mellitus (T2DM). In this review, we summarize current advances in the understanding of the mitochondria-ER connection and specifically focus on addressing a new perspective of the alterations in mitochondria-ER communication in insulin signaling and β cell maintenance.
Collapse
Affiliation(s)
- Shanshan Yang
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Ruixue Zhou
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Caixia Zhang
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Siyuan He
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Zhiguang Su
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
163
|
Kimura T, Pydi SP, Pham J, Tanaka N. Metabolic Functions of G Protein-Coupled Receptors in Hepatocytes-Potential Applications for Diabetes and NAFLD. Biomolecules 2020; 10:1445. [PMID: 33076386 PMCID: PMC7602561 DOI: 10.3390/biom10101445] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are cell surface receptors that mediate the function of extracellular ligands. Understanding how GPCRs work at the molecular level has important therapeutic implications, as 30-40% of the drugs currently in clinical use mediate therapeutic effects by acting on GPCRs. Like many other cell types, liver function is regulated by GPCRs. More than 50 different GPCRs are predicted to be expressed in the mouse liver. However, knowledge of how GPCRs regulate liver metabolism is limited. A better understanding of the metabolic role of GPCRs in hepatocytes, the dominant constituent cells of the liver, could lead to the development of novel drugs that are clinically useful for the treatment of various metabolic diseases, including type 2 diabetes, nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). In this review, we describe the functions of multiple GPCRs expressed in hepatocytes and their role in metabolic processes.
Collapse
Affiliation(s)
- Takefumi Kimura
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20894, USA; (S.P.P.); (J.P.)
- Department of Internal Medicine, Division of Gastroenterology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Sai P. Pydi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20894, USA; (S.P.P.); (J.P.)
| | - Jonathan Pham
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20894, USA; (S.P.P.); (J.P.)
| | - Naoki Tanaka
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto 390-8621, Japan;
- Research Center for Social Systems, Shinshu University, Matsumoto 390-8621, Japan
| |
Collapse
|
164
|
Packer M. Role of ketogenic starvation sensors in mediating the renal protective effects of SGLT2 inhibitors in type 2 diabetes. J Diabetes Complications 2020; 34:107647. [PMID: 32534886 DOI: 10.1016/j.jdiacomp.2020.107647] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/15/2020] [Accepted: 05/28/2020] [Indexed: 02/08/2023]
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors ameliorate the progression of diabetic chronic kidney disease, but the mechanisms underlying this nephroprotective effect have not been fully elucidated. These drugs induce a fasting-like transcriptional paradigm, which includes activation of sirtuin-1 (SIRT1) and its downstream effectors, peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and fibroblast growth factor 21 (FGF21). This triad of enzymes and transcription factors serve as master regulators of nutrient and cellular homeostasis, and each acts to enhance gluconeogenesis, fatty acid oxidation and ketogenesis, the hallmarks of treatment with SGLT2 inhibitors. At the same time, SIRT1/PGC-1α/FGF21 signaling also promotes autophagy, a lysosome-dependent degradative pathway that cleanses the cytosol of dysfunctional organelles. This action alleviates cellular stress, ameliorates inflammation, and is strikingly nephroprotective. Interestingly, type 2 diabetes is characterized by both a deficiency of SIRT1/PGC-1α signaling and an impairment of autophagic flux, thus explaining the high levels of oxidative stress in the diabetic kidney. SIRT1 gene polymorphisms have been linked with an increased risk of diabetic nephropathy in several epidemiological studies. Importantly, there is an inverse relationship between the activity of SGLT2 and signaling through the SIRT1/PGC-1α/FGF21 pathway, and SGLT2 inhibition leads to activation of these ketogenic nutrient deprivation sensors. Therefore, activation of SIRT1/PGC-1α/FGF21 may explain the effect of SGLT2 inhibitors not only to promote ketogenesis, but also to preserve renal function in type 2 diabetes.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, TX, USA; Imperial College, London, UK.
| |
Collapse
|
165
|
Kang SW, Kidd MT, Kadhim HJ, Shouse S, Orlowski SK, Hiltz J, Anthony NB, Kuenzel WJ, Kong BC. Characterization of stress response involved in chicken myopathy. Gen Comp Endocrinol 2020; 295:113526. [PMID: 32540490 DOI: 10.1016/j.ygcen.2020.113526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 12/19/2022]
Abstract
Myopathies (Woody Breast (WB) and White Striping (WS)) of broiler chickens have been correlated with fast growth. Recent studies reported that localized hypoxia and metabolic impairment may involve in these myopathies of birds. In order to better understand the stress response mechanisms affecting myopathies of broilers, the aim of this study was to examine effects of WB and both WB/WS on stress hormone corticosterone (CORT) levels and expressional changes of stress response genes including glucocorticoid (GC) receptor (GR), 11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1), DNA methylation regulators (DNMTs), and arginine vasotocin receptor 1a and 1b (V1aR, V1bR). Results of radioimmunoassay showed that CORT levels of WB and WB/WS birds were significantly higher compared to Con (p < 0.05), however, the combination of WB/WS was not significantly higher than WB birds, implying that the effects of WB and WS on CORT are not synergistic. Hepatic GR expression of both WB and WB/WS birds were significantly higher compared to Con (p < 0.05). However, GR expression levels in breast muscle of both WB and WB/WS birds were decreased compared to Con (p < 0.05). Hepatic 11β-HSD1 expression was increased only in WB/WS birds compared to Con birds with no significant difference between Con and WB birds. 11β-HSD1 expression was decreased and increased in WB and WB/WS birds compared to Con, respectively, in breast muscle (p < 0.05). DNMT1 expression was significantly decreased in both muscle and liver of WB birds, and in muscle of WB/WS birds, but not in liver of WB/WS birds, indicating differential effects of WS on the epigenetical stress response of muscle and liver compared to WB. V1aR expression was significantly increased in muscle of WB birds, and in liver of WB/WS birds compared to Con birds (p < 0.05). V1bR was not changed in muscle and liver of WB birds compared to Con birds. Taken together, results suggest that GC-induced myopathies occur in fast-growing broiler chickens and circulating CORT level might be a significant biochemical marker of myopathies (WB and WS) of birds. In addition, chronic stress responses in breast muscle and tissue-specific epigenetic changes of stress response genes by DNMTs may play a critical role in the occurrence of myopathies.
Collapse
Affiliation(s)
- Seong W Kang
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States.
| | - Michael T Kidd
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States
| | - Hakeem J Kadhim
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, United States
| | - Stephanie Shouse
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States
| | - Sara K Orlowski
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States
| | - Joseph Hiltz
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States
| | - Nickolas B Anthony
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States
| | - Wayne J Kuenzel
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States
| | - Byungwhi C Kong
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States
| |
Collapse
|
166
|
Sundararaman N, Go J, Robinson AE, Mato JM, Lu SC, Van Eyk JE, Venkatraman V. PINE: An Automation Tool to Extract and Visualize Protein-Centric Functional Networks. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1410-1421. [PMID: 32463229 PMCID: PMC10362945 DOI: 10.1021/jasms.0c00032] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recent surges in mass spectrometry-based proteomics studies demand a concurrent rise in speedy and optimized data processing tools and pipelines. Although several stand-alone bioinformatics tools exist that provide protein-protein interaction (PPI) data, we developed Protein Interaction Network Extractor (PINE) as a fully automated, user-friendly, graphical user interface application for visualization and exploration of global proteome and post-translational modification (PTM) based networks. PINE also supports overlaying differential expression, statistical significance thresholds, and PTM sites on functionally enriched visualization networks to gain insights into proteome-wide regulatory mechanisms and PTM-mediated networks. To illustrate the relevance of the tool, we explore the total proteome and its PTM-associated relationships in two different nonalcoholic steatohepatitis (NASH) mouse models to demonstrate different context-specific case studies. The strength of this tool relies in its ability to (1) perform accurate protein identifier mapping to resolve ambiguity, (2) retrieve interaction data from multiple publicly available PPI databases, and (3) assimilate these complex networks into functionally enriched pathways, ontology categories, and terms. Ultimately, PINE can be used as an extremely powerful tool for novel hypothesis generation to understand underlying disease mechanisms.
Collapse
Affiliation(s)
- Niveda Sundararaman
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
| | - James Go
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
| | - Aaron E Robinson
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
| | - José M Mato
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Shelly C Lu
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Jennifer E Van Eyk
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
| | - Vidya Venkatraman
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
| |
Collapse
|
167
|
Packer M. Autophagy-dependent and -independent modulation of oxidative and organellar stress in the diabetic heart by glucose-lowering drugs. Cardiovasc Diabetol 2020; 19:62. [PMID: 32404204 PMCID: PMC7222526 DOI: 10.1186/s12933-020-01041-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 05/09/2020] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a lysosome-dependent intracellular degradative pathway, which mediates the cellular adaptation to nutrient and oxygen depletion as well as to oxidative and endoplasmic reticulum stress. The molecular mechanisms that stimulate autophagy include the activation of energy deprivation sensors, sirtuin-1 (SIRT1) and adenosine monophosphate-activated protein kinase (AMPK). These enzymes not only promote organellar integrity directly, but they also enhance autophagic flux, which leads to the removal of dysfunctional mitochondria and peroxisomes. Type 2 diabetes is characterized by suppression of SIRT1 and AMPK signaling as well as an impairment of autophagy; these derangements contribute to an increase in oxidative stress and the development of cardiomyopathy. Antihyperglycemic drugs that signal through insulin may further suppress autophagy and worsen heart failure. In contrast, metformin and SGLT2 inhibitors activate SIRT1 and/or AMPK and promote autophagic flux to varying degrees in cardiomyocytes, which may explain their benefits in experimental cardiomyopathy. However, metformin and SGLT2 inhibitors differ meaningfully in the molecular mechanisms that underlie their effects on the heart. Whereas metformin primarily acts as an agonist of AMPK, SGLT2 inhibitors induce a fasting-like state that is accompanied by ketogenesis, a biomarker of enhanced SIRT1 signaling. Preferential SIRT1 activation may also explain the ability of SGLT2 inhibitors to stimulate erythropoiesis and reduce uric acid (a biomarker of oxidative stress)—effects that are not seen with metformin. Changes in both hematocrit and serum urate are the most important predictors of the ability of SGLT2 inhibitors to reduce the risk of cardiovascular death and hospitalization for heart failure in large-scale trials. Metformin and SGLT2 inhibitors may also differ in their ability to mitigate diabetes-related increases in intracellular sodium concentration and its adverse effects on mitochondrial functional integrity. Differences in the actions of SGLT2 inhibitors and metformin may reflect the distinctive molecular pathways that explain differences in the cardioprotective effects of these drugs.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, 621 N. Hall Street, Dallas, TX, 75226, USA. .,Imperial College, London, UK.
| |
Collapse
|
168
|
Allocco JB, Alegre ML. Exploiting immunometabolism and T cell function for solid organ transplantation. Cell Immunol 2020; 351:104068. [PMID: 32139072 PMCID: PMC7150626 DOI: 10.1016/j.cellimm.2020.104068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/25/2022]
Abstract
Cellular metabolism is central to T cell function and proliferation, with most of the research to date focusing on cancer and autoimmunity. Cellular metabolism is associated with a host of physiological phenomena, from epigenetic changes, to cellular function and fate. For the purpose of this review, we will discuss the metabolism of T cells relating to their differentiation and function. We will cover a variety of metabolic processes, ranging from glycolysis to amino acid metabolism. Understanding how T cell metabolism informs T cell function may be useful to understand alloimmune responses and design novel therapies to improve graft outcome.
Collapse
Affiliation(s)
- Jennifer B Allocco
- Department of Medicine, Section of Rheumatology, The University of Chicago, Chicago, IL 60637, United States
| | - Maria-Luisa Alegre
- Department of Medicine, Section of Rheumatology, The University of Chicago, Chicago, IL 60637, United States.
| |
Collapse
|
169
|
Rahimi L, Rajpal A, Ismail-Beigi F. Glucocorticoid-Induced Fatty Liver Disease. Diabetes Metab Syndr Obes 2020; 13:1133-1145. [PMID: 32368109 PMCID: PMC7171875 DOI: 10.2147/dmso.s247379] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/27/2020] [Indexed: 01/08/2023] Open
Abstract
Glucocorticoids (GCs) are commonly used at high doses and for prolonged periods (weeks to months) in the treatment of a variety of diseases. Among the many side effects are increased insulin resistance with disturbances in glucose/insulin homeostasis and increased deposition of lipids (mostly triglycerides) in the liver. Here, we review the metabolic pathways of lipid deposition and removal from the liver that become altered by excess glucocorticoids. Pathways of lipid deposition stimulated by excess glucocorticoids include 1) increase in appetite and high caloric intake; 2) increased blood glucose levels due to GC-induced stimulation of gluconeogenesis; 3) stimulation of de novo lipogenesis that is augmented by the high glucose and insulin levels and by GC itself; and 4) increased release of free fatty acids from adipose stores and stimulation of their uptake by the liver. Pathways that decrease hepatic lipids affected by glucocorticoids include a modest stimulation of very-low-density lipoprotein synthesis and secretion into the circulation and inhibition of β-oxidation of fatty acids. Role of 11β-hydroxysteroid dehydrogenases-1 and -2 and the reversible conversion of cortisol to cortisone on intracellular levels of cortisol is examined. In addition, GC control of osteocalcin expression and the effect of this bone-derived hormone in increasing insulin sensitivity are discussed. Finally, research focused on gaining a better understanding of the dose and duration of treatment with glucocorticoids, which leads to increased triglyceride deposition in the liver, and the reversibility of the condition is highlighted.
Collapse
Affiliation(s)
- Leili Rahimi
- Department of Medicine, Case Western Reserve University, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Aman Rajpal
- Department of Medicine, Case Western Reserve University, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Cleveland VA Medical Center, Cleveland, OH, USA
| | - Faramarz Ismail-Beigi
- Department of Medicine, Case Western Reserve University, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Cleveland VA Medical Center, Cleveland, OH, USA
| |
Collapse
|
170
|
Vandewalle J, Libert C. GILZ in sepsis: "Poor is the pupil who does not surpass his master". Eur J Immunol 2020; 50:490-493. [PMID: 32103492 DOI: 10.1002/eji.202048582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/13/2020] [Accepted: 02/25/2020] [Indexed: 01/02/2023]
Abstract
With the legendary saying of Leonardo da Vinci in the title, we suggest that Glucocorticoid Induced Leucine Zipper (GILZ) may have more promising effects against polymicrobial sepsis, than glucocorticoids (GC). Indeed, the use of GCs in sepsis remains a matter of debate. The rationale for their use in sepsis is to modulate the exaggerated inflammatory response while maintaining innate immunity. However, GC resistance and side-effects limit their therapeutic value in sepsis. Hence, there is a growing interest in understanding the mechanisms by which GCs modulate immune responses upon infection. In this issue of the European Journal of Immunology, Ellouze et al. provide data demonstrating that deregulated expression of GILZ, a GC-induced protein, in monocytes/macrophages (M/M) recovered from septic shock patients may contribute to the pathogenesis. Furthermore, the authors demonstrate that GILZ overexpression in M/M improves outcome in septic animals by limiting systemic inflammation while increasing bacterial clearance. Overall, these data provide evidence that GCs may modulate immune responses via GILZ and that GILZ is a valuable alternative for GC therapy in sepsis.
Collapse
Affiliation(s)
- Jolien Vandewalle
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
171
|
Liu Y, Yang L, Zhang Y, Liu X, Wu Z, Gilbert RG, Deng B, Wang K. Dendrobium officinale polysaccharide ameliorates diabetic hepatic glucose metabolism via glucagon-mediated signaling pathways and modifying liver-glycogen structure. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112308. [PMID: 31622745 DOI: 10.1016/j.jep.2019.112308] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/24/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dendrobium officinale polysaccharide (DOP) is the main active ingredient of Dendrobium officinale Kimura & Migo, which is a precious traditional Chinese medicine and often used in treatment of hepatitis, diabetes, obesity and rheumatoid arthritis. AIM OF THE STUDY DOP exhibits significant hypoglycemic activity, while its mechanism remains unclear. The present study aims to investigate the hypoglycemic mechanisms of DOP based on the glucagon-mediated signaling pathways and the liver glycogen structure, which catalyze hepatic glucose metabolism, and provide new knowledge about the antidiabetic mechanism of DOP and further evidence for its clinical use for diabetes. MATERIALS AND METHODS DOP were obtained from the dry stems of Dendrobium officinale by water extraction and alcohol precipitation method. T2DM mice model was established by high-fat diet combined with streptozotocin. Liver histopathological changes were observed by H&E and PAS straining. Pancreatic histology was studied by H&E staining and immunofluorescence analysis. The levels of glucagon and insulin were detected by Elisa Kit and the hepatic glycogen content was detected by GOPOD. The expressions of the hepatic glycogen-related metabolism enzymes, hepatic gluconeogenesis enzymes, and the related protein in cAMP-PKA and Akt/FoxO1 signaling pathways were detected by western blots. Liver glycogen was extracted from the liver tissues by sucrose density gradient centrifugation, and size exclusion chromatography (SEC) was used to analyze the structure of liver glycogen. RESULTS DOP could significantly affect the glucagon-mediated signaling pathways, cAMP-PKA and Akt/FoxO1, to further promote hepatic glycogen synthesis, inhibit hepatic glycogen degradation and hepatic gluconeogenesis. Moreover, DOP could reverse the instability of the liver glycogen structure and thus probably suppressed glycogen degradation. Thus, DOP finally would ameliorate hepatic glucose metabolism via glucagon-mediated signaling pathways and modifying liver-glycogen structure in diabetic mice. CONCLUSIONS The hypoglycemic mechanism of DOP might be associated with the regulation of glucagon-mediated hepatic glycogen metabolism and gluconeogenesis, and of liver glycogen structure, contributing to improved hepatic glucose metabolism in diabetic mice.
Collapse
Affiliation(s)
- Yage Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Linlin Yang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1227, Jiefang Road, 430030, Wuhan, China
| | - Xiaocui Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Zhijing Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1227, Jiefang Road, 430030, Wuhan, China
| | - Robert G Gilbert
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, College of Agriculture, Yangzhou University, 225009, Yangzhou, Jiangsu Province, China; Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Bin Deng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1227, Jiefang Road, 430030, Wuhan, China.
| | - Kaiping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
| |
Collapse
|
172
|
Iguchi T, Goto K, Watanabe K, Hashimoto K, Suzuki T, Kishino H, Fujimoto K, Mori K. Fluoroquinolones suppress gluconeogenesis by inhibiting fructose 1,6-bisphosphatase in primary monkey hepatocytes. Toxicol In Vitro 2020; 65:104786. [PMID: 32004540 DOI: 10.1016/j.tiv.2020.104786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 01/08/2020] [Accepted: 01/26/2020] [Indexed: 11/17/2022]
Abstract
Dysglycemia is one of the most serious adverse events associated with the clinical use of certain fluoroquinolones. The purpose of this study was to investigate the effects of the representative fluoroquinolones moxifloxacin and gatifloxacin on hepatic gluconeogenesis using primary monkey hepatocytes. Glucose production was induced after the cells were incubated for 4 h with 10 mM sodium lactate and 1 mM sodium pyruvate as gluconeogenic substrates. Under these conditions, moxifloxacin and gatifloxacin dose-dependently suppressed gluconeogenesis at concentrations of 100 μM or higher. Transcriptome analysis of rate-limiting enzymes involved in hepatic gluconeogenesis revealed that moxifloxacin and gatifloxacin at a concentration of 1000 μM did not affect the expression of key gluconeogenic enzymes such as phosphoenolpyruvate carboxykinase, glucose 6-phosphatase, and fructose 1,6-bisphosphatase. Furthermore, metabolome analysis, in vitro glucose production assay using additional gluconeogenic substrates, and fructose 1,6-bisphosphatase assay using the cell extracts showed that fluoroquinolones enzymatically suppressed hepatic gluconeogenesis by inhibiting fructose 1,6-bisphosphatase. These inhibitory effects may involve in the clinically relevant dysglycemia associated with fluoroquinolones in human.
Collapse
Affiliation(s)
- Takuma Iguchi
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan.
| | - Koichi Goto
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan.
| | - Kyoko Watanabe
- Biomarker & Translational Research Department, Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-0005, Japan.
| | - Kazuyuki Hashimoto
- Biomarker & Translational Research Department, Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-0005, Japan.
| | - Takami Suzuki
- Oncology Research Laboratories I, Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-0005, Japan.
| | - Hiroyuki Kishino
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan.
| | - Kazunori Fujimoto
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan.
| | - Kazuhiko Mori
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan.
| |
Collapse
|
173
|
Wang C, Song D, Fu J, Wen X. SIK1 Regulates CRTC2-Mediated Gluconeogenesis Signaling Pathway in Human and Mouse Liver Cells. Front Endocrinol (Lausanne) 2020; 11:580. [PMID: 33013689 PMCID: PMC7493656 DOI: 10.3389/fendo.2020.00580] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/16/2020] [Indexed: 11/15/2022] Open
Abstract
The regulation of hepatic gluconeogenesis is of great significance to improve insulin resistance and benefit diabetes therapy. cAMP-Regulated Transcriptional Co-activator 2 (CRTC2) plays a key role in regulating hepatic gluconeogenesis through controlling the expression of gluconeogenic rate-limiting enzymes such as glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK). Recently, salt-inducible kinase 1 (SIK1) has been identified to play an important role in glucose metabolism disorders, but whether and how SIK1 regulates the CTRC2 signaling in liver cells under high glucose conditions has rarely been intensively elucidated. Here, we show that high glucose stimulation resulted in time-dependent down-regulated expression of SIK1, phosphorylated SIK1 at T182 site, and phosphorylated CRTC2 at S171 site, as well as upregulated expression of total CRTC2 and its downstream targets G6Pase and PEPCK in the human liver cell line HepG2. The nuclear expression levels of SIK1 and CRTC2 were time-dependently upregulated upon high glucose challenge, which was accompanied by enhanced cytoplasm-to-nucleus translocation of SIK1. Manipulation of SIK1 activity using plasmid-mediated SIK1 over-expression and the use of the SIKs inhibitor HG-9-91-01 confirmed that SIK1 regulated the CRTC2 signaling pathway in HepG2 cells. Furthermore, in mouse primary hepatocytes, high glucose exposure down-regulated SIK1 expression, and promoted SIK1 nuclear accumulation. While HG-9-91-01 treatment suppressed SIK1 expression and released the inhibitory effects of SIK1 on the expressions of key molecules involved in the CRTC2 signaling pathway, additional ectopic expression of SIK1 using adenovirus infection reversed the impacts of HG-9-91-01 on the expressions of these molecules in mouse hepatocytes. Therefore, SIK1 regulates CRTC2-mediated gluconeogenesis signaling pathway under both physiological and high glucose-induced pathological conditions. The modulation of the SIK1-CRTC2 signaling axis could provide an attractive means for treating diabetes.
Collapse
Affiliation(s)
- Chang Wang
- Department of Endocrinology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daofei Song
- Department of Endocrinology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, China
| | - Jiahui Fu
- Department of Endocrinology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiuying Wen
- Department of Endocrinology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Xiuying Wen
| |
Collapse
|
174
|
Therapeutic potential of ginsenosides on diabetes: From hypoglycemic mechanism to clinical trials. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103630] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
175
|
Chen Y, Chen J, Zhang C, Yang S, Zhang X, Liu Y, Su Z. Deficiency in the short-chain acyl-CoA dehydrogenase protects mice against diet-induced obesity and insulin resistance. FASEB J 2019; 33:13722-13733. [PMID: 31585505 DOI: 10.1096/fj.201901474rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yulong Chen
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Jinglu Chen
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Caixia Zhang
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Shanshan Yang
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Xueping Zhang
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Yin Liu
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Zhiguang Su
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
176
|
Le Foll C. Hypothalamic Fatty Acids and Ketone Bodies Sensing and Role of FAT/CD36 in the Regulation of Food Intake. Front Physiol 2019; 10:1036. [PMID: 31474875 PMCID: PMC6702519 DOI: 10.3389/fphys.2019.01036] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/29/2019] [Indexed: 12/19/2022] Open
Abstract
The obesity and type-2 diabetes epidemic is escalating and represents one of the costliest biomedical challenges confronting modern society. Moreover, the increasing consumption of high fat food is often correlated with an increase in body mass index. In people predisposed to be obese or already obese, the impaired ability of the brain to monitor and respond to alterations in fatty acid (FA) metabolism is increasingly recognized as playing a role in the pathophysiological development of these disorders. The brain senses and regulates metabolism using highly specialized nutrient-sensing neurons located mainly in the hypothalamus. The same neurons are able to detect variation in the extracellular levels of glucose, FA and ketone bodies as a way to monitor nutrient availability and to alter its own activity. In addition, glial cells such as astrocytes create major connections to neurons and form a tight relationship to closely regulate nutrient uptake and metabolism. This review will examine the different pathways by which neurons are able to detect free fatty acids (FFA) to alter its activity and how high fat diet (HFD)-astrocytes induced ketone bodies production interplays with neuronal FA sensing. The role of HFD-induced inflammation and how FA modulate the reward system will also be investigated here.
Collapse
Affiliation(s)
- Christelle Le Foll
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|