151
|
Sharma S, Sharma H, Gogoi H. Bacterial immunotherapy: is it a weapon in our arsenal in the fight against cancer? Front Immunol 2023; 14:1277677. [PMID: 38090593 PMCID: PMC10711065 DOI: 10.3389/fimmu.2023.1277677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/03/2023] [Indexed: 12/18/2023] Open
Abstract
Advances in understanding the genetic basis of cancer have driven alternative treatment approaches. Recent findings have demonstrated the potential of bacteria and it's components to serve as robust theranostic agents for cancer eradication. Compared to traditional cancer therapies like surgery, chemotherapy, radiotherapy, bacteria mediated tumor therapy has exhibited superior cancer suppressing property which is attributed a lot to it's tumor proliferating and accumulating characteristics. Genetically modified bacteria has reduced inherent toxicity and enhanced specificity towards tumor microenvironment. This anti- tumor activity of bacteria is attributed to its toxins and other active components from the cell membrane, cell wall and spores. Furthermore, bacterial genes can be regulated to express and deliver cytokines, antibodies and cancer therapeutics. Although there is less clinical data available, the pre- clinical research clearly indicates the feasibility and potential of bacteria- mediated cancer therapy.
Collapse
Affiliation(s)
- Shubhra Sharma
- Amity Institute of Microbial Technology, Amity University Rajasthan, Jaipur, India
| | - Himani Sharma
- Amity Institute of Microbial Technology, Amity University Rajasthan, Jaipur, India
| | - Himanshu Gogoi
- Amity Institute of Microbial Technology, Amity University Rajasthan, Jaipur, India
- Translational Health Science and Technology Institute, National Capital Region (NCR) Biotech Science Cluster, Faridabad, India
| |
Collapse
|
152
|
Sasso J, Tenchov R, Bird R, Iyer KA, Ralhan K, Rodriguez Y, Zhou QA. The Evolving Landscape of Antibody-Drug Conjugates: In Depth Analysis of Recent Research Progress. Bioconjug Chem 2023; 34:1951-2000. [PMID: 37821099 PMCID: PMC10655051 DOI: 10.1021/acs.bioconjchem.3c00374] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/27/2023] [Indexed: 10/13/2023]
Abstract
Antibody-drug conjugates (ADCs) are targeted immunoconjugate constructs that integrate the potency of cytotoxic drugs with the selectivity of monoclonal antibodies, minimizing damage to healthy cells and reducing systemic toxicity. Their design allows for higher doses of the cytotoxic drug to be administered, potentially increasing efficacy. They are currently among the most promising drug classes in oncology, with efforts to expand their application for nononcological indications and in combination therapies. Here we provide a detailed overview of the recent advances in ADC research and consider future directions and challenges in promoting this promising platform to widespread therapeutic use. We examine data from the CAS Content Collection, the largest human-curated collection of published scientific information, and analyze the publication landscape of recent research to reveal the exploration trends in published documents and to provide insights into the scientific advances in the area. We also discuss the evolution of the key concepts in the field, the major technologies, and their development pipelines with company research focuses, disease targets, development stages, and publication and investment trends. A comprehensive concept map has been created based on the documents in the CAS Content Collection. We hope that this report can serve as a useful resource for understanding the current state of knowledge in the field of ADCs and the remaining challenges to fulfill their potential.
Collapse
Affiliation(s)
- Janet
M. Sasso
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Rumiana Tenchov
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Robert Bird
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | | | | - Yacidzohara Rodriguez
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | |
Collapse
|
153
|
Elsayed B, Alksas A, Shehata M, Mahmoud A, Zaky M, Alghandour R, Abdelwahab K, Abdelkhalek M, Ghazal M, Contractor S, El-Din Moustafa H, El-Baz A. Exploring Neoadjuvant Chemotherapy, Predictive Models, Radiomic, and Pathological Markers in Breast Cancer: A Comprehensive Review. Cancers (Basel) 2023; 15:5288. [PMID: 37958461 PMCID: PMC10648987 DOI: 10.3390/cancers15215288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Breast cancer retains its position as the most prevalent form of malignancy among females on a global scale. The careful selection of appropriate treatment for each patient holds paramount importance in effectively managing breast cancer. Neoadjuvant chemotherapy (NACT) plays a pivotal role in the comprehensive treatment of this disease. Administering chemotherapy before surgery, NACT becomes a powerful tool in reducing tumor size, potentially enabling fewer invasive surgical procedures and even rendering initially inoperable tumors amenable to surgery. However, a significant challenge lies in the varying responses exhibited by different patients towards NACT. To address this challenge, researchers have focused on developing prediction models that can identify those who would benefit from NACT and those who would not. Such models have the potential to reduce treatment costs and contribute to a more efficient and accurate management of breast cancer. Therefore, this review has two objectives: first, to identify the most effective radiomic markers correlated with NACT response, and second, to explore whether integrating radiomic markers extracted from radiological images with pathological markers can enhance the predictive accuracy of NACT response. This review will delve into addressing these research questions and also shed light on the emerging research direction of leveraging artificial intelligence techniques for predicting NACT response, thereby shaping the future landscape of breast cancer treatment.
Collapse
Affiliation(s)
- Basma Elsayed
- Biomedical Engineering Program, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt;
| | - Ahmed Alksas
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA; (A.A.); (M.S.); (A.M.)
| | - Mohamed Shehata
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA; (A.A.); (M.S.); (A.M.)
| | - Ali Mahmoud
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA; (A.A.); (M.S.); (A.M.)
| | - Mona Zaky
- Diagnostic Radiology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Reham Alghandour
- Medical Oncology Department, Mansoura Oncology Center, Mansoura University, Mansoura 35516, Egypt;
| | - Khaled Abdelwahab
- Surgical Oncology Department, Mansoura Oncology Center, Mansoura University, Mansoura 35516, Egypt; (K.A.); (M.A.)
| | - Mohamed Abdelkhalek
- Surgical Oncology Department, Mansoura Oncology Center, Mansoura University, Mansoura 35516, Egypt; (K.A.); (M.A.)
| | - Mohammed Ghazal
- Electrical, Computer, and Biomedical Engineering Department, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates;
| | - Sohail Contractor
- Department of Radiology, University of Louisville, Louisville, KY 40202, USA;
| | | | - Ayman El-Baz
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA; (A.A.); (M.S.); (A.M.)
| |
Collapse
|
154
|
Kenawy ER, El-Khalafy SH, Abosharaf HA, El-Nshar EM, Ghazy AR, Azaam MM. Synthesis, Characterization, and Anticancer Potency of Branched Poly (p-Hydroxy Styrene) Schiff-Bases. Macromol Biosci 2023; 23:e2300090. [PMID: 37376773 DOI: 10.1002/mabi.202300090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/20/2023] [Indexed: 06/29/2023]
Abstract
A significant issue in cancer biology is finding anticancer therapies that effectively kill cancer cells. Through the use of several aldehydes, Schiff bases based on branched poly (p-hydroxy styrene) are created. The branched polymer is first chloroacetylated, then aminated with 1,4-phenylenediamine, and finally, aldehydes are reacted with the aminated polymer to produce the Schiff base compounds. Through the utilization of FTIR, TGA, XRD, NMR, and elemental analysis, all synthesized Schiff-bases are identified and characterized. Further, the antineoplastic potential of all Schiff bases is evaluated against different cancer cell lines. The results gained from this study indicate that the Schiff base polymers have cytotoxic power against cancer cells depending on cancer cell type and this antiproliferation potency is dose-concentration dependent. Importantly, the prepared S1 Schiff-base polymer shows potent cytotoxicity and is able to trigger the apoptosis and reactive oxygen species (ROS) in MCF-7 cells. Further, it downregulates VEGFR protein expression. The Schiff base polymers would have extensive applications in the biological disciplines.
Collapse
Affiliation(s)
- El-Refaie Kenawy
- Department of Chemistry, Faculty of Science, University of Tanta, Tanta, 31527, Egypt
| | - Sahar H El-Khalafy
- Department of Chemistry, Faculty of Science, University of Tanta, Tanta, 31527, Egypt
| | - Hamed A Abosharaf
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Esraa M El-Nshar
- Chemistry Department, Faculty of Dentistry, Sinai University, Kantara, 41612, Egypt
| | - Ahmed R Ghazy
- Laser Laboratory, Physics Department, Faculty of Sciences, Tanta University, Tanta, 31527, Egypt
| | - Mohamed M Azaam
- Department of Chemistry, Faculty of Science, University of Tanta, Tanta, 31527, Egypt
| |
Collapse
|
155
|
Deng M, Wu S, Huang P, Liu Y, Li C, Zheng J. Engineered exosomes-based theranostic strategy for tumor metastasis and recurrence. Asian J Pharm Sci 2023; 18:100870. [PMID: 38161784 PMCID: PMC10755545 DOI: 10.1016/j.ajps.2023.100870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/10/2023] [Accepted: 10/15/2023] [Indexed: 01/03/2024] Open
Abstract
Metastasis-associated processes are the predominant instigator of fatalities linked to cancer, wherein the pivotal role of circulating tumor cells lies in the resurgence of malignant growth. In recent epochs, exosomes, constituents of the extracellular vesicle cohort, have garnered attention within the field of tumor theranostics owing to their inherent attributes encompassing biocompatibility, modifiability, payload capacity, stability, and therapeutic suitability. Nonetheless, the rudimentary functionalities and limited efficacy of unmodified exosomes curtail their prospective utility. In an effort to surmount these shortcomings, intricate methodologies amalgamating nanotechnology with genetic manipulation, chemotherapy, immunotherapy, and optical intervention present themselves as enhanced avenues to surveil and intercede in tumor metastasis and relapse. This review delves into the manifold techniques currently employed to engineer exosomes, with a specific focus on elucidating the interplay between exosomes and the metastatic cascade, alongside the implementation of tailored exosomes in abating tumor metastasis and recurrence. This review not only advances comprehension of the evolving landscape within this domain but also steers the trajectory of forthcoming investigations.
Collapse
Affiliation(s)
- Min Deng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Shuang Wu
- Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Peizheng Huang
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Yun Liu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Chong Li
- Medical Research Institute, Southwest University, Chongqing 400716, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| |
Collapse
|
156
|
Parthasarathy R, Sruthi D, Jayabaskaran C. Retracted: Isolation and purifications of an ambuic acid derivative compound from marine algal endophytic fungi Talaromyces flavus that induces apoptosis in MDA-MB-231 cancer cells. Chem Biol Drug Des 2023; 102:1308-1326. [PMID: 37246452 DOI: 10.1111/cbdd.14271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/17/2023] [Accepted: 05/08/2023] [Indexed: 05/30/2023]
Abstract
In recent years, there has been a lot of buzz about the possibilities of marine microflora as a source of new therapeutic drugs. The strong anti-tumor potency of compounds found in marine resources reflects the ocean's enormous potential as a source of anticancer therapeutics. In this present investigation, an ambuic acid derivative anticancer compound was isolated from Talaromyces flavus, and its cytotoxicity and apoptosis induction potential were analyzed. T. flavus was identified through morphological and molecular analysis. The various organic solvent extracts of T. flavus grown on different growth mediums were evaluated for cytotoxicity on different cancer cell lines. The potent cytotoxicity was shown in the ethyl acetate extract of a fungal culture grown in the M1-D medium for 21 days. Furthermore, the anticancer compound was identified using preparative thin layer chromatography, followed by its purification in significant proportions using column chromatography. The spectroscopic and chromatographic analysis revealed that the structure of the purified molecules was an ambuic acid derivative. The ambuic acid derivative compound showed potent cytotoxicity on MDA-MB-231 (breast cancer cells) with an IC50 value of 26 μM and induced apoptosis in the MDA-MB-231 cells in a time-dependent and reactive oxygen species-independent manner.
Collapse
Affiliation(s)
| | - Damodaran Sruthi
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Chelliah Jayabaskaran
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| |
Collapse
|
157
|
Malveiro C, Correia IR, Cargaleiro C, Magalhães JP, de Matos LV, Hilário S, Sardinha LB, Cardoso MJ. Effects of exercise training on cancer patients undergoing neoadjuvant treatment: A systematic review. J Sci Med Sport 2023; 26:586-592. [PMID: 37696693 DOI: 10.1016/j.jsams.2023.08.178] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/01/2023] [Accepted: 08/15/2023] [Indexed: 09/13/2023]
Abstract
OBJECTIVES This systematic review aimed to analyze the effects of different exercise protocols on physical fitness (cardiorespiratory fitness, muscle strength, and body composition), quality of life, cancer-related fatigue, and sleep quality in patients with different types of cancer undergoing neoadjuvant treatment. DESIGN Systematic review. METHOD A comprehensive search of existing literature was carried out using four electronic databases: PubMed, Scopus, Web of Science, and Cochrane Library (published until October 19, 2022). All databases were searched for randomized controlled trials, quasi-experimental investigations, and pre-post investigations assessing the effects of exercise in cancer patients during neoadjuvant treatment. Excluded articles included multicomponent interventions, such as exercise plus diet or behavioral therapy, and investigations performed during adjuvant treatment or survivorship. The methodological quality of each study was assessed using the Physiotherapy Evidence Database (PEDro) scale. RESULTS Twenty-seven trials involving 999 cancer patients were included in this review. The interventions were conducted in cancer patients undergoing neoadjuvant treatment for rectal (n = 11), breast (n = 5), pancreatic (n = 4), esophageal (n = 3), gastro-esophageal (n = 2), and prostate (n = 1) cancers, and leukemia (n = 1). Among the investigations included, 14 utilized combined exercise protocols, 11 utilized aerobic exercise, and two utilized both aerobic and resistance training separately. Exercise interventions appeared to improve cardiorespiratory fitness, muscle strength, body composition, and quality of life, although many investigations lacked a between-group analysis. CONCLUSION Despite limited evidence, exercise interventions applied during neoadjuvant treatment demonstrate promising potential in enhancing cardiorespiratory fitness, muscle strength, body composition, and overall quality of life. However, a scarcity of evidence remains on the effects of exercise on cancer-related fatigue and sleep quality. Further research with high-quality randomized controlled trials is warranted.
Collapse
Affiliation(s)
- Carla Malveiro
- Exercise and Health Laboratory, CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Portugal; Breast Unit, Champalimaud Foundation, Portugal.
| | - Inês R Correia
- Exercise and Health Laboratory, CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Portugal
| | - Catarina Cargaleiro
- Exercise and Health Laboratory, CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Portugal
| | - João P Magalhães
- Exercise and Health Laboratory, CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Portugal
| | | | - Sofia Hilário
- Exercise and Health Laboratory, CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Portugal
| | - Luís B Sardinha
- Exercise and Health Laboratory, CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Portugal
| | - Maria João Cardoso
- Breast Unit, Champalimaud Foundation, Portugal; Faculdade de Ciências Médicas da Universidade Nova de Lisboa, Portugal
| |
Collapse
|
158
|
Stavely R, Ott LC, Rashidi N, Sakkal S, Nurgali K. The Oxidative Stress and Nervous Distress Connection in Gastrointestinal Disorders. Biomolecules 2023; 13:1586. [PMID: 38002268 PMCID: PMC10669114 DOI: 10.3390/biom13111586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Oxidative stress is increasingly recognized as a central player in a range of gastrointestinal (GI) disorders, as well as complications stemming from therapeutic interventions. This article presents an overview of the mechanisms of oxidative stress in GI conditions and highlights a link between oxidative insult and disruption to the enteric nervous system (ENS), which controls GI functions. The dysfunction of the ENS is characteristic of a spectrum of disorders, including neurointestinal diseases and conditions such as inflammatory bowel disease (IBD), diabetic gastroparesis, and chemotherapy-induced GI side effects. Neurons in the ENS, while essential for normal gut function, appear particularly vulnerable to oxidative damage. Mechanistically, oxidative stress in enteric neurons can result from intrinsic nitrosative injury, mitochondrial dysfunction, or inflammation-related pathways. Although antioxidant-based therapies have shown limited efficacy, recognizing the multifaceted role of oxidative stress in GI diseases offers a promising avenue for future interventions. This comprehensive review summarizes the literature to date implicating oxidative stress as a critical player in the pathophysiology of GI disorders, with a focus on its role in ENS injury and dysfunction, and highlights opportunities for the development of targeted therapeutics for these diseases.
Collapse
Affiliation(s)
- Rhian Stavely
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Leah C. Ott
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Niloufar Rashidi
- Institute for Health and Sport, Victoria University, St Albans, VIC 3021, Australia
| | - Samy Sakkal
- Institute for Health and Sport, Victoria University, St Albans, VIC 3021, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, St Albans, VIC 3021, Australia
- Department of Medicine Western Health, The University of Melbourne, St Albans, VIC 3021, Australia
- Regenerative Medicine and Stem Cell Program, Australian Institute for Musculoskeletal Science (AIMSS), St Albans, VIC 3021, Australia
| |
Collapse
|
159
|
Reddy CS, Natarajan P, Nimmakayala P, Hankins GR, Reddy UK. From Fruit Waste to Medical Insight: The Comprehensive Role of Watermelon Rind Extract on Renal Adenocarcinoma Cellular and Transcriptomic Dynamics. Int J Mol Sci 2023; 24:15615. [PMID: 37958599 PMCID: PMC10647773 DOI: 10.3390/ijms242115615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/14/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Cancer researchers are fascinated by the chemistry of diverse natural products that show exciting potential as anticancer agents. In this study, we aimed to investigate the anticancer properties of watermelon rind extract (WRE) by examining its effects on cell proliferation, apoptosis, senescence, and global gene expression in human renal cell adenocarcinoma cells (HRAC-769-P) in vitro. Our metabolome data analysis of WRE exhibited untargeted phyto-constituents and targeted citrulline (22.29 µg/mg). HRAC-769-P cells were cultured in RPMI-1640 media and treated with 22.4, 44.8, 67.2, 88.6, 112, 134.4, and 156.8 mg·mL-1 for 24, 48, and 72 h. At 24 h after treatment, (88.6 mg·mL-1 of WRE) cell proliferation significantly reduced, more than 34% compared with the control. Cell viability decreased 48 and 72 h after treatment to 45% and 37%, respectively. We also examined poly caspase, SA-beta-galactosidase (SA-beta-gal), and wound healing activities using WRE. All treatments induced an early poly caspase response and a significant reduction in cell migration. Further, we analyzed the transcript profile of the cells grown at 44.8 mg·mL-1 of WRE after 6 h using RNA sequencing (RNAseq) analysis. We identified 186 differentially expressed genes (DEGs), including 149 upregulated genes and 37 downregulated genes, in cells treated with WRE compared with the control. The differentially expressed genes were associated with NF-Kappa B signaling and TNF pathways. Crucial apoptosis-related genes such as BMF, NPTX1, NFKBIA, NFKBIE, and NFKBID might induce intrinsic and extrinsic apoptosis. Another possible mechanism is a high quantity of citrulline may lead to induction of apoptosis by the production of increased nitric oxide. Hence, our study suggests the potential anticancer properties of WRE and provides insights into its effects on cellular processes and gene expression in HRAC-769-P cells.
Collapse
Affiliation(s)
| | | | | | - Gerald R. Hankins
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (C.S.R.); (P.N.); (P.N.)
| | - Umesh K. Reddy
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA; (C.S.R.); (P.N.); (P.N.)
| |
Collapse
|
160
|
El-Said KS, Haidyrah AS, Mobasher MA, Khayyat AIA, Shakoori A, Al-Sowayan NS, Barnawi IO, Mariah RA. Artemisia annua Extract Attenuate Doxorubicin-Induced Hepatic Injury via PI-3K/Akt/Nrf-2-Mediated Signaling Pathway in Rats. Int J Mol Sci 2023; 24:15525. [PMID: 37958509 PMCID: PMC10647718 DOI: 10.3390/ijms242115525] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Doxorubicin (DOX), which is used to treat cancer, has harmful effects that limit its therapeutic application. Finding preventative agents to thwart DOX-caused injuries is thus imperative. Artemisia annua has numerous biomedical uses. This study aims to investigate the attenuative effect of Artemisia annua leaf extract (AALE) treatment on DOX-induced hepatic toxicity in male rats. A phytochemical screening of AALE was evaluated. Forty male rats were used; G1 was a negative control group, G2 was injected with AALE (150 mg/kg) intraperitoneally (i.p) daily for a month, 4 mg/kg of DOX was given i.p to G3 once a week for a month, and G4 was injected with DOX as G3 and with AALE as G2. Body weight changes and biochemical, molecular, and histopathological investigations were assessed. The results showed that AALE contains promising phytochemical constituents that contribute to several potential biomedical applications. AALE mitigated the hepatotoxicity induced by DOX in rats as evidenced by restoring the alterations in the biochemical parameters, antioxidant gene expression, and hepatic histopathological alterations in rats. Importantly, the impact of AALE against the hepatic deterioration resulting from DOX treatment is through activation of the PI-3K/Akt/Nrf-2 signaling, which in turn induces the antioxidant agents.
Collapse
Affiliation(s)
- Karim Samy El-Said
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Ahmed S. Haidyrah
- Digital & Smart Laboratories (DSL), King Abdulaziz City for Science & Technology (KACST), Riyadh 11442, Saudi Arabia;
| | - Maysa A. Mobasher
- Department of Pathology, Biochemistry Division, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Arwa Ishaq A. Khayyat
- Biochemistry Department, Science College, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Afnan Shakoori
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | | | - Ibrahim Omar Barnawi
- Department of Biological Sciences, Faculty of Science, Taibah University, Al-Madinah Al-Munawwarah 41321, Saudi Arabia;
| | - Reham A. Mariah
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
161
|
Raman V, Deshpande CP, Khanduja S, Howell LM, Van Dessel N, Forbes NS. Build-a-bug workshop: Using microbial-host interactions and synthetic biology tools to create cancer therapies. Cell Host Microbe 2023; 31:1574-1592. [PMID: 37827116 DOI: 10.1016/j.chom.2023.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/16/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023]
Abstract
Many systemically administered cancer therapies exhibit dose-limiting toxicities that reduce their effectiveness. To increase efficacy, bacterial delivery platforms have been developed that improve safety and prolong treatment. Bacteria are a unique class of therapy that selectively colonizes most solid tumors. As delivery vehicles, bacteria have been genetically modified to express a range of therapies that match multiple cancer indications. In this review, we describe a modular "build-a-bug" method that focuses on five design characteristics: bacterial strain (chassis), therapeutic compound, delivery method, immune-modulating features, and genetic control circuits. We emphasize how fundamental research into gut microbe pathogenesis has created safe bacterial therapies, some of which have entered clinical trials. The genomes of gut microbes are fertile grounds for discovery of components to improve delivery and modulate host immune responses. Future work coupling these delivery vehicles with insights from gut microbes could lead to the next generation of microbial cancer therapy.
Collapse
Affiliation(s)
- Vishnu Raman
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA; Ernest Pharmaceuticals, LLC, Hadley, MA, USA
| | - Chinmay P Deshpande
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA
| | - Shradha Khanduja
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA
| | - Lars M Howell
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA
| | | | - Neil S Forbes
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA; Molecular and Cell Biology Program, University of Massachusetts, Amherst, Amherst, MA, USA; Institute for Applied Life Science, University of Massachusetts, Amherst, Amherst, MA, USA.
| |
Collapse
|
162
|
Kaur K, Kaur A. Metamaterial based AMC backed archimedean spiral antenna for in-vitro microwave hyperthermia of skin cancer. Electromagn Biol Med 2023; 42:163-181. [PMID: 38156657 DOI: 10.1080/15368378.2023.2297954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 10/26/2023] [Indexed: 01/03/2024]
Abstract
This research article presents a study that uses microwave frequencies (ISM band) for treatment of skin cancer by heating the malignant cells on skin with a Microwave Hyperthermia (MWHT) applicator. The proposed MWHT applicator has been designed as an Archimedean Spiral Microstrip Patch Antenna (AMSPA) of dimensions 38 × 38 × 1.64 mm3 backed with a Meshed-shaped AMC (48 × 48 × 3.27mm3) reflector, placed at an optimized distance of 12 mm from AMSPA. The proposed AMSPA is designed as a single spiral resonator and fabricated on FR-4 substrate, excited using a feed network. The proposed AMSPA shows a resonance at 2.5 GHz with an impedance BW of 260 MHz (2.37-2.63 GHz) and peak gain of 3.20 dB with a bidirectional radiation pattern. An AMC is placed at its backside that can be exploited as a phase-compensation surface to attain an in-phase profile for directive emission and improve the BW upto 470 MHz, peak gain to 6.8 dB and also enhance the front-to-back ratio of the radiating antenna with radiation efficiency of 80%. The simulated environment for hyperthermia analysis is set up using penne's Bio-Heat equations to deliver microwave energy to the bio-mimic, that leads to a rise in temperature over the designed bio-mimic in CST MWS in the range of 41-45°C. The validation of MWHT radiation properties and temperature rise inside the malignancy of phantom is carried out by fabricating the bio-mimic using gelatine, vegetable oils and glycerol. This set up enhances the penetration-depth of EM waves inside the tri-layered phantom up-to 29.5 mm with Effective Field Surface of 36 × 36 mm2 and SAR of 8 W/Kg.
Collapse
Affiliation(s)
- Komalpreet Kaur
- Department of Electronics and Communication, Thapar Institute of Engineering and Technology (TIET), Patiala, India
| | - Amanpreet Kaur
- Department of Electronics and Communication, Thapar Institute of Engineering and Technology (TIET), Patiala, India
| |
Collapse
|
163
|
Verma A, Rai N, Gupta P, Singh S, Tiwari H, Chauhan SB, Kailashiya V, Gautam V. Exploration of in vitro cytotoxic and in ovo antiangiogenic activity of ethyl acetate extract of Penicillium oxalicum. ENVIRONMENTAL TOXICOLOGY 2023; 38:2509-2523. [PMID: 37461856 DOI: 10.1002/tox.23889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/27/2023] [Accepted: 06/29/2023] [Indexed: 09/19/2023]
Abstract
Fungal endophytes have established new paradigms in the area of biomedicine due to their ability to produce metabolites of pharmacological importance. The present study reports the in vitro cytotoxic and in ovo antiangiogenic activity of the ethyl acetate (EA) extract of Penicillium oxalicum and their chemical profiling through Gas Chromatography-Mass Spectrometry analysis. Treatment of the EA extract of P. oxalicum to the selected human breast cancer cell lines (MDA-MB-231 and MCF-7) leads to the reduced glucose uptake and increased nitric oxide production suggesting the cytotoxic activity of EA extract of P. oxalicum. Our results further show that treatment of EA extract of P. oxalicum attenuates the colony number, cell migration ability and alters nuclear morphology in both the human breast cancer cell lines. Furthermore, the treatment of EA extract of P. oxalicum mediates apoptosis by increasing the expression of BAX, P21, FADD, and CASPASE-8 genes, with increased Caspase-3 activity. Additionally, in ovo chorioallantoic membrane (CAM) assay showed that the treatment of EA extract of P. oxalicum leads to antiangiogenic activity with perturbed formation of blood vessels. Overall, our findings suggest that the EA extract of P. oxalicum show in vitro cytotoxic and antiproliferative activity against human breast cancer cell lines, and in ovo antiangiogenic activity in CAM model.
Collapse
Affiliation(s)
- Ashish Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Nilesh Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Swati Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Harshita Tiwari
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shashi Bhushan Chauhan
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Vikas Kailashiya
- Department of Pathology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
164
|
Wang D, Li M, Zhang H, Feng C, Wu L, Yan L. A Novel Redox-Sensitive Drug Delivery System Based on Trimethyl-Locked Polycarbonate. Biomacromolecules 2023; 24:4303-4315. [PMID: 37585690 DOI: 10.1021/acs.biomac.3c00702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Stimuli-responsive polymer nanocarriers, capable of exploiting subtle changes in the tumor microenvironment for controlled drug release, have gained significant attention in cancer therapy. Notably, NAD(P)H: quinone oxidoreductase 1 (NQO1), found to be upregulated in various solid tumors, represents a promising therapeutic target due to its effective capability to enzymatically reduce trimethyl-locked (TML) benzoquinone structures in a physiological condition. In this study, a novel redox-sensitive carbonate monomer, MTC, was synthesized, and its amphiphilic block copolymers were prepared through ring-opening polymerization. By successfully self-assembling poly(ethylene glycol)-b-PMTC micelles, the model drug doxorubicin (DOX) was encapsulated with high efficiency. The micelles exhibited redox-responsive behavior, leading to rapid drug release. In vitro assessments confirmed their excellent biocompatibility and hemocompatibility. Furthermore, the inhibition of the NQO1 enzyme reduced drug release in NQO1-overexpressed cells but not in control cells, resulting in decreased cytotoxicity in the presence of NQO1 enzyme inhibitors. Overall, this study showcases the potential of MTC-based polycarbonate micelles to achieve targeted and specific drug release in the NQO1 enzyme-mediated tumor microenvironment. Therefore, the self-assembly of MTC-based polymers into nanomicelles holds immense promise as intelligent nanocarriers in drug delivery applications.
Collapse
Affiliation(s)
- Dongdong Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Mu Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Hanning Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Congshu Feng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Lili Wu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Lesan Yan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
165
|
Ayhan S, Hancerliogullari N, Guney G, Gozukucuk M, Caydere M, Guney SS, Tokmak A, Ustun Y. Does the addition of metformin to carboplatin treatment decreases ovarian reserve damage associated with carboplatin usage? J Ovarian Res 2023; 16:184. [PMID: 37660125 PMCID: PMC10474675 DOI: 10.1186/s13048-023-01259-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/13/2023] [Indexed: 09/04/2023] Open
Abstract
BACKGROUND We aimed to determine whether adding metformin to carboplatin treatment would reduce the damage to ovarian reserve associated with carboplatin use. METHODS We included 35 adult female non-pregnant albino Wistar rats approximately three months old, weighing 220-310 g. The rats were divided into five groups of seven rats according to the treatment they received. Carboplatin and salin was given to Group 2, and carboplatin plus metformin was given to Group 3. Group 4 was administered only metformin. Group 5 was administered only salin. Carboplatin was given to Groups 2 and 3 as a single dose on the 15th day, while metformin was given to Groups 3 and 4 during the 28-day experiment. After oophorectomy, histopathologic analyses of primordial, primary, secondary, and tertiary Graff follicles according to the epithelial cells surrounding the oocyte and total follicular number were conducted per section. Serum Anti-Mullerian Hormone (AMH), tissue catalase, and malonyl dialdehyde levels were measured and compared within each group. RESULTS The baseline and 15th-day serum AMH values of the menstrual cycle were compared among the groups, and no statistically significant differences were observed (p > 0.05). Group 3, which was given both carboplatin and metformin, had statistically significantly higher 28th-day AMH levels than Group 2, which was given only carboplatin and saline (p < 0.001). The number of primordial follicles in Group 3 was found to be statistically significantly higher than in Group 2 (p < 0.001). Tissue catalase enzyme levels in Group 3 were statistically significantly higher than in Group 2 (p < 0.001). Tissue malondialdehyde levels in Group 2 were statistically significantly higher than tissue malondialdehyde levels in Groups 3 and 4 (p < 0.001). CONCLUSIONS Metformin may attenuate carboplatin-induced ovarian damage, possibly through its antioxidative effects.
Collapse
Affiliation(s)
- Sevgi Ayhan
- Department of Obstetrics and Gynecology, University of Health Sciences, Bilkent City Hospital, Ankara, Turkey
| | - Necati Hancerliogullari
- Department of Obstetrics and Gynecology, University of Health Sciences, Bilkent City Hospital, Ankara, Turkey
| | - Gurhan Guney
- Department of Reproductive Endocrinology and Infertility, Balikesir University School of Medicine, Cagis Campus,10145, 10145, Balikesir, Turkey.
| | - Murat Gozukucuk
- Department of Obstetrics and Gynecology, University of Health Sciences, Ankara Training and Research Hospital, Ankara, Turkey
| | - Muzaffer Caydere
- Department of Pathology, University of Health Sciences, Ankara Training and Research Hospital, Ankara, Turkey
| | - Sergul Selvi Guney
- Department of Midwifery, Faculty of Health Sciences, Balikesir University, Balikesir, Turkey
| | - Aytekin Tokmak
- Department of Obstetrics and Gynecology, University of Health Sciences, Bilkent City Hospital, Ankara, Turkey
| | - Yusuf Ustun
- Department of Obstetrics and Gynecology, University of Health Sciences, Ankara Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
166
|
Ashique S, Faiyazuddin M, Afzal O, Gowri S, Hussain A, Mishra N, Garg A, Maqsood S, Akhtar MS, Altamimi AS. Advanced nanoparticles, the hallmark of targeted drug delivery for osteosarcoma-an updated review. J Drug Deliv Sci Technol 2023; 87:104753. [DOI: 10.1016/j.jddst.2023.104753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
167
|
Bhuia MS, Chowdhury R, Sonia FA, Kamli H, Shaikh A, El-Nashar HAS, El-Shazly M, Islam MT. Anticancer Potential of the Plant-Derived Saponin Gracillin: A Comprehensive Review of Mechanistic Approaches. Chem Biodivers 2023; 20:e202300847. [PMID: 37547969 DOI: 10.1002/cbdv.202300847] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/08/2023]
Abstract
With the increasing prevalence of cancer and the toxic side effects of synthetic drugs, natural products are being developed as promising therapeutic approaches. Gracillin is a naturally occurring triterpenoid steroidal saponin with several therapeutic activities. It is obtained as a major compound from different Dioscorea species. This review was designated to summarize the research progress on the anti-cancer activities of gracillin focusing on the underlying cellular and molecular mechanisms, as well as its pharmacokinetic features. The data were collected (up to date as of May 1, 2023) from various reliable and authentic literatures comprising PubMed, Springer Link, Scopus, Wiley Online, Web of Science, ScienceDirect, and Google Scholar. The findings demonstrated that gracillin displays promising anticancer effects through various molecular mechanisms, including anti-inflammatory effects, apoptotic cell death, induction of oxidative stress, cytotoxicity, induction of genotoxicity, cell cycle arrest, anti-proliferative effect, autophagy, inhibition of glycolysis, and blocking of cancer cell migration. Additionally, this review highlighted the pharmacokinetic features of gracillin, indicating its lower oral bioavailability. As a conclusion, it can be proposed that gracillin could serve as a hopeful chemotherapeutic agent. However, further extensive clinical research is recommended to establish its safety, efficacy, and therapeutic potential in cancer treatment.
Collapse
Affiliation(s)
- Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Fatema Akter Sonia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Hossam Kamli
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
| | - Ahmad Shaikh
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| |
Collapse
|
168
|
Choi HK, Park SH, Lee J, Hwang JT. Review of Patents for Anticancer Agents Targeting Adenosine Monophosphate-Activated Protein Kinase. J Med Food 2023; 26:605-615. [PMID: 37590001 DOI: 10.1089/jmf.2023.k.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
Cancer, caused by abnormal and excessive cellular proliferation, can invade and destroy surrounding tissues and organs through the spreading of cancer cells. A general strategy for developing anticancer agents is to identify biomarkers that, if targeted, can produce a robust cytotoxic effect with minimal side effects. Cell-cycle regulators, checkpoint regulatory genes, and apoptosis-related genes are well-known biomarkers that inhibit cancer cell proliferation. Several compounds that target such biomarkers have been patented and more are being developed as novel therapies. Recent additions to this list include anticancer drugs that target signaling pathway proteins, such as 5' adenosine monophosphate-activated protein kinase (AMPK), which plays a vital role in cancer and normal cell metabolism. Herein, we have reviewed recent patents related to AMPK-targeting anticancer drugs and discussed the mechanisms of action of these drugs. We conclude that these recently published patents include several attractive compounds and methods for targeting AMPK. Further research and clinical trials are required to elucidate the comprehensive role of AMPK in cancer cell metabolism, identify its associated signal transduction systems, and develop novel activators that may find applications in cancer therapy. Clinical Trial Registration number: NCT01904123.
Collapse
Affiliation(s)
- Hyo-Kyoung Choi
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do, Republic of Korea
| | - Soo-Hyun Park
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do, Republic of Korea
| | - Jangho Lee
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do, Republic of Korea
| | - Jin-Taek Hwang
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do, Republic of Korea
| |
Collapse
|
169
|
Youn B, Cha J, Cho S, Jeong S, Kim H, Ko S. Perception, attitudes, knowledge of using complementary and alternative medicine for cancer patients among healthcare professionals: A mixed-methods systematic review. Cancer Med 2023; 12:19149-19162. [PMID: 37676102 PMCID: PMC10557909 DOI: 10.1002/cam4.6499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND With the rapid increase in the prevalence of cancer worldwide, the utilization of complementary and alternative medicine (CAM) has increased among cancer patients. This review aimed to understand the perception, attitudes, and knowledge of healthcare professionals toward using CAM for cancer patients. METHODS A mixed-methods systematic review was undertaken in four databases. Inclusion criteria were primary studies reporting perception, attitudes, and knowledge of healthcare professionals for using CAM for cancer patients were eligible. A mixed-methods convergent synthesis was carried out, and the findings were subjected to a GRADE-CERQual assessment of confidence. RESULTS Forty-two studies were chosen. The majority of the studies were quantitative and had less than 100 participants. Most publications were from European countries, and oncology was the highest among the specialties. The review found the following themes: feasibility of having negative adverse effects, low expectations of using CAM among HCPs, potential positive effects of using CAM, specific CAM training may be helpful, no concrete regulations to promote CAM practice, and poor physician-patient communication. CONCLUSIONS Nurses had more positive views than other professions; oncologists were concerned regarding herb-drug interactions; integration of CAM into the healthcare system was favorable; HCPs felt the need to participate in specific CAM training; and HCPs agreed that CAM education should be provided more regularly. Future studies should explore the studies views of cancer patients and details of in-depth evidence of CAM in oncology settings.
Collapse
Affiliation(s)
- Bo‐Young Youn
- Department of Preventive Medicine, College of Korean MedicineKyung Hee UniversitySeoulSouth Korea
| | - Jie‐Won Cha
- Department of Applied Korean Medicine, Graduate SchoolKyung Hee UniversitySeoulSouth Korea
| | - Sungsu Cho
- Department of Korean Medicine, Graduate SchoolKyung Hee UniversitySeoulSouth Korea
| | - So‐Mi Jeong
- Department of Clinical Korean Medicine, Graduate SchoolKyung Hee UniversitySeoulSouth Korea
| | - Hyo‐Jung Kim
- Department of Clinical Korean Medicine, Graduate SchoolKyung Hee UniversitySeoulSouth Korea
| | - Seong‐Gyu Ko
- Department of Preventive Medicine, College of Korean MedicineKyung Hee UniversitySeoulSouth Korea
| |
Collapse
|
170
|
Das S, Ghosh A, Upadhyay P, Sarker S, Bhattacharjee M, Gupta P, Chattopadhyay S, Ghosh S, Dhar P, Adhikary A. A mechanistic insight into the potential anti-cancerous property of Nigella sativa on breast cancer through micro-RNA regulation: An in vitro & in vivo study. Fitoterapia 2023; 169:105601. [PMID: 37406886 DOI: 10.1016/j.fitote.2023.105601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
Cancer continues to threat mortal alongside scientific community with burgeoning grasp. Most efforts directed to tame Cancer such as radiotherapy or chemotherapy, all came at a cost of severe side effects. The plant derived bioactive compounds on the other hand carries an inevitable advantage of being safer, bioavailable & less toxic compared to contemporary chemotherapeutics. Our strategic approach employed solvent extraction of Black Seed Oil (BSO) to highlight the orchestrated use of its oil soluble phytochemicals - Thymoquinone, Carvacrol & Trans-Anethole when used in cohort. These anti-cancer agents in unbelievably modest amounts present in BSO shows better potential to delineate migratory properties in breast cancer cells as compared to when treated individually. BSO was also observed to have apoptotic calibre when investigated in MDA-MB-231 and MCF-7 cell lines. We performed chemical characterization of the individual phytochemical as well as the oil in-whole to demonstrate the bioactive oil-soluble entities present in whole extract. BSO was observed to have significant anti-cancerous properties in cumulative proportion that is reportedly higher than the individual three components. Besides, this study also reports micro-RNA regulation on BSO administration, thereby playing a pivotal role in breast cancer alleviation. Thus, synergistic action of the integrants serves better combat force against breast cancer in the form of whole extract, hence aiming at a more lucrative paradigm while significantly regulating microRNAs associated with breast cancer migration and apoptosis.
Collapse
Affiliation(s)
- Shaswati Das
- Centre for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector III, Salt Lake City, Kolkata 700106, India
| | - Avijit Ghosh
- Centre for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector III, Salt Lake City, Kolkata 700106, India
| | - Priyanka Upadhyay
- Centre for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector III, Salt Lake City, Kolkata 700106, India
| | - Sushmita Sarker
- Centre for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector III, Salt Lake City, Kolkata 700106, India
| | - Mousumi Bhattacharjee
- Centre for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector III, Salt Lake City, Kolkata 700106, India
| | - Payal Gupta
- Department of Physiology, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700009, WB, India
| | - Sreya Chattopadhyay
- Department of Physiology, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700009, WB, India
| | - Swatilekha Ghosh
- Amity Institute of Biotechnology, Amity University, Kolkata, Major Arterial Road (South-East), Action Area II, Newtown, Kolkata, West Bengal 700135, India
| | - Pubali Dhar
- Laboratory of Food Science and Technology, Food and Nutrition, Department of Home Science, University of Calcutta, 20, B Judges Court Road, Kolkata 700027 University, India
| | - Arghya Adhikary
- Department of Life science & Biotechnology, Jadavpur University, 188, Raja Subodh Chandra Mallick Rd, Jadavpur, Kolkata, West Bengal 700032, WB, India.
| |
Collapse
|
171
|
Cancemi G, Cicero N, Allegra A, Gangemi S. Effect of Diet and Oxidative Stress in the Pathogenesis of Lymphoproliferative Disorders. Antioxidants (Basel) 2023; 12:1674. [PMID: 37759977 PMCID: PMC10525385 DOI: 10.3390/antiox12091674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Lymphomas are a heterogeneous group of pathologies that result from clonal proliferation of lymphocytes. They are classified into Hodgkin lymphoma and non-Hodgkin lymphoma; the latter develops as a result of B, T, or NK cells undergoing malignant transformation. It is believed that diet can modulate cellular redox state and that oxidative stress is implicated in lymphomagenesis by acting on several biological mechanisms; in fact, oxidative stress can generate a state of chronic inflammation through the activation of various transcription factors, thereby increasing the production of proinflammatory cytokines and causing overstimulation of B lymphocytes in the production of antibodies and possible alterations in cellular DNA. The purpose of our work is to investigate the results of in vitro and in vivo studies on the possible interaction between lymphomas, oxidative stress, and diet. A variety of dietary regimens and substances introduced with the diet that may have antioxidant and antiproliferative effects were assessed. The possibility of using nutraceuticals as novel anticancer agents is discussed; although the use of natural substances in lymphoma therapy is an interesting field of study, further studies are needed to define the efficacy of different nutraceuticals before introducing them into clinical practice.
Collapse
Affiliation(s)
- Gabriella Cancemi
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (G.C.); (A.A.)
| | - Nicola Cicero
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (G.C.); (A.A.)
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| |
Collapse
|
172
|
Khan MS, Gowda BHJ, Nasir N, Wahab S, Pichika MR, Sahebkar A, Kesharwani P. Advancements in dextran-based nanocarriers for treatment and imaging of breast cancer. Int J Pharm 2023; 643:123276. [PMID: 37516217 DOI: 10.1016/j.ijpharm.2023.123276] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/12/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Breast cancer is the most prevalent type of cancer worldwide,particularly among women, with substantial side effects after therapy. Despite the availability of numerous therapeutic approaches, particularly chemotherapy, the survival rates for breast cancer have declined over time. The therapies currently utilized for breast cancer treatment do not specifically target cancerous cells, resulting in significant adverse effects and potential harm to healthy cells alongside the cancer cells. As a result, nanoparticle-based drug delivery systems have emerged. Among various types of nanoparticles, natural polysaccharide-based nanoparticles have gained significant attention due to their ability to precisely control the drug release and achieve targeted drug delivery. Moreover, polysaccharides are biocompatible, biodegradable, easily modifiable, and renewable, which makes them a unique material for nanoformulation. In recent years, dextran and its derivatives have gained much interest in the field of breast cancer therapy. Dextran is a hydrophilic polysaccharide composed of a main chain formed by α-1,6 linked glucopyranoside residues and a side chain composed of residues linked in α-1,2/3/4 positions. Different dextran-antitumor medication conjugates enhancethe efficacy of anticancer agents. With this context, the present review provides brief insights into dextran and its modification. Further, it meticulously discusses the role of dextran-based nanoparticles in breast cancer therapy and imaging, followed by snippets on their toxicity. Lastly, it presents clinical trials and future perspectives of dextran-based nanoparticles in breast cancer treatment.
Collapse
Affiliation(s)
- Mohammad Sameer Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - B H Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Nazim Nasir
- Department of Basic Medical Sciences, College of Applied Medical Sciences, Khamis Mushait, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Mallikarjuna Rao Pichika
- Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
173
|
Macrì R, Bava I, Scarano F, Mollace R, Musolino V, Gliozzi M, Greco M, Foti D, Tucci L, Maiuolo J, Carresi C, Tavernese A, Palma E, Muscoli C, Mollace V. In Vitro Evaluation of Ferutinin Rich- Ferula communis L., ssp. glauca, Root Extract on Doxorubicin-Induced Cardiotoxicity: Antioxidant Properties and Cell Cycle Modulation. Int J Mol Sci 2023; 24:12735. [PMID: 37628916 PMCID: PMC10454821 DOI: 10.3390/ijms241612735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The clinical use of anthracycline Doxorubicin as an antineoplastic drug in cancer therapy is limited by cardiotoxic effects that can lead to congestive heart failure. Recent studies have shown several promising activities of different species of the genus Ferula belonging to the Apiaceae Family. Ferula communis is the main source of Ferutinin-a bioactive compound isolated from many species of Ferula-studied both in vitro and in vivo because of their different effects, such as estrogenic, antioxidant, anti-inflammatory, and also antiproliferative and cytotoxic activity, performed in a dose-dependent and cell-dependent way. However, the potential protective role of Ferutinin in myocardium impairment, caused by chemotherapeutic drugs, still represents an unexplored field. The aim of this study was to test the effects of Ferutinin rich-Ferula communis L. root extract (FcFE) at different concentrations on H9C2 cells. Moreover, we evaluated its antioxidant properties in cardiomyocytes in order to explore new potential therapeutic activities never examined before in other experimental works. FcFE, at a concentration of 0.25 µM, in the H9C2 line, significantly reduced the ROS production induced by H2O2 (50 µM and 250 µM) and traced the cell mortality of the H9C2 co-treated with Ferutinin 0.25 µM and Doxorubicin (0.5 µM and 1 µM) to control levels. These results showed that FcFE could protect against Doxorubicin-induced cardiotoxicity. Further molecular characterization of this natural compound may open the way for testing FcFE at low concentrations in vivo and in clinical studies as an adjuvant in cancer therapy in association with anthracyclines to prevent side effects on heart cells.
Collapse
Affiliation(s)
- Roberta Macrì
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (I.B.); (M.G.); (L.T.); (A.T.); (C.M.); (V.M.)
| | - Irene Bava
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (I.B.); (M.G.); (L.T.); (A.T.); (C.M.); (V.M.)
| | - Federica Scarano
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (I.B.); (M.G.); (L.T.); (A.T.); (C.M.); (V.M.)
| | - Rocco Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (I.B.); (M.G.); (L.T.); (A.T.); (C.M.); (V.M.)
- Department of Cardiology, IRCCS San Raffaele Pisana, 00166 Rome, Italy
- Division of Cardiology, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy
| | - Vincenzo Musolino
- Pharmaceutical Biology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (V.M.); (J.M.)
| | - Micaela Gliozzi
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (I.B.); (M.G.); (L.T.); (A.T.); (C.M.); (V.M.)
| | - Marta Greco
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (D.F.)
| | - Daniela Foti
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (M.G.); (D.F.)
| | - Luigi Tucci
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (I.B.); (M.G.); (L.T.); (A.T.); (C.M.); (V.M.)
| | - Jessica Maiuolo
- Pharmaceutical Biology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (V.M.); (J.M.)
| | - Cristina Carresi
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.C.); (E.P.)
| | - Annamaria Tavernese
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (I.B.); (M.G.); (L.T.); (A.T.); (C.M.); (V.M.)
| | - Ernesto Palma
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.C.); (E.P.)
| | - Carolina Muscoli
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (I.B.); (M.G.); (L.T.); (A.T.); (C.M.); (V.M.)
| | - Vincenzo Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (R.M.); (I.B.); (M.G.); (L.T.); (A.T.); (C.M.); (V.M.)
- Renato Dulbecco Institute, Lamezia Terme, 88046 Catanzaro, Italy
| |
Collapse
|
174
|
Halle JL, Counts BR, Paez HG, Baumfalk DR, Zhang Q, Mohamed JS, Glazer ES, Puppa MJ, Smuder AJ, Alway SE, Carson JA. Recovery from FOLFOX chemotherapy-induced systemic and skeletal muscle metabolic dysfunction in mice. Am J Physiol Endocrinol Metab 2023; 325:E132-E151. [PMID: 37378624 PMCID: PMC10393342 DOI: 10.1152/ajpendo.00096.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/22/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
FOLFOX (5-fluorouracil, leucovorin, oxaliplatin) chemotherapy is used to treat colorectal cancer and can acutely induce metabolic dysfunction. However, the lasting effects on systemic and skeletal muscle metabolism after treatment cessation are poorly understood. Therefore, we investigated the acute and lasting effects of FOLFOX chemotherapy on systemic and skeletal muscle metabolism in mice. Direct effects of FOLFOX in cultured myotubes were also investigated. Male C57BL/6J mice completed four cycles (acute) of FOLFOX or PBS. Subsets were allowed to recover for 4 wk or 10 wk. Comprehensive Laboratory Animal Monitoring System (CLAMS) metabolic measurements were performed for 5 days before study endpoint. C2C12 myotubes were treated with FOLFOX for 24 hr. Acute FOLFOX attenuated body mass and body fat accretion independent of food intake or cage activity. Acute FOLFOX decreased blood glucose, oxygen consumption (V̇o2), carbon dioxide production (V̇co2), energy expenditure, and carbohydrate (CHO) oxidation. Deficits in V̇o2 and energy expenditure remained at 10 wk. CHO oxidation remained disrupted at 4 wk but returned to control levels after 10 wk. Acute FOLFOX reduced muscle COXIV enzyme activity, AMPK(T172), ULK1(S555), and LC3BII protein expression. Muscle LC3BII/I ratio was associated with altered CHO oxidation (r = 0.75, P = 0.03). In vitro, FOLFOX suppressed myotube AMPK(T172), ULK1(S555), and autophagy flux. Recovery for 4 wk normalized skeletal muscle AMPK and ULK1 phosphorylation. Our results provide evidence that FOLFOX disrupts systemic metabolism, which is not readily recoverable after treatment cessation. FOLFOX effects on skeletal muscle metabolic signaling did recover. Further investigations are warranted to prevent and treat FOLFOX-induced metabolic toxicities that negatively impact survival and life quality of patients with cancer.NEW & NOTEWORTHY The present study demonstrates that FOLFOX chemotherapy induces long-lasting deficits in systemic metabolism. Interestingly, FOLFOX modestly suppressed skeletal muscle AMPK and autophagy signaling in vivo and in vitro. The FOLFOX-induced suppression of muscle metabolic signaling recovered after treatment cessation, independent of systemic metabolic dysfunction. Future research should investigate if activating AMPK during treatment can prevent long-term toxicities to improve health and quality of life of patients with cancer and survivors.
Collapse
Affiliation(s)
- Jessica L Halle
- Integrative Muscle Biology Laboratory, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Brittany R Counts
- Integrative Muscle Biology Laboratory, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Hector G Paez
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Dryden R Baumfalk
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Quan Zhang
- Integrative Muscle Biology Laboratory, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Junaith S Mohamed
- Laboratory of Muscle and Nerve, Department of Diagnostic and Health Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Evan S Glazer
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Melissa J Puppa
- College of Health Sciences, The University of Memphis, Memphis, Tennessee, United States
| | - Ashley J Smuder
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Stephen E Alway
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - James A Carson
- Integrative Muscle Biology Laboratory, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| |
Collapse
|
175
|
Hasanah I, Nursalam N, Krisnana I, Ramdani WF, Haikal Z, Rohita T. Psychoneuroimmunological Markers of Psychological Intervention in Pediatric Cancer: A Systematic Review and New Integrative Model. Asian Nurs Res (Korean Soc Nurs Sci) 2023; 17:119-137. [PMID: 37499937 DOI: 10.1016/j.anr.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
PURPOSE Pediatric cancer is a serious problem and still becomes a global challenge today. Various complex stressors due to diagnosis, disease symptoms, and various side-effects from the treatment that children with cancer undergo will cause problems in the child's psychoneuroimmunological aspects. Psychological interventions designed to modulate the stress response include psychoneuroimmunological markers. Unfortunately, there is little evidence to support the effect of psychological interventions on psychoneuroimmunological markers. This systematic review aims to assess the effectiveness of psychological interventions on psychoneuroimmunological markers in children with cancer and to provide a new integrative model for further research. METHODS This systematic review uses four main databases (Scopus, PubMed, ScienceDirect, and ProQuest). The guideline used Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA). Selecting articles used the Rayyan application. The quality study was conducted using Joanna Briggs Institute (JBI)'s critical appraisal tools. The data were analyzed using the population, intervention, comparison, outcome, and study design (PICO) Synthesis based on similarities and differences in study characteristics to interpret the results. RESULTS The search results in this systematic review found 1653 articles, 21 of which matched the predetermined inclusion and exclusion criteria. Most of the designs used were randomized controlled trials (57.1%). Massage therapy was the most common type of psychological intervention (14.2%). Almost half of the studies measured psychological responses (38.0%), and psycho-physiological responses (42.9%), and only a small proportion assessed the effectiveness of psychological interventions on neuroimmunological markers in pediatric cancer. CONCLUSIONS We recommend the use of psychological interventions as an additional intervention in managing psychoneuroimmunological markers of pediatric cancer. This study offers a new integrative model demonstrating the interaction between stress and psychological intervention involving neuroendocrine and immune mechanisms. However, future researchers need to test all domains of these new integrative models. This will reveal the complex interactions among these components and understand their relevance to health outcomes.
Collapse
Affiliation(s)
- Idyatul Hasanah
- Faculty of Nursing, Airlangga University, Surabaya, 60115, Indonesia; Nursing Department, STIKES Yarsi Mataram, 83115, Indonesia
| | - Nursalam Nursalam
- Faculty of Nursing, Airlangga University, Surabaya, 60115, Indonesia.
| | - Ilya Krisnana
- Faculty of Nursing, Airlangga University, Surabaya, 60115, Indonesia
| | - Wawan F Ramdani
- Center for Woman, Family, and Disaster Studies, Universitas Aisyiyah Yogyakarta, Indonesia
| | - Zikrul Haikal
- Surgery Department, Faculty of Medicine, Universitas Mataram, 83125, Indonesia
| | - Tita Rohita
- Nursing Department, Faculty of Health Sciences, Galuh University, Ciamis, 46251, Indonesia
| |
Collapse
|
176
|
Raju R, Abuwatfa WH, Pitt WG, Husseini GA. Liposomes for the Treatment of Brain Cancer-A Review. Pharmaceuticals (Basel) 2023; 16:1056. [PMID: 37630971 PMCID: PMC10458450 DOI: 10.3390/ph16081056] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/09/2023] [Accepted: 07/19/2023] [Indexed: 08/27/2023] Open
Abstract
Due to their biocompatibility, non-toxicity, and surface-conjugation capabilities, liposomes are effective nanocarriers that can encapsulate chemotherapeutic drugs and facilitate targeted delivery across the blood-brain barrier (BBB). Additionally, strategies have been explored to synthesize liposomes that respond to internal and/or external stimuli to release their payload controllably. Although research into liposomes for brain cancer treatment is still in its infancy, these systems have great potential to fundamentally change the drug delivery landscape. This review paper attempts to consolidate relevant literature regarding the delivery to the brain using nanocarriers, particularly liposomes. The paper first briefly explains conventional treatment modalities for cancer, followed by describing the blood-brain barrier and ways, challenges, and techniques involved in transporting drugs across the BBB. Various nanocarrier systems are introduced, with attention to liposomes, due to their ability to circumvent the challenges imposed by the BBB. Relevant studies involving liposomal systems researched to treat brain tumors are reviewed in vitro, in vivo, and clinical studies. Finally, the challenges associated with the use of liposomes to treat brain tumors and how they can be addressed are presented.
Collapse
Affiliation(s)
- Richu Raju
- Biomedical Engineering Program, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Waad H. Abuwatfa
- Materials Science and Engineering Ph.D. Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box. 26666, United Arab Emirates
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - William G. Pitt
- Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA;
| | - Ghaleb A. Husseini
- Biomedical Engineering Program, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Ph.D. Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box. 26666, United Arab Emirates
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
177
|
Das P, Pujals S, Ali LMA, Gary-Bobo M, Albertazzi L, Durand JO. Super-resolution imaging of antibody-conjugated biodegradable periodic mesoporous organosilica nanoparticles for targeted chemotherapy of prostate cancer. NANOSCALE 2023; 15:12008-12024. [PMID: 37403617 DOI: 10.1039/d3nr01571h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Biodegradable periodic mesoporous organosilica nanoparticles (nanoPMOs) are widely used as responsive drug delivery platforms for targeted chemotherapy of cancer. However, the evaluation of their properties such as surface functionality and biodegradability is still challenging, which has a significant impact on the efficiency of chemotherapy. In this study, we have applied direct stochastic optical reconstruction microscopy (dSTORM), a single-molecule super-resolution microscopy technique, to quantify the degradation of nanoPMOs triggered by glutathione and the multivalency of antibody-conjugated nanoPMOs. Subsequently, the effect of these properties on cancer cell targeting, drug loading and release capability, and anticancer activity is also studied. Due to the higher spatial resolution at the nanoscale, dSTORM imaging is able to reveal the structural properties (i.e., size and shape) of fluorescent and biodegradable nanoPMOs. The quantification of nanoPMOs' biodegradation using dSTORM imaging demonstrates their excellent structure-dependent degradation behavior at a higher glutathione concentration. The surface functionality of anti-M6PR antibody-conjugated nanoPMOs as quantified by dSTORM imaging plays a key role in prostate cancer cell labeling: oriented antibody is more effective than random ones, while high multivalency is also effective. The higher biodegradability and cancer cell-targeting properties of nanorods conjugated with oriented antibody (EAB4H) effectively deliver the anticancer drug doxorubicin to cancer cells, exhibiting potent anticancer effects.
Collapse
Affiliation(s)
- Pradip Das
- Institute Charles Gerhardt Montpellier (ICGM), University of Montpellier, CNRS, ENSCM, Montpellier 34293, France.
- Nanoscopy for Nanomedicine Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona 08036, Spain
| | - Silvia Pujals
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain.
| | - Lamiaa M A Ali
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France
| | - Magali Gary-Bobo
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France
| | - Lorenzo Albertazzi
- Nanoscopy for Nanomedicine Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona 08036, Spain
- Department of Biomedical Engineering, Institute of Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jean-Olivier Durand
- Institute Charles Gerhardt Montpellier (ICGM), University of Montpellier, CNRS, ENSCM, Montpellier 34293, France.
| |
Collapse
|
178
|
Umapathy VR, Natarajan PM, Swamikannu B. Review of the Role of Nanotechnology in Overcoming the Challenges Faced in Oral Cancer Diagnosis and Treatment. Molecules 2023; 28:5395. [PMID: 37513267 PMCID: PMC10385509 DOI: 10.3390/molecules28145395] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Throughout the world, oral cancer is a common and aggressive malignancy with a high risk of morbidity, mortality, and recurrence. The importance of early detection in cancer prevention and disease treatment cannot be overstated. Conventional therapeutic strategies have minor difficulties but considerable side effects and unfavourable consequences in clinical applications. Hence, there is a requirement for effective ways for early detection and treatment of oral cancer. At present, numerous forms of nanoparticles have piqued researchers' interest as a potentially useful tool for diagnostic probes and medicinal devices. Because of their inherent physicochemical properties and customizable surface modification, they are able to circumvent some of restrictions and accomplish the intended diagnostic and therapeutic impact. Nanotechnology is a unique field that has revolutionised the industry and is paving the way for new treatments for oral cancer. It can help with a better diagnosis with less harmful substances and is setting current guidelines for treatment. The use of nanotechnology in cancer diagnosis, therapy, and care improves clinical practise dramatically. The different types of nanoparticles that have been developed for the diagnosis and therapy of oral cancers will be covered in this study. The difficulties and potential uses of nanoparticles in the treatment and diagnosis of oral cancer are then highlighted. In order to emphasise existing difficulties and potential remedies for oral cancer, a prospective view of the future is also provided.
Collapse
Affiliation(s)
- Vidhya Rekha Umapathy
- Department of Public Health Dentistry, Thai Moogambigai Dental College and Hospital, Dr. M.G.R. Educational and Research Institute, Chennai 600107, Tamil Nadu, India
| | - Prabhu Manickam Natarajan
- Department of Clinical Sciences, Centre of Medical and Bio-Allied Health Sciences and Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Bhuminathan Swamikannu
- Department of Prosthodontics, Sree Balaji Dental College and Hospital, BIHER University, Pallikaranai, Chennai 600100, Tamil Nadu, India
| |
Collapse
|
179
|
Ye F, Dewanjee S, Li Y, Jha NK, Chen ZS, Kumar A, Vishakha, Behl T, Jha SK, Tang H. Advancements in clinical aspects of targeted therapy and immunotherapy in breast cancer. Mol Cancer 2023; 22:105. [PMID: 37415164 PMCID: PMC10324146 DOI: 10.1186/s12943-023-01805-y] [Citation(s) in RCA: 211] [Impact Index Per Article: 105.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/08/2023] [Indexed: 07/08/2023] Open
Abstract
Breast cancer is the second leading cause of death for women worldwide. The heterogeneity of this disease presents a big challenge in its therapeutic management. However, recent advances in molecular biology and immunology enable to develop highly targeted therapies for many forms of breast cancer. The primary objective of targeted therapy is to inhibit a specific target/molecule that supports tumor progression. Ak strain transforming, cyclin-dependent kinases, poly (ADP-ribose) polymerase, and different growth factors have emerged as potential therapeutic targets for specific breast cancer subtypes. Many targeted drugs are currently undergoing clinical trials, and some have already received the FDA approval as monotherapy or in combination with other drugs for the treatment of different forms of breast cancer. However, the targeted drugs have yet to achieve therapeutic promise against triple-negative breast cancer (TNBC). In this aspect, immune therapy has come up as a promising therapeutic approach specifically for TNBC patients. Different immunotherapeutic modalities including immune-checkpoint blockade, vaccination, and adoptive cell transfer have been extensively studied in the clinical setting of breast cancer, especially in TNBC patients. The FDA has already approved some immune-checkpoint blockers in combination with chemotherapeutic drugs to treat TNBC and several trials are ongoing. This review provides an overview of clinical developments and recent advancements in targeted therapies and immunotherapies for breast cancer treatment. The successes, challenges, and prospects were critically discussed to portray their profound prospects.
Collapse
Affiliation(s)
- Feng Ye
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Yuehua Li
- Department of Medical Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, India
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, 11439, USA
| | - Ankush Kumar
- Pharmaceutical and Health Sciences, Career Point University, Hamirpur, Himachal Pradesh, India
| | - Vishakha
- Pharmaceutical and Health Sciences, Career Point University, Hamirpur, Himachal Pradesh, India
| | - Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun, Uttarakhand, India.
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India.
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India.
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India.
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
180
|
Rathore S, Verma A, Ratna R, Marwa N, Ghiya Y, Honavar SG, Tiwari A, Das S, Varshney A. Retinoblastoma: A review of the molecular basis of tumor development and its clinical correlation in shaping future targeted treatment strategies. Indian J Ophthalmol 2023; 71:2662-2676. [PMID: 37417104 PMCID: PMC10491038 DOI: 10.4103/ijo.ijo_3172_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/25/2023] [Accepted: 05/21/2023] [Indexed: 07/08/2023] Open
Abstract
Retinoblastoma is a retinal cancer that affects children and is the most prevalent intraocular tumor worldwide. Despite tremendous breakthroughs in our understanding of the fundamental mechanisms that regulate progression of retinoblastoma, the development of targeted therapeutics for retinoblastoma has lagged. Our review highlights the current developments in the genetic, epigenetic, transcriptomic, and proteomic landscapes of retinoblastoma. We also discuss their clinical relevance and potential implications for future therapeutic development, with the aim to create a frontline multimodal therapy for retinoblastoma.
Collapse
Affiliation(s)
- Shruti Rathore
- Ocular Oncology Services, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | - Aman Verma
- Ocular Oncology Services, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | - Ria Ratna
- Ocular Genetics Services, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | - Navjot Marwa
- Ocular Oncology Services, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | - Yagya Ghiya
- Ocular Oncology Services, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | - Santosh G Honavar
- Ophthalmic Plastic Surgery, Orbit and Ocular Oncology, Centre for Sight, Hyderbad, Telangana, India
| | - Anil Tiwari
- Ocular Oncology Services, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | - Sima Das
- Ocular Oncology Services, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | - Akhil Varshney
- Ocular Oncology Services, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| |
Collapse
|
181
|
Lee J, Park CS, Oh JH, Park IC, Seong MK, Noh WC, Kim HA. Can chemotherapy be omitted for patients with N0 or N1 endocrine-sensitive breast cancer treated with gonadotropin-releasing hormone agonist and tamoxifen? Ann Surg Treat Res 2023; 105:31-36. [PMID: 37441320 PMCID: PMC10333805 DOI: 10.4174/astr.2023.105.1.31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Purpose Whether administering chemotherapy followed by tamoxifen plus a gonadotropin-releasing hormone (GnRH) agonist to treat patients with lower-risk hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative breast cancer provides a greater benefit than administering tamoxifen plus GnRH agonist alone remains unclear. This study aimed to compare the outcomes of propensity score-matched (PSM) patients who underwent these 2 types of treatment plans. Methods This retrospective study included patients treated at our institution between 2009 and 2019. Eligible patients had HR-positive, HER2-negative, invasive breast cancer who had undergone surgery. There were 579 patients with HR-positive, HER2-negative breast cancer who were treated with a GnRH agonist and tamoxifen; patients with pathologic N2 and those who received neoadjuvant chemotherapy were excluded. After 1:1 PSM of patients who underwent GnRH agonist treatment and tamoxifen with versus without chemotherapy, 122 patients from these 2 groups were analyzed. Survival rates were calculated using the Kaplan-Meier method and compared via the log-rank test. Results After PSM, there were no significant differences in several baseline characteristics between the 2 groups. After a median follow-up of 62.8 months, the patients in both groups demonstrated similar outcomes with no significant difference in disease-free survival (P = 0.596). Conclusion Patients derived no significant survival benefit from undergoing a chemotherapy regimen before receiving tamoxifen and GnRH agonist therapy compared to forgoing such chemotherapy.
Collapse
Affiliation(s)
- Juhyeon Lee
- Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Chan Sub Park
- Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Jeong Hun Oh
- Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - In-Chul Park
- Division of Fusion Radiology Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Min-Ki Seong
- Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Woo Chul Noh
- Department of Surgery, Konkuk University Medical Center, Seoul, Korea
| | - Hyun-Ah Kim
- Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| |
Collapse
|
182
|
Castro DTH, Leite DF, da Silva Baldivia D, Dos Santos HF, Balogun SO, da Silva DB, Carollo CA, de Picoli Souza K, Dos Santos EL. Structural Characterization and Anticancer Activity of a New Anthraquinone from Senna velutina (Fabaceae). Pharmaceuticals (Basel) 2023; 16:951. [PMID: 37513863 PMCID: PMC10385181 DOI: 10.3390/ph16070951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
In this study, a novel compound was isolated, identified, and its chemical structure was determined from the extract of the roots of Senna velutina. In addition, we sought to evaluate the anticancer potential of this molecule against melanoma and leukemic cell lines and identify the pathways of cell death involved. To this end, a novel anthraquinone was isolated from the barks of the roots of S. velutina, analyzed by HPLC-DAD, and its molecular structure was determined by nuclear magnetic resonance (NMR). Subsequently, their cytotoxic activity was evaluated by the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) method against non-cancerous, melanoma, and leukemic cells. The migration of melanoma cells was evaluated by the scratch assay. The apoptosis process, caspase-3 activation, analysis of mitochondrial membrane potential, and measurement of ROS were evaluated by flow cytometry technique. In addition, the pharmacological cell death inhibitors NEC-1, RIP-1, BAPTA, Z-VAD, and Z-DEVD were used to confirm the related cell death mechanisms. With the results, it was possible to elucidate the novel compound characterized as 2'-OH-Torosaol I. In normal cells, the compound showed no cytotoxicity in PBMC but reduced the cell viability of all melanoma and leukemic cell lines evaluated. 2'-OH-Torosaol I inhibited chemotaxis of B16F10-Nex2, SK-Mel-19, SK-Mel-28 and SK-Mel-103. The cytotoxicity of the compound was induced by apoptosis via the intrinsic pathway with reduced mitochondrial membrane potential, increased levels of reactive oxygen species, and activation of caspase-3. In addition, the inhibitors demonstrated the involvement of necroptosis and Ca2+ in the death process and confirmed caspase-dependent apoptosis death as one of the main programmed cell death pathways induced by 2'-OH-Torosaol I. Taken together, the data characterize the novel anthraquinone 2'-OH-Torosaol I, demonstrating its anticancer activity and potential application in cancer therapy.
Collapse
Affiliation(s)
- David Tsuyoshi Hiramatsu Castro
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Universidade Federal da Grande Dourados, Dourados 79804-970, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados 79804-970, Brazil
| | - Daniel Ferreira Leite
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Universidade Federal da Grande Dourados, Dourados 79804-970, Brazil
| | - Debora da Silva Baldivia
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Universidade Federal da Grande Dourados, Dourados 79804-970, Brazil
| | - Helder Freitas Dos Santos
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Universidade Federal da Grande Dourados, Dourados 79804-970, Brazil
| | - Sikiru Olaitan Balogun
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Universidade Federal da Grande Dourados, Dourados 79804-970, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados 79804-970, Brazil
| | - Denise Brentan da Silva
- Laboratory of Natural Products and Mass Spectrometry, Universidade Federal do Mato Grosso do Sul, Cidade Universitária, Campo Grande 79070-900, Brazil
| | - Carlos Alexandre Carollo
- Laboratory of Natural Products and Mass Spectrometry, Universidade Federal do Mato Grosso do Sul, Cidade Universitária, Campo Grande 79070-900, Brazil
| | - Kely de Picoli Souza
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Universidade Federal da Grande Dourados, Dourados 79804-970, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados 79804-970, Brazil
| | - Edson Lucas Dos Santos
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Universidade Federal da Grande Dourados, Dourados 79804-970, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados 79804-970, Brazil
| |
Collapse
|
183
|
Leal T, Socinski MA. Emerging agents for the treatment of advanced or metastatic NSCLC without actionable genomic alterations with progression on first-line therapy. Expert Rev Anticancer Ther 2023; 23:817-833. [PMID: 37486248 DOI: 10.1080/14737140.2023.2235895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023]
Abstract
INTRODUCTION Lung cancer is the second most common cancer in the world and the leading cause of cancer-related mortality. Immune checkpoint inhibitors (ICIs), as monotherapy or in combination with platinum-based chemotherapy, have emerged as the standard of care first-line treatment option for patients with advanced non-small cell lung cancer (NSCLC) without actionable genomic alterations (AGAs). Despite significant improvements in patient outcomes with these regimens, primary or acquired resistance is common and most patients develop disease progression, resulting in poor survival. AREAS COVERED We review the current treatments commonly used for NSCLC without AGAs in the first-line and subsequent settings and describe the unmet needs for these patients in the second-line setting, including a lack of standard definitions for primary and required resistance, and few effective treatment options for patients who develop progression of their disease on first-line therapy. We describe key mechanisms of resistance to ICIs and emerging therapies that are being investigated for patients who develop progression on ICIs and platinum-based chemotherapy. EXPERT OPINION Emerging agents in development have a variety of different mechanisms of action and will likely change standard of care for second-line therapy and beyond for patients with NSCLC without AGAs in the future.
Collapse
|
184
|
Park SH, Eun R, Heo J, Lim YT. Nanoengineered drug delivery in cancer immunotherapy for overcoming immunosuppressive tumor microenvironment. Drug Deliv Transl Res 2023; 13:2015-2031. [PMID: 36581707 DOI: 10.1007/s13346-022-01282-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2022] [Indexed: 12/31/2022]
Abstract
Almost like a living being in and of itself, tumors actively interact with and modify their environment to escape immune responses. Owing to the pre-formation of cancer-favorable microenvironment prior to anti-cancer treatment, the numerous attempts that followed propose limited efficacy in oncology. Immunogenicity by activation of immune cells within the tumor microenvironment or recruitment of immune cells from nearby lymph nodes is quickly offset as the immunosuppressive environment, rapidly converting immunogenic cells into immune suppressive cells, overriding the immune system. Tumor cells, as well as regulatory cells, namely M2 macrophages, Treg cells, and MDSCs, derived by the immunosuppressive environment, also cloak from potential anti-tumoral factors by directly or indirectly secreting cytokines, such as IL-10 and TGF-β, related to immune regulation. Enzymes and other metabolic or angiogenetic constituents - VEGF, IDO1, and iNOS - are also employed directed for anti-cancer immune cell malfunctioning. Therefore, the conversion of "cold" immunosuppressive environment into "hot" immune responsive environment is of paramount importance, bestowing the advances in the field of cancer immunotherapy the opportunity to wholly fulfill its intended purpose. This paper reviews the mechanisms by which tumors wield to exercise immune suppression and the nanoengineered delivery strategies being developed to overcome this suppression.
Collapse
Affiliation(s)
- Sei Hyun Park
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-Do, 16419, Republic of Korea
| | - Ryounho Eun
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-Do, 16419, Republic of Korea
| | - Janghun Heo
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-Do, 16419, Republic of Korea
| | - Yong Taik Lim
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-Do, 16419, Republic of Korea.
| |
Collapse
|
185
|
Ferreira PMP, Sousa LQD, Sousa RWRD, Rodrigues DDJ, Monção Filho EDS, Chaves MH, Vieira Júnior GM, Rizzo MDS, Filgueiras LA, Mendes AN, Lima DJB, Pessoa C, Sousa JMDCE, Rodrigues ACBDC, Soares MBP, Bezerra DP. Toxic profile of marinobufagin from poisonous Amazon toads and antitumoral effects on human colorectal carcinomas. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116406. [PMID: 36965547 DOI: 10.1016/j.jep.2023.116406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/10/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE South Americans natives have extensively used the toad "kururu" to reduce/treat skin infections, cutaneous lesions and sores. They release secretions rich in bufadienolides, polyhydroxy steroids with well-documented cardiotonic and antiproliferative actions, but in vivo antitumoral evaluations in mammals are rare, and toxicological safety has been left in second place. AIMS OF THE STUDY This investigation used in silico, in vitro and in vivo tools to evaluate acute and subacute toxic effects of marinobufagin and the anticancer action in tumor-bearing mice models. MATERIALS AND METHODS Initially, in silico toxic predictions were performed, followed by in vitro assays using human and murine normal and tumor lines. Next, acute and subacute studies on mice investigated the behavior, hematological and intestinal transit profile and antitumoral activity of marinobufagin in sarcoma 180- and HCT-116 colorectal carcinoma-transplanted mice for 7 and 15 days, respectively. Ex vivo and in vivo cytogenetic assays in Sarcoma 180 and bone marrow cells and histopathological examinations were also executed. RESULTS In silico studies revealed ecotoxicological effects on crustaceans (Daphnia sp.), fishes (Pimephales promelas and Oryzias latipes), and algae. A 24-h marinobufagin-induced acute toxicity included signals of central activity, mainly (vocal frenzy, absence of body tonus, increased ventilation, ataxia, and equilibrium loss), and convulsions and death at 10 mg/kg. The bufadienolide presented effective in vitro cytotoxic action on human lines of colorectal carcinomas in a similar way to ouabain and tumor reduction in marinobufagin-treated SCID-bearing HCT-116 heterotopic xenografts. Animals under subacute nonlethal doses exhibited a decrease in creatinine clearance with normal levels of blood urea, probably as a result of a marinobufagin-induced renal perfusion fall. Nevertheless, only minor morphological side effects were identified in kidneys, livers, hearts and lungs. CONCLUSIONS Marinobufagin has in vitro and in vivo anticancer action on colorectal carcinoma and mild and reversible alterations in key metabolic organs without direct chemotherapy-induced gastrointestinal effects at subacute exposure, but it causes acute ataxia, equilibrium loss, convulsions and death at higher acute exposure.
Collapse
Affiliation(s)
- Paulo Michel Pinheiro Ferreira
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, 64049-550, Teresina, Brazil.
| | - Lívia Queiroz de Sousa
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, 64049-550, Teresina, Brazil
| | - Rayran Walter Ramos de Sousa
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, 64049-550, Teresina, Brazil
| | - Domingos de Jesus Rodrigues
- Institute of Natural, Humanities and Social Sciences, Federal University of Mato Grosso, 78550-728, Sinop, Brazil
| | | | - Mariana Helena Chaves
- Laboratory of Natural Products, Department of Chemistry, Federal University of Piauí, 64049-550, Teresina, Brazil
| | - Gerardo Magela Vieira Júnior
- Laboratory of Natural Products, Department of Chemistry, Federal University of Piauí, 64049-550, Teresina, Brazil
| | | | - Lívia Alves Filgueiras
- Laboratory of Innovation in Science and Technology (Lacitec), Department of Biophysics and Physiology, Federal University of Piauí, 64049-550, Teresina, Brazil
| | - Anderson Nogueira Mendes
- Laboratory of Innovation in Science and Technology (Lacitec), Department of Biophysics and Physiology, Federal University of Piauí, 64049-550, Teresina, Brazil
| | - Daisy Jereissati Barbosa Lima
- Laboratory of Experimental Oncology (LOE), Department of Physiology and Pharmacology, Federal University of Ceará, 60430-270, Fortaleza, Brazil
| | - Cláudia Pessoa
- Laboratory of Experimental Oncology (LOE), Department of Physiology and Pharmacology, Federal University of Ceará, 60430-270, Fortaleza, Brazil
| | - João Marcelo de Castro E Sousa
- Laboraroty of Toxicological Genetics (Lapgenic), Department of Biochemistry and Pharmacology, Federal University of Piauí, 64049-550, Teresina, Brazil
| | | | | | - Daniel Pereira Bezerra
- Laboratory of Tissue Engineering and Immunopharmacology, Oswaldo Cruz Foundation, 40296-710, Salvador, Brazil
| |
Collapse
|
186
|
Akcam TI, Tekneci AK, Kavurmaci O, Ozdil A, Ergonul AG, Turhan K, Cakan A, Cagirici U. The significance of immunonutrition nutritional support in patients undergoing postoperative adjuvant chemotherapy for lung cancer: case-control study. World J Surg Oncol 2023; 21:183. [PMID: 37337249 DOI: 10.1186/s12957-023-03073-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND In this study, the effect of postoperative early nutritional supplementation on the course of the disease was investigated in patients who were operated for non-small cell lung cancer and received adjuvant chemotherapy. METHODS The study examined the data of patients who anatomical pulmonary resection for non-small cell lung cancer and who were treated with adjuvant chemotherapy at our clinic between January 2014 and January 2020. Patients who received early postoperative nutritional supplements and those who continued with a normal diet were compared in terms of complications, mortality, recurrence, and survival. RESULTS The study sample consisted of 68 (84%) male and 13 (16%) female patients, and the mean duration of postoperative follow-up was 31.6 ± 17.9 (4-75) months. Metastasis was identified in eight (17.4%) patients in GrupNS (Nutritional Supplements) compared to 10 (28.6%) patients in GroupC (Control) (p = 0.231). Of the total, 11 (23.9%) patients died in GroupNS compared to 13 (37.1%) in GroupC (p = 0.196). Mean survival was 58.9 ± 3.8 (95% CI: 4.0-75.0) months in GroupNS compared to 43.5 ± 4.6 (95% CI: 6.0-66.0) months in GroupC (p = 0.045). CONCLUSION Early nutritional supplements should be considered as having a positive effect especially on survival in this specific patient group involving factors with high catabolic effects, such as neoplasia, operation, and chemotherapy together.
Collapse
Affiliation(s)
- Tevfik Ilker Akcam
- Department of Thoracic Surgery, Ege University School of Medicine, İzmir, Turkey
| | - Ahmet Kayahan Tekneci
- Department of Thoracic Surgery, Health Sciences University İzmir Tepecik Education and Research Hospital, İzmir, Turkey.
| | - Onder Kavurmaci
- Department of Thoracic Surgery, SBU Bozyaka İzmir Training and Research Hospital, İzmir, Turkey
| | - Ali Ozdil
- Department of Thoracic Surgery, Ege University School of Medicine, İzmir, Turkey
| | - Ayse Gul Ergonul
- Department of Thoracic Surgery, Ege University School of Medicine, İzmir, Turkey
| | - Kutsal Turhan
- Department of Thoracic Surgery, Ege University School of Medicine, İzmir, Turkey
| | - Alpaslan Cakan
- Department of Thoracic Surgery, Ege University School of Medicine, İzmir, Turkey
| | - Ufuk Cagirici
- Department of Thoracic Surgery, Ege University School of Medicine, İzmir, Turkey
| |
Collapse
|
187
|
Bhushan A, Rani D, Tabassum M, Kumar S, Gupta PN, Gairola S, Gupta AP, Gupta P. HPLC-PDA Method for Quantification of Bioactive Compounds in Crude Extract and Fractions of Aucklandia costus Falc. and Cytotoxicity Studies against Cancer Cells. Molecules 2023; 28:4815. [PMID: 37375368 DOI: 10.3390/molecules28124815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 06/29/2023] Open
Abstract
Aucklandia costus Falc. (Synonym: Saussurea costus (Falc.) Lipsch.) is a perennial herb of the family Asteraceae. The dried rhizome is an essential herb in the traditional systems of medicine in India, China and Tibet. The important pharmacological activities reported for Aucklandia costus are anticancer, hepatoprotective, antiulcer, antimicrobial, antiparasitic, antioxidant, anti-inflammatory and anti-fatigue activities. The objective of this study was the isolation and quantification of four marker compounds in the crude extract and different fractions of A. costus and the evaluation of the anticancer activity of the crude extract and its different fractions. The four marker compounds isolated from A. costus include dehydrocostus lactone, costunolide, syringin and 5-hydroxymethyl-2-furaldehyde. These four compounds were used as standard compounds for quantification. The chromatographic data showed good resolution and excellent linearity (r2 ˃ 0.993). The validation parameters, such as inter- and intraday precision (RSD < 1.96%) and analyte recovery (97.52-110.20%; RSD < 2.00%),revealed the high sensitivity and reliability of the developed HPLC method. The compounds dehydrocostus lactone and costunolide were concentrated in the hexane fraction (222.08 and 65.07 µg/mg, respectively) and chloroform fraction (99.02 and 30.21 µg/mg, respectively), while the n-butanol fraction is a rich source of syringin (37.91 µg/mg) and 5-hydroxymethyl-2-furaldehyde (7.94 µg/mg). Further, the SRB assay was performed for the evaluation of anticancer activity using lung, colon, breast and prostate cancer cell lines. The hexane and chloroform fractions show excellent IC50 values of 3.37 ± 0.14 and 7.527 ± 0.18 µg/mL, respectively, against the prostate cancer cell line (PC-3).
Collapse
Affiliation(s)
- Anil Bhushan
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dixhya Rani
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Misbah Tabassum
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Saajan Kumar
- Drug Testing Laboratory, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Prem N Gupta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Sumeet Gairola
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Plant Science and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Ajai P Gupta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Drug Testing Laboratory, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Prasoon Gupta
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
188
|
An BC, Ahn JY, Kwon D, Kwak SH, Heo JY, Kim S, Ryu Y, Chung MJ. Anti-Cancer Roles of Probiotic-Derived P8 Protein in Colorectal Cancer Cell Line DLD-1. Int J Mol Sci 2023; 24:9857. [PMID: 37373005 DOI: 10.3390/ijms24129857] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/16/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
A novel probiotics-derived protein, P8, suppresses the growth of colorectal cancer (CRC). P8 can penetrate the cell membrane via endocytosis and cause cell cycle arrest in DLD-1 cells through down-regulation of CDK1/Cyclin B1. However, neither the protein involved in the endocytosis of P8 nor the cell cycle arrest targets of P8 are known. We identified two P8-interacting target proteins [importin subunit alpha-4 (KPNA3) and glycogen synthase kinase-3 beta (GSK3β)] using P8 as a bait in pull-down assays of DLD-1 cell lysates. Endocytosed P8 in the cytosol was found to bind specifically to GSK3β, preventing its inactivation by protein kinases AKT/CK1ε/PKA. The subsequent activation of GSK3β led to strong phosphorylation (S33,37/T41) of β-catenin, resulting in its subsequent degradation. P8 in the cytosol was also found to be translocated into the nucleus by KPNA3 and importin. In the nucleus, after its release, P8 binds directly to the intron regions of the GSK3β gene, leading to dysregulation of GSK3β transcription. GSK3β is a key protein kinase in Wnt signaling, which controls cell proliferation during CRC development. P8 can result in a cell cycle arrest morphology in CRC cells, even when they are in the Wnt ON signaling state.
Collapse
Affiliation(s)
- Byung Chull An
- R&D Center, Cell Biotech, Co., Ltd., 50 Aegibong-ro 409 Beon-gil, Gaegok-ri, Wolgot-myeon, Gimpo-si 10003, Gyeonggi-do, Republic of Korea
| | - Jun Young Ahn
- R&D Center, Cell Biotech, Co., Ltd., 50 Aegibong-ro 409 Beon-gil, Gaegok-ri, Wolgot-myeon, Gimpo-si 10003, Gyeonggi-do, Republic of Korea
| | - Daebeom Kwon
- R&D Center, Cell Biotech, Co., Ltd., 50 Aegibong-ro 409 Beon-gil, Gaegok-ri, Wolgot-myeon, Gimpo-si 10003, Gyeonggi-do, Republic of Korea
| | - Sang Hee Kwak
- R&D Center, Cell Biotech, Co., Ltd., 50 Aegibong-ro 409 Beon-gil, Gaegok-ri, Wolgot-myeon, Gimpo-si 10003, Gyeonggi-do, Republic of Korea
| | - Jin Young Heo
- R&D Center, Cell Biotech, Co., Ltd., 50 Aegibong-ro 409 Beon-gil, Gaegok-ri, Wolgot-myeon, Gimpo-si 10003, Gyeonggi-do, Republic of Korea
| | - Seungwoo Kim
- R&D Center, Cell Biotech, Co., Ltd., 50 Aegibong-ro 409 Beon-gil, Gaegok-ri, Wolgot-myeon, Gimpo-si 10003, Gyeonggi-do, Republic of Korea
| | - Yongku Ryu
- R&D Center, Cell Biotech, Co., Ltd., 50 Aegibong-ro 409 Beon-gil, Gaegok-ri, Wolgot-myeon, Gimpo-si 10003, Gyeonggi-do, Republic of Korea
| | - Myung Jun Chung
- R&D Center, Cell Biotech, Co., Ltd., 50 Aegibong-ro 409 Beon-gil, Gaegok-ri, Wolgot-myeon, Gimpo-si 10003, Gyeonggi-do, Republic of Korea
| |
Collapse
|
189
|
Herrera-Ramírez P, Berger SA, Josa D, Aguilà D, Caballero AB, Fontova P, Soto-Cerrato V, Martínez M, Gamez P. Steric hindrance, ligand ejection and associated photocytotoxic properties of ruthenium(II) polypyridyl complexes. J Biol Inorg Chem 2023; 28:403-420. [PMID: 37059909 PMCID: PMC10149480 DOI: 10.1007/s00775-023-01998-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/23/2023] [Indexed: 04/16/2023]
Abstract
Two ruthenium(II) polypyridyl complexes were prepared with the {Ru(phen)2}2+ moiety and a third sterically non-hindering bidentate ligand, namely 2,2'-dipyridylamine (dpa) and N-benzyl-2,2'-dipyridylamine (Bndpa). Hence, complexes [Ru(phen)2(dpa)](PF6)2 (1) and [Ru(phen)2(Bndpa)](PF6)2 (2) were characterized and their photochemical behaviour in solution (acetonitrile and water) was subsequently investigated. Compounds 1 and 2, which do not exhibit notably distorted octahedral coordination environments, contrarily to the homoleptic "parent" compound [Ru(phen)3](PF6)2, experience two-step photoejection of the dpa and Bndpa ligand upon irradiation (1050-430 nm) for several hours. DNA-binding studies revealed that compounds 1 and 2 affect the biomolecule differently upon irradiation; while 2 solely modifies its electrophoretic mobility, complex 1 is also capable of cleaving it. In vitro cytotoxicity studies with two cancer-cell lines, namely A549 (lung adenocarcinoma) and A375 (melanoma), showed that both 1 and 2 are not toxic in the dark, while only 1 is significantly cytotoxic if irradiated, 2 remaining non-toxic under these conditions. Light irradiation of the complex cation [Ru(phen)2(dpa)]2+ leads to the generation of transient Ru species that is present in the solution medium for several hours, and that is significantly cytotoxic, ultimately producing non-toxic free dpa and [Ru(phen)(OH2)2]2+.
Collapse
Affiliation(s)
- Piedad Herrera-Ramírez
- Departament de Química Inorgànica i Orgànica, Facultat de Química, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, 08028, Barcelona, Spain
| | - Sarah Alina Berger
- Departament de Química Inorgànica i Orgànica, Facultat de Química, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, 08028, Barcelona, Spain
| | - Dana Josa
- Departament de Química Inorgànica i Orgànica, Facultat de Química, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, 08028, Barcelona, Spain
| | - David Aguilà
- Departament de Química Inorgànica i Orgànica, Facultat de Química, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, 08028, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain
| | - Ana B Caballero
- Departament de Química Inorgànica i Orgànica, Facultat de Química, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, 08028, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain
| | - Pere Fontova
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Campus Bellvitge, Feixa Llarga s/n, 08907, L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Chemistry, Universidad de Burgos, 09001, Burgos, Spain
| | - Vanessa Soto-Cerrato
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Campus Bellvitge, Feixa Llarga s/n, 08907, L'Hospitalet de Llobregat, Barcelona, Spain
- Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Manuel Martínez
- Departament de Química Inorgànica i Orgànica, Facultat de Química, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, 08028, Barcelona, Spain.
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain.
| | - Patrick Gamez
- Departament de Química Inorgànica i Orgànica, Facultat de Química, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, 08028, Barcelona, Spain.
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
190
|
Alsibaee AM, Aljohar HI, Attwa MW, Abdelhameed AS, Kadi AA. Reactive intermediates formation and bioactivation pathways of spebrutinib revealed by LC-MS/MS: In vitro and in silico metabolic study. Heliyon 2023; 9:e17058. [PMID: 37484253 PMCID: PMC10361234 DOI: 10.1016/j.heliyon.2023.e17058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/15/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023] Open
Abstract
Spebrutinib is a new Bruton tyrosine kinase inhibitor developed by Avila Therapeutics and Celgene. Spebrutinib (SPB) is currently in phase Ib clinical trials for the treatment of lymphoma in the United States. Preliminary in-silico studies were first performed to predict susceptible sites of metabolism, reactivity pathways and structural alerts for toxicities by StarDrop WhichP450™ module, Xenosite web predictor tool and DEREK software; respectively. SPB metabolites and adducts were characterized in vitro from rat liver microsomes (RLM) using LC-MS/MS. Formation of reactive intermediates was investigated using potassium cyanide (KCN), glutathione (GSH) and methoxylamine as trapping nucleophiles for the unstable and reactive iminium, iminoquinone and aldehyde intermediates, respectively, with the aim to produce stable adducts that can be detected and characterized using mass spectrometry. Fourteen phase I metabolites, four cyanide adducts, six GSH adducts and three methoxylamine adducts of SPB were identified and characterized. The proposed metabolic pathways involved in generation of phase I metabolites of SPB are oxidation, hydroxylation, o-dealkylation, epoxidation, defluorination and reduction. Several in vitro reactive intermediates were identified and characterized, the formation of which can aid in explaining the adverse drug reactions of SPB. Several iminium, 2-iminopyrimidin-5(2H)-one and aldehyde intermediates of SPB were revealed. Acrylamide is identified as a structural alert for toxicity by DEREK report and was found to be involved in the formation of several glycidamide and aldehyde reactive intermediates.
Collapse
|
191
|
Menéndez-Velázquez A, García-Delgado AB. A Novel Photopharmacological Tool: Dual-Step Luminescence for Biological Tissue Penetration of Light and the Selective Activation of Photodrugs. Int J Mol Sci 2023; 24:ijms24119404. [PMID: 37298355 DOI: 10.3390/ijms24119404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Conventional pharmacology lacks spatial and temporal selectivity in terms of drug action. This leads to unwanted side effects, such as damage to healthy cells, as well as other less obvious effects, such as environmental toxicity and the acquisition of resistance to drugs, especially antibiotics, by pathogenic microorganisms. Photopharmacology, based on the selective activation of drugs by light, can contribute to alleviating this serious problem. However, many of these photodrugs are activated by light in the UV-visible spectral range, which does not propagate through biological tissues. In this article, to overcome this problem, we propose a dual-spectral conversion technique, which simultaneously makes use of up-conversion (using rare earth elements) and down-shifting (using organic materials) techniques in order to modify the spectrum of light. Near-infrared light (980 nm), which penetrates tissue fairly well, can provide a "remote control" for drug activation. Once near-IR light is inside the body, it is up-converted to the UV-visible spectral range. Subsequently, this radiation is down-shifted in order to accurately adjust to the excitation wavelengths of light which can selectively activate hypothetical and specific photodrugs. In summary, this article presents, for the first time, a "dual tunable light source" which can penetrate into the human body and deliver light of specific wavelengths; thus, it can overcome one of the main limitations of photopharmacology. It opens up promising possibilities for the moving of photodrugs from the laboratory to the clinic.
Collapse
|
192
|
Baliga MS, Lasrado S, Krishna A, George T, Madathil LP, D’souza RF, Palatty PL. Social, Ethical and Treatment Related Problems Faced by Healthcare Workers in the Care of Head and Neck Cancer Patients: A Narrative Review from the Bioethics Consortium from India. Indian J Otolaryngol Head Neck Surg 2023:1-11. [PMID: 37362104 PMCID: PMC10206566 DOI: 10.1007/s12070-023-03738-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/26/2023] [Indexed: 06/28/2023] Open
Abstract
Head and neck cancer (HNC) presents a variety of ethical difficulties for an oncologist involved in screening, diagnosis, treatment, and rehabilitation that are challenging to address, especially for those professionals/people who are not trained in medical ethics. The bioethics department has spent the last ten years compiling information and rating the seriousness of numerous niche ethical concerns and their effects on healthcare professionals practising in India. Based on these findings, the current analysis makes an effort to outline the different challenges faced by oncologists when screening, diagnosing, treating, and rehabilitating people affected with HNC, particularly in a traditional nation like India. According to the authors, this is the first overview to address these issues from an Indian viewpoint, and it represents a small effort to document a crucial but unaddressed component of cancer treatment. It is hoped that these endeavours would aid in educating upcoming healthcare professionals on how to effectively handle the difficulties.
Collapse
Affiliation(s)
- Manjeshwar Shrinath Baliga
- Bioethics Education and Research Unit, Mangalore Institute of Oncology, Pumpwell, Mangalore, Karnataka 575002 India
- The Bioethics SAARC Nodal Centre, International Network Bioethics, Amrita Institute of Medical Sciences, Kochi, Ernakulam, Kerala 682041 India
- Member, International Chair in Bioethics, University of Porto Portugal (Formerly UNESCO Chair in Bioethics, University of Haifa) Directorate of The Asia Pacific Division and Education Department, Cleeland Street, Melbourne, Australia
| | - Savita Lasrado
- Department of Otorhinolaryngology, Father Muller Medical College, Kankanady, Mangalore, 575002 India
| | - Abhishek Krishna
- Department of Radiation Oncology, Kasturba Medical College, Mangalore, Karnataka 570001 India
| | - Thomas George
- Internal Medicine, Coney Island Hospital, 2601 Ocean Pkwy, Brooklyn, NY 11235 USA
| | - Lal P. Madathil
- The Bioethics SAARC Nodal Centre, International Network Bioethics, Amrita Institute of Medical Sciences, Kochi, Ernakulam, Kerala 682041 India
| | - Russell Franco D’souza
- Member, International Chair in Bioethics, University of Porto Portugal (Formerly UNESCO Chair in Bioethics, University of Haifa) Directorate of The Asia Pacific Division and Education Department, Cleeland Street, Melbourne, Australia
- Chair Department of Education, International Chair in Bioethics, University of Porto Portugal (Formerly UNESCO Chair in Bioethics, University of Haifa); Directorate of The Asia Pacific Division and Education Department, Cleeland Street, Melbourne, Australia
| | - Princy Louis Palatty
- The Bioethics SAARC Nodal Centre, International Network Bioethics, Amrita Institute of Medical Sciences, Kochi, Ernakulam, Kerala 682041 India
- Department of Pharmacology, Amrita School of Medicine, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Ernakulam, Kerala 682041 India
| |
Collapse
|
193
|
Nafeh G, Abi Akl M, Samarani J, Bahous R, Al Kari G, Younes M, Sarkis R, Rizk S. Urtica dioica Leaf Infusion Enhances the Sensitivity of Triple-Negative Breast Cancer Cells to Cisplatin Treatment. Pharmaceuticals (Basel) 2023; 16:780. [PMID: 37375728 DOI: 10.3390/ph16060780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023] Open
Abstract
Urtica dioica (UD) has been widely used in traditional medicine due to its therapeutic benefits, including its anticancer effects. Natural compounds have a promising potential when used in combination with chemotherapeutic drugs. The present study explores the anticancer and anti-proliferative properties of UD tea in combination with cisplatin on MDA-MB-231 breast cancer cells in vitro. To elucidate the effect of this combination, a cell viability assay, Annexin V/PI dual staining, cell death ELISA, and Western blots were performed. The results showed that the combination of UD and cisplatin significantly decreased the proliferation of MDA-MB-231 cells in a dose- and time-dependent manner compared to each treatment alone. This was accompanied by an increase in two major hallmarks of apoptosis, the flipping of phosphatidylserine to the outer membrane leaflet and DNA fragmentation, as revealed by Annexin V/PI staining and cell death ELISA, respectively. DNA damage was also validated by the upregulation of the cleaved PARP protein as revealed by Western blot analysis. Finally, the increase in the Bax/Bcl-2 ratio further supported the apoptotic mechanism of death induced by this combination. Thus, a leaf infusion of Urtica dioica enhanced the sensitivity of an aggressive breast cancer cell line to cisplatin via the activation of apoptosis.
Collapse
Affiliation(s)
- Guy Nafeh
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Maria Abi Akl
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Jad Samarani
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Rawane Bahous
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Georges Al Kari
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Maria Younes
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Rita Sarkis
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
- Laboratory of Regenerative Hematopoiesis, Swiss Institute for Experimental Cancer Research (ISREC) & Institute of Bioengineering (IBI), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Sandra Rizk
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| |
Collapse
|
194
|
Ardad RM, Manjappa AS, Dhawale SC, Kumbhar PS, Pore YV. Concurrent oral delivery of non-oncology drugs through solid self-emulsifying system for repurposing in hepatocellular carcinoma. Drug Dev Ind Pharm 2023:1-21. [PMID: 37216496 DOI: 10.1080/03639045.2023.2216785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
OBJECTIVE Present study aimed to identify a safe and effective non-oncology drug cocktail as an alternative to toxic chemotherapeutics for hepatocellular carcinoma treatment. The assessment of cytotoxicity of cocktail (as co-adjuvant) in combination with chemotherapeutic docetaxel (DTX) is also aimed. Further, we aimed to develop an oral solid self-emulsifying drug delivery system (S-SEDDS) for the simultaneous delivery of identified drugs. SIGNIFICANCE The identified non-oncology drug cocktail could overcome the shortage of anticancer therapeutics and help to reduce cancer-related mortality. Moreover, the developed S-SEDDS could be an ideal system for concurrent oral delivery of non-oncology drug combinations. METHODS The non-oncology drugs (alone and in combinations) were screened in vitro for anticancer effect (against HepG2 cells) using (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide; MTT) dye assay, and cell cycle arresting and apoptotic behaviors using the fluorescence-activated cell sorting (FACS) technique. The S-SEDDS is composed of drugs such as Ketoconazole (KCZ), Disulfiram (DSR), Tadalafil (TLF), and excipients like span-80, tween-80, soybean oil, Leciva S-95, Poloxamer F108 (PF-108), and Neusilin® US2 (adsorbent carrier) was developed and characterized. RESULTS The cocktail composed of KCZ, DSR, and TLF has showed substantial cytotoxicity (at the lowest concentration of 3.3 picomoles), HepG2 cell arrest at G0/G1 and S phases, and substantial cell death via apoptosis. The Docetaxel (DTX) inclusion into this cocktail has further resulted in increased cytotoxicity, cell arrest at the G2/M phase, and cell necrosis. The optimized blank liquid SEDDS that remains transparent without phase separation for more than 6 months is used for the preparation of drug-loaded liquid SEDDS (DL-SEDDS). The optimized DL-SEDDS with low viscosity, good dispersibility, considerable drug retention upon dilution, and smaller particle size is further converted into drug-loaded solid SEDDS (DS-SEDDS). The final DS-SEDDS demonstrated acceptable flowability and compression characteristics, significant drug retention (more than 93%), particle size in nano range (less than 500 nm) and nearly spherical morphology following dilutions. The DS-SEDDS showed substantially increased cytotoxicity and Caco-2 cell permeability than plain drugs. Furthermore, DS-SEDDS containing only non-oncology drugs caused lower in vivo toxicity (only 6% body weight loss) than DS-SEDDS containing non-oncology drugs with DTX (about 10% weight loss). CONCLUSION The current study revealed a non-oncology drug combination effective against hepatocellular carcinoma. Further, it is concluded that the developed S-SEDDS containing non-oncology drug combination alone and in combination with DTX could be a promising alternative to toxic chemotherapeutics for the effective oral treatment of hepatic cancer.
Collapse
Affiliation(s)
- Rameshwar M Ardad
- Department of Pharmacology, School of Pharmacy, Swami Ramanand Marathwada University, Nanded, Maharashtra, India
- Department of Quality Assurance, Dr. Shivajirao Kadam College of Pharmacy, Kasbe Digraj, Sangli, India
| | - Arehalli S Manjappa
- Department of Pharmaceutics, Vasantidevi Patil Institute of Pharmacy, Kodoli, Tal- Panhala, Dist- Kolhapur, 416114 (MS)
| | - Shashikant C Dhawale
- Department of Pharmacology, School of Pharmacy, Swami Ramanand Marathwada University, Nanded, Maharashtra, India
| | - Popat S Kumbhar
- Tatyasaheb Kore College of Pharmacy, Department of Pharmaceutics, Warananagar, Taluka Panhala, District Kolhapur, Maharashtra, India
| | - Yogesh V Pore
- Department of Pharmaceutical Chemistry, Government College of Pharmacy,Ratnagiri, Maharshtra, India
| |
Collapse
|
195
|
Alsufyani T, Al-Otaibi N, Alotaibi NJ, M'sakni NH, Alghamdi EM. GC Analysis, Anticancer, and Antibacterial Activities of Secondary Bioactive Compounds from Endosymbiotic Bacteria of Pomegranate Aphid and Its Predator and Protector. Molecules 2023; 28:molecules28104255. [PMID: 37241995 DOI: 10.3390/molecules28104255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Bacterial secondary metabolites are a valuable source of various molecules that have antibacterial and anticancer activity. In this study, ten endosymbiotic bacteria of aphids, aphid predators and ants were isolated. Bacterial strains were identified according to the 16S rRNA gene. Ethyl acetate fractions of methanol extract (EA-ME) were prepared from each isolated bacterium and tested for their antibacterial activities using the disk diffusion method. The EA-ME of three bacterial species, Planococcus sp., Klebsiella aerogenes, Enterococcus avium, from the pomegranate aphids Aphis punicae, Chrysoperia carnea, and Tapinoma magnum, respectively, exhibited elevated antibacterial activity against one or several of the five pathogenic bacteria tested. The inhibition zones ranged from 10.00 ± 0.13 to 20.00 ± 1.11 mm, with minimum inhibitory concentration (MIC) values ranging from 0.156 mg/mL to 1.25 mg/mL. The most notable antibacterial activity was found in the EA-ME of K. aerogenes against Klebsiella pneumonia and Escherichia coli, with an MIC value of 0.156 mg/mL. The cytotoxic activity of EA-ME was dependent on the cell line tested. The most significant cytotoxicity effect was observed for extracts of K. aerogenes and E. avium, at 12.5 µg/mL, against the epithelial cells of lung carcinoma (A549), with a cell reduction of 79.4% and 67.2%, respectively. For the EA-ME of K. aerogenes and Pantoea agglomerans at 12.5 µg/mL, 69.4% and 67.8% cell reduction were observed against human colon cancer (Hct116), respectively. Gas chromatography-mass spectrometry (GC-MS) analysis of three EA-ME revealed the presence of several bioactive secondary metabolites that have been reported previously to possess antibacterial and anticancer properties. To the best of our knowledge, this is the first study to examine the biological activities of endosymbiotic bacteria in aphids, aphid predators and ants. The promising data presented in this study may pave the way for alternative drugs to overcome the continued emergence of multidrug-resistant bacteria, and find alternative drugs to conventional cancer therapies.
Collapse
Affiliation(s)
- Taghreed Alsufyani
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- High Altitude Research Centre, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Najwa Al-Otaibi
- High Altitude Research Centre, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Noura J Alotaibi
- High Altitude Research Centre, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Nour Houda M'sakni
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- High Altitude Research Centre, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Laboratory of the Interfaces and Advanced Materials (LIMA), Science Faculty, Monastir University, P.O. Box 05019, Monastir 5019, Tunisia
| | - Eman M Alghamdi
- Chemistry Department, Faculty of Science, King Abdul Aziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
| |
Collapse
|
196
|
Hernández-Zazueta MS, García-Romo JS, Luzardo-Ocampo I, Carbonell-Barrachina ÁA, Taboada-Antelo P, Rosas-Burgos EC, Ezquerra-Brauer JM, Martínez-Soto JM, Candia-Plata MDC, Santacruz-Ortega HDC, Burgos-Hernández A. N-(2-ozoazepan-3-yl)-pyrrolidine-2-carboxamide, a novel Octopus vulgaris ink-derived metabolite, exhibits a pro-apoptotic effect on A549 cancer cell line and inhibits pro-inflammatory markers. Food Chem Toxicol 2023:113829. [PMID: 37225033 DOI: 10.1016/j.fct.2023.113829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 03/10/2023] [Accepted: 05/11/2023] [Indexed: 05/26/2023]
Abstract
This research aimed to chemically synthesize and evaluate the antiproliferative and anti-inflammatory potential of ozopromide (OPC), a novel compound recently isolated from O. vulgaris ink. After chemical synthesis, OPC structural characterization was confirmed by COSY2D, FTIR, and C-/H-NMR. OPC inhibited the growth of human breast (MDA-MB-231), prostate (22Rv1), cervix (HeLa), and lung (A549) cancerous cells, being the highest effect on the latter (IC50: 53.70 μM). As confirmed by flow cytometry, OPC induced typical apoptosis-derived morphological features on A549 cells, mostly at early and late apoptosis stages. OPC generated a dose-dependent effect inhibiting IL-6 and IL-8 on LPS-stimulated peripheral mononuclear cells (PBMCs). A major affinity of OPC to Akt-1 and Bcl-2 proteins in silico agreed with the observed pro-apoptotic mechanisms. Results suggested that OPC has the potential to alleviate inflammation and be further studied for anticancer activity. Marine-derived food products such as ink contains bioactive metabolites exhibiting potential health benefits.
Collapse
Affiliation(s)
| | - Joel Said García-Romo
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, 83000, Hermosillo, Sonora, Mexico
| | - Ivan Luzardo-Ocampo
- Research and Graduate Program in Food Science, Universidad Autonoma de Queretaro, 76010, Queretaro, Mexico
| | | | - Pablo Taboada-Antelo
- Departamento de Física Aplicada, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Ema Carina Rosas-Burgos
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, 83000, Hermosillo, Sonora, Mexico
| | | | | | | | | | - Armando Burgos-Hernández
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, 83000, Hermosillo, Sonora, Mexico.
| |
Collapse
|
197
|
Schaf J, Shinhmar S, Zeng Q, Pardo OE, Beesley P, Syed N, Williams RSB. Enhanced Sestrin expression through Tanshinone 2A treatment improves PI3K-dependent inhibition of glioma growth. Cell Death Discov 2023; 9:172. [PMID: 37202382 DOI: 10.1038/s41420-023-01462-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/20/2023] Open
Abstract
Glioblastomas are a highly aggressive cancer type which respond poorly to current pharmaceutical treatments, thus novel therapeutic approaches need to be investigated. One such approach involves the use of the bioactive natural product Tanshinone IIA (T2A) derived from the Chinese herb Danshen, where mechanistic insight for this anti-cancer agent is needed to validate its use. Here, we employ a tractable model system, Dictyostelium discoideum, to provide this insight. T2A potently inhibits cellular proliferation of Dictyostelium, suggesting molecular targets in this model. We show that T2A rapidly reduces phosphoinositide 3 kinase (PI3K) and protein kinase B (PKB) activity, but surprisingly, the downstream complex mechanistic target of rapamycin complex 1 (mTORC1) is only inhibited following chronic treatment. Investigating regulators of mTORC1, including PKB, tuberous sclerosis complex (TSC), and AMP-activated protein kinase (AMPK), suggests these enzymes were not responsible for this effect, implicating an additional molecular mechanism of T2A. We identify this mechanism as the increased expression of sestrin, a negative regulator of mTORC1. We further show that combinatory treatment using a PI3K inhibitor and T2A gives rise to a synergistic inhibition of cell proliferation. We then translate our findings to human and mouse-derived glioblastoma cell lines, where both a PI3K inhibitor (Paxalisib) and T2A reduces glioblastoma proliferation in monolayer cultures and in spheroid expansion, with combinatory treatment significantly enhancing this effect. Thus, we propose a new approach for cancer treatment, including glioblastomas, through combinatory treatment with PI3K inhibitors and T2A.
Collapse
Affiliation(s)
- Judith Schaf
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Sonia Shinhmar
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Qingyu Zeng
- John Fulcher Neuro-Oncology Laboratory, Imperial College London, Hammersmith Hospital, London, UK
| | - Olivier E Pardo
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Philip Beesley
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Nelofer Syed
- John Fulcher Neuro-Oncology Laboratory, Imperial College London, Hammersmith Hospital, London, UK
| | - Robin S B Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK.
| |
Collapse
|
198
|
Norkaew C, Subkorn P, Chatupheeraphat C, Roytrakul S, Tanyong D. Pinostrobin, a fingerroot compound, regulates miR-181b-5p and induces acute leukemic cell apoptosis. Sci Rep 2023; 13:8084. [PMID: 37208425 DOI: 10.1038/s41598-023-35193-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/14/2023] [Indexed: 05/21/2023] Open
Abstract
Pinostrobin (PN) is the most abundant flavonoid found in fingerroot. Although the anti-leukemic properties of PN have been reported, its mechanisms are still unclear. MicroRNAs (miRNAs) are small RNA molecules that function in posttranscriptional silencing and are increasingly being used in cancer therapy. The aims of this study were to investigate the effects of PN on proliferation inhibition and induction of apoptosis, as well as the involvement of miRNAs in PN-mediated apoptosis in acute leukemia. The results showed that PN reduced cell viability and induced apoptosis in acute leukemia cells via both intrinsic and extrinsic pathways. A bioinformatics approach and Protein-Protein Interaction (PPI) network analysis revealed that ataxia-telangiectasia mutated kinase (ATM), one of the p53 activators that responds to DNA damage-induced apoptosis, is a crucial target of PN. Four prediction tools were used to predict ATM-regulated miRNAs; miR-181b-5p was the most likely candidate. The reduction in miR-181b-5 after PN treatment was found to trigger ATM, resulting in cellular apoptosis. Therefore, PN could be developed as a drug for acute leukemia; in addition, miR-181b-5p and ATM may be promising therapeutic targets.
Collapse
Affiliation(s)
- Chosita Norkaew
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Paweena Subkorn
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Chawalit Chatupheeraphat
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology for Development Agency, Pathum Thani, 12120, Thailand
| | - Dalina Tanyong
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
199
|
Zhivkov AM, Popov TT, Hristova SH. Composite Hydrogels with Included Solid-State Nanoparticles Bearing Anticancer Chemotherapeutics. Gels 2023; 9:gels9050421. [PMID: 37233012 DOI: 10.3390/gels9050421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Hydrogels have many useful physicochemical properties which, in combination with their biocompatibility, suggest their application as a drug delivery system for the local and prorogated release of drugs. However, their drug-absorption capacity is limited because of the gel net's poor adsorption of hydrophilic molecules and in particular, hydrophobic molecules. The absorption capacity of hydrogels can be increased with the incorporation of nanoparticles due to their huge surface area. In this review, composite hydrogels (physical, covalent and injectable) with included hydrophobic and hydrophilic nanoparticles are considered as suitable for use as carriers of anticancer chemotherapeutics. The main focus is given to the surface properties of the nanoparticles (hydrophilicity/hydrophobicity and surface electric charge) formed from metal and dielectric substances: metals (gold, silver), metal-oxides (iron, aluminum, titanium, zirconium), silicates (quartz) and carbon (graphene). The physicochemical properties of the nanoparticles are emphasized in order to assist researchers in choosing appropriate nanoparticles for the adsorption of drugs with hydrophilic and hydrophobic organic molecules.
Collapse
Affiliation(s)
- Alexandar M Zhivkov
- Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 11, 1113 Sofia, Bulgaria
| | - Trifon T Popov
- Medical Faculty, Medical University-Sofia, Zdrave Str. 2, 1431 Sofia, Bulgaria
| | - Svetlana H Hristova
- Department of Medical Physics and Biophysics, Medical Faculty, Medical University-Sofia, Zdrave Str. 2, 1431 Sofia, Bulgaria
| |
Collapse
|
200
|
Costa L, Alexandre T, Mansinho A, Sousa R, Vieira C, Hughes R, Roediger A, Pereira SM, Araújo A. Health outcomes and budget impact projection of anti-PD-(L)1s in cancer care in Portugal. Front Public Health 2023; 11:1133959. [PMID: 37250095 PMCID: PMC10215539 DOI: 10.3389/fpubh.2023.1133959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/07/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction PD-[L]1 inhibitors revolutionized cancer treatment but challenge the affordability of health systems. This policy-focused model aimed to estimate the health and budget impact of anti-PD-(L)1s in Portugal and inform current discussions. Materials and methods The Health Impact Projection (HIP) model estimates clinical (life years, progression-free survival [PFS] years, and quality-adjusted life years [QALY] gained and adverse events [AEs] incurred) and economic (direct and indirect costs) outcomes in a world where cancer patients are initiating treatment with standard-of-care (SOC) versus SOC plus anti-PD-(L)1s over a 3-year time horizon. Indications included adjuvant and metastatic melanoma, non-small cell lung cancer (first and second line), metastatic triple-negative breast cancer, head and neck cancer, urothelial carcinoma, and renal cell carcinoma. Model inputs were based on publicly available literature data and expert opinion. Results The model estimated that, over 3 years, 7,773 patients would be treated with anti-PD-(L)1s, realizing a gain of 4,787 life years, 6,901 PFS years, and 4,214 QALYs and avoiding 399 AEs. The introduction of anti-PD-(L)1s had a projected average annual impact of ≈ €108 million and a share of 20% of total cancer medicines expenditure and 0.6% of total healthcare expenditure in 2021. Although higher disease management costs are expected for patients living longer with anti-PD-(L)1s and drug acquisition costs are considerable, that is partially offset by a reduction in end-of-life costs (€611,092/year) and costs associated with patient productivity lost to cancer (€9,128,142/year). Discussion This model highlights the significant survival and QoL benefit of anti-PD-(L)1s for cancer patients in Portugal, with a relatively low increased cost in total healthcare expenditure.
Collapse
Affiliation(s)
- Luís Costa
- Department of Oncology, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Teresa Alexandre
- Department of Medical Oncology, Instituto Português de Oncologia de Lisboa Francisco Gentil, E. P. E, Lisbon, Portugal
| | - André Mansinho
- Department of Oncology, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Rita Sousa
- Department of Oncology, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Cláudia Vieira
- Department of Medical Oncology, Instituto Português de Oncologia do Porto Francisco Gentil, Porto, Portugal
| | | | | | | | - António Araújo
- Department of Medical Oncology, Centro Hospitalar Universitário Santo António, Porto, Portugal
| |
Collapse
|